1 /*- 2 * Copyright (c) 2004 Poul-Henning Kamp 3 * Copyright (c) 1994,1997 John S. Dyson 4 * Copyright (c) 2013 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * Portions of this software were developed by Konstantin Belousov 8 * under sponsorship from the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * this file contains a new buffer I/O scheme implementing a coherent 34 * VM object and buffer cache scheme. Pains have been taken to make 35 * sure that the performance degradation associated with schemes such 36 * as this is not realized. 37 * 38 * Author: John S. Dyson 39 * Significant help during the development and debugging phases 40 * had been provided by David Greenman, also of the FreeBSD core team. 41 * 42 * see man buf(9) for more info. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/conf.h> 52 #include <sys/buf.h> 53 #include <sys/devicestat.h> 54 #include <sys/eventhandler.h> 55 #include <sys/fail.h> 56 #include <sys/limits.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mount.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/kthread.h> 63 #include <sys/proc.h> 64 #include <sys/resourcevar.h> 65 #include <sys/rwlock.h> 66 #include <sys/sysctl.h> 67 #include <sys/vmem.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <geom/geom.h> 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_page.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_map.h> 79 #include "opt_compat.h" 80 #include "opt_directio.h" 81 #include "opt_swap.h" 82 83 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer"); 84 85 struct bio_ops bioops; /* I/O operation notification */ 86 87 struct buf_ops buf_ops_bio = { 88 .bop_name = "buf_ops_bio", 89 .bop_write = bufwrite, 90 .bop_strategy = bufstrategy, 91 .bop_sync = bufsync, 92 .bop_bdflush = bufbdflush, 93 }; 94 95 /* 96 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has 97 * carnal knowledge of buffers. This knowledge should be moved to vfs_bio.c. 98 */ 99 struct buf *buf; /* buffer header pool */ 100 caddr_t unmapped_buf; 101 102 static struct proc *bufdaemonproc; 103 104 static int inmem(struct vnode *vp, daddr_t blkno); 105 static void vm_hold_free_pages(struct buf *bp, int newbsize); 106 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from, 107 vm_offset_t to); 108 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m); 109 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, 110 vm_page_t m); 111 static void vfs_clean_pages_dirty_buf(struct buf *bp); 112 static void vfs_setdirty_locked_object(struct buf *bp); 113 static void vfs_vmio_release(struct buf *bp); 114 static int vfs_bio_clcheck(struct vnode *vp, int size, 115 daddr_t lblkno, daddr_t blkno); 116 static int buf_flush(struct vnode *vp, int); 117 static int flushbufqueues(struct vnode *, int, int); 118 static void buf_daemon(void); 119 static void bremfreel(struct buf *bp); 120 static __inline void bd_wakeup(void); 121 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 122 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 123 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS); 124 #endif 125 126 int vmiodirenable = TRUE; 127 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0, 128 "Use the VM system for directory writes"); 129 long runningbufspace; 130 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, 131 "Amount of presently outstanding async buffer io"); 132 static long bufspace; 133 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 134 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 135 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD, 136 &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers"); 137 #else 138 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, 139 "Virtual memory used for buffers"); 140 #endif 141 static long unmapped_bufspace; 142 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD, 143 &unmapped_bufspace, 0, 144 "Amount of unmapped buffers, inclusive in the bufspace"); 145 static long maxbufspace; 146 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0, 147 "Maximum allowed value of bufspace (including buf_daemon)"); 148 static long bufmallocspace; 149 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, 150 "Amount of malloced memory for buffers"); 151 static long maxbufmallocspace; 152 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, 153 "Maximum amount of malloced memory for buffers"); 154 static long lobufspace; 155 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0, 156 "Minimum amount of buffers we want to have"); 157 long hibufspace; 158 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, 159 "Maximum allowed value of bufspace (excluding buf_daemon)"); 160 static int bufreusecnt; 161 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0, 162 "Number of times we have reused a buffer"); 163 static int buffreekvacnt; 164 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0, 165 "Number of times we have freed the KVA space from some buffer"); 166 static int bufdefragcnt; 167 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0, 168 "Number of times we have had to repeat buffer allocation to defragment"); 169 static long lorunningspace; 170 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0, 171 "Minimum preferred space used for in-progress I/O"); 172 static long hirunningspace; 173 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0, 174 "Maximum amount of space to use for in-progress I/O"); 175 int dirtybufferflushes; 176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes, 177 0, "Number of bdwrite to bawrite conversions to limit dirty buffers"); 178 int bdwriteskip; 179 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip, 180 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk"); 181 int altbufferflushes; 182 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes, 183 0, "Number of fsync flushes to limit dirty buffers"); 184 static int recursiveflushes; 185 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes, 186 0, "Number of flushes skipped due to being recursive"); 187 static int numdirtybuffers; 188 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, 189 "Number of buffers that are dirty (has unwritten changes) at the moment"); 190 static int lodirtybuffers; 191 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, 192 "How many buffers we want to have free before bufdaemon can sleep"); 193 static int hidirtybuffers; 194 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, 195 "When the number of dirty buffers is considered severe"); 196 int dirtybufthresh; 197 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh, 198 0, "Number of bdwrite to bawrite conversions to clear dirty buffers"); 199 static int numfreebuffers; 200 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, 201 "Number of free buffers"); 202 static int lofreebuffers; 203 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, 204 "XXX Unused"); 205 static int hifreebuffers; 206 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, 207 "XXX Complicatedly unused"); 208 static int getnewbufcalls; 209 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, 210 "Number of calls to getnewbuf"); 211 static int getnewbufrestarts; 212 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, 213 "Number of times getnewbuf has had to restart a buffer aquisition"); 214 static int mappingrestarts; 215 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0, 216 "Number of times getblk has had to restart a buffer mapping for " 217 "unmapped buffer"); 218 static int flushbufqtarget = 100; 219 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0, 220 "Amount of work to do in flushbufqueues when helping bufdaemon"); 221 static long notbufdflushes; 222 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes, 0, 223 "Number of dirty buffer flushes done by the bufdaemon helpers"); 224 static long barrierwrites; 225 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0, 226 "Number of barrier writes"); 227 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD, 228 &unmapped_buf_allowed, 0, 229 "Permit the use of the unmapped i/o"); 230 231 /* 232 * Lock for the non-dirty bufqueues 233 */ 234 static struct mtx_padalign bqclean; 235 236 /* 237 * Lock for the dirty queue. 238 */ 239 static struct mtx_padalign bqdirty; 240 241 /* 242 * This lock synchronizes access to bd_request. 243 */ 244 static struct mtx_padalign bdlock; 245 246 /* 247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and 248 * waitrunningbufspace(). 249 */ 250 static struct mtx_padalign rbreqlock; 251 252 /* 253 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it. 254 */ 255 static struct mtx_padalign nblock; 256 257 /* 258 * Lock that protects bdirtywait. 259 */ 260 static struct mtx_padalign bdirtylock; 261 262 /* 263 * Wakeup point for bufdaemon, as well as indicator of whether it is already 264 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it 265 * is idling. 266 */ 267 static int bd_request; 268 269 /* 270 * Request for the buf daemon to write more buffers than is indicated by 271 * lodirtybuf. This may be necessary to push out excess dependencies or 272 * defragment the address space where a simple count of the number of dirty 273 * buffers is insufficient to characterize the demand for flushing them. 274 */ 275 static int bd_speedupreq; 276 277 /* 278 * bogus page -- for I/O to/from partially complete buffers 279 * this is a temporary solution to the problem, but it is not 280 * really that bad. it would be better to split the buffer 281 * for input in the case of buffers partially already in memory, 282 * but the code is intricate enough already. 283 */ 284 vm_page_t bogus_page; 285 286 /* 287 * Synchronization (sleep/wakeup) variable for active buffer space requests. 288 * Set when wait starts, cleared prior to wakeup(). 289 * Used in runningbufwakeup() and waitrunningbufspace(). 290 */ 291 static int runningbufreq; 292 293 /* 294 * Synchronization (sleep/wakeup) variable for buffer requests. 295 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done 296 * by and/or. 297 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(), 298 * getnewbuf(), and getblk(). 299 */ 300 static int needsbuffer; 301 302 /* 303 * Synchronization for bwillwrite() waiters. 304 */ 305 static int bdirtywait; 306 307 /* 308 * Definitions for the buffer free lists. 309 */ 310 #define BUFFER_QUEUES 5 /* number of free buffer queues */ 311 312 #define QUEUE_NONE 0 /* on no queue */ 313 #define QUEUE_CLEAN 1 /* non-B_DELWRI buffers */ 314 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */ 315 #define QUEUE_EMPTYKVA 3 /* empty buffer headers w/KVA assignment */ 316 #define QUEUE_EMPTY 4 /* empty buffer headers */ 317 #define QUEUE_SENTINEL 1024 /* not an queue index, but mark for sentinel */ 318 319 /* Queues for free buffers with various properties */ 320 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } }; 321 #ifdef INVARIANTS 322 static int bq_len[BUFFER_QUEUES]; 323 #endif 324 325 /* 326 * Single global constant for BUF_WMESG, to avoid getting multiple references. 327 * buf_wmesg is referred from macros. 328 */ 329 const char *buf_wmesg = BUF_WMESG; 330 331 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ 332 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ 333 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ 334 335 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ 336 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) 337 static int 338 sysctl_bufspace(SYSCTL_HANDLER_ARGS) 339 { 340 long lvalue; 341 int ivalue; 342 343 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long)) 344 return (sysctl_handle_long(oidp, arg1, arg2, req)); 345 lvalue = *(long *)arg1; 346 if (lvalue > INT_MAX) 347 /* On overflow, still write out a long to trigger ENOMEM. */ 348 return (sysctl_handle_long(oidp, &lvalue, 0, req)); 349 ivalue = lvalue; 350 return (sysctl_handle_int(oidp, &ivalue, 0, req)); 351 } 352 #endif 353 354 #ifdef DIRECTIO 355 extern void ffs_rawread_setup(void); 356 #endif /* DIRECTIO */ 357 358 /* 359 * bqlock: 360 * 361 * Return the appropriate queue lock based on the index. 362 */ 363 static inline struct mtx * 364 bqlock(int qindex) 365 { 366 367 if (qindex == QUEUE_DIRTY) 368 return (struct mtx *)(&bqdirty); 369 return (struct mtx *)(&bqclean); 370 } 371 372 /* 373 * bdirtywakeup: 374 * 375 * Wakeup any bwillwrite() waiters. 376 */ 377 static void 378 bdirtywakeup(void) 379 { 380 mtx_lock(&bdirtylock); 381 if (bdirtywait) { 382 bdirtywait = 0; 383 wakeup(&bdirtywait); 384 } 385 mtx_unlock(&bdirtylock); 386 } 387 388 /* 389 * bdirtysub: 390 * 391 * Decrement the numdirtybuffers count by one and wakeup any 392 * threads blocked in bwillwrite(). 393 */ 394 static void 395 bdirtysub(void) 396 { 397 398 if (atomic_fetchadd_int(&numdirtybuffers, -1) == 399 (lodirtybuffers + hidirtybuffers) / 2) 400 bdirtywakeup(); 401 } 402 403 /* 404 * bdirtyadd: 405 * 406 * Increment the numdirtybuffers count by one and wakeup the buf 407 * daemon if needed. 408 */ 409 static void 410 bdirtyadd(void) 411 { 412 413 /* 414 * Only do the wakeup once as we cross the boundary. The 415 * buf daemon will keep running until the condition clears. 416 */ 417 if (atomic_fetchadd_int(&numdirtybuffers, 1) == 418 (lodirtybuffers + hidirtybuffers) / 2) 419 bd_wakeup(); 420 } 421 422 /* 423 * bufspacewakeup: 424 * 425 * Called when buffer space is potentially available for recovery. 426 * getnewbuf() will block on this flag when it is unable to free 427 * sufficient buffer space. Buffer space becomes recoverable when 428 * bp's get placed back in the queues. 429 */ 430 431 static __inline void 432 bufspacewakeup(void) 433 { 434 435 /* 436 * If someone is waiting for BUF space, wake them up. Even 437 * though we haven't freed the kva space yet, the waiting 438 * process will be able to now. 439 */ 440 mtx_lock(&nblock); 441 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { 442 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; 443 wakeup(&needsbuffer); 444 } 445 mtx_unlock(&nblock); 446 } 447 448 /* 449 * runningwakeup: 450 * 451 * Wake up processes that are waiting on asynchronous writes to fall 452 * below lorunningspace. 453 */ 454 static void 455 runningwakeup(void) 456 { 457 458 mtx_lock(&rbreqlock); 459 if (runningbufreq) { 460 runningbufreq = 0; 461 wakeup(&runningbufreq); 462 } 463 mtx_unlock(&rbreqlock); 464 } 465 466 /* 467 * runningbufwakeup: 468 * 469 * Decrement the outstanding write count according. 470 */ 471 void 472 runningbufwakeup(struct buf *bp) 473 { 474 long space, bspace; 475 476 bspace = bp->b_runningbufspace; 477 if (bspace == 0) 478 return; 479 space = atomic_fetchadd_long(&runningbufspace, -bspace); 480 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld", 481 space, bspace)); 482 bp->b_runningbufspace = 0; 483 /* 484 * Only acquire the lock and wakeup on the transition from exceeding 485 * the threshold to falling below it. 486 */ 487 if (space < lorunningspace) 488 return; 489 if (space - bspace > lorunningspace) 490 return; 491 runningwakeup(); 492 } 493 494 /* 495 * bufcountadd: 496 * 497 * Called when a buffer has been added to one of the free queues to 498 * account for the buffer and to wakeup anyone waiting for free buffers. 499 * This typically occurs when large amounts of metadata are being handled 500 * by the buffer cache ( else buffer space runs out first, usually ). 501 */ 502 static __inline void 503 bufcountadd(struct buf *bp) 504 { 505 int old; 506 507 KASSERT((bp->b_flags & B_INFREECNT) == 0, 508 ("buf %p already counted as free", bp)); 509 bp->b_flags |= B_INFREECNT; 510 old = atomic_fetchadd_int(&numfreebuffers, 1); 511 KASSERT(old >= 0 && old < nbuf, 512 ("numfreebuffers climbed to %d", old + 1)); 513 mtx_lock(&nblock); 514 if (needsbuffer) { 515 needsbuffer &= ~VFS_BIO_NEED_ANY; 516 if (numfreebuffers >= hifreebuffers) 517 needsbuffer &= ~VFS_BIO_NEED_FREE; 518 wakeup(&needsbuffer); 519 } 520 mtx_unlock(&nblock); 521 } 522 523 /* 524 * bufcountsub: 525 * 526 * Decrement the numfreebuffers count as needed. 527 */ 528 static void 529 bufcountsub(struct buf *bp) 530 { 531 int old; 532 533 /* 534 * Fixup numfreebuffers count. If the buffer is invalid or not 535 * delayed-write, the buffer was free and we must decrement 536 * numfreebuffers. 537 */ 538 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { 539 KASSERT((bp->b_flags & B_INFREECNT) != 0, 540 ("buf %p not counted in numfreebuffers", bp)); 541 bp->b_flags &= ~B_INFREECNT; 542 old = atomic_fetchadd_int(&numfreebuffers, -1); 543 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1)); 544 } 545 } 546 547 /* 548 * waitrunningbufspace() 549 * 550 * runningbufspace is a measure of the amount of I/O currently 551 * running. This routine is used in async-write situations to 552 * prevent creating huge backups of pending writes to a device. 