xref: /freebsd/sys/kern/vfs_bio.c (revision 0ea3482342b4d7d6e71f3007ce4dafe445c639fd)
1 /*
2  * Copyright (c) 1994 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17  *    is allowed if this notation is included.
18  * 5. Modifications may be freely made to this file if the above conditions
19  *    are met.
20  *
21  * $Id: vfs_bio.c,v 1.68 1995/10/29 15:31:13 phk Exp $
22  */
23 
24 /*
25  * this file contains a new buffer I/O scheme implementing a coherent
26  * VM object and buffer cache scheme.  Pains have been taken to make
27  * sure that the performance degradation associated with schemes such
28  * as this is not realized.
29  *
30  * Author:  John S. Dyson
31  * Significant help during the development and debugging phases
32  * had been provided by David Greenman, also of the FreeBSD core team.
33  */
34 
35 #define VMIO
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sysproto.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/vnode.h>
42 #include <vm/vm.h>
43 #include <vm/vm_kern.h>
44 #include <vm/vm_pageout.h>
45 #include <vm/vm_page.h>
46 #include <vm/vm_object.h>
47 #include <sys/buf.h>
48 #include <sys/mount.h>
49 #include <sys/malloc.h>
50 #include <sys/resourcevar.h>
51 #include <sys/proc.h>
52 
53 #include <miscfs/specfs/specdev.h>
54 
55 /*
56  * System initialization
57  */
58 
59 static void vfs_update __P((void));
60 struct	proc *updateproc;
61 
62 static struct kproc_desc up_kp = {
63 	"update",
64 	vfs_update,
65 	&updateproc
66 };
67 SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68 
69 
70 struct buf *buf;		/* buffer header pool */
71 struct swqueue bswlist;
72 
73 void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
74 void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
75 void vfs_clean_pages(struct buf * bp);
76 static void vfs_setdirty(struct buf *bp);
77 static __inline struct buf * gbincore(struct vnode * vp, daddr_t blkno);
78 
79 int needsbuffer;
80 
81 /*
82  * Internal update daemon, process 3
83  *	The variable vfs_update_wakeup allows for internal syncs.
84  */
85 int vfs_update_wakeup;
86 
87 
88 /*
89  * buffers base kva
90  */
91 caddr_t buffers_kva;
92 
93 /*
94  * bogus page -- for I/O to/from partially complete buffers
95  * this is a temporary solution to the problem, but it is not
96  * really that bad.  it would be better to split the buffer
97  * for input in the case of buffers partially already in memory,
98  * but the code is intricate enough already.
99  */
100 vm_page_t bogus_page;
101 vm_offset_t bogus_offset;
102 
103 int bufspace, maxbufspace;
104 
105 /*
106  * advisory minimum for size of LRU queue or VMIO queue
107  */
108 int minbuf;
109 
110 struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111 struct bqueues bufqueues[BUFFER_QUEUES];
112 
113 /*
114  * Initialize buffer headers and related structures.
115  */
116 void
117 bufinit()
118 {
119 	struct buf *bp;
120 	int i;
121 
122 	TAILQ_INIT(&bswlist);
123 	LIST_INIT(&invalhash);
124 
125 	/* first, make a null hash table */
126 	for (i = 0; i < BUFHSZ; i++)
127 		LIST_INIT(&bufhashtbl[i]);
128 
129 	/* next, make a null set of free lists */
130 	for (i = 0; i < BUFFER_QUEUES; i++)
131 		TAILQ_INIT(&bufqueues[i]);
132 
133 	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
134 	/* finally, initialize each buffer header and stick on empty q */
135 	for (i = 0; i < nbuf; i++) {
136 		bp = &buf[i];
137 		bzero(bp, sizeof *bp);
138 		bp->b_flags = B_INVAL;	/* we're just an empty header */
139 		bp->b_dev = NODEV;
140 		bp->b_rcred = NOCRED;
141 		bp->b_wcred = NOCRED;
142 		bp->b_qindex = QUEUE_EMPTY;
143 		bp->b_vnbufs.le_next = NOLIST;
144 		bp->b_data = buffers_kva + i * MAXBSIZE;
145 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
146 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
147 	}
148 /*
149  * maxbufspace is currently calculated to support all filesystem blocks
150  * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
151  * cache is still the same as it would be for 8K filesystems.  This
152  * keeps the size of the buffer cache "in check" for big block filesystems.
153  */
154 	minbuf = nbuf / 3;
155 	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
156 
157 	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
158 	bogus_page = vm_page_alloc(kernel_object,
159 			bogus_offset - VM_MIN_KERNEL_ADDRESS, VM_ALLOC_NORMAL);
160 
161 }
162 
163 /*
164  * remove the buffer from the appropriate free list
165  */
166 void
167 bremfree(struct buf * bp)
168 {
169 	int s = splbio();
170 
171 	if (bp->b_qindex != QUEUE_NONE) {
172 		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
173 		bp->b_qindex = QUEUE_NONE;
174 	} else {
175 		panic("bremfree: removing a buffer when not on a queue");
176 	}
177 	splx(s);
178 }
179 
180 /*
181  * Get a buffer with the specified data.  Look in the cache first.
182  */
183 int
184 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
185     struct buf ** bpp)
186 {
187 	struct buf *bp;
188 
189 	bp = getblk(vp, blkno, size, 0, 0);
190 	*bpp = bp;
191 
192 	/* if not found in cache, do some I/O */
193 	if ((bp->b_flags & B_CACHE) == 0) {
194 		if (curproc != NULL)
195 			curproc->p_stats->p_ru.ru_inblock++;
196 		bp->b_flags |= B_READ;
197 		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
198 		if (bp->b_rcred == NOCRED) {
199 			if (cred != NOCRED)
200 				crhold(cred);
201 			bp->b_rcred = cred;
202 		}
203 		vfs_busy_pages(bp, 0);
204 		VOP_STRATEGY(bp);
205 		return (biowait(bp));
206 	}
207 	return (0);
208 }
209 
210 /*
211  * Operates like bread, but also starts asynchronous I/O on
212  * read-ahead blocks.
