1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1994,1997 John S. Dyson 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * Portions of this software were developed by Konstantin Belousov 8 * under sponsorship from the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * this file contains a new buffer I/O scheme implementing a coherent 34 * VM object and buffer cache scheme. Pains have been taken to make 35 * sure that the performance degradation associated with schemes such 36 * as this is not realized. 37 * 38 * Author: John S. Dyson 39 * Significant help during the development and debugging phases 40 * had been provided by David Greenman, also of the FreeBSD core team. 41 * 42 * see man buf(9) for more info. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/conf.h> 52 #include <sys/buf.h> 53 #include <sys/devicestat.h> 54 #include <sys/eventhandler.h> 55 #include <sys/fail.h> 56 #include <sys/limits.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mount.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/kthread.h> 63 #include <sys/proc.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/rwlock.h> 67 #include <sys/smp.h> 68 #include <sys/sysctl.h> 69 #include <sys/sysproto.h> 70 #include <sys/vmem.h> 71 #include <sys/vmmeter.h> 72 #include <sys/vnode.h> 73 #include <sys/watchdog.h> 74 #include <geom/geom.h> 75 #include <vm/vm.h> 76 #include <vm/vm_param.h> 77 #include <vm/vm_kern.h> 78 #include <vm/vm_pageout.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 #include <vm/vm_map.h> 83 #include <vm/swap_pager.h> 84 #include "opt_compat.h" 85 #include "opt_swap.h" 86 87 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 88 89 struct bio_ops bioops; /* I/O operation notification */ 90 91 struct buf_ops buf_ops_bio = { 92 .bop_name = "buf_ops_bio", 93 .bop_write = bufwrite, 94 .bop_strategy = bufstrategy, 95 .bop_sync = bufsync, 96 .bop_bdflush = bufbdflush, 97 }; 98 99 static struct buf *buf; /* buffer header pool */ 100 extern struct buf *swbuf; /* Swap buffer header pool. */ 101 caddr_t unmapped_buf; 102 103 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */ 104 struct proc *bufdaemonproc; 105 struct proc *bufspacedaemonproc; 106 107 static int inmem(struct vnode *vp, daddr_t blkno); 108 static void vm_hold_free_pages(struct buf *bp, int newbsize); 109 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 110 vm_offset_t to); 111 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 112 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 113 vm_page_t m); 114 static void vfs_clean_pages_dirty_buf(struct buf *bp); 115 static void vfs_setdirty_locked_object(struct buf *bp); 116 static void vfs_vmio_invalidate(struct buf *bp); 117 static void vfs_vmio_truncate(struct buf *bp, int npages); 118 static void vfs_vmio_extend(struct buf *bp, int npages, int size); 119 static int vfs_bio_clcheck(struct vnode *vp, int size, 120 daddr_t lblkno, daddr_t blkno); 121 static int buf_flush(struct vnode *vp, int); 122 static int buf_recycle(bool); 123 static int buf_scan(bool); 124 static int flushbufqueues(struct vnode *, int, int); 125 static void buf_daemon(void); 126 static void bremfreel(struct buf *bp); 127 static __inline void bd_wakeup(void); 128 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS); 129 static void bufkva_reclaim(vmem_t *, int); 130 static void bufkva_free(struct buf *); 131 static int buf_import(void *, void **, int, int); 132 static void buf_release(void *, void **, int); 133 134 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 135 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 136 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 137 #endif 138 139 int vmiodirenable = TRUE; 140 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 141 "Use the VM system for directory writes"); 142 long runningbufspace; 143 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 144 "Amount of presently outstanding async buffer io"); 145 static long bufspace; 146 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 147 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 148 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 149 &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers"); 150 #else 151 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 152 "Physical memory used for buffers"); 153 #endif 154 static long bufkvaspace; 155 SYSCTL_LONG(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 0, 156 "Kernel virtual memory used for buffers"); 157 static long maxbufspace; 158 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, &maxbufspace, 0, 159 "Maximum allowed value of bufspace (including metadata)"); 160 static long bufmallocspace; 161 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 162 "Amount of malloced memory for buffers"); 163 static long maxbufmallocspace; 164 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 165 0, "Maximum amount of malloced memory for buffers"); 166 static long lobufspace; 167 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RW, &lobufspace, 0, 168 "Minimum amount of buffers we want to have"); 169 long hibufspace; 170 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RW, &hibufspace, 0, 171 "Maximum allowed value of bufspace (excluding metadata)"); 172 long bufspacethresh; 173 SYSCTL_LONG(_vfs, OID_AUTO, bufspacethresh, CTLFLAG_RW, &bufspacethresh, 174 0, "Bufspace consumed before waking the daemon to free some"); 175 static int buffreekvacnt; 176 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 177 "Number of times we have freed the KVA space from some buffer"); 178 static int bufdefragcnt; 179 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 180 "Number of times we have had to repeat buffer allocation to defragment"); 181 static long lorunningspace; 182 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 183 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L", 184 "Minimum preferred space used for in-progress I/O"); 185 static long hirunningspace; 186 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE | 187 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L", 188 "Maximum amount of space to use for in-progress I/O"); 189 int dirtybufferflushes; 190 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 191 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 192 int bdwriteskip; 193 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 194 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 195 int altbufferflushes; 196 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 197 0, "Number of fsync flushes to limit dirty buffers"); 198 static int recursiveflushes; 199 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 200 0, "Number of flushes skipped due to being recursive"); 201 static int numdirtybuffers; 202 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 203 "Number of buffers that are dirty (has unwritten changes) at the moment"); 204 static int lodirtybuffers; 205 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 206 "How many buffers we want to have free before bufdaemon can sleep"); 207 static int hidirtybuffers; 208 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 209 "When the number of dirty buffers is considered severe"); 210 int dirtybufthresh; 211 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 212 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 213 static int numfreebuffers; 214 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 215 "Number of free buffers"); 216 static int lofreebuffers; 217 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 218 "Target number of free buffers"); 219 static int hifreebuffers; 220 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 221 "Threshold for clean buffer recycling"); 222 static int getnewbufcalls; 223 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 224 "Number of calls to getnewbuf"); 225 static int getnewbufrestarts; 226 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 227 "Number of times getnewbuf has had to restart a buffer acquisition"); 228 static int mappingrestarts; 229 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0, 230 "Number of times getblk has had to restart a buffer mapping for " 231 "unmapped buffer"); 232 static int numbufallocfails; 233 SYSCTL_INT(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, &numbufallocfails, 0, 234 "Number of times buffer allocations failed"); 235 static int flushbufqtarget = 100; 236 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 237 "Amount of work to do in flushbufqueues when helping bufdaemon"); 238 static long notbufdflushes; 239 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 0, 240 "Number of dirty buffer flushes done by the bufdaemon helpers"); 241 static long barrierwrites; 242 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0, 243 "Number of barrier writes"); 244 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 245 &unmapped_buf_allowed, 0, 246 "Permit the use of the unmapped i/o"); 247 248 /* 249 * This lock synchronizes access to bd_request. 250 */ 251 static struct mtx_padalign bdlock; 252 253 /* 254 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 255 * waitrunningbufspace(). 256 */ 257 static struct mtx_padalign rbreqlock; 258 259 /* 260 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 261 */ 262 static struct rwlock_padalign nblock; 263 264 /* 265 * Lock that protects bdirtywait. 266 */ 267 static struct mtx_padalign bdirtylock; 268 269 /* 270 * Wakeup point for bufdaemon, as well as indicator of whether it is already 271 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 272 * is idling. 273 */ 274 static int bd_request; 275 276 /* 277 * Request/wakeup point for the bufspace daemon. 278 */ 279 static int bufspace_request; 280 281 /* 282 * Request for the buf daemon to write more buffers than is indicated by 283 * lodirtybuf. This may be necessary to push out excess dependencies or 284 * defragment the address space where a simple count of the number of dirty 285 * buffers is insufficient to characterize the demand for flushing them. 286 */ 287 static int bd_speedupreq; 288 289 /* 290 * bogus page -- for I/O to/from partially complete buffers 291 * this is a temporary solution to the problem, but it is not 292 * really that bad. it would be better to split the buffer 293 * for input in the case of buffers partially already in memory, 294 * but the code is intricate enough already. 295 */ 296 vm_page_t bogus_page; 297 298 /* 299 * Synchronization (sleep/wakeup) variable for active buffer space requests. 300 * Set when wait starts, cleared prior to wakeup(). 301 * Used in runningbufwakeup() and waitrunningbufspace(). 302 */ 303 static int runningbufreq; 304 305 /* 306 * Synchronization (sleep/wakeup) variable for buffer requests. 307 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 308 * by and/or. 309 * Used in numdirtywakeup(), bufspace_wakeup(), bwillwrite(), 310 * getnewbuf(), and getblk(). 311 */ 312 static volatile int needsbuffer; 313 314 /* 315 * Synchronization for bwillwrite() waiters. 316 */ 317 static int bdirtywait; 318 319 /* 320 * Definitions for the buffer free lists. 321 */ 322 #define QUEUE_NONE 0 /* on no queue */ 323 #define QUEUE_EMPTY 1 /* empty buffer headers */ 324 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 325 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */ 326 #define QUEUE_SENTINEL 1024 /* not an queue index, but mark for sentinel */ 327 328 /* Maximum number of clean buffer queues. */ 329 #define CLEAN_QUEUES 16 330 331 /* Configured number of clean queues. */ 332 static int clean_queues; 333 334 /* Maximum number of buffer queues. */ 335 #define BUFFER_QUEUES (QUEUE_CLEAN + CLEAN_QUEUES) 336 337 /* Queues for free buffers with various properties */ 338 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 339 #ifdef INVARIANTS 340 static int bq_len[BUFFER_QUEUES]; 341 #endif 342 343 /* 344 * Lock for each bufqueue 345 */ 346 static struct mtx_padalign bqlocks[BUFFER_QUEUES]; 347 348 /* 349 * per-cpu empty buffer cache. 350 */ 351 uma_zone_t buf_zone; 352 353 /* 354 * Single global constant for BUF_WMESG, to avoid getting multiple references. 355 * buf_wmesg is referred from macros. 356 */ 357 const char *buf_wmesg = BUF_WMESG; 358 359 static int 360 sysctl_runningspace(SYSCTL_HANDLER_ARGS) 361 { 362 long value; 363 int error; 364 365 value = *(long *)arg1; 366 error = sysctl_handle_long(oidp, &value, 0, req); 367 if (error != 0 || req->newptr == NULL) 368 return (error); 369 mtx_lock(&rbreqlock); 370 if (arg1 == &hirunningspace) { 371 if (value < lorunningspace) 372 error = EINVAL; 373 else 374 hirunningspace = value; 375 } else { 376 KASSERT(arg1 == &lorunningspace, 377 ("%s: unknown arg1", __func__)); 378 if (value > hirunningspace) 379 error = EINVAL; 380 else 381 lorunningspace = value; 382 } 383 mtx_unlock(&rbreqlock); 384 return (error); 385 } 386 387 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 388 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 389 static int 390 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 391 { 392 long lvalue; 393 int ivalue; 394 395 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 396 return (sysctl_handle_long(oidp, arg1, arg2, req)); 397 lvalue = *(long *)arg1; 398 if (lvalue > INT_MAX) 399 /* On overflow, still write out a long to trigger ENOMEM. */ 400 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 401 ivalue = lvalue; 402 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 403 } 404 #endif 405 406 static int 407 bqcleanq(void) 408 { 409 static int nextq; 410 411 return ((atomic_fetchadd_int(&nextq, 1) % clean_queues) + QUEUE_CLEAN); 412 } 413 414 static int 415 bqisclean(int qindex) 416 { 417 418 return (qindex >= QUEUE_CLEAN && qindex < QUEUE_CLEAN + CLEAN_QUEUES); 419 } 420 421 /* 422 * bqlock: 423 * 424 * Return the appropriate queue lock based on the index. 425 */ 426 static inline struct mtx * 427 bqlock(int qindex) 428 { 429 430 return (struct mtx *)&bqlocks[qindex]; 431 } 432 433 /* 434 * bdirtywakeup: 435 * 436 * Wakeup any bwillwrite() waiters. 437 */ 438 static void 439 bdirtywakeup(void) 440 { 441 mtx_lock(&bdirtylock); 442 if (bdirtywait) { 443 bdirtywait = 0; 444 wakeup(&bdirtywait); 445 } 446 mtx_unlock(&bdirtylock); 447 } 448 449 /* 450 * bdirtysub: 451 * 452 * Decrement the numdirtybuffers count by one and wakeup any 453 * threads blocked in bwillwrite(). 454 */ 455 static void 456 bdirtysub(void) 457 { 458 459 if (atomic_fetchadd_int(&numdirtybuffers, -1) == 460 (lodirtybuffers + hidirtybuffers) / 2) 461 bdirtywakeup(); 462 } 463 464 /* 465 * bdirtyadd: 466 * 467 * Increment the numdirtybuffers count by one and wakeup the buf 468 * daemon if needed. 469 */ 470 static void 471 bdirtyadd(void) 472 { 473 474 /* 475 * Only do the wakeup once as we cross the boundary. The 476 * buf daemon will keep running until the condition clears. 477 */ 478 if (atomic_fetchadd_int(&numdirtybuffers, 1) == 479 (lodirtybuffers + hidirtybuffers) / 2) 480 bd_wakeup(); 481 } 482 483 /* 484 * bufspace_wakeup: 485 * 486 * Called when buffer space is potentially available for recovery. 487 * getnewbuf() will block on this flag when it is unable to free 488 * sufficient buffer space. Buffer space becomes recoverable when 489 * bp's get placed back in the queues. 490 */ 491 static void 492 bufspace_wakeup(void) 493 { 494 495 /* 496 * If someone is waiting for bufspace, wake them up. 497 * 498 * Since needsbuffer is set prior to doing an additional queue 499 * scan it is safe to check for the flag prior to acquiring the 500 * lock. The thread that is preparing to scan again before 501 * blocking would discover the buf we released. 502 */ 503 if (needsbuffer) { 504 rw_rlock(&nblock); 505 if (atomic_cmpset_int(&needsbuffer, 1, 0) == 1) 506 wakeup(__DEVOLATILE(void *, &needsbuffer)); 507 rw_runlock(&nblock); 508 } 509 } 510 511 /* 512 * bufspace_daemonwakeup: 513 * 514 * Wakeup the daemon responsible for freeing clean bufs. 515 */ 516 static void 517 bufspace_daemonwakeup(void) 518 { 519 rw_rlock(&nblock); 520 if (bufspace_request == 0) { 521 bufspace_request = 1; 522 wakeup(&bufspace_request); 523 } 524 rw_runlock(&nblock); 525 } 526 527 /* 528 * bufspace_adjust: 529 * 530 * Adjust the reported bufspace for a KVA managed buffer, possibly 531 * waking any waiters. 532 */ 533 static void 534 bufspace_adjust(struct buf *bp, int bufsize) 535 { 536 long space; 537 int diff; 538 539 KASSERT((bp->b_flags & B_MALLOC) == 0, 540 ("bufspace_adjust: malloc buf %p", bp)); 541 diff = bufsize - bp->b_bufsize; 542 if (diff < 0) { 543 atomic_subtract_long(&bufspace, -diff); 544 bufspace_wakeup(); 545 } else { 546 space = atomic_fetchadd_long(&bufspace, diff); 547 /* Wake up the daemon on the transition. */ 548 if (space < bufspacethresh && space + diff >= bufspacethresh) 549 bufspace_daemonwakeup(); 550 } 551 bp->b_bufsize = bufsize; 552 } 553 554 /* 555 * bufspace_reserve: 556 * 557 * Reserve bufspace before calling allocbuf(). metadata has a 558 * different space limit than data. 559 */ 560 static int 561 bufspace_reserve(int size, bool metadata) 562 { 563 long limit; 564 long space; 565 566 if (metadata) 567 limit = maxbufspace; 568 else 569 limit = hibufspace; 570 do { 571 space = bufspace; 572 if (space + size > limit) 573 return (ENOSPC); 574 } while (atomic_cmpset_long(&bufspace, space, space + size) == 0); 575 576 /* Wake up the daemon on the transition. */ 577 if (space < bufspacethresh && space + size >= bufspacethresh) 578 bufspace_daemonwakeup(); 579 580 return (0); 581 } 582 583 /* 584 * bufspace_release: 585 * 586 * Release reserved bufspace after bufspace_adjust() has consumed it. 587 */ 588 static void 589 bufspace_release(int size) 590 { 591 atomic_subtract_long(&bufspace, size); 592 bufspace_wakeup(); 593 } 594 595 /* 596 * bufspace_wait: 597 * 598 * Wait for bufspace, acting as the buf daemon if a locked vnode is 599 * supplied. needsbuffer must be set in a safe fashion prior to 600 * polling for space. The operation must be re-tried on return. 