1 /* 2 * Copyright (c) 1994,1997 John S. Dyson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice immediately at the beginning of the file, without modification, 10 * this list of conditions, and the following disclaimer. 11 * 2. Absolutely no warranty of function or purpose is made by the author 12 * John S. Dyson. 13 * 14 * $FreeBSD$ 15 */ 16 17 /* 18 * this file contains a new buffer I/O scheme implementing a coherent 19 * VM object and buffer cache scheme. Pains have been taken to make 20 * sure that the performance degradation associated with schemes such 21 * as this is not realized. 22 * 23 * Author: John S. Dyson 24 * Significant help during the development and debugging phases 25 * had been provided by David Greenman, also of the FreeBSD core team. 26 * 27 * see man buf(9) for more info. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bio.h> 33 #include <sys/buf.h> 34 #include <sys/eventhandler.h> 35 #include <sys/lock.h> 36 #include <sys/malloc.h> 37 #include <sys/mount.h> 38 #include <sys/mutex.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/ktr.h> 42 #include <sys/proc.h> 43 #include <sys/reboot.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/vmmeter.h> 47 #include <sys/vnode.h> 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_kern.h> 51 #include <vm/vm_pageout.h> 52 #include <vm/vm_page.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_map.h> 56 57 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); 58 59 struct bio_ops bioops; /* I/O operation notification */ 60 61 struct buf_ops buf_ops_bio = { 62 "buf_ops_bio", 63 bwrite 64 }; 65 66 struct buf *buf; /* buffer header pool */ 67 struct swqueue bswlist; 68 struct mtx buftimelock; /* Interlock on setting prio and timo */ 69 70 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, 71 vm_offset_t to); 72 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, 73 vm_offset_t to); 74 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, 75 int pageno, vm_page_t m); 76 static void vfs_clean_pages(struct buf * bp); 77 static void vfs_setdirty(struct buf *bp); 78 static void vfs_vmio_release(struct buf *bp); 79 static void vfs_backgroundwritedone(struct buf *bp); 80 static int flushbufqueues(void); 81 82 static int bd_request; 83 84 static void buf_daemon __P((void)); 85 /* 86 * bogus page -- for I/O to/from partially complete buffers 87 * this is a temporary solution to the problem, but it is not 88 * really that bad. it would be better to split the buffer 89 * for input in the case of buffers partially already in memory, 90 * but the code is intricate enough already. 91 */ 92 vm_page_t bogus_page; 93 int vmiodirenable = FALSE; 94 int runningbufspace; 95 static vm_offset_t bogus_offset; 96 97 static int bufspace, maxbufspace, 98 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace; 99 static int bufreusecnt, bufdefragcnt, buffreekvacnt; 100 static int needsbuffer; 101 static int lorunningspace, hirunningspace, runningbufreq; 102 static int numdirtybuffers, lodirtybuffers, hidirtybuffers; 103 static int numfreebuffers, lofreebuffers, hifreebuffers; 104 static int getnewbufcalls; 105 static int getnewbufrestarts; 106 107 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, 108 &numdirtybuffers, 0, ""); 109 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, 110 &lodirtybuffers, 0, ""); 111 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, 112 &hidirtybuffers, 0, ""); 113 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, 114 &numfreebuffers, 0, ""); 115 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, 116 &lofreebuffers, 0, ""); 117 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, 118 &hifreebuffers, 0, ""); 119 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, 120 &runningbufspace, 0, ""); 121 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, 122 &lorunningspace, 0, ""); 123 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, 124 &hirunningspace, 0, ""); 125 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, 126 &maxbufspace, 0, ""); 127 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, 128 &hibufspace, 0, ""); 129 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, 130 &lobufspace, 0, ""); 131 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, 132 &bufspace, 0, ""); 133 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, 134 &maxbufmallocspace, 0, ""); 135 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, 136 &bufmallocspace, 0, ""); 137 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, 138 &getnewbufcalls, 0, ""); 139 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, 140 &getnewbufrestarts, 0, ""); 141 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, 142 &vmiodirenable, 0, ""); 143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, 144 &bufdefragcnt, 0, ""); 145 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, 146 &buffreekvacnt, 0, ""); 147 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, 148 &bufreusecnt, 0, ""); 149 150 static int bufhashmask; 151 static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 152 struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; 153 char *buf_wmesg = BUF_WMESG; 154 155 extern int vm_swap_size; 156 157 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 158 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ 159 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 160 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 161 162 /* 163 * Buffer hash table code. Note that the logical block scans linearly, which 164 * gives us some L1 cache locality. 165 */ 166 167 static __inline 168 struct bufhashhdr * 169 bufhash(struct vnode *vnp, daddr_t bn) 170 { 171 return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); 172 } 173 174 /* 175 * numdirtywakeup: 176 * 177 * If someone is blocked due to there being too many dirty buffers, 178 * and numdirtybuffers is now reasonable, wake them up. 179 */ 180 181 static __inline void 182 numdirtywakeup(int level) 183 { 184 if (numdirtybuffers <= level) { 185 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { 186 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; 187 wakeup(&needsbuffer); 188 } 189 } 190 } 191 192 /* 193 * bufspacewakeup: 194 * 195 * Called when buffer space is potentially available for recovery. 196 * getnewbuf() will block on this flag when it is unable to free 197 * sufficient buffer space. Buffer space becomes recoverable when 198 * bp's get placed back in the queues. 199 */ 200 201 static __inline void 202 bufspacewakeup(void) 203 { 204 /* 205 * If someone is waiting for BUF space, wake them up. Even 206 * though we haven't freed the kva space yet, the waiting 207 * process will be able to now. 208 */ 209 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 210 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 211 wakeup(&needsbuffer); 212 } 213 } 214 215 /* 216 * runningbufwakeup() - in-progress I/O accounting. 217 * 218 */ 219 static __inline void 220 runningbufwakeup(struct buf *bp) 221 { 222 if (bp->b_runningbufspace) { 223 runningbufspace -= bp->b_runningbufspace; 224 bp->b_runningbufspace = 0; 225 if (runningbufreq && runningbufspace <= lorunningspace) { 226 runningbufreq = 0; 227 wakeup(&runningbufreq); 228 } 229 } 230 } 231 232 /* 233 * bufcountwakeup: 234 * 235 * Called when a buffer has been added to one of the free queues to 236 * account for the buffer and to wakeup anyone waiting for free buffers. 237 * This typically occurs when large amounts of metadata are being handled 238 * by the buffer cache ( else buffer space runs out first, usually ). 239 */ 240 241 static __inline void 242 bufcountwakeup(void) 243 { 244 ++numfreebuffers; 245 if (needsbuffer) { 246 needsbuffer &= ~VFS_BIO_NEED_ANY; 247 if (numfreebuffers >= hifreebuffers) 248 needsbuffer &= ~VFS_BIO_NEED_FREE; 249 wakeup(&needsbuffer); 250 } 251 } 252 253 /* 254 * waitrunningbufspace() 255 * 256 * runningbufspace is a measure of the amount of I/O currently 257 * running. This routine is used in async-write situations to 258 * prevent creating huge backups of pending writes to a device. 259 * Only asynchronous writes are governed by this function. 260 * 261 * Reads will adjust runningbufspace, but will not block based on it. 262 * The read load has a side effect of reducing the allowed write load. 263 * 264 * This does NOT turn an async write into a sync write. It waits 265 * for earlier writes to complete and generally returns before the 266 * caller's write has reached the device. 267 */ 268 static __inline void 269 waitrunningbufspace(void) 270 { 271 while (runningbufspace > hirunningspace) { 272 ++runningbufreq; 273 tsleep(&runningbufreq, PVM, "wdrain", 0); 274 } 275 } 276 277 278 /* 279 * vfs_buf_test_cache: 280 * 281 * Called when a buffer is extended. This function clears the B_CACHE 282 * bit if the newly extended portion of the buffer does not contain 283 * valid data. 284 * 285 * must be called with vm_mtx held 286 */ 287 static __inline__ 288 void 289 vfs_buf_test_cache(struct buf *bp, 290 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 291 vm_page_t m) 292 { 293 if (bp->b_flags & B_CACHE) { 294 int base = (foff + off) & PAGE_MASK; 295 if (vm_page_is_valid(m, base, size) == 0) 296 bp->b_flags &= ~B_CACHE; 297 } 298 } 299 300 static __inline__ 301 void 302 bd_wakeup(int dirtybuflevel) 303 { 304 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) { 305 bd_request = 1; 306 wakeup(&bd_request); 307 } 308 } 309 310 /* 311 * bd_speedup - speedup the buffer cache flushing code 312 */ 313 314 static __inline__ 315 void 316 bd_speedup(void) 317 { 318 bd_wakeup(1); 319 } 320 321 /* 322 * Initialize buffer headers and related structures. 323 */ 324 325 caddr_t 326 bufhashinit(caddr_t vaddr) 327 { 328 /* first, make a null hash table */ 329 for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) 330 ; 331 bufhashtbl = (void *)vaddr; 332 vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; 333 --bufhashmask; 334 return(vaddr); 335 } 336 337 void 338 bufinit(void) 339 { 340 struct buf *bp; 341 int i; 342 343 TAILQ_INIT(&bswlist); 344 LIST_INIT(&invalhash); 345 mtx_init(&buftimelock, "buftime lock", MTX_DEF); 346 347 for (i = 0; i <= bufhashmask; i++) 348 LIST_INIT(&bufhashtbl[i]); 349 350 /* next, make a null set of free lists */ 351 for (i = 0; i < BUFFER_QUEUES; i++) 352 TAILQ_INIT(&bufqueues[i]); 353 354 /* finally, initialize each buffer header and stick on empty q */ 355 for (i = 0; i < nbuf; i++) { 356 bp = &buf[i]; 357 bzero(bp, sizeof *bp); 358 bp->b_flags = B_INVAL; /* we're just an empty header */ 359 bp->b_dev = NODEV; 360 bp->b_rcred = NOCRED; 361 bp->b_wcred = NOCRED; 362 bp->b_qindex = QUEUE_EMPTY; 363 bp->b_xflags = 0; 364 LIST_INIT(&bp->b_dep); 365 BUF_LOCKINIT(bp); 366 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 367 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 368 } 369 370 /* 371 * maxbufspace is the absolute maximum amount of buffer space we are 372 * allowed to reserve in KVM and in real terms. The absolute maximum 373 * is nominally used by buf_daemon. hibufspace is the nominal maximum 374 * used by most other processes. The differential is required to 375 * ensure that buf_daemon is able to run when other processes might 376 * be blocked waiting for buffer space. 377 * 378 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 379 * this may result in KVM fragmentation which is not handled optimally 380 * by the system. 381 */ 382 maxbufspace = nbuf * BKVASIZE; 383 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 384 lobufspace = hibufspace - MAXBSIZE; 385 386 lorunningspace = 512 * 1024; 387 hirunningspace = 1024 * 1024; 388 389 /* 390 * Limit the amount of malloc memory since it is wired permanently into 391 * the kernel space. Even though this is accounted for in the buffer 392 * allocation, we don't want the malloced region to grow uncontrolled. 