xref: /freebsd/sys/kern/vfs_bio.c (revision 00a5db46de56179184c0f000eaacad695e2b0859)
1 /*-
2  * Copyright (c) 2004 Poul-Henning Kamp
3  * Copyright (c) 1994,1997 John S. Dyson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * this file contains a new buffer I/O scheme implementing a coherent
30  * VM object and buffer cache scheme.  Pains have been taken to make
31  * sure that the performance degradation associated with schemes such
32  * as this is not realized.
33  *
34  * Author:  John S. Dyson
35  * Significant help during the development and debugging phases
36  * had been provided by David Greenman, also of the FreeBSD core team.
37  *
38  * see man buf(9) for more info.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/bio.h>
47 #include <sys/conf.h>
48 #include <sys/buf.h>
49 #include <sys/devicestat.h>
50 #include <sys/eventhandler.h>
51 #include <sys/limits.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/kthread.h>
58 #include <sys/proc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/sysctl.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
63 #include <geom/geom.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_map.h>
72 #include "opt_compat.h"
73 #include "opt_directio.h"
74 #include "opt_swap.h"
75 
76 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
77 
78 struct	bio_ops bioops;		/* I/O operation notification */
79 
80 struct	buf_ops buf_ops_bio = {
81 	.bop_name	=	"buf_ops_bio",
82 	.bop_write	=	bufwrite,
83 	.bop_strategy	=	bufstrategy,
84 	.bop_sync	=	bufsync,
85 	.bop_bdflush	=	bufbdflush,
86 };
87 
88 /*
89  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
90  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
91  */
92 struct buf *buf;		/* buffer header pool */
93 
94 static struct proc *bufdaemonproc;
95 
96 static int inmem(struct vnode *vp, daddr_t blkno);
97 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
98 		vm_offset_t to);
99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100 		vm_offset_t to);
101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103 		vm_page_t m);
104 static void vfs_clean_pages(struct buf *bp);
105 static void vfs_setdirty(struct buf *bp);
106 static void vfs_setdirty_locked_object(struct buf *bp);
107 static void vfs_vmio_release(struct buf *bp);
108 static int vfs_bio_clcheck(struct vnode *vp, int size,
109 		daddr_t lblkno, daddr_t blkno);
110 static int buf_do_flush(struct vnode *vp);
111 static int flushbufqueues(struct vnode *, int, int);
112 static void buf_daemon(void);
113 static void bremfreel(struct buf *bp);
114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117 #endif
118 
119 int vmiodirenable = TRUE;
120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121     "Use the VM system for directory writes");
122 long runningbufspace;
123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124     "Amount of presently outstanding async buffer io");
125 static long bufspace;
126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130 #else
131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132     "Virtual memory used for buffers");
133 #endif
134 static long maxbufspace;
135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136     "Maximum allowed value of bufspace (including buf_daemon)");
137 static long bufmallocspace;
138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139     "Amount of malloced memory for buffers");
140 static long maxbufmallocspace;
141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142     "Maximum amount of malloced memory for buffers");
143 static long lobufspace;
144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145     "Minimum amount of buffers we want to have");
146 long hibufspace;
147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148     "Maximum allowed value of bufspace (excluding buf_daemon)");
149 static int bufreusecnt;
150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151     "Number of times we have reused a buffer");
152 static int buffreekvacnt;
153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154     "Number of times we have freed the KVA space from some buffer");
155 static int bufdefragcnt;
156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157     "Number of times we have had to repeat buffer allocation to defragment");
158 static long lorunningspace;
159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160     "Minimum preferred space used for in-progress I/O");
161 static long hirunningspace;
162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163     "Maximum amount of space to use for in-progress I/O");
164 int dirtybufferflushes;
165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167 int bdwriteskip;
168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170 int altbufferflushes;
171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172     0, "Number of fsync flushes to limit dirty buffers");
173 static int recursiveflushes;
174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175     0, "Number of flushes skipped due to being recursive");
176 static int numdirtybuffers;
177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178     "Number of buffers that are dirty (has unwritten changes) at the moment");
179 static int lodirtybuffers;
180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181     "How many buffers we want to have free before bufdaemon can sleep");
182 static int hidirtybuffers;
183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184     "When the number of dirty buffers is considered severe");
185 int dirtybufthresh;
186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188 static int numfreebuffers;
189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190     "Number of free buffers");
191 static int lofreebuffers;
192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193    "XXX Unused");
194 static int hifreebuffers;
195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196    "XXX Complicatedly unused");
197 static int getnewbufcalls;
198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199    "Number of calls to getnewbuf");
200 static int getnewbufrestarts;
201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202     "Number of times getnewbuf has had to restart a buffer aquisition");
203 static int flushbufqtarget = 100;
204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205     "Amount of work to do in flushbufqueues when helping bufdaemon");
206 static long notbufdflashes;
207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208     "Number of dirty buffer flushes done by the bufdaemon helpers");
209 
210 /*
211  * Wakeup point for bufdaemon, as well as indicator of whether it is already
212  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
213  * is idling.
214  */
215 static int bd_request;
216 
217 /*
218  * This lock synchronizes access to bd_request.
219  */
220 static struct mtx bdlock;
221 
222 /*
223  * bogus page -- for I/O to/from partially complete buffers
224  * this is a temporary solution to the problem, but it is not
225  * really that bad.  it would be better to split the buffer
226  * for input in the case of buffers partially already in memory,
227  * but the code is intricate enough already.
228  */
229 vm_page_t bogus_page;
230 
231 /*
232  * Synchronization (sleep/wakeup) variable for active buffer space requests.
233  * Set when wait starts, cleared prior to wakeup().
234  * Used in runningbufwakeup() and waitrunningbufspace().
235  */
236 static int runningbufreq;
237 
238 /*
239  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
240  * waitrunningbufspace().
241  */
242 static struct mtx rbreqlock;
243 
244 /*
245  * Synchronization (sleep/wakeup) variable for buffer requests.
246  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
247  * by and/or.
248  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
249  * getnewbuf(), and getblk().
250  */
251 static int needsbuffer;
252 
253 /*
254  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
255  */
256 static struct mtx nblock;
257 
258 /*
259  * Definitions for the buffer free lists.
260  */
261 #define BUFFER_QUEUES	6	/* number of free buffer queues */
262 
263 #define QUEUE_NONE	0	/* on no queue */
264 #define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
265 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
266 #define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
267 #define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
268 #define QUEUE_EMPTY	5	/* empty buffer headers */
269 #define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
270 
271 /* Queues for free buffers with various properties */
272 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
273 
274 /* Lock for the bufqueues */
275 static struct mtx bqlock;
276 
277 /*
278  * Single global constant for BUF_WMESG, to avoid getting multiple references.
279  * buf_wmesg is referred from macros.
280  */
281 const char *buf_wmesg = BUF_WMESG;
282 
283 #define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
284 #define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
285 #define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
286 #define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
287 
288 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
289     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
290 static int
291 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
292 {
293 	long lvalue;
294 	int ivalue;
295 
296 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
297 		return (sysctl_handle_long(oidp, arg1, arg2, req));
298 	lvalue = *(long *)arg1;
299 	if (lvalue > INT_MAX)
300 		/* On overflow, still write out a long to trigger ENOMEM. */
301 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
302 	ivalue = lvalue;
303 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
304 }
305 #endif
306 
307 #ifdef DIRECTIO
308 extern void ffs_rawread_setup(void);
309 #endif /* DIRECTIO */
310 /*
311  *	numdirtywakeup:
312  *
313  *	If someone is blocked due to there being too many dirty buffers,
314  *	and numdirtybuffers is now reasonable, wake them up.
315  */
316 
317 static __inline void
318 numdirtywakeup(int level)
319 {
320 
321 	if (numdirtybuffers <= level) {
322 		mtx_lock(&nblock);
323 		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
324 			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
325 			wakeup(&needsbuffer);
326 		}
327 		mtx_unlock(&nblock);
328 	}
329 }
330 
331 /*
332  *	bufspacewakeup:
333  *
334  *	Called when buffer space is potentially available for recovery.