213  */
214 int
215 breadn(struct vnode * vp, daddr_t blkno, int size,
216     daddr_t * rablkno, int *rabsize,
217     int cnt, struct ucred * cred, struct buf ** bpp)
218 {
219 	struct buf *bp, *rabp;
220 	int i;
221 	int rv = 0, readwait = 0;
222 
223 	*bpp = bp = getblk(vp, blkno, size, 0, 0);
224 
225 	/* if not found in cache, do some I/O */
226 	if ((bp->b_flags & B_CACHE) == 0) {
227 		if (curproc != NULL)
228 			curproc->p_stats->p_ru.ru_inblock++;
229 		bp->b_flags |= B_READ;
230 		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
231 		if (bp->b_rcred == NOCRED) {
232 			if (cred != NOCRED)
233 				crhold(cred);
234 			bp->b_rcred = cred;
235 		}
236 		vfs_busy_pages(bp, 0);
237 		VOP_STRATEGY(bp);
238 		++readwait;
239 	}
240 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
241 		if (inmem(vp, *rablkno))
242 			continue;
243 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
244 
245 		if ((rabp->b_flags & B_CACHE) == 0) {
246 			if (curproc != NULL)
247 				curproc->p_stats->p_ru.ru_inblock++;
248 			rabp->b_flags |= B_READ | B_ASYNC;
249 			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
250 			if (rabp->b_rcred == NOCRED) {
251 				if (cred != NOCRED)
252 					crhold(cred);
253 				rabp->b_rcred = cred;
254 			}
255 			vfs_busy_pages(rabp, 0);
256 			VOP_STRATEGY(rabp);
257 		} else {
258 			brelse(rabp);
259 		}
260 	}
261 
262 	if (readwait) {
263 		rv = biowait(bp);
264 	}
265 	return (rv);
266 }
267 
268 /*
269  * Write, release buffer on completion.  (Done by iodone
270  * if async.)
271  */
272 int
273 bwrite(struct buf * bp)
274 {
275 	int oldflags = bp->b_flags;
276 
277 	if (bp->b_flags & B_INVAL) {
278 		brelse(bp);
279 		return (0);
280 	}
281 	if (!(bp->b_flags & B_BUSY))
282 		panic("bwrite: buffer is not busy???");
283 
284 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
285 	bp->b_flags |= B_WRITEINPROG;
286 
287 	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
288 		reassignbuf(bp, bp->b_vp);
289 	}
290 
291 	bp->b_vp->v_numoutput++;
292 	vfs_busy_pages(bp, 1);
293 	if (curproc != NULL)
294 		curproc->p_stats->p_ru.ru_oublock++;
295 	VOP_STRATEGY(bp);
296 
297 	if ((oldflags & B_ASYNC) == 0) {
298 		int rtval = biowait(bp);
299 
300 		if (oldflags & B_DELWRI) {
301 			reassignbuf(bp, bp->b_vp);
302 		}
303 		brelse(bp);
304 		return (rtval);
305 	}
306 	return (0);
307 }
308 
309 int
310 vn_bwrite(ap)
311 	struct vop_bwrite_args *ap;
312 {
313 	return (bwrite(ap->a_bp));
314 }
315 
316 /*
317  * Delayed write. (Buffer is marked dirty).
318  */
319 void
320 bdwrite(struct buf * bp)
321 {
322 
323 	if ((bp->b_flags & B_BUSY) == 0) {
324 		panic("bdwrite: buffer is not busy");
325 	}
326 	if (bp->b_flags & B_INVAL) {
327 		brelse(bp);
328 		return;
329 	}
330 	if (bp->b_flags & B_TAPE) {
331 		bawrite(bp);
332 		return;
333 	}
334 	bp->b_flags &= ~(B_READ|B_RELBUF);
335 	if ((bp->b_flags & B_DELWRI) == 0) {
336 		bp->b_flags |= B_DONE | B_DELWRI;
337 		reassignbuf(bp, bp->b_vp);
338 	}
339 
340 	/*
341 	 * This bmap keeps the system from needing to do the bmap later,
342 	 * perhaps when the system is attempting to do a sync.  Since it
343 	 * is likely that the indirect block -- or whatever other datastructure
344 	 * that the filesystem needs is still in memory now, it is a good
345 	 * thing to do this.  Note also, that if the pageout daemon is
346 	 * requesting a sync -- there might not be enough memory to do
347 	 * the bmap then...  So, this is important to do.
348 	 */
349 	if( bp->b_lblkno == bp->b_blkno) {
350 		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
351 	}
352 
353 	/*
354 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
355 	 */
356 	vfs_setdirty(bp);
357 
358 	/*
359 	 * We need to do this here to satisfy the vnode_pager and the
360 	 * pageout daemon, so that it thinks that the pages have been
361 	 * "cleaned".  Note that since the pages are in a delayed write
362 	 * buffer -- the VFS layer "will" see that the pages get written
363 	 * out on the next sync, or perhaps the cluster will be completed.
364 	 */
365 	vfs_clean_pages(bp);
366 	brelse(bp);
367 	return;
368 }
369 
370 /*
371  * Asynchronous write.
372  * Start output on a buffer, but do not wait for it to complete.
373  * The buffer is released when the output completes.
374  */
375 void
376 bawrite(struct buf * bp)
377 {
378 	bp->b_flags |= B_ASYNC;
379 	(void) VOP_BWRITE(bp);
380 }
381 
382 /*
383  * Release a buffer.
384  */
385 void
386 brelse(struct buf * bp)
387 {
388 	int s;
389 
390 	if (bp->b_flags & B_CLUSTER) {
391 		relpbuf(bp);
392 		return;
393 	}
394 	/* anyone need a "free" block? */
395 	s = splbio();
396 
397 	if (needsbuffer) {
398 		needsbuffer = 0;
399 		wakeup(&needsbuffer);
400 	}
401 
402 	/* anyone need this block? */
403 	if (bp->b_flags & B_WANTED) {
404 		bp->b_flags &= ~(B_WANTED | B_AGE);
405 		wakeup(bp);
406 	} else if (bp->b_flags & B_VMIO) {
407 		bp->b_flags &= ~B_WANTED;
408 		wakeup(bp);
409 	}
410 	if (bp->b_flags & B_LOCKED)
411 		bp->b_flags &= ~B_ERROR;
412 
413 	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
414 	    (bp->b_bufsize <= 0)) {
415 		bp->b_flags |= B_INVAL;
416 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
417 		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp)
418 			brelvp(bp);
419 	}
420 
421 	/*
422 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
423 	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
424 	 * but the VM object is kept around.  The B_NOCACHE flag is used to
425 	 * invalidate the pages in the VM object.