553 * Only asynchronous writes are governed by this function. 554 * 555 * This does NOT turn an async write into a sync write. It waits 556 * for earlier writes to complete and generally returns before the 557 * caller's write has reached the device. 558 */ 559 void 560 waitrunningbufspace(void) 561 { 562 563 mtx_lock(&rbreqlock); 564 while (runningbufspace > hirunningspace) { 565 runningbufreq = 1; 566 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0); 567 } 568 mtx_unlock(&rbreqlock); 569 } 570 571 572 /* 573 * vfs_buf_test_cache: 574 * 575 * Called when a buffer is extended. This function clears the B_CACHE 576 * bit if the newly extended portion of the buffer does not contain 577 * valid data. 578 */ 579 static __inline 580 void 581 vfs_buf_test_cache(struct buf *bp, 582 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, 583 vm_page_t m) 584 { 585 586 VM_OBJECT_ASSERT_LOCKED(m->object); 587 if (bp->b_flags & B_CACHE) { 588 int base = (foff + off) & PAGE_MASK; 589 if (vm_page_is_valid(m, base, size) == 0) 590 bp->b_flags &= ~B_CACHE; 591 } 592 } 593 594 /* Wake up the buffer daemon if necessary */ 595 static __inline void 596 bd_wakeup(void) 597 { 598 599 mtx_lock(&bdlock); 600 if (bd_request == 0) { 601 bd_request = 1; 602 wakeup(&bd_request); 603 } 604 mtx_unlock(&bdlock); 605 } 606 607 /* 608 * bd_speedup - speedup the buffer cache flushing code 609 */ 610 void 611 bd_speedup(void) 612 { 613 int needwake; 614 615 mtx_lock(&bdlock); 616 needwake = 0; 617 if (bd_speedupreq == 0 || bd_request == 0) 618 needwake = 1; 619 bd_speedupreq = 1; 620 bd_request = 1; 621 if (needwake) 622 wakeup(&bd_request); 623 mtx_unlock(&bdlock); 624 } 625 626 #ifdef __i386__ 627 #define TRANSIENT_DENOM 5 628 #else 629 #define TRANSIENT_DENOM 10 630 #endif 631 632 /* 633 * Calculating buffer cache scaling values and reserve space for buffer 634 * headers. This is called during low level kernel initialization and 635 * may be called more then once. We CANNOT write to the memory area 636 * being reserved at this time. 637 */ 638 caddr_t 639 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est) 640 { 641 int tuned_nbuf; 642 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz; 643 644 /* 645 * physmem_est is in pages. Convert it to kilobytes (assumes 646 * PAGE_SIZE is >= 1K) 647 */ 648 physmem_est = physmem_est * (PAGE_SIZE / 1024); 649 650 /* 651 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE. 652 * For the first 64MB of ram nominally allocate sufficient buffers to 653 * cover 1/4 of our ram. Beyond the first 64MB allocate additional 654 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing 655 * the buffer cache we limit the eventual kva reservation to 656 * maxbcache bytes. 657 * 658 * factor represents the 1/4 x ram conversion. 659 */ 660 if (nbuf == 0) { 661 int factor = 4 * BKVASIZE / 1024; 662 663 nbuf = 50; 664 if (physmem_est > 4096) 665 nbuf += min((physmem_est - 4096) / factor, 666 65536 / factor); 667 if (physmem_est > 65536) 668 nbuf += min((physmem_est - 65536) * 2 / (factor * 5), 669 32 * 1024 * 1024 / (factor * 5)); 670 671 if (maxbcache && nbuf > maxbcache / BKVASIZE) 672 nbuf = maxbcache / BKVASIZE; 673 tuned_nbuf = 1; 674 } else 675 tuned_nbuf = 0; 676 677 /* XXX Avoid unsigned long overflows later on with maxbufspace. */ 678 maxbuf = (LONG_MAX / 3) / BKVASIZE; 679 if (nbuf > maxbuf) { 680 if (!tuned_nbuf) 681 printf("Warning: nbufs lowered from %d to %ld\n", nbuf, 682 maxbuf); 683 nbuf = maxbuf; 684 } 685 686 /* 687 * Ideal allocation size for the transient bio submap if 10% 688 * of the maximal space buffer map. This roughly corresponds 689 * to the amount of the buffer mapped for typical UFS load. 690 * 691 * Clip the buffer map to reserve space for the transient 692 * BIOs, if its extent is bigger than 90% (80% on i386) of the 693 * maximum buffer map extent on the platform. 694 * 695 * The fall-back to the maxbuf in case of maxbcache unset, 696 * allows to not trim the buffer KVA for the architectures 697 * with ample KVA space. 698 */ 699 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) { 700 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE; 701 buf_sz = (long)nbuf * BKVASIZE; 702 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM * 703 (TRANSIENT_DENOM - 1)) { 704 /* 705 * There is more KVA than memory. Do not 706 * adjust buffer map size, and assign the rest 707 * of maxbuf to transient map. 708 */ 709 biotmap_sz = maxbuf_sz - buf_sz; 710 } else { 711 /* 712 * Buffer map spans all KVA we could afford on 713 * this platform. Give 10% (20% on i386) of 714 * the buffer map to the transient bio map. 715 */ 716 biotmap_sz = buf_sz / TRANSIENT_DENOM; 717 buf_sz -= biotmap_sz; 718 } 719 if (biotmap_sz / INT_MAX > MAXPHYS) 720 bio_transient_maxcnt = INT_MAX; 721 else 722 bio_transient_maxcnt = biotmap_sz / MAXPHYS; 723 /* 724 * Artifically limit to 1024 simultaneous in-flight I/Os 725 * using the transient mapping. 726 */ 727 if (bio_transient_maxcnt > 1024) 728 bio_transient_maxcnt = 1024; 729 if (tuned_nbuf) 730 nbuf = buf_sz / BKVASIZE; 731 } 732 733 /* 734 * swbufs are used as temporary holders for I/O, such as paging I/O. 735 * We have no less then 16 and no more then 256. 736 */ 737 nswbuf = max(min(nbuf/4, 256), 16); 738 #ifdef NSWBUF_MIN 739 if (nswbuf < NSWBUF_MIN) 740 nswbuf = NSWBUF_MIN; 741 #endif 742 #ifdef DIRECTIO 743 ffs_rawread_setup(); 744 #endif 745 746 /* 747 * Reserve space for the buffer cache buffers 748 */ 749 swbuf = (void *)v; 750 v = (caddr_t)(swbuf + nswbuf); 751 buf = (void *)v; 752 v = (caddr_t)(buf + nbuf); 753 754 return(v); 755 } 756 757 /* Initialize the buffer subsystem. Called before use of any buffers. */ 758 void 759 bufinit(void) 760 { 761 struct buf *bp; 762 int i; 763 764 mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF); 765 mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF); 766 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF); 767 mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF); 768 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF); 769 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF); 770 771 /* next, make a null set of free lists */ 772 for (i = 0; i < BUFFER_QUEUES; i++) 773 TAILQ_INIT(&bufqueues[i]); 774 775 /* finally, initialize each buffer header and stick on empty q */ 776 for (i = 0; i < nbuf; i++) { 777 bp = &buf[i]; 778 bzero(bp, sizeof *bp); 779 bp->b_flags = B_INVAL | B_INFREECNT; 780 bp->b_rcred = NOCRED; 781 bp->b_wcred = NOCRED; 782 bp->b_qindex = QUEUE_EMPTY; 783 bp->b_xflags = 0; 784 LIST_INIT(&bp->b_dep); 785 BUF_LOCKINIT(bp); 786 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); 787 #ifdef INVARIANTS 788 bq_len[QUEUE_EMPTY]++; 789 #endif 790 } 791 792 /* 793 * maxbufspace is the absolute maximum amount of buffer space we are 794 * allowed to reserve in KVM and in real terms. The absolute maximum 795 * is nominally used by buf_daemon. hibufspace is the nominal maximum 796 * used by most other processes. The differential is required to 797 * ensure that buf_daemon is able to run when other processes might 798 * be blocked waiting for buffer space. 799 * 800 * maxbufspace is based on BKVASIZE. Allocating buffers larger then 801 * this may result in KVM fragmentation which is not handled optimally 802 * by the system. 803 */ 804 maxbufspace = (long)nbuf * BKVASIZE; 805 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10); 806 lobufspace = hibufspace - MAXBSIZE; 807 808 /* 809 * Note: The 16 MiB upper limit for hirunningspace was chosen 810 * arbitrarily and may need further tuning. It corresponds to 811 * 128 outstanding write IO requests (if IO size is 128 KiB), 812 * which fits with many RAID controllers' tagged queuing limits. 813 * The lower 1 MiB limit is the historical upper limit for 814 * hirunningspace. 815 */ 816 hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE), 817 16 * 1024 * 1024), 1024 * 1024); 818 lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE); 819 820 /* 821 * Limit the amount of malloc memory since it is wired permanently into 822 * the kernel space. Even though this is accounted for in the buffer 823 * allocation, we don't want the malloced region to grow uncontrolled. 824 * The malloc scheme improves memory utilization significantly on average 825 * (small) directories. 826 */ 827 maxbufmallocspace = hibufspace / 20; 828 829 /* 830 * Reduce the chance of a deadlock occuring by limiting the number 831 * of delayed-write dirty buffers we allow to stack up. 832 */ 833 hidirtybuffers = nbuf / 4 + 20; 834 dirtybufthresh = hidirtybuffers * 9 / 10; 835 numdirtybuffers = 0; 836 /* 837 * To support extreme low-memory systems, make sure hidirtybuffers cannot 838 * eat up all available buffer space. This occurs when our minimum cannot 839 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming 840 * BKVASIZE'd buffers. 841 */ 842 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) { 843 hidirtybuffers >>= 1; 844 } 845 lodirtybuffers = hidirtybuffers / 2; 846 847 /* 848 * Try to keep the number of free buffers in the specified range, 849 * and give special processes (e.g. like buf_daemon) access to an 850 * emergency reserve. 851 */ 852 lofreebuffers = nbuf / 18 + 5; 853 hifreebuffers = 2 * lofreebuffers; 854 numfreebuffers = nbuf; 855 856 bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | 857 VM_ALLOC_NORMAL | VM_ALLOC_WIRED); 858 unmapped_buf = (caddr_t)kva_alloc(MAXPHYS); 859 } 860 861 #ifdef INVARIANTS 862 static inline void 863 vfs_buf_check_mapped(struct buf *bp) 864 { 865 866 KASSERT((bp->b_flags & B_UNMAPPED) == 0, 867 ("mapped buf %p %x", bp, bp->b_flags)); 868 KASSERT(bp->b_kvabase != unmapped_buf, 869 ("mapped buf: b_kvabase was not updated %p", bp)); 870 KASSERT(bp->b_data != unmapped_buf, 871 ("mapped buf: b_data was not updated %p", bp)); 872 } 873 874 static inline void 875 vfs_buf_check_unmapped(struct buf *bp) 876 { 877 878 KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED, 879 ("unmapped buf %p %x", bp, bp->b_flags)); 880 KASSERT(bp->b_kvabase == unmapped_buf, 881 ("unmapped buf: corrupted b_kvabase %p", bp)); 882 KASSERT(bp->b_data == unmapped_buf, 883 ("unmapped buf: corrupted b_data %p", bp)); 884 } 885 886 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp) 887 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp) 888 #else 889 #define BUF_CHECK_MAPPED(bp) do {} while (0) 890 #define BUF_CHECK_UNMAPPED(bp) do {} while (0) 891 #endif 892 893 static void 894 bpmap_qenter(struct buf *bp) 895 { 896 897 BUF_CHECK_MAPPED(bp); 898 899 /* 900 * bp->b_data is relative to bp->b_offset, but 901 * bp->b_offset may be offset into the first page. 902 */ 903 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data); 904 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 905 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 906 (vm_offset_t)(bp->b_offset & PAGE_MASK)); 907 } 908 909 /* 910 * bfreekva() - free the kva allocation for a buffer. 911 * 912 * Since this call frees up buffer space, we call bufspacewakeup(). 913 */ 914 static void 915 bfreekva(struct buf *bp) 916 { 917 918 if (bp->b_kvasize == 0) 919 return; 920 921 atomic_add_int(&buffreekvacnt, 1); 922 atomic_subtract_long(&bufspace, bp->b_kvasize); 923 if ((bp->b_flags & B_UNMAPPED) == 0) { 924 BUF_CHECK_MAPPED(bp); 925 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, 926 bp->b_kvasize); 927 } else { 928 BUF_CHECK_UNMAPPED(bp); 929 if ((bp->b_flags & B_KVAALLOC) != 0) { 930 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc, 931 bp->b_kvasize); 932 } 933 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize); 934 bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC); 935 } 936 bp->b_kvasize = 0; 937 bufspacewakeup(); 938 } 939 940 /* 941 * binsfree: 942 * 943 * Insert the buffer into the appropriate free list. 944 */ 945 static void 946 binsfree(struct buf *bp, int qindex) 947 { 948 struct mtx *olock, *nlock; 949 950 BUF_ASSERT_XLOCKED(bp); 951 952 olock = bqlock(bp->b_qindex); 953 nlock = bqlock(qindex); 954 mtx_lock(olock); 955 /* Handle delayed bremfree() processing. */ 956 if (bp->b_flags & B_REMFREE) 957 bremfreel(bp); 958 959 if (bp->b_qindex != QUEUE_NONE) 960 panic("binsfree: free buffer onto another queue???"); 961 962 bp->b_qindex = qindex; 963 if (olock != nlock) { 964 mtx_unlock(olock); 965 mtx_lock(nlock); 966 } 967 if (bp->b_flags & B_AGE) 968 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); 969 else 970 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist); 971 #ifdef INVARIANTS 972 bq_len[bp->b_qindex]++; 973 #endif 974 mtx_unlock(nlock); 975 976 /* 977 * Something we can maybe free or reuse. 978 */ 979 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) 980 bufspacewakeup(); 981 982 if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) 983 bufcountadd(bp); 984 } 985 986 /* 987 * bremfree: 988 * 989 * Mark the buffer for removal from the appropriate free list. 990 * 991 */ 992 void 993 bremfree(struct buf *bp) 994 { 995 996 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 997 KASSERT((bp->b_flags & B_REMFREE) == 0, 998 ("bremfree: buffer %p already marked for delayed removal.", bp)); 999 KASSERT(bp->b_qindex != QUEUE_NONE, 1000 ("bremfree: buffer %p not on a queue.", bp)); 1001 BUF_ASSERT_XLOCKED(bp); 1002 1003 bp->b_flags |= B_REMFREE; 1004 bufcountsub(bp); 1005 } 1006 1007 /* 1008 * bremfreef: 1009 * 1010 * Force an immediate removal from a free list. Used only in nfs when 1011 * it abuses the b_freelist pointer. 1012 */ 1013 void 1014 bremfreef(struct buf *bp) 1015 { 1016 struct mtx *qlock; 1017 1018 qlock = bqlock(bp->b_qindex); 1019 mtx_lock(qlock); 1020 bremfreel(bp); 1021 mtx_unlock(qlock); 1022 } 1023 1024 /* 1025 * bremfreel: 1026 * 1027 * Removes a buffer from the free list, must be called with the 1028 * correct qlock held. 1029 */ 1030 static void 1031 bremfreel(struct buf *bp) 1032 { 1033 1034 CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X", 1035 bp, bp->b_vp, bp->b_flags); 1036 KASSERT(bp->b_qindex != QUEUE_NONE, 1037 ("bremfreel: buffer %p not on a queue.", bp)); 1038 BUF_ASSERT_XLOCKED(bp); 1039 mtx_assert(bqlock(bp->b_qindex), MA_OWNED); 1040 1041 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); 1042 #ifdef INVARIANTS 1043 KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow", 1044 bp->b_qindex)); 1045 bq_len[bp->b_qindex]--; 1046 #endif 1047 bp->b_qindex = QUEUE_NONE; 1048 /* 1049 * If this was a delayed bremfree() we only need to remove the buffer 1050 * from the queue and return the stats are already done. 1051 */ 1052 if (bp->b_flags & B_REMFREE) { 1053 bp->b_flags &= ~B_REMFREE; 1054 return; 1055 } 1056 bufcountsub(bp); 1057 } 1058 1059 /* 1060 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must 1061 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set, 1062 * the buffer is valid and we do not have to do anything. 1063 */ 1064 void 1065 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, 1066 int cnt, struct ucred * cred) 1067 { 1068 struct buf *rabp; 1069 int i; 1070 1071 for (i = 0; i < cnt; i++, rablkno++, rabsize++) { 1072 if (inmem(vp, *rablkno)) 1073 continue; 1074 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0); 1075 1076 if ((rabp->b_flags & B_CACHE) == 0) { 1077 if (!TD_IS_IDLETHREAD(curthread)) 1078 curthread->td_ru.ru_inblock++; 1079 rabp->b_flags |= B_ASYNC; 1080 rabp->b_flags &= ~B_INVAL; 1081 rabp->b_ioflags &= ~BIO_ERROR; 1082 rabp->b_iocmd = BIO_READ; 1083 if (rabp->b_rcred == NOCRED && cred != NOCRED) 1084 rabp->b_rcred = crhold(cred); 1085 vfs_busy_pages(rabp, 0); 1086 BUF_KERNPROC(rabp); 1087 rabp->b_iooffset = dbtob(rabp->b_blkno); 1088 bstrategy(rabp); 1089 } else { 1090 brelse(rabp); 1091 } 1092 } 1093 } 1094 1095 /* 1096 * Entry point for bread() and breadn() via #defines in sys/buf.h. 1097 * 1098 * Get a buffer with the specified data. Look in the cache first. We 1099 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE 1100 * is set, the buffer is valid and we do not have to do anything, see 1101 * getblk(). Also starts asynchronous I/O on read-ahead blocks. 1102 */ 1103 int 1104 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno, 1105 int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp) 1106 { 1107 struct buf *bp; 1108 int rv = 0, readwait = 0; 1109 1110 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size); 1111 /* 1112 * Can only return NULL if GB_LOCK_NOWAIT flag is specified. 