335  *	getnewbuf() will block on this flag when it is unable to free
336  *	sufficient buffer space.  Buffer space becomes recoverable when
337  *	bp's get placed back in the queues.
338  */
339 
340 static __inline void
341 bufspacewakeup(void)
342 {
343 
344 	/*
345 	 * If someone is waiting for BUF space, wake them up.  Even
346 	 * though we haven't freed the kva space yet, the waiting
347 	 * process will be able to now.
348 	 */
349 	mtx_lock(&nblock);
350 	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
351 		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
352 		wakeup(&needsbuffer);
353 	}
354 	mtx_unlock(&nblock);
355 }
356 
357 /*
358  * runningbufwakeup() - in-progress I/O accounting.
359  *
360  */
361 void
362 runningbufwakeup(struct buf *bp)
363 {
364 
365 	if (bp->b_runningbufspace) {
366 		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
367 		bp->b_runningbufspace = 0;
368 		mtx_lock(&rbreqlock);
369 		if (runningbufreq && runningbufspace <= lorunningspace) {
370 			runningbufreq = 0;
371 			wakeup(&runningbufreq);
372 		}
373 		mtx_unlock(&rbreqlock);
374 	}
375 }
376 
377 /*
378  *	bufcountwakeup:
379  *
380  *	Called when a buffer has been added to one of the free queues to
381  *	account for the buffer and to wakeup anyone waiting for free buffers.
382  *	This typically occurs when large amounts of metadata are being handled
383  *	by the buffer cache ( else buffer space runs out first, usually ).
384  */
385 
386 static __inline void
387 bufcountwakeup(void)
388 {
389 
390 	atomic_add_int(&numfreebuffers, 1);
391 	mtx_lock(&nblock);
392 	if (needsbuffer) {
393 		needsbuffer &= ~VFS_BIO_NEED_ANY;
394 		if (numfreebuffers >= hifreebuffers)
395 			needsbuffer &= ~VFS_BIO_NEED_FREE;
396 		wakeup(&needsbuffer);
397 	}
398 	mtx_unlock(&nblock);
399 }
400 
401 /*
402  *	waitrunningbufspace()
403  *
404  *	runningbufspace is a measure of the amount of I/O currently
405  *	running.  This routine is used in async-write situations to
406  *	prevent creating huge backups of pending writes to a device.
407  *	Only asynchronous writes are governed by this function.
408  *
409  *	Reads will adjust runningbufspace, but will not block based on it.
410  *	The read load has a side effect of reducing the allowed write load.
411  *
412  *	This does NOT turn an async write into a sync write.  It waits
413  *	for earlier writes to complete and generally returns before the
414  *	caller's write has reached the device.
415  */
416 void
417 waitrunningbufspace(void)
418 {
419 
420 	mtx_lock(&rbreqlock);
421 	while (runningbufspace > hirunningspace) {
422 		++runningbufreq;
423 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
424 	}
425 	mtx_unlock(&rbreqlock);
426 }
427 
428 
429 /*
430  *	vfs_buf_test_cache:
431  *
432  *	Called when a buffer is extended.  This function clears the B_CACHE
433  *	bit if the newly extended portion of the buffer does not contain
434  *	valid data.
435  */
436 static __inline
437 void
438 vfs_buf_test_cache(struct buf *bp,
439 		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
440 		  vm_page_t m)
441 {
442 
443 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
444 	if (bp->b_flags & B_CACHE) {
445 		int base = (foff + off) & PAGE_MASK;
446 		if (vm_page_is_valid(m, base, size) == 0)
447 			bp->b_flags &= ~B_CACHE;
448 	}
449 }
450 
451 /* Wake up the buffer daemon if necessary */
452 static __inline
453 void
454 bd_wakeup(int dirtybuflevel)
455 {
456 
457 	mtx_lock(&bdlock);
458 	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
459 		bd_request = 1;
460 		wakeup(&bd_request);
461 	}
462 	mtx_unlock(&bdlock);
463 }
464 
465 /*
466  * bd_speedup - speedup the buffer cache flushing code
467  */
468 
469 static __inline
470 void
471 bd_speedup(void)
472 {
473 
474 	bd_wakeup(1);
475 }
476 
477 /*
478  * Calculating buffer cache scaling values and reserve space for buffer
479  * headers.  This is called during low level kernel initialization and
480  * may be called more then once.  We CANNOT write to the memory area
481  * being reserved at this time.
482  */
483 caddr_t
484 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
485 {
486 	int tuned_nbuf;
487 	long maxbuf;
488 
489 	/*
490 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
491 	 * PAGE_SIZE is >= 1K)
492 	 */
493 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
494 
495 	/*
496 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
497 	 * For the first 64MB of ram nominally allocate sufficient buffers to
498 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
499 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
500 	 * the buffer cache we limit the eventual kva reservation to
501 	 * maxbcache bytes.
502 	 *
503 	 * factor represents the 1/4 x ram conversion.
504 	 */
505 	if (nbuf == 0) {
506 		int factor = 4 * BKVASIZE / 1024;
507 
508 		nbuf = 50;
509 		if (physmem_est > 4096)
510 			nbuf += min((physmem_est - 4096) / factor,
511 			    65536 / factor);
512 		if (physmem_est > 65536)
513 			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
514 
515 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
516 			nbuf = maxbcache / BKVASIZE;
517 		tuned_nbuf = 1;
518 	} else
519 		tuned_nbuf = 0;
520 
521 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
522 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
523 	if (nbuf > maxbuf) {
524 		if (!tuned_nbuf)
525 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
526 			    maxbuf);
527 		nbuf = maxbuf;
528 	}
529 
530 	/*
531 	 * swbufs are used as temporary holders for I/O, such as paging I/O.
532 	 * We have no less then 16 and no more then 256.
533 	 */
534 	nswbuf = max(min(nbuf/4, 256), 16);
535 #ifdef NSWBUF_MIN
536 	if (nswbuf < NSWBUF_MIN)
537 		nswbuf = NSWBUF_MIN;
538 #endif
539 #ifdef DIRECTIO
540 	ffs_rawread_setup();
541 #endif
542 
543 	/*
544 	 * Reserve space for the buffer cache buffers
545 	 */
546 	swbuf = (void *)v;
547 	v = (caddr_t)(swbuf + nswbuf);
548 	buf = (void *)v;
549 	v = (caddr_t)(buf + nbuf);
550 
551 	return(v);
552 }
553 
554 /* Initialize the buffer subsystem.  Called before use of any buffers. */
555 void
556 bufinit(void)
557 {
558 	struct buf *bp;
559 	int i;
560 
561 	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
562 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
563 	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
564 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
565 
566 	/* next, make a null set of free lists */
567 	for (i = 0; i < BUFFER_QUEUES; i++)
568 		TAILQ_INIT(&bufqueues[i]);
569 
570 	/* finally, initialize each buffer header and stick on empty q */
571 	for (i = 0; i < nbuf; i++) {
572 		bp = &buf[i];
573 		bzero(bp, sizeof *bp);
574 		bp->b_flags = B_INVAL;	/* we're just an empty header */
575 		bp->b_rcred = NOCRED;
576 		bp->b_wcred = NOCRED;
577 		bp->b_qindex = QUEUE_EMPTY;
578 		bp->b_vflags = 0;
579 		bp->b_xflags = 0;
580 		LIST_INIT(&bp->b_dep);
581 		BUF_LOCKINIT(bp);
582 		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
583 	}
584 
585 	/*
586 	 * maxbufspace is the absolute maximum amount of buffer space we are
587 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
588 	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
589 	 * used by most other processes.  The differential is required to
590 	 * ensure that buf_daemon is able to run when other processes might
591 	 * be blocked waiting for buffer space.
592 	 *
593 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
594 	 * this may result in KVM fragmentation which is not handled optimally
595 	 * by the system.
596 	 */
597 	maxbufspace = (long)nbuf * BKVASIZE;
598 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
599 	lobufspace = hibufspace - MAXBSIZE;
600 
601 	lorunningspace = 512 * 1024;
602 	hirunningspace = 1024 * 1024;
603 
604 /*
605  * Limit the amount of malloc memory since it is wired permanently into
606  * the kernel space.  Even though this is accounted for in the buffer
607  * allocation, we don't want the malloced region to grow uncontrolled.
