xref: /freebsd/sys/kern/vfs_bio.c (revision 2c8d04d0228871c24017509cf039e7c5d97d97be)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * Copyright (c) 2013 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * this file contains a new buffer I/O scheme implementing a coherent
34  * VM object and buffer cache scheme.  Pains have been taken to make
35  * sure that the performance degradation associated with schemes such
36  * as this is not realized.
37  *
38  * Author:  John S. Dyson
39  * Significant help during the development and debugging phases
40  * had been provided by David Greenman, also of the FreeBSD core team.
41  *
42  * see man buf(9) for more info.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/conf.h>
52 #include <sys/buf.h>
53 #include <sys/devicestat.h>
54 #include <sys/eventhandler.h>
55 #include <sys/fail.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/kthread.h>
63 #include <sys/proc.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/rwlock.h>
67 #include <sys/smp.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysproto.h>
70 #include <sys/vmem.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/watchdog.h>
74 #include <geom/geom.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/vm_map.h>
83 #include <vm/swap_pager.h>
84 #include "opt_compat.h"
85 #include "opt_swap.h"
86 
87 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
88 
89 struct	bio_ops bioops;		/* I/O operation notification */
90 
91 struct	buf_ops buf_ops_bio = {
92 	.bop_name	=	"buf_ops_bio",
93 	.bop_write	=	bufwrite,
94 	.bop_strategy	=	bufstrategy,
95 	.bop_sync	=	bufsync,
96 	.bop_bdflush	=	bufbdflush,
97 };
98 
99 static struct buf *buf;		/* buffer header pool */
100 extern struct buf *swbuf;	/* Swap buffer header pool. */
101 caddr_t unmapped_buf;
102 
103 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
104 struct proc *bufdaemonproc;
105 struct proc *bufspacedaemonproc;
106 
107 static int inmem(struct vnode *vp, daddr_t blkno);
108 static void vm_hold_free_pages(struct buf *bp, int newbsize);
109 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
110 		vm_offset_t to);
111 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
112 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
113 		vm_page_t m);
114 static void vfs_clean_pages_dirty_buf(struct buf *bp);
115 static void vfs_setdirty_locked_object(struct buf *bp);
116 static void vfs_vmio_invalidate(struct buf *bp);
117 static void vfs_vmio_truncate(struct buf *bp, int npages);
118 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
119 static int vfs_bio_clcheck(struct vnode *vp, int size,
120 		daddr_t lblkno, daddr_t blkno);
121 static int buf_flush(struct vnode *vp, int);
122 static int buf_recycle(bool);
123 static int buf_scan(bool);
124 static int flushbufqueues(struct vnode *, int, int);
125 static void buf_daemon(void);
126 static void bremfreel(struct buf *bp);
127 static __inline void bd_wakeup(void);
128 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
129 static void bufkva_reclaim(vmem_t *, int);
130 static void bufkva_free(struct buf *);
131 static int buf_import(void *, void **, int, int);
132 static void buf_release(void *, void **, int);
133 
134 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
135     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
136 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
137 #endif
138 
139 int vmiodirenable = TRUE;
140 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
141     "Use the VM system for directory writes");
142 long runningbufspace;
143 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
144     "Amount of presently outstanding async buffer io");
145 static long bufspace;
146 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
147     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
148 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
149     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
150 #else
151 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
152     "Physical memory used for buffers");
153 #endif
154 static long bufkvaspace;
155 SYSCTL_LONG(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 0,
156     "Kernel virtual memory used for buffers");
157 static long maxbufspace;
158 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, &maxbufspace, 0,
159     "Maximum allowed value of bufspace (including metadata)");
160 static long bufmallocspace;
161 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
162     "Amount of malloced memory for buffers");
163 static long maxbufmallocspace;
164 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
165     0, "Maximum amount of malloced memory for buffers");
166 static long lobufspace;
167 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RW, &lobufspace, 0,
168     "Minimum amount of buffers we want to have");
169 long hibufspace;
170 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RW, &hibufspace, 0,
171     "Maximum allowed value of bufspace (excluding metadata)");
172 long bufspacethresh;
173 SYSCTL_LONG(_vfs, OID_AUTO, bufspacethresh, CTLFLAG_RW, &bufspacethresh,
174     0, "Bufspace consumed before waking the daemon to free some");
175 static int buffreekvacnt;
176 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
177     "Number of times we have freed the KVA space from some buffer");
178 static int bufdefragcnt;
179 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
180     "Number of times we have had to repeat buffer allocation to defragment");
181 static long lorunningspace;
182 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
183     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
184     "Minimum preferred space used for in-progress I/O");
185 static long hirunningspace;
186 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
187     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
188     "Maximum amount of space to use for in-progress I/O");
189 int dirtybufferflushes;
190 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
191     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
192 int bdwriteskip;
193 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
194     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
195 int altbufferflushes;
196 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
197     0, "Number of fsync flushes to limit dirty buffers");
198 static int recursiveflushes;
199 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
200     0, "Number of flushes skipped due to being recursive");
201 static int numdirtybuffers;
202 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
203     "Number of buffers that are dirty (has unwritten changes) at the moment");
204 static int lodirtybuffers;
205 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
206     "How many buffers we want to have free before bufdaemon can sleep");
207 static int hidirtybuffers;
208 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
209     "When the number of dirty buffers is considered severe");
210 int dirtybufthresh;
211 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
212     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
213 static int numfreebuffers;
214 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
215     "Number of free buffers");
216 static int lofreebuffers;
217 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
218    "Target number of free buffers");
219 static int hifreebuffers;
220 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
221    "Threshold for clean buffer recycling");
222 static int getnewbufcalls;
223 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
224    "Number of calls to getnewbuf");
225 static int getnewbufrestarts;
226 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
227     "Number of times getnewbuf has had to restart a buffer acquisition");
228 static int mappingrestarts;
229 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
230     "Number of times getblk has had to restart a buffer mapping for "
231     "unmapped buffer");
232 static int numbufallocfails;
233 SYSCTL_INT(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, &numbufallocfails, 0,
234     "Number of times buffer allocations failed");
235 static int flushbufqtarget = 100;
236 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
237     "Amount of work to do in flushbufqueues when helping bufdaemon");
238 static long notbufdflushes;
239 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
240     "Number of dirty buffer flushes done by the bufdaemon helpers");
241 static long barrierwrites;
242 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
243     "Number of barrier writes");
244 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
245     &unmapped_buf_allowed, 0,
246     "Permit the use of the unmapped i/o");
247 
248 /*
249  * This lock synchronizes access to bd_request.
250  */
251 static struct mtx_padalign bdlock;
252 
253 /*
254  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
255  * waitrunningbufspace().
256  */
257 static struct mtx_padalign rbreqlock;
258 
259 /*
260  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
261  */
262 static struct rwlock_padalign nblock;
263 
264 /*
265  * Lock that protects bdirtywait.
266  */
267 static struct mtx_padalign bdirtylock;
268 
269 /*
270  * Wakeup point for bufdaemon, as well as indicator of whether it is already
271  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
272  * is idling.
273  */
274 static int bd_request;
275 
276 /*
277  * Request/wakeup point for the bufspace daemon.
278  */
279 static int bufspace_request;
280 
281 /*
282  * Request for the buf daemon to write more buffers than is indicated by
283  * lodirtybuf.  This may be necessary to push out excess dependencies or
284  * defragment the address space where a simple count of the number of dirty
285  * buffers is insufficient to characterize the demand for flushing them.
286  */
287 static int bd_speedupreq;
288 
289 /*
290  * bogus page -- for I/O to/from partially complete buffers
291  * this is a temporary solution to the problem, but it is not
292  * really that bad.  it would be better to split the buffer
293  * for input in the case of buffers partially already in memory,
294  * but the code is intricate enough already.
295  */
296 vm_page_t bogus_page;
297 
298 /*
299  * Synchronization (sleep/wakeup) variable for active buffer space requests.
300  * Set when wait starts, cleared prior to wakeup().
301  * Used in runningbufwakeup() and waitrunningbufspace().
302  */
303 static int runningbufreq;
304 
305 /*
306  * Synchronization (sleep/wakeup) variable for buffer requests.
307  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
308  * by and/or.
309  * Used in numdirtywakeup(), bufspace_wakeup(), bwillwrite(),
310  * getnewbuf(), and getblk().
311  */
312 static volatile int needsbuffer;
313 
314 /*
315  * Synchronization for bwillwrite() waiters.
316  */
317 static int bdirtywait;
318 
319 /*
320  * Definitions for the buffer free lists.
321  */
322 #define QUEUE_NONE	0	/* on no queue */
323 #define QUEUE_EMPTY	1	/* empty buffer headers */
324 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
325 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
326 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
327 
328 /* Maximum number of clean buffer queues. */
329 #define	CLEAN_QUEUES	16
330 
331 /* Configured number of clean queues. */
332 static int clean_queues;
333 
334 /* Maximum number of buffer queues. */
335 #define BUFFER_QUEUES	(QUEUE_CLEAN + CLEAN_QUEUES)
336 
337 /* Queues for free buffers with various properties */
338 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
339 #ifdef INVARIANTS
340 static int bq_len[BUFFER_QUEUES];
341 #endif
342 
343 /*
344  * Lock for each bufqueue
345  */
346 static struct mtx_padalign bqlocks[BUFFER_QUEUES];
347 
348 /*
349  * per-cpu empty buffer cache.
350  */
351 uma_zone_t buf_zone;
352 
353 /*
354  * Single global constant for BUF_WMESG, to avoid getting multiple references.
355  * buf_wmesg is referred from macros.
356  */
357 const char *buf_wmesg = BUF_WMESG;
358 
359 static int
360 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
361 {
362 	long value;
363 	int error;
364 
365 	value = *(long *)arg1;
366 	error = sysctl_handle_long(oidp, &value, 0, req);
367 	if (error != 0 || req->newptr == NULL)
368 		return (error);
369 	mtx_lock(&rbreqlock);
370 	if (arg1 == &hirunningspace) {
371 		if (value < lorunningspace)
372 			error = EINVAL;
373 		else
374 			hirunningspace = value;
375 	} else {
376 		KASSERT(arg1 == &lorunningspace,
377 		    ("%s: unknown arg1", __func__));
378 		if (value > hirunningspace)
379 			error = EINVAL;
380 		else
381 			lorunningspace = value;
382 	}
383 	mtx_unlock(&rbreqlock);
384 	return (error);
385 }
386 
387 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
388     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
389 static int
390 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
391 {
392 	long lvalue;
393 	int ivalue;
394 
395 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
396 		return (sysctl_handle_long(oidp, arg1, arg2, req));
397 	lvalue = *(long *)arg1;
398 	if (lvalue > INT_MAX)
399 		/* On overflow, still write out a long to trigger ENOMEM. */
400 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
401 	ivalue = lvalue;
402 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
403 }
404 #endif
405 
406 static int
407 bqcleanq(void)
408 {
409 	static int nextq;
410 
411 	return ((atomic_fetchadd_int(&nextq, 1) % clean_queues) + QUEUE_CLEAN);
412 }
413 
414 static int
415 bqisclean(int qindex)
416 {
417 
418 	return (qindex >= QUEUE_CLEAN && qindex < QUEUE_CLEAN + CLEAN_QUEUES);
419 }
420 
421 /*
422  *	bqlock:
423  *
424  *	Return the appropriate queue lock based on the index.
425  */
426 static inline struct mtx *
427 bqlock(int qindex)
428 {
429 
430 	return (struct mtx *)&bqlocks[qindex];
431 }
432 
433 /*
434  *	bdirtywakeup:
435  *
436  *	Wakeup any bwillwrite() waiters.
437  */
438 static void
439 bdirtywakeup(void)
440 {
441 	mtx_lock(&bdirtylock);
442 	if (bdirtywait) {
443 		bdirtywait = 0;
444 		wakeup(&bdirtywait);
445 	}
446 	mtx_unlock(&bdirtylock);
447 }
448 
449 /*
450  *	bdirtysub:
451  *
452  *	Decrement the numdirtybuffers count by one and wakeup any
453  *	threads blocked in bwillwrite().
454  */
455 static void
456 bdirtysub(void)
457 {
458 
459 	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
460 	    (lodirtybuffers + hidirtybuffers) / 2)
461 		bdirtywakeup();
462 }
463 
464 /*
465  *	bdirtyadd:
466  *
467  *	Increment the numdirtybuffers count by one and wakeup the buf
468  *	daemon if needed.
469  */
470 static void
471 bdirtyadd(void)
472 {
473 
474 	/*
475 	 * Only do the wakeup once as we cross the boundary.  The
476 	 * buf daemon will keep running until the condition clears.
477 	 */
478 	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
479 	    (lodirtybuffers + hidirtybuffers) / 2)
480 		bd_wakeup();
481 }
482 
483 /*
484  *	bufspace_wakeup:
485  *
486  *	Called when buffer space is potentially available for recovery.
487  *	getnewbuf() will block on this flag when it is unable to free
488  *	sufficient buffer space.  Buffer space becomes recoverable when
489  *	bp's get placed back in the queues.
490  */
491 static void
492 bufspace_wakeup(void)
493 {
494 
495 	/*
496 	 * If someone is waiting for bufspace, wake them up.
497 	 *
498 	 * Since needsbuffer is set prior to doing an additional queue
499 	 * scan it is safe to check for the flag prior to acquiring the
500 	 * lock.  The thread that is preparing to scan again before
501 	 * blocking would discover the buf we released.
502 	 */
503 	if (needsbuffer) {
504 		rw_rlock(&nblock);
505 		if (atomic_cmpset_int(&needsbuffer, 1, 0) == 1)
506 			wakeup(__DEVOLATILE(void *, &needsbuffer));
507 		rw_runlock(&nblock);
508 	}
509 }
510 
511 /*
512  *	bufspace_daemonwakeup:
513  *
514  *	Wakeup the daemon responsible for freeing clean bufs.
515  */
516 static void
517 bufspace_daemonwakeup(void)
518 {
519 	rw_rlock(&nblock);
520 	if (bufspace_request == 0) {
521 		bufspace_request = 1;
522 		wakeup(&bufspace_request);
523 	}
524 	rw_runlock(&nblock);
525 }
526 
527 /*
528  *	bufspace_adjust:
529  *
530  *	Adjust the reported bufspace for a KVA managed buffer, possibly
531  * 	waking any waiters.
532  */
533 static void
534 bufspace_adjust(struct buf *bp, int bufsize)
535 {
536 	long space;
537 	int diff;
538 
539 	KASSERT((bp->b_flags & B_MALLOC) == 0,
540 	    ("bufspace_adjust: malloc buf %p", bp));
541 	diff = bufsize - bp->b_bufsize;
542 	if (diff < 0) {
543 		atomic_subtract_long(&bufspace, -diff);
544 		bufspace_wakeup();
545 	} else {
546 		space = atomic_fetchadd_long(&bufspace, diff);
547 		/* Wake up the daemon on the transition. */
548 		if (space < bufspacethresh && space + diff >= bufspacethresh)
549 			bufspace_daemonwakeup();
550 	}
551 	bp->b_bufsize = bufsize;
552 }
553 
554 /*
555  *	bufspace_reserve:
556  *
557  *	Reserve bufspace before calling allocbuf().  metadata has a
558  *	different space limit than data.
559  */
560 static int
561 bufspace_reserve(int size, bool metadata)
562 {
563 	long limit;
564 	long space;
565 
566 	if (metadata)
567 		limit = maxbufspace;
568 	else
569 		limit = hibufspace;
570 	do {
571 		space = bufspace;
572 		if (space + size > limit)
573 			return (ENOSPC);
574 	} while (atomic_cmpset_long(&bufspace, space, space + size) == 0);
575 
576 	/* Wake up the daemon on the transition. */
577 	if (space < bufspacethresh && space + size >= bufspacethresh)
578 		bufspace_daemonwakeup();
579 
580 	return (0);
581 }
582 
583 /*
584  *	bufspace_release:
585  *
586  *	Release reserved bufspace after bufspace_adjust() has consumed it.
587  */
588 static void
589 bufspace_release(int size)
590 {
591 	atomic_subtract_long(&bufspace, size);
592 	bufspace_wakeup();
593 }
594 
595 /*
596  *	bufspace_wait:
597  *
598  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
599  *	supplied.  needsbuffer must be set in a safe fashion prior to
600  *	polling for space.  The operation must be re-tried on return.
601  */
602 static void
603 bufspace_wait(struct vnode *vp, int gbflags, int slpflag, int slptimeo)
604 {
605 	struct thread *td;
606 	int error, fl, norunbuf;
607 
608 	if ((gbflags & GB_NOWAIT_BD) != 0)
609 		return;
610 
611 	td = curthread;
612 	rw_wlock(&nblock);
613 	while (needsbuffer != 0) {
614 		if (vp != NULL && vp->v_type != VCHR &&
615 		    (td->td_pflags & TDP_BUFNEED) == 0) {
616 			rw_wunlock(&nblock);
617 			/*
618 			 * getblk() is called with a vnode locked, and
619 			 * some majority of the dirty buffers may as
620 			 * well belong to the vnode.  Flushing the
621 			 * buffers there would make a progress that
622 			 * cannot be achieved by the buf_daemon, that
623 			 * cannot lock the vnode.
624 			 */
625 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
626 			    (td->td_pflags & TDP_NORUNNINGBUF);
627 
628 			/*
629 			 * Play bufdaemon.  The getnewbuf() function
630 			 * may be called while the thread owns lock
631 			 * for another dirty buffer for the same
632 			 * vnode, which makes it impossible to use
633 			 * VOP_FSYNC() there, due to the buffer lock
634 			 * recursion.
635 			 */
636 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
637 			fl = buf_flush(vp, flushbufqtarget);
638 			td->td_pflags &= norunbuf;
639 			rw_wlock(&nblock);
640 			if (fl != 0)
641 				continue;
642 			if (needsbuffer == 0)
643 				break;
644 		}
645 		error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
646 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
647 		if (error != 0)
648 			break;
649 	}
650 	rw_wunlock(&nblock);
651 }
652 
653 
654 /*
655  *	bufspace_daemon:
656  *
657  *	buffer space management daemon.  Tries to maintain some marginal
658  *	amount of free buffer space so that requesting processes neither
659  *	block nor work to reclaim buffers.
660  */
661 static void
662 bufspace_daemon(void)
663 {
664 	for (;;) {
665 		kproc_suspend_check(bufspacedaemonproc);
666 
667 		/*
668 		 * Free buffers from the clean queue until we meet our
669 		 * targets.
670 		 *
671 		 * Theory of operation:  The buffer cache is most efficient
672 		 * when some free buffer headers and space are always
673 		 * available to getnewbuf().  This daemon attempts to prevent
674 		 * the excessive blocking and synchronization associated
675 		 * with shortfall.  It goes through three phases according
676 		 * demand:
677 		 *
678 		 * 1)	The daemon wakes up voluntarily once per-second
679 		 *	during idle periods when the counters are below
680 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
681 		 *
682 		 * 2)	The daemon wakes up as we cross the thresholds
683 		 *	ahead of any potential blocking.  This may bounce
684 		 *	slightly according to the rate of consumption and
685 		 *	release.