1113 */ 1114 *bpp = bp = getblk(vp, blkno, size, 0, 0, flags); 1115 if (bp == NULL) 1116 return (EBUSY); 1117 1118 /* if not found in cache, do some I/O */ 1119 if ((bp->b_flags & B_CACHE) == 0) { 1120 if (!TD_IS_IDLETHREAD(curthread)) 1121 curthread->td_ru.ru_inblock++; 1122 bp->b_iocmd = BIO_READ; 1123 bp->b_flags &= ~B_INVAL; 1124 bp->b_ioflags &= ~BIO_ERROR; 1125 if (bp->b_rcred == NOCRED && cred != NOCRED) 1126 bp->b_rcred = crhold(cred); 1127 vfs_busy_pages(bp, 0); 1128 bp->b_iooffset = dbtob(bp->b_blkno); 1129 bstrategy(bp); 1130 ++readwait; 1131 } 1132 1133 breada(vp, rablkno, rabsize, cnt, cred); 1134 1135 if (readwait) { 1136 rv = bufwait(bp); 1137 } 1138 return (rv); 1139 } 1140 1141 /* 1142 * Write, release buffer on completion. (Done by iodone 1143 * if async). Do not bother writing anything if the buffer 1144 * is invalid. 1145 * 1146 * Note that we set B_CACHE here, indicating that buffer is 1147 * fully valid and thus cacheable. This is true even of NFS 1148 * now so we set it generally. This could be set either here 1149 * or in biodone() since the I/O is synchronous. We put it 1150 * here. 1151 */ 1152 int 1153 bufwrite(struct buf *bp) 1154 { 1155 int oldflags; 1156 struct vnode *vp; 1157 long space; 1158 int vp_md; 1159 1160 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1161 if (bp->b_flags & B_INVAL) { 1162 brelse(bp); 1163 return (0); 1164 } 1165 1166 if (bp->b_flags & B_BARRIER) 1167 barrierwrites++; 1168 1169 oldflags = bp->b_flags; 1170 1171 BUF_ASSERT_HELD(bp); 1172 1173 if (bp->b_pin_count > 0) 1174 bunpin_wait(bp); 1175 1176 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG), 1177 ("FFS background buffer should not get here %p", bp)); 1178 1179 vp = bp->b_vp; 1180 if (vp) 1181 vp_md = vp->v_vflag & VV_MD; 1182 else 1183 vp_md = 0; 1184 1185 /* 1186 * Mark the buffer clean. Increment the bufobj write count 1187 * before bundirty() call, to prevent other thread from seeing 1188 * empty dirty list and zero counter for writes in progress, 1189 * falsely indicating that the bufobj is clean. 1190 */ 1191 bufobj_wref(bp->b_bufobj); 1192 bundirty(bp); 1193 1194 bp->b_flags &= ~B_DONE; 1195 bp->b_ioflags &= ~BIO_ERROR; 1196 bp->b_flags |= B_CACHE; 1197 bp->b_iocmd = BIO_WRITE; 1198 1199 vfs_busy_pages(bp, 1); 1200 1201 /* 1202 * Normal bwrites pipeline writes 1203 */ 1204 bp->b_runningbufspace = bp->b_bufsize; 1205 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace); 1206 1207 if (!TD_IS_IDLETHREAD(curthread)) 1208 curthread->td_ru.ru_oublock++; 1209 if (oldflags & B_ASYNC) 1210 BUF_KERNPROC(bp); 1211 bp->b_iooffset = dbtob(bp->b_blkno); 1212 bstrategy(bp); 1213 1214 if ((oldflags & B_ASYNC) == 0) { 1215 int rtval = bufwait(bp); 1216 brelse(bp); 1217 return (rtval); 1218 } else if (space > hirunningspace) { 1219 /* 1220 * don't allow the async write to saturate the I/O 1221 * system. We will not deadlock here because 1222 * we are blocking waiting for I/O that is already in-progress 1223 * to complete. We do not block here if it is the update 1224 * or syncer daemon trying to clean up as that can lead 1225 * to deadlock. 1226 */ 1227 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md) 1228 waitrunningbufspace(); 1229 } 1230 1231 return (0); 1232 } 1233 1234 void 1235 bufbdflush(struct bufobj *bo, struct buf *bp) 1236 { 1237 struct buf *nbp; 1238 1239 if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) { 1240 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread); 1241 altbufferflushes++; 1242 } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) { 1243 BO_LOCK(bo); 1244 /* 1245 * Try to find a buffer to flush. 1246 */ 1247 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) { 1248 if ((nbp->b_vflags & BV_BKGRDINPROG) || 1249 BUF_LOCK(nbp, 1250 LK_EXCLUSIVE | LK_NOWAIT, NULL)) 1251 continue; 1252 if (bp == nbp) 1253 panic("bdwrite: found ourselves"); 1254 BO_UNLOCK(bo); 1255 /* Don't countdeps with the bo lock held. */ 1256 if (buf_countdeps(nbp, 0)) { 1257 BO_LOCK(bo); 1258 BUF_UNLOCK(nbp); 1259 continue; 1260 } 1261 if (nbp->b_flags & B_CLUSTEROK) { 1262 vfs_bio_awrite(nbp); 1263 } else { 1264 bremfree(nbp); 1265 bawrite(nbp); 1266 } 1267 dirtybufferflushes++; 1268 break; 1269 } 1270 if (nbp == NULL) 1271 BO_UNLOCK(bo); 1272 } 1273 } 1274 1275 /* 1276 * Delayed write. (Buffer is marked dirty). Do not bother writing 1277 * anything if the buffer is marked invalid. 1278 * 1279 * Note that since the buffer must be completely valid, we can safely 1280 * set B_CACHE. In fact, we have to set B_CACHE here rather then in 1281 * biodone() in order to prevent getblk from writing the buffer 1282 * out synchronously. 1283 */ 1284 void 1285 bdwrite(struct buf *bp) 1286 { 1287 struct thread *td = curthread; 1288 struct vnode *vp; 1289 struct bufobj *bo; 1290 1291 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1292 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1293 KASSERT((bp->b_flags & B_BARRIER) == 0, 1294 ("Barrier request in delayed write %p", bp)); 1295 BUF_ASSERT_HELD(bp); 1296 1297 if (bp->b_flags & B_INVAL) { 1298 brelse(bp); 1299 return; 1300 } 1301 1302 /* 1303 * If we have too many dirty buffers, don't create any more. 1304 * If we are wildly over our limit, then force a complete 1305 * cleanup. Otherwise, just keep the situation from getting 1306 * out of control. Note that we have to avoid a recursive 1307 * disaster and not try to clean up after our own cleanup! 1308 */ 1309 vp = bp->b_vp; 1310 bo = bp->b_bufobj; 1311 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) { 1312 td->td_pflags |= TDP_INBDFLUSH; 1313 BO_BDFLUSH(bo, bp); 1314 td->td_pflags &= ~TDP_INBDFLUSH; 1315 } else 1316 recursiveflushes++; 1317 1318 bdirty(bp); 1319 /* 1320 * Set B_CACHE, indicating that the buffer is fully valid. This is 1321 * true even of NFS now. 1322 */ 1323 bp->b_flags |= B_CACHE; 1324 1325 /* 1326 * This bmap keeps the system from needing to do the bmap later, 1327 * perhaps when the system is attempting to do a sync. Since it 1328 * is likely that the indirect block -- or whatever other datastructure 1329 * that the filesystem needs is still in memory now, it is a good 1330 * thing to do this. Note also, that if the pageout daemon is 1331 * requesting a sync -- there might not be enough memory to do 1332 * the bmap then... So, this is important to do. 1333 */ 1334 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) { 1335 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); 1336 } 1337 1338 /* 1339 * Set the *dirty* buffer range based upon the VM system dirty 1340 * pages. 1341 * 1342 * Mark the buffer pages as clean. We need to do this here to 1343 * satisfy the vnode_pager and the pageout daemon, so that it 1344 * thinks that the pages have been "cleaned". Note that since 1345 * the pages are in a delayed write buffer -- the VFS layer 1346 * "will" see that the pages get written out on the next sync, 1347 * or perhaps the cluster will be completed. 1348 */ 1349 vfs_clean_pages_dirty_buf(bp); 1350 bqrelse(bp); 1351 1352 /* 1353 * note: we cannot initiate I/O from a bdwrite even if we wanted to, 1354 * due to the softdep code. 1355 */ 1356 } 1357 1358 /* 1359 * bdirty: 1360 * 1361 * Turn buffer into delayed write request. We must clear BIO_READ and 1362 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to 1363 * itself to properly update it in the dirty/clean lists. We mark it 1364 * B_DONE to ensure that any asynchronization of the buffer properly 1365 * clears B_DONE ( else a panic will occur later ). 1366 * 1367 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which 1368 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() 1369 * should only be called if the buffer is known-good. 1370 * 1371 * Since the buffer is not on a queue, we do not update the numfreebuffers 1372 * count. 1373 * 1374 * The buffer must be on QUEUE_NONE. 1375 */ 1376 void 1377 bdirty(struct buf *bp) 1378 { 1379 1380 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X", 1381 bp, bp->b_vp, bp->b_flags); 1382 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1383 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 1384 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1385 BUF_ASSERT_HELD(bp); 1386 bp->b_flags &= ~(B_RELBUF); 1387 bp->b_iocmd = BIO_WRITE; 1388 1389 if ((bp->b_flags & B_DELWRI) == 0) { 1390 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI; 1391 reassignbuf(bp); 1392 bdirtyadd(); 1393 } 1394 } 1395 1396 /* 1397 * bundirty: 1398 * 1399 * Clear B_DELWRI for buffer. 1400 * 1401 * Since the buffer is not on a queue, we do not update the numfreebuffers 1402 * count. 1403 * 1404 * The buffer must be on QUEUE_NONE. 1405 */ 1406 1407 void 1408 bundirty(struct buf *bp) 1409 { 1410 1411 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1412 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 1413 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE, 1414 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); 1415 BUF_ASSERT_HELD(bp); 1416 1417 if (bp->b_flags & B_DELWRI) { 1418 bp->b_flags &= ~B_DELWRI; 1419 reassignbuf(bp); 1420 bdirtysub(); 1421 } 1422 /* 1423 * Since it is now being written, we can clear its deferred write flag. 1424 */ 1425 bp->b_flags &= ~B_DEFERRED; 1426 } 1427 1428 /* 1429 * bawrite: 1430 * 1431 * Asynchronous write. Start output on a buffer, but do not wait for 1432 * it to complete. The buffer is released when the output completes. 1433 * 1434 * bwrite() ( or the VOP routine anyway ) is responsible for handling 1435 * B_INVAL buffers. Not us. 1436 */ 1437 void 1438 bawrite(struct buf *bp) 1439 { 1440 1441 bp->b_flags |= B_ASYNC; 1442 (void) bwrite(bp); 1443 } 1444 1445 /* 1446 * babarrierwrite: 1447 * 1448 * Asynchronous barrier write. Start output on a buffer, but do not 1449 * wait for it to complete. Place a write barrier after this write so 1450 * that this buffer and all buffers written before it are committed to 1451 * the disk before any buffers written after this write are committed 1452 * to the disk. The buffer is released when the output completes. 1453 */ 1454 void 1455 babarrierwrite(struct buf *bp) 1456 { 1457 1458 bp->b_flags |= B_ASYNC | B_BARRIER; 1459 (void) bwrite(bp); 1460 } 1461 1462 /* 1463 * bbarrierwrite: 1464 * 1465 * Synchronous barrier write. Start output on a buffer and wait for 1466 * it to complete. Place a write barrier after this write so that 1467 * this buffer and all buffers written before it are committed to 1468 * the disk before any buffers written after this write are committed 1469 * to the disk. The buffer is released when the output completes. 1470 */ 1471 int 1472 bbarrierwrite(struct buf *bp) 1473 { 1474 1475 bp->b_flags |= B_BARRIER; 1476 return (bwrite(bp)); 1477 } 1478 1479 /* 1480 * bwillwrite: 1481 * 1482 * Called prior to the locking of any vnodes when we are expecting to 1483 * write. We do not want to starve the buffer cache with too many 1484 * dirty buffers so we block here. By blocking prior to the locking 1485 * of any vnodes we attempt to avoid the situation where a locked vnode 1486 * prevents the various system daemons from flushing related buffers. 1487 */ 1488 void 1489 bwillwrite(void) 1490 { 1491 1492 if (numdirtybuffers >= hidirtybuffers) { 1493 mtx_lock(&bdirtylock); 1494 while (numdirtybuffers >= hidirtybuffers) { 1495 bdirtywait = 1; 1496 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4), 1497 "flswai", 0); 1498 } 1499 mtx_unlock(&bdirtylock); 1500 } 1501 } 1502 1503 /* 1504 * Return true if we have too many dirty buffers. 1505 */ 1506 int 1507 buf_dirty_count_severe(void) 1508 { 1509 1510 return(numdirtybuffers >= hidirtybuffers); 1511 } 1512 1513 static __noinline int 1514 buf_vm_page_count_severe(void) 1515 { 1516 1517 KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1); 1518 1519 return vm_page_count_severe(); 1520 } 1521 1522 /* 1523 * brelse: 1524 * 1525 * Release a busy buffer and, if requested, free its resources. The 1526 * buffer will be stashed in the appropriate bufqueue[] allowing it 1527 * to be accessed later as a cache entity or reused for other purposes. 1528 */ 1529 void 1530 brelse(struct buf *bp) 1531 { 1532 int qindex; 1533 1534 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X", 1535 bp, bp->b_vp, bp->b_flags); 1536 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1537 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1538 1539 if (BUF_LOCKRECURSED(bp)) { 1540 /* 1541 * Do not process, in particular, do not handle the 1542 * B_INVAL/B_RELBUF and do not release to free list. 1543 */ 1544 BUF_UNLOCK(bp); 1545 return; 1546 } 1547 1548 if (bp->b_flags & B_MANAGED) { 1549 bqrelse(bp); 1550 return; 1551 } 1552 1553 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) && 1554 bp->b_error == EIO && !(bp->b_flags & B_INVAL)) { 1555 /* 1556 * Failed write, redirty. Must clear BIO_ERROR to prevent 1557 * pages from being scrapped. If the error is anything 1558 * other than an I/O error (EIO), assume that retrying 1559 * is futile. 1560 */ 1561 bp->b_ioflags &= ~BIO_ERROR; 1562 bdirty(bp); 1563 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) || 1564 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) { 1565 /* 1566 * Either a failed I/O or we were asked to free or not 1567 * cache the buffer. 1568 */ 1569 bp->b_flags |= B_INVAL; 1570 if (!LIST_EMPTY(&bp->b_dep)) 1571 buf_deallocate(bp); 1572 if (bp->b_flags & B_DELWRI) 1573 bdirtysub(); 1574 bp->b_flags &= ~(B_DELWRI | B_CACHE); 1575 if ((bp->b_flags & B_VMIO) == 0) { 1576 if (bp->b_bufsize) 1577 allocbuf(bp, 0); 1578 if (bp->b_vp) 1579 brelvp(bp); 1580 } 1581 } 1582 1583 /* 1584 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() 1585 * is called with B_DELWRI set, the underlying pages may wind up 1586 * getting freed causing a previous write (bdwrite()) to get 'lost' 1587 * because pages associated with a B_DELWRI bp are marked clean. 1588 * 1589 * We still allow the B_INVAL case to call vfs_vmio_release(), even 1590 * if B_DELWRI is set. 1591 * 1592 * If B_DELWRI is not set we may have to set B_RELBUF if we are low 1593 * on pages to return pages to the VM page queues. 1594 */ 1595 if (bp->b_flags & B_DELWRI) 1596 bp->b_flags &= ~B_RELBUF; 1597 else if (buf_vm_page_count_severe()) { 1598 /* 1599 * BKGRDINPROG can only be set with the buf and bufobj 1600 * locks both held. We tolerate a race to clear it here. 1601 */ 1602 if (!(bp->b_vflags & BV_BKGRDINPROG)) 1603 bp->b_flags |= B_RELBUF; 1604 } 1605 1606 /* 1607 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer 1608 * constituted, not even NFS buffers now. Two flags effect this. If 1609 * B_INVAL, the struct buf is invalidated but the VM object is kept 1610 * around ( i.e. so it is trivial to reconstitute the buffer later ). 1611 * 1612 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be 1613 * invalidated. BIO_ERROR cannot be set for a failed write unless the 1614 * buffer is also B_INVAL because it hits the re-dirtying code above. 1615 * 1616 * Normally we can do this whether a buffer is B_DELWRI or not. If 1617 * the buffer is an NFS buffer, it is tracking piecemeal writes or 1618 * the commit state and we cannot afford to lose the buffer. If the 1619 * buffer has a background write in progress, we need to keep it 1620 * around to prevent it from being reconstituted and starting a second 1621 * background write. 1622 */ 1623 if ((bp->b_flags & B_VMIO) 1624 && !(bp->b_vp->v_mount != NULL && 1625 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1626 !vn_isdisk(bp->b_vp, NULL) && 1627 (bp->b_flags & B_DELWRI)) 1628 ) { 1629 1630 int i, j, resid; 1631 vm_page_t m; 1632 off_t foff; 1633 vm_pindex_t poff; 1634 vm_object_t obj; 1635 1636 obj = bp->b_bufobj->bo_object; 1637 1638 /* 1639 * Get the base offset and length of the buffer. Note that 1640 * in the VMIO case if the buffer block size is not 1641 * page-aligned then b_data pointer may not be page-aligned. 1642 * But our b_pages[] array *IS* page aligned. 1643 * 1644 * block sizes less then DEV_BSIZE (usually 512) are not 1645 * supported due to the page granularity bits (m->valid, 1646 * m->dirty, etc...). 1647 * 1648 * See man buf(9) for more information 1649 */ 1650 resid = bp->b_bufsize; 1651 foff = bp->b_offset; 1652 for (i = 0; i < bp->b_npages; i++) { 1653 int had_bogus = 0; 1654 1655 m = bp->b_pages[i]; 1656 1657 /* 1658 * If we hit a bogus page, fixup *all* the bogus pages 1659 * now. 1660 */ 1661 if (m == bogus_page) { 1662 poff = OFF_TO_IDX(bp->b_offset); 1663 had_bogus = 1; 1664 1665 VM_OBJECT_RLOCK(obj); 1666 for (j = i; j < bp->b_npages; j++) { 1667 vm_page_t mtmp; 1668 mtmp = bp->b_pages[j]; 1669 if (mtmp == bogus_page) { 1670 mtmp = vm_page_lookup(obj, poff + j); 1671 if (!mtmp) { 1672 panic("brelse: page missing\n"); 1673 } 1674 bp->b_pages[j] = mtmp; 1675 } 1676 } 1677 VM_OBJECT_RUNLOCK(obj); 1678 1679 if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) { 1680 BUF_CHECK_MAPPED(bp); 1681 pmap_qenter( 1682 trunc_page((vm_offset_t)bp->b_data), 1683 bp->b_pages, bp->b_npages); 1684 } 1685 m = bp->b_pages[i]; 1686 } 1687 if ((bp->b_flags & B_NOCACHE) || 1688 (bp->b_ioflags & BIO_ERROR && 1689 bp->b_iocmd == BIO_READ)) { 1690 int poffset = foff & PAGE_MASK; 1691 int presid = resid > (PAGE_SIZE - poffset) ? 