608  * The malloc scheme improves memory utilization significantly on average
609  * (small) directories.
610  */
611 	maxbufmallocspace = hibufspace / 20;
612 
613 /*
614  * Reduce the chance of a deadlock occuring by limiting the number
615  * of delayed-write dirty buffers we allow to stack up.
616  */
617 	hidirtybuffers = nbuf / 4 + 20;
618 	dirtybufthresh = hidirtybuffers * 9 / 10;
619 	numdirtybuffers = 0;
620 /*
621  * To support extreme low-memory systems, make sure hidirtybuffers cannot
622  * eat up all available buffer space.  This occurs when our minimum cannot
623  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
624  * BKVASIZE'd (8K) buffers.
625  */
626 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
627 		hidirtybuffers >>= 1;
628 	}
629 	lodirtybuffers = hidirtybuffers / 2;
630 
631 /*
632  * Try to keep the number of free buffers in the specified range,
633  * and give special processes (e.g. like buf_daemon) access to an
634  * emergency reserve.
635  */
636 	lofreebuffers = nbuf / 18 + 5;
637 	hifreebuffers = 2 * lofreebuffers;
638 	numfreebuffers = nbuf;
639 
640 /*
641  * Maximum number of async ops initiated per buf_daemon loop.  This is
642  * somewhat of a hack at the moment, we really need to limit ourselves
643  * based on the number of bytes of I/O in-transit that were initiated
644  * from buf_daemon.
645  */
646 
647 	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
648 	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
649 }
650 
651 /*
652  * bfreekva() - free the kva allocation for a buffer.
653  *
654  *	Since this call frees up buffer space, we call bufspacewakeup().
655  */
656 static void
657 bfreekva(struct buf *bp)
658 {
659 
660 	if (bp->b_kvasize) {
661 		atomic_add_int(&buffreekvacnt, 1);
662 		atomic_subtract_long(&bufspace, bp->b_kvasize);
663 		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
664 		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
665 		bp->b_kvasize = 0;
666 		bufspacewakeup();
667 	}
668 }
669 
670 /*
671  *	bremfree:
672  *
673  *	Mark the buffer for removal from the appropriate free list in brelse.
674  *
675  */
676 void
677 bremfree(struct buf *bp)
678 {
679 
680 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
681 	KASSERT((bp->b_flags & B_REMFREE) == 0,
682 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
683 	KASSERT(bp->b_qindex != QUEUE_NONE,
684 	    ("bremfree: buffer %p not on a queue.", bp));
685 	BUF_ASSERT_HELD(bp);
686 
687 	bp->b_flags |= B_REMFREE;
688 	/* Fixup numfreebuffers count.  */
689 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
690 		atomic_subtract_int(&numfreebuffers, 1);
691 }
692 
693 /*
694  *	bremfreef:
695  *
696  *	Force an immediate removal from a free list.  Used only in nfs when
697  *	it abuses the b_freelist pointer.
698  */
699 void
700 bremfreef(struct buf *bp)
701 {
702 	mtx_lock(&bqlock);
703 	bremfreel(bp);
704 	mtx_unlock(&bqlock);
705 }
706 
707 /*
708  *	bremfreel:
709  *
710  *	Removes a buffer from the free list, must be called with the
711  *	bqlock held.
712  */
713 static void
714 bremfreel(struct buf *bp)
715 {
716 	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
717 	    bp, bp->b_vp, bp->b_flags);
718 	KASSERT(bp->b_qindex != QUEUE_NONE,
719 	    ("bremfreel: buffer %p not on a queue.", bp));
720 	BUF_ASSERT_HELD(bp);
721 	mtx_assert(&bqlock, MA_OWNED);
722 
723 	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
724 	bp->b_qindex = QUEUE_NONE;
725 	/*
726 	 * If this was a delayed bremfree() we only need to remove the buffer
727 	 * from the queue and return the stats are already done.
728 	 */
729 	if (bp->b_flags & B_REMFREE) {
730 		bp->b_flags &= ~B_REMFREE;
731 		return;
732 	}
733 	/*
734 	 * Fixup numfreebuffers count.  If the buffer is invalid or not
735 	 * delayed-write, the buffer was free and we must decrement
736 	 * numfreebuffers.
737 	 */
738 	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
739 		atomic_subtract_int(&numfreebuffers, 1);
740 }
741 
742 
743 /*
744  * Get a buffer with the specified data.  Look in the cache first.  We
745  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
746  * is set, the buffer is valid and we do not have to do anything ( see
747  * getblk() ).  This is really just a special case of breadn().
748  */
749 int
750 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
751     struct buf **bpp)
752 {
753 
754 	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
755 }
756 
757 /*
758  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
759  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
760  * the buffer is valid and we do not have to do anything.
761  */
762 void
763 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
764     int cnt, struct ucred * cred)
765 {
766 	struct buf *rabp;
767 	int i;
768 
769 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
770 		if (inmem(vp, *rablkno))
771 			continue;
772 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
773 
774 		if ((rabp->b_flags & B_CACHE) == 0) {
775 			if (!TD_IS_IDLETHREAD(curthread))
776 				curthread->td_ru.ru_inblock++;
777 			rabp->b_flags |= B_ASYNC;
778 			rabp->b_flags &= ~B_INVAL;
779 			rabp->b_ioflags &= ~BIO_ERROR;
780 			rabp->b_iocmd = BIO_READ;
781 			if (rabp->b_rcred == NOCRED && cred != NOCRED)
782 				rabp->b_rcred = crhold(cred);
783 			vfs_busy_pages(rabp, 0);
784 			BUF_KERNPROC(rabp);
785 			rabp->b_iooffset = dbtob(rabp->b_blkno);
786 			bstrategy(rabp);
787 		} else {
788 			brelse(rabp);
789 		}
790 	}
791 }
792 
793 /*
794  * Operates like bread, but also starts asynchronous I/O on
795  * read-ahead blocks.
796  */
797 int
798 breadn(struct vnode * vp, daddr_t blkno, int size,
799     daddr_t * rablkno, int *rabsize,
800     int cnt, struct ucred * cred, struct buf **bpp)
801 {
802 	struct buf *bp;
803 	int rv = 0, readwait = 0;
804 
805 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
806 	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
807 
808 	/* if not found in cache, do some I/O */
809 	if ((bp->b_flags & B_CACHE) == 0) {
810 		if (!TD_IS_IDLETHREAD(curthread))
811 			curthread->td_ru.ru_inblock++;
812 		bp->b_iocmd = BIO_READ;
813 		bp->b_flags &= ~B_INVAL;
814 		bp->b_ioflags &= ~BIO_ERROR;
815 		if (bp->b_rcred == NOCRED && cred != NOCRED)
816 			bp->b_rcred = crhold(cred);
817 		vfs_busy_pages(bp, 0);
818 		bp->b_iooffset = dbtob(bp->b_blkno);
819 		bstrategy(bp);
820 		++readwait;
821 	}
822 
823 	breada(vp, rablkno, rabsize, cnt, cred);
824 
825 	if (readwait) {
826 		rv = bufwait(bp);
827 	}
828 	return (rv);
829 }
830 
831 /*
832  * Write, release buffer on completion.  (Done by iodone
833  * if async).  Do not bother writing anything if the buffer
834  * is invalid.
835  *
836  * Note that we set B_CACHE here, indicating that buffer is
837  * fully valid and thus cacheable.  This is true even of NFS
838  * now so we set it generally.  This could be set either here
839  * or in biodone() since the I/O is synchronous.  We put it
840  * here.