601 */ 602 static void 603 bufspace_wait(struct vnode *vp, int gbflags, int slpflag, int slptimeo) 604 { 605 struct thread *td; 606 int error, fl, norunbuf; 607 608 if ((gbflags & GB_NOWAIT_BD) != 0) 609 return; 610 611 td = curthread; 612 rw_wlock(&nblock); 613 while (needsbuffer != 0) { 614 if (vp != NULL && vp->v_type != VCHR && 615 (td->td_pflags & TDP_BUFNEED) == 0) { 616 rw_wunlock(&nblock); 617 /* 618 * getblk() is called with a vnode locked, and 619 * some majority of the dirty buffers may as 620 * well belong to the vnode. Flushing the 621 * buffers there would make a progress that 622 * cannot be achieved by the buf_daemon, that 623 * cannot lock the vnode. 624 */ 625 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | 626 (td->td_pflags & TDP_NORUNNINGBUF); 627 628 /* 629 * Play bufdaemon. The getnewbuf() function 630 * may be called while the thread owns lock 631 * for another dirty buffer for the same 632 * vnode, which makes it impossible to use 633 * VOP_FSYNC() there, due to the buffer lock 634 * recursion. 635 */ 636 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; 637 fl = buf_flush(vp, flushbufqtarget); 638 td->td_pflags &= norunbuf; 639 rw_wlock(&nblock); 640 if (fl != 0) 641 continue; 642 if (needsbuffer == 0) 643 break; 644 } 645 error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock, 646 (PRIBIO + 4) | slpflag, "newbuf", slptimeo); 647 if (error != 0) 648 break; 649 } 650 rw_wunlock(&nblock); 651 } 652 653 654 /* 655 * bufspace_daemon: 656 * 657 * buffer space management daemon. Tries to maintain some marginal 658 * amount of free buffer space so that requesting processes neither 659 * block nor work to reclaim buffers. 660 */ 661 static void 662 bufspace_daemon(void) 663 { 664 for (;;) { 665 kproc_suspend_check(bufspacedaemonproc); 666 667 /* 668 * Free buffers from the clean queue until we meet our 669 * targets. 670 * 671 * Theory of operation: The buffer cache is most efficient 672 * when some free buffer headers and space are always 673 * available to getnewbuf(). This daemon attempts to prevent 674 * the excessive blocking and synchronization associated 675 * with shortfall. It goes through three phases according 676 * demand: 677 * 678 * 1) The daemon wakes up voluntarily once per-second 679 * during idle periods when the counters are below 680 * the wakeup thresholds (bufspacethresh, lofreebuffers). 681 * 682 * 2) The daemon wakes up as we cross the thresholds 683 * ahead of any potential blocking. This may bounce 684 * slightly according to the rate of consumption and 685 * release. 686 * 687 * 3) The daemon and consumers are starved for working 688 * clean buffers. This is the 'bufspace' sleep below 689 * which will inefficiently trade bufs with bqrelse 690 * until we return to condition 2. 691 */ 692 while (bufspace > lobufspace || 693 numfreebuffers < hifreebuffers) { 694 if (buf_recycle(false) != 0) { 695 atomic_set_int(&needsbuffer, 1); 696 if (buf_recycle(false) != 0) { 697 rw_wlock(&nblock); 698 if (needsbuffer) 699 rw_sleep(__DEVOLATILE(void *, 700 &needsbuffer), &nblock, 701 PRIBIO|PDROP, "bufspace", 702 hz/10); 703 else 704 rw_wunlock(&nblock); 705 } 706 } 707 maybe_yield(); 708 } 709 710 /* 711 * Re-check our limits under the exclusive nblock. 712 */ 713 rw_wlock(&nblock); 714 if (bufspace < bufspacethresh && 715 numfreebuffers > lofreebuffers) { 716 bufspace_request = 0; 717 rw_sleep(&bufspace_request, &nblock, PRIBIO|PDROP, 718 "-", hz); 719 } else 720 rw_wunlock(&nblock); 721 } 722 } 723 724 static struct kproc_desc bufspace_kp = { 725 "bufspacedaemon", 726 bufspace_daemon, 727 &bufspacedaemonproc 728 }; 729 SYSINIT(bufspacedaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, 730 &bufspace_kp); 731 732 /* 733 * bufmallocadjust: 734 * 735 * Adjust the reported bufspace for a malloc managed buffer, possibly 736 * waking any waiters. 737 */ 738 static void 739 bufmallocadjust(struct buf *bp, int bufsize) 740 { 741 int diff; 742 743 KASSERT((bp->b_flags & B_MALLOC) != 0, 744 ("bufmallocadjust: non-malloc buf %p", bp)); 745 diff = bufsize - bp->b_bufsize; 746 if (diff < 0) 747 atomic_subtract_long(&bufmallocspace, -diff); 748 else 749 atomic_add_long(&bufmallocspace, diff); 750 bp->b_bufsize = bufsize; 751 } 752 753 /* 754 * runningwakeup: 755 * 756 * Wake up processes that are waiting on asynchronous writes to fall 757 * below lorunningspace. 758 */ 759 static void 760 runningwakeup(void) 761 { 762 763 mtx_lock(&rbreqlock); 764 if (runningbufreq) { 765 runningbufreq = 0; 766 wakeup(&runningbufreq); 767 } 768 mtx_unlock(&rbreqlock); 769 } 770 771 /* 772 * runningbufwakeup: 773 * 774 * Decrement the outstanding write count according. 775 */ 776 void 777 runningbufwakeup(struct buf *bp) 778 { 779 long space, bspace; 780 781 bspace = bp->b_runningbufspace; 782 if (bspace == 0) 783 return; 784 space = atomic_fetchadd_long(&runningbufspace, -bspace); 785 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 786 space, bspace)); 787 bp->b_runningbufspace = 0; 788 /* 789 * Only acquire the lock and wakeup on the transition from exceeding 790 * the threshold to falling below it. 791 */ 792 if (space < lorunningspace) 793 return; 794 if (space - bspace > lorunningspace) 795 return; 796 runningwakeup(); 797 } 798 799 /* 800 * waitrunningbufspace() 801 * 802 * runningbufspace is a measure of the amount of I/O currently 803 * running. This routine is used in async-write situations to 804 * prevent creating huge backups of pending writes to a device. 805 * Only asynchronous writes are governed by this function. 806 * 807 * This does NOT turn an async write into a sync write. It waits 808 * for earlier writes to complete and generally returns before the 809 * caller's write has reached the device. 810 */ 811 void 812 waitrunningbufspace(void) 813 { 814 815 mtx_lock(&rbreqlock); 816 while (runningbufspace > hirunningspace) { 817 runningbufreq = 1; 818 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 819 } 820 mtx_unlock(&rbreqlock); 821 } 822 823 824 /* 825 * vfs_buf_test_cache: 826 * 827 * Called when a buffer is extended. This function clears the B_CACHE 828 * bit if the newly extended portion of the buffer does not contain 829 * valid data. 830 */ 831 static __inline void 832 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, 833 vm_offset_t size, vm_page_t m) 834 { 835 836 VM_OBJECT_ASSERT_LOCKED(m->object); 837 if (bp->b_flags & B_CACHE) { 838 int base = (foff + off) & PAGE_MASK; 839 if (vm_page_is_valid(m, base, size) == 0) 840 bp->b_flags &= ~B_CACHE; 841 } 842 } 843 844 /* Wake up the buffer daemon if necessary */ 845 static __inline void 846 bd_wakeup(void) 847 { 848 849 mtx_lock(&bdlock); 850 if (bd_request == 0) { 851 bd_request = 1; 852 wakeup(&bd_request); 853 } 854 mtx_unlock(&bdlock); 855 } 856 857 /* 858 * bd_speedup - speedup the buffer cache flushing code 859 */ 860 void 861 bd_speedup(void) 862 { 863 int needwake; 864 865 mtx_lock(&bdlock); 866 needwake = 0; 867 if (bd_speedupreq == 0 || bd_request == 0) 868 needwake = 1; 869 bd_speedupreq = 1; 870 bd_request = 1; 871 if (needwake) 872 wakeup(&bd_request); 873 mtx_unlock(&bdlock); 874 } 875 876 #ifndef NSWBUF_MIN 877 #define NSWBUF_MIN 16 878 #endif 879 880 #ifdef __i386__ 881 #define TRANSIENT_DENOM 5 882 #else 883 #define TRANSIENT_DENOM 10 884 #endif 885 886 /* 887 * Calculating buffer cache scaling values and reserve space for buffer 888 * headers. This is called during low level kernel initialization and 889 * may be called more then once. We CANNOT write to the memory area 890 * being reserved at this time. 891 */ 892 caddr_t 893 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 894 { 895 int tuned_nbuf; 896 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 897 898 /* 899 * physmem_est is in pages. Convert it to kilobytes (assumes 900 * PAGE_SIZE is >= 1K) 901 */ 902 physmem_est = physmem_est * (PAGE_SIZE / 1024); 903 904 /* 905 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 906 * For the first 64MB of ram nominally allocate sufficient buffers to 907 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 908 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 909 * the buffer cache we limit the eventual kva reservation to 910 * maxbcache bytes. 911 * 912 * factor represents the 1/4 x ram conversion. 913 */ 914 if (nbuf == 0) { 915 int factor = 4 * BKVASIZE / 1024; 916 917 nbuf = 50; 918 if (physmem_est > 4096) 919 nbuf += min((physmem_est - 4096) / factor, 920 65536 / factor); 921 if (physmem_est > 65536) 922 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 923 32 * 1024 * 1024 / (factor * 5)); 924 925 if (maxbcache && nbuf > maxbcache / BKVASIZE) 926 nbuf = maxbcache / BKVASIZE; 927 tuned_nbuf = 1; 928 } else 929 tuned_nbuf = 0; 930 931 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 932 maxbuf = (LONG_MAX / 3) / BKVASIZE; 933 if (nbuf > maxbuf) { 934 if (!tuned_nbuf) 935 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 936 maxbuf); 937 nbuf = maxbuf; 938 } 939 940 /* 941 * Ideal allocation size for the transient bio submap is 10% 942 * of the maximal space buffer map. This roughly corresponds 943 * to the amount of the buffer mapped for typical UFS load. 944 * 945 * Clip the buffer map to reserve space for the transient 946 * BIOs, if its extent is bigger than 90% (80% on i386) of the 947 * maximum buffer map extent on the platform. 948 * 949 * The fall-back to the maxbuf in case of maxbcache unset, 950 * allows to not trim the buffer KVA for the architectures 951 * with ample KVA space. 952 */ 953 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 954 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 955 buf_sz = (long)nbuf * BKVASIZE; 956 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 957 (TRANSIENT_DENOM - 1)) { 958 /* 959 * There is more KVA than memory. Do not 960 * adjust buffer map size, and assign the rest 961 * of maxbuf to transient map. 962 */ 963 biotmap_sz = maxbuf_sz - buf_sz; 964 } else { 965 /* 966 * Buffer map spans all KVA we could afford on 967 * this platform. Give 10% (20% on i386) of 968 * the buffer map to the transient bio map. 969 */ 970 biotmap_sz = buf_sz / TRANSIENT_DENOM; 971 buf_sz -= biotmap_sz; 972 } 973 if (biotmap_sz / INT_MAX > MAXPHYS) 974 bio_transient_maxcnt = INT_MAX; 975 else 976 bio_transient_maxcnt = biotmap_sz / MAXPHYS; 977 /* 978 * Artificially limit to 1024 simultaneous in-flight I/Os 979 * using the transient mapping. 980 */ 981 if (bio_transient_maxcnt > 1024) 982 bio_transient_maxcnt = 1024; 983 if (tuned_nbuf) 984 nbuf = buf_sz / BKVASIZE; 985 } 986 987 /* 988 * swbufs are used as temporary holders for I/O, such as paging I/O. 989 * We have no less then 16 and no more then 256. 990 */ 991 nswbuf = min(nbuf / 4, 256); 992 TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf); 993 if (nswbuf < NSWBUF_MIN) 994 nswbuf = NSWBUF_MIN; 995 996 /* 997 * Reserve space for the buffer cache buffers 998 */ 999 swbuf = (void *)v; 1000 v = (caddr_t)(swbuf + nswbuf); 1001 buf = (void *)v; 1002 v = (caddr_t)(buf + nbuf); 1003 1004 return(v); 1005 } 1006 1007 /* Initialize the buffer subsystem. Called before use of any buffers. */ 1008 void 1009 bufinit(void) 1010 { 1011 struct buf *bp; 1012 int i; 1013 1014 CTASSERT(MAXBCACHEBUF >= MAXBSIZE); 1015 mtx_init(&bqlocks[QUEUE_DIRTY], "bufq dirty lock", NULL, MTX_DEF); 1016 mtx_init(&bqlocks[QUEUE_EMPTY], "bufq empty lock", NULL, MTX_DEF); 1017 for (i = QUEUE_CLEAN; i < QUEUE_CLEAN + CLEAN_QUEUES; i++) 1018 mtx_init(&bqlocks[i], "bufq clean lock", NULL, MTX_DEF); 1019 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 1020 rw_init(&nblock, "needsbuffer lock"); 1021 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 1022 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 1023 1024 /* next, make a null set of free lists */ 1025 for (i = 0; i < BUFFER_QUEUES; i++) 1026 TAILQ_INIT(&bufqueues[i]); 1027 1028 unmapped_buf = (caddr_t)kva_alloc(MAXPHYS); 1029 1030 /* finally, initialize each buffer header and stick on empty q */ 1031 for (i = 0; i < nbuf; i++) { 1032 bp = &buf[i]; 1033 bzero(bp, sizeof *bp); 1034 bp->b_flags = B_INVAL; 1035 bp->b_rcred = NOCRED; 1036 bp->b_wcred = NOCRED; 1037 bp->b_qindex = QUEUE_EMPTY; 1038 bp->b_xflags = 0; 1039 bp->b_data = bp->b_kvabase = unmapped_buf; 1040 LIST_INIT(&bp->b_dep); 1041 BUF_LOCKINIT(bp); 1042 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 1043 #ifdef INVARIANTS 1044 bq_len[QUEUE_EMPTY]++; 1045 #endif 1046 } 1047 1048 /* 1049 * maxbufspace is the absolute maximum amount of buffer space we are 1050 * allowed to reserve in KVM and in real terms. The absolute maximum 1051 * is nominally used by metadata. hibufspace is the nominal maximum 1052 * used by most other requests. The differential is required to 1053 * ensure that metadata deadlocks don't occur. 1054 * 1055 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 1056 * this may result in KVM fragmentation which is not handled optimally 1057 * by the system. XXX This is less true with vmem. We could use 1058 * PAGE_SIZE. 1059 */ 1060 maxbufspace = (long)nbuf * BKVASIZE; 1061 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBCACHEBUF * 10); 1062 lobufspace = (hibufspace / 20) * 19; /* 95% */ 1063 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2; 1064 1065 /* 1066 * Note: The 16 MiB upper limit for hirunningspace was chosen 1067 * arbitrarily and may need further tuning. It corresponds to 1068 * 128 outstanding write IO requests (if IO size is 128 KiB), 1069 * which fits with many RAID controllers' tagged queuing limits. 1070 * The lower 1 MiB limit is the historical upper limit for 1071 * hirunningspace. 1072 */ 1073 hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBCACHEBUF), 1074 16 * 1024 * 1024), 1024 * 1024); 1075 lorunningspace = roundup((hirunningspace * 2) / 3, MAXBCACHEBUF); 1076 1077 /* 1078 * Limit the amount of malloc memory since it is wired permanently into 1079 * the kernel space. Even though this is accounted for in the buffer 1080 * allocation, we don't want the malloced region to grow uncontrolled. 1081 * The malloc scheme improves memory utilization significantly on 1082 * average (small) directories. 1083 */ 1084 maxbufmallocspace = hibufspace / 20; 1085 1086 /* 1087 * Reduce the chance of a deadlock occurring by limiting the number 1088 * of delayed-write dirty buffers we allow to stack up. 1089 */ 1090 hidirtybuffers = nbuf / 4 + 20; 1091 dirtybufthresh = hidirtybuffers * 9 / 10; 1092 numdirtybuffers = 0; 1093 /* 1094 * To support extreme low-memory systems, make sure hidirtybuffers 1095 * cannot eat up all available buffer space. This occurs when our 1096 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our 1097 * buffer space assuming BKVASIZE'd buffers. 1098 */ 1099 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 1100 hidirtybuffers >>= 1; 1101 } 1102 lodirtybuffers = hidirtybuffers / 2; 1103 1104 /* 1105 * lofreebuffers should be sufficient to avoid stalling waiting on 1106 * buf headers under heavy utilization. The bufs in per-cpu caches 1107 * are counted as free but will be unavailable to threads executing 1108 * on other cpus. 1109 * 1110 * hifreebuffers is the free target for the bufspace daemon. This 1111 * should be set appropriately to limit work per-iteration. 1112 */ 1113 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus); 1114 hifreebuffers = (3 * lofreebuffers) / 2; 1115 numfreebuffers = nbuf; 1116 1117 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 1118 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 1119 1120 /* Setup the kva and free list allocators. */ 1121 vmem_set_reclaim(buffer_arena, bufkva_reclaim); 1122 buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf), 1123 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0); 1124 1125 /* 1126 * Size the clean queue according to the amount of buffer space. 