686 		 *
687 		 * 3)	The daemon and consumers are starved for working
688 		 *	clean buffers.  This is the 'bufspace' sleep below
689 		 *	which will inefficiently trade bufs with bqrelse
690 		 *	until we return to condition 2.
691 		 */
692 		while (bufspace > lobufspace ||
693 		    numfreebuffers < hifreebuffers) {
694 			if (buf_recycle(false) != 0) {
695 				atomic_set_int(&needsbuffer, 1);
696 				if (buf_recycle(false) != 0) {
697 					rw_wlock(&nblock);
698 					if (needsbuffer)
699 						rw_sleep(__DEVOLATILE(void *,
700 						    &needsbuffer), &nblock,
701 						    PRIBIO|PDROP, "bufspace",
702 						    hz/10);
703 					else
704 						rw_wunlock(&nblock);
705 				}
706 			}
707 			maybe_yield();
708 		}
709 
710 		/*
711 		 * Re-check our limits under the exclusive nblock.
712 		 */
713 		rw_wlock(&nblock);
714 		if (bufspace < bufspacethresh &&
715 		    numfreebuffers > lofreebuffers) {
716 			bufspace_request = 0;
717 			rw_sleep(&bufspace_request, &nblock, PRIBIO|PDROP,
718 			    "-", hz);
719 		} else
720 			rw_wunlock(&nblock);
721 	}
722 }
723 
724 static struct kproc_desc bufspace_kp = {
725 	"bufspacedaemon",
726 	bufspace_daemon,
727 	&bufspacedaemonproc
728 };
729 SYSINIT(bufspacedaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start,
730     &bufspace_kp);
731 
732 /*
733  *	bufmallocadjust:
734  *
735  *	Adjust the reported bufspace for a malloc managed buffer, possibly
736  *	waking any waiters.
737  */
738 static void
739 bufmallocadjust(struct buf *bp, int bufsize)
740 {
741 	int diff;
742 
743 	KASSERT((bp->b_flags & B_MALLOC) != 0,
744 	    ("bufmallocadjust: non-malloc buf %p", bp));
745 	diff = bufsize - bp->b_bufsize;
746 	if (diff < 0)
747 		atomic_subtract_long(&bufmallocspace, -diff);
748 	else
749 		atomic_add_long(&bufmallocspace, diff);
750 	bp->b_bufsize = bufsize;
751 }
752 
753 /*
754  *	runningwakeup:
755  *
756  *	Wake up processes that are waiting on asynchronous writes to fall
757  *	below lorunningspace.
758  */
759 static void
760 runningwakeup(void)
761 {
762 
763 	mtx_lock(&rbreqlock);
764 	if (runningbufreq) {
765 		runningbufreq = 0;
766 		wakeup(&runningbufreq);
767 	}
768 	mtx_unlock(&rbreqlock);
769 }
770 
771 /*
772  *	runningbufwakeup:
773  *
774  *	Decrement the outstanding write count according.
775  */
776 void
777 runningbufwakeup(struct buf *bp)
778 {
779 	long space, bspace;
780 
781 	bspace = bp->b_runningbufspace;
782 	if (bspace == 0)
783 		return;
784 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
785 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
786 	    space, bspace));
787 	bp->b_runningbufspace = 0;
788 	/*
789 	 * Only acquire the lock and wakeup on the transition from exceeding
790 	 * the threshold to falling below it.
791 	 */
792 	if (space < lorunningspace)
793 		return;
794 	if (space - bspace > lorunningspace)
795 		return;
796 	runningwakeup();
797 }
798 
799 /*
800  *	waitrunningbufspace()
801  *
802  *	runningbufspace is a measure of the amount of I/O currently
803  *	running.  This routine is used in async-write situations to
804  *	prevent creating huge backups of pending writes to a device.
805  *	Only asynchronous writes are governed by this function.
806  *
807  *	This does NOT turn an async write into a sync write.  It waits
808  *	for earlier writes to complete and generally returns before the
809  *	caller's write has reached the device.
810  */
811 void
812 waitrunningbufspace(void)
813 {
814 
815 	mtx_lock(&rbreqlock);
816 	while (runningbufspace > hirunningspace) {
817 		runningbufreq = 1;
818 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
819 	}
820 	mtx_unlock(&rbreqlock);
821 }
822 
823 
824 /*
825  *	vfs_buf_test_cache:
826  *
827  *	Called when a buffer is extended.  This function clears the B_CACHE
828  *	bit if the newly extended portion of the buffer does not contain
829  *	valid data.
830  */
831 static __inline void
832 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
833     vm_offset_t size, vm_page_t m)
834 {
835 
836 	VM_OBJECT_ASSERT_LOCKED(m->object);
837 	if (bp->b_flags & B_CACHE) {
838 		int base = (foff + off) & PAGE_MASK;
839 		if (vm_page_is_valid(m, base, size) == 0)
840 			bp->b_flags &= ~B_CACHE;
841 	}
842 }
843 
844 /* Wake up the buffer daemon if necessary */
845 static __inline void
846 bd_wakeup(void)
847 {
848 
849 	mtx_lock(&bdlock);
850 	if (bd_request == 0) {
851 		bd_request = 1;
852 		wakeup(&bd_request);
853 	}
854 	mtx_unlock(&bdlock);
855 }
856 
857 /*
858  * bd_speedup - speedup the buffer cache flushing code
859  */
860 void
861 bd_speedup(void)
862 {
863 	int needwake;
864 
865 	mtx_lock(&bdlock);
866 	needwake = 0;
867 	if (bd_speedupreq == 0 || bd_request == 0)
868 		needwake = 1;
869 	bd_speedupreq = 1;
870 	bd_request = 1;
871 	if (needwake)
872 		wakeup(&bd_request);
873 	mtx_unlock(&bdlock);
874 }
875 
876 #ifndef NSWBUF_MIN
877 #define	NSWBUF_MIN	16
878 #endif
879 
880 #ifdef __i386__
881 #define	TRANSIENT_DENOM	5
882 #else
883 #define	TRANSIENT_DENOM 10
884 #endif
885 
886 /*
887  * Calculating buffer cache scaling values and reserve space for buffer
888  * headers.  This is called during low level kernel initialization and
889  * may be called more then once.  We CANNOT write to the memory area
890  * being reserved at this time.
891  */
892 caddr_t
893 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
894 {
895 	int tuned_nbuf;
896 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
897 
898 	/*
899 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
900 	 * PAGE_SIZE is >= 1K)
901 	 */
902 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
903 
904 	/*
905 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
906 	 * For the first 64MB of ram nominally allocate sufficient buffers to
907 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
908 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
909 	 * the buffer cache we limit the eventual kva reservation to
910 	 * maxbcache bytes.
911 	 *
912 	 * factor represents the 1/4 x ram conversion.
913 	 */
914 	if (nbuf == 0) {
915 		int factor = 4 * BKVASIZE / 1024;
916 
917 		nbuf = 50;
918 		if (physmem_est > 4096)
919 			nbuf += min((physmem_est - 4096) / factor,
920 			    65536 / factor);
921 		if (physmem_est > 65536)
922 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
923 			    32 * 1024 * 1024 / (factor * 5));
924 
925 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
926 			nbuf = maxbcache / BKVASIZE;
927 		tuned_nbuf = 1;
928 	} else
929 		tuned_nbuf = 0;
930 
931 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
932 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
933 	if (nbuf > maxbuf) {
934 		if (!tuned_nbuf)
935 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
936 			    maxbuf);
937 		nbuf = maxbuf;
938 	}
939 
940 	/*
941 	 * Ideal allocation size for the transient bio submap is 10%
942 	 * of the maximal space buffer map.  This roughly corresponds
943 	 * to the amount of the buffer mapped for typical UFS load.
944 	 *
945 	 * Clip the buffer map to reserve space for the transient
946 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
947 	 * maximum buffer map extent on the platform.
948 	 *
949 	 * The fall-back to the maxbuf in case of maxbcache unset,
950 	 * allows to not trim the buffer KVA for the architectures
951 	 * with ample KVA space.
952 	 */
953 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
954 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
955 		buf_sz = (long)nbuf * BKVASIZE;
956 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
957 		    (TRANSIENT_DENOM - 1)) {
958 			/*
959 			 * There is more KVA than memory.  Do not
960 			 * adjust buffer map size, and assign the rest
961 			 * of maxbuf to transient map.
962 			 */
963 			biotmap_sz = maxbuf_sz - buf_sz;
964 		} else {
965 			/*
966 			 * Buffer map spans all KVA we could afford on
967 			 * this platform.  Give 10% (20% on i386) of
968 			 * the buffer map to the transient bio map.
969 			 */
970 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
971 			buf_sz -= biotmap_sz;
972 		}
973 		if (biotmap_sz / INT_MAX > MAXPHYS)
974 			bio_transient_maxcnt = INT_MAX;
975 		else
976 			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
977 		/*
978 		 * Artificially limit to 1024 simultaneous in-flight I/Os
979 		 * using the transient mapping.
980 		 */
981 		if (bio_transient_maxcnt > 1024)
982 			bio_transient_maxcnt = 1024;
983 		if (tuned_nbuf)
984 			nbuf = buf_sz / BKVASIZE;
985 	}
986 
987 	/*
988 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
989 	 * We have no less then 16 and no more then 256.
990 	 */
991 	nswbuf = min(nbuf / 4, 256);
992 	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
993 	if (nswbuf < NSWBUF_MIN)
994 		nswbuf = NSWBUF_MIN;
995 
996 	/*
997 	 * Reserve space for the buffer cache buffers
998 	 */
999 	swbuf = (void *)v;
1000 	v = (caddr_t)(swbuf + nswbuf);
1001 	buf = (void *)v;
1002 	v = (caddr_t)(buf + nbuf);
1003 
1004 	return(v);
1005 }
1006 
1007 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1008 void
1009 bufinit(void)
1010 {
1011 	struct buf *bp;
1012 	int i;
1013 
1014 	CTASSERT(MAXBCACHEBUF >= MAXBSIZE);
1015 	mtx_init(&bqlocks[QUEUE_DIRTY], "bufq dirty lock", NULL, MTX_DEF);
1016 	mtx_init(&bqlocks[QUEUE_EMPTY], "bufq empty lock", NULL, MTX_DEF);
1017 	for (i = QUEUE_CLEAN; i < QUEUE_CLEAN + CLEAN_QUEUES; i++)
1018 		mtx_init(&bqlocks[i], "bufq clean lock", NULL, MTX_DEF);
1019 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1020 	rw_init(&nblock, "needsbuffer lock");
1021 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1022 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1023 
1024 	/* next, make a null set of free lists */
1025 	for (i = 0; i < BUFFER_QUEUES; i++)
1026 		TAILQ_INIT(&bufqueues[i]);
1027 
1028 	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
1029 
1030 	/* finally, initialize each buffer header and stick on empty q */
1031 	for (i = 0; i < nbuf; i++) {
1032 		bp = &buf[i];
1033 		bzero(bp, sizeof *bp);
1034 		bp->b_flags = B_INVAL;
1035 		bp->b_rcred = NOCRED;
1036 		bp->b_wcred = NOCRED;
1037 		bp->b_qindex = QUEUE_EMPTY;
1038 		bp->b_xflags = 0;
1039 		bp->b_data = bp->b_kvabase = unmapped_buf;
1040 		LIST_INIT(&bp->b_dep);
1041 		BUF_LOCKINIT(bp);
1042 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
1043 #ifdef INVARIANTS
1044 		bq_len[QUEUE_EMPTY]++;
1045 #endif
1046 	}
1047 
1048 	/*
1049 	 * maxbufspace is the absolute maximum amount of buffer space we are
1050 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1051 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1052 	 * used by most other requests.  The differential is required to
1053 	 * ensure that metadata deadlocks don't occur.
1054 	 *
1055 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1056 	 * this may result in KVM fragmentation which is not handled optimally
1057 	 * by the system. XXX This is less true with vmem.  We could use
1058 	 * PAGE_SIZE.
1059 	 */
1060 	maxbufspace = (long)nbuf * BKVASIZE;
1061 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBCACHEBUF * 10);
1062 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1063 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1064 
1065 	/*
1066 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
1067 	 * arbitrarily and may need further tuning. It corresponds to
1068 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
1069 	 * which fits with many RAID controllers' tagged queuing limits.
1070 	 * The lower 1 MiB limit is the historical upper limit for
1071 	 * hirunningspace.
1072 	 */
1073 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBCACHEBUF),
1074 	    16 * 1024 * 1024), 1024 * 1024);
1075 	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBCACHEBUF);
1076 
1077 	/*
1078 	 * Limit the amount of malloc memory since it is wired permanently into
1079 	 * the kernel space.  Even though this is accounted for in the buffer
1080 	 * allocation, we don't want the malloced region to grow uncontrolled.
1081 	 * The malloc scheme improves memory utilization significantly on
1082 	 * average (small) directories.
1083 	 */
1084 	maxbufmallocspace = hibufspace / 20;
1085 
1086 	/*
1087 	 * Reduce the chance of a deadlock occurring by limiting the number
1088 	 * of delayed-write dirty buffers we allow to stack up.
1089 	 */
1090 	hidirtybuffers = nbuf / 4 + 20;
1091 	dirtybufthresh = hidirtybuffers * 9 / 10;
1092 	numdirtybuffers = 0;
1093 	/*
1094 	 * To support extreme low-memory systems, make sure hidirtybuffers
1095 	 * cannot eat up all available buffer space.  This occurs when our
1096 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1097 	 * buffer space assuming BKVASIZE'd buffers.
1098 	 */
1099 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1100 		hidirtybuffers >>= 1;
1101 	}
1102 	lodirtybuffers = hidirtybuffers / 2;
1103 
1104 	/*
1105 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1106 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1107 	 * are counted as free but will be unavailable to threads executing
1108 	 * on other cpus.
1109 	 *
1110 	 * hifreebuffers is the free target for the bufspace daemon.  This
1111 	 * should be set appropriately to limit work per-iteration.
1112 	 */
1113 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1114 	hifreebuffers = (3 * lofreebuffers) / 2;
1115 	numfreebuffers = nbuf;
1116 
1117 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
1118 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
1119 
1120 	/* Setup the kva and free list allocators. */
1121 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1122 	buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
1123 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1124 
1125 	/*
1126 	 * Size the clean queue according to the amount of buffer space.
1127 	 * One queue per-256mb up to the max.  More queues gives better
1128 	 * concurrency but less accurate LRU.
1129 	 */
1130 	clean_queues = MIN(howmany(maxbufspace, 256*1024*1024), CLEAN_QUEUES);
1131 
1132 }
1133 
1134 #ifdef INVARIANTS
1135 static inline void
1136 vfs_buf_check_mapped(struct buf *bp)
1137 {
1138 
1139 	KASSERT(bp->b_kvabase != unmapped_buf,
1140 	    ("mapped buf: b_kvabase was not updated %p", bp));
1141 	KASSERT(bp->b_data != unmapped_buf,
1142 	    ("mapped buf: b_data was not updated %p", bp));
1143 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1144 	    MAXPHYS, ("b_data + b_offset unmapped %p", bp));
1145 }
1146 
1147 static inline void
1148 vfs_buf_check_unmapped(struct buf *bp)
1149 {
1150 
1151 	KASSERT(bp->b_data == unmapped_buf,
1152 	    ("unmapped buf: corrupted b_data %p", bp));
1153 }
1154 
1155 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1156 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1157 #else
1158 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1159 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1160 #endif
1161 
1162 static int
1163 isbufbusy(struct buf *bp)
1164 {
1165 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1166 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1167 		return (1);
1168 	return (0);
1169 }
1170 
1171 /*
1172  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1173  */
1174 void
1175 bufshutdown(int show_busybufs)
1176 {
1177 	static int first_buf_printf = 1;
1178 	struct buf *bp;
1179 	int iter, nbusy, pbusy;
1180 #ifndef PREEMPTION
1181 	int subiter;
1182 #endif
1183 
1184 	/*
1185 	 * Sync filesystems for shutdown
1186 	 */
1187 	wdog_kern_pat(WD_LASTVAL);
1188 	sys_sync(curthread, NULL);
1189 
1190 	/*
1191 	 * With soft updates, some buffers that are
1192 	 * written will be remarked as dirty until other
1193 	 * buffers are written.
1194 	 */
1195 	for (iter = pbusy = 0; iter < 20; iter++) {
1196 		nbusy = 0;
1197 		for (bp = &buf[nbuf]; --bp >= buf; )
1198 			if (isbufbusy(bp))
1199 				nbusy++;
1200 		if (nbusy == 0) {
1201 			if (first_buf_printf)
1202 				printf("All buffers synced.");
1203 			break;
1204 		}
1205 		if (first_buf_printf) {
1206 			printf("Syncing disks, buffers remaining... ");
1207 			first_buf_printf = 0;
1208 		}
1209 		printf("%d ", nbusy);
1210 		if (nbusy < pbusy)
1211 			iter = 0;
1212 		pbusy = nbusy;
1213 
1214 		wdog_kern_pat(WD_LASTVAL);
1215 		sys_sync(curthread, NULL);
1216 
1217 #ifdef PREEMPTION
1218 		/*
1219 		 * Drop Giant and spin for a while to allow
1220 		 * interrupt threads to run.
1221 		 */
1222 		DROP_GIANT();
1223 		DELAY(50000 * iter);
1224 		PICKUP_GIANT();
1225 #else
1226 		/*
1227 		 * Drop Giant and context switch several times to
1228 		 * allow interrupt threads to run.
1229 		 */
1230 		DROP_GIANT();
1231 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1232 			thread_lock(curthread);
1233 			mi_switch(SW_VOL, NULL);
1234 			thread_unlock(curthread);
1235 			DELAY(1000);
1236 		}
1237 		PICKUP_GIANT();
1238 #endif
1239 	}
1240 	printf("\n");
1241 	/*
1242 	 * Count only busy local buffers to prevent forcing
1243 	 * a fsck if we're just a client of a wedged NFS server
1244 	 */
1245 	nbusy = 0;
1246 	for (bp = &buf[nbuf]; --bp >= buf; ) {
1247 		if (isbufbusy(bp)) {
1248 #if 0
1249 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1250 			if (bp->b_dev == NULL) {
1251 				TAILQ_REMOVE(&mountlist,
1252 				    bp->b_vp->v_mount, mnt_list);
1253 				continue;
1254 			}
1255 #endif
1256 			nbusy++;
1257 			if (show_busybufs > 0) {
1258 				printf(
1259 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1260 				    nbusy, bp, bp->b_vp, bp->b_flags,
1261 				    (intmax_t)bp->b_blkno,
1262 				    (intmax_t)bp->b_lblkno);
1263 				BUF_LOCKPRINTINFO(bp);
1264 				if (show_busybufs > 1)
1265 					vn_printf(bp->b_vp,
1266 					    "vnode content: ");
1267 			}
1268 		}
1269 	}
1270 	if (nbusy) {
1271 		/*
1272 		 * Failed to sync all blocks. Indicate this and don't
1273 		 * unmount filesystems (thus forcing an fsck on reboot).