841  */
842 int
843 bufwrite(struct buf *bp)
844 {
845 	int oldflags;
846 	struct vnode *vp;
847 	int vp_md;
848 
849 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
850 	if (bp->b_flags & B_INVAL) {
851 		brelse(bp);
852 		return (0);
853 	}
854 
855 	oldflags = bp->b_flags;
856 
857 	BUF_ASSERT_HELD(bp);
858 
859 	if (bp->b_pin_count > 0)
860 		bunpin_wait(bp);
861 
862 	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
863 	    ("FFS background buffer should not get here %p", bp));
864 
865 	vp = bp->b_vp;
866 	if (vp)
867 		vp_md = vp->v_vflag & VV_MD;
868 	else
869 		vp_md = 0;
870 
871 	/* Mark the buffer clean */
872 	bundirty(bp);
873 
874 	bp->b_flags &= ~B_DONE;
875 	bp->b_ioflags &= ~BIO_ERROR;
876 	bp->b_flags |= B_CACHE;
877 	bp->b_iocmd = BIO_WRITE;
878 
879 	bufobj_wref(bp->b_bufobj);
880 	vfs_busy_pages(bp, 1);
881 
882 	/*
883 	 * Normal bwrites pipeline writes
884 	 */
885 	bp->b_runningbufspace = bp->b_bufsize;
886 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
887 
888 	if (!TD_IS_IDLETHREAD(curthread))
889 		curthread->td_ru.ru_oublock++;
890 	if (oldflags & B_ASYNC)
891 		BUF_KERNPROC(bp);
892 	bp->b_iooffset = dbtob(bp->b_blkno);
893 	bstrategy(bp);
894 
895 	if ((oldflags & B_ASYNC) == 0) {
896 		int rtval = bufwait(bp);
897 		brelse(bp);
898 		return (rtval);
899 	} else {
900 		/*
901 		 * don't allow the async write to saturate the I/O
902 		 * system.  We will not deadlock here because
903 		 * we are blocking waiting for I/O that is already in-progress
904 		 * to complete. We do not block here if it is the update
905 		 * or syncer daemon trying to clean up as that can lead
906 		 * to deadlock.
907 		 */
908 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
909 			waitrunningbufspace();
910 	}
911 
912 	return (0);
913 }
914 
915 void
916 bufbdflush(struct bufobj *bo, struct buf *bp)
917 {
918 	struct buf *nbp;
919 
920 	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
921 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
922 		altbufferflushes++;
923 	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
924 		BO_LOCK(bo);
925 		/*
926 		 * Try to find a buffer to flush.
927 		 */
928 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
929 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
930 			    BUF_LOCK(nbp,
931 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
932 				continue;
933 			if (bp == nbp)
934 				panic("bdwrite: found ourselves");
935 			BO_UNLOCK(bo);
936 			/* Don't countdeps with the bo lock held. */
937 			if (buf_countdeps(nbp, 0)) {
938 				BO_LOCK(bo);
939 				BUF_UNLOCK(nbp);
940 				continue;
941 			}
942 			if (nbp->b_flags & B_CLUSTEROK) {
943 				vfs_bio_awrite(nbp);
944 			} else {
945 				bremfree(nbp);
946 				bawrite(nbp);
947 			}
948 			dirtybufferflushes++;
949 			break;
950 		}
951 		if (nbp == NULL)
952 			BO_UNLOCK(bo);
953 	}
954 }
955 
956 /*
957  * Delayed write. (Buffer is marked dirty).  Do not bother writing
958  * anything if the buffer is marked invalid.
959  *
960  * Note that since the buffer must be completely valid, we can safely
961  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
962  * biodone() in order to prevent getblk from writing the buffer
963  * out synchronously.
964  */
965 void
966 bdwrite(struct buf *bp)
967 {
968 	struct thread *td = curthread;
969 	struct vnode *vp;
970 	struct bufobj *bo;
971 
972 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
973 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
974 	BUF_ASSERT_HELD(bp);
975 
976 	if (bp->b_flags & B_INVAL) {
977 		brelse(bp);
978 		return;
979 	}
980 
981 	/*
982 	 * If we have too many dirty buffers, don't create any more.
983 	 * If we are wildly over our limit, then force a complete
984 	 * cleanup. Otherwise, just keep the situation from getting
985 	 * out of control. Note that we have to avoid a recursive
986 	 * disaster and not try to clean up after our own cleanup!
987 	 */
988 	vp = bp->b_vp;
989 	bo = bp->b_bufobj;
990 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
991 		td->td_pflags |= TDP_INBDFLUSH;
992 		BO_BDFLUSH(bo, bp);
993 		td->td_pflags &= ~TDP_INBDFLUSH;
994 	} else
995 		recursiveflushes++;
996 
997 	bdirty(bp);
998 	/*
999 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1000 	 * true even of NFS now.
1001 	 */
1002 	bp->b_flags |= B_CACHE;
1003 
1004 	/*
1005 	 * This bmap keeps the system from needing to do the bmap later,
1006 	 * perhaps when the system is attempting to do a sync.  Since it
1007 	 * is likely that the indirect block -- or whatever other datastructure
1008 	 * that the filesystem needs is still in memory now, it is a good
1009 	 * thing to do this.  Note also, that if the pageout daemon is
1010 	 * requesting a sync -- there might not be enough memory to do
1011 	 * the bmap then...  So, this is important to do.
1012 	 */
1013 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1014 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1015 	}
1016 
1017 	/*
1018 	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1019 	 */
1020 	vfs_setdirty(bp);
1021 
1022 	/*
1023 	 * We need to do this here to satisfy the vnode_pager and the
1024 	 * pageout daemon, so that it thinks that the pages have been
1025 	 * "cleaned".  Note that since the pages are in a delayed write
1026 	 * buffer -- the VFS layer "will" see that the pages get written
1027 	 * out on the next sync, or perhaps the cluster will be completed.
1028 	 */
1029 	vfs_clean_pages(bp);
1030 	bqrelse(bp);
1031 
1032 	/*
1033 	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1034 	 * buffers (midpoint between our recovery point and our stall
1035 	 * point).
1036 	 */
1037 	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1038 
1039 	/*
1040 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1041 	 * due to the softdep code.
1042 	 */
1043 }
1044 
1045 /*
1046  *	bdirty:
1047  *
1048  *	Turn buffer into delayed write request.  We must clear BIO_READ and
1049  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1050  *	itself to properly update it in the dirty/clean lists.  We mark it
1051  *	B_DONE to ensure that any asynchronization of the buffer properly
1052  *	clears B_DONE ( else a panic will occur later ).
1053  *
1054  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1055  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1056  *	should only be called if the buffer is known-good.
1057  *
1058  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1059  *	count.
1060  *
1061  *	The buffer must be on QUEUE_NONE.
1062  */
1063 void
1064 bdirty(struct buf *bp)
1065 {
1066 
1067 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1068 	    bp, bp->b_vp, bp->b_flags);
1069 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1070 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1071 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1072 	BUF_ASSERT_HELD(bp);
1073 	bp->b_flags &= ~(B_RELBUF);
1074 	bp->b_iocmd = BIO_WRITE;
1075 
1076 	if ((bp->b_flags & B_DELWRI) == 0) {
1077 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1078 		reassignbuf(bp);
1079 		atomic_add_int(&numdirtybuffers, 1);
1080 		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1081 	}
1082 }
1083 
1084 /*
1085  *	bundirty:
1086  *
1087  *	Clear B_DELWRI for buffer.
1088  *
1089  *	Since the buffer is not on a queue, we do not update the numfreebuffers
1090  *	count.
1091  *
1092  *	The buffer must be on QUEUE_NONE.
1093  */
1094 
1095 void
1096 bundirty(struct buf *bp)
1097 {
1098 
1099 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1100 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1101 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1102 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1103 	BUF_ASSERT_HELD(bp);
1104 
1105 	if (bp->b_flags & B_DELWRI) {
1106 		bp->b_flags &= ~B_DELWRI;
1107 		reassignbuf(bp);
1108 		atomic_subtract_int(&numdirtybuffers, 1);
1109 		numdirtywakeup(lodirtybuffers);
1110 	}
1111 	/*
1112 	 * Since it is now being written, we can clear its deferred write flag.
1113 	 */
1114 	bp->b_flags &= ~B_DEFERRED;
1115 }
1116 
1117 /*
1118  *	bawrite:
1119  *
1120  *	Asynchronous write.  Start output on a buffer, but do not wait for
1121  *	it to complete.  The buffer is released when the output completes.
1122  *
1123  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1124  *	B_INVAL buffers.  Not us.