1127 * One queue per-256mb up to the max. More queues gives better 1128 * concurrency but less accurate LRU. 1129 */ 1130 clean_queues = MIN(howmany(maxbufspace, 256*1024*1024), CLEAN_QUEUES); 1131 1132 } 1133 1134 #ifdef INVARIANTS 1135 static inline void 1136 vfs_buf_check_mapped(struct buf *bp) 1137 { 1138 1139 KASSERT(bp->b_kvabase != unmapped_buf, 1140 ("mapped buf: b_kvabase was not updated %p", bp)); 1141 KASSERT(bp->b_data != unmapped_buf, 1142 ("mapped buf: b_data was not updated %p", bp)); 1143 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf + 1144 MAXPHYS, ("b_data + b_offset unmapped %p", bp)); 1145 } 1146 1147 static inline void 1148 vfs_buf_check_unmapped(struct buf *bp) 1149 { 1150 1151 KASSERT(bp->b_data == unmapped_buf, 1152 ("unmapped buf: corrupted b_data %p", bp)); 1153 } 1154 1155 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 1156 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 1157 #else 1158 #define BUF_CHECK_MAPPED(bp) do {} while (0) 1159 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 1160 #endif 1161 1162 static int 1163 isbufbusy(struct buf *bp) 1164 { 1165 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) || 1166 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI)) 1167 return (1); 1168 return (0); 1169 } 1170 1171 /* 1172 * Shutdown the system cleanly to prepare for reboot, halt, or power off. 1173 */ 1174 void 1175 bufshutdown(int show_busybufs) 1176 { 1177 static int first_buf_printf = 1; 1178 struct buf *bp; 1179 int iter, nbusy, pbusy; 1180 #ifndef PREEMPTION 1181 int subiter; 1182 #endif 1183 1184 /* 1185 * Sync filesystems for shutdown 1186 */ 1187 wdog_kern_pat(WD_LASTVAL); 1188 sys_sync(curthread, NULL); 1189 1190 /* 1191 * With soft updates, some buffers that are 1192 * written will be remarked as dirty until other 1193 * buffers are written. 1194 */ 1195 for (iter = pbusy = 0; iter < 20; iter++) { 1196 nbusy = 0; 1197 for (bp = &buf[nbuf]; --bp >= buf; ) 1198 if (isbufbusy(bp)) 1199 nbusy++; 1200 if (nbusy == 0) { 1201 if (first_buf_printf) 1202 printf("All buffers synced."); 1203 break; 1204 } 1205 if (first_buf_printf) { 1206 printf("Syncing disks, buffers remaining... "); 1207 first_buf_printf = 0; 1208 } 1209 printf("%d ", nbusy); 1210 if (nbusy < pbusy) 1211 iter = 0; 1212 pbusy = nbusy; 1213 1214 wdog_kern_pat(WD_LASTVAL); 1215 sys_sync(curthread, NULL); 1216 1217 #ifdef PREEMPTION 1218 /* 1219 * Drop Giant and spin for a while to allow 1220 * interrupt threads to run. 1221 */ 1222 DROP_GIANT(); 1223 DELAY(50000 * iter); 1224 PICKUP_GIANT(); 1225 #else 1226 /* 1227 * Drop Giant and context switch several times to 1228 * allow interrupt threads to run. 1229 */ 1230 DROP_GIANT(); 1231 for (subiter = 0; subiter < 50 * iter; subiter++) { 1232 thread_lock(curthread); 1233 mi_switch(SW_VOL, NULL); 1234 thread_unlock(curthread); 1235 DELAY(1000); 1236 } 1237 PICKUP_GIANT(); 1238 #endif 1239 } 1240 printf("\n"); 1241 /* 1242 * Count only busy local buffers to prevent forcing 1243 * a fsck if we're just a client of a wedged NFS server 1244 */ 1245 nbusy = 0; 1246 for (bp = &buf[nbuf]; --bp >= buf; ) { 1247 if (isbufbusy(bp)) { 1248 #if 0 1249 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */ 1250 if (bp->b_dev == NULL) { 1251 TAILQ_REMOVE(&mountlist, 1252 bp->b_vp->v_mount, mnt_list); 1253 continue; 1254 } 1255 #endif 1256 nbusy++; 1257 if (show_busybufs > 0) { 1258 printf( 1259 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:", 1260 nbusy, bp, bp->b_vp, bp->b_flags, 1261 (intmax_t)bp->b_blkno, 1262 (intmax_t)bp->b_lblkno); 1263 BUF_LOCKPRINTINFO(bp); 1264 if (show_busybufs > 1) 1265 vn_printf(bp->b_vp, 1266 "vnode content: "); 1267 } 1268 } 1269 } 1270 if (nbusy) { 1271 /* 1272 * Failed to sync all blocks. Indicate this and don't 1273 * unmount filesystems (thus forcing an fsck on reboot). 1274 */ 1275 printf("Giving up on %d buffers\n", nbusy); 1276 DELAY(5000000); /* 5 seconds */ 1277 } else { 1278 if (!first_buf_printf) 1279 printf("Final sync complete\n"); 1280 /* 1281 * Unmount filesystems 1282 */ 1283 if (panicstr == NULL) 1284 vfs_unmountall(); 1285 } 1286 swapoff_all(); 1287 DELAY(100000); /* wait for console output to finish */ 1288 } 1289 1290 static void 1291 bpmap_qenter(struct buf *bp) 1292 { 1293 1294 BUF_CHECK_MAPPED(bp); 1295 1296 /* 1297 * bp->b_data is relative to bp->b_offset, but 1298 * bp->b_offset may be offset into the first page. 1299 */ 1300 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 1301 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1302 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 1303 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 1304 } 1305 1306 /* 1307 * binsfree: 1308 * 1309 * Insert the buffer into the appropriate free list. 1310 */ 1311 static void 1312 binsfree(struct buf *bp, int qindex) 1313 { 1314 struct mtx *olock, *nlock; 1315 1316 if (qindex != QUEUE_EMPTY) { 1317 BUF_ASSERT_XLOCKED(bp); 1318 } 1319 1320 /* 1321 * Stick to the same clean queue for the lifetime of the buf to 1322 * limit locking below. Otherwise pick ont sequentially. 1323 */ 1324 if (qindex == QUEUE_CLEAN) { 1325 if (bqisclean(bp->b_qindex)) 1326 qindex = bp->b_qindex; 1327 else 1328 qindex = bqcleanq(); 1329 } 1330 1331 /* 1332 * Handle delayed bremfree() processing. 1333 */ 1334 nlock = bqlock(qindex); 1335 if (bp->b_flags & B_REMFREE) { 1336 olock = bqlock(bp->b_qindex); 1337 mtx_lock(olock); 1338 bremfreel(bp); 1339 if (olock != nlock) { 1340 mtx_unlock(olock); 1341 mtx_lock(nlock); 1342 } 1343 } else 1344 mtx_lock(nlock); 1345 1346 if (bp->b_qindex != QUEUE_NONE) 1347 panic("binsfree: free buffer onto another queue???"); 1348 1349 bp->b_qindex = qindex; 1350 if (bp->b_flags & B_AGE) 1351 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1352 else 1353 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1354 #ifdef INVARIANTS 1355 bq_len[bp->b_qindex]++; 1356 #endif 1357 mtx_unlock(nlock); 1358 } 1359 1360 /* 1361 * buf_free: 1362 * 1363 * Free a buffer to the buf zone once it no longer has valid contents. 1364 */ 1365 static void 1366 buf_free(struct buf *bp) 1367 { 1368 1369 if (bp->b_flags & B_REMFREE) 1370 bremfreef(bp); 1371 if (bp->b_vflags & BV_BKGRDINPROG) 1372 panic("losing buffer 1"); 1373 if (bp->b_rcred != NOCRED) { 1374 crfree(bp->b_rcred); 1375 bp->b_rcred = NOCRED; 1376 } 1377 if (bp->b_wcred != NOCRED) { 1378 crfree(bp->b_wcred); 1379 bp->b_wcred = NOCRED; 1380 } 1381 if (!LIST_EMPTY(&bp->b_dep)) 1382 buf_deallocate(bp); 1383 bufkva_free(bp); 1384 BUF_UNLOCK(bp); 1385 uma_zfree(buf_zone, bp); 1386 atomic_add_int(&numfreebuffers, 1); 1387 bufspace_wakeup(); 1388 } 1389 1390 /* 1391 * buf_import: 1392 * 1393 * Import bufs into the uma cache from the buf list. The system still 1394 * expects a static array of bufs and much of the synchronization 1395 * around bufs assumes type stable storage. As a result, UMA is used 1396 * only as a per-cpu cache of bufs still maintained on a global list. 1397 */ 1398 static int 1399 buf_import(void *arg, void **store, int cnt, int flags) 1400 { 1401 struct buf *bp; 1402 int i; 1403 1404 mtx_lock(&bqlocks[QUEUE_EMPTY]); 1405 for (i = 0; i < cnt; i++) { 1406 bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1407 if (bp == NULL) 1408 break; 1409 bremfreel(bp); 1410 store[i] = bp; 1411 } 1412 mtx_unlock(&bqlocks[QUEUE_EMPTY]); 1413 1414 return (i); 1415 } 1416 1417 /* 1418 * buf_release: 1419 * 1420 * Release bufs from the uma cache back to the buffer queues. 1421 */ 1422 static void 1423 buf_release(void *arg, void **store, int cnt) 1424 { 1425 int i; 1426 1427 for (i = 0; i < cnt; i++) 1428 binsfree(store[i], QUEUE_EMPTY); 1429 } 1430 1431 /* 1432 * buf_alloc: 1433 * 1434 * Allocate an empty buffer header. 1435 */ 1436 static struct buf * 1437 buf_alloc(void) 1438 { 1439 struct buf *bp; 1440 1441 bp = uma_zalloc(buf_zone, M_NOWAIT); 1442 if (bp == NULL) { 1443 bufspace_daemonwakeup(); 1444 atomic_add_int(&numbufallocfails, 1); 1445 return (NULL); 1446 } 1447 1448 /* 1449 * Wake-up the bufspace daemon on transition. 1450 */ 1451 if (atomic_fetchadd_int(&numfreebuffers, -1) == lofreebuffers) 1452 bufspace_daemonwakeup(); 1453 1454 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1455 panic("getnewbuf_empty: Locked buf %p on free queue.", bp); 1456 1457 KASSERT(bp->b_vp == NULL, 1458 ("bp: %p still has vnode %p.", bp, bp->b_vp)); 1459 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0, 1460 ("invalid buffer %p flags %#x", bp, bp->b_flags)); 1461 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 1462 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 1463 KASSERT(bp->b_npages == 0, 1464 ("bp: %p still has %d vm pages\n", bp, bp->b_npages)); 1465 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp)); 1466 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp)); 1467 1468 bp->b_flags = 0; 1469 bp->b_ioflags = 0; 1470 bp->b_xflags = 0; 1471 bp->b_vflags = 0; 1472 bp->b_vp = NULL; 1473 bp->b_blkno = bp->b_lblkno = 0; 1474 bp->b_offset = NOOFFSET; 1475 bp->b_iodone = 0; 1476 bp->b_error = 0; 1477 bp->b_resid = 0; 1478 bp->b_bcount = 0; 1479 bp->b_npages = 0; 1480 bp->b_dirtyoff = bp->b_dirtyend = 0; 1481 bp->b_bufobj = NULL; 1482 bp->b_pin_count = 0; 1483 bp->b_data = bp->b_kvabase = unmapped_buf; 1484 bp->b_fsprivate1 = NULL; 1485 bp->b_fsprivate2 = NULL; 1486 bp->b_fsprivate3 = NULL; 1487 LIST_INIT(&bp->b_dep); 1488 1489 return (bp); 1490 } 1491 1492 /* 1493 * buf_qrecycle: 1494 * 1495 * Free a buffer from the given bufqueue. kva controls whether the 1496 * freed buf must own some kva resources. This is used for 1497 * defragmenting. 1498 */ 1499 static int 1500 buf_qrecycle(int qindex, bool kva) 1501 { 1502 struct buf *bp, *nbp; 1503 1504 if (kva) 1505 atomic_add_int(&bufdefragcnt, 1); 1506 nbp = NULL; 1507 mtx_lock(&bqlocks[qindex]); 1508 nbp = TAILQ_FIRST(&bufqueues[qindex]); 1509 1510 /* 1511 * Run scan, possibly freeing data and/or kva mappings on the fly 1512 * depending. 1513 */ 1514 while ((bp = nbp) != NULL) { 1515 /* 1516 * Calculate next bp (we can only use it if we do not 1517 * release the bqlock). 1518 */ 1519 nbp = TAILQ_NEXT(bp, b_freelist); 1520 1521 /* 1522 * If we are defragging then we need a buffer with 1523 * some kva to reclaim. 1524 */ 1525 if (kva && bp->b_kvasize == 0) 1526 continue; 1527 1528 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1529 continue; 1530 1531 /* 1532 * Skip buffers with background writes in progress. 1533 */ 1534 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 1535 BUF_UNLOCK(bp); 1536 continue; 1537 } 1538 1539 KASSERT(bp->b_qindex == qindex, 1540 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 1541 /* 1542 * NOTE: nbp is now entirely invalid. We can only restart 1543 * the scan from this point on. 1544 */ 1545 bremfreel(bp); 1546 mtx_unlock(&bqlocks[qindex]); 1547 1548 /* 1549 * Requeue the background write buffer with error and 1550 * restart the scan. 1551 */ 1552 if ((bp->b_vflags & BV_BKGRDERR) != 0) { 1553 bqrelse(bp); 1554 mtx_lock(&bqlocks[qindex]); 1555 nbp = TAILQ_FIRST(&bufqueues[qindex]); 1556 continue; 1557 } 1558 bp->b_flags |= B_INVAL; 1559 brelse(bp); 1560 return (0); 1561 } 1562 mtx_unlock(&bqlocks[qindex]); 1563 1564 return (ENOBUFS); 1565 } 1566 1567 /* 1568 * buf_recycle: 1569 * 1570 * Iterate through all clean queues until we find a buf to recycle or 1571 * exhaust the search. 1572 */ 1573 static int 1574 buf_recycle(bool kva) 1575 { 1576 int qindex, first_qindex; 1577 1578 qindex = first_qindex = bqcleanq(); 1579 do { 1580 if (buf_qrecycle(qindex, kva) == 0) 1581 return (0); 1582 if (++qindex == QUEUE_CLEAN + clean_queues) 1583 qindex = QUEUE_CLEAN; 1584 } while (qindex != first_qindex); 1585 1586 return (ENOBUFS); 1587 } 1588 1589 /* 1590 * buf_scan: 1591 * 1592 * Scan the clean queues looking for a buffer to recycle. needsbuffer 1593 * is set on failure so that the caller may optionally bufspace_wait() 1594 * in a race-free fashion. 1595 */ 1596 static int 1597 buf_scan(bool defrag) 1598 { 1599 int error; 1600 1601 /* 1602 * To avoid heavy synchronization and wakeup races we set 1603 * needsbuffer and re-poll before failing. This ensures that 1604 * no frees can be missed between an unsuccessful poll and 1605 * going to sleep in a synchronized fashion. 1606 */ 1607 if ((error = buf_recycle(defrag)) != 0) { 1608 atomic_set_int(&needsbuffer, 1); 1609 bufspace_daemonwakeup(); 1610 error = buf_recycle(defrag); 1611 } 1612 if (error == 0) 1613 atomic_add_int(&getnewbufrestarts, 1); 1614 return (error); 1615 } 1616 1617 /* 1618 * bremfree: 1619 * 1620 * Mark the buffer for removal from the appropriate free list. 1621 * 1622 */ 1623 void 1624 bremfree(struct buf *bp) 1625 { 1626 1627 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1628 KASSERT((bp->b_flags & B_REMFREE) == 0, 1629 ("bremfree: buffer %p already marked for delayed removal.", bp)); 1630 KASSERT(bp->b_qindex != QUEUE_NONE, 1631 ("bremfree: buffer %p not on a queue.", bp)); 1632 BUF_ASSERT_XLOCKED(bp); 1633 1634 bp->b_flags |= B_REMFREE; 1635 } 1636 1637 /* 1638 * bremfreef: 1639 * 1640 * Force an immediate removal from a free list. Used only in nfs when 1641 * it abuses the b_freelist pointer. 1642 */ 1643 void 1644 bremfreef(struct buf *bp) 1645 { 1646 struct mtx *qlock; 1647 1648 qlock = bqlock(bp->b_qindex); 1649 mtx_lock(qlock); 1650 bremfreel(bp); 1651 mtx_unlock(qlock); 1652 } 1653 1654 /* 1655 * bremfreel: 1656 * 1657 * Removes a buffer from the free list, must be called with the 1658 * correct qlock held. 1659 */ 1660 static void 1661 bremfreel(struct buf *bp) 1662 { 1663 1664 CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X", 1665 bp, bp->b_vp, bp->b_flags); 1666 KASSERT(bp->b_qindex != QUEUE_NONE, 1667 ("bremfreel: buffer %p not on a queue.", bp)); 1668 if (bp->b_qindex != QUEUE_EMPTY) { 1669 BUF_ASSERT_XLOCKED(bp); 1670 } 1671 mtx_assert(bqlock(bp->b_qindex), MA_OWNED); 1672 1673 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 1674 #ifdef INVARIANTS 1675 KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow", 1676 bp->b_qindex)); 1677 bq_len[bp->b_qindex]--; 1678 #endif 1679 bp->b_qindex = QUEUE_NONE; 1680 bp->b_flags &= ~B_REMFREE; 1681 } 1682 1683 /* 1684 * bufkva_free: 1685 * 1686 * Free the kva allocation for a buffer. 1687 * 1688 */ 1689 static void 1690 bufkva_free(struct buf *bp) 1691 { 1692 1693 #ifdef INVARIANTS 1694 if (bp->b_kvasize == 0) { 1695 KASSERT(bp->b_kvabase == unmapped_buf && 1696 bp->b_data == unmapped_buf, 1697 ("Leaked KVA space on %p", bp)); 1698 } else if (buf_mapped(bp)) 1699 BUF_CHECK_MAPPED(bp); 1700 else 1701 BUF_CHECK_UNMAPPED(bp); 1702 #endif 1703 if (bp->b_kvasize == 0) 1704 return; 1705 1706 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize); 1707 atomic_subtract_long(&bufkvaspace, bp->b_kvasize); 1708 atomic_add_int(&buffreekvacnt, 1); 1709 bp->b_data = bp->b_kvabase = unmapped_buf; 1710 bp->b_kvasize = 0; 1711 } 1712 1713 /* 1714 * bufkva_alloc: 1715 * 1716 * Allocate the buffer KVA and set b_kvasize and b_kvabase. 1717 */ 1718 static int 1719 bufkva_alloc(struct buf *bp, int maxsize, int gbflags) 1720 { 1721 vm_offset_t addr; 1722 int error; 1723 1724 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0, 1725 ("Invalid gbflags 0x%x in %s", gbflags, __func__)); 1726 1727 bufkva_free(bp); 1728 1729 addr = 0; 1730 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr); 1731 if (error != 0) { 1732 /* 1733 * Buffer map is too fragmented. Request the caller 1734 * to defragment the map. 1735 */ 1736 return (error); 1737 } 1738 bp->b_kvabase = (caddr_t)addr; 1739 bp->b_kvasize = maxsize; 1740 atomic_add_long(&bufkvaspace, bp->b_kvasize); 1741 if ((gbflags & GB_UNMAPPED) != 0) { 1742 bp->b_data = unmapped_buf; 1743 BUF_CHECK_UNMAPPED(bp); 1744 } else { 1745 bp->b_data = bp->b_kvabase; 1746 BUF_CHECK_MAPPED(bp); 1747 } 1748 return (0); 1749 } 1750 1751 /* 1752 * bufkva_reclaim: 1753 * 1754 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem 1755 * callback that fires to avoid returning failure. 1756 */ 1757 static void 1758 bufkva_reclaim(vmem_t *vmem, int flags) 1759 { 1760 int i; 1761 1762 for (i = 0; i < 5; i++) 1763 if (buf_scan(true) != 0) 1764 break; 1765 return; 1766 } 1767 1768 1769 /* 1770 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 1771 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 1772 * the buffer is valid and we do not have to do anything. 1773 */ 1774 void 1775 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, 1776 int cnt, struct ucred * cred) 1777 { 1778 struct buf *rabp; 1779 int i; 1780 1781 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 1782 if (inmem(vp, *rablkno)) 1783 continue; 1784 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 1785 1786 if ((rabp->b_flags & B_CACHE) == 0) { 1787 if (!TD_IS_IDLETHREAD(curthread)) { 1788 #ifdef RACCT 1789 if (racct_enable) { 1790 PROC_LOCK(curproc); 1791 racct_add_buf(curproc, rabp, 0); 1792 PROC_UNLOCK(curproc); 1793 } 1794 #endif /* RACCT */ 1795 curthread->td_ru.ru_inblock++; 1796 } 1797 rabp->b_flags |= B_ASYNC; 1798 rabp->b_flags &= ~B_INVAL; 1799 rabp->b_ioflags &= ~BIO_ERROR; 1800 rabp->b_iocmd = BIO_READ; 1801 if (rabp->b_rcred == NOCRED && cred != NOCRED) 1802 rabp->b_rcred = crhold(cred); 1803 vfs_busy_pages(rabp, 0); 1804 BUF_KERNPROC(rabp); 1805 rabp->b_iooffset = dbtob(rabp->b_blkno); 1806 bstrategy(rabp); 1807 } else { 1808 brelse(rabp); 1809 } 1810 } 1811 } 1812 1813 /* 1814 * Entry point for bread() and breadn() via #defines in sys/buf.h. 1815 * 1816 * Get a buffer with the specified data. Look in the cache first. We 1817 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 1818 * is set, the buffer is valid and we do not have to do anything, see 1819 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 1820 * 1821 * Always return a NULL buffer pointer (in bpp) when returning an error. 