393 * The malloc scheme improves memory utilization significantly on average 394 * (small) directories. 395 */ 396 maxbufmallocspace = hibufspace / 20; 397 398 /* 399 * Reduce the chance of a deadlock occuring by limiting the number 400 * of delayed-write dirty buffers we allow to stack up. 401 */ 402 hidirtybuffers = nbuf / 4 + 20; 403 numdirtybuffers = 0; 404 /* 405 * To support extreme low-memory systems, make sure hidirtybuffers cannot 406 * eat up all available buffer space. This occurs when our minimum cannot 407 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 408 * BKVASIZE'd (8K) buffers. 409 */ 410 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 411 hidirtybuffers >>= 1; 412 } 413 lodirtybuffers = hidirtybuffers / 2; 414 415 /* 416 * Try to keep the number of free buffers in the specified range, 417 * and give special processes (e.g. like buf_daemon) access to an 418 * emergency reserve. 419 */ 420 lofreebuffers = nbuf / 18 + 5; 421 hifreebuffers = 2 * lofreebuffers; 422 numfreebuffers = nbuf; 423 424 /* 425 * Maximum number of async ops initiated per buf_daemon loop. This is 426 * somewhat of a hack at the moment, we really need to limit ourselves 427 * based on the number of bytes of I/O in-transit that were initiated 428 * from buf_daemon. 429 */ 430 431 mtx_lock(&vm_mtx); 432 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 433 bogus_page = vm_page_alloc(kernel_object, 434 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 435 VM_ALLOC_NORMAL); 436 cnt.v_wire_count++; 437 mtx_unlock(&vm_mtx); 438 439 } 440 441 /* 442 * bfreekva() - free the kva allocation for a buffer. 443 * 444 * Must be called at splbio() or higher as this is the only locking for 445 * buffer_map. 446 * 447 * Since this call frees up buffer space, we call bufspacewakeup(). 448 * 449 * Must be called without the vm_mtx. 450 */ 451 static void 452 bfreekva(struct buf * bp) 453 { 454 455 mtx_assert(&vm_mtx, MA_NOTOWNED); 456 if (bp->b_kvasize) { 457 ++buffreekvacnt; 458 bufspace -= bp->b_kvasize; 459 mtx_lock(&vm_mtx); 460 vm_map_delete(buffer_map, 461 (vm_offset_t) bp->b_kvabase, 462 (vm_offset_t) bp->b_kvabase + bp->b_kvasize 463 ); 464 mtx_unlock(&vm_mtx); 465 bp->b_kvasize = 0; 466 bufspacewakeup(); 467 } 468 } 469 470 /* 471 * bremfree: 472 * 473 * Remove the buffer from the appropriate free list. 474 */ 475 void 476 bremfree(struct buf * bp) 477 { 478 int s = splbio(); 479 int old_qindex = bp->b_qindex; 480 481 if (bp->b_qindex != QUEUE_NONE) { 482 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp)); 483 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 484 bp->b_qindex = QUEUE_NONE; 485 } else { 486 if (BUF_REFCNT(bp) <= 1) 487 panic("bremfree: removing a buffer not on a queue"); 488 } 489 490 /* 491 * Fixup numfreebuffers count. If the buffer is invalid or not 492 * delayed-write, and it was on the EMPTY, LRU, or AGE queues, 493 * the buffer was free and we must decrement numfreebuffers. 494 */ 495 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 496 switch(old_qindex) { 497 case QUEUE_DIRTY: 498 case QUEUE_CLEAN: 499 case QUEUE_EMPTY: 500 case QUEUE_EMPTYKVA: 501 --numfreebuffers; 502 break; 503 default: 504 break; 505 } 506 } 507 splx(s); 508 } 509 510 511 /* 512 * Get a buffer with the specified data. Look in the cache first. We 513 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 514 * is set, the buffer is valid and we do not have to do anything ( see 515 * getblk() ). This is really just a special case of breadn(). 516 */ 517 int 518 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, 519 struct buf ** bpp) 520 { 521 522 return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp)); 523 } 524 525 /* 526 * Operates like bread, but also starts asynchronous I/O on 527 * read-ahead blocks. We must clear BIO_ERROR and B_INVAL prior 528 * to initiating I/O . If B_CACHE is set, the buffer is valid 529 * and we do not have to do anything. 530 */ 531 int 532 breadn(struct vnode * vp, daddr_t blkno, int size, 533 daddr_t * rablkno, int *rabsize, 534 int cnt, struct ucred * cred, struct buf ** bpp) 535 { 536 struct buf *bp, *rabp; 537 int i; 538 int rv = 0, readwait = 0; 539 540 *bpp = bp = getblk(vp, blkno, size, 0, 0); 541 542 /* if not found in cache, do some I/O */ 543 if ((bp->b_flags & B_CACHE) == 0) { 544 if (curproc != PCPU_GET(idleproc)) 545 curproc->p_stats->p_ru.ru_inblock++; 546 bp->b_iocmd = BIO_READ; 547 bp->b_flags &= ~B_INVAL; 548 bp->b_ioflags &= ~BIO_ERROR; 549 if (bp->b_rcred == NOCRED) { 550 if (cred != NOCRED) 551 crhold(cred); 552 bp->b_rcred = cred; 553 } 554 vfs_busy_pages(bp, 0); 555 VOP_STRATEGY(vp, bp); 556 ++readwait; 557 } 558 559 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 560 if (inmem(vp, *rablkno)) 561 continue; 562 rabp = getblk(vp, *rablkno, *rabsize, 0, 0); 563 564 if ((rabp->b_flags & B_CACHE) == 0) { 565 if (curproc != PCPU_GET(idleproc)) 566 curproc->p_stats->p_ru.ru_inblock++; 567 rabp->b_flags |= B_ASYNC; 568 rabp->b_flags &= ~B_INVAL; 569 rabp->b_ioflags &= ~BIO_ERROR; 570 rabp->b_iocmd = BIO_READ; 571 if (rabp->b_rcred == NOCRED) { 572 if (cred != NOCRED) 573 crhold(cred); 574 rabp->b_rcred = cred; 575 } 576 vfs_busy_pages(rabp, 0); 577 BUF_KERNPROC(rabp); 578 VOP_STRATEGY(vp, rabp); 579 } else { 580 brelse(rabp); 581 } 582 } 583 584 if (readwait) { 585 rv = bufwait(bp); 586 } 587 return (rv); 588 } 589 590 /* 591 * Write, release buffer on completion. (Done by iodone 592 * if async). Do not bother writing anything if the buffer 593 * is invalid. 594 * 595 * Note that we set B_CACHE here, indicating that buffer is 596 * fully valid and thus cacheable. This is true even of NFS 597 * now so we set it generally. This could be set either here 598 * or in biodone() since the I/O is synchronous. We put it 599 * here. 600 */ 601 602 int dobkgrdwrite = 1; 603 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, ""); 604 605 int 606 bwrite(struct buf * bp) 607 { 608 int oldflags, s; 609 struct buf *newbp; 610 611 if (bp->b_flags & B_INVAL) { 612 brelse(bp); 613 return (0); 614 } 615 616 oldflags = bp->b_flags; 617 618 if (BUF_REFCNT(bp) == 0) 619 panic("bwrite: buffer is not busy???"); 620 s = splbio(); 621 /* 622 * If a background write is already in progress, delay 623 * writing this block if it is asynchronous. Otherwise 624 * wait for the background write to complete. 625 */ 626 if (bp->b_xflags & BX_BKGRDINPROG) { 627 if (bp->b_flags & B_ASYNC) { 628 splx(s); 629 bdwrite(bp); 630 return (0); 631 } 632 bp->b_xflags |= BX_BKGRDWAIT; 633 tsleep(&bp->b_xflags, PRIBIO, "biord", 0); 634 if (bp->b_xflags & BX_BKGRDINPROG) 635 panic("bwrite: still writing"); 636 } 637 638 /* Mark the buffer clean */ 639 bundirty(bp); 640 641 /* 642 * If this buffer is marked for background writing and we 643 * do not have to wait for it, make a copy and write the 644 * copy so as to leave this buffer ready for further use. 645 * 646 * This optimization eats a lot of memory. If we have a page 647 * or buffer shortfall we can't do it. 648 */ 649 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 650 (bp->b_flags & B_ASYNC) && 651 !vm_page_count_severe() && 652 !buf_dirty_count_severe()) { 653 if (bp->b_iodone != NULL) { 654 printf("bp->b_iodone = %p\n", bp->b_iodone); 655 panic("bwrite: need chained iodone"); 656 } 657 658 /* get a new block */ 659 newbp = geteblk(bp->b_bufsize); 660 661 /* set it to be identical to the old block */ 662 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 663 bgetvp(bp->b_vp, newbp); 664 newbp->b_lblkno = bp->b_lblkno; 665 newbp->b_blkno = bp->b_blkno; 666 newbp->b_offset = bp->b_offset; 667 newbp->b_iodone = vfs_backgroundwritedone; 668 newbp->b_flags |= B_ASYNC; 669 newbp->b_flags &= ~B_INVAL; 670 671 /* move over the dependencies */ 672 if (LIST_FIRST(&bp->b_dep) != NULL) 673 buf_movedeps(bp, newbp); 674 675 /* 676 * Initiate write on the copy, release the original to 677 * the B_LOCKED queue so that it cannot go away until 678 * the background write completes. If not locked it could go 679 * away and then be reconstituted while it was being written. 680 * If the reconstituted buffer were written, we could end up 681 * with two background copies being written at the same time. 682 */ 683 bp->b_xflags |= BX_BKGRDINPROG; 684 bp->b_flags |= B_LOCKED; 685 bqrelse(bp); 686 bp = newbp; 687 } 688 689 bp->b_flags &= ~B_DONE; 690 bp->b_ioflags &= ~BIO_ERROR; 691 bp->b_flags |= B_WRITEINPROG | B_CACHE; 692 bp->b_iocmd = BIO_WRITE; 693 694 bp->b_vp->v_numoutput++; 695 vfs_busy_pages(bp, 1); 696 697 /* 698 * Normal bwrites pipeline writes 699 */ 700 bp->b_runningbufspace = bp->b_bufsize; 701 runningbufspace += bp->b_runningbufspace; 702 703 if (curproc != PCPU_GET(idleproc)) 704 curproc->p_stats->p_ru.ru_oublock++; 705 splx(s); 706 if (oldflags & B_ASYNC) 707 BUF_KERNPROC(bp); 708 BUF_STRATEGY(bp); 709 710 if ((oldflags & B_ASYNC) == 0) { 711 int rtval = bufwait(bp); 712 brelse(bp); 713 return (rtval); 714 } else { 715 /* 716 * don't allow the async write to saturate the I/O 717 * system. There is no chance of deadlock here because 718 * we are blocking on I/O that is already in-progress. 719 */ 720 waitrunningbufspace(); 721 } 722 723 return (0); 724 } 725 726 /* 727 * Complete a background write started from bwrite. 728 */ 729 static void 730 vfs_backgroundwritedone(bp) 731 struct buf *bp; 732 { 733 struct buf *origbp; 734 735 /* 736 * Find the original buffer that we are writing. 737 */ 738 if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL) 739 panic("backgroundwritedone: lost buffer"); 740 /* 741 * Process dependencies then return any unfinished ones. 742 */ 743 if (LIST_FIRST(&bp->b_dep) != NULL) 744 buf_complete(bp); 745 if (LIST_FIRST(&bp->b_dep) != NULL) 746 buf_movedeps(bp, origbp); 747 /* 748 * Clear the BX_BKGRDINPROG flag in the original buffer 749 * and awaken it if it is waiting for the write to complete. 750 * If BX_BKGRDINPROG is not set in the original buffer it must 751 * have been released and re-instantiated - which is not legal. 752 */ 753 KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); 754 origbp->b_xflags &= ~BX_BKGRDINPROG; 755 if (origbp->b_xflags & BX_BKGRDWAIT) { 756 origbp->b_xflags &= ~BX_BKGRDWAIT; 757 wakeup(&origbp->b_xflags); 758 } 759 /* 760 * Clear the B_LOCKED flag and remove it from the locked 761 * queue if it currently resides there. 762 */ 763 origbp->b_flags &= ~B_LOCKED; 764 if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 765 bremfree(origbp); 766 bqrelse(origbp); 767 } 768 /* 769 * This buffer is marked B_NOCACHE, so when it is released 770 * by biodone, it will be tossed. We mark it with BIO_READ 771 * to avoid biodone doing a second vwakeup. 772 */ 773 bp->b_flags |= B_NOCACHE; 774 bp->b_iocmd = BIO_READ; 775 bp->b_flags &= ~(B_CACHE | B_DONE); 776 bp->b_iodone = 0; 777 bufdone(bp); 778 } 779 780 /* 781 * Delayed write. (Buffer is marked dirty). Do not bother writing 782 * anything if the buffer is marked invalid. 783 * 784 * Note that since the buffer must be completely valid, we can safely 785 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 786 * biodone() in order to prevent getblk from writing the buffer 787 * out synchronously. 