1125  */
1126 void
1127 bawrite(struct buf *bp)
1128 {
1129 
1130 	bp->b_flags |= B_ASYNC;
1131 	(void) bwrite(bp);
1132 }
1133 
1134 /*
1135  *	bwillwrite:
1136  *
1137  *	Called prior to the locking of any vnodes when we are expecting to
1138  *	write.  We do not want to starve the buffer cache with too many
1139  *	dirty buffers so we block here.  By blocking prior to the locking
1140  *	of any vnodes we attempt to avoid the situation where a locked vnode
1141  *	prevents the various system daemons from flushing related buffers.
1142  */
1143 
1144 void
1145 bwillwrite(void)
1146 {
1147 
1148 	if (numdirtybuffers >= hidirtybuffers) {
1149 		mtx_lock(&nblock);
1150 		while (numdirtybuffers >= hidirtybuffers) {
1151 			bd_wakeup(1);
1152 			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1153 			msleep(&needsbuffer, &nblock,
1154 			    (PRIBIO + 4), "flswai", 0);
1155 		}
1156 		mtx_unlock(&nblock);
1157 	}
1158 }
1159 
1160 /*
1161  * Return true if we have too many dirty buffers.
1162  */
1163 int
1164 buf_dirty_count_severe(void)
1165 {
1166 
1167 	return(numdirtybuffers >= hidirtybuffers);
1168 }
1169 
1170 /*
1171  *	brelse:
1172  *
1173  *	Release a busy buffer and, if requested, free its resources.  The
1174  *	buffer will be stashed in the appropriate bufqueue[] allowing it
1175  *	to be accessed later as a cache entity or reused for other purposes.
1176  */
1177 void
1178 brelse(struct buf *bp)
1179 {
1180 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1181 	    bp, bp->b_vp, bp->b_flags);
1182 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1183 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1184 
1185 	if (bp->b_flags & B_MANAGED) {
1186 		bqrelse(bp);
1187 		return;
1188 	}
1189 
1190 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1191 	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1192 		/*
1193 		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1194 		 * pages from being scrapped.  If the error is anything
1195 		 * other than an I/O error (EIO), assume that retryingi
1196 		 * is futile.
1197 		 */
1198 		bp->b_ioflags &= ~BIO_ERROR;
1199 		bdirty(bp);
1200 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1201 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1202 		/*
1203 		 * Either a failed I/O or we were asked to free or not
1204 		 * cache the buffer.
1205 		 */
1206 		bp->b_flags |= B_INVAL;
1207 		if (!LIST_EMPTY(&bp->b_dep))
1208 			buf_deallocate(bp);
1209 		if (bp->b_flags & B_DELWRI) {
1210 			atomic_subtract_int(&numdirtybuffers, 1);
1211 			numdirtywakeup(lodirtybuffers);
1212 		}
1213 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1214 		if ((bp->b_flags & B_VMIO) == 0) {
1215 			if (bp->b_bufsize)
1216 				allocbuf(bp, 0);
1217 			if (bp->b_vp)
1218 				brelvp(bp);
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1224 	 * is called with B_DELWRI set, the underlying pages may wind up
1225 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1226 	 * because pages associated with a B_DELWRI bp are marked clean.
1227 	 *
1228 	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1229 	 * if B_DELWRI is set.
1230 	 *
1231 	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1232 	 * on pages to return pages to the VM page queues.
1233 	 */
1234 	if (bp->b_flags & B_DELWRI)
1235 		bp->b_flags &= ~B_RELBUF;
1236 	else if (vm_page_count_severe()) {
1237 		/*
1238 		 * The locking of the BO_LOCK is not necessary since
1239 		 * BKGRDINPROG cannot be set while we hold the buf
1240 		 * lock, it can only be cleared if it is already
1241 		 * pending.
1242 		 */
1243 		if (bp->b_vp) {
1244 			if (!(bp->b_vflags & BV_BKGRDINPROG))
1245 				bp->b_flags |= B_RELBUF;
1246 		} else
1247 			bp->b_flags |= B_RELBUF;
1248 	}
1249 
1250 	/*
1251 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1252 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1253 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1254 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1255 	 *
1256 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1257 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1258 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1259 	 *
1260 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1261 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1262 	 * the commit state and we cannot afford to lose the buffer. If the
1263 	 * buffer has a background write in progress, we need to keep it
1264 	 * around to prevent it from being reconstituted and starting a second
1265 	 * background write.
1266 	 */
1267 	if ((bp->b_flags & B_VMIO)
1268 	    && !(bp->b_vp->v_mount != NULL &&
1269 		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1270 		 !vn_isdisk(bp->b_vp, NULL) &&
1271 		 (bp->b_flags & B_DELWRI))
1272 	    ) {
1273 
1274 		int i, j, resid;
1275 		vm_page_t m;
1276 		off_t foff;
1277 		vm_pindex_t poff;
1278 		vm_object_t obj;
1279 
1280 		obj = bp->b_bufobj->bo_object;
1281 
1282 		/*
1283 		 * Get the base offset and length of the buffer.  Note that
1284 		 * in the VMIO case if the buffer block size is not
1285 		 * page-aligned then b_data pointer may not be page-aligned.
1286 		 * But our b_pages[] array *IS* page aligned.
1287 		 *
1288 		 * block sizes less then DEV_BSIZE (usually 512) are not
1289 		 * supported due to the page granularity bits (m->valid,
1290 		 * m->dirty, etc...).
1291 		 *
1292 		 * See man buf(9) for more information
1293 		 */
1294 		resid = bp->b_bufsize;
1295 		foff = bp->b_offset;
1296 		VM_OBJECT_LOCK(obj);
1297 		for (i = 0; i < bp->b_npages; i++) {
1298 			int had_bogus = 0;
1299 
1300 			m = bp->b_pages[i];
1301 
1302 			/*
1303 			 * If we hit a bogus page, fixup *all* the bogus pages
1304 			 * now.
1305 			 */
1306 			if (m == bogus_page) {
1307 				poff = OFF_TO_IDX(bp->b_offset);
1308 				had_bogus = 1;
1309 
1310 				for (j = i; j < bp->b_npages; j++) {
1311 					vm_page_t mtmp;
1312 					mtmp = bp->b_pages[j];
1313 					if (mtmp == bogus_page) {
1314 						mtmp = vm_page_lookup(obj, poff + j);
1315 						if (!mtmp) {
1316 							panic("brelse: page missing\n");
1317 						}
1318 						bp->b_pages[j] = mtmp;
1319 					}
1320 				}
1321 
1322 				if ((bp->b_flags & B_INVAL) == 0) {
1323 					pmap_qenter(
1324 					    trunc_page((vm_offset_t)bp->b_data),
1325 					    bp->b_pages, bp->b_npages);
1326 				}
1327 				m = bp->b_pages[i];
1328 			}
1329 			if ((bp->b_flags & B_NOCACHE) ||
1330 			    (bp->b_ioflags & BIO_ERROR)) {
1331 				int poffset = foff & PAGE_MASK;
1332 				int presid = resid > (PAGE_SIZE - poffset) ?
1333 					(PAGE_SIZE - poffset) : resid;
1334 
1335 				KASSERT(presid >= 0, ("brelse: extra page"));
1336 				vm_page_lock_queues();
1337 				vm_page_set_invalid(m, poffset, presid);
1338 				vm_page_unlock_queues();
1339 				if (had_bogus)
1340 					printf("avoided corruption bug in bogus_page/brelse code\n");
1341 			}
1342 			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1343 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1344 		}
1345 		VM_OBJECT_UNLOCK(obj);
1346 		if (bp->b_flags & (B_INVAL | B_RELBUF))
1347 			vfs_vmio_release(bp);
1348 
1349 	} else if (bp->b_flags & B_VMIO) {
1350 
1351 		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1352 			vfs_vmio_release(bp);
1353 		}
1354 
1355 	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1356 		if (bp->b_bufsize != 0)
1357 			allocbuf(bp, 0);
1358 		if (bp->b_vp != NULL)
1359 			brelvp(bp);
1360 	}
1361 
1362 	if (BUF_LOCKRECURSED(bp)) {
1363 		/* do not release to free list */
1364 		BUF_UNLOCK(bp);
1365 		return;
1366 	}
1367 
1368 	/* enqueue */
1369 	mtx_lock(&bqlock);
1370 	/* Handle delayed bremfree() processing. */
1371 	if (bp->b_flags & B_REMFREE)
1372 		bremfreel(bp);
1373 	if (bp->b_qindex != QUEUE_NONE)
1374 		panic("brelse: free buffer onto another queue???");
1375 
1376 	/*
1377 	 * If the buffer has junk contents signal it and eventually
1378 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1379 	 * doesn't find it.