1822 */ 1823 int 1824 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno, 1825 int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp) 1826 { 1827 struct buf *bp; 1828 int rv = 0, readwait = 0; 1829 1830 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 1831 /* 1832 * Can only return NULL if GB_LOCK_NOWAIT flag is specified. 1833 */ 1834 *bpp = bp = getblk(vp, blkno, size, 0, 0, flags); 1835 if (bp == NULL) 1836 return (EBUSY); 1837 1838 /* if not found in cache, do some I/O */ 1839 if ((bp->b_flags & B_CACHE) == 0) { 1840 if (!TD_IS_IDLETHREAD(curthread)) { 1841 #ifdef RACCT 1842 if (racct_enable) { 1843 PROC_LOCK(curproc); 1844 racct_add_buf(curproc, bp, 0); 1845 PROC_UNLOCK(curproc); 1846 } 1847 #endif /* RACCT */ 1848 curthread->td_ru.ru_inblock++; 1849 } 1850 bp->b_iocmd = BIO_READ; 1851 bp->b_flags &= ~B_INVAL; 1852 bp->b_ioflags &= ~BIO_ERROR; 1853 if (bp->b_rcred == NOCRED && cred != NOCRED) 1854 bp->b_rcred = crhold(cred); 1855 vfs_busy_pages(bp, 0); 1856 bp->b_iooffset = dbtob(bp->b_blkno); 1857 bstrategy(bp); 1858 ++readwait; 1859 } 1860 1861 breada(vp, rablkno, rabsize, cnt, cred); 1862 1863 if (readwait) { 1864 rv = bufwait(bp); 1865 if (rv != 0) { 1866 brelse(bp); 1867 *bpp = NULL; 1868 } 1869 } 1870 return (rv); 1871 } 1872 1873 /* 1874 * Write, release buffer on completion. (Done by iodone 1875 * if async). Do not bother writing anything if the buffer 1876 * is invalid. 1877 * 1878 * Note that we set B_CACHE here, indicating that buffer is 1879 * fully valid and thus cacheable. This is true even of NFS 1880 * now so we set it generally. This could be set either here 1881 * or in biodone() since the I/O is synchronous. We put it 1882 * here. 1883 */ 1884 int 1885 bufwrite(struct buf *bp) 1886 { 1887 int oldflags; 1888 struct vnode *vp; 1889 long space; 1890 int vp_md; 1891 1892 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1893 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) { 1894 bp->b_flags |= B_INVAL | B_RELBUF; 1895 bp->b_flags &= ~B_CACHE; 1896 brelse(bp); 1897 return (ENXIO); 1898 } 1899 if (bp->b_flags & B_INVAL) { 1900 brelse(bp); 1901 return (0); 1902 } 1903 1904 if (bp->b_flags & B_BARRIER) 1905 barrierwrites++; 1906 1907 oldflags = bp->b_flags; 1908 1909 BUF_ASSERT_HELD(bp); 1910 1911 if (bp->b_pin_count > 0) 1912 bunpin_wait(bp); 1913 1914 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 1915 ("FFS background buffer should not get here %p", bp)); 1916 1917 vp = bp->b_vp; 1918 if (vp) 1919 vp_md = vp->v_vflag & VV_MD; 1920 else 1921 vp_md = 0; 1922 1923 /* 1924 * Mark the buffer clean. Increment the bufobj write count 1925 * before bundirty() call, to prevent other thread from seeing 1926 * empty dirty list and zero counter for writes in progress, 1927 * falsely indicating that the bufobj is clean. 1928 */ 1929 bufobj_wref(bp->b_bufobj); 1930 bundirty(bp); 1931 1932 bp->b_flags &= ~B_DONE; 1933 bp->b_ioflags &= ~BIO_ERROR; 1934 bp->b_flags |= B_CACHE; 1935 bp->b_iocmd = BIO_WRITE; 1936 1937 vfs_busy_pages(bp, 1); 1938 1939 /* 1940 * Normal bwrites pipeline writes 1941 */ 1942 bp->b_runningbufspace = bp->b_bufsize; 1943 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 1944 1945 if (!TD_IS_IDLETHREAD(curthread)) { 1946 #ifdef RACCT 1947 if (racct_enable) { 1948 PROC_LOCK(curproc); 1949 racct_add_buf(curproc, bp, 1); 1950 PROC_UNLOCK(curproc); 1951 } 1952 #endif /* RACCT */ 1953 curthread->td_ru.ru_oublock++; 1954 } 1955 if (oldflags & B_ASYNC) 1956 BUF_KERNPROC(bp); 1957 bp->b_iooffset = dbtob(bp->b_blkno); 1958 bstrategy(bp); 1959 1960 if ((oldflags & B_ASYNC) == 0) { 1961 int rtval = bufwait(bp); 1962 brelse(bp); 1963 return (rtval); 1964 } else if (space > hirunningspace) { 1965 /* 1966 * don't allow the async write to saturate the I/O 1967 * system. We will not deadlock here because 1968 * we are blocking waiting for I/O that is already in-progress 1969 * to complete. We do not block here if it is the update 1970 * or syncer daemon trying to clean up as that can lead 1971 * to deadlock. 1972 */ 1973 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 1974 waitrunningbufspace(); 1975 } 1976 1977 return (0); 1978 } 1979 1980 void 1981 bufbdflush(struct bufobj *bo, struct buf *bp) 1982 { 1983 struct buf *nbp; 1984 1985 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 1986 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 1987 altbufferflushes++; 1988 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 1989 BO_LOCK(bo); 1990 /* 1991 * Try to find a buffer to flush. 1992 */ 1993 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 1994 if ((nbp->b_vflags & BV_BKGRDINPROG) || 1995 BUF_LOCK(nbp, 1996 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 1997 continue; 1998 if (bp == nbp) 1999 panic("bdwrite: found ourselves"); 2000 BO_UNLOCK(bo); 2001 /* Don't countdeps with the bo lock held. */ 2002 if (buf_countdeps(nbp, 0)) { 2003 BO_LOCK(bo); 2004 BUF_UNLOCK(nbp); 2005 continue; 2006 } 2007 if (nbp->b_flags & B_CLUSTEROK) { 2008 vfs_bio_awrite(nbp); 2009 } else { 2010 bremfree(nbp); 2011 bawrite(nbp); 2012 } 2013 dirtybufferflushes++; 2014 break; 2015 } 2016 if (nbp == NULL) 2017 BO_UNLOCK(bo); 2018 } 2019 } 2020 2021 /* 2022 * Delayed write. (Buffer is marked dirty). Do not bother writing 2023 * anything if the buffer is marked invalid. 2024 * 2025 * Note that since the buffer must be completely valid, we can safely 2026 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 2027 * biodone() in order to prevent getblk from writing the buffer 2028 * out synchronously. 2029 */ 2030 void 2031 bdwrite(struct buf *bp) 2032 { 2033 struct thread *td = curthread; 2034 struct vnode *vp; 2035 struct bufobj *bo; 2036 2037 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2038 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2039 KASSERT((bp->b_flags & B_BARRIER) == 0, 2040 ("Barrier request in delayed write %p", bp)); 2041 BUF_ASSERT_HELD(bp); 2042 2043 if (bp->b_flags & B_INVAL) { 2044 brelse(bp); 2045 return; 2046 } 2047 2048 /* 2049 * If we have too many dirty buffers, don't create any more. 2050 * If we are wildly over our limit, then force a complete 2051 * cleanup. Otherwise, just keep the situation from getting 2052 * out of control. Note that we have to avoid a recursive 2053 * disaster and not try to clean up after our own cleanup! 2054 */ 2055 vp = bp->b_vp; 2056 bo = bp->b_bufobj; 2057 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 2058 td->td_pflags |= TDP_INBDFLUSH; 2059 BO_BDFLUSH(bo, bp); 2060 td->td_pflags &= ~TDP_INBDFLUSH; 2061 } else 2062 recursiveflushes++; 2063 2064 bdirty(bp); 2065 /* 2066 * Set B_CACHE, indicating that the buffer is fully valid. This is 2067 * true even of NFS now. 2068 */ 2069 bp->b_flags |= B_CACHE; 2070 2071 /* 2072 * This bmap keeps the system from needing to do the bmap later, 2073 * perhaps when the system is attempting to do a sync. Since it 2074 * is likely that the indirect block -- or whatever other datastructure 2075 * that the filesystem needs is still in memory now, it is a good 2076 * thing to do this. Note also, that if the pageout daemon is 2077 * requesting a sync -- there might not be enough memory to do 2078 * the bmap then... So, this is important to do. 2079 */ 2080 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 2081 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 2082 } 2083 2084 /* 2085 * Set the *dirty* buffer range based upon the VM system dirty 2086 * pages. 2087 * 2088 * Mark the buffer pages as clean. We need to do this here to 2089 * satisfy the vnode_pager and the pageout daemon, so that it 2090 * thinks that the pages have been "cleaned". Note that since 2091 * the pages are in a delayed write buffer -- the VFS layer 2092 * "will" see that the pages get written out on the next sync, 2093 * or perhaps the cluster will be completed. 2094 */ 2095 vfs_clean_pages_dirty_buf(bp); 2096 bqrelse(bp); 2097 2098 /* 2099 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 2100 * due to the softdep code. 2101 */ 2102 } 2103 2104 /* 2105 * bdirty: 2106 * 2107 * Turn buffer into delayed write request. We must clear BIO_READ and 2108 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 2109 * itself to properly update it in the dirty/clean lists. We mark it 2110 * B_DONE to ensure that any asynchronization of the buffer properly 2111 * clears B_DONE ( else a panic will occur later ). 2112 * 2113 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 2114 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 2115 * should only be called if the buffer is known-good. 2116 * 2117 * Since the buffer is not on a queue, we do not update the numfreebuffers 2118 * count. 2119 * 2120 * The buffer must be on QUEUE_NONE. 2121 */ 2122 void 2123 bdirty(struct buf *bp) 2124 { 2125 2126 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 2127 bp, bp->b_vp, bp->b_flags); 2128 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2129 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2130 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2131 BUF_ASSERT_HELD(bp); 2132 bp->b_flags &= ~(B_RELBUF); 2133 bp->b_iocmd = BIO_WRITE; 2134 2135 if ((bp->b_flags & B_DELWRI) == 0) { 2136 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 2137 reassignbuf(bp); 2138 bdirtyadd(); 2139 } 2140 } 2141 2142 /* 2143 * bundirty: 2144 * 2145 * Clear B_DELWRI for buffer. 2146 * 2147 * Since the buffer is not on a queue, we do not update the numfreebuffers 2148 * count. 2149 * 2150 * The buffer must be on QUEUE_NONE. 2151 */ 2152 2153 void 2154 bundirty(struct buf *bp) 2155 { 2156 2157 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2158 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2159 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 2160 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 2161 BUF_ASSERT_HELD(bp); 2162 2163 if (bp->b_flags & B_DELWRI) { 2164 bp->b_flags &= ~B_DELWRI; 2165 reassignbuf(bp); 2166 bdirtysub(); 2167 } 2168 /* 2169 * Since it is now being written, we can clear its deferred write flag. 2170 */ 2171 bp->b_flags &= ~B_DEFERRED; 2172 } 2173 2174 /* 2175 * bawrite: 2176 * 2177 * Asynchronous write. Start output on a buffer, but do not wait for 2178 * it to complete. The buffer is released when the output completes. 2179 * 2180 * bwrite() ( or the VOP routine anyway ) is responsible for handling 2181 * B_INVAL buffers. Not us. 2182 */ 2183 void 2184 bawrite(struct buf *bp) 2185 { 2186 2187 bp->b_flags |= B_ASYNC; 2188 (void) bwrite(bp); 2189 } 2190 2191 /* 2192 * babarrierwrite: 2193 * 2194 * Asynchronous barrier write. Start output on a buffer, but do not 2195 * wait for it to complete. Place a write barrier after this write so 2196 * that this buffer and all buffers written before it are committed to 2197 * the disk before any buffers written after this write are committed 2198 * to the disk. The buffer is released when the output completes. 2199 */ 2200 void 2201 babarrierwrite(struct buf *bp) 2202 { 2203 2204 bp->b_flags |= B_ASYNC | B_BARRIER; 2205 (void) bwrite(bp); 2206 } 2207 2208 /* 2209 * bbarrierwrite: 2210 * 2211 * Synchronous barrier write. Start output on a buffer and wait for 2212 * it to complete. Place a write barrier after this write so that 2213 * this buffer and all buffers written before it are committed to 2214 * the disk before any buffers written after this write are committed 2215 * to the disk. The buffer is released when the output completes. 2216 */ 2217 int 2218 bbarrierwrite(struct buf *bp) 2219 { 2220 2221 bp->b_flags |= B_BARRIER; 2222 return (bwrite(bp)); 2223 } 2224 2225 /* 2226 * bwillwrite: 2227 * 2228 * Called prior to the locking of any vnodes when we are expecting to 2229 * write. We do not want to starve the buffer cache with too many 2230 * dirty buffers so we block here. By blocking prior to the locking 2231 * of any vnodes we attempt to avoid the situation where a locked vnode 2232 * prevents the various system daemons from flushing related buffers. 2233 */ 2234 void 2235 bwillwrite(void) 2236 { 2237 2238 if (numdirtybuffers >= hidirtybuffers) { 2239 mtx_lock(&bdirtylock); 2240 while (numdirtybuffers >= hidirtybuffers) { 2241 bdirtywait = 1; 2242 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 2243 "flswai", 0); 2244 } 2245 mtx_unlock(&bdirtylock); 2246 } 2247 } 2248 2249 /* 2250 * Return true if we have too many dirty buffers. 2251 */ 2252 int 2253 buf_dirty_count_severe(void) 2254 { 2255 2256 return(numdirtybuffers >= hidirtybuffers); 2257 } 2258 2259 /* 2260 * brelse: 2261 * 2262 * Release a busy buffer and, if requested, free its resources. The 2263 * buffer will be stashed in the appropriate bufqueue[] allowing it 2264 * to be accessed later as a cache entity or reused for other purposes. 2265 */ 2266 void 2267 brelse(struct buf *bp) 2268 { 2269 int qindex; 2270 2271 /* 2272 * Many functions erroneously call brelse with a NULL bp under rare 2273 * error conditions. Simply return when called with a NULL bp. 2274 */ 2275 if (bp == NULL) 2276 return; 2277 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 2278 bp, bp->b_vp, bp->b_flags); 2279 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2280 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2281 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0, 2282 ("brelse: non-VMIO buffer marked NOREUSE")); 2283 2284 if (BUF_LOCKRECURSED(bp)) { 2285 /* 2286 * Do not process, in particular, do not handle the 2287 * B_INVAL/B_RELBUF and do not release to free list. 2288 */ 2289 BUF_UNLOCK(bp); 2290 return; 2291 } 2292 2293 if (bp->b_flags & B_MANAGED) { 2294 bqrelse(bp); 2295 return; 2296 } 2297 2298 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) { 2299 BO_LOCK(bp->b_bufobj); 2300 bp->b_vflags &= ~BV_BKGRDERR; 2301 BO_UNLOCK(bp->b_bufobj); 2302 bdirty(bp); 2303 } 2304 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 2305 !(bp->b_flags & B_INVAL)) { 2306 /* 2307 * Failed write, redirty. Must clear BIO_ERROR to prevent 2308 * pages from being scrapped. 2309 */ 2310 bp->b_ioflags &= ~BIO_ERROR; 2311 bdirty(bp); 2312 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 2313 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 2314 /* 2315 * Either a failed read I/O or we were asked to free or not 2316 * cache the buffer. 2317 */ 2318 bp->b_flags |= B_INVAL; 2319 if (!LIST_EMPTY(&bp->b_dep)) 2320 buf_deallocate(bp); 2321 if (bp->b_flags & B_DELWRI) 2322 bdirtysub(); 2323 bp->b_flags &= ~(B_DELWRI | B_CACHE); 2324 if ((bp->b_flags & B_VMIO) == 0) { 2325 allocbuf(bp, 0); 2326 if (bp->b_vp) 2327 brelvp(bp); 2328 } 2329 } 2330 2331 /* 2332 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate() 2333 * is called with B_DELWRI set, the underlying pages may wind up 2334 * getting freed causing a previous write (bdwrite()) to get 'lost' 2335 * because pages associated with a B_DELWRI bp are marked clean. 2336 * 2337 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even 2338 * if B_DELWRI is set. 2339 */ 2340 if (bp->b_flags & B_DELWRI) 2341 bp->b_flags &= ~B_RELBUF; 2342 2343 /* 2344 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 2345 * constituted, not even NFS buffers now. Two flags effect this. If 2346 * B_INVAL, the struct buf is invalidated but the VM object is kept 2347 * around ( i.e. so it is trivial to reconstitute the buffer later ). 2348 * 2349 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 2350 * invalidated. BIO_ERROR cannot be set for a failed write unless the 2351 * buffer is also B_INVAL because it hits the re-dirtying code above. 2352 * 2353 * Normally we can do this whether a buffer is B_DELWRI or not. If 2354 * the buffer is an NFS buffer, it is tracking piecemeal writes or 2355 * the commit state and we cannot afford to lose the buffer. If the 2356 * buffer has a background write in progress, we need to keep it 2357 * around to prevent it from being reconstituted and starting a second 2358 * background write. 2359 */ 2360 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE || 2361 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) && 2362 !(bp->b_vp->v_mount != NULL && 2363 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2364 !vn_isdisk(bp->b_vp, NULL) && (bp->b_flags & B_DELWRI))) { 2365 vfs_vmio_invalidate(bp); 2366 allocbuf(bp, 0); 2367 } 2368 2369 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 || 2370 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) { 2371 allocbuf(bp, 0); 2372 bp->b_flags &= ~B_NOREUSE; 2373 if (bp->b_vp != NULL) 2374 brelvp(bp); 2375 } 2376 2377 /* 2378 * If the buffer has junk contents signal it and eventually 2379 * clean up B_DELWRI and diassociate the vnode so that gbincore() 2380 * doesn't find it. 2381 */ 2382 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 2383 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 2384 bp->b_flags |= B_INVAL; 2385 if (bp->b_flags & B_INVAL) { 2386 if (bp->b_flags & B_DELWRI) 2387 bundirty(bp); 2388 if (bp->b_vp) 2389 brelvp(bp); 2390 } 2391 2392 /* buffers with no memory */ 2393 if (bp->b_bufsize == 0) { 2394 buf_free(bp); 2395 return; 2396 } 2397 /* buffers with junk contents */ 2398 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 2399 (bp->b_ioflags & BIO_ERROR)) { 2400 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 2401 if (bp->b_vflags & BV_BKGRDINPROG) 2402 panic("losing buffer 2"); 2403 qindex = QUEUE_CLEAN; 2404 bp->b_flags |= B_AGE; 2405 /* remaining buffers */ 2406 } else if (bp->b_flags & B_DELWRI) 2407 qindex = QUEUE_DIRTY; 2408 else 2409 qindex = QUEUE_CLEAN; 2410 2411 binsfree(bp, qindex); 2412 2413 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT); 2414 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 2415 panic("brelse: not dirty"); 2416 /* unlock */ 2417 BUF_UNLOCK(bp); 2418 if (qindex == QUEUE_CLEAN) 2419 bufspace_wakeup(); 2420 } 2421 2422 /* 2423 * Release a buffer back to the appropriate queue but do not try to free 2424 * it. The buffer is expected to be used again soon. 2425 * 2426 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 2427 * biodone() to requeue an async I/O on completion. It is also used when 2428 * known good buffers need to be requeued but we think we may need the data 2429 * again soon. 2430 * 2431 * XXX we should be able to leave the B_RELBUF hint set on completion. 