1692 (PAGE_SIZE - poffset) : resid; 1693 1694 KASSERT(presid >= 0, ("brelse: extra page")); 1695 VM_OBJECT_WLOCK(obj); 1696 if (pmap_page_wired_mappings(m) == 0) 1697 vm_page_set_invalid(m, poffset, presid); 1698 VM_OBJECT_WUNLOCK(obj); 1699 if (had_bogus) 1700 printf("avoided corruption bug in bogus_page/brelse code\n"); 1701 } 1702 resid -= PAGE_SIZE - (foff & PAGE_MASK); 1703 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 1704 } 1705 if (bp->b_flags & (B_INVAL | B_RELBUF)) 1706 vfs_vmio_release(bp); 1707 1708 } else if (bp->b_flags & B_VMIO) { 1709 1710 if (bp->b_flags & (B_INVAL | B_RELBUF)) { 1711 vfs_vmio_release(bp); 1712 } 1713 1714 } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) { 1715 if (bp->b_bufsize != 0) 1716 allocbuf(bp, 0); 1717 if (bp->b_vp != NULL) 1718 brelvp(bp); 1719 } 1720 1721 /* 1722 * If the buffer has junk contents signal it and eventually 1723 * clean up B_DELWRI and diassociate the vnode so that gbincore() 1724 * doesn't find it. 1725 */ 1726 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 || 1727 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0) 1728 bp->b_flags |= B_INVAL; 1729 if (bp->b_flags & B_INVAL) { 1730 if (bp->b_flags & B_DELWRI) 1731 bundirty(bp); 1732 if (bp->b_vp) 1733 brelvp(bp); 1734 } 1735 1736 /* buffers with no memory */ 1737 if (bp->b_bufsize == 0) { 1738 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1739 if (bp->b_vflags & BV_BKGRDINPROG) 1740 panic("losing buffer 1"); 1741 if (bp->b_kvasize) 1742 qindex = QUEUE_EMPTYKVA; 1743 else 1744 qindex = QUEUE_EMPTY; 1745 bp->b_flags |= B_AGE; 1746 /* buffers with junk contents */ 1747 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || 1748 (bp->b_ioflags & BIO_ERROR)) { 1749 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA); 1750 if (bp->b_vflags & BV_BKGRDINPROG) 1751 panic("losing buffer 2"); 1752 qindex = QUEUE_CLEAN; 1753 bp->b_flags |= B_AGE; 1754 /* remaining buffers */ 1755 } else if (bp->b_flags & B_DELWRI) 1756 qindex = QUEUE_DIRTY; 1757 else 1758 qindex = QUEUE_CLEAN; 1759 1760 binsfree(bp, qindex); 1761 1762 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT); 1763 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY)) 1764 panic("brelse: not dirty"); 1765 /* unlock */ 1766 BUF_UNLOCK(bp); 1767 } 1768 1769 /* 1770 * Release a buffer back to the appropriate queue but do not try to free 1771 * it. The buffer is expected to be used again soon. 1772 * 1773 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by 1774 * biodone() to requeue an async I/O on completion. It is also used when 1775 * known good buffers need to be requeued but we think we may need the data 1776 * again soon. 1777 * 1778 * XXX we should be able to leave the B_RELBUF hint set on completion. 1779 */ 1780 void 1781 bqrelse(struct buf *bp) 1782 { 1783 int qindex; 1784 1785 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 1786 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), 1787 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); 1788 1789 if (BUF_LOCKRECURSED(bp)) { 1790 /* do not release to free list */ 1791 BUF_UNLOCK(bp); 1792 return; 1793 } 1794 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); 1795 1796 if (bp->b_flags & B_MANAGED) { 1797 if (bp->b_flags & B_REMFREE) 1798 bremfreef(bp); 1799 goto out; 1800 } 1801 1802 /* buffers with stale but valid contents */ 1803 if (bp->b_flags & B_DELWRI) { 1804 qindex = QUEUE_DIRTY; 1805 } else { 1806 if ((bp->b_flags & B_DELWRI) == 0 && 1807 (bp->b_xflags & BX_VNDIRTY)) 1808 panic("bqrelse: not dirty"); 1809 /* 1810 * BKGRDINPROG can only be set with the buf and bufobj 1811 * locks both held. We tolerate a race to clear it here. 1812 */ 1813 if (buf_vm_page_count_severe() && 1814 (bp->b_vflags & BV_BKGRDINPROG) == 0) { 1815 /* 1816 * We are too low on memory, we have to try to free 1817 * the buffer (most importantly: the wired pages 1818 * making up its backing store) *now*. 1819 */ 1820 brelse(bp); 1821 return; 1822 } 1823 qindex = QUEUE_CLEAN; 1824 } 1825 binsfree(bp, qindex); 1826 1827 out: 1828 /* unlock */ 1829 BUF_UNLOCK(bp); 1830 } 1831 1832 /* Give pages used by the bp back to the VM system (where possible) */ 1833 static void 1834 vfs_vmio_release(struct buf *bp) 1835 { 1836 int i; 1837 vm_page_t m; 1838 1839 if ((bp->b_flags & B_UNMAPPED) == 0) { 1840 BUF_CHECK_MAPPED(bp); 1841 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages); 1842 } else 1843 BUF_CHECK_UNMAPPED(bp); 1844 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 1845 for (i = 0; i < bp->b_npages; i++) { 1846 m = bp->b_pages[i]; 1847 bp->b_pages[i] = NULL; 1848 /* 1849 * In order to keep page LRU ordering consistent, put 1850 * everything on the inactive queue. 1851 */ 1852 vm_page_lock(m); 1853 vm_page_unwire(m, 0); 1854 1855 /* 1856 * Might as well free the page if we can and it has 1857 * no valid data. We also free the page if the 1858 * buffer was used for direct I/O 1859 */ 1860 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) { 1861 if (m->wire_count == 0 && !vm_page_busied(m)) 1862 vm_page_free(m); 1863 } else if (bp->b_flags & B_DIRECT) 1864 vm_page_try_to_free(m); 1865 else if (buf_vm_page_count_severe()) 1866 vm_page_try_to_cache(m); 1867 vm_page_unlock(m); 1868 } 1869 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 1870 1871 if (bp->b_bufsize) { 1872 bufspacewakeup(); 1873 bp->b_bufsize = 0; 1874 } 1875 bp->b_npages = 0; 1876 bp->b_flags &= ~B_VMIO; 1877 if (bp->b_vp) 1878 brelvp(bp); 1879 } 1880 1881 /* 1882 * Check to see if a block at a particular lbn is available for a clustered 1883 * write. 1884 */ 1885 static int 1886 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno) 1887 { 1888 struct buf *bpa; 1889 int match; 1890 1891 match = 0; 1892 1893 /* If the buf isn't in core skip it */ 1894 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL) 1895 return (0); 1896 1897 /* If the buf is busy we don't want to wait for it */ 1898 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 1899 return (0); 1900 1901 /* Only cluster with valid clusterable delayed write buffers */ 1902 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) != 1903 (B_DELWRI | B_CLUSTEROK)) 1904 goto done; 1905 1906 if (bpa->b_bufsize != size) 1907 goto done; 1908 1909 /* 1910 * Check to see if it is in the expected place on disk and that the 1911 * block has been mapped. 1912 */ 1913 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno)) 1914 match = 1; 1915 done: 1916 BUF_UNLOCK(bpa); 1917 return (match); 1918 } 1919 1920 /* 1921 * vfs_bio_awrite: 1922 * 1923 * Implement clustered async writes for clearing out B_DELWRI buffers. 1924 * This is much better then the old way of writing only one buffer at 1925 * a time. Note that we may not be presented with the buffers in the 1926 * correct order, so we search for the cluster in both directions. 1927 */ 1928 int 1929 vfs_bio_awrite(struct buf *bp) 1930 { 1931 struct bufobj *bo; 1932 int i; 1933 int j; 1934 daddr_t lblkno = bp->b_lblkno; 1935 struct vnode *vp = bp->b_vp; 1936 int ncl; 1937 int nwritten; 1938 int size; 1939 int maxcl; 1940 int gbflags; 1941 1942 bo = &vp->v_bufobj; 1943 gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 1944 /* 1945 * right now we support clustered writing only to regular files. If 1946 * we find a clusterable block we could be in the middle of a cluster 1947 * rather then at the beginning. 1948 */ 1949 if ((vp->v_type == VREG) && 1950 (vp->v_mount != 0) && /* Only on nodes that have the size info */ 1951 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { 1952 1953 size = vp->v_mount->mnt_stat.f_iosize; 1954 maxcl = MAXPHYS / size; 1955 1956 BO_RLOCK(bo); 1957 for (i = 1; i < maxcl; i++) 1958 if (vfs_bio_clcheck(vp, size, lblkno + i, 1959 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0) 1960 break; 1961 1962 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 1963 if (vfs_bio_clcheck(vp, size, lblkno - j, 1964 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0) 1965 break; 1966 BO_RUNLOCK(bo); 1967 --j; 1968 ncl = i + j; 1969 /* 1970 * this is a possible cluster write 1971 */ 1972 if (ncl != 1) { 1973 BUF_UNLOCK(bp); 1974 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl, 1975 gbflags); 1976 return (nwritten); 1977 } 1978 } 1979 bremfree(bp); 1980 bp->b_flags |= B_ASYNC; 1981 /* 1982 * default (old) behavior, writing out only one block 1983 * 1984 * XXX returns b_bufsize instead of b_bcount for nwritten? 1985 */ 1986 nwritten = bp->b_bufsize; 1987 (void) bwrite(bp); 1988 1989 return (nwritten); 1990 } 1991 1992 static void 1993 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags) 1994 { 1995 1996 KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 && 1997 bp->b_kvasize == 0, ("call bfreekva(%p)", bp)); 1998 if ((gbflags & GB_UNMAPPED) == 0) { 1999 bp->b_kvabase = (caddr_t)addr; 2000 } else if ((gbflags & GB_KVAALLOC) != 0) { 2001 KASSERT((gbflags & GB_UNMAPPED) != 0, 2002 ("GB_KVAALLOC without GB_UNMAPPED")); 2003 bp->b_kvaalloc = (caddr_t)addr; 2004 bp->b_flags |= B_UNMAPPED | B_KVAALLOC; 2005 atomic_add_long(&unmapped_bufspace, bp->b_kvasize); 2006 } 2007 bp->b_kvasize = maxsize; 2008 } 2009 2010 /* 2011 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if 2012 * needed. 2013 */ 2014 static int 2015 allocbufkva(struct buf *bp, int maxsize, int gbflags) 2016 { 2017 vm_offset_t addr; 2018 2019 bfreekva(bp); 2020 addr = 0; 2021 2022 if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) { 2023 /* 2024 * Buffer map is too fragmented. Request the caller 2025 * to defragment the map. 2026 */ 2027 atomic_add_int(&bufdefragcnt, 1); 2028 return (1); 2029 } 2030 setbufkva(bp, addr, maxsize, gbflags); 2031 atomic_add_long(&bufspace, bp->b_kvasize); 2032 return (0); 2033 } 2034 2035 /* 2036 * Ask the bufdaemon for help, or act as bufdaemon itself, when a 2037 * locked vnode is supplied. 2038 */ 2039 static void 2040 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo, 2041 int defrag) 2042 { 2043 struct thread *td; 2044 char *waitmsg; 2045 int fl, flags, norunbuf; 2046 2047 mtx_assert(&bqclean, MA_OWNED); 2048 2049 if (defrag) { 2050 flags = VFS_BIO_NEED_BUFSPACE; 2051 waitmsg = "nbufkv"; 2052 } else if (bufspace >= hibufspace) { 2053 waitmsg = "nbufbs"; 2054 flags = VFS_BIO_NEED_BUFSPACE; 2055 } else { 2056 waitmsg = "newbuf"; 2057 flags = VFS_BIO_NEED_ANY; 2058 } 2059 mtx_lock(&nblock); 2060 needsbuffer |= flags; 2061 mtx_unlock(&nblock); 2062 mtx_unlock(&bqclean); 2063 2064 bd_speedup(); /* heeeelp */ 2065 if ((gbflags & GB_NOWAIT_BD) != 0) 2066 return; 2067 2068 td = curthread; 2069 mtx_lock(&nblock); 2070 while (needsbuffer & flags) { 2071 if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) { 2072 mtx_unlock(&nblock); 2073 /* 2074 * getblk() is called with a vnode locked, and 2075 * some majority of the dirty buffers may as 2076 * well belong to the vnode. Flushing the 2077 * buffers there would make a progress that 2078 * cannot be achieved by the buf_daemon, that 2079 * cannot lock the vnode. 2080 */ 2081 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) | 2082 (td->td_pflags & TDP_NORUNNINGBUF); 2083 /* play bufdaemon */ 2084 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF; 2085 fl = buf_flush(vp, flushbufqtarget); 2086 td->td_pflags &= norunbuf; 2087 mtx_lock(&nblock); 2088 if (fl != 0) 2089 continue; 2090 if ((needsbuffer & flags) == 0) 2091 break; 2092 } 2093 if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag, 2094 waitmsg, slptimeo)) 2095 break; 2096 } 2097 mtx_unlock(&nblock); 2098 } 2099 2100 static void 2101 getnewbuf_reuse_bp(struct buf *bp, int qindex) 2102 { 2103 2104 CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d " 2105 "queue %d (recycling)", bp, bp->b_vp, bp->b_flags, 2106 bp->b_kvasize, bp->b_bufsize, qindex); 2107 mtx_assert(&bqclean, MA_NOTOWNED); 2108 2109 /* 2110 * Note: we no longer distinguish between VMIO and non-VMIO 2111 * buffers. 2112 */ 2113 KASSERT((bp->b_flags & B_DELWRI) == 0, 2114 ("delwri buffer %p found in queue %d", bp, qindex)); 2115 2116 if (qindex == QUEUE_CLEAN) { 2117 if (bp->b_flags & B_VMIO) { 2118 bp->b_flags &= ~B_ASYNC; 2119 vfs_vmio_release(bp); 2120 } 2121 if (bp->b_vp != NULL) 2122 brelvp(bp); 2123 } 2124 2125 /* 2126 * Get the rest of the buffer freed up. b_kva* is still valid 2127 * after this operation. 2128 */ 2129 2130 if (bp->b_rcred != NOCRED) { 2131 crfree(bp->b_rcred); 2132 bp->b_rcred = NOCRED; 2133 } 2134 if (bp->b_wcred != NOCRED) { 2135 crfree(bp->b_wcred); 2136 bp->b_wcred = NOCRED; 2137 } 2138 if (!LIST_EMPTY(&bp->b_dep)) 2139 buf_deallocate(bp); 2140 if (bp->b_vflags & BV_BKGRDINPROG) 2141 panic("losing buffer 3"); 2142 KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p. qindex: %d", 2143 bp, bp->b_vp, qindex)); 2144 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0, 2145 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags)); 2146 2147 if (bp->b_bufsize) 2148 allocbuf(bp, 0); 2149 2150 bp->b_flags &= B_UNMAPPED | B_KVAALLOC; 2151 bp->b_ioflags = 0; 2152 bp->b_xflags = 0; 2153 KASSERT((bp->b_flags & B_INFREECNT) == 0, 2154 ("buf %p still counted as free?", bp)); 2155 bp->b_vflags = 0; 2156 bp->b_vp = NULL; 2157 bp->b_blkno = bp->b_lblkno = 0; 2158 bp->b_offset = NOOFFSET; 2159 bp->b_iodone = 0; 2160 bp->b_error = 0; 2161 bp->b_resid = 0; 2162 bp->b_bcount = 0; 2163 bp->b_npages = 0; 2164 bp->b_dirtyoff = bp->b_dirtyend = 0; 2165 bp->b_bufobj = NULL; 2166 bp->b_pin_count = 0; 2167 bp->b_fsprivate1 = NULL; 2168 bp->b_fsprivate2 = NULL; 2169 bp->b_fsprivate3 = NULL; 2170 2171 LIST_INIT(&bp->b_dep); 2172 } 2173 2174 static int flushingbufs; 2175 2176 static struct buf * 2177 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata) 2178 { 2179 struct buf *bp, *nbp; 2180 int nqindex, qindex, pass; 2181 2182 KASSERT(!unmapped || !defrag, ("both unmapped and defrag")); 2183 2184 pass = 1; 2185 restart: 2186 atomic_add_int(&getnewbufrestarts, 1); 2187 2188 /* 2189 * Setup for scan. If we do not have enough free buffers, 2190 * we setup a degenerate case that immediately fails. Note 2191 * that if we are specially marked process, we are allowed to 2192 * dip into our reserves. 2193 * 2194 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN 2195 * for the allocation of the mapped buffer. For unmapped, the 2196 * easiest is to start with EMPTY outright. 2197 * 2198 * We start with EMPTYKVA. If the list is empty we backup to EMPTY. 2199 * However, there are a number of cases (defragging, reusing, ...) 2200 * where we cannot backup. 2201 */ 2202 nbp = NULL; 2203 mtx_lock(&bqclean); 2204 if (!defrag && unmapped) { 2205 nqindex = QUEUE_EMPTY; 2206 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 2207 } 2208 if (nbp == NULL) { 2209 nqindex = QUEUE_EMPTYKVA; 2210 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 2211 } 2212 2213 /* 2214 * If no EMPTYKVA buffers and we are either defragging or 2215 * reusing, locate a CLEAN buffer to free or reuse. If 2216 * bufspace useage is low skip this step so we can allocate a 2217 * new buffer. 2218 */ 2219 if (nbp == NULL && (defrag || bufspace >= lobufspace)) { 2220 nqindex = QUEUE_CLEAN; 2221 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2222 } 2223 2224 /* 2225 * If we could not find or were not allowed to reuse a CLEAN 2226 * buffer, check to see if it is ok to use an EMPTY buffer. 2227 * We can only use an EMPTY buffer if allocating its KVA would 2228 * not otherwise run us out of buffer space. No KVA is needed 2229 * for the unmapped allocation. 2230 */ 2231 if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace || 2232 metadata)) { 2233 nqindex = QUEUE_EMPTY; 2234 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); 2235 } 2236 2237 /* 2238 * All available buffers might be clean, retry ignoring the 2239 * lobufspace as the last resort. 2240 */ 2241 if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) { 2242 nqindex = QUEUE_CLEAN; 2243 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2244 } 2245 2246 /* 2247 * Run scan, possibly freeing data and/or kva mappings on the fly 2248 * depending. 2249 */ 2250 while ((bp = nbp) != NULL) { 2251 qindex = nqindex; 2252 2253 /* 2254 * Calculate next bp (we can only use it if we do not 2255 * block or do other fancy things). 