1380 	 */
1381 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1382 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1383 		bp->b_flags |= B_INVAL;
1384 	if (bp->b_flags & B_INVAL) {
1385 		if (bp->b_flags & B_DELWRI)
1386 			bundirty(bp);
1387 		if (bp->b_vp)
1388 			brelvp(bp);
1389 	}
1390 
1391 	/* buffers with no memory */
1392 	if (bp->b_bufsize == 0) {
1393 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1394 		if (bp->b_vflags & BV_BKGRDINPROG)
1395 			panic("losing buffer 1");
1396 		if (bp->b_kvasize) {
1397 			bp->b_qindex = QUEUE_EMPTYKVA;
1398 		} else {
1399 			bp->b_qindex = QUEUE_EMPTY;
1400 		}
1401 		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1402 	/* buffers with junk contents */
1403 	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1404 	    (bp->b_ioflags & BIO_ERROR)) {
1405 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1406 		if (bp->b_vflags & BV_BKGRDINPROG)
1407 			panic("losing buffer 2");
1408 		bp->b_qindex = QUEUE_CLEAN;
1409 		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1410 	/* remaining buffers */
1411 	} else {
1412 		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1413 		    (B_DELWRI|B_NEEDSGIANT))
1414 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1415 		else if (bp->b_flags & B_DELWRI)
1416 			bp->b_qindex = QUEUE_DIRTY;
1417 		else
1418 			bp->b_qindex = QUEUE_CLEAN;
1419 		if (bp->b_flags & B_AGE)
1420 			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1421 		else
1422 			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1423 	}
1424 	mtx_unlock(&bqlock);
1425 
1426 	/*
1427 	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1428 	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1429 	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1430 	 * if B_INVAL is set ).
1431 	 */
1432 
1433 	if (!(bp->b_flags & B_DELWRI))
1434 		bufcountwakeup();
1435 
1436 	/*
1437 	 * Something we can maybe free or reuse
1438 	 */
1439 	if (bp->b_bufsize || bp->b_kvasize)
1440 		bufspacewakeup();
1441 
1442 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1443 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1444 		panic("brelse: not dirty");
1445 	/* unlock */
1446 	BUF_UNLOCK(bp);
1447 }
1448 
1449 /*
1450  * Release a buffer back to the appropriate queue but do not try to free
1451  * it.  The buffer is expected to be used again soon.
1452  *
1453  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1454  * biodone() to requeue an async I/O on completion.  It is also used when
1455  * known good buffers need to be requeued but we think we may need the data
1456  * again soon.
1457  *
1458  * XXX we should be able to leave the B_RELBUF hint set on completion.
1459  */
1460 void
1461 bqrelse(struct buf *bp)
1462 {
1463 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1464 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1465 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1466 
1467 	if (BUF_LOCKRECURSED(bp)) {
1468 		/* do not release to free list */
1469 		BUF_UNLOCK(bp);
1470 		return;
1471 	}
1472 
1473 	if (bp->b_flags & B_MANAGED) {
1474 		if (bp->b_flags & B_REMFREE) {
1475 			mtx_lock(&bqlock);
1476 			bremfreel(bp);
1477 			mtx_unlock(&bqlock);
1478 		}
1479 		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1480 		BUF_UNLOCK(bp);
1481 		return;
1482 	}
1483 
1484 	mtx_lock(&bqlock);
1485 	/* Handle delayed bremfree() processing. */
1486 	if (bp->b_flags & B_REMFREE)
1487 		bremfreel(bp);
1488 	if (bp->b_qindex != QUEUE_NONE)
1489 		panic("bqrelse: free buffer onto another queue???");
1490 	/* buffers with stale but valid contents */
1491 	if (bp->b_flags & B_DELWRI) {
1492 		if (bp->b_flags & B_NEEDSGIANT)
1493 			bp->b_qindex = QUEUE_DIRTY_GIANT;
1494 		else
1495 			bp->b_qindex = QUEUE_DIRTY;
1496 		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1497 	} else {
1498 		/*
1499 		 * The locking of the BO_LOCK for checking of the
1500 		 * BV_BKGRDINPROG is not necessary since the
1501 		 * BV_BKGRDINPROG cannot be set while we hold the buf
1502 		 * lock, it can only be cleared if it is already
1503 		 * pending.
1504 		 */
1505 		if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1506 			bp->b_qindex = QUEUE_CLEAN;
1507 			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1508 			    b_freelist);
1509 		} else {
1510 			/*
1511 			 * We are too low on memory, we have to try to free
1512 			 * the buffer (most importantly: the wired pages
1513 			 * making up its backing store) *now*.
1514 			 */
1515 			mtx_unlock(&bqlock);
1516 			brelse(bp);
1517 			return;
1518 		}
1519 	}
1520 	mtx_unlock(&bqlock);
1521 
1522 	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1523 		bufcountwakeup();
1524 
1525 	/*
1526 	 * Something we can maybe free or reuse.
1527 	 */
1528 	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1529 		bufspacewakeup();
1530 
1531 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1532 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1533 		panic("bqrelse: not dirty");
1534 	/* unlock */
1535 	BUF_UNLOCK(bp);
1536 }
1537 
1538 /* Give pages used by the bp back to the VM system (where possible) */
1539 static void
1540 vfs_vmio_release(struct buf *bp)
1541 {
1542 	int i;
1543 	vm_page_t m;
1544 
1545 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1546 	vm_page_lock_queues();
1547 	for (i = 0; i < bp->b_npages; i++) {
1548 		m = bp->b_pages[i];
1549 		bp->b_pages[i] = NULL;
1550 		/*
1551 		 * In order to keep page LRU ordering consistent, put
1552 		 * everything on the inactive queue.
1553 		 */
1554 		vm_page_unwire(m, 0);
1555 		/*
1556 		 * We don't mess with busy pages, it is
1557 		 * the responsibility of the process that
1558 		 * busied the pages to deal with them.
1559 		 */
1560 		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1561 			continue;
1562 
1563 		if (m->wire_count == 0) {
1564 			/*
1565 			 * Might as well free the page if we can and it has
1566 			 * no valid data.  We also free the page if the
1567 			 * buffer was used for direct I/O
1568 			 */
1569 			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1570 			    m->hold_count == 0) {
1571 				vm_page_free(m);
1572 			} else if (bp->b_flags & B_DIRECT) {
1573 				vm_page_try_to_free(m);
1574 			} else if (vm_page_count_severe()) {
1575 				vm_page_try_to_cache(m);
1576 			}
1577 		}
1578 	}
1579 	vm_page_unlock_queues();
1580 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1581 	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1582 
1583 	if (bp->b_bufsize) {
1584 		bufspacewakeup();
1585 		bp->b_bufsize = 0;
1586 	}
1587 	bp->b_npages = 0;
1588 	bp->b_flags &= ~B_VMIO;
1589 	if (bp->b_vp)
1590 		brelvp(bp);
1591 }
1592 
1593 /*
1594  * Check to see if a block at a particular lbn is available for a clustered
1595  * write.
1596  */
1597 static int
1598 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1599 {
1600 	struct buf *bpa;
1601 	int match;
1602 
1603 	match = 0;
1604 
1605 	/* If the buf isn't in core skip it */
1606 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1607 		return (0);
1608 
1609 	/* If the buf is busy we don't want to wait for it */
1610 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1611 		return (0);
1612 
1613 	/* Only cluster with valid clusterable delayed write buffers */
1614 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1615 	    (B_DELWRI | B_CLUSTEROK))
1616 		goto done;
1617 
1618 	if (bpa->b_bufsize != size)
1619 		goto done;
1620 
1621 	/*
1622 	 * Check to see if it is in the expected place on disk and that the
1623 	 * block has been mapped.