1274 		 */
1275 		printf("Giving up on %d buffers\n", nbusy);
1276 		DELAY(5000000);	/* 5 seconds */
1277 	} else {
1278 		if (!first_buf_printf)
1279 			printf("Final sync complete\n");
1280 		/*
1281 		 * Unmount filesystems
1282 		 */
1283 		if (panicstr == NULL)
1284 			vfs_unmountall();
1285 	}
1286 	swapoff_all();
1287 	DELAY(100000);		/* wait for console output to finish */
1288 }
1289 
1290 static void
1291 bpmap_qenter(struct buf *bp)
1292 {
1293 
1294 	BUF_CHECK_MAPPED(bp);
1295 
1296 	/*
1297 	 * bp->b_data is relative to bp->b_offset, but
1298 	 * bp->b_offset may be offset into the first page.
1299 	 */
1300 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1301 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1302 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1303 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1304 }
1305 
1306 /*
1307  *	binsfree:
1308  *
1309  *	Insert the buffer into the appropriate free list.
1310  */
1311 static void
1312 binsfree(struct buf *bp, int qindex)
1313 {
1314 	struct mtx *olock, *nlock;
1315 
1316 	if (qindex != QUEUE_EMPTY) {
1317 		BUF_ASSERT_XLOCKED(bp);
1318 	}
1319 
1320 	/*
1321 	 * Stick to the same clean queue for the lifetime of the buf to
1322 	 * limit locking below.  Otherwise pick ont sequentially.
1323 	 */
1324 	if (qindex == QUEUE_CLEAN) {
1325 		if (bqisclean(bp->b_qindex))
1326 			qindex = bp->b_qindex;
1327 		else
1328 			qindex = bqcleanq();
1329 	}
1330 
1331 	/*
1332 	 * Handle delayed bremfree() processing.
1333 	 */
1334 	nlock = bqlock(qindex);
1335 	if (bp->b_flags & B_REMFREE) {
1336 		olock = bqlock(bp->b_qindex);
1337 		mtx_lock(olock);
1338 		bremfreel(bp);
1339 		if (olock != nlock) {
1340 			mtx_unlock(olock);
1341 			mtx_lock(nlock);
1342 		}
1343 	} else
1344 		mtx_lock(nlock);
1345 
1346 	if (bp->b_qindex != QUEUE_NONE)
1347 		panic("binsfree: free buffer onto another queue???");
1348 
1349 	bp->b_qindex = qindex;
1350 	if (bp->b_flags & B_AGE)
1351 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1352 	else
1353 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1354 #ifdef INVARIANTS
1355 	bq_len[bp->b_qindex]++;
1356 #endif
1357 	mtx_unlock(nlock);
1358 }
1359 
1360 /*
1361  * buf_free:
1362  *
1363  *	Free a buffer to the buf zone once it no longer has valid contents.
1364  */
1365 static void
1366 buf_free(struct buf *bp)
1367 {
1368 
1369 	if (bp->b_flags & B_REMFREE)
1370 		bremfreef(bp);
1371 	if (bp->b_vflags & BV_BKGRDINPROG)
1372 		panic("losing buffer 1");
1373 	if (bp->b_rcred != NOCRED) {
1374 		crfree(bp->b_rcred);
1375 		bp->b_rcred = NOCRED;
1376 	}
1377 	if (bp->b_wcred != NOCRED) {
1378 		crfree(bp->b_wcred);
1379 		bp->b_wcred = NOCRED;
1380 	}
1381 	if (!LIST_EMPTY(&bp->b_dep))
1382 		buf_deallocate(bp);
1383 	bufkva_free(bp);
1384 	BUF_UNLOCK(bp);
1385 	uma_zfree(buf_zone, bp);
1386 	atomic_add_int(&numfreebuffers, 1);
1387 	bufspace_wakeup();
1388 }
1389 
1390 /*
1391  * buf_import:
1392  *
1393  *	Import bufs into the uma cache from the buf list.  The system still
1394  *	expects a static array of bufs and much of the synchronization
1395  *	around bufs assumes type stable storage.  As a result, UMA is used
1396  *	only as a per-cpu cache of bufs still maintained on a global list.
1397  */
1398 static int
1399 buf_import(void *arg, void **store, int cnt, int flags)
1400 {
1401 	struct buf *bp;
1402 	int i;
1403 
1404 	mtx_lock(&bqlocks[QUEUE_EMPTY]);
1405 	for (i = 0; i < cnt; i++) {
1406 		bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1407 		if (bp == NULL)
1408 			break;
1409 		bremfreel(bp);
1410 		store[i] = bp;
1411 	}
1412 	mtx_unlock(&bqlocks[QUEUE_EMPTY]);
1413 
1414 	return (i);
1415 }
1416 
1417 /*
1418  * buf_release:
1419  *
1420  *	Release bufs from the uma cache back to the buffer queues.
1421  */
1422 static void
1423 buf_release(void *arg, void **store, int cnt)
1424 {
1425         int i;
1426 
1427         for (i = 0; i < cnt; i++)
1428 		binsfree(store[i], QUEUE_EMPTY);
1429 }
1430 
1431 /*
1432  * buf_alloc:
1433  *
1434  *	Allocate an empty buffer header.
1435  */
1436 static struct buf *
1437 buf_alloc(void)
1438 {
1439 	struct buf *bp;
1440 
1441 	bp = uma_zalloc(buf_zone, M_NOWAIT);
1442 	if (bp == NULL) {
1443 		bufspace_daemonwakeup();
1444 		atomic_add_int(&numbufallocfails, 1);
1445 		return (NULL);
1446 	}
1447 
1448 	/*
1449 	 * Wake-up the bufspace daemon on transition.
1450 	 */
1451 	if (atomic_fetchadd_int(&numfreebuffers, -1) == lofreebuffers)
1452 		bufspace_daemonwakeup();
1453 
1454 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1455 		panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
1456 
1457 	KASSERT(bp->b_vp == NULL,
1458 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1459 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1460 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1461 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1462 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1463 	KASSERT(bp->b_npages == 0,
1464 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1465 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1466 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1467 
1468 	bp->b_flags = 0;
1469 	bp->b_ioflags = 0;
1470 	bp->b_xflags = 0;
1471 	bp->b_vflags = 0;
1472 	bp->b_vp = NULL;
1473 	bp->b_blkno = bp->b_lblkno = 0;
1474 	bp->b_offset = NOOFFSET;
1475 	bp->b_iodone = 0;
1476 	bp->b_error = 0;
1477 	bp->b_resid = 0;
1478 	bp->b_bcount = 0;
1479 	bp->b_npages = 0;
1480 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1481 	bp->b_bufobj = NULL;
1482 	bp->b_pin_count = 0;
1483 	bp->b_data = bp->b_kvabase = unmapped_buf;
1484 	bp->b_fsprivate1 = NULL;
1485 	bp->b_fsprivate2 = NULL;
1486 	bp->b_fsprivate3 = NULL;
1487 	LIST_INIT(&bp->b_dep);
1488 
1489 	return (bp);
1490 }
1491 
1492 /*
1493  *	buf_qrecycle:
1494  *
1495  *	Free a buffer from the given bufqueue.  kva controls whether the
1496  *	freed buf must own some kva resources.  This is used for
1497  *	defragmenting.
1498  */
1499 static int
1500 buf_qrecycle(int qindex, bool kva)
1501 {
1502 	struct buf *bp, *nbp;
1503 
1504 	if (kva)
1505 		atomic_add_int(&bufdefragcnt, 1);
1506 	nbp = NULL;
1507 	mtx_lock(&bqlocks[qindex]);
1508 	nbp = TAILQ_FIRST(&bufqueues[qindex]);
1509 
1510 	/*
1511 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1512 	 * depending.
1513 	 */
1514 	while ((bp = nbp) != NULL) {
1515 		/*
1516 		 * Calculate next bp (we can only use it if we do not
1517 		 * release the bqlock).
1518 		 */
1519 		nbp = TAILQ_NEXT(bp, b_freelist);
1520 
1521 		/*
1522 		 * If we are defragging then we need a buffer with
1523 		 * some kva to reclaim.
1524 		 */
1525 		if (kva && bp->b_kvasize == 0)
1526 			continue;
1527 
1528 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1529 			continue;
1530 
1531 		/*
1532 		 * Skip buffers with background writes in progress.
1533 		 */
1534 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1535 			BUF_UNLOCK(bp);
1536 			continue;
1537 		}
1538 
1539 		KASSERT(bp->b_qindex == qindex,
1540 		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1541 		/*
1542 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1543 		 * the scan from this point on.
1544 		 */
1545 		bremfreel(bp);
1546 		mtx_unlock(&bqlocks[qindex]);
1547 
1548 		/*
1549 		 * Requeue the background write buffer with error and
1550 		 * restart the scan.
1551 		 */
1552 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1553 			bqrelse(bp);
1554 			mtx_lock(&bqlocks[qindex]);
1555 			nbp = TAILQ_FIRST(&bufqueues[qindex]);
1556 			continue;
1557 		}
1558 		bp->b_flags |= B_INVAL;
1559 		brelse(bp);
1560 		return (0);
1561 	}
1562 	mtx_unlock(&bqlocks[qindex]);
1563 
1564 	return (ENOBUFS);
1565 }
1566 
1567 /*
1568  *	buf_recycle:
1569  *
1570  *	Iterate through all clean queues until we find a buf to recycle or
1571  *	exhaust the search.
1572  */
1573 static int
1574 buf_recycle(bool kva)
1575 {
1576 	int qindex, first_qindex;
1577 
1578 	qindex = first_qindex = bqcleanq();
1579 	do {
1580 		if (buf_qrecycle(qindex, kva) == 0)
1581 			return (0);
1582 		if (++qindex == QUEUE_CLEAN + clean_queues)
1583 			qindex = QUEUE_CLEAN;
1584 	} while (qindex != first_qindex);
1585 
1586 	return (ENOBUFS);
1587 }
1588 
1589 /*
1590  *	buf_scan:
1591  *
1592  *	Scan the clean queues looking for a buffer to recycle.  needsbuffer
1593  *	is set on failure so that the caller may optionally bufspace_wait()
1594  *	in a race-free fashion.
1595  */
1596 static int
1597 buf_scan(bool defrag)
1598 {
1599 	int error;
1600 
1601 	/*
1602 	 * To avoid heavy synchronization and wakeup races we set
1603 	 * needsbuffer and re-poll before failing.  This ensures that
1604 	 * no frees can be missed between an unsuccessful poll and
1605 	 * going to sleep in a synchronized fashion.
1606 	 */
1607 	if ((error = buf_recycle(defrag)) != 0) {
1608 		atomic_set_int(&needsbuffer, 1);
1609 		bufspace_daemonwakeup();
1610 		error = buf_recycle(defrag);
1611 	}
1612 	if (error == 0)
1613 		atomic_add_int(&getnewbufrestarts, 1);
1614 	return (error);
1615 }
1616 
1617 /*
1618  *	bremfree:
1619  *
1620  *	Mark the buffer for removal from the appropriate free list.
1621  *
1622  */
1623 void
1624 bremfree(struct buf *bp)
1625 {
1626 
1627 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1628 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1629 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1630 	KASSERT(bp->b_qindex != QUEUE_NONE,
1631 	    ("bremfree: buffer %p not on a queue.", bp));
1632 	BUF_ASSERT_XLOCKED(bp);
1633 
1634 	bp->b_flags |= B_REMFREE;
1635 }
1636 
1637 /*
1638  *	bremfreef:
1639  *
1640  *	Force an immediate removal from a free list.  Used only in nfs when
1641  *	it abuses the b_freelist pointer.
1642  */
1643 void
1644 bremfreef(struct buf *bp)
1645 {
1646 	struct mtx *qlock;
1647 
1648 	qlock = bqlock(bp->b_qindex);
1649 	mtx_lock(qlock);
1650 	bremfreel(bp);
1651 	mtx_unlock(qlock);
1652 }
1653 
1654 /*
1655  *	bremfreel:
1656  *
1657  *	Removes a buffer from the free list, must be called with the
1658  *	correct qlock held.
1659  */
1660 static void
1661 bremfreel(struct buf *bp)
1662 {
1663 
1664 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1665 	    bp, bp->b_vp, bp->b_flags);
1666 	KASSERT(bp->b_qindex != QUEUE_NONE,
1667 	    ("bremfreel: buffer %p not on a queue.", bp));
1668 	if (bp->b_qindex != QUEUE_EMPTY) {
1669 		BUF_ASSERT_XLOCKED(bp);
1670 	}
1671 	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1672 
1673 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1674 #ifdef INVARIANTS
1675 	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1676 	    bp->b_qindex));
1677 	bq_len[bp->b_qindex]--;
1678 #endif
1679 	bp->b_qindex = QUEUE_NONE;
1680 	bp->b_flags &= ~B_REMFREE;
1681 }
1682 
1683 /*
1684  *	bufkva_free:
1685  *
1686  *	Free the kva allocation for a buffer.
1687  *
1688  */
1689 static void
1690 bufkva_free(struct buf *bp)
1691 {
1692 
1693 #ifdef INVARIANTS
1694 	if (bp->b_kvasize == 0) {
1695 		KASSERT(bp->b_kvabase == unmapped_buf &&
1696 		    bp->b_data == unmapped_buf,
1697 		    ("Leaked KVA space on %p", bp));
1698 	} else if (buf_mapped(bp))
1699 		BUF_CHECK_MAPPED(bp);
1700 	else
1701 		BUF_CHECK_UNMAPPED(bp);
1702 #endif
1703 	if (bp->b_kvasize == 0)
1704 		return;
1705 
1706 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
1707 	atomic_subtract_long(&bufkvaspace, bp->b_kvasize);
1708 	atomic_add_int(&buffreekvacnt, 1);
1709 	bp->b_data = bp->b_kvabase = unmapped_buf;
1710 	bp->b_kvasize = 0;
1711 }
1712 
1713 /*
1714  *	bufkva_alloc:
1715  *
1716  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
1717  */
1718 static int
1719 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
1720 {
1721 	vm_offset_t addr;
1722 	int error;
1723 
1724 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
1725 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
1726 
1727 	bufkva_free(bp);
1728 
1729 	addr = 0;
1730 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
1731 	if (error != 0) {
1732 		/*
1733 		 * Buffer map is too fragmented.  Request the caller
1734 		 * to defragment the map.
1735 		 */
1736 		return (error);
1737 	}
1738 	bp->b_kvabase = (caddr_t)addr;
1739 	bp->b_kvasize = maxsize;
1740 	atomic_add_long(&bufkvaspace, bp->b_kvasize);
1741 	if ((gbflags & GB_UNMAPPED) != 0) {
1742 		bp->b_data = unmapped_buf;
1743 		BUF_CHECK_UNMAPPED(bp);
1744 	} else {
1745 		bp->b_data = bp->b_kvabase;
1746 		BUF_CHECK_MAPPED(bp);
1747 	}
1748 	return (0);
1749 }
1750 
1751 /*
1752  *	bufkva_reclaim:
1753  *
1754  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
1755  *	callback that fires to avoid returning failure.
1756  */
1757 static void
1758 bufkva_reclaim(vmem_t *vmem, int flags)
1759 {
1760 	int i;
1761 
1762 	for (i = 0; i < 5; i++)
1763 		if (buf_scan(true) != 0)
1764 			break;
1765 	return;
1766 }
1767 
1768 
1769 /*
1770  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1771  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1772  * the buffer is valid and we do not have to do anything.
1773  */
1774 void
1775 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1776     int cnt, struct ucred * cred)
1777 {
1778 	struct buf *rabp;
1779 	int i;
1780 
1781 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1782 		if (inmem(vp, *rablkno))
1783 			continue;
1784 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1785 
1786 		if ((rabp->b_flags & B_CACHE) == 0) {
1787 			if (!TD_IS_IDLETHREAD(curthread)) {
1788 #ifdef RACCT
1789 				if (racct_enable) {
1790 					PROC_LOCK(curproc);
1791 					racct_add_buf(curproc, rabp, 0);
1792 					PROC_UNLOCK(curproc);
1793 				}
1794 #endif /* RACCT */
1795 				curthread->td_ru.ru_inblock++;
1796 			}
1797 			rabp->b_flags |= B_ASYNC;
1798 			rabp->b_flags &= ~B_INVAL;
1799 			rabp->b_ioflags &= ~BIO_ERROR;
1800 			rabp->b_iocmd = BIO_READ;
1801 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1802 				rabp->b_rcred = crhold(cred);
1803 			vfs_busy_pages(rabp, 0);
1804 			BUF_KERNPROC(rabp);
1805 			rabp->b_iooffset = dbtob(rabp->b_blkno);
1806 			bstrategy(rabp);
1807 		} else {
1808 			brelse(rabp);
1809 		}
1810 	}
1811 }
1812 
1813 /*
1814  * Entry point for bread() and breadn() via #defines in sys/buf.h.
1815  *
1816  * Get a buffer with the specified data.  Look in the cache first.  We
1817  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1818  * is set, the buffer is valid and we do not have to do anything, see
1819  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1820  *
1821  * Always return a NULL buffer pointer (in bpp) when returning an error.
1822  */
1823 int
1824 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1825     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1826 {
1827 	struct buf *bp;
1828 	int rv = 0, readwait = 0;
1829 
1830 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1831 	/*
1832 	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1833 	 */
1834 	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1835 	if (bp == NULL)
1836 		return (EBUSY);
1837 
1838 	/* if not found in cache, do some I/O */
1839 	if ((bp->b_flags & B_CACHE) == 0) {
1840 		if (!TD_IS_IDLETHREAD(curthread)) {
1841 #ifdef RACCT
1842 			if (racct_enable) {
1843 				PROC_LOCK(curproc);
1844 				racct_add_buf(curproc, bp, 0);
1845 				PROC_UNLOCK(curproc);
1846 			}
1847 #endif /* RACCT */
1848 			curthread->td_ru.ru_inblock++;
1849 		}
1850 		bp->b_iocmd = BIO_READ;
1851 		bp->b_flags &= ~B_INVAL;
1852 		bp->b_ioflags &= ~BIO_ERROR;
1853 		if (bp->b_rcred == NOCRED && cred != NOCRED)
1854 			bp->b_rcred = crhold(cred);
1855 		vfs_busy_pages(bp, 0);
1856 		bp->b_iooffset = dbtob(bp->b_blkno);
1857 		bstrategy(bp);
1858 		++readwait;
1859 	}
1860 
1861 	breada(vp, rablkno, rabsize, cnt, cred);
1862 
1863 	if (readwait) {
1864 		rv = bufwait(bp);
1865 		if (rv != 0) {
1866 			brelse(bp);
1867 			*bpp = NULL;
1868 		}
1869 	}
1870 	return (rv);
1871 }
1872 
1873 /*
1874  * Write, release buffer on completion.  (Done by iodone
1875  * if async).  Do not bother writing anything if the buffer
1876  * is invalid.