426 	 */
427 	if (bp->b_flags & B_VMIO) {
428 		vm_offset_t foff;
429 		vm_object_t obj;
430 		int i, resid;
431 		vm_page_t m;
432 		struct vnode *vp;
433 		int iototal = bp->b_bufsize;
434 
435 		vp = bp->b_vp;
436 		if (!vp)
437 			panic("brelse: missing vp");
438 		if (!vp->v_mount)
439 			panic("brelse: missing mount info");
440 
441 		if (bp->b_npages) {
442 			obj = (vm_object_t) vp->v_object;
443 			foff = trunc_page(vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno);
444 			for (i = 0; i < bp->b_npages; i++) {
445 				m = bp->b_pages[i];
446 				if (m == bogus_page) {
447 					m = vm_page_lookup(obj, foff);
448 					if (!m) {
449 						panic("brelse: page missing\n");
450 					}
451 					bp->b_pages[i] = m;
452 					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
453 				}
454 				resid = (m->offset + PAGE_SIZE) - foff;
455 				if (resid > iototal)
456 					resid = iototal;
457 				if (resid > 0) {
458 					/*
459 					 * Don't invalidate the page if the local machine has already
460 					 * modified it.  This is the lesser of two evils, and should
461 					 * be fixed.
462 					 */
463 					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
464 						vm_page_test_dirty(m);
465 						if (m->dirty == 0) {
466 							vm_page_set_invalid(m, foff, resid);
467 							if (m->valid == 0)
468 								vm_page_protect(m, VM_PROT_NONE);
469 						}
470 					}
471 				}
472 				foff += resid;
473 				iototal -= resid;
474 			}
475 		}
476 
477 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
478 			for(i = 0; i < bp->b_npages; i++) {
479 				m = bp->b_pages[i];
480 				--m->bmapped;
481 				if (m->bmapped == 0) {
482 					if (m->flags & PG_WANTED) {
483 						wakeup(m);
484 						m->flags &= ~PG_WANTED;
485 					}
486 					if ((m->busy == 0) && ((m->flags & PG_BUSY) == 0)) {
487 						vm_page_test_dirty(m);
488 						/*
489 						 * if page isn't valid, no sense in keeping it around
490 						 */
491 						if (m->valid == 0) {
492 							vm_page_protect(m, VM_PROT_NONE);
493 							vm_page_free(m);
494 						/*
495 						 * if page isn't dirty and hasn't been referenced by
496 						 * a process, then cache it
497 						 */
498 						} else if ((m->dirty & m->valid) == 0 &&
499 						    (m->flags & PG_REFERENCED) == 0 &&
500 						    !pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
501 							vm_page_cache(m);
502 						/*
503 						 * otherwise activate it
504 						 */
505 						} else if ((m->flags & PG_ACTIVE) == 0) {
506 							vm_page_activate(m);
507 							m->act_count = 0;
508 						}
509 					}
510 				}
511 			}
512 			bufspace -= bp->b_bufsize;
513 			pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
514 			bp->b_npages = 0;
515 			bp->b_bufsize = 0;
516 			bp->b_flags &= ~B_VMIO;
517 			if (bp->b_vp)
518 				brelvp(bp);
519 		}
520 	}
521 	if (bp->b_qindex != QUEUE_NONE)
522 		panic("brelse: free buffer onto another queue???");
523 
524 	/* enqueue */
525 	/* buffers with no memory */
526 	if (bp->b_bufsize == 0) {
527 		bp->b_qindex = QUEUE_EMPTY;
528 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
529 		LIST_REMOVE(bp, b_hash);
530 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
531 		bp->b_dev = NODEV;
532 		/* buffers with junk contents */
533 	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
534 		bp->b_qindex = QUEUE_AGE;
535 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
536 		LIST_REMOVE(bp, b_hash);
537 		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
538 		bp->b_dev = NODEV;
539 		/* buffers that are locked */
540 	} else if (bp->b_flags & B_LOCKED) {
541 		bp->b_qindex = QUEUE_LOCKED;
542 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
543 		/* buffers with stale but valid contents */
544 	} else if (bp->b_flags & B_AGE) {
545 		bp->b_qindex = QUEUE_AGE;
546 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
547 		/* buffers with valid and quite potentially reuseable contents */
548 	} else {
549 		bp->b_qindex = QUEUE_LRU;
550 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
551 	}
552 
553 	/* unlock */
554 	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
555 	splx(s);
556 }
557 
558 /*
559  * Check to see if a block is currently memory resident.
560  */
561 static __inline struct buf *
562 gbincore(struct vnode * vp, daddr_t blkno)
563 {
564 	struct buf *bp;
565 	struct bufhashhdr *bh;
566 
567 	bh = BUFHASH(vp, blkno);
568 	bp = bh->lh_first;
569 
570 	/* Search hash chain */
571 	while (bp != NULL) {
572 		/* hit */
573 		if (bp->b_vp == vp && bp->b_lblkno == blkno) {
574 			break;
575 		}
576 		bp = bp->b_hash.le_next;
577 	}
578 	return (bp);
579 }
580 
581 /*
582  * this routine implements clustered async writes for
583  * clearing out B_DELWRI buffers...  This is much better
584  * than the old way of writing only one buffer at a time.
585  */
586 void
587 vfs_bio_awrite(struct buf * bp)
588 {
589 	int i;
590 	daddr_t lblkno = bp->b_lblkno;
591 	struct vnode *vp = bp->b_vp;
592 	int s;
593 	int ncl;
594 	struct buf *bpa;
595 
596 	s = splbio();
597 	if (vp->v_mount && (vp->v_flag & VVMIO) &&
598 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
599 		int size = vp->v_mount->mnt_stat.f_iosize;
600 		int maxcl = MAXPHYS / size;
601 
602 		for (i = 1; i < maxcl; i++) {
603 			if ((bpa = gbincore(vp, lblkno + i)) &&
604 			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
605 			    (B_DELWRI | B_CLUSTEROK)) &&
606 			    (bpa->b_bufsize == size)) {
607 				if ((bpa->b_blkno == bpa->b_lblkno) ||
608 				    (bpa->b_blkno != bp->b_blkno + (i * size) / DEV_BSIZE))
609 					break;
610 			} else {
611 				break;
612 			}
613 		}
614 		ncl = i;
615 		/*
616 		 * this is a possible cluster write
617 		 */
618 		if (ncl != 1) {
619 			bremfree(bp);
620 			cluster_wbuild(vp, bp, size, lblkno, ncl, -1);
621 			splx(s);
622 			return;
623 		}
624 	}
625 	/*
626 	 * default (old) behavior, writing out only one block
627 	 */
628 	bremfree(bp);
629 	bp->b_flags |= B_BUSY | B_ASYNC;
630 	(void) VOP_BWRITE(bp);
631 	splx(s);
632 }
633 
634 
635 /*
636  * Find a buffer header which is available for use.