788 */ 789 void 790 bdwrite(struct buf * bp) 791 { 792 if (BUF_REFCNT(bp) == 0) 793 panic("bdwrite: buffer is not busy"); 794 795 if (bp->b_flags & B_INVAL) { 796 brelse(bp); 797 return; 798 } 799 bdirty(bp); 800 801 /* 802 * Set B_CACHE, indicating that the buffer is fully valid. This is 803 * true even of NFS now. 804 */ 805 bp->b_flags |= B_CACHE; 806 807 /* 808 * This bmap keeps the system from needing to do the bmap later, 809 * perhaps when the system is attempting to do a sync. Since it 810 * is likely that the indirect block -- or whatever other datastructure 811 * that the filesystem needs is still in memory now, it is a good 812 * thing to do this. Note also, that if the pageout daemon is 813 * requesting a sync -- there might not be enough memory to do 814 * the bmap then... So, this is important to do. 815 */ 816 if (bp->b_lblkno == bp->b_blkno) { 817 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 818 } 819 820 mtx_lock(&vm_mtx); 821 /* 822 * Set the *dirty* buffer range based upon the VM system dirty pages. 823 */ 824 vfs_setdirty(bp); 825 826 /* 827 * We need to do this here to satisfy the vnode_pager and the 828 * pageout daemon, so that it thinks that the pages have been 829 * "cleaned". Note that since the pages are in a delayed write 830 * buffer -- the VFS layer "will" see that the pages get written 831 * out on the next sync, or perhaps the cluster will be completed. 832 */ 833 vfs_clean_pages(bp); 834 mtx_unlock(&vm_mtx); 835 bqrelse(bp); 836 837 /* 838 * Wakeup the buffer flushing daemon if we have a lot of dirty 839 * buffers (midpoint between our recovery point and our stall 840 * point). 841 */ 842 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 843 844 /* 845 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 846 * due to the softdep code. 847 */ 848 } 849 850 /* 851 * bdirty: 852 * 853 * Turn buffer into delayed write request. We must clear BIO_READ and 854 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 855 * itself to properly update it in the dirty/clean lists. We mark it 856 * B_DONE to ensure that any asynchronization of the buffer properly 857 * clears B_DONE ( else a panic will occur later ). 858 * 859 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 860 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 861 * should only be called if the buffer is known-good. 862 * 863 * Since the buffer is not on a queue, we do not update the numfreebuffers 864 * count. 865 * 866 * Must be called at splbio(). 867 * The buffer must be on QUEUE_NONE. 868 */ 869 void 870 bdirty(bp) 871 struct buf *bp; 872 { 873 KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 874 bp->b_flags &= ~(B_RELBUF); 875 bp->b_iocmd = BIO_WRITE; 876 877 if ((bp->b_flags & B_DELWRI) == 0) { 878 bp->b_flags |= B_DONE | B_DELWRI; 879 reassignbuf(bp, bp->b_vp); 880 ++numdirtybuffers; 881 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2); 882 } 883 } 884 885 /* 886 * bundirty: 887 * 888 * Clear B_DELWRI for buffer. 889 * 890 * Since the buffer is not on a queue, we do not update the numfreebuffers 891 * count. 892 * 893 * Must be called at splbio(). 894 * The buffer must be on QUEUE_NONE. 895 */ 896 897 void 898 bundirty(bp) 899 struct buf *bp; 900 { 901 KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 902 903 if (bp->b_flags & B_DELWRI) { 904 bp->b_flags &= ~B_DELWRI; 905 reassignbuf(bp, bp->b_vp); 906 --numdirtybuffers; 907 numdirtywakeup(lodirtybuffers); 908 } 909 /* 910 * Since it is now being written, we can clear its deferred write flag. 911 */ 912 bp->b_flags &= ~B_DEFERRED; 913 } 914 915 /* 916 * bawrite: 917 * 918 * Asynchronous write. Start output on a buffer, but do not wait for 919 * it to complete. The buffer is released when the output completes. 920 * 921 * bwrite() ( or the VOP routine anyway ) is responsible for handling 922 * B_INVAL buffers. Not us. 923 */ 924 void 925 bawrite(struct buf * bp) 926 { 927 bp->b_flags |= B_ASYNC; 928 (void) BUF_WRITE(bp); 929 } 930 931 /* 932 * bowrite: 933 * 934 * Ordered write. Start output on a buffer, and flag it so that the 935 * device will write it in the order it was queued. The buffer is 936 * released when the output completes. bwrite() ( or the VOP routine 937 * anyway ) is responsible for handling B_INVAL buffers. 938 */ 939 int 940 bowrite(struct buf * bp) 941 { 942 bp->b_ioflags |= BIO_ORDERED; 943 bp->b_flags |= B_ASYNC; 944 return (BUF_WRITE(bp)); 945 } 946 947 /* 948 * bwillwrite: 949 * 950 * Called prior to the locking of any vnodes when we are expecting to 951 * write. We do not want to starve the buffer cache with too many 952 * dirty buffers so we block here. By blocking prior to the locking 953 * of any vnodes we attempt to avoid the situation where a locked vnode 954 * prevents the various system daemons from flushing related buffers. 955 */ 956 957 void 958 bwillwrite(void) 959 { 960 if (numdirtybuffers >= hidirtybuffers) { 961 int s; 962 963 s = splbio(); 964 while (numdirtybuffers >= hidirtybuffers) { 965 bd_wakeup(1); 966 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; 967 tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); 968 } 969 splx(s); 970 } 971 } 972 973 /* 974 * Return true if we have too many dirty buffers. 975 */ 976 int 977 buf_dirty_count_severe(void) 978 { 979 return(numdirtybuffers >= hidirtybuffers); 980 } 981 982 /* 983 * brelse: 984 * 985 * Release a busy buffer and, if requested, free its resources. The 986 * buffer will be stashed in the appropriate bufqueue[] allowing it 987 * to be accessed later as a cache entity or reused for other purposes. 988 * 989 * vm_mtx must be not be held. 990 */ 991 void 992 brelse(struct buf * bp) 993 { 994 int s; 995 996 mtx_assert(&vm_mtx, MA_NOTOWNED); 997 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 998 999 s = splbio(); 1000 1001 if (bp->b_flags & B_LOCKED) 1002 bp->b_ioflags &= ~BIO_ERROR; 1003 1004 if (bp->b_iocmd == BIO_WRITE && 1005 (bp->b_ioflags & BIO_ERROR) && 1006 !(bp->b_flags & B_INVAL)) { 1007 /* 1008 * Failed write, redirty. Must clear BIO_ERROR to prevent 1009 * pages from being scrapped. If B_INVAL is set then 1010 * this case is not run and the next case is run to 1011 * destroy the buffer. B_INVAL can occur if the buffer 1012 * is outside the range supported by the underlying device. 1013 */ 1014 bp->b_ioflags &= ~BIO_ERROR; 1015 bdirty(bp); 1016 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1017 (bp->b_ioflags & BIO_ERROR) || 1018 bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) { 1019 /* 1020 * Either a failed I/O or we were asked to free or not 1021 * cache the buffer. 1022 */ 1023 bp->b_flags |= B_INVAL; 1024 if (LIST_FIRST(&bp->b_dep) != NULL) 1025 buf_deallocate(bp); 1026 if (bp->b_flags & B_DELWRI) { 1027 --numdirtybuffers; 1028 numdirtywakeup(lodirtybuffers); 1029 } 1030 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1031 if ((bp->b_flags & B_VMIO) == 0) { 1032 if (bp->b_bufsize) 1033 allocbuf(bp, 0); 1034 if (bp->b_vp) 1035 brelvp(bp); 1036 } 1037 } 1038 1039 /* 1040 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1041 * is called with B_DELWRI set, the underlying pages may wind up 1042 * getting freed causing a previous write (bdwrite()) to get 'lost' 1043 * because pages associated with a B_DELWRI bp are marked clean. 1044 * 1045 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1046 * if B_DELWRI is set. 1047 * 1048 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1049 * on pages to return pages to the VM page queues. 1050 */ 1051 if (bp->b_flags & B_DELWRI) 1052 bp->b_flags &= ~B_RELBUF; 1053 else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG)) 1054 bp->b_flags |= B_RELBUF; 1055 1056 /* 1057 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1058 * constituted, not even NFS buffers now. Two flags effect this. If 1059 * B_INVAL, the struct buf is invalidated but the VM object is kept 1060 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1061 * 1062 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1063 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1064 * buffer is also B_INVAL because it hits the re-dirtying code above. 1065 * 1066 * Normally we can do this whether a buffer is B_DELWRI or not. If 1067 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1068 * the commit state and we cannot afford to lose the buffer. If the 1069 * buffer has a background write in progress, we need to keep it 1070 * around to prevent it from being reconstituted and starting a second 1071 * background write. 1072 */ 1073 if ((bp->b_flags & B_VMIO) 1074 && !(bp->b_vp->v_tag == VT_NFS && 1075 !vn_isdisk(bp->b_vp, NULL) && 1076 (bp->b_flags & B_DELWRI)) 1077 ) { 1078 1079 int i, j, resid; 1080 vm_page_t m; 1081 off_t foff; 1082 vm_pindex_t poff; 1083 vm_object_t obj; 1084 struct vnode *vp; 1085 1086 vp = bp->b_vp; 1087 1088 /* 1089 * Get the base offset and length of the buffer. Note that 1090 * for block sizes that are less then PAGE_SIZE, the b_data 1091 * base of the buffer does not represent exactly b_offset and 1092 * neither b_offset nor b_size are necessarily page aligned. 1093 * Instead, the starting position of b_offset is: 1094 * 1095 * b_data + (b_offset & PAGE_MASK) 1096 * 1097 * block sizes less then DEV_BSIZE (usually 512) are not 1098 * supported due to the page granularity bits (m->valid, 1099 * m->dirty, etc...). 1100 * 1101 * See man buf(9) for more information 1102 */ 1103 resid = bp->b_bufsize; 1104 foff = bp->b_offset; 1105 1106 mtx_lock(&vm_mtx); 1107 for (i = 0; i < bp->b_npages; i++) { 1108 int had_bogus = 0; 1109 1110 m = bp->b_pages[i]; 1111 vm_page_flag_clear(m, PG_ZERO); 1112 1113 /* 1114 * If we hit a bogus page, fixup *all* the bogus pages 1115 * now. 1116 */ 1117 if (m == bogus_page) { 1118 mtx_unlock(&vm_mtx); 1119 VOP_GETVOBJECT(vp, &obj); 1120 poff = OFF_TO_IDX(bp->b_offset); 1121 had_bogus = 1; 1122 1123 mtx_lock(&vm_mtx); 1124 for (j = i; j < bp->b_npages; j++) { 1125 vm_page_t mtmp; 1126 mtmp = bp->b_pages[j]; 1127 if (mtmp == bogus_page) { 1128 mtmp = vm_page_lookup(obj, poff + j); 1129 if (!mtmp) { 1130 panic("brelse: page missing\n"); 1131 } 1132 bp->b_pages[j] = mtmp; 1133 } 1134 } 1135 1136 if ((bp->b_flags & B_INVAL) == 0) { 1137 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 1138 } 1139 m = bp->b_pages[i]; 1140 } 1141 if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) { 1142 int poffset = foff & PAGE_MASK; 1143 int presid = resid > (PAGE_SIZE - poffset) ? 1144 (PAGE_SIZE - poffset) : resid; 1145 1146 KASSERT(presid >= 0, ("brelse: extra page")); 1147 vm_page_set_invalid(m, poffset, presid); 1148 if (had_bogus) 1149 printf("avoided corruption bug in bogus_page/brelse code\n"); 1150 } 1151 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1152 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1153 } 1154 1155 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1156 vfs_vmio_release(bp); 1157 mtx_unlock(&vm_mtx); 1158 1159 } else if (bp->b_flags & B_VMIO) { 1160 1161 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1162 mtx_lock(&vm_mtx); 1163 vfs_vmio_release(bp); 1164 mtx_unlock(&vm_mtx); 1165 } 1166 1167 } 1168 1169 if (bp->b_qindex != QUEUE_NONE) 1170 panic("brelse: free buffer onto another queue???"); 1171 if (BUF_REFCNT(bp) > 1) { 1172 /* do not release to free list */ 1173 BUF_UNLOCK(bp); 1174 splx(s); 1175 return; 1176 } 1177 1178 /* enqueue */ 1179 1180 /* buffers with no memory */ 1181 if (bp->b_bufsize == 0) { 1182 bp->b_flags |= B_INVAL; 1183 bp->b_xflags &= ~BX_BKGRDWRITE; 1184 if (bp->b_xflags & BX_BKGRDINPROG) 1185 panic("losing buffer 1"); 1186 if (bp->b_kvasize) { 1187 bp->b_qindex = QUEUE_EMPTYKVA; 1188 } else { 1189 bp->b_qindex = QUEUE_EMPTY; 1190 } 1191 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1192 LIST_REMOVE(bp, b_hash); 1193 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1194 bp->b_dev = NODEV; 1195 /* buffers with junk contents */ 1196 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) { 1197 bp->b_flags |= B_INVAL; 1198 bp->b_xflags &= ~BX_BKGRDWRITE; 1199 if (bp->b_xflags & BX_BKGRDINPROG) 1200 panic("losing buffer 2"); 1201 bp->b_qindex = QUEUE_CLEAN; 1202 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1203 LIST_REMOVE(bp, b_hash); 1204 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1205 bp->b_dev = NODEV; 1206 1207 /* buffers that are locked */ 1208 } else if (bp->b_flags & B_LOCKED) { 1209 bp->b_qindex = QUEUE_LOCKED; 1210 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1211 1212 /* remaining buffers */ 1213 } else { 1214 if (bp->b_flags & B_DELWRI) 1215 bp->b_qindex = QUEUE_DIRTY; 1216 else 1217 bp->b_qindex = QUEUE_CLEAN; 1218 if (bp->b_flags & B_AGE) 1219 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 1220 else 1221 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 1222 } 1223 1224 /* 1225 * If B_INVAL, clear B_DELWRI. We've already placed the buffer 1226 * on the correct queue. 