1624 	 */
1625 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1626 		match = 1;
1627 done:
1628 	BUF_UNLOCK(bpa);
1629 	return (match);
1630 }
1631 
1632 /*
1633  *	vfs_bio_awrite:
1634  *
1635  *	Implement clustered async writes for clearing out B_DELWRI buffers.
1636  *	This is much better then the old way of writing only one buffer at
1637  *	a time.  Note that we may not be presented with the buffers in the
1638  *	correct order, so we search for the cluster in both directions.
1639  */
1640 int
1641 vfs_bio_awrite(struct buf *bp)
1642 {
1643 	struct bufobj *bo;
1644 	int i;
1645 	int j;
1646 	daddr_t lblkno = bp->b_lblkno;
1647 	struct vnode *vp = bp->b_vp;
1648 	int ncl;
1649 	int nwritten;
1650 	int size;
1651 	int maxcl;
1652 
1653 	bo = &vp->v_bufobj;
1654 	/*
1655 	 * right now we support clustered writing only to regular files.  If
1656 	 * we find a clusterable block we could be in the middle of a cluster
1657 	 * rather then at the beginning.
1658 	 */
1659 	if ((vp->v_type == VREG) &&
1660 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1661 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1662 
1663 		size = vp->v_mount->mnt_stat.f_iosize;
1664 		maxcl = MAXPHYS / size;
1665 
1666 		BO_LOCK(bo);
1667 		for (i = 1; i < maxcl; i++)
1668 			if (vfs_bio_clcheck(vp, size, lblkno + i,
1669 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1670 				break;
1671 
1672 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1673 			if (vfs_bio_clcheck(vp, size, lblkno - j,
1674 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1675 				break;
1676 		BO_UNLOCK(bo);
1677 		--j;
1678 		ncl = i + j;
1679 		/*
1680 		 * this is a possible cluster write
1681 		 */
1682 		if (ncl != 1) {
1683 			BUF_UNLOCK(bp);
1684 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1685 			return nwritten;
1686 		}
1687 	}
1688 	bremfree(bp);
1689 	bp->b_flags |= B_ASYNC;
1690 	/*
1691 	 * default (old) behavior, writing out only one block
1692 	 *
1693 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1694 	 */
1695 	nwritten = bp->b_bufsize;
1696 	(void) bwrite(bp);
1697 
1698 	return nwritten;
1699 }
1700 
1701 /*
1702  *	getnewbuf:
1703  *
1704  *	Find and initialize a new buffer header, freeing up existing buffers
1705  *	in the bufqueues as necessary.  The new buffer is returned locked.
1706  *
1707  *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1708  *	buffer away, the caller must set B_INVAL prior to calling brelse().
1709  *
1710  *	We block if:
1711  *		We have insufficient buffer headers
1712  *		We have insufficient buffer space
1713  *		buffer_map is too fragmented ( space reservation fails )
1714  *		If we have to flush dirty buffers ( but we try to avoid this )
1715  *
1716  *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1717  *	Instead we ask the buf daemon to do it for us.  We attempt to
1718  *	avoid piecemeal wakeups of the pageout daemon.
1719  */
1720 
1721 static struct buf *
1722 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1723     int gbflags)
1724 {
1725 	struct thread *td;
1726 	struct buf *bp;
1727 	struct buf *nbp;
1728 	int defrag = 0;
1729 	int nqindex;
1730 	static int flushingbufs;
1731 
1732 	td = curthread;
1733 	/*
1734 	 * We can't afford to block since we might be holding a vnode lock,
1735 	 * which may prevent system daemons from running.  We deal with
1736 	 * low-memory situations by proactively returning memory and running
1737 	 * async I/O rather then sync I/O.
1738 	 */
1739 	atomic_add_int(&getnewbufcalls, 1);
1740 	atomic_subtract_int(&getnewbufrestarts, 1);
1741 restart:
1742 	atomic_add_int(&getnewbufrestarts, 1);
1743 
1744 	/*
1745 	 * Setup for scan.  If we do not have enough free buffers,
1746 	 * we setup a degenerate case that immediately fails.  Note
1747 	 * that if we are specially marked process, we are allowed to
1748 	 * dip into our reserves.
1749 	 *
1750 	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1751 	 *
1752 	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1753 	 * However, there are a number of cases (defragging, reusing, ...)
1754 	 * where we cannot backup.
1755 	 */
1756 	mtx_lock(&bqlock);
1757 	nqindex = QUEUE_EMPTYKVA;
1758 	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1759 
1760 	if (nbp == NULL) {
1761 		/*
1762 		 * If no EMPTYKVA buffers and we are either
1763 		 * defragging or reusing, locate a CLEAN buffer
1764 		 * to free or reuse.  If bufspace useage is low
1765 		 * skip this step so we can allocate a new buffer.
1766 		 */
1767 		if (defrag || bufspace >= lobufspace) {
1768 			nqindex = QUEUE_CLEAN;
1769 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1770 		}
1771 
1772 		/*
1773 		 * If we could not find or were not allowed to reuse a
1774 		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1775 		 * buffer.  We can only use an EMPTY buffer if allocating
1776 		 * its KVA would not otherwise run us out of buffer space.
1777 		 */
1778 		if (nbp == NULL && defrag == 0 &&
1779 		    bufspace + maxsize < hibufspace) {
1780 			nqindex = QUEUE_EMPTY;
1781 			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1782 		}
1783 	}
1784 
1785 	/*
1786 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1787 	 * depending.
1788 	 */
1789 
1790 	while ((bp = nbp) != NULL) {
1791 		int qindex = nqindex;
1792 
1793 		/*
1794 		 * Calculate next bp ( we can only use it if we do not block
1795 		 * or do other fancy things ).
1796 		 */
1797 		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1798 			switch(qindex) {
1799 			case QUEUE_EMPTY:
1800 				nqindex = QUEUE_EMPTYKVA;
1801 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1802 					break;
1803 				/* FALLTHROUGH */
1804 			case QUEUE_EMPTYKVA:
1805 				nqindex = QUEUE_CLEAN;
1806 				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1807 					break;
1808 				/* FALLTHROUGH */
1809 			case QUEUE_CLEAN:
1810 				/*
1811 				 * nbp is NULL.
1812 				 */
1813 				break;
1814 			}
1815 		}
1816 		/*
1817 		 * If we are defragging then we need a buffer with
1818 		 * b_kvasize != 0.  XXX this situation should no longer
1819 		 * occur, if defrag is non-zero the buffer's b_kvasize
1820 		 * should also be non-zero at this point.  XXX
1821 		 */
1822 		if (defrag && bp->b_kvasize == 0) {
1823 			printf("Warning: defrag empty buffer %p\n", bp);
1824 			continue;
1825 		}
1826 
1827 		/*
1828 		 * Start freeing the bp.  This is somewhat involved.  nbp
1829 		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1830 		 */
1831 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1832 			continue;
1833 		if (bp->b_vp) {
1834 			BO_LOCK(bp->b_bufobj);
1835 			if (bp->b_vflags & BV_BKGRDINPROG) {
1836 				BO_UNLOCK(bp->b_bufobj);
1837 				BUF_UNLOCK(bp);
1838 				continue;
1839 			}
1840 			BO_UNLOCK(bp->b_bufobj);
1841 		}
1842 		CTR6(KTR_BUF,
1843 		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1844 		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1845 		    bp->b_kvasize, bp->b_bufsize, qindex);
1846 
1847 		/*
1848 		 * Sanity Checks
1849 		 */
1850 		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1851 
1852 		/*
1853 		 * Note: we no longer distinguish between VMIO and non-VMIO
1854 		 * buffers.
1855 		 */
1856 
1857 		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1858 
1859 		bremfreel(bp);
1860 		mtx_unlock(&bqlock);
1861 
1862 		if (qindex == QUEUE_CLEAN) {
1863 			if (bp->b_flags & B_VMIO) {
1864 				bp->b_flags &= ~B_ASYNC;
1865 				vfs_vmio_release(bp);
1866 			}
1867 			if (bp->b_vp)
1868 				brelvp(bp);
1869 		}
1870 
1871 		/*
1872 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1873 		 * the scan from this point on.