2432 */ 2433 void 2434 bqrelse(struct buf *bp) 2435 { 2436 int qindex; 2437 2438 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2439 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 2440 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 2441 2442 qindex = QUEUE_NONE; 2443 if (BUF_LOCKRECURSED(bp)) { 2444 /* do not release to free list */ 2445 BUF_UNLOCK(bp); 2446 return; 2447 } 2448 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 2449 2450 if (bp->b_flags & B_MANAGED) { 2451 if (bp->b_flags & B_REMFREE) 2452 bremfreef(bp); 2453 goto out; 2454 } 2455 2456 /* buffers with stale but valid contents */ 2457 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG | 2458 BV_BKGRDERR)) == BV_BKGRDERR) { 2459 BO_LOCK(bp->b_bufobj); 2460 bp->b_vflags &= ~BV_BKGRDERR; 2461 BO_UNLOCK(bp->b_bufobj); 2462 qindex = QUEUE_DIRTY; 2463 } else { 2464 if ((bp->b_flags & B_DELWRI) == 0 && 2465 (bp->b_xflags & BX_VNDIRTY)) 2466 panic("bqrelse: not dirty"); 2467 if ((bp->b_flags & B_NOREUSE) != 0) { 2468 brelse(bp); 2469 return; 2470 } 2471 qindex = QUEUE_CLEAN; 2472 } 2473 binsfree(bp, qindex); 2474 2475 out: 2476 /* unlock */ 2477 BUF_UNLOCK(bp); 2478 if (qindex == QUEUE_CLEAN) 2479 bufspace_wakeup(); 2480 } 2481 2482 /* 2483 * Complete I/O to a VMIO backed page. Validate the pages as appropriate, 2484 * restore bogus pages. 2485 */ 2486 static void 2487 vfs_vmio_iodone(struct buf *bp) 2488 { 2489 vm_ooffset_t foff; 2490 vm_page_t m; 2491 vm_object_t obj; 2492 struct vnode *vp; 2493 int bogus, i, iosize; 2494 2495 obj = bp->b_bufobj->bo_object; 2496 KASSERT(obj->paging_in_progress >= bp->b_npages, 2497 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)", 2498 obj->paging_in_progress, bp->b_npages)); 2499 2500 vp = bp->b_vp; 2501 KASSERT(vp->v_holdcnt > 0, 2502 ("vfs_vmio_iodone: vnode %p has zero hold count", vp)); 2503 KASSERT(vp->v_object != NULL, 2504 ("vfs_vmio_iodone: vnode %p has no vm_object", vp)); 2505 2506 foff = bp->b_offset; 2507 KASSERT(bp->b_offset != NOOFFSET, 2508 ("vfs_vmio_iodone: bp %p has no buffer offset", bp)); 2509 2510 bogus = 0; 2511 iosize = bp->b_bcount - bp->b_resid; 2512 VM_OBJECT_WLOCK(obj); 2513 for (i = 0; i < bp->b_npages; i++) { 2514 int resid; 2515 2516 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2517 if (resid > iosize) 2518 resid = iosize; 2519 2520 /* 2521 * cleanup bogus pages, restoring the originals 2522 */ 2523 m = bp->b_pages[i]; 2524 if (m == bogus_page) { 2525 bogus = 1; 2526 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2527 if (m == NULL) 2528 panic("biodone: page disappeared!"); 2529 bp->b_pages[i] = m; 2530 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) { 2531 /* 2532 * In the write case, the valid and clean bits are 2533 * already changed correctly ( see bdwrite() ), so we 2534 * only need to do this here in the read case. 2535 */ 2536 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK, 2537 resid)) == 0, ("vfs_vmio_iodone: page %p " 2538 "has unexpected dirty bits", m)); 2539 vfs_page_set_valid(bp, foff, m); 2540 } 2541 KASSERT(OFF_TO_IDX(foff) == m->pindex, 2542 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch", 2543 (intmax_t)foff, (uintmax_t)m->pindex)); 2544 2545 vm_page_sunbusy(m); 2546 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2547 iosize -= resid; 2548 } 2549 vm_object_pip_wakeupn(obj, bp->b_npages); 2550 VM_OBJECT_WUNLOCK(obj); 2551 if (bogus && buf_mapped(bp)) { 2552 BUF_CHECK_MAPPED(bp); 2553 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 2554 bp->b_pages, bp->b_npages); 2555 } 2556 } 2557 2558 /* 2559 * Unwire a page held by a buf and place it on the appropriate vm queue. 2560 */ 2561 static void 2562 vfs_vmio_unwire(struct buf *bp, vm_page_t m) 2563 { 2564 bool freed; 2565 2566 vm_page_lock(m); 2567 if (vm_page_unwire(m, PQ_NONE)) { 2568 /* 2569 * Determine if the page should be freed before adding 2570 * it to the inactive queue. 2571 */ 2572 if (m->valid == 0) { 2573 freed = !vm_page_busied(m); 2574 if (freed) 2575 vm_page_free(m); 2576 } else if ((bp->b_flags & B_DIRECT) != 0) 2577 freed = vm_page_try_to_free(m); 2578 else 2579 freed = false; 2580 if (!freed) { 2581 /* 2582 * If the page is unlikely to be reused, let the 2583 * VM know. Otherwise, maintain LRU page 2584 * ordering and put the page at the tail of the 2585 * inactive queue. 2586 */ 2587 if ((bp->b_flags & B_NOREUSE) != 0) 2588 vm_page_deactivate_noreuse(m); 2589 else 2590 vm_page_deactivate(m); 2591 } 2592 } 2593 vm_page_unlock(m); 2594 } 2595 2596 /* 2597 * Perform page invalidation when a buffer is released. The fully invalid 2598 * pages will be reclaimed later in vfs_vmio_truncate(). 2599 */ 2600 static void 2601 vfs_vmio_invalidate(struct buf *bp) 2602 { 2603 vm_object_t obj; 2604 vm_page_t m; 2605 int i, resid, poffset, presid; 2606 2607 if (buf_mapped(bp)) { 2608 BUF_CHECK_MAPPED(bp); 2609 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 2610 } else 2611 BUF_CHECK_UNMAPPED(bp); 2612 /* 2613 * Get the base offset and length of the buffer. Note that 2614 * in the VMIO case if the buffer block size is not 2615 * page-aligned then b_data pointer may not be page-aligned. 2616 * But our b_pages[] array *IS* page aligned. 2617 * 2618 * block sizes less then DEV_BSIZE (usually 512) are not 2619 * supported due to the page granularity bits (m->valid, 2620 * m->dirty, etc...). 2621 * 2622 * See man buf(9) for more information 2623 */ 2624 obj = bp->b_bufobj->bo_object; 2625 resid = bp->b_bufsize; 2626 poffset = bp->b_offset & PAGE_MASK; 2627 VM_OBJECT_WLOCK(obj); 2628 for (i = 0; i < bp->b_npages; i++) { 2629 m = bp->b_pages[i]; 2630 if (m == bogus_page) 2631 panic("vfs_vmio_invalidate: Unexpected bogus page."); 2632 bp->b_pages[i] = NULL; 2633 2634 presid = resid > (PAGE_SIZE - poffset) ? 2635 (PAGE_SIZE - poffset) : resid; 2636 KASSERT(presid >= 0, ("brelse: extra page")); 2637 while (vm_page_xbusied(m)) { 2638 vm_page_lock(m); 2639 VM_OBJECT_WUNLOCK(obj); 2640 vm_page_busy_sleep(m, "mbncsh"); 2641 VM_OBJECT_WLOCK(obj); 2642 } 2643 if (pmap_page_wired_mappings(m) == 0) 2644 vm_page_set_invalid(m, poffset, presid); 2645 vfs_vmio_unwire(bp, m); 2646 resid -= presid; 2647 poffset = 0; 2648 } 2649 VM_OBJECT_WUNLOCK(obj); 2650 bp->b_npages = 0; 2651 } 2652 2653 /* 2654 * Page-granular truncation of an existing VMIO buffer. 2655 */ 2656 static void 2657 vfs_vmio_truncate(struct buf *bp, int desiredpages) 2658 { 2659 vm_object_t obj; 2660 vm_page_t m; 2661 int i; 2662 2663 if (bp->b_npages == desiredpages) 2664 return; 2665 2666 if (buf_mapped(bp)) { 2667 BUF_CHECK_MAPPED(bp); 2668 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) + 2669 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages); 2670 } else 2671 BUF_CHECK_UNMAPPED(bp); 2672 obj = bp->b_bufobj->bo_object; 2673 if (obj != NULL) 2674 VM_OBJECT_WLOCK(obj); 2675 for (i = desiredpages; i < bp->b_npages; i++) { 2676 m = bp->b_pages[i]; 2677 KASSERT(m != bogus_page, ("allocbuf: bogus page found")); 2678 bp->b_pages[i] = NULL; 2679 vfs_vmio_unwire(bp, m); 2680 } 2681 if (obj != NULL) 2682 VM_OBJECT_WUNLOCK(obj); 2683 bp->b_npages = desiredpages; 2684 } 2685 2686 /* 2687 * Byte granular extension of VMIO buffers. 2688 */ 2689 static void 2690 vfs_vmio_extend(struct buf *bp, int desiredpages, int size) 2691 { 2692 /* 2693 * We are growing the buffer, possibly in a 2694 * byte-granular fashion. 2695 */ 2696 vm_object_t obj; 2697 vm_offset_t toff; 2698 vm_offset_t tinc; 2699 vm_page_t m; 2700 2701 /* 2702 * Step 1, bring in the VM pages from the object, allocating 2703 * them if necessary. We must clear B_CACHE if these pages 2704 * are not valid for the range covered by the buffer. 2705 */ 2706 obj = bp->b_bufobj->bo_object; 2707 VM_OBJECT_WLOCK(obj); 2708 while (bp->b_npages < desiredpages) { 2709 /* 2710 * We must allocate system pages since blocking 2711 * here could interfere with paging I/O, no 2712 * matter which process we are. 2713 * 2714 * Only exclusive busy can be tested here. 2715 * Blocking on shared busy might lead to 2716 * deadlocks once allocbuf() is called after 2717 * pages are vfs_busy_pages(). 2718 */ 2719 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) + bp->b_npages, 2720 VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | 2721 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY | 2722 VM_ALLOC_COUNT(desiredpages - bp->b_npages)); 2723 if (m->valid == 0) 2724 bp->b_flags &= ~B_CACHE; 2725 bp->b_pages[bp->b_npages] = m; 2726 ++bp->b_npages; 2727 } 2728 2729 /* 2730 * Step 2. We've loaded the pages into the buffer, 2731 * we have to figure out if we can still have B_CACHE 2732 * set. Note that B_CACHE is set according to the 2733 * byte-granular range ( bcount and size ), not the 2734 * aligned range ( newbsize ). 2735 * 2736 * The VM test is against m->valid, which is DEV_BSIZE 2737 * aligned. Needless to say, the validity of the data 2738 * needs to also be DEV_BSIZE aligned. Note that this 2739 * fails with NFS if the server or some other client 2740 * extends the file's EOF. If our buffer is resized, 2741 * B_CACHE may remain set! XXX 2742 */ 2743 toff = bp->b_bcount; 2744 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2745 while ((bp->b_flags & B_CACHE) && toff < size) { 2746 vm_pindex_t pi; 2747 2748 if (tinc > (size - toff)) 2749 tinc = size - toff; 2750 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; 2751 m = bp->b_pages[pi]; 2752 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m); 2753 toff += tinc; 2754 tinc = PAGE_SIZE; 2755 } 2756 VM_OBJECT_WUNLOCK(obj); 2757 2758 /* 2759 * Step 3, fixup the KVA pmap. 2760 */ 2761 if (buf_mapped(bp)) 2762 bpmap_qenter(bp); 2763 else 2764 BUF_CHECK_UNMAPPED(bp); 2765 } 2766 2767 /* 2768 * Check to see if a block at a particular lbn is available for a clustered 2769 * write. 2770 */ 2771 static int 2772 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 2773 { 2774 struct buf *bpa; 2775 int match; 2776 2777 match = 0; 2778 2779 /* If the buf isn't in core skip it */ 2780 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 2781 return (0); 2782 2783 /* If the buf is busy we don't want to wait for it */ 2784 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2785 return (0); 2786 2787 /* Only cluster with valid clusterable delayed write buffers */ 2788 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 2789 (B_DELWRI | B_CLUSTEROK)) 2790 goto done; 2791 2792 if (bpa->b_bufsize != size) 2793 goto done; 2794 2795 /* 2796 * Check to see if it is in the expected place on disk and that the 2797 * block has been mapped. 2798 */ 2799 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 2800 match = 1; 2801 done: 2802 BUF_UNLOCK(bpa); 2803 return (match); 2804 } 2805 2806 /* 2807 * vfs_bio_awrite: 2808 * 2809 * Implement clustered async writes for clearing out B_DELWRI buffers. 2810 * This is much better then the old way of writing only one buffer at 2811 * a time. Note that we may not be presented with the buffers in the 2812 * correct order, so we search for the cluster in both directions. 2813 */ 2814 int 2815 vfs_bio_awrite(struct buf *bp) 2816 { 2817 struct bufobj *bo; 2818 int i; 2819 int j; 2820 daddr_t lblkno = bp->b_lblkno; 2821 struct vnode *vp = bp->b_vp; 2822 int ncl; 2823 int nwritten; 2824 int size; 2825 int maxcl; 2826 int gbflags; 2827 2828 bo = &vp->v_bufobj; 2829 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0; 2830 /* 2831 * right now we support clustered writing only to regular files. If 2832 * we find a clusterable block we could be in the middle of a cluster 2833 * rather then at the beginning. 2834 */ 2835 if ((vp->v_type == VREG) && 2836 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 2837 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 2838 2839 size = vp->v_mount->mnt_stat.f_iosize; 2840 maxcl = MAXPHYS / size; 2841 2842 BO_RLOCK(bo); 2843 for (i = 1; i < maxcl; i++) 2844 if (vfs_bio_clcheck(vp, size, lblkno + i, 2845 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 2846 break; 2847 2848 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 2849 if (vfs_bio_clcheck(vp, size, lblkno - j, 2850 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 2851 break; 2852 BO_RUNLOCK(bo); 2853 --j; 2854 ncl = i + j; 2855 /* 2856 * this is a possible cluster write 2857 */ 2858 if (ncl != 1) { 2859 BUF_UNLOCK(bp); 2860 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 2861 gbflags); 2862 return (nwritten); 2863 } 2864 } 2865 bremfree(bp); 2866 bp->b_flags |= B_ASYNC; 2867 /* 2868 * default (old) behavior, writing out only one block 2869 * 2870 * XXX returns b_bufsize instead of b_bcount for nwritten? 2871 */ 2872 nwritten = bp->b_bufsize; 2873 (void) bwrite(bp); 2874 2875 return (nwritten); 2876 } 2877 2878 /* 2879 * getnewbuf_kva: 2880 * 2881 * Allocate KVA for an empty buf header according to gbflags. 2882 */ 2883 static int 2884 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize) 2885 { 2886 2887 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) { 2888 /* 2889 * In order to keep fragmentation sane we only allocate kva 2890 * in BKVASIZE chunks. XXX with vmem we can do page size. 2891 */ 2892 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2893 2894 if (maxsize != bp->b_kvasize && 2895 bufkva_alloc(bp, maxsize, gbflags)) 2896 return (ENOSPC); 2897 } 2898 return (0); 2899 } 2900 2901 /* 2902 * getnewbuf: 2903 * 2904 * Find and initialize a new buffer header, freeing up existing buffers 2905 * in the bufqueues as necessary. The new buffer is returned locked. 2906 * 2907 * We block if: 2908 * We have insufficient buffer headers 2909 * We have insufficient buffer space 2910 * buffer_arena is too fragmented ( space reservation fails ) 2911 * If we have to flush dirty buffers ( but we try to avoid this ) 2912 * 2913 * The caller is responsible for releasing the reserved bufspace after 2914 * allocbuf() is called. 2915 */ 2916 static struct buf * 2917 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags) 2918 { 2919 struct buf *bp; 2920 bool metadata, reserved; 2921 2922 bp = NULL; 2923 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 2924 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 2925 if (!unmapped_buf_allowed) 2926 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 2927 2928 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 2929 vp->v_type == VCHR) 2930 metadata = true; 2931 else 2932 metadata = false; 2933 atomic_add_int(&getnewbufcalls, 1); 2934 reserved = false; 2935 do { 2936 if (reserved == false && 2937 bufspace_reserve(maxsize, metadata) != 0) 2938 continue; 2939 reserved = true; 2940 if ((bp = buf_alloc()) == NULL) 2941 continue; 2942 if (getnewbuf_kva(bp, gbflags, maxsize) == 0) 2943 return (bp); 2944 break; 2945 } while(buf_scan(false) == 0); 2946 2947 if (reserved) 2948 atomic_subtract_long(&bufspace, maxsize); 2949 if (bp != NULL) { 2950 bp->b_flags |= B_INVAL; 2951 brelse(bp); 2952 } 2953 bufspace_wait(vp, gbflags, slpflag, slptimeo); 2954 2955 return (NULL); 2956 } 2957 2958 /* 2959 * buf_daemon: 2960 * 2961 * buffer flushing daemon. Buffers are normally flushed by the 2962 * update daemon but if it cannot keep up this process starts to 2963 * take the load in an attempt to prevent getnewbuf() from blocking. 2964 */ 2965 static struct kproc_desc buf_kp = { 2966 "bufdaemon", 2967 buf_daemon, 2968 &bufdaemonproc 2969 }; 2970 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 2971 2972 static int 2973 buf_flush(struct vnode *vp, int target) 2974 { 2975 int flushed; 2976 2977 flushed = flushbufqueues(vp, target, 0); 2978 if (flushed == 0) { 2979 /* 2980 * Could not find any buffers without rollback 2981 * dependencies, so just write the first one 2982 * in the hopes of eventually making progress. 2983 */ 2984 if (vp != NULL && target > 2) 2985 target /= 2; 2986 flushbufqueues(vp, target, 1); 2987 } 2988 return (flushed); 2989 } 2990 2991 static void 2992 buf_daemon() 2993 { 2994 int lodirty; 2995 2996 /* 2997 * This process needs to be suspended prior to shutdown sync. 2998 */ 2999 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 3000 SHUTDOWN_PRI_LAST); 3001 3002 /* 3003 * This process is allowed to take the buffer cache to the limit 3004 */ 3005 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 3006 mtx_lock(&bdlock); 3007 for (;;) { 3008 bd_request = 0; 3009 mtx_unlock(&bdlock); 3010 3011 kproc_suspend_check(bufdaemonproc); 3012 lodirty = lodirtybuffers; 3013 if (bd_speedupreq) { 3014 lodirty = numdirtybuffers / 2; 3015 bd_speedupreq = 0; 3016 } 3017 /* 3018 * Do the flush. Limit the amount of in-transit I/O we 3019 * allow to build up, otherwise we would completely saturate 3020 * the I/O system. 