1227 */ 1228 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { 1229 bp->b_flags &= ~B_DELWRI; 1230 --numdirtybuffers; 1231 numdirtywakeup(lodirtybuffers); 1232 } 1233 1234 /* 1235 * Fixup numfreebuffers count. The bp is on an appropriate queue 1236 * unless locked. We then bump numfreebuffers if it is not B_DELWRI. 1237 * We've already handled the B_INVAL case ( B_DELWRI will be clear 1238 * if B_INVAL is set ). 1239 */ 1240 1241 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) 1242 bufcountwakeup(); 1243 1244 /* 1245 * Something we can maybe free or reuse 1246 */ 1247 if (bp->b_bufsize || bp->b_kvasize) 1248 bufspacewakeup(); 1249 1250 /* unlock */ 1251 BUF_UNLOCK(bp); 1252 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT); 1253 bp->b_ioflags &= ~BIO_ORDERED; 1254 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1255 panic("brelse: not dirty"); 1256 splx(s); 1257 } 1258 1259 /* 1260 * Release a buffer back to the appropriate queue but do not try to free 1261 * it. The buffer is expected to be used again soon. 1262 * 1263 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1264 * biodone() to requeue an async I/O on completion. It is also used when 1265 * known good buffers need to be requeued but we think we may need the data 1266 * again soon. 1267 * 1268 * XXX we should be able to leave the B_RELBUF hint set on completion. 1269 */ 1270 void 1271 bqrelse(struct buf * bp) 1272 { 1273 int s; 1274 1275 s = splbio(); 1276 1277 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1278 1279 if (bp->b_qindex != QUEUE_NONE) 1280 panic("bqrelse: free buffer onto another queue???"); 1281 if (BUF_REFCNT(bp) > 1) { 1282 /* do not release to free list */ 1283 BUF_UNLOCK(bp); 1284 splx(s); 1285 return; 1286 } 1287 if (bp->b_flags & B_LOCKED) { 1288 bp->b_ioflags &= ~BIO_ERROR; 1289 bp->b_qindex = QUEUE_LOCKED; 1290 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); 1291 /* buffers with stale but valid contents */ 1292 } else if (bp->b_flags & B_DELWRI) { 1293 bp->b_qindex = QUEUE_DIRTY; 1294 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); 1295 } else if (vm_page_count_severe()) { 1296 /* 1297 * We are too low on memory, we have to try to free the 1298 * buffer (most importantly: the wired pages making up its 1299 * backing store) *now*. 1300 */ 1301 splx(s); 1302 brelse(bp); 1303 return; 1304 } else { 1305 bp->b_qindex = QUEUE_CLEAN; 1306 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); 1307 } 1308 1309 if ((bp->b_flags & B_LOCKED) == 0 && 1310 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { 1311 bufcountwakeup(); 1312 } 1313 1314 /* 1315 * Something we can maybe free or reuse. 1316 */ 1317 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 1318 bufspacewakeup(); 1319 1320 /* unlock */ 1321 BUF_UNLOCK(bp); 1322 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1323 bp->b_ioflags &= ~BIO_ORDERED; 1324 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1325 panic("bqrelse: not dirty"); 1326 splx(s); 1327 } 1328 1329 /* 1330 * Must be called with vm_mtx held. 1331 */ 1332 static void 1333 vfs_vmio_release(bp) 1334 struct buf *bp; 1335 { 1336 int i; 1337 vm_page_t m; 1338 1339 mtx_assert(&vm_mtx, MA_OWNED); 1340 for (i = 0; i < bp->b_npages; i++) { 1341 m = bp->b_pages[i]; 1342 bp->b_pages[i] = NULL; 1343 /* 1344 * In order to keep page LRU ordering consistent, put 1345 * everything on the inactive queue. 1346 */ 1347 vm_page_unwire(m, 0); 1348 /* 1349 * We don't mess with busy pages, it is 1350 * the responsibility of the process that 1351 * busied the pages to deal with them. 1352 */ 1353 if ((m->flags & PG_BUSY) || (m->busy != 0)) 1354 continue; 1355 1356 if (m->wire_count == 0) { 1357 vm_page_flag_clear(m, PG_ZERO); 1358 /* 1359 * Might as well free the page if we can and it has 1360 * no valid data. We also free the page if the 1361 * buffer was used for direct I/O 1362 */ 1363 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { 1364 vm_page_busy(m); 1365 vm_page_protect(m, VM_PROT_NONE); 1366 vm_page_free(m); 1367 } else if (bp->b_flags & B_DIRECT) { 1368 vm_page_try_to_free(m); 1369 } else if (vm_page_count_severe()) { 1370 vm_page_try_to_cache(m); 1371 } 1372 } 1373 } 1374 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); 1375 1376 /* could drop vm_mtx here */ 1377 1378 if (bp->b_bufsize) { 1379 bufspacewakeup(); 1380 bp->b_bufsize = 0; 1381 } 1382 bp->b_npages = 0; 1383 bp->b_flags &= ~B_VMIO; 1384 if (bp->b_vp) 1385 brelvp(bp); 1386 } 1387 1388 /* 1389 * Check to see if a block is currently memory resident. 1390 */ 1391 struct buf * 1392 gbincore(struct vnode * vp, daddr_t blkno) 1393 { 1394 struct buf *bp; 1395 struct bufhashhdr *bh; 1396 1397 bh = bufhash(vp, blkno); 1398 1399 /* Search hash chain */ 1400 LIST_FOREACH(bp, bh, b_hash) { 1401 /* hit */ 1402 if (bp->b_vp == vp && bp->b_lblkno == blkno && 1403 (bp->b_flags & B_INVAL) == 0) { 1404 break; 1405 } 1406 } 1407 return (bp); 1408 } 1409 1410 /* 1411 * vfs_bio_awrite: 1412 * 1413 * Implement clustered async writes for clearing out B_DELWRI buffers. 1414 * This is much better then the old way of writing only one buffer at 1415 * a time. Note that we may not be presented with the buffers in the 1416 * correct order, so we search for the cluster in both directions. 1417 */ 1418 int 1419 vfs_bio_awrite(struct buf * bp) 1420 { 1421 int i; 1422 int j; 1423 daddr_t lblkno = bp->b_lblkno; 1424 struct vnode *vp = bp->b_vp; 1425 int s; 1426 int ncl; 1427 struct buf *bpa; 1428 int nwritten; 1429 int size; 1430 int maxcl; 1431 1432 s = splbio(); 1433 /* 1434 * right now we support clustered writing only to regular files. If 1435 * we find a clusterable block we could be in the middle of a cluster 1436 * rather then at the beginning. 1437 */ 1438 if ((vp->v_type == VREG) && 1439 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1440 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1441 1442 size = vp->v_mount->mnt_stat.f_iosize; 1443 maxcl = MAXPHYS / size; 1444 1445 for (i = 1; i < maxcl; i++) { 1446 if ((bpa = gbincore(vp, lblkno + i)) && 1447 BUF_REFCNT(bpa) == 0 && 1448 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1449 (B_DELWRI | B_CLUSTEROK)) && 1450 (bpa->b_bufsize == size)) { 1451 if ((bpa->b_blkno == bpa->b_lblkno) || 1452 (bpa->b_blkno != 1453 bp->b_blkno + ((i * size) >> DEV_BSHIFT))) 1454 break; 1455 } else { 1456 break; 1457 } 1458 } 1459 for (j = 1; i + j <= maxcl && j <= lblkno; j++) { 1460 if ((bpa = gbincore(vp, lblkno - j)) && 1461 BUF_REFCNT(bpa) == 0 && 1462 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == 1463 (B_DELWRI | B_CLUSTEROK)) && 1464 (bpa->b_bufsize == size)) { 1465 if ((bpa->b_blkno == bpa->b_lblkno) || 1466 (bpa->b_blkno != 1467 bp->b_blkno - ((j * size) >> DEV_BSHIFT))) 1468 break; 1469 } else { 1470 break; 1471 } 1472 } 1473 --j; 1474 ncl = i + j; 1475 /* 1476 * this is a possible cluster write 1477 */ 1478 if (ncl != 1) { 1479 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); 1480 splx(s); 1481 return nwritten; 1482 } 1483 } 1484 1485 BUF_LOCK(bp, LK_EXCLUSIVE); 1486 bremfree(bp); 1487 bp->b_flags |= B_ASYNC; 1488 1489 splx(s); 1490 /* 1491 * default (old) behavior, writing out only one block 1492 * 1493 * XXX returns b_bufsize instead of b_bcount for nwritten? 1494 */ 1495 nwritten = bp->b_bufsize; 1496 (void) BUF_WRITE(bp); 1497 1498 return nwritten; 1499 } 1500 1501 /* 1502 * getnewbuf: 1503 * 1504 * Find and initialize a new buffer header, freeing up existing buffers 1505 * in the bufqueues as necessary. The new buffer is returned locked. 1506 * 1507 * Important: B_INVAL is not set. If the caller wishes to throw the 1508 * buffer away, the caller must set B_INVAL prior to calling brelse(). 1509 * 1510 * We block if: 1511 * We have insufficient buffer headers 1512 * We have insufficient buffer space 1513 * buffer_map is too fragmented ( space reservation fails ) 1514 * If we have to flush dirty buffers ( but we try to avoid this ) 1515 * 1516 * To avoid VFS layer recursion we do not flush dirty buffers ourselves. 1517 * Instead we ask the buf daemon to do it for us. We attempt to 1518 * avoid piecemeal wakeups of the pageout daemon. 1519 */ 1520 1521 static struct buf * 1522 getnewbuf(int slpflag, int slptimeo, int size, int maxsize) 1523 { 1524 struct buf *bp; 1525 struct buf *nbp; 1526 int defrag = 0; 1527 int nqindex; 1528 static int flushingbufs; 1529 1530 /* 1531 * We can't afford to block since we might be holding a vnode lock, 1532 * which may prevent system daemons from running. We deal with 1533 * low-memory situations by proactively returning memory and running 1534 * async I/O rather then sync I/O. 1535 */ 1536 1537 ++getnewbufcalls; 1538 --getnewbufrestarts; 1539 restart: 1540 ++getnewbufrestarts; 1541 1542 /* 1543 * Setup for scan. If we do not have enough free buffers, 1544 * we setup a degenerate case that immediately fails. Note 1545 * that if we are specially marked process, we are allowed to 1546 * dip into our reserves. 1547 * 1548 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 1549 * 1550 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 1551 * However, there are a number of cases (defragging, reusing, ...) 1552 * where we cannot backup. 1553 */ 1554 nqindex = QUEUE_EMPTYKVA; 1555 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 1556 1557 if (nbp == NULL) { 1558 /* 1559 * If no EMPTYKVA buffers and we are either 1560 * defragging or reusing, locate a CLEAN buffer 1561 * to free or reuse. If bufspace useage is low 1562 * skip this step so we can allocate a new buffer. 1563 */ 1564 if (defrag || bufspace >= lobufspace) { 1565 nqindex = QUEUE_CLEAN; 1566 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 1567 } 1568 1569 /* 1570 * If we could not find or were not allowed to reuse a 1571 * CLEAN buffer, check to see if it is ok to use an EMPTY 1572 * buffer. We can only use an EMPTY buffer if allocating 1573 * its KVA would not otherwise run us out of buffer space. 1574 */ 1575 if (nbp == NULL && defrag == 0 && 1576 bufspace + maxsize < hibufspace) { 1577 nqindex = QUEUE_EMPTY; 1578 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 1579 } 1580 } 1581 1582 /* 1583 * Run scan, possibly freeing data and/or kva mappings on the fly 1584 * depending. 1585 */ 1586 1587 while ((bp = nbp) != NULL) { 1588 int qindex = nqindex; 1589 1590 /* 1591 * Calculate next bp ( we can only use it if we do not block 1592 * or do other fancy things ). 1593 */ 1594 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 1595 switch(qindex) { 1596 case QUEUE_EMPTY: 1597 nqindex = QUEUE_EMPTYKVA; 1598 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) 1599 break; 1600 /* fall through */ 1601 case QUEUE_EMPTYKVA: 1602 nqindex = QUEUE_CLEAN; 1603 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) 1604 break; 1605 /* fall through */ 1606 case QUEUE_CLEAN: 1607 /* 1608 * nbp is NULL. 1609 */ 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * Sanity Checks 1616 */ 1617 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); 1618 1619 /* 1620 * Note: we no longer distinguish between VMIO and non-VMIO 1621 * buffers. 