1877  *
1878  * Note that we set B_CACHE here, indicating that buffer is
1879  * fully valid and thus cacheable.  This is true even of NFS
1880  * now so we set it generally.  This could be set either here
1881  * or in biodone() since the I/O is synchronous.  We put it
1882  * here.
1883  */
1884 int
1885 bufwrite(struct buf *bp)
1886 {
1887 	int oldflags;
1888 	struct vnode *vp;
1889 	long space;
1890 	int vp_md;
1891 
1892 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1893 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
1894 		bp->b_flags |= B_INVAL | B_RELBUF;
1895 		bp->b_flags &= ~B_CACHE;
1896 		brelse(bp);
1897 		return (ENXIO);
1898 	}
1899 	if (bp->b_flags & B_INVAL) {
1900 		brelse(bp);
1901 		return (0);
1902 	}
1903 
1904 	if (bp->b_flags & B_BARRIER)
1905 		barrierwrites++;
1906 
1907 	oldflags = bp->b_flags;
1908 
1909 	BUF_ASSERT_HELD(bp);
1910 
1911 	if (bp->b_pin_count > 0)
1912 		bunpin_wait(bp);
1913 
1914 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1915 	    ("FFS background buffer should not get here %p", bp));
1916 
1917 	vp = bp->b_vp;
1918 	if (vp)
1919 		vp_md = vp->v_vflag & VV_MD;
1920 	else
1921 		vp_md = 0;
1922 
1923 	/*
1924 	 * Mark the buffer clean.  Increment the bufobj write count
1925 	 * before bundirty() call, to prevent other thread from seeing
1926 	 * empty dirty list and zero counter for writes in progress,
1927 	 * falsely indicating that the bufobj is clean.
1928 	 */
1929 	bufobj_wref(bp->b_bufobj);
1930 	bundirty(bp);
1931 
1932 	bp->b_flags &= ~B_DONE;
1933 	bp->b_ioflags &= ~BIO_ERROR;
1934 	bp->b_flags |= B_CACHE;
1935 	bp->b_iocmd = BIO_WRITE;
1936 
1937 	vfs_busy_pages(bp, 1);
1938 
1939 	/*
1940 	 * Normal bwrites pipeline writes
1941 	 */
1942 	bp->b_runningbufspace = bp->b_bufsize;
1943 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1944 
1945 	if (!TD_IS_IDLETHREAD(curthread)) {
1946 #ifdef RACCT
1947 		if (racct_enable) {
1948 			PROC_LOCK(curproc);
1949 			racct_add_buf(curproc, bp, 1);
1950 			PROC_UNLOCK(curproc);
1951 		}
1952 #endif /* RACCT */
1953 		curthread->td_ru.ru_oublock++;
1954 	}
1955 	if (oldflags & B_ASYNC)
1956 		BUF_KERNPROC(bp);
1957 	bp->b_iooffset = dbtob(bp->b_blkno);
1958 	bstrategy(bp);
1959 
1960 	if ((oldflags & B_ASYNC) == 0) {
1961 		int rtval = bufwait(bp);
1962 		brelse(bp);
1963 		return (rtval);
1964 	} else if (space > hirunningspace) {
1965 		/*
1966 		 * don't allow the async write to saturate the I/O
1967 		 * system.  We will not deadlock here because
1968 		 * we are blocking waiting for I/O that is already in-progress
1969 		 * to complete. We do not block here if it is the update
1970 		 * or syncer daemon trying to clean up as that can lead
1971 		 * to deadlock.
1972 		 */
1973 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1974 			waitrunningbufspace();
1975 	}
1976 
1977 	return (0);
1978 }
1979 
1980 void
1981 bufbdflush(struct bufobj *bo, struct buf *bp)
1982 {
1983 	struct buf *nbp;
1984 
1985 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1986 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1987 		altbufferflushes++;
1988 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1989 		BO_LOCK(bo);
1990 		/*
1991 		 * Try to find a buffer to flush.
1992 		 */
1993 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1994 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1995 			    BUF_LOCK(nbp,
1996 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1997 				continue;
1998 			if (bp == nbp)
1999 				panic("bdwrite: found ourselves");
2000 			BO_UNLOCK(bo);
2001 			/* Don't countdeps with the bo lock held. */
2002 			if (buf_countdeps(nbp, 0)) {
2003 				BO_LOCK(bo);
2004 				BUF_UNLOCK(nbp);
2005 				continue;
2006 			}
2007 			if (nbp->b_flags & B_CLUSTEROK) {
2008 				vfs_bio_awrite(nbp);
2009 			} else {
2010 				bremfree(nbp);
2011 				bawrite(nbp);
2012 			}
2013 			dirtybufferflushes++;
2014 			break;
2015 		}
2016 		if (nbp == NULL)
2017 			BO_UNLOCK(bo);
2018 	}
2019 }
2020 
2021 /*
2022  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2023  * anything if the buffer is marked invalid.
2024  *
2025  * Note that since the buffer must be completely valid, we can safely
2026  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2027  * biodone() in order to prevent getblk from writing the buffer
2028  * out synchronously.
2029  */
2030 void
2031 bdwrite(struct buf *bp)
2032 {
2033 	struct thread *td = curthread;
2034 	struct vnode *vp;
2035 	struct bufobj *bo;
2036 
2037 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2038 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2039 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2040 	    ("Barrier request in delayed write %p", bp));
2041 	BUF_ASSERT_HELD(bp);
2042 
2043 	if (bp->b_flags & B_INVAL) {
2044 		brelse(bp);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * If we have too many dirty buffers, don't create any more.
2050 	 * If we are wildly over our limit, then force a complete
2051 	 * cleanup. Otherwise, just keep the situation from getting
2052 	 * out of control. Note that we have to avoid a recursive
2053 	 * disaster and not try to clean up after our own cleanup!
2054 	 */
2055 	vp = bp->b_vp;
2056 	bo = bp->b_bufobj;
2057 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2058 		td->td_pflags |= TDP_INBDFLUSH;
2059 		BO_BDFLUSH(bo, bp);
2060 		td->td_pflags &= ~TDP_INBDFLUSH;
2061 	} else
2062 		recursiveflushes++;
2063 
2064 	bdirty(bp);
2065 	/*
2066 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2067 	 * true even of NFS now.
2068 	 */
2069 	bp->b_flags |= B_CACHE;
2070 
2071 	/*
2072 	 * This bmap keeps the system from needing to do the bmap later,
2073 	 * perhaps when the system is attempting to do a sync.  Since it
2074 	 * is likely that the indirect block -- or whatever other datastructure
2075 	 * that the filesystem needs is still in memory now, it is a good
2076 	 * thing to do this.  Note also, that if the pageout daemon is
2077 	 * requesting a sync -- there might not be enough memory to do
2078 	 * the bmap then...  So, this is important to do.
2079 	 */
2080 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2081 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2082 	}
2083 
2084 	/*
2085 	 * Set the *dirty* buffer range based upon the VM system dirty
2086 	 * pages.
2087 	 *
2088 	 * Mark the buffer pages as clean.  We need to do this here to
2089 	 * satisfy the vnode_pager and the pageout daemon, so that it
2090 	 * thinks that the pages have been "cleaned".  Note that since
2091 	 * the pages are in a delayed write buffer -- the VFS layer
2092 	 * "will" see that the pages get written out on the next sync,
2093 	 * or perhaps the cluster will be completed.
2094 	 */
2095 	vfs_clean_pages_dirty_buf(bp);
2096 	bqrelse(bp);
2097 
2098 	/*
2099 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2100 	 * due to the softdep code.
2101 	 */
2102 }
2103 
2104 /*
2105  *	bdirty:
2106  *
2107  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2108  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2109  *	itself to properly update it in the dirty/clean lists.  We mark it
2110  *	B_DONE to ensure that any asynchronization of the buffer properly
2111  *	clears B_DONE ( else a panic will occur later ).
2112  *
2113  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2114  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2115  *	should only be called if the buffer is known-good.
2116  *
2117  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2118  *	count.
2119  *
2120  *	The buffer must be on QUEUE_NONE.
2121  */
2122 void
2123 bdirty(struct buf *bp)
2124 {
2125 
2126 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2127 	    bp, bp->b_vp, bp->b_flags);
2128 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2129 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2130 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2131 	BUF_ASSERT_HELD(bp);
2132 	bp->b_flags &= ~(B_RELBUF);
2133 	bp->b_iocmd = BIO_WRITE;
2134 
2135 	if ((bp->b_flags & B_DELWRI) == 0) {
2136 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2137 		reassignbuf(bp);
2138 		bdirtyadd();
2139 	}
2140 }
2141 
2142 /*
2143  *	bundirty:
2144  *
2145  *	Clear B_DELWRI for buffer.
2146  *
2147  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2148  *	count.
2149  *
2150  *	The buffer must be on QUEUE_NONE.
2151  */
2152 
2153 void
2154 bundirty(struct buf *bp)
2155 {
2156 
2157 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2158 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2159 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2160 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2161 	BUF_ASSERT_HELD(bp);
2162 
2163 	if (bp->b_flags & B_DELWRI) {
2164 		bp->b_flags &= ~B_DELWRI;
2165 		reassignbuf(bp);
2166 		bdirtysub();
2167 	}
2168 	/*
2169 	 * Since it is now being written, we can clear its deferred write flag.
2170 	 */
2171 	bp->b_flags &= ~B_DEFERRED;
2172 }
2173 
2174 /*
2175  *	bawrite:
2176  *
2177  *	Asynchronous write.  Start output on a buffer, but do not wait for
2178  *	it to complete.  The buffer is released when the output completes.
2179  *
2180  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2181  *	B_INVAL buffers.  Not us.
2182  */
2183 void
2184 bawrite(struct buf *bp)
2185 {
2186 
2187 	bp->b_flags |= B_ASYNC;
2188 	(void) bwrite(bp);
2189 }
2190 
2191 /*
2192  *	babarrierwrite:
2193  *
2194  *	Asynchronous barrier write.  Start output on a buffer, but do not
2195  *	wait for it to complete.  Place a write barrier after this write so
2196  *	that this buffer and all buffers written before it are committed to
2197  *	the disk before any buffers written after this write are committed
2198  *	to the disk.  The buffer is released when the output completes.
2199  */
2200 void
2201 babarrierwrite(struct buf *bp)
2202 {
2203 
2204 	bp->b_flags |= B_ASYNC | B_BARRIER;
2205 	(void) bwrite(bp);
2206 }
2207 
2208 /*
2209  *	bbarrierwrite:
2210  *
2211  *	Synchronous barrier write.  Start output on a buffer and wait for
2212  *	it to complete.  Place a write barrier after this write so that
2213  *	this buffer and all buffers written before it are committed to
2214  *	the disk before any buffers written after this write are committed
2215  *	to the disk.  The buffer is released when the output completes.
2216  */
2217 int
2218 bbarrierwrite(struct buf *bp)
2219 {
2220 
2221 	bp->b_flags |= B_BARRIER;
2222 	return (bwrite(bp));
2223 }
2224 
2225 /*
2226  *	bwillwrite:
2227  *
2228  *	Called prior to the locking of any vnodes when we are expecting to
2229  *	write.  We do not want to starve the buffer cache with too many
2230  *	dirty buffers so we block here.  By blocking prior to the locking
2231  *	of any vnodes we attempt to avoid the situation where a locked vnode
2232  *	prevents the various system daemons from flushing related buffers.
2233  */
2234 void
2235 bwillwrite(void)
2236 {
2237 
2238 	if (numdirtybuffers >= hidirtybuffers) {
2239 		mtx_lock(&bdirtylock);
2240 		while (numdirtybuffers >= hidirtybuffers) {
2241 			bdirtywait = 1;
2242 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2243 			    "flswai", 0);
2244 		}
2245 		mtx_unlock(&bdirtylock);
2246 	}
2247 }
2248 
2249 /*
2250  * Return true if we have too many dirty buffers.
2251  */
2252 int
2253 buf_dirty_count_severe(void)
2254 {
2255 
2256 	return(numdirtybuffers >= hidirtybuffers);
2257 }
2258 
2259 /*
2260  *	brelse:
2261  *
2262  *	Release a busy buffer and, if requested, free its resources.  The
2263  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2264  *	to be accessed later as a cache entity or reused for other purposes.
2265  */
2266 void
2267 brelse(struct buf *bp)
2268 {
2269 	int qindex;
2270 
2271 	/*
2272 	 * Many functions erroneously call brelse with a NULL bp under rare
2273 	 * error conditions. Simply return when called with a NULL bp.
2274 	 */
2275 	if (bp == NULL)
2276 		return;
2277 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2278 	    bp, bp->b_vp, bp->b_flags);
2279 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2280 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2281 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2282 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2283 
2284 	if (BUF_LOCKRECURSED(bp)) {
2285 		/*
2286 		 * Do not process, in particular, do not handle the
2287 		 * B_INVAL/B_RELBUF and do not release to free list.
2288 		 */
2289 		BUF_UNLOCK(bp);
2290 		return;
2291 	}
2292 
2293 	if (bp->b_flags & B_MANAGED) {
2294 		bqrelse(bp);
2295 		return;
2296 	}
2297 
2298 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2299 		BO_LOCK(bp->b_bufobj);
2300 		bp->b_vflags &= ~BV_BKGRDERR;
2301 		BO_UNLOCK(bp->b_bufobj);
2302 		bdirty(bp);
2303 	}
2304 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2305 	    !(bp->b_flags & B_INVAL)) {
2306 		/*
2307 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
2308 		 * pages from being scrapped.
2309 		 */
2310 		bp->b_ioflags &= ~BIO_ERROR;
2311 		bdirty(bp);
2312 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2313 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2314 		/*
2315 		 * Either a failed read I/O or we were asked to free or not
2316 		 * cache the buffer.
2317 		 */
2318 		bp->b_flags |= B_INVAL;
2319 		if (!LIST_EMPTY(&bp->b_dep))
2320 			buf_deallocate(bp);
2321 		if (bp->b_flags & B_DELWRI)
2322 			bdirtysub();
2323 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2324 		if ((bp->b_flags & B_VMIO) == 0) {
2325 			allocbuf(bp, 0);
2326 			if (bp->b_vp)
2327 				brelvp(bp);
2328 		}
2329 	}
2330 
2331 	/*
2332 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2333 	 * is called with B_DELWRI set, the underlying pages may wind up
2334 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2335 	 * because pages associated with a B_DELWRI bp are marked clean.
2336 	 *
2337 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2338 	 * if B_DELWRI is set.
2339 	 */
2340 	if (bp->b_flags & B_DELWRI)
2341 		bp->b_flags &= ~B_RELBUF;
2342 
2343 	/*
2344 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2345 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2346 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2347 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2348 	 *
2349 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2350 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2351 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2352 	 *
2353 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2354 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2355 	 * the commit state and we cannot afford to lose the buffer. If the
2356 	 * buffer has a background write in progress, we need to keep it
2357 	 * around to prevent it from being reconstituted and starting a second
2358 	 * background write.
2359 	 */
2360 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2361 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2362 	    !(bp->b_vp->v_mount != NULL &&
2363 	    (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2364 	    !vn_isdisk(bp->b_vp, NULL) && (bp->b_flags & B_DELWRI))) {
2365 		vfs_vmio_invalidate(bp);
2366 		allocbuf(bp, 0);
2367 	}
2368 
2369 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2370 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2371 		allocbuf(bp, 0);
2372 		bp->b_flags &= ~B_NOREUSE;
2373 		if (bp->b_vp != NULL)
2374 			brelvp(bp);
2375 	}
2376 
2377 	/*
2378 	 * If the buffer has junk contents signal it and eventually
2379 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2380 	 * doesn't find it.
2381 	 */
2382 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2383 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2384 		bp->b_flags |= B_INVAL;
2385 	if (bp->b_flags & B_INVAL) {
2386 		if (bp->b_flags & B_DELWRI)
2387 			bundirty(bp);
2388 		if (bp->b_vp)
2389 			brelvp(bp);
2390 	}
2391 
2392 	/* buffers with no memory */
2393 	if (bp->b_bufsize == 0) {
2394 		buf_free(bp);
2395 		return;
2396 	}
2397 	/* buffers with junk contents */
2398 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2399 	    (bp->b_ioflags & BIO_ERROR)) {
2400 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2401 		if (bp->b_vflags & BV_BKGRDINPROG)
2402 			panic("losing buffer 2");
2403 		qindex = QUEUE_CLEAN;
2404 		bp->b_flags |= B_AGE;
2405 	/* remaining buffers */
2406 	} else if (bp->b_flags & B_DELWRI)
2407 		qindex = QUEUE_DIRTY;
2408 	else
2409 		qindex = QUEUE_CLEAN;
2410 
2411 	binsfree(bp, qindex);
2412 
2413 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
2414 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2415 		panic("brelse: not dirty");
2416 	/* unlock */
2417 	BUF_UNLOCK(bp);
2418 	if (qindex == QUEUE_CLEAN)
2419 		bufspace_wakeup();
2420 }
2421 
2422 /*
2423  * Release a buffer back to the appropriate queue but do not try to free
2424  * it.  The buffer is expected to be used again soon.
2425  *
2426  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2427  * biodone() to requeue an async I/O on completion.  It is also used when
2428  * known good buffers need to be requeued but we think we may need the data
2429  * again soon.
2430  *
2431  * XXX we should be able to leave the B_RELBUF hint set on completion.
2432  */
2433 void
2434 bqrelse(struct buf *bp)
2435 {
2436 	int qindex;
2437 
2438 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2439 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2440 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2441 
2442 	qindex = QUEUE_NONE;
2443 	if (BUF_LOCKRECURSED(bp)) {
2444 		/* do not release to free list */
2445 		BUF_UNLOCK(bp);
2446 		return;
2447 	}
2448 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2449 
2450 	if (bp->b_flags & B_MANAGED) {
2451 		if (bp->b_flags & B_REMFREE)
2452 			bremfreef(bp);
2453 		goto out;
2454 	}
2455 
2456 	/* buffers with stale but valid contents */
2457 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2458 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2459 		BO_LOCK(bp->b_bufobj);
2460 		bp->b_vflags &= ~BV_BKGRDERR;
2461 		BO_UNLOCK(bp->b_bufobj);
2462 		qindex = QUEUE_DIRTY;
2463 	} else {
2464 		if ((bp->b_flags & B_DELWRI) == 0 &&
2465 		    (bp->b_xflags & BX_VNDIRTY))
2466 			panic("bqrelse: not dirty");
2467 		if ((bp->b_flags & B_NOREUSE) != 0) {
2468 			brelse(bp);
2469 			return;
2470 		}
2471 		qindex = QUEUE_CLEAN;
2472 	}
2473 	binsfree(bp, qindex);
2474 
2475 out:
2476 	/* unlock */
2477 	BUF_UNLOCK(bp);
2478 	if (qindex == QUEUE_CLEAN)
2479 		bufspace_wakeup();
2480 }
2481 
2482 /*
2483  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2484  * restore bogus pages.