637  */
638 static struct buf *
639 getnewbuf(int slpflag, int slptimeo, int doingvmio)
640 {
641 	struct buf *bp;
642 	int s;
643 
644 	s = splbio();
645 start:
646 	if (bufspace >= maxbufspace)
647 		goto trytofreespace;
648 
649 	/* can we constitute a new buffer? */
650 	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
651 		if (bp->b_qindex != QUEUE_EMPTY)
652 			panic("getnewbuf: inconsistent EMPTY queue");
653 		bremfree(bp);
654 		goto fillbuf;
655 	}
656 trytofreespace:
657 	/*
658 	 * We keep the file I/O from hogging metadata I/O
659 	 * This is desirable because file data is cached in the
660 	 * VM/Buffer cache even if a buffer is freed.
661 	 */
662 	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
663 		if (bp->b_qindex != QUEUE_AGE)
664 			panic("getnewbuf: inconsistent AGE queue");
665 	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
666 		if (bp->b_qindex != QUEUE_LRU)
667 			panic("getnewbuf: inconsistent LRU queue");
668 	}
669 	if (!bp) {
670 		/* wait for a free buffer of any kind */
671 		needsbuffer = 1;
672 		tsleep(&needsbuffer, PRIBIO | slpflag, "newbuf", slptimeo);
673 		splx(s);
674 		return (0);
675 	}
676 
677 	/* if we are a delayed write, convert to an async write */
678 	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
679 		vfs_bio_awrite(bp);
680 		if (!slpflag && !slptimeo) {
681 			splx(s);
682 			return (0);
683 		}
684 		goto start;
685 	}
686 
687 	if (bp->b_flags & B_WANTED) {
688 		bp->b_flags &= ~B_WANTED;
689 		wakeup(bp);
690 	}
691 	bremfree(bp);
692 
693 	if (bp->b_flags & B_VMIO) {
694 		bp->b_flags |= B_RELBUF | B_BUSY | B_DONE;
695 		brelse(bp);
696 		bremfree(bp);
697 	}
698 
699 	if (bp->b_vp)
700 		brelvp(bp);
701 
702 	/* we are not free, nor do we contain interesting data */
703 	if (bp->b_rcred != NOCRED)
704 		crfree(bp->b_rcred);
705 	if (bp->b_wcred != NOCRED)
706 		crfree(bp->b_wcred);
707 fillbuf:
708 	bp->b_flags |= B_BUSY;
709 	LIST_REMOVE(bp, b_hash);
710 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
711 	splx(s);
712 	if (bp->b_bufsize) {
713 		allocbuf(bp, 0);
714 	}
715 	bp->b_flags = B_BUSY;
716 	bp->b_dev = NODEV;
717 	bp->b_vp = NULL;
718 	bp->b_blkno = bp->b_lblkno = 0;
719 	bp->b_iodone = 0;
720 	bp->b_error = 0;
721 	bp->b_resid = 0;
722 	bp->b_bcount = 0;
723 	bp->b_npages = 0;
724 	bp->b_wcred = bp->b_rcred = NOCRED;
725 	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
726 	bp->b_dirtyoff = bp->b_dirtyend = 0;
727 	bp->b_validoff = bp->b_validend = 0;
728 	if (bufspace >= maxbufspace) {
729 		s = splbio();
730 		bp->b_flags |= B_INVAL;
731 		brelse(bp);
732 		goto trytofreespace;
733 	}
734 	return (bp);
735 }
736 
737 /*
738  * Check to see if a block is currently memory resident.
739  */
740 struct buf *
741 incore(struct vnode * vp, daddr_t blkno)
742 {
743 	struct buf *bp;
744 	struct bufhashhdr *bh;
745 
746 	int s = splbio();
747 
748 	bh = BUFHASH(vp, blkno);
749 	bp = bh->lh_first;
750 
751 	/* Search hash chain */
752 	while (bp != NULL) {
753 		/* hit */
754 		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
755 		    (bp->b_flags & B_INVAL) == 0) {
756 			break;
757 		}
758 		bp = bp->b_hash.le_next;
759 	}
760 	splx(s);
761 	return (bp);
762 }
763 
764 /*
765  * Returns true if no I/O is needed to access the
766  * associated VM object.  This is like incore except
767  * it also hunts around in the VM system for the data.
768  */
769 
770 int
771 inmem(struct vnode * vp, daddr_t blkno)
772 {
773 	vm_object_t obj;
774 	vm_offset_t off, toff, tinc;
775 	vm_page_t m;
776 
777 	if (incore(vp, blkno))
778 		return 1;
779 	if (vp->v_mount == NULL)
780 		return 0;
781 	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
782 		return 0;
783 
784 	obj = vp->v_object;
785 	tinc = PAGE_SIZE;
786 	if (tinc > vp->v_mount->mnt_stat.f_iosize)
787 		tinc = vp->v_mount->mnt_stat.f_iosize;
788 	off = blkno * vp->v_mount->mnt_stat.f_iosize;
789 
790 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
791 
792 		m = vm_page_lookup(obj, trunc_page(toff + off));
793 		if (!m)
794 			return 0;
795 		if (vm_page_is_valid(m, toff + off, tinc) == 0)
796 			return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * now we set the dirty range for the buffer --
803  * for NFS -- if the file is mapped and pages have
804  * been written to, let it know.  We want the
805  * entire range of the buffer to be marked dirty if
806  * any of the pages have been written to for consistancy
807  * with the b_validoff, b_validend set in the nfs write
808  * code, and used by the nfs read code.
809  */
810 static void
811 vfs_setdirty(struct buf *bp) {
812 	int i;
813 	vm_object_t object;
814 	vm_offset_t boffset, offset;
815 	/*
816 	 * We qualify the scan for modified pages on whether the
817 	 * object has been flushed yet.  The OBJ_WRITEABLE flag
818 	 * is not cleared simply by protecting pages off.
819 	 */
820 	if ((bp->b_flags & B_VMIO) &&
821 		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
822 		/*
823 		 * test the pages to see if they have been modified directly
824 		 * by users through the VM system.