1622 */ 1623 1624 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); 1625 1626 /* 1627 * If we are defragging then we need a buffer with 1628 * b_kvasize != 0. XXX this situation should no longer 1629 * occur, if defrag is non-zero the buffer's b_kvasize 1630 * should also be non-zero at this point. XXX 1631 */ 1632 if (defrag && bp->b_kvasize == 0) { 1633 printf("Warning: defrag empty buffer %p\n", bp); 1634 continue; 1635 } 1636 1637 /* 1638 * Start freeing the bp. This is somewhat involved. nbp 1639 * remains valid only for QUEUE_EMPTY[KVA] bp's. 1640 */ 1641 1642 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1643 panic("getnewbuf: locked buf"); 1644 bremfree(bp); 1645 1646 if (qindex == QUEUE_CLEAN) { 1647 if (bp->b_flags & B_VMIO) { 1648 bp->b_flags &= ~B_ASYNC; 1649 mtx_lock(&vm_mtx); 1650 vfs_vmio_release(bp); 1651 mtx_unlock(&vm_mtx); 1652 } 1653 if (bp->b_vp) 1654 brelvp(bp); 1655 } 1656 1657 /* 1658 * NOTE: nbp is now entirely invalid. We can only restart 1659 * the scan from this point on. 1660 * 1661 * Get the rest of the buffer freed up. b_kva* is still 1662 * valid after this operation. 1663 */ 1664 1665 if (bp->b_rcred != NOCRED) { 1666 crfree(bp->b_rcred); 1667 bp->b_rcred = NOCRED; 1668 } 1669 if (bp->b_wcred != NOCRED) { 1670 crfree(bp->b_wcred); 1671 bp->b_wcred = NOCRED; 1672 } 1673 if (LIST_FIRST(&bp->b_dep) != NULL) 1674 buf_deallocate(bp); 1675 if (bp->b_xflags & BX_BKGRDINPROG) 1676 panic("losing buffer 3"); 1677 LIST_REMOVE(bp, b_hash); 1678 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1679 1680 if (bp->b_bufsize) 1681 allocbuf(bp, 0); 1682 1683 bp->b_flags = 0; 1684 bp->b_ioflags = 0; 1685 bp->b_xflags = 0; 1686 bp->b_dev = NODEV; 1687 bp->b_vp = NULL; 1688 bp->b_blkno = bp->b_lblkno = 0; 1689 bp->b_offset = NOOFFSET; 1690 bp->b_iodone = 0; 1691 bp->b_error = 0; 1692 bp->b_resid = 0; 1693 bp->b_bcount = 0; 1694 bp->b_npages = 0; 1695 bp->b_dirtyoff = bp->b_dirtyend = 0; 1696 bp->b_magic = B_MAGIC_BIO; 1697 bp->b_op = &buf_ops_bio; 1698 1699 LIST_INIT(&bp->b_dep); 1700 1701 /* 1702 * If we are defragging then free the buffer. 1703 */ 1704 if (defrag) { 1705 bp->b_flags |= B_INVAL; 1706 bfreekva(bp); 1707 brelse(bp); 1708 defrag = 0; 1709 goto restart; 1710 } 1711 1712 /* 1713 * If we are overcomitted then recover the buffer and its 1714 * KVM space. This occurs in rare situations when multiple 1715 * processes are blocked in getnewbuf() or allocbuf(). 1716 */ 1717 if (bufspace >= hibufspace) 1718 flushingbufs = 1; 1719 if (flushingbufs && bp->b_kvasize != 0) { 1720 bp->b_flags |= B_INVAL; 1721 bfreekva(bp); 1722 brelse(bp); 1723 goto restart; 1724 } 1725 if (bufspace < lobufspace) 1726 flushingbufs = 0; 1727 break; 1728 } 1729 1730 /* 1731 * If we exhausted our list, sleep as appropriate. We may have to 1732 * wakeup various daemons and write out some dirty buffers. 1733 * 1734 * Generally we are sleeping due to insufficient buffer space. 1735 */ 1736 1737 if (bp == NULL) { 1738 int flags; 1739 char *waitmsg; 1740 1741 if (defrag) { 1742 flags = VFS_BIO_NEED_BUFSPACE; 1743 waitmsg = "nbufkv"; 1744 } else if (bufspace >= hibufspace) { 1745 waitmsg = "nbufbs"; 1746 flags = VFS_BIO_NEED_BUFSPACE; 1747 } else { 1748 waitmsg = "newbuf"; 1749 flags = VFS_BIO_NEED_ANY; 1750 } 1751 1752 bd_speedup(); /* heeeelp */ 1753 1754 needsbuffer |= flags; 1755 while (needsbuffer & flags) { 1756 if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, 1757 waitmsg, slptimeo)) 1758 return (NULL); 1759 } 1760 } else { 1761 /* 1762 * We finally have a valid bp. We aren't quite out of the 1763 * woods, we still have to reserve kva space. In order 1764 * to keep fragmentation sane we only allocate kva in 1765 * BKVASIZE chunks. 1766 */ 1767 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 1768 1769 if (maxsize != bp->b_kvasize) { 1770 vm_offset_t addr = 0; 1771 1772 bfreekva(bp); 1773 1774 mtx_lock(&vm_mtx); 1775 if (vm_map_findspace(buffer_map, 1776 vm_map_min(buffer_map), maxsize, &addr)) { 1777 /* 1778 * Uh oh. Buffer map is to fragmented. We 1779 * must defragment the map. 1780 */ 1781 mtx_unlock(&vm_mtx); 1782 ++bufdefragcnt; 1783 defrag = 1; 1784 bp->b_flags |= B_INVAL; 1785 brelse(bp); 1786 goto restart; 1787 } 1788 if (addr) { 1789 vm_map_insert(buffer_map, NULL, 0, 1790 addr, addr + maxsize, 1791 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 1792 1793 bp->b_kvabase = (caddr_t) addr; 1794 bp->b_kvasize = maxsize; 1795 bufspace += bp->b_kvasize; 1796 ++bufreusecnt; 1797 } 1798 mtx_unlock(&vm_mtx); 1799 } 1800 bp->b_data = bp->b_kvabase; 1801 } 1802 return(bp); 1803 } 1804 1805 /* 1806 * buf_daemon: 1807 * 1808 * buffer flushing daemon. Buffers are normally flushed by the 1809 * update daemon but if it cannot keep up this process starts to 1810 * take the load in an attempt to prevent getnewbuf() from blocking. 1811 */ 1812 1813 static struct proc *bufdaemonproc; 1814 1815 static struct kproc_desc buf_kp = { 1816 "bufdaemon", 1817 buf_daemon, 1818 &bufdaemonproc 1819 }; 1820 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) 1821 1822 static void 1823 buf_daemon() 1824 { 1825 int s; 1826 1827 mtx_lock(&Giant); 1828 1829 /* 1830 * This process needs to be suspended prior to shutdown sync. 1831 */ 1832 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 1833 SHUTDOWN_PRI_LAST); 1834 1835 /* 1836 * This process is allowed to take the buffer cache to the limit 1837 */ 1838 curproc->p_flag |= P_BUFEXHAUST; 1839 s = splbio(); 1840 1841 for (;;) { 1842 kthread_suspend_check(bufdaemonproc); 1843 1844 bd_request = 0; 1845 1846 /* 1847 * Do the flush. Limit the amount of in-transit I/O we 1848 * allow to build up, otherwise we would completely saturate 1849 * the I/O system. Wakeup any waiting processes before we 1850 * normally would so they can run in parallel with our drain. 1851 */ 1852 while (numdirtybuffers > lodirtybuffers) { 1853 if (flushbufqueues() == 0) 1854 break; 1855 waitrunningbufspace(); 1856 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2); 1857 } 1858 1859 /* 1860 * Only clear bd_request if we have reached our low water 1861 * mark. The buf_daemon normally waits 5 seconds and 1862 * then incrementally flushes any dirty buffers that have 1863 * built up, within reason. 1864 * 1865 * If we were unable to hit our low water mark and couldn't 1866 * find any flushable buffers, we sleep half a second. 1867 * Otherwise we loop immediately. 1868 */ 1869 if (numdirtybuffers <= lodirtybuffers) { 1870 /* 1871 * We reached our low water mark, reset the 1872 * request and sleep until we are needed again. 1873 * The sleep is just so the suspend code works. 1874 */ 1875 bd_request = 0; 1876 tsleep(&bd_request, PVM, "psleep", hz); 1877 } else { 1878 /* 1879 * We couldn't find any flushable dirty buffers but 1880 * still have too many dirty buffers, we 1881 * have to sleep and try again. (rare) 1882 */ 1883 tsleep(&bd_request, PVM, "qsleep", hz / 2); 1884 } 1885 } 1886 } 1887 1888 /* 1889 * flushbufqueues: 1890 * 1891 * Try to flush a buffer in the dirty queue. We must be careful to 1892 * free up B_INVAL buffers instead of write them, which NFS is 1893 * particularly sensitive to. 1894 */ 1895 1896 static int 1897 flushbufqueues(void) 1898 { 1899 struct buf *bp; 1900 int r = 0; 1901 1902 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1903 1904 while (bp) { 1905 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); 1906 if ((bp->b_flags & B_DELWRI) != 0 && 1907 (bp->b_xflags & BX_BKGRDINPROG) == 0) { 1908 if (bp->b_flags & B_INVAL) { 1909 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) 1910 panic("flushbufqueues: locked buf"); 1911 bremfree(bp); 1912 brelse(bp); 1913 ++r; 1914 break; 1915 } 1916 if (LIST_FIRST(&bp->b_dep) != NULL && 1917 (bp->b_flags & B_DEFERRED) == 0 && 1918 buf_countdeps(bp, 0)) { 1919 TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], 1920 bp, b_freelist); 1921 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], 1922 bp, b_freelist); 1923 bp->b_flags |= B_DEFERRED; 1924 bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); 1925 continue; 1926 } 1927 vfs_bio_awrite(bp); 1928 ++r; 1929 break; 1930 } 1931 bp = TAILQ_NEXT(bp, b_freelist); 1932 } 1933 return (r); 1934 } 1935 1936 /* 1937 * Check to see if a block is currently memory resident. 1938 */ 1939 struct buf * 1940 incore(struct vnode * vp, daddr_t blkno) 1941 { 1942 struct buf *bp; 1943 1944 int s = splbio(); 1945 bp = gbincore(vp, blkno); 1946 splx(s); 1947 return (bp); 1948 } 1949 1950 /* 1951 * Returns true if no I/O is needed to access the 1952 * associated VM object. This is like incore except 1953 * it also hunts around in the VM system for the data. 1954 */ 1955 1956 int 1957 inmem(struct vnode * vp, daddr_t blkno) 1958 { 1959 vm_object_t obj; 1960 vm_offset_t toff, tinc, size; 1961 vm_page_t m; 1962 vm_ooffset_t off; 1963 1964 if (incore(vp, blkno)) 1965 return 1; 1966 if (vp->v_mount == NULL) 1967 return 0; 1968 if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0) 1969 return 0; 1970 1971 size = PAGE_SIZE; 1972 if (size > vp->v_mount->mnt_stat.f_iosize) 1973 size = vp->v_mount->mnt_stat.f_iosize; 1974 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 1975 1976 mtx_lock(&vm_mtx); 1977 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 1978 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 1979 if (!m) 1980 goto notinmem; 1981 tinc = size; 1982 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 1983 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 1984 if (vm_page_is_valid(m, 1985 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 1986 goto notinmem; 1987 } 1988 mtx_unlock(&vm_mtx); 1989 return 1; 1990 1991 notinmem: 1992 mtx_unlock(&vm_mtx); 1993 return (0); 1994 } 1995 1996 /* 1997 * vfs_setdirty: 1998 * 1999 * Sets the dirty range for a buffer based on the status of the dirty 2000 * bits in the pages comprising the buffer. 2001 * 2002 * The range is limited to the size of the buffer. 2003 * 2004 * This routine is primarily used by NFS, but is generalized for the 2005 * B_VMIO case. 2006 * 2007 * Must be called with vm_mtx 2008 */ 2009 static void 2010 vfs_setdirty(struct buf *bp) 2011 { 2012 int i; 2013 vm_object_t object; 2014 2015 mtx_assert(&vm_mtx, MA_OWNED); 2016 /* 2017 * Degenerate case - empty buffer 2018 */ 2019 2020 if (bp->b_bufsize == 0) 2021 return; 2022 2023 /* 2024 * We qualify the scan for modified pages on whether the 2025 * object has been flushed yet. The OBJ_WRITEABLE flag 2026 * is not cleared simply by protecting pages off. 2027 */ 2028 2029 if ((bp->b_flags & B_VMIO) == 0) 2030 return; 2031 2032 object = bp->b_pages[0]->object; 2033 2034 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) 2035 printf("Warning: object %p writeable but not mightbedirty\n", object); 2036 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) 2037 printf("Warning: object %p mightbedirty but not writeable\n", object); 2038 2039 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { 2040 vm_offset_t boffset; 2041 vm_offset_t eoffset; 2042 2043 /* 2044 * test the pages to see if they have been modified directly 2045 * by users through the VM system. 2046 */ 2047 for (i = 0; i < bp->b_npages; i++) { 2048 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 2049 vm_page_test_dirty(bp->b_pages[i]); 2050 } 2051 2052 /* 2053 * Calculate the encompassing dirty range, boffset and eoffset, 2054 * (eoffset - boffset) bytes. 2055 */ 2056 2057 for (i = 0; i < bp->b_npages; i++) { 2058 if (bp->b_pages[i]->dirty) 2059 break; 2060 } 2061 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2062 2063 for (i = bp->b_npages - 1; i >= 0; --i) { 2064 if (bp->b_pages[i]->dirty) { 2065 break; 2066 } 2067 } 2068 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2069 2070 /* 2071 * Fit it to the buffer. 