2485  */
2486 static void
2487 vfs_vmio_iodone(struct buf *bp)
2488 {
2489 	vm_ooffset_t foff;
2490 	vm_page_t m;
2491 	vm_object_t obj;
2492 	struct vnode *vp;
2493 	int bogus, i, iosize;
2494 
2495 	obj = bp->b_bufobj->bo_object;
2496 	KASSERT(obj->paging_in_progress >= bp->b_npages,
2497 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2498 	    obj->paging_in_progress, bp->b_npages));
2499 
2500 	vp = bp->b_vp;
2501 	KASSERT(vp->v_holdcnt > 0,
2502 	    ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
2503 	KASSERT(vp->v_object != NULL,
2504 	    ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
2505 
2506 	foff = bp->b_offset;
2507 	KASSERT(bp->b_offset != NOOFFSET,
2508 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2509 
2510 	bogus = 0;
2511 	iosize = bp->b_bcount - bp->b_resid;
2512 	VM_OBJECT_WLOCK(obj);
2513 	for (i = 0; i < bp->b_npages; i++) {
2514 		int resid;
2515 
2516 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2517 		if (resid > iosize)
2518 			resid = iosize;
2519 
2520 		/*
2521 		 * cleanup bogus pages, restoring the originals
2522 		 */
2523 		m = bp->b_pages[i];
2524 		if (m == bogus_page) {
2525 			bogus = 1;
2526 			m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2527 			if (m == NULL)
2528 				panic("biodone: page disappeared!");
2529 			bp->b_pages[i] = m;
2530 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2531 			/*
2532 			 * In the write case, the valid and clean bits are
2533 			 * already changed correctly ( see bdwrite() ), so we
2534 			 * only need to do this here in the read case.
2535 			 */
2536 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2537 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
2538 			    "has unexpected dirty bits", m));
2539 			vfs_page_set_valid(bp, foff, m);
2540 		}
2541 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
2542 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2543 		    (intmax_t)foff, (uintmax_t)m->pindex));
2544 
2545 		vm_page_sunbusy(m);
2546 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2547 		iosize -= resid;
2548 	}
2549 	vm_object_pip_wakeupn(obj, bp->b_npages);
2550 	VM_OBJECT_WUNLOCK(obj);
2551 	if (bogus && buf_mapped(bp)) {
2552 		BUF_CHECK_MAPPED(bp);
2553 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2554 		    bp->b_pages, bp->b_npages);
2555 	}
2556 }
2557 
2558 /*
2559  * Unwire a page held by a buf and place it on the appropriate vm queue.
2560  */
2561 static void
2562 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
2563 {
2564 	bool freed;
2565 
2566 	vm_page_lock(m);
2567 	if (vm_page_unwire(m, PQ_NONE)) {
2568 		/*
2569 		 * Determine if the page should be freed before adding
2570 		 * it to the inactive queue.
2571 		 */
2572 		if (m->valid == 0) {
2573 			freed = !vm_page_busied(m);
2574 			if (freed)
2575 				vm_page_free(m);
2576 		} else if ((bp->b_flags & B_DIRECT) != 0)
2577 			freed = vm_page_try_to_free(m);
2578 		else
2579 			freed = false;
2580 		if (!freed) {
2581 			/*
2582 			 * If the page is unlikely to be reused, let the
2583 			 * VM know.  Otherwise, maintain LRU page
2584 			 * ordering and put the page at the tail of the
2585 			 * inactive queue.
2586 			 */
2587 			if ((bp->b_flags & B_NOREUSE) != 0)
2588 				vm_page_deactivate_noreuse(m);
2589 			else
2590 				vm_page_deactivate(m);
2591 		}
2592 	}
2593 	vm_page_unlock(m);
2594 }
2595 
2596 /*
2597  * Perform page invalidation when a buffer is released.  The fully invalid
2598  * pages will be reclaimed later in vfs_vmio_truncate().
2599  */
2600 static void
2601 vfs_vmio_invalidate(struct buf *bp)
2602 {
2603 	vm_object_t obj;
2604 	vm_page_t m;
2605 	int i, resid, poffset, presid;
2606 
2607 	if (buf_mapped(bp)) {
2608 		BUF_CHECK_MAPPED(bp);
2609 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
2610 	} else
2611 		BUF_CHECK_UNMAPPED(bp);
2612 	/*
2613 	 * Get the base offset and length of the buffer.  Note that
2614 	 * in the VMIO case if the buffer block size is not
2615 	 * page-aligned then b_data pointer may not be page-aligned.
2616 	 * But our b_pages[] array *IS* page aligned.
2617 	 *
2618 	 * block sizes less then DEV_BSIZE (usually 512) are not
2619 	 * supported due to the page granularity bits (m->valid,
2620 	 * m->dirty, etc...).
2621 	 *
2622 	 * See man buf(9) for more information
2623 	 */
2624 	obj = bp->b_bufobj->bo_object;
2625 	resid = bp->b_bufsize;
2626 	poffset = bp->b_offset & PAGE_MASK;
2627 	VM_OBJECT_WLOCK(obj);
2628 	for (i = 0; i < bp->b_npages; i++) {
2629 		m = bp->b_pages[i];
2630 		if (m == bogus_page)
2631 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
2632 		bp->b_pages[i] = NULL;
2633 
2634 		presid = resid > (PAGE_SIZE - poffset) ?
2635 		    (PAGE_SIZE - poffset) : resid;
2636 		KASSERT(presid >= 0, ("brelse: extra page"));
2637 		while (vm_page_xbusied(m)) {
2638 			vm_page_lock(m);
2639 			VM_OBJECT_WUNLOCK(obj);
2640 			vm_page_busy_sleep(m, "mbncsh");
2641 			VM_OBJECT_WLOCK(obj);
2642 		}
2643 		if (pmap_page_wired_mappings(m) == 0)
2644 			vm_page_set_invalid(m, poffset, presid);
2645 		vfs_vmio_unwire(bp, m);
2646 		resid -= presid;
2647 		poffset = 0;
2648 	}
2649 	VM_OBJECT_WUNLOCK(obj);
2650 	bp->b_npages = 0;
2651 }
2652 
2653 /*
2654  * Page-granular truncation of an existing VMIO buffer.
2655  */
2656 static void
2657 vfs_vmio_truncate(struct buf *bp, int desiredpages)
2658 {
2659 	vm_object_t obj;
2660 	vm_page_t m;
2661 	int i;
2662 
2663 	if (bp->b_npages == desiredpages)
2664 		return;
2665 
2666 	if (buf_mapped(bp)) {
2667 		BUF_CHECK_MAPPED(bp);
2668 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
2669 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
2670 	} else
2671 		BUF_CHECK_UNMAPPED(bp);
2672 	obj = bp->b_bufobj->bo_object;
2673 	if (obj != NULL)
2674 		VM_OBJECT_WLOCK(obj);
2675 	for (i = desiredpages; i < bp->b_npages; i++) {
2676 		m = bp->b_pages[i];
2677 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
2678 		bp->b_pages[i] = NULL;
2679 		vfs_vmio_unwire(bp, m);
2680 	}
2681 	if (obj != NULL)
2682 		VM_OBJECT_WUNLOCK(obj);
2683 	bp->b_npages = desiredpages;
2684 }
2685 
2686 /*
2687  * Byte granular extension of VMIO buffers.
2688  */
2689 static void
2690 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
2691 {
2692 	/*
2693 	 * We are growing the buffer, possibly in a
2694 	 * byte-granular fashion.
2695 	 */
2696 	vm_object_t obj;
2697 	vm_offset_t toff;
2698 	vm_offset_t tinc;
2699 	vm_page_t m;
2700 
2701 	/*
2702 	 * Step 1, bring in the VM pages from the object, allocating
2703 	 * them if necessary.  We must clear B_CACHE if these pages
2704 	 * are not valid for the range covered by the buffer.
2705 	 */
2706 	obj = bp->b_bufobj->bo_object;
2707 	VM_OBJECT_WLOCK(obj);
2708 	while (bp->b_npages < desiredpages) {
2709 		/*
2710 		 * We must allocate system pages since blocking
2711 		 * here could interfere with paging I/O, no
2712 		 * matter which process we are.
2713 		 *
2714 		 * Only exclusive busy can be tested here.
2715 		 * Blocking on shared busy might lead to
2716 		 * deadlocks once allocbuf() is called after
2717 		 * pages are vfs_busy_pages().
2718 		 */
2719 		m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) + bp->b_npages,
2720 		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2721 		    VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY |
2722 		    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
2723 		if (m->valid == 0)
2724 			bp->b_flags &= ~B_CACHE;
2725 		bp->b_pages[bp->b_npages] = m;
2726 		++bp->b_npages;
2727 	}
2728 
2729 	/*
2730 	 * Step 2.  We've loaded the pages into the buffer,
2731 	 * we have to figure out if we can still have B_CACHE
2732 	 * set.  Note that B_CACHE is set according to the
2733 	 * byte-granular range ( bcount and size ), not the
2734 	 * aligned range ( newbsize ).
2735 	 *
2736 	 * The VM test is against m->valid, which is DEV_BSIZE
2737 	 * aligned.  Needless to say, the validity of the data
2738 	 * needs to also be DEV_BSIZE aligned.  Note that this
2739 	 * fails with NFS if the server or some other client
2740 	 * extends the file's EOF.  If our buffer is resized,
2741 	 * B_CACHE may remain set! XXX
2742 	 */
2743 	toff = bp->b_bcount;
2744 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2745 	while ((bp->b_flags & B_CACHE) && toff < size) {
2746 		vm_pindex_t pi;
2747 
2748 		if (tinc > (size - toff))
2749 			tinc = size - toff;
2750 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
2751 		m = bp->b_pages[pi];
2752 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
2753 		toff += tinc;
2754 		tinc = PAGE_SIZE;
2755 	}
2756 	VM_OBJECT_WUNLOCK(obj);
2757 
2758 	/*
2759 	 * Step 3, fixup the KVA pmap.
2760 	 */
2761 	if (buf_mapped(bp))
2762 		bpmap_qenter(bp);
2763 	else
2764 		BUF_CHECK_UNMAPPED(bp);
2765 }
2766 
2767 /*
2768  * Check to see if a block at a particular lbn is available for a clustered
2769  * write.
2770  */
2771 static int
2772 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
2773 {
2774 	struct buf *bpa;
2775 	int match;
2776 
2777 	match = 0;
2778 
2779 	/* If the buf isn't in core skip it */
2780 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
2781 		return (0);
2782 
2783 	/* If the buf is busy we don't want to wait for it */
2784 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2785 		return (0);
2786 
2787 	/* Only cluster with valid clusterable delayed write buffers */
2788 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
2789 	    (B_DELWRI | B_CLUSTEROK))
2790 		goto done;
2791 
2792 	if (bpa->b_bufsize != size)
2793 		goto done;
2794 
2795 	/*
2796 	 * Check to see if it is in the expected place on disk and that the
2797 	 * block has been mapped.
2798 	 */
2799 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
2800 		match = 1;
2801 done:
2802 	BUF_UNLOCK(bpa);
2803 	return (match);
2804 }
2805 
2806 /*
2807  *	vfs_bio_awrite:
2808  *
2809  *	Implement clustered async writes for clearing out B_DELWRI buffers.
2810  *	This is much better then the old way of writing only one buffer at
2811  *	a time.  Note that we may not be presented with the buffers in the
2812  *	correct order, so we search for the cluster in both directions.
2813  */
2814 int
2815 vfs_bio_awrite(struct buf *bp)
2816 {
2817 	struct bufobj *bo;
2818 	int i;
2819 	int j;
2820 	daddr_t lblkno = bp->b_lblkno;
2821 	struct vnode *vp = bp->b_vp;
2822 	int ncl;
2823 	int nwritten;
2824 	int size;
2825 	int maxcl;
2826 	int gbflags;
2827 
2828 	bo = &vp->v_bufobj;
2829 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
2830 	/*
2831 	 * right now we support clustered writing only to regular files.  If
2832 	 * we find a clusterable block we could be in the middle of a cluster
2833 	 * rather then at the beginning.
2834 	 */
2835 	if ((vp->v_type == VREG) &&
2836 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
2837 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
2838 
2839 		size = vp->v_mount->mnt_stat.f_iosize;
2840 		maxcl = MAXPHYS / size;
2841 
2842 		BO_RLOCK(bo);
2843 		for (i = 1; i < maxcl; i++)
2844 			if (vfs_bio_clcheck(vp, size, lblkno + i,
2845 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
2846 				break;
2847 
2848 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
2849 			if (vfs_bio_clcheck(vp, size, lblkno - j,
2850 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
2851 				break;
2852 		BO_RUNLOCK(bo);
2853 		--j;
2854 		ncl = i + j;
2855 		/*
2856 		 * this is a possible cluster write
2857 		 */
2858 		if (ncl != 1) {
2859 			BUF_UNLOCK(bp);
2860 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
2861 			    gbflags);
2862 			return (nwritten);
2863 		}
2864 	}
2865 	bremfree(bp);
2866 	bp->b_flags |= B_ASYNC;
2867 	/*
2868 	 * default (old) behavior, writing out only one block
2869 	 *
2870 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
2871 	 */
2872 	nwritten = bp->b_bufsize;
2873 	(void) bwrite(bp);
2874 
2875 	return (nwritten);
2876 }
2877 
2878 /*
2879  *	getnewbuf_kva:
2880  *
2881  *	Allocate KVA for an empty buf header according to gbflags.
2882  */
2883 static int
2884 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
2885 {
2886 
2887 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
2888 		/*
2889 		 * In order to keep fragmentation sane we only allocate kva
2890 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
2891 		 */
2892 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2893 
2894 		if (maxsize != bp->b_kvasize &&
2895 		    bufkva_alloc(bp, maxsize, gbflags))
2896 			return (ENOSPC);
2897 	}
2898 	return (0);
2899 }
2900 
2901 /*
2902  *	getnewbuf:
2903  *
2904  *	Find and initialize a new buffer header, freeing up existing buffers
2905  *	in the bufqueues as necessary.  The new buffer is returned locked.
2906  *
2907  *	We block if:
2908  *		We have insufficient buffer headers
2909  *		We have insufficient buffer space
2910  *		buffer_arena is too fragmented ( space reservation fails )
2911  *		If we have to flush dirty buffers ( but we try to avoid this )
2912  *
2913  *	The caller is responsible for releasing the reserved bufspace after
2914  *	allocbuf() is called.
2915  */
2916 static struct buf *
2917 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
2918 {
2919 	struct buf *bp;
2920 	bool metadata, reserved;
2921 
2922 	bp = NULL;
2923 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2924 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2925 	if (!unmapped_buf_allowed)
2926 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2927 
2928 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2929 	    vp->v_type == VCHR)
2930 		metadata = true;
2931 	else
2932 		metadata = false;
2933 	atomic_add_int(&getnewbufcalls, 1);
2934 	reserved = false;
2935 	do {
2936 		if (reserved == false &&
2937 		    bufspace_reserve(maxsize, metadata) != 0)
2938 			continue;
2939 		reserved = true;
2940 		if ((bp = buf_alloc()) == NULL)
2941 			continue;
2942 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
2943 			return (bp);
2944 		break;
2945 	} while(buf_scan(false) == 0);
2946 
2947 	if (reserved)
2948 		atomic_subtract_long(&bufspace, maxsize);
2949 	if (bp != NULL) {
2950 		bp->b_flags |= B_INVAL;
2951 		brelse(bp);
2952 	}
2953 	bufspace_wait(vp, gbflags, slpflag, slptimeo);
2954 
2955 	return (NULL);
2956 }
2957 
2958 /*
2959  *	buf_daemon:
2960  *
2961  *	buffer flushing daemon.  Buffers are normally flushed by the
2962  *	update daemon but if it cannot keep up this process starts to
2963  *	take the load in an attempt to prevent getnewbuf() from blocking.
2964  */
2965 static struct kproc_desc buf_kp = {
2966 	"bufdaemon",
2967 	buf_daemon,
2968 	&bufdaemonproc
2969 };
2970 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2971 
2972 static int
2973 buf_flush(struct vnode *vp, int target)
2974 {
2975 	int flushed;
2976 
2977 	flushed = flushbufqueues(vp, target, 0);
2978 	if (flushed == 0) {
2979 		/*
2980 		 * Could not find any buffers without rollback
2981 		 * dependencies, so just write the first one
2982 		 * in the hopes of eventually making progress.
2983 		 */
2984 		if (vp != NULL && target > 2)
2985 			target /= 2;
2986 		flushbufqueues(vp, target, 1);
2987 	}
2988 	return (flushed);
2989 }
2990 
2991 static void
2992 buf_daemon()
2993 {
2994 	int lodirty;
2995 
2996 	/*
2997 	 * This process needs to be suspended prior to shutdown sync.
2998 	 */
2999 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
3000 	    SHUTDOWN_PRI_LAST);
3001 
3002 	/*
3003 	 * This process is allowed to take the buffer cache to the limit
3004 	 */
3005 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3006 	mtx_lock(&bdlock);
3007 	for (;;) {
3008 		bd_request = 0;
3009 		mtx_unlock(&bdlock);
3010 
3011 		kproc_suspend_check(bufdaemonproc);
3012 		lodirty = lodirtybuffers;
3013 		if (bd_speedupreq) {
3014 			lodirty = numdirtybuffers / 2;
3015 			bd_speedupreq = 0;
3016 		}
3017 		/*
3018 		 * Do the flush.  Limit the amount of in-transit I/O we
3019 		 * allow to build up, otherwise we would completely saturate
3020 		 * the I/O system.
3021 		 */
3022 		while (numdirtybuffers > lodirty) {
3023 			if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
3024 				break;
3025 			kern_yield(PRI_USER);
3026 		}
3027 
3028 		/*
3029 		 * Only clear bd_request if we have reached our low water
3030 		 * mark.  The buf_daemon normally waits 1 second and
3031 		 * then incrementally flushes any dirty buffers that have
3032 		 * built up, within reason.
3033 		 *
3034 		 * If we were unable to hit our low water mark and couldn't
3035 		 * find any flushable buffers, we sleep for a short period
3036 		 * to avoid endless loops on unlockable buffers.
3037 		 */
3038 		mtx_lock(&bdlock);
3039 		if (numdirtybuffers <= lodirtybuffers) {
3040 			/*
3041 			 * We reached our low water mark, reset the
3042 			 * request and sleep until we are needed again.
3043 			 * The sleep is just so the suspend code works.