3021 */ 3022 while (numdirtybuffers > lodirty) { 3023 if (buf_flush(NULL, numdirtybuffers - lodirty) == 0) 3024 break; 3025 kern_yield(PRI_USER); 3026 } 3027 3028 /* 3029 * Only clear bd_request if we have reached our low water 3030 * mark. The buf_daemon normally waits 1 second and 3031 * then incrementally flushes any dirty buffers that have 3032 * built up, within reason. 3033 * 3034 * If we were unable to hit our low water mark and couldn't 3035 * find any flushable buffers, we sleep for a short period 3036 * to avoid endless loops on unlockable buffers. 3037 */ 3038 mtx_lock(&bdlock); 3039 if (numdirtybuffers <= lodirtybuffers) { 3040 /* 3041 * We reached our low water mark, reset the 3042 * request and sleep until we are needed again. 3043 * The sleep is just so the suspend code works. 3044 */ 3045 bd_request = 0; 3046 /* 3047 * Do an extra wakeup in case dirty threshold 3048 * changed via sysctl and the explicit transition 3049 * out of shortfall was missed. 3050 */ 3051 bdirtywakeup(); 3052 if (runningbufspace <= lorunningspace) 3053 runningwakeup(); 3054 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 3055 } else { 3056 /* 3057 * We couldn't find any flushable dirty buffers but 3058 * still have too many dirty buffers, we 3059 * have to sleep and try again. (rare) 3060 */ 3061 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 3062 } 3063 } 3064 } 3065 3066 /* 3067 * flushbufqueues: 3068 * 3069 * Try to flush a buffer in the dirty queue. We must be careful to 3070 * free up B_INVAL buffers instead of write them, which NFS is 3071 * particularly sensitive to. 3072 */ 3073 static int flushwithdeps = 0; 3074 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 3075 0, "Number of buffers flushed with dependecies that require rollbacks"); 3076 3077 static int 3078 flushbufqueues(struct vnode *lvp, int target, int flushdeps) 3079 { 3080 struct buf *sentinel; 3081 struct vnode *vp; 3082 struct mount *mp; 3083 struct buf *bp; 3084 int hasdeps; 3085 int flushed; 3086 int queue; 3087 int error; 3088 bool unlock; 3089 3090 flushed = 0; 3091 queue = QUEUE_DIRTY; 3092 bp = NULL; 3093 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 3094 sentinel->b_qindex = QUEUE_SENTINEL; 3095 mtx_lock(&bqlocks[queue]); 3096 TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist); 3097 mtx_unlock(&bqlocks[queue]); 3098 while (flushed != target) { 3099 maybe_yield(); 3100 mtx_lock(&bqlocks[queue]); 3101 bp = TAILQ_NEXT(sentinel, b_freelist); 3102 if (bp != NULL) { 3103 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 3104 TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel, 3105 b_freelist); 3106 } else { 3107 mtx_unlock(&bqlocks[queue]); 3108 break; 3109 } 3110 /* 3111 * Skip sentinels inserted by other invocations of the 3112 * flushbufqueues(), taking care to not reorder them. 3113 * 3114 * Only flush the buffers that belong to the 3115 * vnode locked by the curthread. 3116 */ 3117 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL && 3118 bp->b_vp != lvp)) { 3119 mtx_unlock(&bqlocks[queue]); 3120 continue; 3121 } 3122 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL); 3123 mtx_unlock(&bqlocks[queue]); 3124 if (error != 0) 3125 continue; 3126 if (bp->b_pin_count > 0) { 3127 BUF_UNLOCK(bp); 3128 continue; 3129 } 3130 /* 3131 * BKGRDINPROG can only be set with the buf and bufobj 3132 * locks both held. We tolerate a race to clear it here. 3133 */ 3134 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 3135 (bp->b_flags & B_DELWRI) == 0) { 3136 BUF_UNLOCK(bp); 3137 continue; 3138 } 3139 if (bp->b_flags & B_INVAL) { 3140 bremfreef(bp); 3141 brelse(bp); 3142 flushed++; 3143 continue; 3144 } 3145 3146 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 3147 if (flushdeps == 0) { 3148 BUF_UNLOCK(bp); 3149 continue; 3150 } 3151 hasdeps = 1; 3152 } else 3153 hasdeps = 0; 3154 /* 3155 * We must hold the lock on a vnode before writing 3156 * one of its buffers. Otherwise we may confuse, or 3157 * in the case of a snapshot vnode, deadlock the 3158 * system. 3159 * 3160 * The lock order here is the reverse of the normal 3161 * of vnode followed by buf lock. This is ok because 3162 * the NOWAIT will prevent deadlock. 3163 */ 3164 vp = bp->b_vp; 3165 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 3166 BUF_UNLOCK(bp); 3167 continue; 3168 } 3169 if (lvp == NULL) { 3170 unlock = true; 3171 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3172 } else { 3173 ASSERT_VOP_LOCKED(vp, "getbuf"); 3174 unlock = false; 3175 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 : 3176 vn_lock(vp, LK_TRYUPGRADE); 3177 } 3178 if (error == 0) { 3179 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 3180 bp, bp->b_vp, bp->b_flags); 3181 if (curproc == bufdaemonproc) { 3182 vfs_bio_awrite(bp); 3183 } else { 3184 bremfree(bp); 3185 bwrite(bp); 3186 notbufdflushes++; 3187 } 3188 vn_finished_write(mp); 3189 if (unlock) 3190 VOP_UNLOCK(vp, 0); 3191 flushwithdeps += hasdeps; 3192 flushed++; 3193 3194 /* 3195 * Sleeping on runningbufspace while holding 3196 * vnode lock leads to deadlock. 3197 */ 3198 if (curproc == bufdaemonproc && 3199 runningbufspace > hirunningspace) 3200 waitrunningbufspace(); 3201 continue; 3202 } 3203 vn_finished_write(mp); 3204 BUF_UNLOCK(bp); 3205 } 3206 mtx_lock(&bqlocks[queue]); 3207 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 3208 mtx_unlock(&bqlocks[queue]); 3209 free(sentinel, M_TEMP); 3210 return (flushed); 3211 } 3212 3213 /* 3214 * Check to see if a block is currently memory resident. 3215 */ 3216 struct buf * 3217 incore(struct bufobj *bo, daddr_t blkno) 3218 { 3219 struct buf *bp; 3220 3221 BO_RLOCK(bo); 3222 bp = gbincore(bo, blkno); 3223 BO_RUNLOCK(bo); 3224 return (bp); 3225 } 3226 3227 /* 3228 * Returns true if no I/O is needed to access the 3229 * associated VM object. This is like incore except 3230 * it also hunts around in the VM system for the data. 3231 */ 3232 3233 static int 3234 inmem(struct vnode * vp, daddr_t blkno) 3235 { 3236 vm_object_t obj; 3237 vm_offset_t toff, tinc, size; 3238 vm_page_t m; 3239 vm_ooffset_t off; 3240 3241 ASSERT_VOP_LOCKED(vp, "inmem"); 3242 3243 if (incore(&vp->v_bufobj, blkno)) 3244 return 1; 3245 if (vp->v_mount == NULL) 3246 return 0; 3247 obj = vp->v_object; 3248 if (obj == NULL) 3249 return (0); 3250 3251 size = PAGE_SIZE; 3252 if (size > vp->v_mount->mnt_stat.f_iosize) 3253 size = vp->v_mount->mnt_stat.f_iosize; 3254 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 3255 3256 VM_OBJECT_RLOCK(obj); 3257 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 3258 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 3259 if (!m) 3260 goto notinmem; 3261 tinc = size; 3262 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 3263 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 3264 if (vm_page_is_valid(m, 3265 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 3266 goto notinmem; 3267 } 3268 VM_OBJECT_RUNLOCK(obj); 3269 return 1; 3270 3271 notinmem: 3272 VM_OBJECT_RUNLOCK(obj); 3273 return (0); 3274 } 3275 3276 /* 3277 * Set the dirty range for a buffer based on the status of the dirty 3278 * bits in the pages comprising the buffer. The range is limited 3279 * to the size of the buffer. 3280 * 3281 * Tell the VM system that the pages associated with this buffer 3282 * are clean. This is used for delayed writes where the data is 3283 * going to go to disk eventually without additional VM intevention. 3284 * 3285 * Note that while we only really need to clean through to b_bcount, we 3286 * just go ahead and clean through to b_bufsize. 3287 */ 3288 static void 3289 vfs_clean_pages_dirty_buf(struct buf *bp) 3290 { 3291 vm_ooffset_t foff, noff, eoff; 3292 vm_page_t m; 3293 int i; 3294 3295 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 3296 return; 3297 3298 foff = bp->b_offset; 3299 KASSERT(bp->b_offset != NOOFFSET, 3300 ("vfs_clean_pages_dirty_buf: no buffer offset")); 3301 3302 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 3303 vfs_drain_busy_pages(bp); 3304 vfs_setdirty_locked_object(bp); 3305 for (i = 0; i < bp->b_npages; i++) { 3306 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3307 eoff = noff; 3308 if (eoff > bp->b_offset + bp->b_bufsize) 3309 eoff = bp->b_offset + bp->b_bufsize; 3310 m = bp->b_pages[i]; 3311 vfs_page_set_validclean(bp, foff, m); 3312 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3313 foff = noff; 3314 } 3315 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 3316 } 3317 3318 static void 3319 vfs_setdirty_locked_object(struct buf *bp) 3320 { 3321 vm_object_t object; 3322 int i; 3323 3324 object = bp->b_bufobj->bo_object; 3325 VM_OBJECT_ASSERT_WLOCKED(object); 3326 3327 /* 3328 * We qualify the scan for modified pages on whether the 3329 * object has been flushed yet. 3330 */ 3331 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) { 3332 vm_offset_t boffset; 3333 vm_offset_t eoffset; 3334 3335 /* 3336 * test the pages to see if they have been modified directly 3337 * by users through the VM system. 3338 */ 3339 for (i = 0; i < bp->b_npages; i++) 3340 vm_page_test_dirty(bp->b_pages[i]); 3341 3342 /* 3343 * Calculate the encompassing dirty range, boffset and eoffset, 3344 * (eoffset - boffset) bytes. 3345 */ 3346 3347 for (i = 0; i < bp->b_npages; i++) { 3348 if (bp->b_pages[i]->dirty) 3349 break; 3350 } 3351 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3352 3353 for (i = bp->b_npages - 1; i >= 0; --i) { 3354 if (bp->b_pages[i]->dirty) { 3355 break; 3356 } 3357 } 3358 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 3359 3360 /* 3361 * Fit it to the buffer. 3362 */ 3363 3364 if (eoffset > bp->b_bcount) 3365 eoffset = bp->b_bcount; 3366 3367 /* 3368 * If we have a good dirty range, merge with the existing 3369 * dirty range. 3370 */ 3371 3372 if (boffset < eoffset) { 3373 if (bp->b_dirtyoff > boffset) 3374 bp->b_dirtyoff = boffset; 3375 if (bp->b_dirtyend < eoffset) 3376 bp->b_dirtyend = eoffset; 3377 } 3378 } 3379 } 3380 3381 /* 3382 * Allocate the KVA mapping for an existing buffer. 3383 * If an unmapped buffer is provided but a mapped buffer is requested, take 3384 * also care to properly setup mappings between pages and KVA. 3385 */ 3386 static void 3387 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 3388 { 3389 int bsize, maxsize, need_mapping, need_kva; 3390 off_t offset; 3391 3392 need_mapping = bp->b_data == unmapped_buf && 3393 (gbflags & GB_UNMAPPED) == 0; 3394 need_kva = bp->b_kvabase == unmapped_buf && 3395 bp->b_data == unmapped_buf && 3396 (gbflags & GB_KVAALLOC) != 0; 3397 if (!need_mapping && !need_kva) 3398 return; 3399 3400 BUF_CHECK_UNMAPPED(bp); 3401 3402 if (need_mapping && bp->b_kvabase != unmapped_buf) { 3403 /* 3404 * Buffer is not mapped, but the KVA was already 3405 * reserved at the time of the instantiation. Use the 3406 * allocated space. 3407 */ 3408 goto has_addr; 3409 } 3410 3411 /* 3412 * Calculate the amount of the address space we would reserve 3413 * if the buffer was mapped. 3414 */ 3415 bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 3416 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 3417 offset = blkno * bsize; 3418 maxsize = size + (offset & PAGE_MASK); 3419 maxsize = imax(maxsize, bsize); 3420 3421 while (bufkva_alloc(bp, maxsize, gbflags) != 0) { 3422 if ((gbflags & GB_NOWAIT_BD) != 0) { 3423 /* 3424 * XXXKIB: defragmentation cannot 3425 * succeed, not sure what else to do. 3426 */ 3427 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp); 3428 } 3429 atomic_add_int(&mappingrestarts, 1); 3430 bufspace_wait(bp->b_vp, gbflags, 0, 0); 3431 } 3432 has_addr: 3433 if (need_mapping) { 3434 /* b_offset is handled by bpmap_qenter. */ 3435 bp->b_data = bp->b_kvabase; 3436 BUF_CHECK_MAPPED(bp); 3437 bpmap_qenter(bp); 3438 } 3439 } 3440 3441 /* 3442 * getblk: 3443 * 3444 * Get a block given a specified block and offset into a file/device. 3445 * The buffers B_DONE bit will be cleared on return, making it almost 3446 * ready for an I/O initiation. B_INVAL may or may not be set on 3447 * return. The caller should clear B_INVAL prior to initiating a 3448 * READ. 3449 * 3450 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 3451 * an existing buffer. 3452 * 3453 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 3454 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 3455 * and then cleared based on the backing VM. If the previous buffer is 3456 * non-0-sized but invalid, B_CACHE will be cleared. 3457 * 3458 * If getblk() must create a new buffer, the new buffer is returned with 3459 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3460 * case it is returned with B_INVAL clear and B_CACHE set based on the 3461 * backing VM. 3462 * 3463 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 3464 * B_CACHE bit is clear. 3465 * 3466 * What this means, basically, is that the caller should use B_CACHE to 3467 * determine whether the buffer is fully valid or not and should clear 3468 * B_INVAL prior to issuing a read. If the caller intends to validate 3469 * the buffer by loading its data area with something, the caller needs 3470 * to clear B_INVAL. If the caller does this without issuing an I/O, 3471 * the caller should set B_CACHE ( as an optimization ), else the caller 3472 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3473 * a write attempt or if it was a successful read. If the caller 3474 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3475 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3476 */ 3477 struct buf * 3478 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3479 int flags) 3480 { 3481 struct buf *bp; 3482 struct bufobj *bo; 3483 int bsize, error, maxsize, vmio; 3484 off_t offset; 3485 3486 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3487 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3488 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3489 ASSERT_VOP_LOCKED(vp, "getblk"); 3490 if (size > MAXBCACHEBUF) 3491 panic("getblk: size(%d) > MAXBCACHEBUF(%d)\n", size, 3492 MAXBCACHEBUF); 3493 if (!unmapped_buf_allowed) 3494 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3495 3496 bo = &vp->v_bufobj; 3497 loop: 3498 BO_RLOCK(bo); 3499 bp = gbincore(bo, blkno); 3500 if (bp != NULL) { 3501 int lockflags; 3502 /* 3503 * Buffer is in-core. If the buffer is not busy nor managed, 3504 * it must be on a queue. 3505 */ 3506 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 3507 3508 if (flags & GB_LOCK_NOWAIT) 3509 lockflags |= LK_NOWAIT; 3510 3511 error = BUF_TIMELOCK(bp, lockflags, 3512 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3513 3514 /* 3515 * If we slept and got the lock we have to restart in case 3516 * the buffer changed identities. 3517 */ 3518 if (error == ENOLCK) 3519 goto loop; 3520 /* We timed out or were interrupted. */ 3521 else if (error) 3522 return (NULL); 3523 /* If recursed, assume caller knows the rules. */ 3524 else if (BUF_LOCKRECURSED(bp)) 3525 goto end; 3526 3527 /* 3528 * The buffer is locked. B_CACHE is cleared if the buffer is 3529 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3530 * and for a VMIO buffer B_CACHE is adjusted according to the 3531 * backing VM cache. 3532 */ 3533 if (bp->b_flags & B_INVAL) 3534 bp->b_flags &= ~B_CACHE; 3535 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3536 bp->b_flags |= B_CACHE; 3537 if (bp->b_flags & B_MANAGED) 3538 MPASS(bp->b_qindex == QUEUE_NONE); 3539 else 3540 bremfree(bp); 3541 3542 /* 3543 * check for size inconsistencies for non-VMIO case. 3544 */ 3545 if (bp->b_bcount != size) { 3546 if ((bp->b_flags & B_VMIO) == 0 || 3547 (size > bp->b_kvasize)) { 3548 if (bp->b_flags & B_DELWRI) { 3549 /* 3550 * If buffer is pinned and caller does 3551 * not want sleep waiting for it to be 3552 * unpinned, bail out 3553 * */ 3554 if (bp->b_pin_count > 0) { 3555 if (flags & GB_LOCK_NOWAIT) { 3556 bqrelse(bp); 3557 return (NULL); 3558 } else { 3559 bunpin_wait(bp); 3560 } 3561 } 3562 bp->b_flags |= B_NOCACHE; 3563 bwrite(bp); 3564 } else { 3565 if (LIST_EMPTY(&bp->b_dep)) { 3566 bp->b_flags |= B_RELBUF; 3567 brelse(bp); 3568 } else { 3569 bp->b_flags |= B_NOCACHE; 3570 bwrite(bp); 3571 } 3572 } 3573 goto loop; 3574 } 3575 } 3576 3577 /* 3578 * Handle the case of unmapped buffer which should 3579 * become mapped, or the buffer for which KVA 3580 * reservation is requested. 3581 */ 3582 bp_unmapped_get_kva(bp, blkno, size, flags); 3583 3584 /* 3585 * If the size is inconsistent in the VMIO case, we can resize 3586 * the buffer. This might lead to B_CACHE getting set or 3587 * cleared. If the size has not changed, B_CACHE remains 3588 * unchanged from its previous state. 