2072 */ 2073 2074 if (eoffset > bp->b_bcount) 2075 eoffset = bp->b_bcount; 2076 2077 /* 2078 * If we have a good dirty range, merge with the existing 2079 * dirty range. 2080 */ 2081 2082 if (boffset < eoffset) { 2083 if (bp->b_dirtyoff > boffset) 2084 bp->b_dirtyoff = boffset; 2085 if (bp->b_dirtyend < eoffset) 2086 bp->b_dirtyend = eoffset; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * getblk: 2093 * 2094 * Get a block given a specified block and offset into a file/device. 2095 * The buffers B_DONE bit will be cleared on return, making it almost 2096 * ready for an I/O initiation. B_INVAL may or may not be set on 2097 * return. The caller should clear B_INVAL prior to initiating a 2098 * READ. 2099 * 2100 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2101 * an existing buffer. 2102 * 2103 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2104 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2105 * and then cleared based on the backing VM. If the previous buffer is 2106 * non-0-sized but invalid, B_CACHE will be cleared. 2107 * 2108 * If getblk() must create a new buffer, the new buffer is returned with 2109 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 2110 * case it is returned with B_INVAL clear and B_CACHE set based on the 2111 * backing VM. 2112 * 2113 * getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos 2114 * B_CACHE bit is clear. 2115 * 2116 * What this means, basically, is that the caller should use B_CACHE to 2117 * determine whether the buffer is fully valid or not and should clear 2118 * B_INVAL prior to issuing a read. If the caller intends to validate 2119 * the buffer by loading its data area with something, the caller needs 2120 * to clear B_INVAL. If the caller does this without issuing an I/O, 2121 * the caller should set B_CACHE ( as an optimization ), else the caller 2122 * should issue the I/O and biodone() will set B_CACHE if the I/O was 2123 * a write attempt or if it was a successfull read. If the caller 2124 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 2125 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 2126 */ 2127 struct buf * 2128 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) 2129 { 2130 struct buf *bp; 2131 int s; 2132 struct bufhashhdr *bh; 2133 2134 if (size > MAXBSIZE) 2135 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 2136 2137 s = splbio(); 2138 loop: 2139 /* 2140 * Block if we are low on buffers. Certain processes are allowed 2141 * to completely exhaust the buffer cache. 2142 * 2143 * If this check ever becomes a bottleneck it may be better to 2144 * move it into the else, when gbincore() fails. At the moment 2145 * it isn't a problem. 2146 * 2147 * XXX remove if 0 sections (clean this up after its proven) 2148 */ 2149 if (numfreebuffers == 0) { 2150 if (curproc == PCPU_GET(idleproc)) 2151 return NULL; 2152 needsbuffer |= VFS_BIO_NEED_ANY; 2153 } 2154 2155 if ((bp = gbincore(vp, blkno))) { 2156 /* 2157 * Buffer is in-core. If the buffer is not busy, it must 2158 * be on a queue. 2159 */ 2160 2161 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 2162 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, 2163 "getblk", slpflag, slptimeo) == ENOLCK) 2164 goto loop; 2165 splx(s); 2166 return (struct buf *) NULL; 2167 } 2168 2169 /* 2170 * The buffer is locked. B_CACHE is cleared if the buffer is 2171 * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set 2172 * and for a VMIO buffer B_CACHE is adjusted according to the 2173 * backing VM cache. 2174 */ 2175 if (bp->b_flags & B_INVAL) 2176 bp->b_flags &= ~B_CACHE; 2177 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 2178 bp->b_flags |= B_CACHE; 2179 bremfree(bp); 2180 2181 /* 2182 * check for size inconsistancies for non-VMIO case. 2183 */ 2184 2185 if (bp->b_bcount != size) { 2186 if ((bp->b_flags & B_VMIO) == 0 || 2187 (size > bp->b_kvasize)) { 2188 if (bp->b_flags & B_DELWRI) { 2189 bp->b_flags |= B_NOCACHE; 2190 BUF_WRITE(bp); 2191 } else { 2192 if ((bp->b_flags & B_VMIO) && 2193 (LIST_FIRST(&bp->b_dep) == NULL)) { 2194 bp->b_flags |= B_RELBUF; 2195 brelse(bp); 2196 } else { 2197 bp->b_flags |= B_NOCACHE; 2198 BUF_WRITE(bp); 2199 } 2200 } 2201 goto loop; 2202 } 2203 } 2204 2205 /* 2206 * If the size is inconsistant in the VMIO case, we can resize 2207 * the buffer. This might lead to B_CACHE getting set or 2208 * cleared. If the size has not changed, B_CACHE remains 2209 * unchanged from its previous state. 2210 */ 2211 2212 if (bp->b_bcount != size) 2213 allocbuf(bp, size); 2214 2215 KASSERT(bp->b_offset != NOOFFSET, 2216 ("getblk: no buffer offset")); 2217 2218 /* 2219 * A buffer with B_DELWRI set and B_CACHE clear must 2220 * be committed before we can return the buffer in 2221 * order to prevent the caller from issuing a read 2222 * ( due to B_CACHE not being set ) and overwriting 2223 * it. 2224 * 2225 * Most callers, including NFS and FFS, need this to 2226 * operate properly either because they assume they 2227 * can issue a read if B_CACHE is not set, or because 2228 * ( for example ) an uncached B_DELWRI might loop due 2229 * to softupdates re-dirtying the buffer. In the latter 2230 * case, B_CACHE is set after the first write completes, 2231 * preventing further loops. 2232 */ 2233 2234 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 2235 BUF_WRITE(bp); 2236 goto loop; 2237 } 2238 2239 splx(s); 2240 bp->b_flags &= ~B_DONE; 2241 } else { 2242 /* 2243 * Buffer is not in-core, create new buffer. The buffer 2244 * returned by getnewbuf() is locked. Note that the returned 2245 * buffer is also considered valid (not marked B_INVAL). 2246 */ 2247 int bsize, maxsize, vmio; 2248 off_t offset; 2249 2250 if (vn_isdisk(vp, NULL)) 2251 bsize = DEV_BSIZE; 2252 else if (vp->v_mountedhere) 2253 bsize = vp->v_mountedhere->mnt_stat.f_iosize; 2254 else if (vp->v_mount) 2255 bsize = vp->v_mount->mnt_stat.f_iosize; 2256 else 2257 bsize = size; 2258 2259 offset = (off_t)blkno * bsize; 2260 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF); 2261 maxsize = vmio ? size + (offset & PAGE_MASK) : size; 2262 maxsize = imax(maxsize, bsize); 2263 2264 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { 2265 if (slpflag || slptimeo) { 2266 splx(s); 2267 return NULL; 2268 } 2269 goto loop; 2270 } 2271 2272 /* 2273 * This code is used to make sure that a buffer is not 2274 * created while the getnewbuf routine is blocked. 2275 * This can be a problem whether the vnode is locked or not. 2276 * If the buffer is created out from under us, we have to 2277 * throw away the one we just created. There is now window 2278 * race because we are safely running at splbio() from the 2279 * point of the duplicate buffer creation through to here, 2280 * and we've locked the buffer. 2281 */ 2282 if (gbincore(vp, blkno)) { 2283 bp->b_flags |= B_INVAL; 2284 brelse(bp); 2285 goto loop; 2286 } 2287 2288 /* 2289 * Insert the buffer into the hash, so that it can 2290 * be found by incore. 2291 */ 2292 bp->b_blkno = bp->b_lblkno = blkno; 2293 bp->b_offset = offset; 2294 2295 bgetvp(vp, bp); 2296 LIST_REMOVE(bp, b_hash); 2297 bh = bufhash(vp, blkno); 2298 LIST_INSERT_HEAD(bh, bp, b_hash); 2299 2300 /* 2301 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 2302 * buffer size starts out as 0, B_CACHE will be set by 2303 * allocbuf() for the VMIO case prior to it testing the 2304 * backing store for validity. 2305 */ 2306 2307 if (vmio) { 2308 bp->b_flags |= B_VMIO; 2309 #if defined(VFS_BIO_DEBUG) 2310 if (vp->v_type != VREG) 2311 printf("getblk: vmioing file type %d???\n", vp->v_type); 2312 #endif 2313 } else { 2314 bp->b_flags &= ~B_VMIO; 2315 } 2316 2317 allocbuf(bp, size); 2318 2319 splx(s); 2320 bp->b_flags &= ~B_DONE; 2321 } 2322 return (bp); 2323 } 2324 2325 /* 2326 * Get an empty, disassociated buffer of given size. The buffer is initially 2327 * set to B_INVAL. 2328 */ 2329 struct buf * 2330 geteblk(int size) 2331 { 2332 struct buf *bp; 2333 int s; 2334 int maxsize; 2335 2336 maxsize = (size + BKVAMASK) & ~BKVAMASK; 2337 2338 s = splbio(); 2339 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0); 2340 splx(s); 2341 allocbuf(bp, size); 2342 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 2343 return (bp); 2344 } 2345 2346 2347 /* 2348 * This code constitutes the buffer memory from either anonymous system 2349 * memory (in the case of non-VMIO operations) or from an associated 2350 * VM object (in the case of VMIO operations). This code is able to 2351 * resize a buffer up or down. 2352 * 2353 * Note that this code is tricky, and has many complications to resolve 2354 * deadlock or inconsistant data situations. Tread lightly!!! 2355 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 2356 * the caller. Calling this code willy nilly can result in the loss of data. 2357 * 2358 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 2359 * B_CACHE for the non-VMIO case. 2360 */ 2361 2362 int 2363 allocbuf(struct buf *bp, int size) 2364 { 2365 int newbsize, mbsize; 2366 int i; 2367 2368 if (BUF_REFCNT(bp) == 0) 2369 panic("allocbuf: buffer not busy"); 2370 2371 if (bp->b_kvasize < size) 2372 panic("allocbuf: buffer too small"); 2373 2374 if ((bp->b_flags & B_VMIO) == 0) { 2375 caddr_t origbuf; 2376 int origbufsize; 2377 /* 2378 * Just get anonymous memory from the kernel. Don't 2379 * mess with B_CACHE. 2380 */ 2381 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2382 #if !defined(NO_B_MALLOC) 2383 if (bp->b_flags & B_MALLOC) 2384 newbsize = mbsize; 2385 else 2386 #endif 2387 newbsize = round_page(size); 2388 2389 if (newbsize < bp->b_bufsize) { 2390 #if !defined(NO_B_MALLOC) 2391 /* 2392 * malloced buffers are not shrunk 2393 */ 2394 if (bp->b_flags & B_MALLOC) { 2395 if (newbsize) { 2396 bp->b_bcount = size; 2397 } else { 2398 free(bp->b_data, M_BIOBUF); 2399 if (bp->b_bufsize) { 2400 bufmallocspace -= bp->b_bufsize; 2401 bufspacewakeup(); 2402 bp->b_bufsize = 0; 2403 } 2404 bp->b_data = bp->b_kvabase; 2405 bp->b_bcount = 0; 2406 bp->b_flags &= ~B_MALLOC; 2407 } 2408 return 1; 2409 } 2410 #endif 2411 vm_hold_free_pages( 2412 bp, 2413 (vm_offset_t) bp->b_data + newbsize, 2414 (vm_offset_t) bp->b_data + bp->b_bufsize); 2415 } else if (newbsize > bp->b_bufsize) { 2416 #if !defined(NO_B_MALLOC) 2417 /* 2418 * We only use malloced memory on the first allocation. 2419 * and revert to page-allocated memory when the buffer 2420 * grows. 2421 */ 2422 if ( (bufmallocspace < maxbufmallocspace) && 2423 (bp->b_bufsize == 0) && 2424 (mbsize <= PAGE_SIZE/2)) { 2425 2426 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 2427 bp->b_bufsize = mbsize; 2428 bp->b_bcount = size; 2429 bp->b_flags |= B_MALLOC; 2430 bufmallocspace += mbsize; 2431 return 1; 2432 } 2433 #endif 2434 origbuf = NULL; 2435 origbufsize = 0; 2436 #if !defined(NO_B_MALLOC) 2437 /* 2438 * If the buffer is growing on its other-than-first allocation, 2439 * then we revert to the page-allocation scheme. 2440 */ 2441 if (bp->b_flags & B_MALLOC) { 2442 origbuf = bp->b_data; 2443 origbufsize = bp->b_bufsize; 2444 bp->b_data = bp->b_kvabase; 2445 if (bp->b_bufsize) { 2446 bufmallocspace -= bp->b_bufsize; 2447 bufspacewakeup(); 2448 bp->b_bufsize = 0; 2449 } 2450 bp->b_flags &= ~B_MALLOC; 2451 newbsize = round_page(newbsize); 2452 } 2453 #endif 2454 vm_hold_load_pages( 2455 bp, 2456 (vm_offset_t) bp->b_data + bp->b_bufsize, 2457 (vm_offset_t) bp->b_data + newbsize); 2458 #if !defined(NO_B_MALLOC) 2459 if (origbuf) { 2460 bcopy(origbuf, bp->b_data, origbufsize); 2461 free(origbuf, M_BIOBUF); 2462 } 2463 #endif 2464 } 2465 } else { 2466 vm_page_t m; 2467 int desiredpages; 2468 2469 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 2470 desiredpages = (size == 0) ? 