2256 */ 2257 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { 2258 switch (qindex) { 2259 case QUEUE_EMPTY: 2260 nqindex = QUEUE_EMPTYKVA; 2261 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); 2262 if (nbp != NULL) 2263 break; 2264 /* FALLTHROUGH */ 2265 case QUEUE_EMPTYKVA: 2266 nqindex = QUEUE_CLEAN; 2267 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); 2268 if (nbp != NULL) 2269 break; 2270 /* FALLTHROUGH */ 2271 case QUEUE_CLEAN: 2272 if (metadata && pass == 1) { 2273 pass = 2; 2274 nqindex = QUEUE_EMPTY; 2275 nbp = TAILQ_FIRST( 2276 &bufqueues[QUEUE_EMPTY]); 2277 } 2278 /* 2279 * nbp is NULL. 2280 */ 2281 break; 2282 } 2283 } 2284 /* 2285 * If we are defragging then we need a buffer with 2286 * b_kvasize != 0. XXX this situation should no longer 2287 * occur, if defrag is non-zero the buffer's b_kvasize 2288 * should also be non-zero at this point. XXX 2289 */ 2290 if (defrag && bp->b_kvasize == 0) { 2291 printf("Warning: defrag empty buffer %p\n", bp); 2292 continue; 2293 } 2294 2295 /* 2296 * Start freeing the bp. This is somewhat involved. nbp 2297 * remains valid only for QUEUE_EMPTY[KVA] bp's. 2298 */ 2299 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2300 continue; 2301 /* 2302 * BKGRDINPROG can only be set with the buf and bufobj 2303 * locks both held. We tolerate a race to clear it here. 2304 */ 2305 if (bp->b_vflags & BV_BKGRDINPROG) { 2306 BUF_UNLOCK(bp); 2307 continue; 2308 } 2309 2310 KASSERT(bp->b_qindex == qindex, 2311 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp)); 2312 2313 bremfreel(bp); 2314 mtx_unlock(&bqclean); 2315 /* 2316 * NOTE: nbp is now entirely invalid. We can only restart 2317 * the scan from this point on. 2318 */ 2319 2320 getnewbuf_reuse_bp(bp, qindex); 2321 mtx_assert(&bqclean, MA_NOTOWNED); 2322 2323 /* 2324 * If we are defragging then free the buffer. 2325 */ 2326 if (defrag) { 2327 bp->b_flags |= B_INVAL; 2328 bfreekva(bp); 2329 brelse(bp); 2330 defrag = 0; 2331 goto restart; 2332 } 2333 2334 /* 2335 * Notify any waiters for the buffer lock about 2336 * identity change by freeing the buffer. 2337 */ 2338 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) { 2339 bp->b_flags |= B_INVAL; 2340 bfreekva(bp); 2341 brelse(bp); 2342 goto restart; 2343 } 2344 2345 if (metadata) 2346 break; 2347 2348 /* 2349 * If we are overcomitted then recover the buffer and its 2350 * KVM space. This occurs in rare situations when multiple 2351 * processes are blocked in getnewbuf() or allocbuf(). 2352 */ 2353 if (bufspace >= hibufspace) 2354 flushingbufs = 1; 2355 if (flushingbufs && bp->b_kvasize != 0) { 2356 bp->b_flags |= B_INVAL; 2357 bfreekva(bp); 2358 brelse(bp); 2359 goto restart; 2360 } 2361 if (bufspace < lobufspace) 2362 flushingbufs = 0; 2363 break; 2364 } 2365 return (bp); 2366 } 2367 2368 /* 2369 * getnewbuf: 2370 * 2371 * Find and initialize a new buffer header, freeing up existing buffers 2372 * in the bufqueues as necessary. The new buffer is returned locked. 2373 * 2374 * Important: B_INVAL is not set. If the caller wishes to throw the 2375 * buffer away, the caller must set B_INVAL prior to calling brelse(). 2376 * 2377 * We block if: 2378 * We have insufficient buffer headers 2379 * We have insufficient buffer space 2380 * buffer_arena is too fragmented ( space reservation fails ) 2381 * If we have to flush dirty buffers ( but we try to avoid this ) 2382 */ 2383 static struct buf * 2384 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize, 2385 int gbflags) 2386 { 2387 struct buf *bp; 2388 int defrag, metadata; 2389 2390 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 2391 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 2392 if (!unmapped_buf_allowed) 2393 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC); 2394 2395 defrag = 0; 2396 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 || 2397 vp->v_type == VCHR) 2398 metadata = 1; 2399 else 2400 metadata = 0; 2401 /* 2402 * We can't afford to block since we might be holding a vnode lock, 2403 * which may prevent system daemons from running. We deal with 2404 * low-memory situations by proactively returning memory and running 2405 * async I/O rather then sync I/O. 2406 */ 2407 atomic_add_int(&getnewbufcalls, 1); 2408 atomic_subtract_int(&getnewbufrestarts, 1); 2409 restart: 2410 bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED | 2411 GB_KVAALLOC)) == GB_UNMAPPED, metadata); 2412 if (bp != NULL) 2413 defrag = 0; 2414 2415 /* 2416 * If we exhausted our list, sleep as appropriate. We may have to 2417 * wakeup various daemons and write out some dirty buffers. 2418 * 2419 * Generally we are sleeping due to insufficient buffer space. 2420 */ 2421 if (bp == NULL) { 2422 mtx_assert(&bqclean, MA_OWNED); 2423 getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag); 2424 mtx_assert(&bqclean, MA_NOTOWNED); 2425 } else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) { 2426 mtx_assert(&bqclean, MA_NOTOWNED); 2427 2428 bfreekva(bp); 2429 bp->b_flags |= B_UNMAPPED; 2430 bp->b_kvabase = bp->b_data = unmapped_buf; 2431 bp->b_kvasize = maxsize; 2432 atomic_add_long(&bufspace, bp->b_kvasize); 2433 atomic_add_long(&unmapped_bufspace, bp->b_kvasize); 2434 atomic_add_int(&bufreusecnt, 1); 2435 } else { 2436 mtx_assert(&bqclean, MA_NOTOWNED); 2437 2438 /* 2439 * We finally have a valid bp. We aren't quite out of the 2440 * woods, we still have to reserve kva space. In order 2441 * to keep fragmentation sane we only allocate kva in 2442 * BKVASIZE chunks. 2443 */ 2444 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK; 2445 2446 if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED | 2447 B_KVAALLOC)) == B_UNMAPPED) { 2448 if (allocbufkva(bp, maxsize, gbflags)) { 2449 defrag = 1; 2450 bp->b_flags |= B_INVAL; 2451 brelse(bp); 2452 goto restart; 2453 } 2454 atomic_add_int(&bufreusecnt, 1); 2455 } else if ((bp->b_flags & B_KVAALLOC) != 0 && 2456 (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) { 2457 /* 2458 * If the reused buffer has KVA allocated, 2459 * reassign b_kvaalloc to b_kvabase. 2460 */ 2461 bp->b_kvabase = bp->b_kvaalloc; 2462 bp->b_flags &= ~B_KVAALLOC; 2463 atomic_subtract_long(&unmapped_bufspace, 2464 bp->b_kvasize); 2465 atomic_add_int(&bufreusecnt, 1); 2466 } else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 && 2467 (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED | 2468 GB_KVAALLOC)) { 2469 /* 2470 * The case of reused buffer already have KVA 2471 * mapped, but the request is for unmapped 2472 * buffer with KVA allocated. 2473 */ 2474 bp->b_kvaalloc = bp->b_kvabase; 2475 bp->b_data = bp->b_kvabase = unmapped_buf; 2476 bp->b_flags |= B_UNMAPPED | B_KVAALLOC; 2477 atomic_add_long(&unmapped_bufspace, 2478 bp->b_kvasize); 2479 atomic_add_int(&bufreusecnt, 1); 2480 } 2481 if ((gbflags & GB_UNMAPPED) == 0) { 2482 bp->b_saveaddr = bp->b_kvabase; 2483 bp->b_data = bp->b_saveaddr; 2484 bp->b_flags &= ~B_UNMAPPED; 2485 BUF_CHECK_MAPPED(bp); 2486 } 2487 } 2488 return (bp); 2489 } 2490 2491 /* 2492 * buf_daemon: 2493 * 2494 * buffer flushing daemon. Buffers are normally flushed by the 2495 * update daemon but if it cannot keep up this process starts to 2496 * take the load in an attempt to prevent getnewbuf() from blocking. 2497 */ 2498 2499 static struct kproc_desc buf_kp = { 2500 "bufdaemon", 2501 buf_daemon, 2502 &bufdaemonproc 2503 }; 2504 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp); 2505 2506 static int 2507 buf_flush(struct vnode *vp, int target) 2508 { 2509 int flushed; 2510 2511 flushed = flushbufqueues(vp, target, 0); 2512 if (flushed == 0) { 2513 /* 2514 * Could not find any buffers without rollback 2515 * dependencies, so just write the first one 2516 * in the hopes of eventually making progress. 2517 */ 2518 if (vp != NULL && target > 2) 2519 target /= 2; 2520 flushbufqueues(vp, target, 1); 2521 } 2522 return (flushed); 2523 } 2524 2525 static void 2526 buf_daemon() 2527 { 2528 int lodirty; 2529 2530 /* 2531 * This process needs to be suspended prior to shutdown sync. 2532 */ 2533 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc, 2534 SHUTDOWN_PRI_LAST); 2535 2536 /* 2537 * This process is allowed to take the buffer cache to the limit 2538 */ 2539 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED; 2540 mtx_lock(&bdlock); 2541 for (;;) { 2542 bd_request = 0; 2543 mtx_unlock(&bdlock); 2544 2545 kproc_suspend_check(bufdaemonproc); 2546 lodirty = lodirtybuffers; 2547 if (bd_speedupreq) { 2548 lodirty = numdirtybuffers / 2; 2549 bd_speedupreq = 0; 2550 } 2551 /* 2552 * Do the flush. Limit the amount of in-transit I/O we 2553 * allow to build up, otherwise we would completely saturate 2554 * the I/O system. 2555 */ 2556 while (numdirtybuffers > lodirty) { 2557 if (buf_flush(NULL, numdirtybuffers - lodirty) == 0) 2558 break; 2559 kern_yield(PRI_USER); 2560 } 2561 2562 /* 2563 * Only clear bd_request if we have reached our low water 2564 * mark. The buf_daemon normally waits 1 second and 2565 * then incrementally flushes any dirty buffers that have 2566 * built up, within reason. 2567 * 2568 * If we were unable to hit our low water mark and couldn't 2569 * find any flushable buffers, we sleep for a short period 2570 * to avoid endless loops on unlockable buffers. 2571 */ 2572 mtx_lock(&bdlock); 2573 if (numdirtybuffers <= lodirtybuffers) { 2574 /* 2575 * We reached our low water mark, reset the 2576 * request and sleep until we are needed again. 2577 * The sleep is just so the suspend code works. 2578 */ 2579 bd_request = 0; 2580 /* 2581 * Do an extra wakeup in case dirty threshold 2582 * changed via sysctl and the explicit transition 2583 * out of shortfall was missed. 2584 */ 2585 bdirtywakeup(); 2586 if (runningbufspace <= lorunningspace) 2587 runningwakeup(); 2588 msleep(&bd_request, &bdlock, PVM, "psleep", hz); 2589 } else { 2590 /* 2591 * We couldn't find any flushable dirty buffers but 2592 * still have too many dirty buffers, we 2593 * have to sleep and try again. (rare) 2594 */ 2595 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10); 2596 } 2597 } 2598 } 2599 2600 /* 2601 * flushbufqueues: 2602 * 2603 * Try to flush a buffer in the dirty queue. We must be careful to 2604 * free up B_INVAL buffers instead of write them, which NFS is 2605 * particularly sensitive to. 2606 */ 2607 static int flushwithdeps = 0; 2608 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps, 2609 0, "Number of buffers flushed with dependecies that require rollbacks"); 2610 2611 static int 2612 flushbufqueues(struct vnode *lvp, int target, int flushdeps) 2613 { 2614 struct buf *sentinel; 2615 struct vnode *vp; 2616 struct mount *mp; 2617 struct buf *bp; 2618 int hasdeps; 2619 int flushed; 2620 int queue; 2621 2622 flushed = 0; 2623 queue = QUEUE_DIRTY; 2624 bp = NULL; 2625 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO); 2626 sentinel->b_qindex = QUEUE_SENTINEL; 2627 mtx_lock(&bqdirty); 2628 TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist); 2629 while (flushed != target) { 2630 bp = TAILQ_NEXT(sentinel, b_freelist); 2631 if (bp != NULL) { 2632 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 2633 TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel, 2634 b_freelist); 2635 } else 2636 break; 2637 /* 2638 * Skip sentinels inserted by other invocations of the 2639 * flushbufqueues(), taking care to not reorder them. 2640 */ 2641 if (bp->b_qindex == QUEUE_SENTINEL) 2642 continue; 2643 /* 2644 * Only flush the buffers that belong to the 2645 * vnode locked by the curthread. 2646 */ 2647 if (lvp != NULL && bp->b_vp != lvp) 2648 continue; 2649 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) 2650 continue; 2651 if (bp->b_pin_count > 0) { 2652 BUF_UNLOCK(bp); 2653 continue; 2654 } 2655 /* 2656 * BKGRDINPROG can only be set with the buf and bufobj 2657 * locks both held. We tolerate a race to clear it here. 2658 */ 2659 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 || 2660 (bp->b_flags & B_DELWRI) == 0) { 2661 BUF_UNLOCK(bp); 2662 continue; 2663 } 2664 if (bp->b_flags & B_INVAL) { 2665 bremfreel(bp); 2666 mtx_unlock(&bqdirty); 2667 brelse(bp); 2668 flushed++; 2669 mtx_lock(&bqdirty); 2670 continue; 2671 } 2672 2673 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) { 2674 if (flushdeps == 0) { 2675 BUF_UNLOCK(bp); 2676 continue; 2677 } 2678 hasdeps = 1; 2679 } else 2680 hasdeps = 0; 2681 /* 2682 * We must hold the lock on a vnode before writing 2683 * one of its buffers. Otherwise we may confuse, or 2684 * in the case of a snapshot vnode, deadlock the 2685 * system. 2686 * 2687 * The lock order here is the reverse of the normal 2688 * of vnode followed by buf lock. This is ok because 2689 * the NOWAIT will prevent deadlock. 2690 */ 2691 vp = bp->b_vp; 2692 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2693 BUF_UNLOCK(bp); 2694 continue; 2695 } 2696 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) { 2697 mtx_unlock(&bqdirty); 2698 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X", 2699 bp, bp->b_vp, bp->b_flags); 2700 if (curproc == bufdaemonproc) 2701 vfs_bio_awrite(bp); 2702 else { 2703 bremfree(bp); 2704 bwrite(bp); 2705 notbufdflushes++; 2706 } 2707 vn_finished_write(mp); 2708 VOP_UNLOCK(vp, 0); 2709 flushwithdeps += hasdeps; 2710 flushed++; 2711 2712 /* 2713 * Sleeping on runningbufspace while holding 2714 * vnode lock leads to deadlock. 2715 */ 2716 if (curproc == bufdaemonproc && 2717 runningbufspace > hirunningspace) 2718 waitrunningbufspace(); 2719 mtx_lock(&bqdirty); 2720 continue; 2721 } 2722 vn_finished_write(mp); 2723 BUF_UNLOCK(bp); 2724 } 2725 TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist); 2726 mtx_unlock(&bqdirty); 2727 free(sentinel, M_TEMP); 2728 return (flushed); 2729 } 2730 2731 /* 2732 * Check to see if a block is currently memory resident. 2733 */ 2734 struct buf * 2735 incore(struct bufobj *bo, daddr_t blkno) 2736 { 2737 struct buf *bp; 2738 2739 BO_RLOCK(bo); 2740 bp = gbincore(bo, blkno); 2741 BO_RUNLOCK(bo); 2742 return (bp); 2743 } 2744 2745 /* 2746 * Returns true if no I/O is needed to access the 2747 * associated VM object. This is like incore except 2748 * it also hunts around in the VM system for the data. 2749 */ 2750 2751 static int 2752 inmem(struct vnode * vp, daddr_t blkno) 2753 { 2754 vm_object_t obj; 2755 vm_offset_t toff, tinc, size; 2756 vm_page_t m; 2757 vm_ooffset_t off; 2758 2759 ASSERT_VOP_LOCKED(vp, "inmem"); 2760 2761 if (incore(&vp->v_bufobj, blkno)) 2762 return 1; 2763 if (vp->v_mount == NULL) 2764 return 0; 2765 obj = vp->v_object; 2766 if (obj == NULL) 2767 return (0); 2768 2769 size = PAGE_SIZE; 2770 if (size > vp->v_mount->mnt_stat.f_iosize) 2771 size = vp->v_mount->mnt_stat.f_iosize; 2772 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; 2773 2774 VM_OBJECT_RLOCK(obj); 2775 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { 2776 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); 2777 if (!m) 2778 goto notinmem; 2779 tinc = size; 2780 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) 2781 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); 2782 if (vm_page_is_valid(m, 2783 (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) 2784 goto notinmem; 2785 } 2786 VM_OBJECT_RUNLOCK(obj); 2787 return 1; 2788 2789 notinmem: 2790 VM_OBJECT_RUNLOCK(obj); 2791 return (0); 2792 } 2793 2794 /* 2795 * Set the dirty range for a buffer based on the status of the dirty 2796 * bits in the pages comprising the buffer. The range is limited 2797 * to the size of the buffer. 2798 * 2799 * Tell the VM system that the pages associated with this buffer 2800 * are clean. This is used for delayed writes where the data is 2801 * going to go to disk eventually without additional VM intevention. 2802 * 2803 * Note that while we only really need to clean through to b_bcount, we 2804 * just go ahead and clean through to b_bufsize. 2805 */ 2806 static void 2807 vfs_clean_pages_dirty_buf(struct buf *bp) 2808 { 2809 vm_ooffset_t foff, noff, eoff; 2810 vm_page_t m; 2811 int i; 2812 2813 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0) 2814 return; 2815 2816 foff = bp->b_offset; 2817 KASSERT(bp->b_offset != NOOFFSET, 2818 ("vfs_clean_pages_dirty_buf: no buffer offset")); 2819 2820 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 2821 vfs_drain_busy_pages(bp); 2822 vfs_setdirty_locked_object(bp); 2823 for (i = 0; i < bp->b_npages; i++) { 2824 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 2825 eoff = noff; 2826 if (eoff > bp->b_offset + bp->b_bufsize) 2827 eoff = bp->b_offset + bp->b_bufsize; 2828 m = bp->b_pages[i]; 2829 vfs_page_set_validclean(bp, foff, m); 2830 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ 2831 foff = noff; 2832 } 2833 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 2834 } 2835 2836 static void 2837 vfs_setdirty_locked_object(struct buf *bp) 2838 { 2839 vm_object_t object; 2840 int i; 2841 2842 object = bp->b_bufobj->bo_object; 2843 VM_OBJECT_ASSERT_WLOCKED(object); 2844 2845 /* 2846 * We qualify the scan for modified pages on whether the 2847 * object has been flushed yet. 2848 */ 2849 if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) { 2850 vm_offset_t boffset; 2851 vm_offset_t eoffset; 2852 2853 /* 2854 * test the pages to see if they have been modified directly 2855 * by users through the VM system. 