3589 */ 3590 allocbuf(bp, size); 3591 3592 KASSERT(bp->b_offset != NOOFFSET, 3593 ("getblk: no buffer offset")); 3594 3595 /* 3596 * A buffer with B_DELWRI set and B_CACHE clear must 3597 * be committed before we can return the buffer in 3598 * order to prevent the caller from issuing a read 3599 * ( due to B_CACHE not being set ) and overwriting 3600 * it. 3601 * 3602 * Most callers, including NFS and FFS, need this to 3603 * operate properly either because they assume they 3604 * can issue a read if B_CACHE is not set, or because 3605 * ( for example ) an uncached B_DELWRI might loop due 3606 * to softupdates re-dirtying the buffer. In the latter 3607 * case, B_CACHE is set after the first write completes, 3608 * preventing further loops. 3609 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3610 * above while extending the buffer, we cannot allow the 3611 * buffer to remain with B_CACHE set after the write 3612 * completes or it will represent a corrupt state. To 3613 * deal with this we set B_NOCACHE to scrap the buffer 3614 * after the write. 3615 * 3616 * We might be able to do something fancy, like setting 3617 * B_CACHE in bwrite() except if B_DELWRI is already set, 3618 * so the below call doesn't set B_CACHE, but that gets real 3619 * confusing. This is much easier. 3620 */ 3621 3622 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3623 bp->b_flags |= B_NOCACHE; 3624 bwrite(bp); 3625 goto loop; 3626 } 3627 bp->b_flags &= ~B_DONE; 3628 } else { 3629 /* 3630 * Buffer is not in-core, create new buffer. The buffer 3631 * returned by getnewbuf() is locked. Note that the returned 3632 * buffer is also considered valid (not marked B_INVAL). 3633 */ 3634 BO_RUNLOCK(bo); 3635 /* 3636 * If the user does not want us to create the buffer, bail out 3637 * here. 3638 */ 3639 if (flags & GB_NOCREAT) 3640 return NULL; 3641 if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread)) 3642 return NULL; 3643 3644 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize; 3645 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize")); 3646 offset = blkno * bsize; 3647 vmio = vp->v_object != NULL; 3648 if (vmio) { 3649 maxsize = size + (offset & PAGE_MASK); 3650 } else { 3651 maxsize = size; 3652 /* Do not allow non-VMIO notmapped buffers. */ 3653 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3654 } 3655 maxsize = imax(maxsize, bsize); 3656 3657 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags); 3658 if (bp == NULL) { 3659 if (slpflag || slptimeo) 3660 return NULL; 3661 /* 3662 * XXX This is here until the sleep path is diagnosed 3663 * enough to work under very low memory conditions. 3664 * 3665 * There's an issue on low memory, 4BSD+non-preempt 3666 * systems (eg MIPS routers with 32MB RAM) where buffer 3667 * exhaustion occurs without sleeping for buffer 3668 * reclaimation. This just sticks in a loop and 3669 * constantly attempts to allocate a buffer, which 3670 * hits exhaustion and tries to wakeup bufdaemon. 3671 * This never happens because we never yield. 3672 * 3673 * The real solution is to identify and fix these cases 3674 * so we aren't effectively busy-waiting in a loop 3675 * until the reclaimation path has cycles to run. 3676 */ 3677 kern_yield(PRI_USER); 3678 goto loop; 3679 } 3680 3681 /* 3682 * This code is used to make sure that a buffer is not 3683 * created while the getnewbuf routine is blocked. 3684 * This can be a problem whether the vnode is locked or not. 3685 * If the buffer is created out from under us, we have to 3686 * throw away the one we just created. 3687 * 3688 * Note: this must occur before we associate the buffer 3689 * with the vp especially considering limitations in 3690 * the splay tree implementation when dealing with duplicate 3691 * lblkno's. 3692 */ 3693 BO_LOCK(bo); 3694 if (gbincore(bo, blkno)) { 3695 BO_UNLOCK(bo); 3696 bp->b_flags |= B_INVAL; 3697 brelse(bp); 3698 bufspace_release(maxsize); 3699 goto loop; 3700 } 3701 3702 /* 3703 * Insert the buffer into the hash, so that it can 3704 * be found by incore. 3705 */ 3706 bp->b_blkno = bp->b_lblkno = blkno; 3707 bp->b_offset = offset; 3708 bgetvp(vp, bp); 3709 BO_UNLOCK(bo); 3710 3711 /* 3712 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 3713 * buffer size starts out as 0, B_CACHE will be set by 3714 * allocbuf() for the VMIO case prior to it testing the 3715 * backing store for validity. 3716 */ 3717 3718 if (vmio) { 3719 bp->b_flags |= B_VMIO; 3720 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 3721 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 3722 bp, vp->v_object, bp->b_bufobj->bo_object)); 3723 } else { 3724 bp->b_flags &= ~B_VMIO; 3725 KASSERT(bp->b_bufobj->bo_object == NULL, 3726 ("ARGH! has b_bufobj->bo_object %p %p\n", 3727 bp, bp->b_bufobj->bo_object)); 3728 BUF_CHECK_MAPPED(bp); 3729 } 3730 3731 allocbuf(bp, size); 3732 bufspace_release(maxsize); 3733 bp->b_flags &= ~B_DONE; 3734 } 3735 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 3736 BUF_ASSERT_HELD(bp); 3737 end: 3738 KASSERT(bp->b_bufobj == bo, 3739 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3740 return (bp); 3741 } 3742 3743 /* 3744 * Get an empty, disassociated buffer of given size. The buffer is initially 3745 * set to B_INVAL. 3746 */ 3747 struct buf * 3748 geteblk(int size, int flags) 3749 { 3750 struct buf *bp; 3751 int maxsize; 3752 3753 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3754 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) { 3755 if ((flags & GB_NOWAIT_BD) && 3756 (curthread->td_pflags & TDP_BUFNEED) != 0) 3757 return (NULL); 3758 } 3759 allocbuf(bp, size); 3760 bufspace_release(maxsize); 3761 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3762 BUF_ASSERT_HELD(bp); 3763 return (bp); 3764 } 3765 3766 /* 3767 * Truncate the backing store for a non-vmio buffer. 3768 */ 3769 static void 3770 vfs_nonvmio_truncate(struct buf *bp, int newbsize) 3771 { 3772 3773 if (bp->b_flags & B_MALLOC) { 3774 /* 3775 * malloced buffers are not shrunk 3776 */ 3777 if (newbsize == 0) { 3778 bufmallocadjust(bp, 0); 3779 free(bp->b_data, M_BIOBUF); 3780 bp->b_data = bp->b_kvabase; 3781 bp->b_flags &= ~B_MALLOC; 3782 } 3783 return; 3784 } 3785 vm_hold_free_pages(bp, newbsize); 3786 bufspace_adjust(bp, newbsize); 3787 } 3788 3789 /* 3790 * Extend the backing for a non-VMIO buffer. 3791 */ 3792 static void 3793 vfs_nonvmio_extend(struct buf *bp, int newbsize) 3794 { 3795 caddr_t origbuf; 3796 int origbufsize; 3797 3798 /* 3799 * We only use malloced memory on the first allocation. 3800 * and revert to page-allocated memory when the buffer 3801 * grows. 3802 * 3803 * There is a potential smp race here that could lead 3804 * to bufmallocspace slightly passing the max. It 3805 * is probably extremely rare and not worth worrying 3806 * over. 3807 */ 3808 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 && 3809 bufmallocspace < maxbufmallocspace) { 3810 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK); 3811 bp->b_flags |= B_MALLOC; 3812 bufmallocadjust(bp, newbsize); 3813 return; 3814 } 3815 3816 /* 3817 * If the buffer is growing on its other-than-first 3818 * allocation then we revert to the page-allocation 3819 * scheme. 3820 */ 3821 origbuf = NULL; 3822 origbufsize = 0; 3823 if (bp->b_flags & B_MALLOC) { 3824 origbuf = bp->b_data; 3825 origbufsize = bp->b_bufsize; 3826 bp->b_data = bp->b_kvabase; 3827 bufmallocadjust(bp, 0); 3828 bp->b_flags &= ~B_MALLOC; 3829 newbsize = round_page(newbsize); 3830 } 3831 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize, 3832 (vm_offset_t) bp->b_data + newbsize); 3833 if (origbuf != NULL) { 3834 bcopy(origbuf, bp->b_data, origbufsize); 3835 free(origbuf, M_BIOBUF); 3836 } 3837 bufspace_adjust(bp, newbsize); 3838 } 3839 3840 /* 3841 * This code constitutes the buffer memory from either anonymous system 3842 * memory (in the case of non-VMIO operations) or from an associated 3843 * VM object (in the case of VMIO operations). This code is able to 3844 * resize a buffer up or down. 3845 * 3846 * Note that this code is tricky, and has many complications to resolve 3847 * deadlock or inconsistent data situations. Tread lightly!!! 3848 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3849 * the caller. Calling this code willy nilly can result in the loss of data. 3850 * 3851 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3852 * B_CACHE for the non-VMIO case. 3853 */ 3854 int 3855 allocbuf(struct buf *bp, int size) 3856 { 3857 int newbsize; 3858 3859 BUF_ASSERT_HELD(bp); 3860 3861 if (bp->b_bcount == size) 3862 return (1); 3863 3864 if (bp->b_kvasize != 0 && bp->b_kvasize < size) 3865 panic("allocbuf: buffer too small"); 3866 3867 newbsize = roundup2(size, DEV_BSIZE); 3868 if ((bp->b_flags & B_VMIO) == 0) { 3869 if ((bp->b_flags & B_MALLOC) == 0) 3870 newbsize = round_page(newbsize); 3871 /* 3872 * Just get anonymous memory from the kernel. Don't 3873 * mess with B_CACHE. 3874 */ 3875 if (newbsize < bp->b_bufsize) 3876 vfs_nonvmio_truncate(bp, newbsize); 3877 else if (newbsize > bp->b_bufsize) 3878 vfs_nonvmio_extend(bp, newbsize); 3879 } else { 3880 int desiredpages; 3881 3882 desiredpages = (size == 0) ? 0 : 3883 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 3884 3885 if (bp->b_flags & B_MALLOC) 3886 panic("allocbuf: VMIO buffer can't be malloced"); 3887 /* 3888 * Set B_CACHE initially if buffer is 0 length or will become 3889 * 0-length. 3890 */ 3891 if (size == 0 || bp->b_bufsize == 0) 3892 bp->b_flags |= B_CACHE; 3893 3894 if (newbsize < bp->b_bufsize) 3895 vfs_vmio_truncate(bp, desiredpages); 3896 /* XXX This looks as if it should be newbsize > b_bufsize */ 3897 else if (size > bp->b_bcount) 3898 vfs_vmio_extend(bp, desiredpages, size); 3899 bufspace_adjust(bp, newbsize); 3900 } 3901 bp->b_bcount = size; /* requested buffer size. */ 3902 return (1); 3903 } 3904 3905 extern int inflight_transient_maps; 3906 3907 void 3908 biodone(struct bio *bp) 3909 { 3910 struct mtx *mtxp; 3911 void (*done)(struct bio *); 3912 vm_offset_t start, end; 3913 3914 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 3915 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING; 3916 bp->bio_flags |= BIO_UNMAPPED; 3917 start = trunc_page((vm_offset_t)bp->bio_data); 3918 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 3919 bp->bio_data = unmapped_buf; 3920 pmap_qremove(start, OFF_TO_IDX(end - start)); 3921 vmem_free(transient_arena, start, end - start); 3922 atomic_add_int(&inflight_transient_maps, -1); 3923 } 3924 done = bp->bio_done; 3925 if (done == NULL) { 3926 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3927 mtx_lock(mtxp); 3928 bp->bio_flags |= BIO_DONE; 3929 wakeup(bp); 3930 mtx_unlock(mtxp); 3931 } else { 3932 bp->bio_flags |= BIO_DONE; 3933 done(bp); 3934 } 3935 } 3936 3937 /* 3938 * Wait for a BIO to finish. 3939 */ 3940 int 3941 biowait(struct bio *bp, const char *wchan) 3942 { 3943 struct mtx *mtxp; 3944 3945 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3946 mtx_lock(mtxp); 3947 while ((bp->bio_flags & BIO_DONE) == 0) 3948 msleep(bp, mtxp, PRIBIO, wchan, 0); 3949 mtx_unlock(mtxp); 3950 if (bp->bio_error != 0) 3951 return (bp->bio_error); 3952 if (!(bp->bio_flags & BIO_ERROR)) 3953 return (0); 3954 return (EIO); 3955 } 3956 3957 void 3958 biofinish(struct bio *bp, struct devstat *stat, int error) 3959 { 3960 3961 if (error) { 3962 bp->bio_error = error; 3963 bp->bio_flags |= BIO_ERROR; 3964 } 3965 if (stat != NULL) 3966 devstat_end_transaction_bio(stat, bp); 3967 biodone(bp); 3968 } 3969 3970 /* 3971 * bufwait: 3972 * 3973 * Wait for buffer I/O completion, returning error status. The buffer 3974 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3975 * error and cleared. 3976 */ 3977 int 3978 bufwait(struct buf *bp) 3979 { 3980 if (bp->b_iocmd == BIO_READ) 3981 bwait(bp, PRIBIO, "biord"); 3982 else 3983 bwait(bp, PRIBIO, "biowr"); 3984 if (bp->b_flags & B_EINTR) { 3985 bp->b_flags &= ~B_EINTR; 3986 return (EINTR); 3987 } 3988 if (bp->b_ioflags & BIO_ERROR) { 3989 return (bp->b_error ? bp->b_error : EIO); 3990 } else { 3991 return (0); 3992 } 3993 } 3994 3995 /* 3996 * bufdone: 3997 * 3998 * Finish I/O on a buffer, optionally calling a completion function. 3999 * This is usually called from an interrupt so process blocking is 4000 * not allowed. 4001 * 4002 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 4003 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 4004 * assuming B_INVAL is clear. 4005 * 4006 * For the VMIO case, we set B_CACHE if the op was a read and no 4007 * read error occurred, or if the op was a write. B_CACHE is never 4008 * set if the buffer is invalid or otherwise uncacheable. 4009 * 4010 * biodone does not mess with B_INVAL, allowing the I/O routine or the 4011 * initiator to leave B_INVAL set to brelse the buffer out of existence 4012 * in the biodone routine. 4013 */ 4014 void 4015 bufdone(struct buf *bp) 4016 { 4017 struct bufobj *dropobj; 4018 void (*biodone)(struct buf *); 4019 4020 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 4021 dropobj = NULL; 4022 4023 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 4024 BUF_ASSERT_HELD(bp); 4025 4026 runningbufwakeup(bp); 4027 if (bp->b_iocmd == BIO_WRITE) 4028 dropobj = bp->b_bufobj; 4029 /* call optional completion function if requested */ 4030 if (bp->b_iodone != NULL) { 4031 biodone = bp->b_iodone; 4032 bp->b_iodone = NULL; 4033 (*biodone) (bp); 4034 if (dropobj) 4035 bufobj_wdrop(dropobj); 4036 return; 4037 } 4038 4039 bufdone_finish(bp); 4040 4041 if (dropobj) 4042 bufobj_wdrop(dropobj); 4043 } 4044 4045 void 4046 bufdone_finish(struct buf *bp) 4047 { 4048 BUF_ASSERT_HELD(bp); 4049 4050 if (!LIST_EMPTY(&bp->b_dep)) 4051 buf_complete(bp); 4052 4053 if (bp->b_flags & B_VMIO) { 4054 /* 4055 * Set B_CACHE if the op was a normal read and no error 4056 * occurred. B_CACHE is set for writes in the b*write() 4057 * routines. 4058 */ 4059 if (bp->b_iocmd == BIO_READ && 4060 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 4061 !(bp->b_ioflags & BIO_ERROR)) 4062 bp->b_flags |= B_CACHE; 4063 vfs_vmio_iodone(bp); 4064 } 4065 4066 /* 4067 * For asynchronous completions, release the buffer now. The brelse 4068 * will do a wakeup there if necessary - so no need to do a wakeup 4069 * here in the async case. The sync case always needs to do a wakeup. 4070 */ 4071 if (bp->b_flags & B_ASYNC) { 4072 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || 4073 (bp->b_ioflags & BIO_ERROR)) 4074 brelse(bp); 4075 else 4076 bqrelse(bp); 4077 } else 4078 bdone(bp); 4079 } 4080 4081 /* 4082 * This routine is called in lieu of iodone in the case of 4083 * incomplete I/O. This keeps the busy status for pages 4084 * consistent. 4085 */ 4086 void 4087 vfs_unbusy_pages(struct buf *bp) 4088 { 4089 int i; 4090 vm_object_t obj; 4091 vm_page_t m; 4092 4093 runningbufwakeup(bp); 4094 if (!(bp->b_flags & B_VMIO)) 4095 return; 4096 4097 obj = bp->b_bufobj->bo_object; 4098 VM_OBJECT_WLOCK(obj); 4099 for (i = 0; i < bp->b_npages; i++) { 4100 m = bp->b_pages[i]; 4101 if (m == bogus_page) { 4102 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 4103 if (!m) 4104 panic("vfs_unbusy_pages: page missing\n"); 4105 bp->b_pages[i] = m; 4106 if (buf_mapped(bp)) { 4107 BUF_CHECK_MAPPED(bp); 4108 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4109 bp->b_pages, bp->b_npages); 4110 } else 4111 BUF_CHECK_UNMAPPED(bp); 4112 } 4113 vm_page_sunbusy(m); 4114 } 4115 vm_object_pip_wakeupn(obj, bp->b_npages); 4116 VM_OBJECT_WUNLOCK(obj); 4117 } 4118 4119 /* 4120 * vfs_page_set_valid: 4121 * 4122 * Set the valid bits in a page based on the supplied offset. The 4123 * range is restricted to the buffer's size. 4124 * 4125 * This routine is typically called after a read completes. 4126 */ 4127 static void 4128 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4129 { 4130 vm_ooffset_t eoff; 4131 4132 /* 4133 * Compute the end offset, eoff, such that [off, eoff) does not span a 4134 * page boundary and eoff is not greater than the end of the buffer. 4135 * The end of the buffer, in this case, is our file EOF, not the 4136 * allocation size of the buffer. 4137 */ 4138 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 4139 if (eoff > bp->b_offset + bp->b_bcount) 4140 eoff = bp->b_offset + bp->b_bcount; 4141 4142 /* 4143 * Set valid range. This is typically the entire buffer and thus the 4144 * entire page. 4145 */ 4146 if (eoff > off) 4147 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 4148 } 4149 4150 /* 4151 * vfs_page_set_validclean: 4152 * 4153 * Set the valid bits and clear the dirty bits in a page based on the 4154 * supplied offset. The range is restricted to the buffer's size. 4155 */ 4156 static void 4157 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 4158 { 4159 vm_ooffset_t soff, eoff; 4160 4161 /* 4162 * Start and end offsets in buffer. eoff - soff may not cross a 4163 * page boundary or cross the end of the buffer. The end of the 4164 * buffer, in this case, is our file EOF, not the allocation size 4165 * of the buffer. 