825 		 */
826 		for (i = 0; i < bp->b_npages; i++)
827 			vm_page_test_dirty(bp->b_pages[i]);
828 
829 		/*
830 		 * scan forwards for the first page modified
831 		 */
832 		for (i = 0; i < bp->b_npages; i++) {
833 			if (bp->b_pages[i]->dirty) {
834 				break;
835 			}
836 		}
837 		boffset = i * PAGE_SIZE;
838 		if (boffset < bp->b_dirtyoff) {
839 			bp->b_dirtyoff = boffset;
840 		}
841 
842 		/*
843 		 * scan backwards for the last page modified
844 		 */
845 		for (i = bp->b_npages - 1; i >= 0; --i) {
846 			if (bp->b_pages[i]->dirty) {
847 				break;
848 			}
849 		}
850 		boffset = (i + 1) * PAGE_SIZE;
851 		offset = boffset + bp->b_pages[0]->offset;
852 		if (offset >= object->size) {
853 			boffset = object->size - bp->b_pages[0]->offset;
854 		}
855 		if (bp->b_dirtyend < boffset) {
856 			bp->b_dirtyend = boffset;
857 		}
858 	}
859 }
860 
861 /*
862  * Get a block given a specified block and offset into a file/device.
863  */
864 struct buf *
865 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
866 {
867 	struct buf *bp;
868 	int s;
869 	struct bufhashhdr *bh;
870 
871 	s = splbio();
872 loop:
873 	if (bp = gbincore(vp, blkno)) {
874 		if (bp->b_flags & (B_BUSY|B_INVAL)) {
875 			bp->b_flags |= B_WANTED;
876 			if (!tsleep(bp, PRIBIO | slpflag, "getblk", slptimeo))
877 				goto loop;
878 
879 			splx(s);
880 			return (struct buf *) NULL;
881 		}
882 		bp->b_flags |= B_BUSY | B_CACHE;
883 		bremfree(bp);
884 
885 		/*
886 		 * check for size inconsistancies (note that they shouldn't happen
887 		 * but do when filesystems don't handle the size changes correctly.)
888 		 * We are conservative on metadata and don't just extend the buffer
889 		 * but write and re-constitute it.
890 		 */
891 		if (bp->b_bcount != size) {
892 			if (bp->b_flags & B_VMIO) {
893 				allocbuf(bp, size);
894 			} else {
895 				bp->b_flags |= B_NOCACHE;
896 				VOP_BWRITE(bp);
897 				goto loop;
898 			}
899 		}
900 		/*
901 		 * make sure that all pages in the buffer are valid, if they
902 		 * aren't, clear the cache flag.
903 		 * ASSUMPTION:
904 		 *  if the buffer is greater than 1 page in size, it is assumed
905 		 *  that the buffer address starts on a page boundary...
906 		 */
907 		if (bp->b_flags & B_VMIO) {
908 			int szleft, i;
909 			szleft = size;
910 			for (i=0;i<bp->b_npages;i++) {
911 				if (szleft > PAGE_SIZE) {
912 					if ((bp->b_pages[i]->valid & VM_PAGE_BITS_ALL) !=
913 						VM_PAGE_BITS_ALL) {
914 						bp->b_flags &= ~(B_CACHE|B_DONE);
915 						break;
916 					}
917 					szleft -= PAGE_SIZE;
918 				} else {
919 					if (!vm_page_is_valid(bp->b_pages[i],
920 						(((vm_offset_t) bp->b_data) & PAGE_MASK),
921 						szleft)) {
922 						bp->b_flags &= ~(B_CACHE|B_DONE);
923 						break;
924 					}
925 					szleft = 0;
926 				}
927 			}
928 		}
929 		splx(s);
930 		return (bp);
931 	} else {
932 		vm_object_t obj;
933 		int doingvmio;
934 
935 		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
936 			doingvmio = 1;
937 		} else {
938 			doingvmio = 0;
939 		}
940 		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
941 			if (slpflag || slptimeo)
942 				return NULL;
943 			goto loop;
944 		}
945 
946 		/*
947 		 * This code is used to make sure that a buffer is not
948 		 * created while the getnewbuf routine is blocked.
949 		 * Normally the vnode is locked so this isn't a problem.
950 		 * VBLK type I/O requests, however, don't lock the vnode.
951 		 */
952 		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
953 			bp->b_flags |= B_INVAL;
954 			brelse(bp);
955 			goto loop;
956 		}
957 
958 		/*
959 		 * Insert the buffer into the hash, so that it can
960 		 * be found by incore.
961 		 */
962 		bp->b_blkno = bp->b_lblkno = blkno;
963 		bgetvp(vp, bp);
964 		LIST_REMOVE(bp, b_hash);
965 		bh = BUFHASH(vp, blkno);
966 		LIST_INSERT_HEAD(bh, bp, b_hash);
967 
968 		if (doingvmio) {
969 			bp->b_flags |= (B_VMIO | B_CACHE);
970 #if defined(VFS_BIO_DEBUG)
971 			if (vp->v_type != VREG)
972 				printf("getblk: vmioing file type %d???\n", vp->v_type);
973 #endif
974 		} else {
975 			bp->b_flags &= ~B_VMIO;
976 		}
977 		splx(s);
978 
979 		allocbuf(bp, size);
980 		return (bp);
981 	}
982 }
983 
984 /*
985  * Get an empty, disassociated buffer of given size.
986  */
987 struct buf *
988 geteblk(int size)
989 {
990 	struct buf *bp;
991 
992 	while ((bp = getnewbuf(0, 0, 0)) == 0);
993 	allocbuf(bp, size);
994 	bp->b_flags |= B_INVAL;
995 	return (bp);
996 }
997 
998 /*
999  * This code constitutes the buffer memory from either anonymous system
1000  * memory (in the case of non-VMIO operations) or from an associated
1001  * VM object (in the case of VMIO operations).
1002  *
1003  * Note that this code is tricky, and has many complications to resolve
1004  * deadlock or inconsistant data situations.  Tread lightly!!!
1005  *
1006  * Modify the length of a buffer's underlying buffer storage without
1007  * destroying information (unless, of course the buffer is shrinking).