2856 */ 2857 for (i = 0; i < bp->b_npages; i++) 2858 vm_page_test_dirty(bp->b_pages[i]); 2859 2860 /* 2861 * Calculate the encompassing dirty range, boffset and eoffset, 2862 * (eoffset - boffset) bytes. 2863 */ 2864 2865 for (i = 0; i < bp->b_npages; i++) { 2866 if (bp->b_pages[i]->dirty) 2867 break; 2868 } 2869 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2870 2871 for (i = bp->b_npages - 1; i >= 0; --i) { 2872 if (bp->b_pages[i]->dirty) { 2873 break; 2874 } 2875 } 2876 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); 2877 2878 /* 2879 * Fit it to the buffer. 2880 */ 2881 2882 if (eoffset > bp->b_bcount) 2883 eoffset = bp->b_bcount; 2884 2885 /* 2886 * If we have a good dirty range, merge with the existing 2887 * dirty range. 2888 */ 2889 2890 if (boffset < eoffset) { 2891 if (bp->b_dirtyoff > boffset) 2892 bp->b_dirtyoff = boffset; 2893 if (bp->b_dirtyend < eoffset) 2894 bp->b_dirtyend = eoffset; 2895 } 2896 } 2897 } 2898 2899 /* 2900 * Allocate the KVA mapping for an existing buffer. It handles the 2901 * cases of both B_UNMAPPED buffer, and buffer with the preallocated 2902 * KVA which is not mapped (B_KVAALLOC). 2903 */ 2904 static void 2905 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags) 2906 { 2907 struct buf *scratch_bp; 2908 int bsize, maxsize, need_mapping, need_kva; 2909 off_t offset; 2910 2911 need_mapping = (bp->b_flags & B_UNMAPPED) != 0 && 2912 (gbflags & GB_UNMAPPED) == 0; 2913 need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED && 2914 (gbflags & GB_KVAALLOC) != 0; 2915 if (!need_mapping && !need_kva) 2916 return; 2917 2918 BUF_CHECK_UNMAPPED(bp); 2919 2920 if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) { 2921 /* 2922 * Buffer is not mapped, but the KVA was already 2923 * reserved at the time of the instantiation. Use the 2924 * allocated space. 2925 */ 2926 bp->b_flags &= ~B_KVAALLOC; 2927 KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0")); 2928 bp->b_kvabase = bp->b_kvaalloc; 2929 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize); 2930 goto has_addr; 2931 } 2932 2933 /* 2934 * Calculate the amount of the address space we would reserve 2935 * if the buffer was mapped. 2936 */ 2937 bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize; 2938 offset = blkno * bsize; 2939 maxsize = size + (offset & PAGE_MASK); 2940 maxsize = imax(maxsize, bsize); 2941 2942 mapping_loop: 2943 if (allocbufkva(bp, maxsize, gbflags)) { 2944 /* 2945 * Request defragmentation. getnewbuf() returns us the 2946 * allocated space by the scratch buffer KVA. 2947 */ 2948 scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags | 2949 (GB_UNMAPPED | GB_KVAALLOC)); 2950 if (scratch_bp == NULL) { 2951 if ((gbflags & GB_NOWAIT_BD) != 0) { 2952 /* 2953 * XXXKIB: defragmentation cannot 2954 * succeed, not sure what else to do. 2955 */ 2956 panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp); 2957 } 2958 atomic_add_int(&mappingrestarts, 1); 2959 goto mapping_loop; 2960 } 2961 KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0, 2962 ("scratch bp !B_KVAALLOC %p", scratch_bp)); 2963 setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc, 2964 scratch_bp->b_kvasize, gbflags); 2965 2966 /* Get rid of the scratch buffer. */ 2967 scratch_bp->b_kvasize = 0; 2968 scratch_bp->b_flags |= B_INVAL; 2969 scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC); 2970 brelse(scratch_bp); 2971 } 2972 if (!need_mapping) 2973 return; 2974 2975 has_addr: 2976 bp->b_saveaddr = bp->b_kvabase; 2977 bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */ 2978 bp->b_flags &= ~B_UNMAPPED; 2979 BUF_CHECK_MAPPED(bp); 2980 bpmap_qenter(bp); 2981 } 2982 2983 /* 2984 * getblk: 2985 * 2986 * Get a block given a specified block and offset into a file/device. 2987 * The buffers B_DONE bit will be cleared on return, making it almost 2988 * ready for an I/O initiation. B_INVAL may or may not be set on 2989 * return. The caller should clear B_INVAL prior to initiating a 2990 * READ. 2991 * 2992 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for 2993 * an existing buffer. 2994 * 2995 * For a VMIO buffer, B_CACHE is modified according to the backing VM. 2996 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set 2997 * and then cleared based on the backing VM. If the previous buffer is 2998 * non-0-sized but invalid, B_CACHE will be cleared. 2999 * 3000 * If getblk() must create a new buffer, the new buffer is returned with 3001 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which 3002 * case it is returned with B_INVAL clear and B_CACHE set based on the 3003 * backing VM. 3004 * 3005 * getblk() also forces a bwrite() for any B_DELWRI buffer whos 3006 * B_CACHE bit is clear. 3007 * 3008 * What this means, basically, is that the caller should use B_CACHE to 3009 * determine whether the buffer is fully valid or not and should clear 3010 * B_INVAL prior to issuing a read. If the caller intends to validate 3011 * the buffer by loading its data area with something, the caller needs 3012 * to clear B_INVAL. If the caller does this without issuing an I/O, 3013 * the caller should set B_CACHE ( as an optimization ), else the caller 3014 * should issue the I/O and biodone() will set B_CACHE if the I/O was 3015 * a write attempt or if it was a successfull read. If the caller 3016 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR 3017 * prior to issuing the READ. biodone() will *not* clear B_INVAL. 3018 */ 3019 struct buf * 3020 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo, 3021 int flags) 3022 { 3023 struct buf *bp; 3024 struct bufobj *bo; 3025 int bsize, error, maxsize, vmio; 3026 off_t offset; 3027 3028 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size); 3029 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC, 3030 ("GB_KVAALLOC only makes sense with GB_UNMAPPED")); 3031 ASSERT_VOP_LOCKED(vp, "getblk"); 3032 if (size > MAXBSIZE) 3033 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); 3034 if (!unmapped_buf_allowed) 3035 flags &= ~(GB_UNMAPPED | GB_KVAALLOC); 3036 3037 bo = &vp->v_bufobj; 3038 loop: 3039 BO_RLOCK(bo); 3040 bp = gbincore(bo, blkno); 3041 if (bp != NULL) { 3042 int lockflags; 3043 /* 3044 * Buffer is in-core. If the buffer is not busy nor managed, 3045 * it must be on a queue. 3046 */ 3047 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK; 3048 3049 if (flags & GB_LOCK_NOWAIT) 3050 lockflags |= LK_NOWAIT; 3051 3052 error = BUF_TIMELOCK(bp, lockflags, 3053 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo); 3054 3055 /* 3056 * If we slept and got the lock we have to restart in case 3057 * the buffer changed identities. 3058 */ 3059 if (error == ENOLCK) 3060 goto loop; 3061 /* We timed out or were interrupted. */ 3062 else if (error) 3063 return (NULL); 3064 /* If recursed, assume caller knows the rules. */ 3065 else if (BUF_LOCKRECURSED(bp)) 3066 goto end; 3067 3068 /* 3069 * The buffer is locked. B_CACHE is cleared if the buffer is 3070 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set 3071 * and for a VMIO buffer B_CACHE is adjusted according to the 3072 * backing VM cache. 3073 */ 3074 if (bp->b_flags & B_INVAL) 3075 bp->b_flags &= ~B_CACHE; 3076 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) 3077 bp->b_flags |= B_CACHE; 3078 if (bp->b_flags & B_MANAGED) 3079 MPASS(bp->b_qindex == QUEUE_NONE); 3080 else 3081 bremfree(bp); 3082 3083 /* 3084 * check for size inconsistencies for non-VMIO case. 3085 */ 3086 if (bp->b_bcount != size) { 3087 if ((bp->b_flags & B_VMIO) == 0 || 3088 (size > bp->b_kvasize)) { 3089 if (bp->b_flags & B_DELWRI) { 3090 /* 3091 * If buffer is pinned and caller does 3092 * not want sleep waiting for it to be 3093 * unpinned, bail out 3094 * */ 3095 if (bp->b_pin_count > 0) { 3096 if (flags & GB_LOCK_NOWAIT) { 3097 bqrelse(bp); 3098 return (NULL); 3099 } else { 3100 bunpin_wait(bp); 3101 } 3102 } 3103 bp->b_flags |= B_NOCACHE; 3104 bwrite(bp); 3105 } else { 3106 if (LIST_EMPTY(&bp->b_dep)) { 3107 bp->b_flags |= B_RELBUF; 3108 brelse(bp); 3109 } else { 3110 bp->b_flags |= B_NOCACHE; 3111 bwrite(bp); 3112 } 3113 } 3114 goto loop; 3115 } 3116 } 3117 3118 /* 3119 * Handle the case of unmapped buffer which should 3120 * become mapped, or the buffer for which KVA 3121 * reservation is requested. 3122 */ 3123 bp_unmapped_get_kva(bp, blkno, size, flags); 3124 3125 /* 3126 * If the size is inconsistant in the VMIO case, we can resize 3127 * the buffer. This might lead to B_CACHE getting set or 3128 * cleared. If the size has not changed, B_CACHE remains 3129 * unchanged from its previous state. 3130 */ 3131 if (bp->b_bcount != size) 3132 allocbuf(bp, size); 3133 3134 KASSERT(bp->b_offset != NOOFFSET, 3135 ("getblk: no buffer offset")); 3136 3137 /* 3138 * A buffer with B_DELWRI set and B_CACHE clear must 3139 * be committed before we can return the buffer in 3140 * order to prevent the caller from issuing a read 3141 * ( due to B_CACHE not being set ) and overwriting 3142 * it. 3143 * 3144 * Most callers, including NFS and FFS, need this to 3145 * operate properly either because they assume they 3146 * can issue a read if B_CACHE is not set, or because 3147 * ( for example ) an uncached B_DELWRI might loop due 3148 * to softupdates re-dirtying the buffer. In the latter 3149 * case, B_CACHE is set after the first write completes, 3150 * preventing further loops. 3151 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE 3152 * above while extending the buffer, we cannot allow the 3153 * buffer to remain with B_CACHE set after the write 3154 * completes or it will represent a corrupt state. To 3155 * deal with this we set B_NOCACHE to scrap the buffer 3156 * after the write. 3157 * 3158 * We might be able to do something fancy, like setting 3159 * B_CACHE in bwrite() except if B_DELWRI is already set, 3160 * so the below call doesn't set B_CACHE, but that gets real 3161 * confusing. This is much easier. 3162 */ 3163 3164 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { 3165 bp->b_flags |= B_NOCACHE; 3166 bwrite(bp); 3167 goto loop; 3168 } 3169 bp->b_flags &= ~B_DONE; 3170 } else { 3171 /* 3172 * Buffer is not in-core, create new buffer. The buffer 3173 * returned by getnewbuf() is locked. Note that the returned 3174 * buffer is also considered valid (not marked B_INVAL). 3175 */ 3176 BO_RUNLOCK(bo); 3177 /* 3178 * If the user does not want us to create the buffer, bail out 3179 * here. 3180 */ 3181 if (flags & GB_NOCREAT) 3182 return NULL; 3183 if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread)) 3184 return NULL; 3185 3186 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize; 3187 offset = blkno * bsize; 3188 vmio = vp->v_object != NULL; 3189 if (vmio) { 3190 maxsize = size + (offset & PAGE_MASK); 3191 } else { 3192 maxsize = size; 3193 /* Do not allow non-VMIO notmapped buffers. */ 3194 flags &= ~GB_UNMAPPED; 3195 } 3196 maxsize = imax(maxsize, bsize); 3197 3198 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags); 3199 if (bp == NULL) { 3200 if (slpflag || slptimeo) 3201 return NULL; 3202 goto loop; 3203 } 3204 3205 /* 3206 * This code is used to make sure that a buffer is not 3207 * created while the getnewbuf routine is blocked. 3208 * This can be a problem whether the vnode is locked or not. 3209 * If the buffer is created out from under us, we have to 3210 * throw away the one we just created. 3211 * 3212 * Note: this must occur before we associate the buffer 3213 * with the vp especially considering limitations in 3214 * the splay tree implementation when dealing with duplicate 3215 * lblkno's. 3216 */ 3217 BO_LOCK(bo); 3218 if (gbincore(bo, blkno)) { 3219 BO_UNLOCK(bo); 3220 bp->b_flags |= B_INVAL; 3221 brelse(bp); 3222 goto loop; 3223 } 3224 3225 /* 3226 * Insert the buffer into the hash, so that it can 3227 * be found by incore. 3228 */ 3229 bp->b_blkno = bp->b_lblkno = blkno; 3230 bp->b_offset = offset; 3231 bgetvp(vp, bp); 3232 BO_UNLOCK(bo); 3233 3234 /* 3235 * set B_VMIO bit. allocbuf() the buffer bigger. Since the 3236 * buffer size starts out as 0, B_CACHE will be set by 3237 * allocbuf() for the VMIO case prior to it testing the 3238 * backing store for validity. 3239 */ 3240 3241 if (vmio) { 3242 bp->b_flags |= B_VMIO; 3243 KASSERT(vp->v_object == bp->b_bufobj->bo_object, 3244 ("ARGH! different b_bufobj->bo_object %p %p %p\n", 3245 bp, vp->v_object, bp->b_bufobj->bo_object)); 3246 } else { 3247 bp->b_flags &= ~B_VMIO; 3248 KASSERT(bp->b_bufobj->bo_object == NULL, 3249 ("ARGH! has b_bufobj->bo_object %p %p\n", 3250 bp, bp->b_bufobj->bo_object)); 3251 BUF_CHECK_MAPPED(bp); 3252 } 3253 3254 allocbuf(bp, size); 3255 bp->b_flags &= ~B_DONE; 3256 } 3257 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp); 3258 BUF_ASSERT_HELD(bp); 3259 end: 3260 KASSERT(bp->b_bufobj == bo, 3261 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3262 return (bp); 3263 } 3264 3265 /* 3266 * Get an empty, disassociated buffer of given size. The buffer is initially 3267 * set to B_INVAL. 3268 */ 3269 struct buf * 3270 geteblk(int size, int flags) 3271 { 3272 struct buf *bp; 3273 int maxsize; 3274 3275 maxsize = (size + BKVAMASK) & ~BKVAMASK; 3276 while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) { 3277 if ((flags & GB_NOWAIT_BD) && 3278 (curthread->td_pflags & TDP_BUFNEED) != 0) 3279 return (NULL); 3280 } 3281 allocbuf(bp, size); 3282 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ 3283 BUF_ASSERT_HELD(bp); 3284 return (bp); 3285 } 3286 3287 3288 /* 3289 * This code constitutes the buffer memory from either anonymous system 3290 * memory (in the case of non-VMIO operations) or from an associated 3291 * VM object (in the case of VMIO operations). This code is able to 3292 * resize a buffer up or down. 3293 * 3294 * Note that this code is tricky, and has many complications to resolve 3295 * deadlock or inconsistant data situations. Tread lightly!!! 3296 * There are B_CACHE and B_DELWRI interactions that must be dealt with by 3297 * the caller. Calling this code willy nilly can result in the loss of data. 3298 * 3299 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with 3300 * B_CACHE for the non-VMIO case. 3301 */ 3302 3303 int 3304 allocbuf(struct buf *bp, int size) 3305 { 3306 int newbsize, mbsize; 3307 int i; 3308 3309 BUF_ASSERT_HELD(bp); 3310 3311 if (bp->b_kvasize < size) 3312 panic("allocbuf: buffer too small"); 3313 3314 if ((bp->b_flags & B_VMIO) == 0) { 3315 caddr_t origbuf; 3316 int origbufsize; 3317 /* 3318 * Just get anonymous memory from the kernel. Don't 3319 * mess with B_CACHE. 3320 */ 3321 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3322 if (bp->b_flags & B_MALLOC) 3323 newbsize = mbsize; 3324 else 3325 newbsize = round_page(size); 3326 3327 if (newbsize < bp->b_bufsize) { 3328 /* 3329 * malloced buffers are not shrunk 3330 */ 3331 if (bp->b_flags & B_MALLOC) { 3332 if (newbsize) { 3333 bp->b_bcount = size; 3334 } else { 3335 free(bp->b_data, M_BIOBUF); 3336 if (bp->b_bufsize) { 3337 atomic_subtract_long( 3338 &bufmallocspace, 3339 bp->b_bufsize); 3340 bufspacewakeup(); 3341 bp->b_bufsize = 0; 3342 } 3343 bp->b_saveaddr = bp->b_kvabase; 3344 bp->b_data = bp->b_saveaddr; 3345 bp->b_bcount = 0; 3346 bp->b_flags &= ~B_MALLOC; 3347 } 3348 return 1; 3349 } 3350 vm_hold_free_pages(bp, newbsize); 3351 } else if (newbsize > bp->b_bufsize) { 3352 /* 3353 * We only use malloced memory on the first allocation. 3354 * and revert to page-allocated memory when the buffer 3355 * grows. 3356 */ 3357 /* 3358 * There is a potential smp race here that could lead 3359 * to bufmallocspace slightly passing the max. It 3360 * is probably extremely rare and not worth worrying 3361 * over. 3362 */ 3363 if ( (bufmallocspace < maxbufmallocspace) && 3364 (bp->b_bufsize == 0) && 3365 (mbsize <= PAGE_SIZE/2)) { 3366 3367 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); 3368 bp->b_bufsize = mbsize; 3369 bp->b_bcount = size; 3370 bp->b_flags |= B_MALLOC; 3371 atomic_add_long(&bufmallocspace, mbsize); 3372 return 1; 3373 } 3374 origbuf = NULL; 3375 origbufsize = 0; 3376 /* 3377 * If the buffer is growing on its other-than-first allocation, 3378 * then we revert to the page-allocation scheme. 3379 */ 3380 if (bp->b_flags & B_MALLOC) { 3381 origbuf = bp->b_data; 3382 origbufsize = bp->b_bufsize; 3383 bp->b_data = bp->b_kvabase; 3384 if (bp->b_bufsize) { 3385 atomic_subtract_long(&bufmallocspace, 3386 bp->b_bufsize); 3387 bufspacewakeup(); 3388 bp->b_bufsize = 0; 3389 } 3390 bp->b_flags &= ~B_MALLOC; 3391 newbsize = round_page(newbsize); 3392 } 3393 vm_hold_load_pages( 3394 bp, 3395 (vm_offset_t) bp->b_data + bp->b_bufsize, 3396 (vm_offset_t) bp->b_data + newbsize); 3397 if (origbuf) { 3398 bcopy(origbuf, bp->b_data, origbufsize); 3399 free(origbuf, M_BIOBUF); 3400 } 3401 } 3402 } else { 3403 int desiredpages; 3404 3405 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); 3406 desiredpages = (size == 0) ? 