4166 */ 4167 soff = off; 4168 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4169 if (eoff > bp->b_offset + bp->b_bcount) 4170 eoff = bp->b_offset + bp->b_bcount; 4171 4172 /* 4173 * Set valid range. This is typically the entire buffer and thus the 4174 * entire page. 4175 */ 4176 if (eoff > soff) { 4177 vm_page_set_validclean( 4178 m, 4179 (vm_offset_t) (soff & PAGE_MASK), 4180 (vm_offset_t) (eoff - soff) 4181 ); 4182 } 4183 } 4184 4185 /* 4186 * Ensure that all buffer pages are not exclusive busied. If any page is 4187 * exclusive busy, drain it. 4188 */ 4189 void 4190 vfs_drain_busy_pages(struct buf *bp) 4191 { 4192 vm_page_t m; 4193 int i, last_busied; 4194 4195 VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object); 4196 last_busied = 0; 4197 for (i = 0; i < bp->b_npages; i++) { 4198 m = bp->b_pages[i]; 4199 if (vm_page_xbusied(m)) { 4200 for (; last_busied < i; last_busied++) 4201 vm_page_sbusy(bp->b_pages[last_busied]); 4202 while (vm_page_xbusied(m)) { 4203 vm_page_lock(m); 4204 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4205 vm_page_busy_sleep(m, "vbpage"); 4206 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4207 } 4208 } 4209 } 4210 for (i = 0; i < last_busied; i++) 4211 vm_page_sunbusy(bp->b_pages[i]); 4212 } 4213 4214 /* 4215 * This routine is called before a device strategy routine. 4216 * It is used to tell the VM system that paging I/O is in 4217 * progress, and treat the pages associated with the buffer 4218 * almost as being exclusive busy. Also the object paging_in_progress 4219 * flag is handled to make sure that the object doesn't become 4220 * inconsistent. 4221 * 4222 * Since I/O has not been initiated yet, certain buffer flags 4223 * such as BIO_ERROR or B_INVAL may be in an inconsistent state 4224 * and should be ignored. 4225 */ 4226 void 4227 vfs_busy_pages(struct buf *bp, int clear_modify) 4228 { 4229 int i, bogus; 4230 vm_object_t obj; 4231 vm_ooffset_t foff; 4232 vm_page_t m; 4233 4234 if (!(bp->b_flags & B_VMIO)) 4235 return; 4236 4237 obj = bp->b_bufobj->bo_object; 4238 foff = bp->b_offset; 4239 KASSERT(bp->b_offset != NOOFFSET, 4240 ("vfs_busy_pages: no buffer offset")); 4241 VM_OBJECT_WLOCK(obj); 4242 vfs_drain_busy_pages(bp); 4243 if (bp->b_bufsize != 0) 4244 vfs_setdirty_locked_object(bp); 4245 bogus = 0; 4246 for (i = 0; i < bp->b_npages; i++) { 4247 m = bp->b_pages[i]; 4248 4249 if ((bp->b_flags & B_CLUSTER) == 0) { 4250 vm_object_pip_add(obj, 1); 4251 vm_page_sbusy(m); 4252 } 4253 /* 4254 * When readying a buffer for a read ( i.e 4255 * clear_modify == 0 ), it is important to do 4256 * bogus_page replacement for valid pages in 4257 * partially instantiated buffers. Partially 4258 * instantiated buffers can, in turn, occur when 4259 * reconstituting a buffer from its VM backing store 4260 * base. We only have to do this if B_CACHE is 4261 * clear ( which causes the I/O to occur in the 4262 * first place ). The replacement prevents the read 4263 * I/O from overwriting potentially dirty VM-backed 4264 * pages. XXX bogus page replacement is, uh, bogus. 4265 * It may not work properly with small-block devices. 4266 * We need to find a better way. 4267 */ 4268 if (clear_modify) { 4269 pmap_remove_write(m); 4270 vfs_page_set_validclean(bp, foff, m); 4271 } else if (m->valid == VM_PAGE_BITS_ALL && 4272 (bp->b_flags & B_CACHE) == 0) { 4273 bp->b_pages[i] = bogus_page; 4274 bogus++; 4275 } 4276 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4277 } 4278 VM_OBJECT_WUNLOCK(obj); 4279 if (bogus && buf_mapped(bp)) { 4280 BUF_CHECK_MAPPED(bp); 4281 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4282 bp->b_pages, bp->b_npages); 4283 } 4284 } 4285 4286 /* 4287 * vfs_bio_set_valid: 4288 * 4289 * Set the range within the buffer to valid. The range is 4290 * relative to the beginning of the buffer, b_offset. Note that 4291 * b_offset itself may be offset from the beginning of the first 4292 * page. 4293 */ 4294 void 4295 vfs_bio_set_valid(struct buf *bp, int base, int size) 4296 { 4297 int i, n; 4298 vm_page_t m; 4299 4300 if (!(bp->b_flags & B_VMIO)) 4301 return; 4302 4303 /* 4304 * Fixup base to be relative to beginning of first page. 4305 * Set initial n to be the maximum number of bytes in the 4306 * first page that can be validated. 4307 */ 4308 base += (bp->b_offset & PAGE_MASK); 4309 n = PAGE_SIZE - (base & PAGE_MASK); 4310 4311 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4312 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4313 m = bp->b_pages[i]; 4314 if (n > size) 4315 n = size; 4316 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4317 base += n; 4318 size -= n; 4319 n = PAGE_SIZE; 4320 } 4321 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4322 } 4323 4324 /* 4325 * vfs_bio_clrbuf: 4326 * 4327 * If the specified buffer is a non-VMIO buffer, clear the entire 4328 * buffer. If the specified buffer is a VMIO buffer, clear and 4329 * validate only the previously invalid portions of the buffer. 4330 * This routine essentially fakes an I/O, so we need to clear 4331 * BIO_ERROR and B_INVAL. 4332 * 4333 * Note that while we only theoretically need to clear through b_bcount, 4334 * we go ahead and clear through b_bufsize. 4335 */ 4336 void 4337 vfs_bio_clrbuf(struct buf *bp) 4338 { 4339 int i, j, mask, sa, ea, slide; 4340 4341 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4342 clrbuf(bp); 4343 return; 4344 } 4345 bp->b_flags &= ~B_INVAL; 4346 bp->b_ioflags &= ~BIO_ERROR; 4347 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4348 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4349 (bp->b_offset & PAGE_MASK) == 0) { 4350 if (bp->b_pages[0] == bogus_page) 4351 goto unlock; 4352 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4353 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object); 4354 if ((bp->b_pages[0]->valid & mask) == mask) 4355 goto unlock; 4356 if ((bp->b_pages[0]->valid & mask) == 0) { 4357 pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize); 4358 bp->b_pages[0]->valid |= mask; 4359 goto unlock; 4360 } 4361 } 4362 sa = bp->b_offset & PAGE_MASK; 4363 slide = 0; 4364 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4365 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4366 ea = slide & PAGE_MASK; 4367 if (ea == 0) 4368 ea = PAGE_SIZE; 4369 if (bp->b_pages[i] == bogus_page) 4370 continue; 4371 j = sa / DEV_BSIZE; 4372 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4373 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object); 4374 if ((bp->b_pages[i]->valid & mask) == mask) 4375 continue; 4376 if ((bp->b_pages[i]->valid & mask) == 0) 4377 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4378 else { 4379 for (; sa < ea; sa += DEV_BSIZE, j++) { 4380 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4381 pmap_zero_page_area(bp->b_pages[i], 4382 sa, DEV_BSIZE); 4383 } 4384 } 4385 } 4386 bp->b_pages[i]->valid |= mask; 4387 } 4388 unlock: 4389 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4390 bp->b_resid = 0; 4391 } 4392 4393 void 4394 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4395 { 4396 vm_page_t m; 4397 int i, n; 4398 4399 if (buf_mapped(bp)) { 4400 BUF_CHECK_MAPPED(bp); 4401 bzero(bp->b_data + base, size); 4402 } else { 4403 BUF_CHECK_UNMAPPED(bp); 4404 n = PAGE_SIZE - (base & PAGE_MASK); 4405 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4406 m = bp->b_pages[i]; 4407 if (n > size) 4408 n = size; 4409 pmap_zero_page_area(m, base & PAGE_MASK, n); 4410 base += n; 4411 size -= n; 4412 n = PAGE_SIZE; 4413 } 4414 } 4415 } 4416 4417 /* 4418 * vm_hold_load_pages and vm_hold_free_pages get pages into 4419 * a buffers address space. The pages are anonymous and are 4420 * not associated with a file object. 4421 */ 4422 static void 4423 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4424 { 4425 vm_offset_t pg; 4426 vm_page_t p; 4427 int index; 4428 4429 BUF_CHECK_MAPPED(bp); 4430 4431 to = round_page(to); 4432 from = round_page(from); 4433 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4434 4435 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4436 tryagain: 4437 /* 4438 * note: must allocate system pages since blocking here 4439 * could interfere with paging I/O, no matter which 4440 * process we are. 4441 */ 4442 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4443 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT)); 4444 if (p == NULL) { 4445 VM_WAIT; 4446 goto tryagain; 4447 } 4448 pmap_qenter(pg, &p, 1); 4449 bp->b_pages[index] = p; 4450 } 4451 bp->b_npages = index; 4452 } 4453 4454 /* Return pages associated with this buf to the vm system */ 4455 static void 4456 vm_hold_free_pages(struct buf *bp, int newbsize) 4457 { 4458 vm_offset_t from; 4459 vm_page_t p; 4460 int index, newnpages; 4461 4462 BUF_CHECK_MAPPED(bp); 4463 4464 from = round_page((vm_offset_t)bp->b_data + newbsize); 4465 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4466 if (bp->b_npages > newnpages) 4467 pmap_qremove(from, bp->b_npages - newnpages); 4468 for (index = newnpages; index < bp->b_npages; index++) { 4469 p = bp->b_pages[index]; 4470 bp->b_pages[index] = NULL; 4471 if (vm_page_sbusied(p)) 4472 printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 4473 (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); 4474 p->wire_count--; 4475 vm_page_free(p); 4476 atomic_subtract_int(&vm_cnt.v_wire_count, 1); 4477 } 4478 bp->b_npages = newnpages; 4479 } 4480 4481 /* 4482 * Map an IO request into kernel virtual address space. 4483 * 4484 * All requests are (re)mapped into kernel VA space. 4485 * Notice that we use b_bufsize for the size of the buffer 4486 * to be mapped. b_bcount might be modified by the driver. 4487 * 4488 * Note that even if the caller determines that the address space should 4489 * be valid, a race or a smaller-file mapped into a larger space may 4490 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4491 * check the return value. 4492 * 4493 * This function only works with pager buffers. 4494 */ 4495 int 4496 vmapbuf(struct buf *bp, int mapbuf) 4497 { 4498 vm_prot_t prot; 4499 int pidx; 4500 4501 if (bp->b_bufsize < 0) 4502 return (-1); 4503 prot = VM_PROT_READ; 4504 if (bp->b_iocmd == BIO_READ) 4505 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4506 if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4507 (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages, 4508 btoc(MAXPHYS))) < 0) 4509 return (-1); 4510 bp->b_npages = pidx; 4511 bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK; 4512 if (mapbuf || !unmapped_buf_allowed) { 4513 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx); 4514 bp->b_data = bp->b_kvabase + bp->b_offset; 4515 } else 4516 bp->b_data = unmapped_buf; 4517 return(0); 4518 } 4519 4520 /* 4521 * Free the io map PTEs associated with this IO operation. 4522 * We also invalidate the TLB entries and restore the original b_addr. 4523 * 4524 * This function only works with pager buffers. 4525 */ 4526 void 4527 vunmapbuf(struct buf *bp) 4528 { 4529 int npages; 4530 4531 npages = bp->b_npages; 4532 if (buf_mapped(bp)) 4533 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4534 vm_page_unhold_pages(bp->b_pages, npages); 4535 4536 bp->b_data = unmapped_buf; 4537 } 4538 4539 void 4540 bdone(struct buf *bp) 4541 { 4542 struct mtx *mtxp; 4543 4544 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4545 mtx_lock(mtxp); 4546 bp->b_flags |= B_DONE; 4547 wakeup(bp); 4548 mtx_unlock(mtxp); 4549 } 4550 4551 void 4552 bwait(struct buf *bp, u_char pri, const char *wchan) 4553 { 4554 struct mtx *mtxp; 4555 4556 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4557 mtx_lock(mtxp); 4558 while ((bp->b_flags & B_DONE) == 0) 4559 msleep(bp, mtxp, pri, wchan, 0); 4560 mtx_unlock(mtxp); 4561 } 4562 4563 int 4564 bufsync(struct bufobj *bo, int waitfor) 4565 { 4566 4567 return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread)); 4568 } 4569 4570 void 4571 bufstrategy(struct bufobj *bo, struct buf *bp) 4572 { 4573 int i = 0; 4574 struct vnode *vp; 4575 4576 vp = bp->b_vp; 4577 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 4578 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 4579 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 4580 i = VOP_STRATEGY(vp, bp); 4581 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 4582 } 4583 4584 void 4585 bufobj_wrefl(struct bufobj *bo) 4586 { 4587 4588 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4589 ASSERT_BO_WLOCKED(bo); 4590 bo->bo_numoutput++; 4591 } 4592 4593 void 4594 bufobj_wref(struct bufobj *bo) 4595 { 4596 4597 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4598 BO_LOCK(bo); 4599 bo->bo_numoutput++; 4600 BO_UNLOCK(bo); 4601 } 4602 4603 void 4604 bufobj_wdrop(struct bufobj *bo) 4605 { 4606 4607 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 4608 BO_LOCK(bo); 4609 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 4610 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 4611 bo->bo_flag &= ~BO_WWAIT; 4612 wakeup(&bo->bo_numoutput); 4613 } 4614 BO_UNLOCK(bo); 4615 } 4616 4617 int 4618 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 4619 { 4620 int error; 4621 4622 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 4623 ASSERT_BO_WLOCKED(bo); 4624 error = 0; 4625 while (bo->bo_numoutput) { 4626 bo->bo_flag |= BO_WWAIT; 4627 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 4628 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 4629 if (error) 4630 break; 4631 } 4632 return (error); 4633 } 4634 4635 void 4636 bpin(struct buf *bp) 4637 { 4638 struct mtx *mtxp; 4639 4640 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4641 mtx_lock(mtxp); 4642 bp->b_pin_count++; 4643 mtx_unlock(mtxp); 4644 } 4645 4646 void 4647 bunpin(struct buf *bp) 4648 { 4649 struct mtx *mtxp; 4650 4651 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4652 mtx_lock(mtxp); 4653 if (--bp->b_pin_count == 0) 4654 wakeup(bp); 4655 mtx_unlock(mtxp); 4656 } 4657 4658 void 4659 bunpin_wait(struct buf *bp) 4660 { 4661 struct mtx *mtxp; 4662 4663 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4664 mtx_lock(mtxp); 4665 while (bp->b_pin_count > 0) 4666 msleep(bp, mtxp, PRIBIO, "bwunpin", 0); 4667 mtx_unlock(mtxp); 4668 } 4669 4670 /* 4671 * Set bio_data or bio_ma for struct bio from the struct buf. 4672 */ 4673 void 4674 bdata2bio(struct buf *bp, struct bio *bip) 4675 { 4676 4677 if (!buf_mapped(bp)) { 4678 KASSERT(unmapped_buf_allowed, ("unmapped")); 4679 bip->bio_ma = bp->b_pages; 4680 bip->bio_ma_n = bp->b_npages; 4681 bip->bio_data = unmapped_buf; 4682 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 4683 bip->bio_flags |= BIO_UNMAPPED; 4684 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 4685 PAGE_SIZE == bp->b_npages, 4686 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 4687 (long long)bip->bio_length, bip->bio_ma_n)); 4688 } else { 4689 bip->bio_data = bp->b_data; 4690 bip->bio_ma = NULL; 4691 } 4692 } 4693 4694 #include "opt_ddb.h" 4695 #ifdef DDB 4696 #include <ddb/ddb.h> 4697 4698 /* DDB command to show buffer data */ 4699 DB_SHOW_COMMAND(buffer, db_show_buffer) 4700 { 4701 /* get args */ 4702 struct buf *bp = (struct buf *)addr; 4703 4704 if (!have_addr) { 4705 db_printf("usage: show buffer <addr>\n"); 4706 return; 4707 } 4708 4709 db_printf("buf at %p\n", bp); 4710 db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n", 4711 (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags, 4712 PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS); 4713 db_printf( 4714 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 4715 "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, " 4716 "b_dep = %p\n", 4717 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4718 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 4719 (intmax_t)bp->b_lblkno, bp->b_dep.lh_first); 4720 db_printf("b_kvabase = %p, b_kvasize = %d\n", 4721 bp->b_kvabase, bp->b_kvasize); 4722 if (bp->b_npages) { 4723 int i; 4724 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 4725 for (i = 0; i < bp->b_npages; i++) { 4726 vm_page_t m; 4727 m = bp->b_pages[i]; 4728 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4729 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4730 if ((i + 1) < bp->b_npages) 4731 db_printf(","); 4732 } 4733 db_printf("\n"); 4734 } 4735 db_printf(" "); 4736 BUF_LOCKPRINTINFO(bp); 4737 } 4738 4739 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 4740 { 4741 struct buf *bp; 4742 int i; 4743 4744 for (i = 0; i < nbuf; i++) { 4745 bp = &buf[i]; 4746 if (BUF_ISLOCKED(bp)) { 4747 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4748 db_printf("\n"); 4749 } 4750 } 4751 } 4752 4753 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 4754 { 4755 struct vnode *vp; 4756 struct buf *bp; 4757 4758 if (!have_addr) { 4759 db_printf("usage: show vnodebufs <addr>\n"); 4760 return; 4761 } 4762 vp = (struct vnode *)addr; 4763 db_printf("Clean buffers:\n"); 4764 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 4765 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4766 db_printf("\n"); 4767 } 4768 db_printf("Dirty buffers:\n"); 4769 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 4770 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4771 db_printf("\n"); 4772 } 4773 } 4774 4775 DB_COMMAND(countfreebufs, db_coundfreebufs) 4776 { 4777 struct buf *bp; 4778 int i, used = 0, nfree = 0; 4779 4780 if (have_addr) { 4781 db_printf("usage: countfreebufs\n"); 4782 return; 4783 } 4784 4785 for (i = 0; i < nbuf; i++) { 4786 bp = &buf[i]; 4787 if (bp->b_qindex == QUEUE_EMPTY) 4788 nfree++; 4789 else 4790 used++; 4791 } 4792 4793 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 4794 nfree + used); 4795 db_printf("numfreebuffers is %d\n", numfreebuffers); 4796 } 4797 #endif /* DDB */ 4798