3044 			 */
3045 			bd_request = 0;
3046 			/*
3047 			 * Do an extra wakeup in case dirty threshold
3048 			 * changed via sysctl and the explicit transition
3049 			 * out of shortfall was missed.
3050 			 */
3051 			bdirtywakeup();
3052 			if (runningbufspace <= lorunningspace)
3053 				runningwakeup();
3054 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3055 		} else {
3056 			/*
3057 			 * We couldn't find any flushable dirty buffers but
3058 			 * still have too many dirty buffers, we
3059 			 * have to sleep and try again.  (rare)
3060 			 */
3061 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3062 		}
3063 	}
3064 }
3065 
3066 /*
3067  *	flushbufqueues:
3068  *
3069  *	Try to flush a buffer in the dirty queue.  We must be careful to
3070  *	free up B_INVAL buffers instead of write them, which NFS is
3071  *	particularly sensitive to.
3072  */
3073 static int flushwithdeps = 0;
3074 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
3075     0, "Number of buffers flushed with dependecies that require rollbacks");
3076 
3077 static int
3078 flushbufqueues(struct vnode *lvp, int target, int flushdeps)
3079 {
3080 	struct buf *sentinel;
3081 	struct vnode *vp;
3082 	struct mount *mp;
3083 	struct buf *bp;
3084 	int hasdeps;
3085 	int flushed;
3086 	int queue;
3087 	int error;
3088 	bool unlock;
3089 
3090 	flushed = 0;
3091 	queue = QUEUE_DIRTY;
3092 	bp = NULL;
3093 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3094 	sentinel->b_qindex = QUEUE_SENTINEL;
3095 	mtx_lock(&bqlocks[queue]);
3096 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
3097 	mtx_unlock(&bqlocks[queue]);
3098 	while (flushed != target) {
3099 		maybe_yield();
3100 		mtx_lock(&bqlocks[queue]);
3101 		bp = TAILQ_NEXT(sentinel, b_freelist);
3102 		if (bp != NULL) {
3103 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
3104 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
3105 			    b_freelist);
3106 		} else {
3107 			mtx_unlock(&bqlocks[queue]);
3108 			break;
3109 		}
3110 		/*
3111 		 * Skip sentinels inserted by other invocations of the
3112 		 * flushbufqueues(), taking care to not reorder them.
3113 		 *
3114 		 * Only flush the buffers that belong to the
3115 		 * vnode locked by the curthread.
3116 		 */
3117 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3118 		    bp->b_vp != lvp)) {
3119 			mtx_unlock(&bqlocks[queue]);
3120  			continue;
3121 		}
3122 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3123 		mtx_unlock(&bqlocks[queue]);
3124 		if (error != 0)
3125 			continue;
3126 		if (bp->b_pin_count > 0) {
3127 			BUF_UNLOCK(bp);
3128 			continue;
3129 		}
3130 		/*
3131 		 * BKGRDINPROG can only be set with the buf and bufobj
3132 		 * locks both held.  We tolerate a race to clear it here.
3133 		 */
3134 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3135 		    (bp->b_flags & B_DELWRI) == 0) {
3136 			BUF_UNLOCK(bp);
3137 			continue;
3138 		}
3139 		if (bp->b_flags & B_INVAL) {
3140 			bremfreef(bp);
3141 			brelse(bp);
3142 			flushed++;
3143 			continue;
3144 		}
3145 
3146 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3147 			if (flushdeps == 0) {
3148 				BUF_UNLOCK(bp);
3149 				continue;
3150 			}
3151 			hasdeps = 1;
3152 		} else
3153 			hasdeps = 0;
3154 		/*
3155 		 * We must hold the lock on a vnode before writing
3156 		 * one of its buffers. Otherwise we may confuse, or
3157 		 * in the case of a snapshot vnode, deadlock the
3158 		 * system.
3159 		 *
3160 		 * The lock order here is the reverse of the normal
3161 		 * of vnode followed by buf lock.  This is ok because
3162 		 * the NOWAIT will prevent deadlock.
3163 		 */
3164 		vp = bp->b_vp;
3165 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3166 			BUF_UNLOCK(bp);
3167 			continue;
3168 		}
3169 		if (lvp == NULL) {
3170 			unlock = true;
3171 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3172 		} else {
3173 			ASSERT_VOP_LOCKED(vp, "getbuf");
3174 			unlock = false;
3175 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3176 			    vn_lock(vp, LK_TRYUPGRADE);
3177 		}
3178 		if (error == 0) {
3179 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3180 			    bp, bp->b_vp, bp->b_flags);
3181 			if (curproc == bufdaemonproc) {
3182 				vfs_bio_awrite(bp);
3183 			} else {
3184 				bremfree(bp);
3185 				bwrite(bp);
3186 				notbufdflushes++;
3187 			}
3188 			vn_finished_write(mp);
3189 			if (unlock)
3190 				VOP_UNLOCK(vp, 0);
3191 			flushwithdeps += hasdeps;
3192 			flushed++;
3193 
3194 			/*
3195 			 * Sleeping on runningbufspace while holding
3196 			 * vnode lock leads to deadlock.
3197 			 */
3198 			if (curproc == bufdaemonproc &&
3199 			    runningbufspace > hirunningspace)
3200 				waitrunningbufspace();
3201 			continue;
3202 		}
3203 		vn_finished_write(mp);
3204 		BUF_UNLOCK(bp);
3205 	}
3206 	mtx_lock(&bqlocks[queue]);
3207 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
3208 	mtx_unlock(&bqlocks[queue]);
3209 	free(sentinel, M_TEMP);
3210 	return (flushed);
3211 }
3212 
3213 /*
3214  * Check to see if a block is currently memory resident.
3215  */
3216 struct buf *
3217 incore(struct bufobj *bo, daddr_t blkno)
3218 {
3219 	struct buf *bp;
3220 
3221 	BO_RLOCK(bo);
3222 	bp = gbincore(bo, blkno);
3223 	BO_RUNLOCK(bo);
3224 	return (bp);
3225 }
3226 
3227 /*
3228  * Returns true if no I/O is needed to access the
3229  * associated VM object.  This is like incore except
3230  * it also hunts around in the VM system for the data.
3231  */
3232 
3233 static int
3234 inmem(struct vnode * vp, daddr_t blkno)
3235 {
3236 	vm_object_t obj;
3237 	vm_offset_t toff, tinc, size;
3238 	vm_page_t m;
3239 	vm_ooffset_t off;
3240 
3241 	ASSERT_VOP_LOCKED(vp, "inmem");
3242 
3243 	if (incore(&vp->v_bufobj, blkno))
3244 		return 1;
3245 	if (vp->v_mount == NULL)
3246 		return 0;
3247 	obj = vp->v_object;
3248 	if (obj == NULL)
3249 		return (0);
3250 
3251 	size = PAGE_SIZE;
3252 	if (size > vp->v_mount->mnt_stat.f_iosize)
3253 		size = vp->v_mount->mnt_stat.f_iosize;
3254 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3255 
3256 	VM_OBJECT_RLOCK(obj);
3257 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3258 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
3259 		if (!m)
3260 			goto notinmem;
3261 		tinc = size;
3262 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3263 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3264 		if (vm_page_is_valid(m,
3265 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
3266 			goto notinmem;
3267 	}
3268 	VM_OBJECT_RUNLOCK(obj);
3269 	return 1;
3270 
3271 notinmem:
3272 	VM_OBJECT_RUNLOCK(obj);
3273 	return (0);
3274 }
3275 
3276 /*
3277  * Set the dirty range for a buffer based on the status of the dirty
3278  * bits in the pages comprising the buffer.  The range is limited
3279  * to the size of the buffer.
3280  *
3281  * Tell the VM system that the pages associated with this buffer
3282  * are clean.  This is used for delayed writes where the data is
3283  * going to go to disk eventually without additional VM intevention.
3284  *
3285  * Note that while we only really need to clean through to b_bcount, we
3286  * just go ahead and clean through to b_bufsize.
3287  */
3288 static void
3289 vfs_clean_pages_dirty_buf(struct buf *bp)
3290 {
3291 	vm_ooffset_t foff, noff, eoff;
3292 	vm_page_t m;
3293 	int i;
3294 
3295 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3296 		return;
3297 
3298 	foff = bp->b_offset;
3299 	KASSERT(bp->b_offset != NOOFFSET,
3300 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3301 
3302 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3303 	vfs_drain_busy_pages(bp);
3304 	vfs_setdirty_locked_object(bp);
3305 	for (i = 0; i < bp->b_npages; i++) {
3306 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3307 		eoff = noff;
3308 		if (eoff > bp->b_offset + bp->b_bufsize)
3309 			eoff = bp->b_offset + bp->b_bufsize;
3310 		m = bp->b_pages[i];
3311 		vfs_page_set_validclean(bp, foff, m);
3312 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3313 		foff = noff;
3314 	}
3315 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3316 }
3317 
3318 static void
3319 vfs_setdirty_locked_object(struct buf *bp)
3320 {
3321 	vm_object_t object;
3322 	int i;
3323 
3324 	object = bp->b_bufobj->bo_object;
3325 	VM_OBJECT_ASSERT_WLOCKED(object);
3326 
3327 	/*
3328 	 * We qualify the scan for modified pages on whether the
3329 	 * object has been flushed yet.
3330 	 */
3331 	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
3332 		vm_offset_t boffset;
3333 		vm_offset_t eoffset;
3334 
3335 		/*
3336 		 * test the pages to see if they have been modified directly
3337 		 * by users through the VM system.
3338 		 */
3339 		for (i = 0; i < bp->b_npages; i++)
3340 			vm_page_test_dirty(bp->b_pages[i]);
3341 
3342 		/*
3343 		 * Calculate the encompassing dirty range, boffset and eoffset,
3344 		 * (eoffset - boffset) bytes.
3345 		 */
3346 
3347 		for (i = 0; i < bp->b_npages; i++) {
3348 			if (bp->b_pages[i]->dirty)
3349 				break;
3350 		}
3351 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3352 
3353 		for (i = bp->b_npages - 1; i >= 0; --i) {
3354 			if (bp->b_pages[i]->dirty) {
3355 				break;
3356 			}
3357 		}
3358 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3359 
3360 		/*
3361 		 * Fit it to the buffer.
3362 		 */
3363 
3364 		if (eoffset > bp->b_bcount)
3365 			eoffset = bp->b_bcount;
3366 
3367 		/*
3368 		 * If we have a good dirty range, merge with the existing
3369 		 * dirty range.
3370 		 */
3371 
3372 		if (boffset < eoffset) {
3373 			if (bp->b_dirtyoff > boffset)
3374 				bp->b_dirtyoff = boffset;
3375 			if (bp->b_dirtyend < eoffset)
3376 				bp->b_dirtyend = eoffset;
3377 		}
3378 	}
3379 }
3380 
3381 /*
3382  * Allocate the KVA mapping for an existing buffer.
3383  * If an unmapped buffer is provided but a mapped buffer is requested, take
3384  * also care to properly setup mappings between pages and KVA.
3385  */
3386 static void
3387 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3388 {
3389 	int bsize, maxsize, need_mapping, need_kva;
3390 	off_t offset;
3391 
3392 	need_mapping = bp->b_data == unmapped_buf &&
3393 	    (gbflags & GB_UNMAPPED) == 0;
3394 	need_kva = bp->b_kvabase == unmapped_buf &&
3395 	    bp->b_data == unmapped_buf &&
3396 	    (gbflags & GB_KVAALLOC) != 0;
3397 	if (!need_mapping && !need_kva)
3398 		return;
3399 
3400 	BUF_CHECK_UNMAPPED(bp);
3401 
3402 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3403 		/*
3404 		 * Buffer is not mapped, but the KVA was already
3405 		 * reserved at the time of the instantiation.  Use the
3406 		 * allocated space.
3407 		 */
3408 		goto has_addr;
3409 	}
3410 
3411 	/*
3412 	 * Calculate the amount of the address space we would reserve
3413 	 * if the buffer was mapped.
3414 	 */
3415 	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3416 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3417 	offset = blkno * bsize;
3418 	maxsize = size + (offset & PAGE_MASK);
3419 	maxsize = imax(maxsize, bsize);
3420 
3421 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3422 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3423 			/*
3424 			 * XXXKIB: defragmentation cannot
3425 			 * succeed, not sure what else to do.
3426 			 */
3427 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3428 		}
3429 		atomic_add_int(&mappingrestarts, 1);
3430 		bufspace_wait(bp->b_vp, gbflags, 0, 0);
3431 	}
3432 has_addr:
3433 	if (need_mapping) {
3434 		/* b_offset is handled by bpmap_qenter. */
3435 		bp->b_data = bp->b_kvabase;
3436 		BUF_CHECK_MAPPED(bp);
3437 		bpmap_qenter(bp);
3438 	}
3439 }
3440 
3441 /*
3442  *	getblk:
3443  *
3444  *	Get a block given a specified block and offset into a file/device.
3445  *	The buffers B_DONE bit will be cleared on return, making it almost
3446  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3447  *	return.  The caller should clear B_INVAL prior to initiating a
3448  *	READ.
3449  *
3450  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3451  *	an existing buffer.
3452  *
3453  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3454  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3455  *	and then cleared based on the backing VM.  If the previous buffer is
3456  *	non-0-sized but invalid, B_CACHE will be cleared.
3457  *
3458  *	If getblk() must create a new buffer, the new buffer is returned with
3459  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3460  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3461  *	backing VM.
3462  *
3463  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3464  *	B_CACHE bit is clear.
3465  *
3466  *	What this means, basically, is that the caller should use B_CACHE to
3467  *	determine whether the buffer is fully valid or not and should clear
3468  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3469  *	the buffer by loading its data area with something, the caller needs
3470  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3471  *	the caller should set B_CACHE ( as an optimization ), else the caller
3472  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3473  *	a write attempt or if it was a successful read.  If the caller
3474  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3475  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3476  */
3477 struct buf *
3478 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3479     int flags)
3480 {
3481 	struct buf *bp;
3482 	struct bufobj *bo;
3483 	int bsize, error, maxsize, vmio;
3484 	off_t offset;
3485 
3486 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3487 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3488 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3489 	ASSERT_VOP_LOCKED(vp, "getblk");
3490 	if (size > MAXBCACHEBUF)
3491 		panic("getblk: size(%d) > MAXBCACHEBUF(%d)\n", size,
3492 		    MAXBCACHEBUF);
3493 	if (!unmapped_buf_allowed)
3494 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3495 
3496 	bo = &vp->v_bufobj;
3497 loop:
3498 	BO_RLOCK(bo);
3499 	bp = gbincore(bo, blkno);
3500 	if (bp != NULL) {
3501 		int lockflags;
3502 		/*
3503 		 * Buffer is in-core.  If the buffer is not busy nor managed,
3504 		 * it must be on a queue.
3505 		 */
3506 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3507 
3508 		if (flags & GB_LOCK_NOWAIT)
3509 			lockflags |= LK_NOWAIT;
3510 
3511 		error = BUF_TIMELOCK(bp, lockflags,
3512 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3513 
3514 		/*
3515 		 * If we slept and got the lock we have to restart in case
3516 		 * the buffer changed identities.
3517 		 */
3518 		if (error == ENOLCK)
3519 			goto loop;
3520 		/* We timed out or were interrupted. */
3521 		else if (error)
3522 			return (NULL);
3523 		/* If recursed, assume caller knows the rules. */
3524 		else if (BUF_LOCKRECURSED(bp))
3525 			goto end;
3526 
3527 		/*
3528 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3529 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3530 		 * and for a VMIO buffer B_CACHE is adjusted according to the
3531 		 * backing VM cache.
3532 		 */
3533 		if (bp->b_flags & B_INVAL)
3534 			bp->b_flags &= ~B_CACHE;
3535 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3536 			bp->b_flags |= B_CACHE;
3537 		if (bp->b_flags & B_MANAGED)
3538 			MPASS(bp->b_qindex == QUEUE_NONE);
3539 		else
3540 			bremfree(bp);
3541 
3542 		/*
3543 		 * check for size inconsistencies for non-VMIO case.
3544 		 */
3545 		if (bp->b_bcount != size) {
3546 			if ((bp->b_flags & B_VMIO) == 0 ||
3547 			    (size > bp->b_kvasize)) {
3548 				if (bp->b_flags & B_DELWRI) {
3549 					/*
3550 					 * If buffer is pinned and caller does
3551 					 * not want sleep  waiting for it to be
3552 					 * unpinned, bail out
3553 					 * */
3554 					if (bp->b_pin_count > 0) {
3555 						if (flags & GB_LOCK_NOWAIT) {
3556 							bqrelse(bp);
3557 							return (NULL);
3558 						} else {
3559 							bunpin_wait(bp);
3560 						}
3561 					}
3562 					bp->b_flags |= B_NOCACHE;
3563 					bwrite(bp);
3564 				} else {
3565 					if (LIST_EMPTY(&bp->b_dep)) {
3566 						bp->b_flags |= B_RELBUF;
3567 						brelse(bp);
3568 					} else {
3569 						bp->b_flags |= B_NOCACHE;
3570 						bwrite(bp);
3571 					}
3572 				}
3573 				goto loop;
3574 			}
3575 		}
3576 
3577 		/*
3578 		 * Handle the case of unmapped buffer which should
3579 		 * become mapped, or the buffer for which KVA
3580 		 * reservation is requested.
3581 		 */
3582 		bp_unmapped_get_kva(bp, blkno, size, flags);
3583 
3584 		/*
3585 		 * If the size is inconsistent in the VMIO case, we can resize
3586 		 * the buffer.  This might lead to B_CACHE getting set or
3587 		 * cleared.  If the size has not changed, B_CACHE remains
3588 		 * unchanged from its previous state.
3589 		 */
3590 		allocbuf(bp, size);
3591 
3592 		KASSERT(bp->b_offset != NOOFFSET,
3593 		    ("getblk: no buffer offset"));
3594 
3595 		/*
3596 		 * A buffer with B_DELWRI set and B_CACHE clear must
3597 		 * be committed before we can return the buffer in
3598 		 * order to prevent the caller from issuing a read
3599 		 * ( due to B_CACHE not being set ) and overwriting
3600 		 * it.
3601 		 *
3602 		 * Most callers, including NFS and FFS, need this to
3603 		 * operate properly either because they assume they
3604 		 * can issue a read if B_CACHE is not set, or because
3605 		 * ( for example ) an uncached B_DELWRI might loop due
3606 		 * to softupdates re-dirtying the buffer.  In the latter
3607 		 * case, B_CACHE is set after the first write completes,
3608 		 * preventing further loops.
3609 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3610 		 * above while extending the buffer, we cannot allow the
3611 		 * buffer to remain with B_CACHE set after the write
3612 		 * completes or it will represent a corrupt state.  To
3613 		 * deal with this we set B_NOCACHE to scrap the buffer
3614 		 * after the write.
3615 		 *
3616 		 * We might be able to do something fancy, like setting
3617 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3618 		 * so the below call doesn't set B_CACHE, but that gets real
3619 		 * confusing.  This is much easier.