0 : 3407 num_pages((bp->b_offset & PAGE_MASK) + newbsize); 3408 3409 if (bp->b_flags & B_MALLOC) 3410 panic("allocbuf: VMIO buffer can't be malloced"); 3411 /* 3412 * Set B_CACHE initially if buffer is 0 length or will become 3413 * 0-length. 3414 */ 3415 if (size == 0 || bp->b_bufsize == 0) 3416 bp->b_flags |= B_CACHE; 3417 3418 if (newbsize < bp->b_bufsize) { 3419 /* 3420 * DEV_BSIZE aligned new buffer size is less then the 3421 * DEV_BSIZE aligned existing buffer size. Figure out 3422 * if we have to remove any pages. 3423 */ 3424 if (desiredpages < bp->b_npages) { 3425 vm_page_t m; 3426 3427 if ((bp->b_flags & B_UNMAPPED) == 0) { 3428 BUF_CHECK_MAPPED(bp); 3429 pmap_qremove((vm_offset_t)trunc_page( 3430 (vm_offset_t)bp->b_data) + 3431 (desiredpages << PAGE_SHIFT), 3432 (bp->b_npages - desiredpages)); 3433 } else 3434 BUF_CHECK_UNMAPPED(bp); 3435 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 3436 for (i = desiredpages; i < bp->b_npages; i++) { 3437 /* 3438 * the page is not freed here -- it 3439 * is the responsibility of 3440 * vnode_pager_setsize 3441 */ 3442 m = bp->b_pages[i]; 3443 KASSERT(m != bogus_page, 3444 ("allocbuf: bogus page found")); 3445 while (vm_page_sleep_if_busy(m, 3446 "biodep")) 3447 continue; 3448 3449 bp->b_pages[i] = NULL; 3450 vm_page_lock(m); 3451 vm_page_unwire(m, 0); 3452 vm_page_unlock(m); 3453 } 3454 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 3455 bp->b_npages = desiredpages; 3456 } 3457 } else if (size > bp->b_bcount) { 3458 /* 3459 * We are growing the buffer, possibly in a 3460 * byte-granular fashion. 3461 */ 3462 vm_object_t obj; 3463 vm_offset_t toff; 3464 vm_offset_t tinc; 3465 3466 /* 3467 * Step 1, bring in the VM pages from the object, 3468 * allocating them if necessary. We must clear 3469 * B_CACHE if these pages are not valid for the 3470 * range covered by the buffer. 3471 */ 3472 3473 obj = bp->b_bufobj->bo_object; 3474 3475 VM_OBJECT_WLOCK(obj); 3476 while (bp->b_npages < desiredpages) { 3477 vm_page_t m; 3478 3479 /* 3480 * We must allocate system pages since blocking 3481 * here could interfere with paging I/O, no 3482 * matter which process we are. 3483 * 3484 * Only exclusive busy can be tested here. 3485 * Blocking on shared busy might lead to 3486 * deadlocks once allocbuf() is called after 3487 * pages are vfs_busy_pages(). 3488 */ 3489 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) + 3490 bp->b_npages, VM_ALLOC_NOBUSY | 3491 VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | 3492 VM_ALLOC_IGN_SBUSY | 3493 VM_ALLOC_COUNT(desiredpages - bp->b_npages)); 3494 if (m->valid == 0) 3495 bp->b_flags &= ~B_CACHE; 3496 bp->b_pages[bp->b_npages] = m; 3497 ++bp->b_npages; 3498 } 3499 3500 /* 3501 * Step 2. We've loaded the pages into the buffer, 3502 * we have to figure out if we can still have B_CACHE 3503 * set. Note that B_CACHE is set according to the 3504 * byte-granular range ( bcount and size ), new the 3505 * aligned range ( newbsize ). 3506 * 3507 * The VM test is against m->valid, which is DEV_BSIZE 3508 * aligned. Needless to say, the validity of the data 3509 * needs to also be DEV_BSIZE aligned. Note that this 3510 * fails with NFS if the server or some other client 3511 * extends the file's EOF. If our buffer is resized, 3512 * B_CACHE may remain set! XXX 3513 */ 3514 3515 toff = bp->b_bcount; 3516 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); 3517 3518 while ((bp->b_flags & B_CACHE) && toff < size) { 3519 vm_pindex_t pi; 3520 3521 if (tinc > (size - toff)) 3522 tinc = size - toff; 3523 3524 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 3525 PAGE_SHIFT; 3526 3527 vfs_buf_test_cache( 3528 bp, 3529 bp->b_offset, 3530 toff, 3531 tinc, 3532 bp->b_pages[pi] 3533 ); 3534 toff += tinc; 3535 tinc = PAGE_SIZE; 3536 } 3537 VM_OBJECT_WUNLOCK(obj); 3538 3539 /* 3540 * Step 3, fixup the KVM pmap. 3541 */ 3542 if ((bp->b_flags & B_UNMAPPED) == 0) 3543 bpmap_qenter(bp); 3544 else 3545 BUF_CHECK_UNMAPPED(bp); 3546 } 3547 } 3548 if (newbsize < bp->b_bufsize) 3549 bufspacewakeup(); 3550 bp->b_bufsize = newbsize; /* actual buffer allocation */ 3551 bp->b_bcount = size; /* requested buffer size */ 3552 return 1; 3553 } 3554 3555 extern int inflight_transient_maps; 3556 3557 void 3558 biodone(struct bio *bp) 3559 { 3560 struct mtx *mtxp; 3561 void (*done)(struct bio *); 3562 vm_offset_t start, end; 3563 int transient; 3564 3565 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3566 mtx_lock(mtxp); 3567 bp->bio_flags |= BIO_DONE; 3568 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) { 3569 start = trunc_page((vm_offset_t)bp->bio_data); 3570 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length); 3571 transient = 1; 3572 } else { 3573 transient = 0; 3574 start = end = 0; 3575 } 3576 done = bp->bio_done; 3577 if (done == NULL) 3578 wakeup(bp); 3579 mtx_unlock(mtxp); 3580 if (done != NULL) 3581 done(bp); 3582 if (transient) { 3583 pmap_qremove(start, OFF_TO_IDX(end - start)); 3584 vmem_free(transient_arena, start, end - start); 3585 atomic_add_int(&inflight_transient_maps, -1); 3586 } 3587 } 3588 3589 /* 3590 * Wait for a BIO to finish. 3591 * 3592 * XXX: resort to a timeout for now. The optimal locking (if any) for this 3593 * case is not yet clear. 3594 */ 3595 int 3596 biowait(struct bio *bp, const char *wchan) 3597 { 3598 struct mtx *mtxp; 3599 3600 mtxp = mtx_pool_find(mtxpool_sleep, bp); 3601 mtx_lock(mtxp); 3602 while ((bp->bio_flags & BIO_DONE) == 0) 3603 msleep(bp, mtxp, PRIBIO, wchan, hz / 10); 3604 mtx_unlock(mtxp); 3605 if (bp->bio_error != 0) 3606 return (bp->bio_error); 3607 if (!(bp->bio_flags & BIO_ERROR)) 3608 return (0); 3609 return (EIO); 3610 } 3611 3612 void 3613 biofinish(struct bio *bp, struct devstat *stat, int error) 3614 { 3615 3616 if (error) { 3617 bp->bio_error = error; 3618 bp->bio_flags |= BIO_ERROR; 3619 } 3620 if (stat != NULL) 3621 devstat_end_transaction_bio(stat, bp); 3622 biodone(bp); 3623 } 3624 3625 /* 3626 * bufwait: 3627 * 3628 * Wait for buffer I/O completion, returning error status. The buffer 3629 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR 3630 * error and cleared. 3631 */ 3632 int 3633 bufwait(struct buf *bp) 3634 { 3635 if (bp->b_iocmd == BIO_READ) 3636 bwait(bp, PRIBIO, "biord"); 3637 else 3638 bwait(bp, PRIBIO, "biowr"); 3639 if (bp->b_flags & B_EINTR) { 3640 bp->b_flags &= ~B_EINTR; 3641 return (EINTR); 3642 } 3643 if (bp->b_ioflags & BIO_ERROR) { 3644 return (bp->b_error ? bp->b_error : EIO); 3645 } else { 3646 return (0); 3647 } 3648 } 3649 3650 /* 3651 * Call back function from struct bio back up to struct buf. 3652 */ 3653 static void 3654 bufdonebio(struct bio *bip) 3655 { 3656 struct buf *bp; 3657 3658 bp = bip->bio_caller2; 3659 bp->b_resid = bp->b_bcount - bip->bio_completed; 3660 bp->b_resid = bip->bio_resid; /* XXX: remove */ 3661 bp->b_ioflags = bip->bio_flags; 3662 bp->b_error = bip->bio_error; 3663 if (bp->b_error) 3664 bp->b_ioflags |= BIO_ERROR; 3665 bufdone(bp); 3666 g_destroy_bio(bip); 3667 } 3668 3669 void 3670 dev_strategy(struct cdev *dev, struct buf *bp) 3671 { 3672 struct cdevsw *csw; 3673 int ref; 3674 3675 KASSERT(dev->si_refcount > 0, 3676 ("dev_strategy on un-referenced struct cdev *(%s) %p", 3677 devtoname(dev), dev)); 3678 3679 csw = dev_refthread(dev, &ref); 3680 dev_strategy_csw(dev, csw, bp); 3681 dev_relthread(dev, ref); 3682 } 3683 3684 void 3685 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp) 3686 { 3687 struct bio *bip; 3688 3689 KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE, 3690 ("b_iocmd botch")); 3691 KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) || 3692 dev->si_threadcount > 0, 3693 ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev), 3694 dev)); 3695 if (csw == NULL) { 3696 bp->b_error = ENXIO; 3697 bp->b_ioflags = BIO_ERROR; 3698 bufdone(bp); 3699 return; 3700 } 3701 for (;;) { 3702 bip = g_new_bio(); 3703 if (bip != NULL) 3704 break; 3705 /* Try again later */ 3706 tsleep(&bp, PRIBIO, "dev_strat", hz/10); 3707 } 3708 bip->bio_cmd = bp->b_iocmd; 3709 bip->bio_offset = bp->b_iooffset; 3710 bip->bio_length = bp->b_bcount; 3711 bip->bio_bcount = bp->b_bcount; /* XXX: remove */ 3712 bdata2bio(bp, bip); 3713 bip->bio_done = bufdonebio; 3714 bip->bio_caller2 = bp; 3715 bip->bio_dev = dev; 3716 (*csw->d_strategy)(bip); 3717 } 3718 3719 /* 3720 * bufdone: 3721 * 3722 * Finish I/O on a buffer, optionally calling a completion function. 3723 * This is usually called from an interrupt so process blocking is 3724 * not allowed. 3725 * 3726 * biodone is also responsible for setting B_CACHE in a B_VMIO bp. 3727 * In a non-VMIO bp, B_CACHE will be set on the next getblk() 3728 * assuming B_INVAL is clear. 3729 * 3730 * For the VMIO case, we set B_CACHE if the op was a read and no 3731 * read error occured, or if the op was a write. B_CACHE is never 3732 * set if the buffer is invalid or otherwise uncacheable. 3733 * 3734 * biodone does not mess with B_INVAL, allowing the I/O routine or the 3735 * initiator to leave B_INVAL set to brelse the buffer out of existance 3736 * in the biodone routine. 3737 */ 3738 void 3739 bufdone(struct buf *bp) 3740 { 3741 struct bufobj *dropobj; 3742 void (*biodone)(struct buf *); 3743 3744 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 3745 dropobj = NULL; 3746 3747 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); 3748 BUF_ASSERT_HELD(bp); 3749 3750 runningbufwakeup(bp); 3751 if (bp->b_iocmd == BIO_WRITE) 3752 dropobj = bp->b_bufobj; 3753 /* call optional completion function if requested */ 3754 if (bp->b_iodone != NULL) { 3755 biodone = bp->b_iodone; 3756 bp->b_iodone = NULL; 3757 (*biodone) (bp); 3758 if (dropobj) 3759 bufobj_wdrop(dropobj); 3760 return; 3761 } 3762 3763 bufdone_finish(bp); 3764 3765 if (dropobj) 3766 bufobj_wdrop(dropobj); 3767 } 3768 3769 void 3770 bufdone_finish(struct buf *bp) 3771 { 3772 BUF_ASSERT_HELD(bp); 3773 3774 if (!LIST_EMPTY(&bp->b_dep)) 3775 buf_complete(bp); 3776 3777 if (bp->b_flags & B_VMIO) { 3778 vm_ooffset_t foff; 3779 vm_page_t m; 3780 vm_object_t obj; 3781 struct vnode *vp; 3782 int bogus, i, iosize; 3783 3784 obj = bp->b_bufobj->bo_object; 3785 KASSERT(obj->paging_in_progress >= bp->b_npages, 3786 ("biodone_finish: paging in progress(%d) < b_npages(%d)", 3787 obj->paging_in_progress, bp->b_npages)); 3788 3789 vp = bp->b_vp; 3790 KASSERT(vp->v_holdcnt > 0, 3791 ("biodone_finish: vnode %p has zero hold count", vp)); 3792 KASSERT(vp->v_object != NULL, 3793 ("biodone_finish: vnode %p has no vm_object", vp)); 3794 3795 foff = bp->b_offset; 3796 KASSERT(bp->b_offset != NOOFFSET, 3797 ("biodone_finish: bp %p has no buffer offset", bp)); 3798 3799 /* 3800 * Set B_CACHE if the op was a normal read and no error 3801 * occured. B_CACHE is set for writes in the b*write() 3802 * routines. 3803 */ 3804 iosize = bp->b_bcount - bp->b_resid; 3805 if (bp->b_iocmd == BIO_READ && 3806 !(bp->b_flags & (B_INVAL|B_NOCACHE)) && 3807 !(bp->b_ioflags & BIO_ERROR)) { 3808 bp->b_flags |= B_CACHE; 3809 } 3810 bogus = 0; 3811 VM_OBJECT_WLOCK(obj); 3812 for (i = 0; i < bp->b_npages; i++) { 3813 int bogusflag = 0; 3814 int resid; 3815 3816 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff; 3817 if (resid > iosize) 3818 resid = iosize; 3819 3820 /* 3821 * cleanup bogus pages, restoring the originals 3822 */ 3823 m = bp->b_pages[i]; 3824 if (m == bogus_page) { 3825 bogus = bogusflag = 1; 3826 m = vm_page_lookup(obj, OFF_TO_IDX(foff)); 3827 if (m == NULL) 3828 panic("biodone: page disappeared!"); 3829 bp->b_pages[i] = m; 3830 } 3831 KASSERT(OFF_TO_IDX(foff) == m->pindex, 3832 ("biodone_finish: foff(%jd)/pindex(%ju) mismatch", 3833 (intmax_t)foff, (uintmax_t)m->pindex)); 3834 3835 /* 3836 * In the write case, the valid and clean bits are 3837 * already changed correctly ( see bdwrite() ), so we 3838 * only need to do this here in the read case. 3839 */ 3840 if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) { 3841 KASSERT((m->dirty & vm_page_bits(foff & 3842 PAGE_MASK, resid)) == 0, ("bufdone_finish:" 3843 " page %p has unexpected dirty bits", m)); 3844 vfs_page_set_valid(bp, foff, m); 3845 } 3846 3847 vm_page_sunbusy(m); 3848 vm_object_pip_subtract(obj, 1); 3849 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3850 iosize -= resid; 3851 } 3852 vm_object_pip_wakeupn(obj, 0); 3853 VM_OBJECT_WUNLOCK(obj); 3854 if (bogus && (bp->b_flags & B_UNMAPPED) == 0) { 3855 BUF_CHECK_MAPPED(bp); 3856 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3857 bp->b_pages, bp->b_npages); 3858 } 3859 } 3860 3861 /* 3862 * For asynchronous completions, release the buffer now. The brelse 3863 * will do a wakeup there if necessary - so no need to do a wakeup 3864 * here in the async case. The sync case always needs to do a wakeup. 3865 */ 3866 3867 if (bp->b_flags & B_ASYNC) { 3868 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR)) 3869 brelse(bp); 3870 else 3871 bqrelse(bp); 3872 } else 3873 bdone(bp); 3874 } 3875 3876 /* 3877 * This routine is called in lieu of iodone in the case of 3878 * incomplete I/O. This keeps the busy status for pages 3879 * consistant. 3880 */ 3881 void 3882 vfs_unbusy_pages(struct buf *bp) 3883 { 3884 int i; 3885 vm_object_t obj; 3886 vm_page_t m; 3887 3888 runningbufwakeup(bp); 3889 if (!(bp->b_flags & B_VMIO)) 3890 return; 3891 3892 obj = bp->b_bufobj->bo_object; 3893 VM_OBJECT_WLOCK(obj); 3894 for (i = 0; i < bp->b_npages; i++) { 3895 m = bp->b_pages[i]; 3896 if (m == bogus_page) { 3897 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); 3898 if (!m) 3899 panic("vfs_unbusy_pages: page missing\n"); 3900 bp->b_pages[i] = m; 3901 if ((bp->b_flags & B_UNMAPPED) == 0) { 3902 BUF_CHECK_MAPPED(bp); 3903 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 3904 bp->b_pages, bp->b_npages); 3905 } else 3906 BUF_CHECK_UNMAPPED(bp); 3907 } 3908 vm_object_pip_subtract(obj, 1); 3909 vm_page_sunbusy(m); 3910 } 3911 vm_object_pip_wakeupn(obj, 0); 3912 VM_OBJECT_WUNLOCK(obj); 3913 } 3914 3915 /* 3916 * vfs_page_set_valid: 3917 * 3918 * Set the valid bits in a page based on the supplied offset. The 3919 * range is restricted to the buffer's size. 3920 * 3921 * This routine is typically called after a read completes. 3922 */ 3923 static void 3924 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m) 3925 { 3926 vm_ooffset_t eoff; 3927 3928 /* 3929 * Compute the end offset, eoff, such that [off, eoff) does not span a 3930 * page boundary and eoff is not greater than the end of the buffer. 3931 * The end of the buffer, in this case, is our file EOF, not the 3932 * allocation size of the buffer. 3933 */ 3934 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK; 3935 if (eoff > bp->b_offset + bp->b_bcount) 3936 eoff = bp->b_offset + bp->b_bcount; 3937 3938 /* 3939 * Set valid range. This is typically the entire buffer and thus the 3940 * entire page. 3941 */ 3942 if (eoff > off) 3943 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off); 3944 } 3945 3946 /* 3947 * vfs_page_set_validclean: 3948 * 3949 * Set the valid bits and clear the dirty bits in a page based on the 3950 * supplied offset. The range is restricted to the buffer's size. 3951 */ 3952 static void 3953 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m) 3954 { 3955 vm_ooffset_t soff, eoff; 3956 3957 /* 3958 * Start and end offsets in buffer. eoff - soff may not cross a 3959 * page boundry or cross the end of the buffer. The end of the 3960 * buffer, in this case, is our file EOF, not the allocation size 3961 * of the buffer. 3962 */ 3963 soff = off; 3964 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK; 3965 if (eoff > bp->b_offset + bp->b_bcount) 3966 eoff = bp->b_offset + bp->b_bcount; 3967 3968 /* 3969 * Set valid range. This is typically the entire buffer and thus the 3970 * entire page. 3971 */ 3972 if (eoff > soff) { 3973 vm_page_set_validclean( 3974 m, 3975 (vm_offset_t) (soff & PAGE_MASK), 3976 (vm_offset_t) (eoff - soff) 3977 ); 3978 } 3979 } 3980 3981 /* 3982 * Ensure that all buffer pages are not exclusive busied. If any page is 3983 * exclusive busy, drain it. 3984 */ 3985 void 3986 vfs_drain_busy_pages(struct buf *bp) 3987 { 3988 vm_page_t m; 3989 int i, last_busied; 3990 3991 VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object); 3992 last_busied = 0; 3993 for (i = 0; i < bp->b_npages; i++) { 3994 m = bp->b_pages[i]; 3995 if (vm_page_xbusied(m)) { 3996 for (; last_busied < i; last_busied++) 3997 vm_page_sbusy(bp->b_pages[last_busied]); 3998 while (vm_page_xbusied(m)) { 3999 vm_page_lock(m); 4000 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4001 vm_page_busy_sleep(m, "vbpage"); 4002 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4003 } 4004 } 4005 } 4006 for (i = 0; i < last_busied; i++) 4007 vm_page_sunbusy(bp->b_pages[i]); 4008 } 4009 4010 /* 4011 * This routine is called before a device strategy routine. 