1008  */
1009 int
1010 allocbuf(struct buf * bp, int size)
1011 {
1012 
1013 	int s;
1014 	int newbsize, mbsize;
1015 	int i;
1016 
1017 	if (!(bp->b_flags & B_BUSY))
1018 		panic("allocbuf: buffer not busy");
1019 
1020 	if ((bp->b_flags & B_VMIO) == 0) {
1021 		/*
1022 		 * Just get anonymous memory from the kernel
1023 		 */
1024 		mbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
1025 		newbsize = round_page(size);
1026 
1027 		if (newbsize < bp->b_bufsize) {
1028 			vm_hold_free_pages(
1029 			    bp,
1030 			    (vm_offset_t) bp->b_data + newbsize,
1031 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1032 		} else if (newbsize > bp->b_bufsize) {
1033 			vm_hold_load_pages(
1034 			    bp,
1035 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1036 			    (vm_offset_t) bp->b_data + newbsize);
1037 		}
1038 	} else {
1039 		vm_page_t m;
1040 		int desiredpages;
1041 
1042 		newbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
1043 		desiredpages = round_page(newbsize) / PAGE_SIZE;
1044 
1045 		if (newbsize < bp->b_bufsize) {
1046 			if (desiredpages < bp->b_npages) {
1047 				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1048 				    desiredpages * PAGE_SIZE, (bp->b_npages - desiredpages));
1049 				for (i = desiredpages; i < bp->b_npages; i++) {
1050 					m = bp->b_pages[i];
1051 					s = splhigh();
1052 					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1053 						m->flags |= PG_WANTED;
1054 						tsleep(m, PVM, "biodep", 0);
1055 					}
1056 					splx(s);
1057 
1058 					if (m->bmapped == 0) {
1059 						printf("allocbuf: bmapped is zero for page %d\n", i);
1060 						panic("allocbuf: error");
1061 					}
1062 					--m->bmapped;
1063 					if (m->bmapped == 0) {
1064 						vm_page_protect(m, VM_PROT_NONE);
1065 						vm_page_free(m);
1066 					}
1067 					bp->b_pages[i] = NULL;
1068 				}
1069 				bp->b_npages = desiredpages;
1070 			}
1071 		} else if (newbsize > bp->b_bufsize) {
1072 			vm_object_t obj;
1073 			vm_offset_t tinc, off, toff, objoff;
1074 			int pageindex, curbpnpages;
1075 			struct vnode *vp;
1076 			int bsize;
1077 
1078 			vp = bp->b_vp;
1079 			bsize = vp->v_mount->mnt_stat.f_iosize;
1080 
1081 			if (bp->b_npages < desiredpages) {
1082 				obj = vp->v_object;
1083 				tinc = PAGE_SIZE;
1084 				if (tinc > bsize)
1085 					tinc = bsize;
1086 				off = bp->b_lblkno * bsize;
1087 		doretry:
1088 				curbpnpages = bp->b_npages;
1089 				bp->b_flags |= B_CACHE;
1090 				for (toff = 0; toff < newbsize; toff += tinc) {
1091 					int bytesinpage;
1092 
1093 					pageindex = toff / PAGE_SIZE;
1094 					objoff = trunc_page(toff + off);
1095 					if (pageindex < curbpnpages) {
1096 
1097 						m = bp->b_pages[pageindex];
1098 						if (m->offset != objoff)
1099 							panic("allocbuf: page changed offset??!!!?");
1100 						bytesinpage = tinc;
1101 						if (tinc > (newbsize - toff))
1102 							bytesinpage = newbsize - toff;
1103 						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1104 							bp->b_flags &= ~B_CACHE;
1105 						}
1106 						if ((m->flags & PG_ACTIVE) == 0) {
1107 							vm_page_activate(m);
1108 							m->act_count = 0;
1109 						}
1110 						continue;
1111 					}
1112 					m = vm_page_lookup(obj, objoff);
1113 					if (!m) {
1114 						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1115 						if (!m) {
1116 							int j;
1117 
1118 							for (j = bp->b_npages; j < pageindex; j++) {
1119 								PAGE_WAKEUP(bp->b_pages[j]);
1120 							}
1121 							VM_WAIT;
1122 							goto doretry;
1123 						}
1124 						vm_page_activate(m);
1125 						m->act_count = 0;
1126 						m->valid = 0;
1127 						bp->b_flags &= ~B_CACHE;
1128 					} else if (m->flags & PG_BUSY) {
1129 						int j;
1130 
1131 						for (j = bp->b_npages; j < pageindex; j++) {
1132 							PAGE_WAKEUP(bp->b_pages[j]);
1133 						}
1134 
1135 						s = splbio();
1136 						m->flags |= PG_WANTED;
1137 						tsleep(m, PRIBIO, "pgtblk", 0);
1138 						splx(s);
1139 
1140 						goto doretry;
1141 					} else {
1142 						if ((curproc != pageproc) &&
1143 							(m->flags & PG_CACHE) &&
1144 						    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
1145 							pagedaemon_wakeup();
1146 						}
1147 						bytesinpage = tinc;
1148 						if (tinc > (newbsize - toff))
1149 							bytesinpage = newbsize - toff;
1150 						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
1151 							bp->b_flags &= ~B_CACHE;
1152 						}
1153 						if ((m->flags & PG_ACTIVE) == 0) {
1154 							vm_page_activate(m);
1155 							m->act_count = 0;
1156 						}
1157 						m->flags |= PG_BUSY;
1158 					}
1159 					bp->b_pages[pageindex] = m;
1160 					curbpnpages = pageindex + 1;
1161 				}
1162 				for (i = bp->b_npages; i < curbpnpages; i++) {
1163 					m = bp->b_pages[i];
1164 					m->bmapped++;
1165 					PAGE_WAKEUP(m);
1166 				}
1167 				bp->b_npages = curbpnpages;
1168 				bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
1169 				pmap_qenter((vm_offset_t) bp->b_data, bp->b_pages, bp->b_npages);
1170 				bp->b_data += off % PAGE_SIZE;
1171 			}
1172 		}
1173 	}
1174 	bufspace += (newbsize - bp->b_bufsize);
1175 	bp->b_bufsize = newbsize;
1176 	bp->b_bcount = size;
1177 	return 1;
1178 }
1179 
1180 /*
1181  * Wait for buffer I/O completion, returning error status.
1182  */
1183 int
1184 biowait(register struct buf * bp)
1185 {
1186 	int s;
1187 
1188 	s = splbio();
1189 	while ((bp->b_flags & B_DONE) == 0)
1190 		tsleep(bp, PRIBIO, "biowait", 0);
1191 	splx(s);
1192 	if (bp->b_flags & B_EINTR) {
1193 		bp->b_flags &= ~B_EINTR;
1194 		return (EINTR);
1195 	}
1196 	if (bp->b_flags & B_ERROR) {
1197 		return (bp->b_error ? bp->b_error : EIO);
1198 	} else {
1199 		return (0);
1200 	}
1201 }
1202 
1203 /*
1204  * Finish I/O on a buffer, calling an optional function.