3620 		 */
3621 
3622 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3623 			bp->b_flags |= B_NOCACHE;
3624 			bwrite(bp);
3625 			goto loop;
3626 		}
3627 		bp->b_flags &= ~B_DONE;
3628 	} else {
3629 		/*
3630 		 * Buffer is not in-core, create new buffer.  The buffer
3631 		 * returned by getnewbuf() is locked.  Note that the returned
3632 		 * buffer is also considered valid (not marked B_INVAL).
3633 		 */
3634 		BO_RUNLOCK(bo);
3635 		/*
3636 		 * If the user does not want us to create the buffer, bail out
3637 		 * here.
3638 		 */
3639 		if (flags & GB_NOCREAT)
3640 			return NULL;
3641 		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3642 			return NULL;
3643 
3644 		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3645 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3646 		offset = blkno * bsize;
3647 		vmio = vp->v_object != NULL;
3648 		if (vmio) {
3649 			maxsize = size + (offset & PAGE_MASK);
3650 		} else {
3651 			maxsize = size;
3652 			/* Do not allow non-VMIO notmapped buffers. */
3653 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3654 		}
3655 		maxsize = imax(maxsize, bsize);
3656 
3657 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
3658 		if (bp == NULL) {
3659 			if (slpflag || slptimeo)
3660 				return NULL;
3661 			/*
3662 			 * XXX This is here until the sleep path is diagnosed
3663 			 * enough to work under very low memory conditions.
3664 			 *
3665 			 * There's an issue on low memory, 4BSD+non-preempt
3666 			 * systems (eg MIPS routers with 32MB RAM) where buffer
3667 			 * exhaustion occurs without sleeping for buffer
3668 			 * reclaimation.  This just sticks in a loop and
3669 			 * constantly attempts to allocate a buffer, which
3670 			 * hits exhaustion and tries to wakeup bufdaemon.
3671 			 * This never happens because we never yield.
3672 			 *
3673 			 * The real solution is to identify and fix these cases
3674 			 * so we aren't effectively busy-waiting in a loop
3675 			 * until the reclaimation path has cycles to run.
3676 			 */
3677 			kern_yield(PRI_USER);
3678 			goto loop;
3679 		}
3680 
3681 		/*
3682 		 * This code is used to make sure that a buffer is not
3683 		 * created while the getnewbuf routine is blocked.
3684 		 * This can be a problem whether the vnode is locked or not.
3685 		 * If the buffer is created out from under us, we have to
3686 		 * throw away the one we just created.
3687 		 *
3688 		 * Note: this must occur before we associate the buffer
3689 		 * with the vp especially considering limitations in
3690 		 * the splay tree implementation when dealing with duplicate
3691 		 * lblkno's.
3692 		 */
3693 		BO_LOCK(bo);
3694 		if (gbincore(bo, blkno)) {
3695 			BO_UNLOCK(bo);
3696 			bp->b_flags |= B_INVAL;
3697 			brelse(bp);
3698 			bufspace_release(maxsize);
3699 			goto loop;
3700 		}
3701 
3702 		/*
3703 		 * Insert the buffer into the hash, so that it can
3704 		 * be found by incore.
3705 		 */
3706 		bp->b_blkno = bp->b_lblkno = blkno;
3707 		bp->b_offset = offset;
3708 		bgetvp(vp, bp);
3709 		BO_UNLOCK(bo);
3710 
3711 		/*
3712 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3713 		 * buffer size starts out as 0, B_CACHE will be set by
3714 		 * allocbuf() for the VMIO case prior to it testing the
3715 		 * backing store for validity.
3716 		 */
3717 
3718 		if (vmio) {
3719 			bp->b_flags |= B_VMIO;
3720 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3721 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3722 			    bp, vp->v_object, bp->b_bufobj->bo_object));
3723 		} else {
3724 			bp->b_flags &= ~B_VMIO;
3725 			KASSERT(bp->b_bufobj->bo_object == NULL,
3726 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3727 			    bp, bp->b_bufobj->bo_object));
3728 			BUF_CHECK_MAPPED(bp);
3729 		}
3730 
3731 		allocbuf(bp, size);
3732 		bufspace_release(maxsize);
3733 		bp->b_flags &= ~B_DONE;
3734 	}
3735 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3736 	BUF_ASSERT_HELD(bp);
3737 end:
3738 	KASSERT(bp->b_bufobj == bo,
3739 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3740 	return (bp);
3741 }
3742 
3743 /*
3744  * Get an empty, disassociated buffer of given size.  The buffer is initially
3745  * set to B_INVAL.
3746  */
3747 struct buf *
3748 geteblk(int size, int flags)
3749 {
3750 	struct buf *bp;
3751 	int maxsize;
3752 
3753 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3754 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
3755 		if ((flags & GB_NOWAIT_BD) &&
3756 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3757 			return (NULL);
3758 	}
3759 	allocbuf(bp, size);
3760 	bufspace_release(maxsize);
3761 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3762 	BUF_ASSERT_HELD(bp);
3763 	return (bp);
3764 }
3765 
3766 /*
3767  * Truncate the backing store for a non-vmio buffer.
3768  */
3769 static void
3770 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
3771 {
3772 
3773 	if (bp->b_flags & B_MALLOC) {
3774 		/*
3775 		 * malloced buffers are not shrunk
3776 		 */
3777 		if (newbsize == 0) {
3778 			bufmallocadjust(bp, 0);
3779 			free(bp->b_data, M_BIOBUF);
3780 			bp->b_data = bp->b_kvabase;
3781 			bp->b_flags &= ~B_MALLOC;
3782 		}
3783 		return;
3784 	}
3785 	vm_hold_free_pages(bp, newbsize);
3786 	bufspace_adjust(bp, newbsize);
3787 }
3788 
3789 /*
3790  * Extend the backing for a non-VMIO buffer.
3791  */
3792 static void
3793 vfs_nonvmio_extend(struct buf *bp, int newbsize)
3794 {
3795 	caddr_t origbuf;
3796 	int origbufsize;
3797 
3798 	/*
3799 	 * We only use malloced memory on the first allocation.
3800 	 * and revert to page-allocated memory when the buffer
3801 	 * grows.
3802 	 *
3803 	 * There is a potential smp race here that could lead
3804 	 * to bufmallocspace slightly passing the max.  It
3805 	 * is probably extremely rare and not worth worrying
3806 	 * over.
3807 	 */
3808 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
3809 	    bufmallocspace < maxbufmallocspace) {
3810 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
3811 		bp->b_flags |= B_MALLOC;
3812 		bufmallocadjust(bp, newbsize);
3813 		return;
3814 	}
3815 
3816 	/*
3817 	 * If the buffer is growing on its other-than-first
3818 	 * allocation then we revert to the page-allocation
3819 	 * scheme.
3820 	 */
3821 	origbuf = NULL;
3822 	origbufsize = 0;
3823 	if (bp->b_flags & B_MALLOC) {
3824 		origbuf = bp->b_data;
3825 		origbufsize = bp->b_bufsize;
3826 		bp->b_data = bp->b_kvabase;
3827 		bufmallocadjust(bp, 0);
3828 		bp->b_flags &= ~B_MALLOC;
3829 		newbsize = round_page(newbsize);
3830 	}
3831 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
3832 	    (vm_offset_t) bp->b_data + newbsize);
3833 	if (origbuf != NULL) {
3834 		bcopy(origbuf, bp->b_data, origbufsize);
3835 		free(origbuf, M_BIOBUF);
3836 	}
3837 	bufspace_adjust(bp, newbsize);
3838 }
3839 
3840 /*
3841  * This code constitutes the buffer memory from either anonymous system
3842  * memory (in the case of non-VMIO operations) or from an associated
3843  * VM object (in the case of VMIO operations).  This code is able to
3844  * resize a buffer up or down.
3845  *
3846  * Note that this code is tricky, and has many complications to resolve
3847  * deadlock or inconsistent data situations.  Tread lightly!!!
3848  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3849  * the caller.  Calling this code willy nilly can result in the loss of data.
3850  *
3851  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3852  * B_CACHE for the non-VMIO case.
3853  */
3854 int
3855 allocbuf(struct buf *bp, int size)
3856 {
3857 	int newbsize;
3858 
3859 	BUF_ASSERT_HELD(bp);
3860 
3861 	if (bp->b_bcount == size)
3862 		return (1);
3863 
3864 	if (bp->b_kvasize != 0 && bp->b_kvasize < size)
3865 		panic("allocbuf: buffer too small");
3866 
3867 	newbsize = roundup2(size, DEV_BSIZE);
3868 	if ((bp->b_flags & B_VMIO) == 0) {
3869 		if ((bp->b_flags & B_MALLOC) == 0)
3870 			newbsize = round_page(newbsize);
3871 		/*
3872 		 * Just get anonymous memory from the kernel.  Don't
3873 		 * mess with B_CACHE.
3874 		 */
3875 		if (newbsize < bp->b_bufsize)
3876 			vfs_nonvmio_truncate(bp, newbsize);
3877 		else if (newbsize > bp->b_bufsize)
3878 			vfs_nonvmio_extend(bp, newbsize);
3879 	} else {
3880 		int desiredpages;
3881 
3882 		desiredpages = (size == 0) ? 0 :
3883 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3884 
3885 		if (bp->b_flags & B_MALLOC)
3886 			panic("allocbuf: VMIO buffer can't be malloced");
3887 		/*
3888 		 * Set B_CACHE initially if buffer is 0 length or will become
3889 		 * 0-length.
3890 		 */
3891 		if (size == 0 || bp->b_bufsize == 0)
3892 			bp->b_flags |= B_CACHE;
3893 
3894 		if (newbsize < bp->b_bufsize)
3895 			vfs_vmio_truncate(bp, desiredpages);
3896 		/* XXX This looks as if it should be newbsize > b_bufsize */
3897 		else if (size > bp->b_bcount)
3898 			vfs_vmio_extend(bp, desiredpages, size);
3899 		bufspace_adjust(bp, newbsize);
3900 	}
3901 	bp->b_bcount = size;		/* requested buffer size. */
3902 	return (1);
3903 }
3904 
3905 extern int inflight_transient_maps;
3906 
3907 void
3908 biodone(struct bio *bp)
3909 {
3910 	struct mtx *mtxp;
3911 	void (*done)(struct bio *);
3912 	vm_offset_t start, end;
3913 
3914 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3915 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3916 		bp->bio_flags |= BIO_UNMAPPED;
3917 		start = trunc_page((vm_offset_t)bp->bio_data);
3918 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3919 		bp->bio_data = unmapped_buf;
3920 		pmap_qremove(start, OFF_TO_IDX(end - start));
3921 		vmem_free(transient_arena, start, end - start);
3922 		atomic_add_int(&inflight_transient_maps, -1);
3923 	}
3924 	done = bp->bio_done;
3925 	if (done == NULL) {
3926 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3927 		mtx_lock(mtxp);
3928 		bp->bio_flags |= BIO_DONE;
3929 		wakeup(bp);
3930 		mtx_unlock(mtxp);
3931 	} else {
3932 		bp->bio_flags |= BIO_DONE;
3933 		done(bp);
3934 	}
3935 }
3936 
3937 /*
3938  * Wait for a BIO to finish.
3939  */
3940 int
3941 biowait(struct bio *bp, const char *wchan)
3942 {
3943 	struct mtx *mtxp;
3944 
3945 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3946 	mtx_lock(mtxp);
3947 	while ((bp->bio_flags & BIO_DONE) == 0)
3948 		msleep(bp, mtxp, PRIBIO, wchan, 0);
3949 	mtx_unlock(mtxp);
3950 	if (bp->bio_error != 0)
3951 		return (bp->bio_error);
3952 	if (!(bp->bio_flags & BIO_ERROR))
3953 		return (0);
3954 	return (EIO);
3955 }
3956 
3957 void
3958 biofinish(struct bio *bp, struct devstat *stat, int error)
3959 {
3960 
3961 	if (error) {
3962 		bp->bio_error = error;
3963 		bp->bio_flags |= BIO_ERROR;
3964 	}
3965 	if (stat != NULL)
3966 		devstat_end_transaction_bio(stat, bp);
3967 	biodone(bp);
3968 }
3969 
3970 /*
3971  *	bufwait:
3972  *
3973  *	Wait for buffer I/O completion, returning error status.  The buffer
3974  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3975  *	error and cleared.
3976  */
3977 int
3978 bufwait(struct buf *bp)
3979 {
3980 	if (bp->b_iocmd == BIO_READ)
3981 		bwait(bp, PRIBIO, "biord");
3982 	else
3983 		bwait(bp, PRIBIO, "biowr");
3984 	if (bp->b_flags & B_EINTR) {
3985 		bp->b_flags &= ~B_EINTR;
3986 		return (EINTR);
3987 	}
3988 	if (bp->b_ioflags & BIO_ERROR) {
3989 		return (bp->b_error ? bp->b_error : EIO);
3990 	} else {
3991 		return (0);
3992 	}
3993 }
3994 
3995 /*
3996  *	bufdone:
3997  *
3998  *	Finish I/O on a buffer, optionally calling a completion function.
3999  *	This is usually called from an interrupt so process blocking is
4000  *	not allowed.
4001  *
4002  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4003  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4004  *	assuming B_INVAL is clear.
4005  *
4006  *	For the VMIO case, we set B_CACHE if the op was a read and no
4007  *	read error occurred, or if the op was a write.  B_CACHE is never
4008  *	set if the buffer is invalid or otherwise uncacheable.
4009  *
4010  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
4011  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4012  *	in the biodone routine.
4013  */
4014 void
4015 bufdone(struct buf *bp)
4016 {
4017 	struct bufobj *dropobj;
4018 	void    (*biodone)(struct buf *);
4019 
4020 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4021 	dropobj = NULL;
4022 
4023 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4024 	BUF_ASSERT_HELD(bp);
4025 
4026 	runningbufwakeup(bp);
4027 	if (bp->b_iocmd == BIO_WRITE)
4028 		dropobj = bp->b_bufobj;
4029 	/* call optional completion function if requested */
4030 	if (bp->b_iodone != NULL) {
4031 		biodone = bp->b_iodone;
4032 		bp->b_iodone = NULL;
4033 		(*biodone) (bp);
4034 		if (dropobj)
4035 			bufobj_wdrop(dropobj);
4036 		return;
4037 	}
4038 
4039 	bufdone_finish(bp);
4040 
4041 	if (dropobj)
4042 		bufobj_wdrop(dropobj);
4043 }
4044 
4045 void
4046 bufdone_finish(struct buf *bp)
4047 {
4048 	BUF_ASSERT_HELD(bp);
4049 
4050 	if (!LIST_EMPTY(&bp->b_dep))
4051 		buf_complete(bp);
4052 
4053 	if (bp->b_flags & B_VMIO) {
4054 		/*
4055 		 * Set B_CACHE if the op was a normal read and no error
4056 		 * occurred.  B_CACHE is set for writes in the b*write()
4057 		 * routines.
4058 		 */
4059 		if (bp->b_iocmd == BIO_READ &&
4060 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4061 		    !(bp->b_ioflags & BIO_ERROR))
4062 			bp->b_flags |= B_CACHE;
4063 		vfs_vmio_iodone(bp);
4064 	}
4065 
4066 	/*
4067 	 * For asynchronous completions, release the buffer now. The brelse
4068 	 * will do a wakeup there if necessary - so no need to do a wakeup
4069 	 * here in the async case. The sync case always needs to do a wakeup.
4070 	 */
4071 	if (bp->b_flags & B_ASYNC) {
4072 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4073 		    (bp->b_ioflags & BIO_ERROR))
4074 			brelse(bp);
4075 		else
4076 			bqrelse(bp);
4077 	} else
4078 		bdone(bp);
4079 }
4080 
4081 /*
4082  * This routine is called in lieu of iodone in the case of
4083  * incomplete I/O.  This keeps the busy status for pages
4084  * consistent.
4085  */
4086 void
4087 vfs_unbusy_pages(struct buf *bp)
4088 {
4089 	int i;
4090 	vm_object_t obj;
4091 	vm_page_t m;
4092 
4093 	runningbufwakeup(bp);
4094 	if (!(bp->b_flags & B_VMIO))
4095 		return;
4096 
4097 	obj = bp->b_bufobj->bo_object;
4098 	VM_OBJECT_WLOCK(obj);
4099 	for (i = 0; i < bp->b_npages; i++) {
4100 		m = bp->b_pages[i];
4101 		if (m == bogus_page) {
4102 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4103 			if (!m)
4104 				panic("vfs_unbusy_pages: page missing\n");
4105 			bp->b_pages[i] = m;
4106 			if (buf_mapped(bp)) {
4107 				BUF_CHECK_MAPPED(bp);
4108 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4109 				    bp->b_pages, bp->b_npages);
4110 			} else
4111 				BUF_CHECK_UNMAPPED(bp);
4112 		}
4113 		vm_page_sunbusy(m);
4114 	}
4115 	vm_object_pip_wakeupn(obj, bp->b_npages);
4116 	VM_OBJECT_WUNLOCK(obj);
4117 }
4118 
4119 /*
4120  * vfs_page_set_valid:
4121  *
4122  *	Set the valid bits in a page based on the supplied offset.   The
4123  *	range is restricted to the buffer's size.
4124  *
4125  *	This routine is typically called after a read completes.
4126  */
4127 static void
4128 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4129 {
4130 	vm_ooffset_t eoff;
4131 
4132 	/*
4133 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4134 	 * page boundary and eoff is not greater than the end of the buffer.
4135 	 * The end of the buffer, in this case, is our file EOF, not the
4136 	 * allocation size of the buffer.
4137 	 */
4138 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4139 	if (eoff > bp->b_offset + bp->b_bcount)
4140 		eoff = bp->b_offset + bp->b_bcount;
4141 
4142 	/*
4143 	 * Set valid range.  This is typically the entire buffer and thus the
4144 	 * entire page.
4145 	 */
4146 	if (eoff > off)
4147 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4148 }
4149 
4150 /*
4151  * vfs_page_set_validclean:
4152  *
4153  *	Set the valid bits and clear the dirty bits in a page based on the
4154  *	supplied offset.   The range is restricted to the buffer's size.
4155  */
4156 static void
4157 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4158 {
4159 	vm_ooffset_t soff, eoff;
4160 
4161 	/*
4162 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4163 	 * page boundary or cross the end of the buffer.  The end of the
4164 	 * buffer, in this case, is our file EOF, not the allocation size
4165 	 * of the buffer.
4166 	 */
4167 	soff = off;
4168 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4169 	if (eoff > bp->b_offset + bp->b_bcount)
4170 		eoff = bp->b_offset + bp->b_bcount;
4171 
4172 	/*
4173 	 * Set valid range.  This is typically the entire buffer and thus the
4174 	 * entire page.