0 : 2471 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 2472 2473 #if !defined(NO_B_MALLOC) 2474 if (bp->b_flags & B_MALLOC) 2475 panic("allocbuf: VMIO buffer can't be malloced"); 2476 #endif 2477 /* 2478 * Set B_CACHE initially if buffer is 0 length or will become 2479 * 0-length. 2480 */ 2481 if (size == 0 || bp->b_bufsize == 0) 2482 bp->b_flags |= B_CACHE; 2483 2484 if (newbsize < bp->b_bufsize) { 2485 /* 2486 * DEV_BSIZE aligned new buffer size is less then the 2487 * DEV_BSIZE aligned existing buffer size. Figure out 2488 * if we have to remove any pages. 2489 */ 2490 mtx_lock(&vm_mtx); 2491 if (desiredpages < bp->b_npages) { 2492 for (i = desiredpages; i < bp->b_npages; i++) { 2493 /* 2494 * the page is not freed here -- it 2495 * is the responsibility of 2496 * vnode_pager_setsize 2497 */ 2498 m = bp->b_pages[i]; 2499 KASSERT(m != bogus_page, 2500 ("allocbuf: bogus page found")); 2501 while (vm_page_sleep_busy(m, TRUE, "biodep")) 2502 ; 2503 2504 bp->b_pages[i] = NULL; 2505 vm_page_unwire(m, 0); 2506 } 2507 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + 2508 (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); 2509 bp->b_npages = desiredpages; 2510 } 2511 mtx_unlock(&vm_mtx); 2512 } else if (size > bp->b_bcount) { 2513 /* 2514 * We are growing the buffer, possibly in a 2515 * byte-granular fashion. 2516 */ 2517 struct vnode *vp; 2518 vm_object_t obj; 2519 vm_offset_t toff; 2520 vm_offset_t tinc; 2521 2522 /* 2523 * Step 1, bring in the VM pages from the object, 2524 * allocating them if necessary. We must clear 2525 * B_CACHE if these pages are not valid for the 2526 * range covered by the buffer. 2527 */ 2528 2529 vp = bp->b_vp; 2530 VOP_GETVOBJECT(vp, &obj); 2531 2532 mtx_lock(&vm_mtx); 2533 while (bp->b_npages < desiredpages) { 2534 vm_page_t m; 2535 vm_pindex_t pi; 2536 2537 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; 2538 if ((m = vm_page_lookup(obj, pi)) == NULL) { 2539 /* 2540 * note: must allocate system pages 2541 * since blocking here could intefere 2542 * with paging I/O, no matter which 2543 * process we are. 2544 */ 2545 m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM); 2546 if (m == NULL) { 2547 VM_WAIT; 2548 vm_pageout_deficit += desiredpages - bp->b_npages; 2549 } else { 2550 vm_page_wire(m); 2551 vm_page_wakeup(m); 2552 bp->b_flags &= ~B_CACHE; 2553 bp->b_pages[bp->b_npages] = m; 2554 ++bp->b_npages; 2555 } 2556 continue; 2557 } 2558 2559 /* 2560 * We found a page. If we have to sleep on it, 2561 * retry because it might have gotten freed out 2562 * from under us. 2563 * 2564 * We can only test PG_BUSY here. Blocking on 2565 * m->busy might lead to a deadlock: 2566 * 2567 * vm_fault->getpages->cluster_read->allocbuf 2568 * 2569 */ 2570 2571 if (vm_page_sleep_busy(m, FALSE, "pgtblk")) 2572 continue; 2573 2574 /* 2575 * We have a good page. Should we wakeup the 2576 * page daemon? 2577 */ 2578 if ((curproc != pageproc) && 2579 ((m->queue - m->pc) == PQ_CACHE) && 2580 ((cnt.v_free_count + cnt.v_cache_count) < 2581 (cnt.v_free_min + cnt.v_cache_min))) { 2582 pagedaemon_wakeup(); 2583 } 2584 vm_page_flag_clear(m, PG_ZERO); 2585 vm_page_wire(m); 2586 bp->b_pages[bp->b_npages] = m; 2587 ++bp->b_npages; 2588 } 2589 2590 /* 2591 * Step 2. We've loaded the pages into the buffer, 2592 * we have to figure out if we can still have B_CACHE 2593 * set. Note that B_CACHE is set according to the 2594 * byte-granular range ( bcount and size ), new the 2595 * aligned range ( newbsize ). 2596 * 2597 * The VM test is against m->valid, which is DEV_BSIZE 2598 * aligned. Needless to say, the validity of the data 2599 * needs to also be DEV_BSIZE aligned. Note that this 2600 * fails with NFS if the server or some other client 2601 * extends the file's EOF. If our buffer is resized, 2602 * B_CACHE may remain set! XXX 2603 */ 2604 2605 toff = bp->b_bcount; 2606 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 2607 2608 while ((bp->b_flags & B_CACHE) && toff < size) { 2609 vm_pindex_t pi; 2610 2611 if (tinc > (size - toff)) 2612 tinc = size - toff; 2613 2614 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 2615 PAGE_SHIFT; 2616 2617 vfs_buf_test_cache( 2618 bp, 2619 bp->b_offset, 2620 toff, 2621 tinc, 2622 bp->b_pages[pi] 2623 ); 2624 toff += tinc; 2625 tinc = PAGE_SIZE; 2626 } 2627 2628 /* 2629 * Step 3, fixup the KVM pmap. Remember that 2630 * bp->b_data is relative to bp->b_offset, but 2631 * bp->b_offset may be offset into the first page. 2632 */ 2633 2634 bp->b_data = (caddr_t) 2635 trunc_page((vm_offset_t)bp->b_data); 2636 pmap_qenter( 2637 (vm_offset_t)bp->b_data, 2638 bp->b_pages, 2639 bp->b_npages 2640 ); 2641 2642 mtx_unlock(&vm_mtx); 2643 2644 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 2645 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 2646 } 2647 } 2648 if (newbsize < bp->b_bufsize) 2649 bufspacewakeup(); 2650 bp->b_bufsize = newbsize; /* actual buffer allocation */ 2651 bp->b_bcount = size; /* requested buffer size */ 2652 return 1; 2653 } 2654 2655 /* 2656 * bufwait: 2657 * 2658 * Wait for buffer I/O completion, returning error status. The buffer 2659 * is left locked and B_DONE on return. B_EINTR is converted into a EINTR 2660 * error and cleared. 2661 */ 2662 int 2663 bufwait(register struct buf * bp) 2664 { 2665 int s; 2666 2667 s = splbio(); 2668 while ((bp->b_flags & B_DONE) == 0) { 2669 if (bp->b_iocmd == BIO_READ) 2670 tsleep(bp, PRIBIO, "biord", 0); 2671 else 2672 tsleep(bp, PRIBIO, "biowr", 0); 2673 } 2674 splx(s); 2675 if (bp->b_flags & B_EINTR) { 2676 bp->b_flags &= ~B_EINTR; 2677 return (EINTR); 2678 } 2679 if (bp->b_ioflags & BIO_ERROR) { 2680 return (bp->b_error ? bp->b_error : EIO); 2681 } else { 2682 return (0); 2683 } 2684 } 2685 2686 /* 2687 * Call back function from struct bio back up to struct buf. 2688 * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY(). 2689 */ 2690 void 2691 bufdonebio(struct bio *bp) 2692 { 2693 bufdone(bp->bio_caller2); 2694 } 2695 2696 /* 2697 * bufdone: 2698 * 2699 * Finish I/O on a buffer, optionally calling a completion function. 2700 * This is usually called from an interrupt so process blocking is 2701 * not allowed. 2702 * 2703 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 2704 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 2705 * assuming B_INVAL is clear. 2706 * 2707 * For the VMIO case, we set B_CACHE if the op was a read and no 2708 * read error occured, or if the op was a write. B_CACHE is never 2709 * set if the buffer is invalid or otherwise uncacheable. 2710 * 2711 * biodone does not mess with B_INVAL, allowing the I/O routine or the 2712 * initiator to leave B_INVAL set to brelse the buffer out of existance 2713 * in the biodone routine. 2714 */ 2715 void 2716 bufdone(struct buf *bp) 2717 { 2718 int s, error; 2719 void (*biodone) __P((struct buf *)); 2720 2721 s = splbio(); 2722 2723 KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); 2724 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 2725 2726 bp->b_flags |= B_DONE; 2727 runningbufwakeup(bp); 2728 2729 if (bp->b_iocmd == BIO_DELETE) { 2730 brelse(bp); 2731 splx(s); 2732 return; 2733 } 2734 2735 if (bp->b_iocmd == BIO_WRITE) { 2736 vwakeup(bp); 2737 } 2738 2739 /* call optional completion function if requested */ 2740 if (bp->b_iodone != NULL) { 2741 biodone = bp->b_iodone; 2742 bp->b_iodone = NULL; 2743 (*biodone) (bp); 2744 splx(s); 2745 return; 2746 } 2747 if (LIST_FIRST(&bp->b_dep) != NULL) 2748 buf_complete(bp); 2749 2750 if (bp->b_flags & B_VMIO) { 2751 int i; 2752 vm_ooffset_t foff; 2753 vm_page_t m; 2754 vm_object_t obj; 2755 int iosize; 2756 struct vnode *vp = bp->b_vp; 2757 2758 error = VOP_GETVOBJECT(vp, &obj); 2759 2760 #if defined(VFS_BIO_DEBUG) 2761 if (vp->v_usecount == 0) { 2762 panic("biodone: zero vnode ref count"); 2763 } 2764 2765 if (error) { 2766 panic("biodone: missing VM object"); 2767 } 2768 2769 if ((vp->v_flag & VOBJBUF) == 0) { 2770 panic("biodone: vnode is not setup for merged cache"); 2771 } 2772 #endif 2773 2774 foff = bp->b_offset; 2775 KASSERT(bp->b_offset != NOOFFSET, 2776 ("biodone: no buffer offset")); 2777 2778 if (error) { 2779 panic("biodone: no object"); 2780 } 2781 mtx_lock(&vm_mtx); 2782 #if defined(VFS_BIO_DEBUG) 2783 if (obj->paging_in_progress < bp->b_npages) { 2784 printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", 2785 obj->paging_in_progress, bp->b_npages); 2786 } 2787 #endif 2788 2789 /* 2790 * Set B_CACHE if the op was a normal read and no error 2791 * occured. B_CACHE is set for writes in the b*write() 2792 * routines. 2793 */ 2794 iosize = bp->b_bcount - bp->b_resid; 2795 if (bp->b_iocmd == BIO_READ && 2796 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 2797 !(bp->b_ioflags & BIO_ERROR)) { 2798 bp->b_flags |= B_CACHE; 2799 } 2800 2801 for (i = 0; i < bp->b_npages; i++) { 2802 int bogusflag = 0; 2803 int resid; 2804 2805 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 2806 if (resid > iosize) 2807 resid = iosize; 2808 2809 /* 2810 * cleanup bogus pages, restoring the originals 2811 */ 2812 m = bp->b_pages[i]; 2813 if (m == bogus_page) { 2814 bogusflag = 1; 2815 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 2816 if (m == NULL) 2817 panic("biodone: page disappeared!"); 2818 bp->b_pages[i] = m; 2819 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2820 } 2821 #if defined(VFS_BIO_DEBUG) 2822 if (OFF_TO_IDX(foff) != m->pindex) { 2823 printf( 2824 "biodone: foff(%lu)/m->pindex(%d) mismatch\n", 2825 (unsigned long)foff, m->pindex); 2826 } 2827 #endif 2828 2829 /* 2830 * In the write case, the valid and clean bits are 2831 * already changed correctly ( see bdwrite() ), so we 2832 * only need to do this here in the read case. 2833 */ 2834 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 2835 vfs_page_set_valid(bp, foff, i, m); 2836 } 2837 vm_page_flag_clear(m, PG_ZERO); 2838 2839 /* 2840 * when debugging new filesystems or buffer I/O methods, this 2841 * is the most common error that pops up. if you see this, you 2842 * have not set the page busy flag correctly!!! 2843 */ 2844 if (m->busy == 0) { 2845 printf("biodone: page busy < 0, " 2846 "pindex: %d, foff: 0x(%x,%x), " 2847 "resid: %d, index: %d\n", 2848 (int) m->pindex, (int)(foff >> 32), 2849 (int) foff & 0xffffffff, resid, i); 2850 if (!vn_isdisk(vp, NULL)) 2851 printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", 2852 bp->b_vp->v_mount->mnt_stat.f_iosize, 2853 (int) bp->b_lblkno, 2854 bp->b_flags, bp->b_npages); 2855 else 2856 printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", 2857 (int) bp->b_lblkno, 2858 bp->b_flags, bp->b_npages); 2859 printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", 2860 m->valid, m->dirty, m->wire_count); 2861 panic("biodone: page busy < 0\n"); 2862 } 2863 vm_page_io_finish(m); 2864 vm_object_pip_subtract(obj, 1); 2865 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2866 iosize -= resid; 2867 } 2868 if (obj) 2869 vm_object_pip_wakeupn(obj, 0); 2870 mtx_unlock(&vm_mtx); 2871 } 2872 2873 /* 2874 * For asynchronous completions, release the buffer now. The brelse 2875 * will do a wakeup there if necessary - so no need to do a wakeup 2876 * here in the async case. The sync case always needs to do a wakeup. 2877 */ 2878 2879 if (bp->b_flags & B_ASYNC) { 2880 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 2881 brelse(bp); 2882 else 2883 bqrelse(bp); 2884 } else { 2885 wakeup(bp); 2886 } 2887 splx(s); 2888 } 2889 2890 /* 2891 * This routine is called in lieu of iodone in the case of 2892 * incomplete I/O. This keeps the busy status for pages 2893 * consistant. 