1205  * This is usually called from interrupt level, so process blocking
1206  * is not *a good idea*.
1207  */
1208 void
1209 biodone(register struct buf * bp)
1210 {
1211 	int s;
1212 
1213 	s = splbio();
1214 	if (!(bp->b_flags & B_BUSY))
1215 		panic("biodone: buffer not busy");
1216 
1217 	if (bp->b_flags & B_DONE) {
1218 		splx(s);
1219 		printf("biodone: buffer already done\n");
1220 		return;
1221 	}
1222 	bp->b_flags |= B_DONE;
1223 
1224 	if ((bp->b_flags & B_READ) == 0) {
1225 		vwakeup(bp);
1226 	}
1227 #ifdef BOUNCE_BUFFERS
1228 	if (bp->b_flags & B_BOUNCE)
1229 		vm_bounce_free(bp);
1230 #endif
1231 
1232 	/* call optional completion function if requested */
1233 	if (bp->b_flags & B_CALL) {
1234 		bp->b_flags &= ~B_CALL;
1235 		(*bp->b_iodone) (bp);
1236 		splx(s);
1237 		return;
1238 	}
1239 	if (bp->b_flags & B_VMIO) {
1240 		int i, resid;
1241 		vm_offset_t foff;
1242 		vm_page_t m;
1243 		vm_object_t obj;
1244 		int iosize;
1245 		struct vnode *vp = bp->b_vp;
1246 
1247 		foff = vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1248 		obj = vp->v_object;
1249 		if (!obj) {
1250 			panic("biodone: no object");
1251 		}
1252 #if defined(VFS_BIO_DEBUG)
1253 		if (obj->paging_in_progress < bp->b_npages) {
1254 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1255 			    obj->paging_in_progress, bp->b_npages);
1256 		}
1257 #endif
1258 		iosize = bp->b_bufsize;
1259 		for (i = 0; i < bp->b_npages; i++) {
1260 			int bogusflag = 0;
1261 			m = bp->b_pages[i];
1262 			if (m == bogus_page) {
1263 				bogusflag = 1;
1264 				m = vm_page_lookup(obj, foff);
1265 				if (!m) {
1266 #if defined(VFS_BIO_DEBUG)
1267 					printf("biodone: page disappeared\n");
1268 #endif
1269 					--obj->paging_in_progress;
1270 					continue;
1271 				}
1272 				bp->b_pages[i] = m;
1273 				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1274 			}
1275 #if defined(VFS_BIO_DEBUG)
1276 			if (trunc_page(foff) != m->offset) {
1277 				printf("biodone: foff(%d)/m->offset(%d) mismatch\n", foff, m->offset);
1278 			}
1279 #endif
1280 			resid = (m->offset + PAGE_SIZE) - foff;
1281 			if (resid > iosize)
1282 				resid = iosize;
1283 			/*
1284 			 * In the write case, the valid and clean bits are
1285 			 * already changed correctly, so we only need to do this
1286 			 * here in the read case.
1287 			 */
1288 			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1289 				vm_page_set_validclean(m, foff & (PAGE_SIZE-1), resid);
1290 			}
1291 
1292 			/*
1293 			 * when debugging new filesystems or buffer I/O methods, this
1294 			 * is the most common error that pops up.  if you see this, you
1295 			 * have not set the page busy flag correctly!!!
1296 			 */
1297 			if (m->busy == 0) {
1298 				printf("biodone: page busy < 0, "
1299 				    "off: %ld, foff: %ld, "
1300 				    "resid: %d, index: %d\n",
1301 				    m->offset, foff, resid, i);
1302 				printf(" iosize: %ld, lblkno: %ld, flags: 0x%x, npages: %d\n",
1303 				    bp->b_vp->v_mount->mnt_stat.f_iosize,
1304 				    bp->b_lblkno, bp->b_flags, bp->b_npages);
1305 				printf(" valid: 0x%x, dirty: 0x%x, mapped: %d\n",
1306 				    m->valid, m->dirty, m->bmapped);
1307 				panic("biodone: page busy < 0\n");
1308 			}
1309 			--m->busy;
1310 			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1311 				m->flags &= ~PG_WANTED;
1312 				wakeup(m);
1313 			}
1314 			--obj->paging_in_progress;
1315 			foff += resid;
1316 			iosize -= resid;
1317 		}
1318 		if (obj && obj->paging_in_progress == 0 &&
1319 		    (obj->flags & OBJ_PIPWNT)) {
1320 			obj->flags &= ~OBJ_PIPWNT;
1321 			wakeup(obj);
1322 		}
1323 	}
1324 	/*
1325 	 * For asynchronous completions, release the buffer now. The brelse
1326 	 * checks for B_WANTED and will do the wakeup there if necessary - so
1327 	 * no need to do a wakeup here in the async case.
1328 	 */
1329 
1330 	if (bp->b_flags & B_ASYNC) {
1331 		brelse(bp);
1332 	} else {
1333 		bp->b_flags &= ~B_WANTED;
1334 		wakeup(bp);
1335 	}
1336 	splx(s);
1337 }
1338 
1339 int
1340 count_lock_queue()
1341 {
1342 	int count;
1343 	struct buf *bp;
1344 
1345 	count = 0;
1346 	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1347 	    bp != NULL;
1348 	    bp = bp->b_freelist.tqe_next)
1349 		count++;
1350 	return (count);
1351 }
1352 
1353 int vfs_update_interval = 30;
1354 
1355 void
1356 vfs_update()
1357 {
1358 	(void) spl0();
1359 	while (1) {
1360 		tsleep(&vfs_update_wakeup, PRIBIO, "update",
1361 		    hz * vfs_update_interval);
1362 		vfs_update_wakeup = 0;
1363 		sync(curproc, NULL, NULL);
1364 	}
1365 }
1366 
1367 /*
1368  * This routine is called in lieu of iodone in the case of
1369  * incomplete I/O.  This keeps the busy status for pages
1370  * consistant.