4175 	 */
4176 	if (eoff > soff) {
4177 		vm_page_set_validclean(
4178 		    m,
4179 		   (vm_offset_t) (soff & PAGE_MASK),
4180 		   (vm_offset_t) (eoff - soff)
4181 		);
4182 	}
4183 }
4184 
4185 /*
4186  * Ensure that all buffer pages are not exclusive busied.  If any page is
4187  * exclusive busy, drain it.
4188  */
4189 void
4190 vfs_drain_busy_pages(struct buf *bp)
4191 {
4192 	vm_page_t m;
4193 	int i, last_busied;
4194 
4195 	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4196 	last_busied = 0;
4197 	for (i = 0; i < bp->b_npages; i++) {
4198 		m = bp->b_pages[i];
4199 		if (vm_page_xbusied(m)) {
4200 			for (; last_busied < i; last_busied++)
4201 				vm_page_sbusy(bp->b_pages[last_busied]);
4202 			while (vm_page_xbusied(m)) {
4203 				vm_page_lock(m);
4204 				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4205 				vm_page_busy_sleep(m, "vbpage");
4206 				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4207 			}
4208 		}
4209 	}
4210 	for (i = 0; i < last_busied; i++)
4211 		vm_page_sunbusy(bp->b_pages[i]);
4212 }
4213 
4214 /*
4215  * This routine is called before a device strategy routine.
4216  * It is used to tell the VM system that paging I/O is in
4217  * progress, and treat the pages associated with the buffer
4218  * almost as being exclusive busy.  Also the object paging_in_progress
4219  * flag is handled to make sure that the object doesn't become
4220  * inconsistent.
4221  *
4222  * Since I/O has not been initiated yet, certain buffer flags
4223  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4224  * and should be ignored.
4225  */
4226 void
4227 vfs_busy_pages(struct buf *bp, int clear_modify)
4228 {
4229 	int i, bogus;
4230 	vm_object_t obj;
4231 	vm_ooffset_t foff;
4232 	vm_page_t m;
4233 
4234 	if (!(bp->b_flags & B_VMIO))
4235 		return;
4236 
4237 	obj = bp->b_bufobj->bo_object;
4238 	foff = bp->b_offset;
4239 	KASSERT(bp->b_offset != NOOFFSET,
4240 	    ("vfs_busy_pages: no buffer offset"));
4241 	VM_OBJECT_WLOCK(obj);
4242 	vfs_drain_busy_pages(bp);
4243 	if (bp->b_bufsize != 0)
4244 		vfs_setdirty_locked_object(bp);
4245 	bogus = 0;
4246 	for (i = 0; i < bp->b_npages; i++) {
4247 		m = bp->b_pages[i];
4248 
4249 		if ((bp->b_flags & B_CLUSTER) == 0) {
4250 			vm_object_pip_add(obj, 1);
4251 			vm_page_sbusy(m);
4252 		}
4253 		/*
4254 		 * When readying a buffer for a read ( i.e
4255 		 * clear_modify == 0 ), it is important to do
4256 		 * bogus_page replacement for valid pages in
4257 		 * partially instantiated buffers.  Partially
4258 		 * instantiated buffers can, in turn, occur when
4259 		 * reconstituting a buffer from its VM backing store
4260 		 * base.  We only have to do this if B_CACHE is
4261 		 * clear ( which causes the I/O to occur in the
4262 		 * first place ).  The replacement prevents the read
4263 		 * I/O from overwriting potentially dirty VM-backed
4264 		 * pages.  XXX bogus page replacement is, uh, bogus.
4265 		 * It may not work properly with small-block devices.
4266 		 * We need to find a better way.
4267 		 */
4268 		if (clear_modify) {
4269 			pmap_remove_write(m);
4270 			vfs_page_set_validclean(bp, foff, m);
4271 		} else if (m->valid == VM_PAGE_BITS_ALL &&
4272 		    (bp->b_flags & B_CACHE) == 0) {
4273 			bp->b_pages[i] = bogus_page;
4274 			bogus++;
4275 		}
4276 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4277 	}
4278 	VM_OBJECT_WUNLOCK(obj);
4279 	if (bogus && buf_mapped(bp)) {
4280 		BUF_CHECK_MAPPED(bp);
4281 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4282 		    bp->b_pages, bp->b_npages);
4283 	}
4284 }
4285 
4286 /*
4287  *	vfs_bio_set_valid:
4288  *
4289  *	Set the range within the buffer to valid.  The range is
4290  *	relative to the beginning of the buffer, b_offset.  Note that
4291  *	b_offset itself may be offset from the beginning of the first
4292  *	page.
4293  */
4294 void
4295 vfs_bio_set_valid(struct buf *bp, int base, int size)
4296 {
4297 	int i, n;
4298 	vm_page_t m;
4299 
4300 	if (!(bp->b_flags & B_VMIO))
4301 		return;
4302 
4303 	/*
4304 	 * Fixup base to be relative to beginning of first page.
4305 	 * Set initial n to be the maximum number of bytes in the
4306 	 * first page that can be validated.
4307 	 */
4308 	base += (bp->b_offset & PAGE_MASK);
4309 	n = PAGE_SIZE - (base & PAGE_MASK);
4310 
4311 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4312 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4313 		m = bp->b_pages[i];
4314 		if (n > size)
4315 			n = size;
4316 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4317 		base += n;
4318 		size -= n;
4319 		n = PAGE_SIZE;
4320 	}
4321 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4322 }
4323 
4324 /*
4325  *	vfs_bio_clrbuf:
4326  *
4327  *	If the specified buffer is a non-VMIO buffer, clear the entire
4328  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4329  *	validate only the previously invalid portions of the buffer.
4330  *	This routine essentially fakes an I/O, so we need to clear
4331  *	BIO_ERROR and B_INVAL.
4332  *
4333  *	Note that while we only theoretically need to clear through b_bcount,
4334  *	we go ahead and clear through b_bufsize.
4335  */
4336 void
4337 vfs_bio_clrbuf(struct buf *bp)
4338 {
4339 	int i, j, mask, sa, ea, slide;
4340 
4341 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4342 		clrbuf(bp);
4343 		return;
4344 	}
4345 	bp->b_flags &= ~B_INVAL;
4346 	bp->b_ioflags &= ~BIO_ERROR;
4347 	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4348 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4349 	    (bp->b_offset & PAGE_MASK) == 0) {
4350 		if (bp->b_pages[0] == bogus_page)
4351 			goto unlock;
4352 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4353 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4354 		if ((bp->b_pages[0]->valid & mask) == mask)
4355 			goto unlock;
4356 		if ((bp->b_pages[0]->valid & mask) == 0) {
4357 			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4358 			bp->b_pages[0]->valid |= mask;
4359 			goto unlock;
4360 		}
4361 	}
4362 	sa = bp->b_offset & PAGE_MASK;
4363 	slide = 0;
4364 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4365 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4366 		ea = slide & PAGE_MASK;
4367 		if (ea == 0)
4368 			ea = PAGE_SIZE;
4369 		if (bp->b_pages[i] == bogus_page)
4370 			continue;
4371 		j = sa / DEV_BSIZE;
4372 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4373 		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4374 		if ((bp->b_pages[i]->valid & mask) == mask)
4375 			continue;
4376 		if ((bp->b_pages[i]->valid & mask) == 0)
4377 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4378 		else {
4379 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4380 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4381 					pmap_zero_page_area(bp->b_pages[i],
4382 					    sa, DEV_BSIZE);
4383 				}
4384 			}
4385 		}
4386 		bp->b_pages[i]->valid |= mask;
4387 	}
4388 unlock:
4389 	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4390 	bp->b_resid = 0;
4391 }
4392 
4393 void
4394 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4395 {
4396 	vm_page_t m;
4397 	int i, n;
4398 
4399 	if (buf_mapped(bp)) {
4400 		BUF_CHECK_MAPPED(bp);
4401 		bzero(bp->b_data + base, size);
4402 	} else {
4403 		BUF_CHECK_UNMAPPED(bp);
4404 		n = PAGE_SIZE - (base & PAGE_MASK);
4405 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4406 			m = bp->b_pages[i];
4407 			if (n > size)
4408 				n = size;
4409 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4410 			base += n;
4411 			size -= n;
4412 			n = PAGE_SIZE;
4413 		}
4414 	}
4415 }
4416 
4417 /*
4418  * vm_hold_load_pages and vm_hold_free_pages get pages into
4419  * a buffers address space.  The pages are anonymous and are
4420  * not associated with a file object.
4421  */
4422 static void
4423 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4424 {
4425 	vm_offset_t pg;
4426 	vm_page_t p;
4427 	int index;
4428 
4429 	BUF_CHECK_MAPPED(bp);
4430 
4431 	to = round_page(to);
4432 	from = round_page(from);
4433 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4434 
4435 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4436 tryagain:
4437 		/*
4438 		 * note: must allocate system pages since blocking here
4439 		 * could interfere with paging I/O, no matter which
4440 		 * process we are.
4441 		 */
4442 		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4443 		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4444 		if (p == NULL) {
4445 			VM_WAIT;
4446 			goto tryagain;
4447 		}
4448 		pmap_qenter(pg, &p, 1);
4449 		bp->b_pages[index] = p;
4450 	}
4451 	bp->b_npages = index;
4452 }
4453 
4454 /* Return pages associated with this buf to the vm system */
4455 static void
4456 vm_hold_free_pages(struct buf *bp, int newbsize)
4457 {
4458 	vm_offset_t from;
4459 	vm_page_t p;
4460 	int index, newnpages;
4461 
4462 	BUF_CHECK_MAPPED(bp);
4463 
4464 	from = round_page((vm_offset_t)bp->b_data + newbsize);
4465 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4466 	if (bp->b_npages > newnpages)
4467 		pmap_qremove(from, bp->b_npages - newnpages);
4468 	for (index = newnpages; index < bp->b_npages; index++) {
4469 		p = bp->b_pages[index];
4470 		bp->b_pages[index] = NULL;
4471 		if (vm_page_sbusied(p))
4472 			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4473 			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4474 		p->wire_count--;
4475 		vm_page_free(p);
4476 		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
4477 	}
4478 	bp->b_npages = newnpages;
4479 }
4480 
4481 /*
4482  * Map an IO request into kernel virtual address space.
4483  *
4484  * All requests are (re)mapped into kernel VA space.
4485  * Notice that we use b_bufsize for the size of the buffer
4486  * to be mapped.  b_bcount might be modified by the driver.
4487  *
4488  * Note that even if the caller determines that the address space should
4489  * be valid, a race or a smaller-file mapped into a larger space may
4490  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4491  * check the return value.
4492  *
4493  * This function only works with pager buffers.
4494  */
4495 int
4496 vmapbuf(struct buf *bp, int mapbuf)
4497 {
4498 	vm_prot_t prot;
4499 	int pidx;
4500 
4501 	if (bp->b_bufsize < 0)
4502 		return (-1);
4503 	prot = VM_PROT_READ;
4504 	if (bp->b_iocmd == BIO_READ)
4505 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4506 	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4507 	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4508 	    btoc(MAXPHYS))) < 0)
4509 		return (-1);
4510 	bp->b_npages = pidx;
4511 	bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4512 	if (mapbuf || !unmapped_buf_allowed) {
4513 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
4514 		bp->b_data = bp->b_kvabase + bp->b_offset;
4515 	} else
4516 		bp->b_data = unmapped_buf;
4517 	return(0);
4518 }
4519 
4520 /*
4521  * Free the io map PTEs associated with this IO operation.
4522  * We also invalidate the TLB entries and restore the original b_addr.
4523  *
4524  * This function only works with pager buffers.
4525  */
4526 void
4527 vunmapbuf(struct buf *bp)
4528 {
4529 	int npages;
4530 
4531 	npages = bp->b_npages;
4532 	if (buf_mapped(bp))
4533 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4534 	vm_page_unhold_pages(bp->b_pages, npages);
4535 
4536 	bp->b_data = unmapped_buf;
4537 }
4538 
4539 void
4540 bdone(struct buf *bp)
4541 {
4542 	struct mtx *mtxp;
4543 
4544 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4545 	mtx_lock(mtxp);
4546 	bp->b_flags |= B_DONE;
4547 	wakeup(bp);
4548 	mtx_unlock(mtxp);
4549 }
4550 
4551 void
4552 bwait(struct buf *bp, u_char pri, const char *wchan)
4553 {
4554 	struct mtx *mtxp;
4555 
4556 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4557 	mtx_lock(mtxp);
4558 	while ((bp->b_flags & B_DONE) == 0)
4559 		msleep(bp, mtxp, pri, wchan, 0);
4560 	mtx_unlock(mtxp);
4561 }
4562 
4563 int
4564 bufsync(struct bufobj *bo, int waitfor)
4565 {
4566 
4567 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4568 }
4569 
4570 void
4571 bufstrategy(struct bufobj *bo, struct buf *bp)
4572 {
4573 	int i = 0;
4574 	struct vnode *vp;
4575 
4576 	vp = bp->b_vp;
4577 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4578 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4579 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4580 	i = VOP_STRATEGY(vp, bp);
4581 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4582 }
4583 
4584 void
4585 bufobj_wrefl(struct bufobj *bo)
4586 {
4587 
4588 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4589 	ASSERT_BO_WLOCKED(bo);
4590 	bo->bo_numoutput++;
4591 }
4592 
4593 void
4594 bufobj_wref(struct bufobj *bo)
4595 {
4596 
4597 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4598 	BO_LOCK(bo);
4599 	bo->bo_numoutput++;
4600 	BO_UNLOCK(bo);
4601 }
4602 
4603 void
4604 bufobj_wdrop(struct bufobj *bo)
4605 {
4606 
4607 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4608 	BO_LOCK(bo);
4609 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4610 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4611 		bo->bo_flag &= ~BO_WWAIT;
4612 		wakeup(&bo->bo_numoutput);
4613 	}
4614 	BO_UNLOCK(bo);
4615 }
4616 
4617 int
4618 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4619 {
4620 	int error;
4621 
4622 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4623 	ASSERT_BO_WLOCKED(bo);
4624 	error = 0;
4625 	while (bo->bo_numoutput) {
4626 		bo->bo_flag |= BO_WWAIT;
4627 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4628 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4629 		if (error)
4630 			break;
4631 	}
4632 	return (error);
4633 }
4634 
4635 void
4636 bpin(struct buf *bp)
4637 {
4638 	struct mtx *mtxp;
4639 
4640 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4641 	mtx_lock(mtxp);
4642 	bp->b_pin_count++;
4643 	mtx_unlock(mtxp);
4644 }
4645 
4646 void
4647 bunpin(struct buf *bp)
4648 {
4649 	struct mtx *mtxp;
4650 
4651 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4652 	mtx_lock(mtxp);
4653 	if (--bp->b_pin_count == 0)
4654 		wakeup(bp);
4655 	mtx_unlock(mtxp);
4656 }
4657 
4658 void
4659 bunpin_wait(struct buf *bp)
4660 {
4661 	struct mtx *mtxp;
4662 
4663 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4664 	mtx_lock(mtxp);
4665 	while (bp->b_pin_count > 0)
4666 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4667 	mtx_unlock(mtxp);
4668 }
4669 
4670 /*
4671  * Set bio_data or bio_ma for struct bio from the struct buf.
4672  */
4673 void
4674 bdata2bio(struct buf *bp, struct bio *bip)
4675 {
4676 
4677 	if (!buf_mapped(bp)) {
4678 		KASSERT(unmapped_buf_allowed, ("unmapped"));
4679 		bip->bio_ma = bp->b_pages;
4680 		bip->bio_ma_n = bp->b_npages;
4681 		bip->bio_data = unmapped_buf;
4682 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4683 		bip->bio_flags |= BIO_UNMAPPED;
4684 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4685 		    PAGE_SIZE == bp->b_npages,
4686 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4687 		    (long long)bip->bio_length, bip->bio_ma_n));
4688 	} else {
4689 		bip->bio_data = bp->b_data;
4690 		bip->bio_ma = NULL;
4691 	}
4692 }
4693 
4694 #include "opt_ddb.h"
4695 #ifdef DDB
4696 #include <ddb/ddb.h>
4697 
4698 /* DDB command to show buffer data */
4699 DB_SHOW_COMMAND(buffer, db_show_buffer)
4700 {
4701 	/* get args */
4702 	struct buf *bp = (struct buf *)addr;
4703 
4704 	if (!have_addr) {
4705 		db_printf("usage: show buffer <addr>\n");
4706 		return;
4707 	}
4708 
4709 	db_printf("buf at %p\n", bp);
4710 	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4711 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4712 	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4713 	db_printf(
4714 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4715 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4716 	    "b_dep = %p\n",
4717 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4718 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4719 	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4720 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
4721 	    bp->b_kvabase, bp->b_kvasize);
4722 	if (bp->b_npages) {
4723 		int i;
4724 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4725 		for (i = 0; i < bp->b_npages; i++) {
4726 			vm_page_t m;
4727 			m = bp->b_pages[i];
4728 			if (m != NULL)
4729 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
4730 				    (u_long)m->pindex,
4731 				    (u_long)VM_PAGE_TO_PHYS(m));
4732 			else
4733 				db_printf("( ??? )");
4734 			if ((i + 1) < bp->b_npages)
4735 				db_printf(",");
4736 		}
4737 		db_printf("\n");
4738 	}
4739 	db_printf(" ");
4740 	BUF_LOCKPRINTINFO(bp);
4741 }
4742 
4743 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4744 {
4745 	struct buf *bp;
4746 	int i;
4747 
4748 	for (i = 0; i < nbuf; i++) {
4749 		bp = &buf[i];
4750 		if (BUF_ISLOCKED(bp)) {
4751 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4752 			db_printf("\n");
4753 		}
4754 	}
4755 }
4756 
4757 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4758 {
4759 	struct vnode *vp;
4760 	struct buf *bp;
4761 
4762 	if (!have_addr) {
4763 		db_printf("usage: show vnodebufs <addr>\n");
4764 		return;
4765 	}
4766 	vp = (struct vnode *)addr;
4767 	db_printf("Clean buffers:\n");
4768 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4769 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4770 		db_printf("\n");
4771 	}
4772 	db_printf("Dirty buffers:\n");
4773 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4774 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4775 		db_printf("\n");
4776 	}
4777 }
4778 
4779 DB_COMMAND(countfreebufs, db_coundfreebufs)
4780 {
4781 	struct buf *bp;
4782 	int i, used = 0, nfree = 0;
4783 
4784 	if (have_addr) {
4785 		db_printf("usage: countfreebufs\n");
4786 		return;
4787 	}
4788 
4789 	for (i = 0; i < nbuf; i++) {
4790 		bp = &buf[i];
4791 		if (bp->b_qindex == QUEUE_EMPTY)
4792 			nfree++;
4793 		else
4794 			used++;
4795 	}
4796 
4797 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4798 	    nfree + used);
4799 	db_printf("numfreebuffers is %d\n", numfreebuffers);
4800 }
4801 #endif /* DDB */
4802