4012 * It is used to tell the VM system that paging I/O is in 4013 * progress, and treat the pages associated with the buffer 4014 * almost as being exclusive busy. Also the object paging_in_progress 4015 * flag is handled to make sure that the object doesn't become 4016 * inconsistant. 4017 * 4018 * Since I/O has not been initiated yet, certain buffer flags 4019 * such as BIO_ERROR or B_INVAL may be in an inconsistant state 4020 * and should be ignored. 4021 */ 4022 void 4023 vfs_busy_pages(struct buf *bp, int clear_modify) 4024 { 4025 int i, bogus; 4026 vm_object_t obj; 4027 vm_ooffset_t foff; 4028 vm_page_t m; 4029 4030 if (!(bp->b_flags & B_VMIO)) 4031 return; 4032 4033 obj = bp->b_bufobj->bo_object; 4034 foff = bp->b_offset; 4035 KASSERT(bp->b_offset != NOOFFSET, 4036 ("vfs_busy_pages: no buffer offset")); 4037 VM_OBJECT_WLOCK(obj); 4038 vfs_drain_busy_pages(bp); 4039 if (bp->b_bufsize != 0) 4040 vfs_setdirty_locked_object(bp); 4041 bogus = 0; 4042 for (i = 0; i < bp->b_npages; i++) { 4043 m = bp->b_pages[i]; 4044 4045 if ((bp->b_flags & B_CLUSTER) == 0) { 4046 vm_object_pip_add(obj, 1); 4047 vm_page_sbusy(m); 4048 } 4049 /* 4050 * When readying a buffer for a read ( i.e 4051 * clear_modify == 0 ), it is important to do 4052 * bogus_page replacement for valid pages in 4053 * partially instantiated buffers. Partially 4054 * instantiated buffers can, in turn, occur when 4055 * reconstituting a buffer from its VM backing store 4056 * base. We only have to do this if B_CACHE is 4057 * clear ( which causes the I/O to occur in the 4058 * first place ). The replacement prevents the read 4059 * I/O from overwriting potentially dirty VM-backed 4060 * pages. XXX bogus page replacement is, uh, bogus. 4061 * It may not work properly with small-block devices. 4062 * We need to find a better way. 4063 */ 4064 if (clear_modify) { 4065 pmap_remove_write(m); 4066 vfs_page_set_validclean(bp, foff, m); 4067 } else if (m->valid == VM_PAGE_BITS_ALL && 4068 (bp->b_flags & B_CACHE) == 0) { 4069 bp->b_pages[i] = bogus_page; 4070 bogus++; 4071 } 4072 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK; 4073 } 4074 VM_OBJECT_WUNLOCK(obj); 4075 if (bogus && (bp->b_flags & B_UNMAPPED) == 0) { 4076 BUF_CHECK_MAPPED(bp); 4077 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), 4078 bp->b_pages, bp->b_npages); 4079 } 4080 } 4081 4082 /* 4083 * vfs_bio_set_valid: 4084 * 4085 * Set the range within the buffer to valid. The range is 4086 * relative to the beginning of the buffer, b_offset. Note that 4087 * b_offset itself may be offset from the beginning of the first 4088 * page. 4089 */ 4090 void 4091 vfs_bio_set_valid(struct buf *bp, int base, int size) 4092 { 4093 int i, n; 4094 vm_page_t m; 4095 4096 if (!(bp->b_flags & B_VMIO)) 4097 return; 4098 4099 /* 4100 * Fixup base to be relative to beginning of first page. 4101 * Set initial n to be the maximum number of bytes in the 4102 * first page that can be validated. 4103 */ 4104 base += (bp->b_offset & PAGE_MASK); 4105 n = PAGE_SIZE - (base & PAGE_MASK); 4106 4107 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4108 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4109 m = bp->b_pages[i]; 4110 if (n > size) 4111 n = size; 4112 vm_page_set_valid_range(m, base & PAGE_MASK, n); 4113 base += n; 4114 size -= n; 4115 n = PAGE_SIZE; 4116 } 4117 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4118 } 4119 4120 /* 4121 * vfs_bio_clrbuf: 4122 * 4123 * If the specified buffer is a non-VMIO buffer, clear the entire 4124 * buffer. If the specified buffer is a VMIO buffer, clear and 4125 * validate only the previously invalid portions of the buffer. 4126 * This routine essentially fakes an I/O, so we need to clear 4127 * BIO_ERROR and B_INVAL. 4128 * 4129 * Note that while we only theoretically need to clear through b_bcount, 4130 * we go ahead and clear through b_bufsize. 4131 */ 4132 void 4133 vfs_bio_clrbuf(struct buf *bp) 4134 { 4135 int i, j, mask, sa, ea, slide; 4136 4137 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) { 4138 clrbuf(bp); 4139 return; 4140 } 4141 bp->b_flags &= ~B_INVAL; 4142 bp->b_ioflags &= ~BIO_ERROR; 4143 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object); 4144 if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && 4145 (bp->b_offset & PAGE_MASK) == 0) { 4146 if (bp->b_pages[0] == bogus_page) 4147 goto unlock; 4148 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; 4149 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object); 4150 if ((bp->b_pages[0]->valid & mask) == mask) 4151 goto unlock; 4152 if ((bp->b_pages[0]->valid & mask) == 0) { 4153 pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize); 4154 bp->b_pages[0]->valid |= mask; 4155 goto unlock; 4156 } 4157 } 4158 sa = bp->b_offset & PAGE_MASK; 4159 slide = 0; 4160 for (i = 0; i < bp->b_npages; i++, sa = 0) { 4161 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize); 4162 ea = slide & PAGE_MASK; 4163 if (ea == 0) 4164 ea = PAGE_SIZE; 4165 if (bp->b_pages[i] == bogus_page) 4166 continue; 4167 j = sa / DEV_BSIZE; 4168 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; 4169 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object); 4170 if ((bp->b_pages[i]->valid & mask) == mask) 4171 continue; 4172 if ((bp->b_pages[i]->valid & mask) == 0) 4173 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa); 4174 else { 4175 for (; sa < ea; sa += DEV_BSIZE, j++) { 4176 if ((bp->b_pages[i]->valid & (1 << j)) == 0) { 4177 pmap_zero_page_area(bp->b_pages[i], 4178 sa, DEV_BSIZE); 4179 } 4180 } 4181 } 4182 bp->b_pages[i]->valid |= mask; 4183 } 4184 unlock: 4185 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object); 4186 bp->b_resid = 0; 4187 } 4188 4189 void 4190 vfs_bio_bzero_buf(struct buf *bp, int base, int size) 4191 { 4192 vm_page_t m; 4193 int i, n; 4194 4195 if ((bp->b_flags & B_UNMAPPED) == 0) { 4196 BUF_CHECK_MAPPED(bp); 4197 bzero(bp->b_data + base, size); 4198 } else { 4199 BUF_CHECK_UNMAPPED(bp); 4200 n = PAGE_SIZE - (base & PAGE_MASK); 4201 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { 4202 m = bp->b_pages[i]; 4203 if (n > size) 4204 n = size; 4205 pmap_zero_page_area(m, base & PAGE_MASK, n); 4206 base += n; 4207 size -= n; 4208 n = PAGE_SIZE; 4209 } 4210 } 4211 } 4212 4213 /* 4214 * vm_hold_load_pages and vm_hold_free_pages get pages into 4215 * a buffers address space. The pages are anonymous and are 4216 * not associated with a file object. 4217 */ 4218 static void 4219 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to) 4220 { 4221 vm_offset_t pg; 4222 vm_page_t p; 4223 int index; 4224 4225 BUF_CHECK_MAPPED(bp); 4226 4227 to = round_page(to); 4228 from = round_page(from); 4229 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4230 4231 for (pg = from; pg < to; pg += PAGE_SIZE, index++) { 4232 tryagain: 4233 /* 4234 * note: must allocate system pages since blocking here 4235 * could interfere with paging I/O, no matter which 4236 * process we are. 4237 */ 4238 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ | 4239 VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT)); 4240 if (p == NULL) { 4241 VM_WAIT; 4242 goto tryagain; 4243 } 4244 pmap_qenter(pg, &p, 1); 4245 bp->b_pages[index] = p; 4246 } 4247 bp->b_npages = index; 4248 } 4249 4250 /* Return pages associated with this buf to the vm system */ 4251 static void 4252 vm_hold_free_pages(struct buf *bp, int newbsize) 4253 { 4254 vm_offset_t from; 4255 vm_page_t p; 4256 int index, newnpages; 4257 4258 BUF_CHECK_MAPPED(bp); 4259 4260 from = round_page((vm_offset_t)bp->b_data + newbsize); 4261 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; 4262 if (bp->b_npages > newnpages) 4263 pmap_qremove(from, bp->b_npages - newnpages); 4264 for (index = newnpages; index < bp->b_npages; index++) { 4265 p = bp->b_pages[index]; 4266 bp->b_pages[index] = NULL; 4267 if (vm_page_sbusied(p)) 4268 printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n", 4269 (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno); 4270 p->wire_count--; 4271 vm_page_free(p); 4272 atomic_subtract_int(&cnt.v_wire_count, 1); 4273 } 4274 bp->b_npages = newnpages; 4275 } 4276 4277 /* 4278 * Map an IO request into kernel virtual address space. 4279 * 4280 * All requests are (re)mapped into kernel VA space. 4281 * Notice that we use b_bufsize for the size of the buffer 4282 * to be mapped. b_bcount might be modified by the driver. 4283 * 4284 * Note that even if the caller determines that the address space should 4285 * be valid, a race or a smaller-file mapped into a larger space may 4286 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST 4287 * check the return value. 4288 */ 4289 int 4290 vmapbuf(struct buf *bp, int mapbuf) 4291 { 4292 caddr_t kva; 4293 vm_prot_t prot; 4294 int pidx; 4295 4296 if (bp->b_bufsize < 0) 4297 return (-1); 4298 prot = VM_PROT_READ; 4299 if (bp->b_iocmd == BIO_READ) 4300 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 4301 if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 4302 (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages, 4303 btoc(MAXPHYS))) < 0) 4304 return (-1); 4305 bp->b_npages = pidx; 4306 if (mapbuf || !unmapped_buf_allowed) { 4307 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx); 4308 kva = bp->b_saveaddr; 4309 bp->b_saveaddr = bp->b_data; 4310 bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK); 4311 bp->b_flags &= ~B_UNMAPPED; 4312 } else { 4313 bp->b_flags |= B_UNMAPPED; 4314 bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK; 4315 bp->b_saveaddr = bp->b_data; 4316 bp->b_data = unmapped_buf; 4317 } 4318 return(0); 4319 } 4320 4321 /* 4322 * Free the io map PTEs associated with this IO operation. 4323 * We also invalidate the TLB entries and restore the original b_addr. 4324 */ 4325 void 4326 vunmapbuf(struct buf *bp) 4327 { 4328 int npages; 4329 4330 npages = bp->b_npages; 4331 if (bp->b_flags & B_UNMAPPED) 4332 bp->b_flags &= ~B_UNMAPPED; 4333 else 4334 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages); 4335 vm_page_unhold_pages(bp->b_pages, npages); 4336 4337 bp->b_data = bp->b_saveaddr; 4338 } 4339 4340 void 4341 bdone(struct buf *bp) 4342 { 4343 struct mtx *mtxp; 4344 4345 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4346 mtx_lock(mtxp); 4347 bp->b_flags |= B_DONE; 4348 wakeup(bp); 4349 mtx_unlock(mtxp); 4350 } 4351 4352 void 4353 bwait(struct buf *bp, u_char pri, const char *wchan) 4354 { 4355 struct mtx *mtxp; 4356 4357 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4358 mtx_lock(mtxp); 4359 while ((bp->b_flags & B_DONE) == 0) 4360 msleep(bp, mtxp, pri, wchan, 0); 4361 mtx_unlock(mtxp); 4362 } 4363 4364 int 4365 bufsync(struct bufobj *bo, int waitfor) 4366 { 4367 4368 return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread)); 4369 } 4370 4371 void 4372 bufstrategy(struct bufobj *bo, struct buf *bp) 4373 { 4374 int i = 0; 4375 struct vnode *vp; 4376 4377 vp = bp->b_vp; 4378 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy")); 4379 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 4380 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp)); 4381 i = VOP_STRATEGY(vp, bp); 4382 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp)); 4383 } 4384 4385 void 4386 bufobj_wrefl(struct bufobj *bo) 4387 { 4388 4389 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4390 ASSERT_BO_WLOCKED(bo); 4391 bo->bo_numoutput++; 4392 } 4393 4394 void 4395 bufobj_wref(struct bufobj *bo) 4396 { 4397 4398 KASSERT(bo != NULL, ("NULL bo in bufobj_wref")); 4399 BO_LOCK(bo); 4400 bo->bo_numoutput++; 4401 BO_UNLOCK(bo); 4402 } 4403 4404 void 4405 bufobj_wdrop(struct bufobj *bo) 4406 { 4407 4408 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop")); 4409 BO_LOCK(bo); 4410 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count")); 4411 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) { 4412 bo->bo_flag &= ~BO_WWAIT; 4413 wakeup(&bo->bo_numoutput); 4414 } 4415 BO_UNLOCK(bo); 4416 } 4417 4418 int 4419 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo) 4420 { 4421 int error; 4422 4423 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait")); 4424 ASSERT_BO_WLOCKED(bo); 4425 error = 0; 4426 while (bo->bo_numoutput) { 4427 bo->bo_flag |= BO_WWAIT; 4428 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo), 4429 slpflag | (PRIBIO + 1), "bo_wwait", timeo); 4430 if (error) 4431 break; 4432 } 4433 return (error); 4434 } 4435 4436 void 4437 bpin(struct buf *bp) 4438 { 4439 struct mtx *mtxp; 4440 4441 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4442 mtx_lock(mtxp); 4443 bp->b_pin_count++; 4444 mtx_unlock(mtxp); 4445 } 4446 4447 void 4448 bunpin(struct buf *bp) 4449 { 4450 struct mtx *mtxp; 4451 4452 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4453 mtx_lock(mtxp); 4454 if (--bp->b_pin_count == 0) 4455 wakeup(bp); 4456 mtx_unlock(mtxp); 4457 } 4458 4459 void 4460 bunpin_wait(struct buf *bp) 4461 { 4462 struct mtx *mtxp; 4463 4464 mtxp = mtx_pool_find(mtxpool_sleep, bp); 4465 mtx_lock(mtxp); 4466 while (bp->b_pin_count > 0) 4467 msleep(bp, mtxp, PRIBIO, "bwunpin", 0); 4468 mtx_unlock(mtxp); 4469 } 4470 4471 /* 4472 * Set bio_data or bio_ma for struct bio from the struct buf. 4473 */ 4474 void 4475 bdata2bio(struct buf *bp, struct bio *bip) 4476 { 4477 4478 if ((bp->b_flags & B_UNMAPPED) != 0) { 4479 KASSERT(unmapped_buf_allowed, ("unmapped")); 4480 bip->bio_ma = bp->b_pages; 4481 bip->bio_ma_n = bp->b_npages; 4482 bip->bio_data = unmapped_buf; 4483 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 4484 bip->bio_flags |= BIO_UNMAPPED; 4485 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) / 4486 PAGE_SIZE == bp->b_npages, 4487 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset, 4488 (long long)bip->bio_length, bip->bio_ma_n)); 4489 } else { 4490 bip->bio_data = bp->b_data; 4491 bip->bio_ma = NULL; 4492 } 4493 } 4494 4495 #include "opt_ddb.h" 4496 #ifdef DDB 4497 #include <ddb/ddb.h> 4498 4499 /* DDB command to show buffer data */ 4500 DB_SHOW_COMMAND(buffer, db_show_buffer) 4501 { 4502 /* get args */ 4503 struct buf *bp = (struct buf *)addr; 4504 4505 if (!have_addr) { 4506 db_printf("usage: show buffer <addr>\n"); 4507 return; 4508 } 4509 4510 db_printf("buf at %p\n", bp); 4511 db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n", 4512 (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags, 4513 PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS); 4514 db_printf( 4515 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n" 4516 "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, " 4517 "b_dep = %p\n", 4518 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, 4519 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno, 4520 (intmax_t)bp->b_lblkno, bp->b_dep.lh_first); 4521 if (bp->b_npages) { 4522 int i; 4523 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); 4524 for (i = 0; i < bp->b_npages; i++) { 4525 vm_page_t m; 4526 m = bp->b_pages[i]; 4527 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, 4528 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); 4529 if ((i + 1) < bp->b_npages) 4530 db_printf(","); 4531 } 4532 db_printf("\n"); 4533 } 4534 db_printf(" "); 4535 BUF_LOCKPRINTINFO(bp); 4536 } 4537 4538 DB_SHOW_COMMAND(lockedbufs, lockedbufs) 4539 { 4540 struct buf *bp; 4541 int i; 4542 4543 for (i = 0; i < nbuf; i++) { 4544 bp = &buf[i]; 4545 if (BUF_ISLOCKED(bp)) { 4546 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4547 db_printf("\n"); 4548 } 4549 } 4550 } 4551 4552 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs) 4553 { 4554 struct vnode *vp; 4555 struct buf *bp; 4556 4557 if (!have_addr) { 4558 db_printf("usage: show vnodebufs <addr>\n"); 4559 return; 4560 } 4561 vp = (struct vnode *)addr; 4562 db_printf("Clean buffers:\n"); 4563 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) { 4564 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4565 db_printf("\n"); 4566 } 4567 db_printf("Dirty buffers:\n"); 4568 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 4569 db_show_buffer((uintptr_t)bp, 1, 0, NULL); 4570 db_printf("\n"); 4571 } 4572 } 4573 4574 DB_COMMAND(countfreebufs, db_coundfreebufs) 4575 { 4576 struct buf *bp; 4577 int i, used = 0, nfree = 0; 4578 4579 if (have_addr) { 4580 db_printf("usage: countfreebufs\n"); 4581 return; 4582 } 4583 4584 for (i = 0; i < nbuf; i++) { 4585 bp = &buf[i]; 4586 if ((bp->b_flags & B_INFREECNT) != 0) 4587 nfree++; 4588 else 4589 used++; 4590 } 4591 4592 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used, 4593 nfree + used); 4594 db_printf("numfreebuffers is %d\n", numfreebuffers); 4595 } 4596 #endif /* DDB */ 4597