2894 * 2895 * vm_mtx should not be held 2896 */ 2897 void 2898 vfs_unbusy_pages(struct buf * bp) 2899 { 2900 int i; 2901 2902 mtx_assert(&vm_mtx, MA_NOTOWNED); 2903 runningbufwakeup(bp); 2904 if (bp->b_flags & B_VMIO) { 2905 struct vnode *vp = bp->b_vp; 2906 vm_object_t obj; 2907 2908 VOP_GETVOBJECT(vp, &obj); 2909 2910 mtx_lock(&vm_mtx); 2911 for (i = 0; i < bp->b_npages; i++) { 2912 vm_page_t m = bp->b_pages[i]; 2913 2914 if (m == bogus_page) { 2915 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 2916 if (!m) { 2917 panic("vfs_unbusy_pages: page missing\n"); 2918 } 2919 bp->b_pages[i] = m; 2920 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 2921 } 2922 vm_object_pip_subtract(obj, 1); 2923 vm_page_flag_clear(m, PG_ZERO); 2924 vm_page_io_finish(m); 2925 } 2926 vm_object_pip_wakeupn(obj, 0); 2927 mtx_unlock(&vm_mtx); 2928 } 2929 } 2930 2931 /* 2932 * vfs_page_set_valid: 2933 * 2934 * Set the valid bits in a page based on the supplied offset. The 2935 * range is restricted to the buffer's size. 2936 * 2937 * This routine is typically called after a read completes. 2938 * 2939 * vm_mtx should be held 2940 */ 2941 static void 2942 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) 2943 { 2944 vm_ooffset_t soff, eoff; 2945 2946 mtx_assert(&vm_mtx, MA_OWNED); 2947 /* 2948 * Start and end offsets in buffer. eoff - soff may not cross a 2949 * page boundry or cross the end of the buffer. The end of the 2950 * buffer, in this case, is our file EOF, not the allocation size 2951 * of the buffer. 2952 */ 2953 soff = off; 2954 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2955 if (eoff > bp->b_offset + bp->b_bcount) 2956 eoff = bp->b_offset + bp->b_bcount; 2957 2958 /* 2959 * Set valid range. This is typically the entire buffer and thus the 2960 * entire page. 2961 */ 2962 if (eoff > soff) { 2963 vm_page_set_validclean( 2964 m, 2965 (vm_offset_t) (soff & PAGE_MASK), 2966 (vm_offset_t) (eoff - soff) 2967 ); 2968 } 2969 } 2970 2971 /* 2972 * This routine is called before a device strategy routine. 2973 * It is used to tell the VM system that paging I/O is in 2974 * progress, and treat the pages associated with the buffer 2975 * almost as being PG_BUSY. Also the object paging_in_progress 2976 * flag is handled to make sure that the object doesn't become 2977 * inconsistant. 2978 * 2979 * Since I/O has not been initiated yet, certain buffer flags 2980 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 2981 * and should be ignored. 2982 * 2983 * vm_mtx should not be held 2984 */ 2985 void 2986 vfs_busy_pages(struct buf * bp, int clear_modify) 2987 { 2988 int i, bogus; 2989 2990 mtx_assert(&vm_mtx, MA_NOTOWNED); 2991 if (bp->b_flags & B_VMIO) { 2992 struct vnode *vp = bp->b_vp; 2993 vm_object_t obj; 2994 vm_ooffset_t foff; 2995 2996 VOP_GETVOBJECT(vp, &obj); 2997 foff = bp->b_offset; 2998 KASSERT(bp->b_offset != NOOFFSET, 2999 ("vfs_busy_pages: no buffer offset")); 3000 mtx_lock(&vm_mtx); 3001 vfs_setdirty(bp); 3002 3003 retry: 3004 for (i = 0; i < bp->b_npages; i++) { 3005 vm_page_t m = bp->b_pages[i]; 3006 if (vm_page_sleep_busy(m, FALSE, "vbpage")) 3007 goto retry; 3008 } 3009 3010 bogus = 0; 3011 for (i = 0; i < bp->b_npages; i++) { 3012 vm_page_t m = bp->b_pages[i]; 3013 3014 vm_page_flag_clear(m, PG_ZERO); 3015 if ((bp->b_flags & B_CLUSTER) == 0) { 3016 vm_object_pip_add(obj, 1); 3017 vm_page_io_start(m); 3018 } 3019 3020 /* 3021 * When readying a buffer for a read ( i.e 3022 * clear_modify == 0 ), it is important to do 3023 * bogus_page replacement for valid pages in 3024 * partially instantiated buffers. Partially 3025 * instantiated buffers can, in turn, occur when 3026 * reconstituting a buffer from its VM backing store 3027 * base. We only have to do this if B_CACHE is 3028 * clear ( which causes the I/O to occur in the 3029 * first place ). The replacement prevents the read 3030 * I/O from overwriting potentially dirty VM-backed 3031 * pages. XXX bogus page replacement is, uh, bogus. 3032 * It may not work properly with small-block devices. 3033 * We need to find a better way. 3034 */ 3035 3036 vm_page_protect(m, VM_PROT_NONE); 3037 if (clear_modify) 3038 vfs_page_set_valid(bp, foff, i, m); 3039 else if (m->valid == VM_PAGE_BITS_ALL && 3040 (bp->b_flags & B_CACHE) == 0) { 3041 bp->b_pages[i] = bogus_page; 3042 bogus++; 3043 } 3044 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3045 } 3046 if (bogus) 3047 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); 3048 mtx_unlock(&vm_mtx); 3049 } 3050 } 3051 3052 /* 3053 * Tell the VM system that the pages associated with this buffer 3054 * are clean. This is used for delayed writes where the data is 3055 * going to go to disk eventually without additional VM intevention. 3056 * 3057 * Note that while we only really need to clean through to b_bcount, we 3058 * just go ahead and clean through to b_bufsize. 3059 * 3060 * should be called with vm_mtx held 3061 */ 3062 static void 3063 vfs_clean_pages(struct buf * bp) 3064 { 3065 int i; 3066 3067 mtx_assert(&vm_mtx, MA_OWNED); 3068 if (bp->b_flags & B_VMIO) { 3069 vm_ooffset_t foff; 3070 3071 foff = bp->b_offset; 3072 KASSERT(bp->b_offset != NOOFFSET, 3073 ("vfs_clean_pages: no buffer offset")); 3074 for (i = 0; i < bp->b_npages; i++) { 3075 vm_page_t m = bp->b_pages[i]; 3076 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3077 vm_ooffset_t eoff = noff; 3078 3079 if (eoff > bp->b_offset + bp->b_bufsize) 3080 eoff = bp->b_offset + bp->b_bufsize; 3081 vfs_page_set_valid(bp, foff, i, m); 3082 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 3083 foff = noff; 3084 } 3085 } 3086 } 3087 3088 /* 3089 * vfs_bio_set_validclean: 3090 * 3091 * Set the range within the buffer to valid and clean. The range is 3092 * relative to the beginning of the buffer, b_offset. Note that b_offset 3093 * itself may be offset from the beginning of the first page. 3094 * 3095 */ 3096 3097 void 3098 vfs_bio_set_validclean(struct buf *bp, int base, int size) 3099 { 3100 if (bp->b_flags & B_VMIO) { 3101 int i; 3102 int n; 3103 3104 /* 3105 * Fixup base to be relative to beginning of first page. 3106 * Set initial n to be the maximum number of bytes in the 3107 * first page that can be validated. 3108 */ 3109 3110 base += (bp->b_offset & PAGE_MASK); 3111 n = PAGE_SIZE - (base & PAGE_MASK); 3112 3113 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 3114 vm_page_t m = bp->b_pages[i]; 3115 3116 if (n > size) 3117 n = size; 3118 3119 vm_page_set_validclean(m, base & PAGE_MASK, n); 3120 base += n; 3121 size -= n; 3122 n = PAGE_SIZE; 3123 } 3124 } 3125 } 3126 3127 /* 3128 * vfs_bio_clrbuf: 3129 * 3130 * clear a buffer. This routine essentially fakes an I/O, so we need 3131 * to clear BIO_ERROR and B_INVAL. 3132 * 3133 * Note that while we only theoretically need to clear through b_bcount, 3134 * we go ahead and clear through b_bufsize. 3135 * 3136 * We'll get vm_mtx here for safety if processing a VMIO buffer. 3137 * I don't think vm_mtx is needed, but we're twiddling vm_page flags. 3138 */ 3139 3140 void 3141 vfs_bio_clrbuf(struct buf *bp) { 3142 int i, mask = 0; 3143 caddr_t sa, ea; 3144 3145 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { 3146 mtx_lock(&vm_mtx); 3147 bp->b_flags &= ~B_INVAL; 3148 bp->b_ioflags &= ~BIO_ERROR; 3149 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 3150 (bp->b_offset & PAGE_MASK) == 0) { 3151 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 3152 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && 3153 ((bp->b_pages[0]->valid & mask) != mask)) { 3154 bzero(bp->b_data, bp->b_bufsize); 3155 } 3156 bp->b_pages[0]->valid |= mask; 3157 bp->b_resid = 0; 3158 mtx_unlock(&vm_mtx); 3159 return; 3160 } 3161 ea = sa = bp->b_data; 3162 for(i=0;i<bp->b_npages;i++,sa=ea) { 3163 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE; 3164 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); 3165 ea = (caddr_t)(vm_offset_t)ulmin( 3166 (u_long)(vm_offset_t)ea, 3167 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize); 3168 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 3169 if ((bp->b_pages[i]->valid & mask) == mask) 3170 continue; 3171 if ((bp->b_pages[i]->valid & mask) == 0) { 3172 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { 3173 bzero(sa, ea - sa); 3174 } 3175 } else { 3176 for (; sa < ea; sa += DEV_BSIZE, j++) { 3177 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && 3178 (bp->b_pages[i]->valid & (1<<j)) == 0) 3179 bzero(sa, DEV_BSIZE); 3180 } 3181 } 3182 bp->b_pages[i]->valid |= mask; 3183 vm_page_flag_clear(bp->b_pages[i], PG_ZERO); 3184 } 3185 bp->b_resid = 0; 3186 mtx_unlock(&vm_mtx); 3187 } else { 3188 clrbuf(bp); 3189 } 3190 } 3191 3192 /* 3193 * vm_hold_load_pages and vm_hold_free_pages get pages into 3194 * a buffers address space. The pages are anonymous and are 3195 * not associated with a file object. 3196 * 3197 * vm_mtx should not be held 3198 */ 3199 static void 3200 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3201 { 3202 vm_offset_t pg; 3203 vm_page_t p; 3204 int index; 3205 3206 mtx_assert(&vm_mtx, MA_NOTOWNED); 3207 to = round_page(to); 3208 from = round_page(from); 3209 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3210 3211 mtx_lock(&vm_mtx); 3212 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3213 3214 tryagain: 3215 3216 /* 3217 * note: must allocate system pages since blocking here 3218 * could intefere with paging I/O, no matter which 3219 * process we are. 3220 */ 3221 p = vm_page_alloc(kernel_object, 3222 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), 3223 VM_ALLOC_SYSTEM); 3224 if (!p) { 3225 vm_pageout_deficit += (to - from) >> PAGE_SHIFT; 3226 VM_WAIT; 3227 goto tryagain; 3228 } 3229 vm_page_wire(p); 3230 p->valid = VM_PAGE_BITS_ALL; 3231 vm_page_flag_clear(p, PG_ZERO); 3232 pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); 3233 bp->b_pages[index] = p; 3234 vm_page_wakeup(p); 3235 } 3236 bp->b_npages = index; 3237 mtx_unlock(&vm_mtx); 3238 } 3239 3240 void 3241 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) 3242 { 3243 vm_offset_t pg; 3244 vm_page_t p; 3245 int index, newnpages; 3246 3247 mtx_assert(&vm_mtx, MA_NOTOWNED); 3248 from = round_page(from); 3249 to = round_page(to); 3250 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 3251 3252 mtx_lock(&vm_mtx); 3253 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 3254 p = bp->b_pages[index]; 3255 if (p && (index < bp->b_npages)) { 3256 if (p->busy) { 3257 printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", 3258 bp->b_blkno, bp->b_lblkno); 3259 } 3260 bp->b_pages[index] = NULL; 3261 pmap_kremove(pg); 3262 vm_page_busy(p); 3263 vm_page_unwire(p, 0); 3264 vm_page_free(p); 3265 } 3266 } 3267 bp->b_npages = newnpages; 3268 mtx_unlock(&vm_mtx); 3269 } 3270 3271 3272 #include "opt_ddb.h" 3273 #ifdef DDB 3274 #include <ddb/ddb.h> 3275 3276 DB_SHOW_COMMAND(buffer, db_show_buffer) 3277 { 3278 /* get args */ 3279 struct buf *bp = (struct buf *)addr; 3280 3281 if (!have_addr) { 3282 db_printf("usage: show buffer <addr>\n"); 3283 return; 3284 } 3285 3286 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); 3287 db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " 3288 "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " 3289 "b_blkno = %d, b_pblkno = %d\n", 3290 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 3291 major(bp->b_dev), minor(bp->b_dev), 3292 bp->b_data, bp->b_blkno, bp->b_pblkno); 3293 if (bp->b_npages) { 3294 int i; 3295 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 3296 for (i = 0; i < bp->b_npages; i++) { 3297 vm_page_t m; 3298 m = bp->b_pages[i]; 3299 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 3300 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 3301 if ((i + 1) < bp->b_npages) 3302 db_printf(","); 3303 } 3304 db_printf("\n"); 3305 } 3306 } 3307 #endif /* DDB */ 3308