1371  */
1372 void
1373 vfs_unbusy_pages(struct buf * bp)
1374 {
1375 	int i;
1376 
1377 	if (bp->b_flags & B_VMIO) {
1378 		struct vnode *vp = bp->b_vp;
1379 		vm_object_t obj = vp->v_object;
1380 		vm_offset_t foff;
1381 
1382 		foff = trunc_page(vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno);
1383 
1384 		for (i = 0; i < bp->b_npages; i++) {
1385 			vm_page_t m = bp->b_pages[i];
1386 
1387 			if (m == bogus_page) {
1388 				m = vm_page_lookup(obj, foff + i * PAGE_SIZE);
1389 				if (!m) {
1390 					panic("vfs_unbusy_pages: page missing\n");
1391 				}
1392 				bp->b_pages[i] = m;
1393 				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1394 			}
1395 			--obj->paging_in_progress;
1396 			--m->busy;
1397 			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1398 				m->flags &= ~PG_WANTED;
1399 				wakeup(m);
1400 			}
1401 		}
1402 		if (obj->paging_in_progress == 0 &&
1403 		    (obj->flags & OBJ_PIPWNT)) {
1404 			obj->flags &= ~OBJ_PIPWNT;
1405 			wakeup(obj);
1406 		}
1407 	}
1408 }
1409 
1410 /*
1411  * This routine is called before a device strategy routine.
1412  * It is used to tell the VM system that paging I/O is in
1413  * progress, and treat the pages associated with the buffer
1414  * almost as being PG_BUSY.  Also the object paging_in_progress
1415  * flag is handled to make sure that the object doesn't become
1416  * inconsistant.
1417  */
1418 void
1419 vfs_busy_pages(struct buf * bp, int clear_modify)
1420 {
1421 	int i;
1422 
1423 	if (bp->b_flags & B_VMIO) {
1424 		vm_object_t obj = bp->b_vp->v_object;
1425 		vm_offset_t foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1426 		int iocount = bp->b_bufsize;
1427 
1428 		vfs_setdirty(bp);
1429 		for (i = 0; i < bp->b_npages; i++) {
1430 			vm_page_t m = bp->b_pages[i];
1431 			int resid = (m->offset + PAGE_SIZE) - foff;
1432 
1433 			if (resid > iocount)
1434 				resid = iocount;
1435 			if ((bp->b_flags & B_CLUSTER) == 0) {
1436 				obj->paging_in_progress++;
1437 				m->busy++;
1438 			}
1439 			if (clear_modify) {
1440 				vm_page_protect(m, VM_PROT_READ);
1441 				vm_page_set_validclean(m,
1442 					foff & (PAGE_SIZE-1), resid);
1443 			} else if (bp->b_bcount >= PAGE_SIZE) {
1444 				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1445 					bp->b_pages[i] = bogus_page;
1446 					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1447 				}
1448 			}
1449 			foff += resid;
1450 			iocount -= resid;
1451 		}
1452 	}
1453 }
1454 
1455 /*
1456  * Tell the VM system that the pages associated with this buffer
1457  * are clean.  This is used for delayed writes where the data is
1458  * going to go to disk eventually without additional VM intevention.
1459  */
1460 void
1461 vfs_clean_pages(struct buf * bp)
1462 {
1463 	int i;
1464 
1465 	if (bp->b_flags & B_VMIO) {
1466 		vm_offset_t foff =
1467 			bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1468 		int iocount = bp->b_bufsize;
1469 
1470 		for (i = 0; i < bp->b_npages; i++) {
1471 			vm_page_t m = bp->b_pages[i];
1472 			int resid = (m->offset + PAGE_SIZE) - foff;
1473 
1474 			if (resid > iocount)
1475 				resid = iocount;
1476 			if (resid > 0) {
1477 				vm_page_set_validclean(m,
1478 					foff & (PAGE_SIZE-1), resid);
1479 			}
1480 			foff += resid;
1481 			iocount -= resid;
1482 		}
1483 	}
1484 }
1485 
1486 void
1487 vfs_bio_clrbuf(struct buf *bp) {
1488 	int i;
1489 	if( bp->b_flags & B_VMIO) {
1490 		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1491 			int j;
1492 			if( bp->b_pages[0]->valid != VM_PAGE_BITS_ALL) {
1493 				for(j=0; j < bp->b_bufsize / DEV_BSIZE;j++) {
1494 					bzero(bp->b_data + j * DEV_BSIZE, DEV_BSIZE);
1495 				}
1496 			}
1497 			bp->b_resid = 0;
1498 			return;
1499 		}
1500 		for(i=0;i<bp->b_npages;i++) {
1501 			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1502 				continue;
1503 			if( bp->b_pages[i]->valid == 0) {
1504 				bzero(bp->b_data + i * PAGE_SIZE, PAGE_SIZE);
1505 			} else {
1506 				int j;
1507 				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1508 					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1509 						bzero(bp->b_data + i * PAGE_SIZE + j * DEV_BSIZE, DEV_BSIZE);
1510 				}
1511 			}
1512 			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1513 		}
1514 		bp->b_resid = 0;
1515 	} else {
1516 		clrbuf(bp);
1517 	}
1518 }
1519 
1520 /*
1521  * vm_hold_load_pages and vm_hold_unload pages get pages into
1522  * a buffers address space.  The pages are anonymous and are
1523  * not associated with a file object.
1524  */
1525 void
1526 vm_hold_load_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1527 {
1528 	vm_offset_t pg;
1529 	vm_page_t p;
1530 	vm_offset_t from = round_page(froma);
1531 	vm_offset_t to = round_page(toa);
1532 
1533 	for (pg = from; pg < to; pg += PAGE_SIZE) {
1534 
1535 tryagain:
1536 
1537 		p = vm_page_alloc(kernel_object, pg - VM_MIN_KERNEL_ADDRESS,
1538 		    VM_ALLOC_NORMAL);
1539 		if (!p) {
1540 			VM_WAIT;
1541 			goto tryagain;
1542 		}
1543 		vm_page_wire(p);
1544 		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1545 		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = p;
1546 		PAGE_WAKEUP(p);
1547 		bp->b_npages++;
1548 	}
1549 }
1550 
1551 void
1552 vm_hold_free_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1553 {
1554 	vm_offset_t pg;
1555 	vm_page_t p;
1556 	vm_offset_t from = round_page(froma);
1557 	vm_offset_t to = round_page(toa);
1558 
1559 	for (pg = from; pg < to; pg += PAGE_SIZE) {
1560 		p = bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE];
1561 		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = 0;
1562 		pmap_kremove(pg);
1563 		vm_page_free(p);
1564 		--bp->b_npages;
1565 	}
1566 }
1567