1874 		 *
1875 		 * Get the rest of the buffer freed up.  b_kva* is still
1876 		 * valid after this operation.
1877 		 */
1878 
1879 		if (bp->b_rcred != NOCRED) {
1880 			crfree(bp->b_rcred);
1881 			bp->b_rcred = NOCRED;
1882 		}
1883 		if (bp->b_wcred != NOCRED) {
1884 			crfree(bp->b_wcred);
1885 			bp->b_wcred = NOCRED;
1886 		}
1887 		if (!LIST_EMPTY(&bp->b_dep))
1888 			buf_deallocate(bp);
1889 		if (bp->b_vflags & BV_BKGRDINPROG)
1890 			panic("losing buffer 3");
1891 		KASSERT(bp->b_vp == NULL,
1892 		    ("bp: %p still has vnode %p.  qindex: %d",
1893 		    bp, bp->b_vp, qindex));
1894 		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1895 		   ("bp: %p still on a buffer list. xflags %X",
1896 		    bp, bp->b_xflags));
1897 
1898 		if (bp->b_bufsize)
1899 			allocbuf(bp, 0);
1900 
1901 		bp->b_flags = 0;
1902 		bp->b_ioflags = 0;
1903 		bp->b_xflags = 0;
1904 		bp->b_vflags = 0;
1905 		bp->b_vp = NULL;
1906 		bp->b_blkno = bp->b_lblkno = 0;
1907 		bp->b_offset = NOOFFSET;
1908 		bp->b_iodone = 0;
1909 		bp->b_error = 0;
1910 		bp->b_resid = 0;
1911 		bp->b_bcount = 0;
1912 		bp->b_npages = 0;
1913 		bp->b_dirtyoff = bp->b_dirtyend = 0;
1914 		bp->b_bufobj = NULL;
1915 		bp->b_pin_count = 0;
1916 		bp->b_fsprivate1 = NULL;
1917 		bp->b_fsprivate2 = NULL;
1918 		bp->b_fsprivate3 = NULL;
1919 
1920 		LIST_INIT(&bp->b_dep);
1921 
1922 		/*
1923 		 * If we are defragging then free the buffer.
1924 		 */
1925 		if (defrag) {
1926 			bp->b_flags |= B_INVAL;
1927 			bfreekva(bp);
1928 			brelse(bp);
1929 			defrag = 0;
1930 			goto restart;
1931 		}
1932 
1933 		/*
1934 		 * Notify any waiters for the buffer lock about
1935 		 * identity change by freeing the buffer.
1936 		 */
1937 		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1938 			bp->b_flags |= B_INVAL;
1939 			bfreekva(bp);
1940 			brelse(bp);
1941 			goto restart;
1942 		}
1943 
1944 		/*
1945 		 * If we are overcomitted then recover the buffer and its
1946 		 * KVM space.  This occurs in rare situations when multiple
1947 		 * processes are blocked in getnewbuf() or allocbuf().
1948 		 */
1949 		if (bufspace >= hibufspace)
1950 			flushingbufs = 1;
1951 		if (flushingbufs && bp->b_kvasize != 0) {
1952 			bp->b_flags |= B_INVAL;
1953 			bfreekva(bp);
1954 			brelse(bp);
1955 			goto restart;
1956 		}
1957 		if (bufspace < lobufspace)
1958 			flushingbufs = 0;
1959 		break;
1960 	}
1961 
1962 	/*
1963 	 * If we exhausted our list, sleep as appropriate.  We may have to
1964 	 * wakeup various daemons and write out some dirty buffers.
1965 	 *
1966 	 * Generally we are sleeping due to insufficient buffer space.
1967 	 */
1968 
1969 	if (bp == NULL) {
1970 		int flags, norunbuf;
1971 		char *waitmsg;
1972 		int fl;
1973 
1974 		if (defrag) {
1975 			flags = VFS_BIO_NEED_BUFSPACE;
1976 			waitmsg = "nbufkv";
1977 		} else if (bufspace >= hibufspace) {
1978 			waitmsg = "nbufbs";
1979 			flags = VFS_BIO_NEED_BUFSPACE;
1980 		} else {
1981 			waitmsg = "newbuf";
1982 			flags = VFS_BIO_NEED_ANY;
1983 		}
1984 		mtx_lock(&nblock);
1985 		needsbuffer |= flags;
1986 		mtx_unlock(&nblock);
1987 		mtx_unlock(&bqlock);
1988 
1989 		bd_speedup();	/* heeeelp */
1990 		if (gbflags & GB_NOWAIT_BD)
1991 			return (NULL);
1992 
1993 		mtx_lock(&nblock);
1994 		while (needsbuffer & flags) {
1995 			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
1996 				mtx_unlock(&nblock);
1997 				/*
1998 				 * getblk() is called with a vnode
1999 				 * locked, and some majority of the
2000 				 * dirty buffers may as well belong to
2001 				 * the vnode. Flushing the buffers
2002 				 * there would make a progress that
2003 				 * cannot be achieved by the
2004 				 * buf_daemon, that cannot lock the
2005 				 * vnode.
2006 				 */
2007 				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2008 				    (td->td_pflags & TDP_NORUNNINGBUF);
2009 				/* play bufdaemon */
2010 				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2011 				fl = buf_do_flush(vp);
2012 				td->td_pflags &= norunbuf;
2013 				mtx_lock(&nblock);
2014 				if (fl != 0)
2015 					continue;
2016 				if ((needsbuffer & flags) == 0)
2017 					break;
2018 			}
2019 			if (msleep(&needsbuffer, &nblock,
2020 			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2021 				mtx_unlock(&nblock);
2022 				return (NULL);
2023 			}
2024 		}
2025 		mtx_unlock(&nblock);
2026 	} else {
2027 		/*
2028 		 * We finally have a valid bp.  We aren't quite out of the
2029 		 * woods, we still have to reserve kva space.  In order
2030 		 * to keep fragmentation sane we only allocate kva in
2031 		 * BKVASIZE chunks.
2032 		 */
2033 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2034 
2035 		if (maxsize != bp->b_kvasize) {
2036 			vm_offset_t addr = 0;
2037 
2038 			bfreekva(bp);
2039 
2040 			vm_map_lock(buffer_map);
2041 			if (vm_map_findspace(buffer_map,
2042 				vm_map_min(buffer_map), maxsize, &addr)) {
2043 				/*
2044 				 * Uh oh.  Buffer map is to fragmented.  We
2045 				 * must defragment the map.
2046 				 */
2047 				atomic_add_int(&bufdefragcnt, 1);
2048 				vm_map_unlock(buffer_map);
2049 				defrag = 1;
2050 				bp->b_flags |= B_INVAL;
2051 				brelse(bp);
2052 				goto restart;
2053 			}
2054 			if (addr) {
2055 				vm_map_insert(buffer_map, NULL, 0,
2056 					addr, addr + maxsize,
2057 					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2058 
2059 				bp->b_kvabase = (caddr_t) addr;
2060 				bp->b_kvasize = maxsize;
2061 				atomic_add_long(&bufspace, bp->b_kvasize);
2062 				atomic_add_int(&bufreusecnt, 1);
2063 			}
2064 			vm_map_unlock(buffer_map);
2065 		}
2066 		bp->b_saveaddr = bp->b_kvabase;
2067 		bp->b_data = bp->b_saveaddr;
2068 	}
2069 	return(bp);
2070 }
2071 
2072 /*
2073  *	buf_daemon:
2074  *
2075  *	buffer flushing daemon.  Buffers are normally flushed by the
2076  *	update daemon but if it cannot keep up this process starts to
2077  *	take the load in an attempt to prevent getnewbuf() from blocking.
2078  */
2079 
2080 static struct kproc_desc buf_kp = {
2081 	"bufdaemon",
2082 	buf_daemon,
2083 	&bufdaemonproc
2084 };
2085 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2086 
2087 static int
2088 buf_do_flush(struct vnode *vp)
2089 {
2090 	int flushed;
2091 
2092 	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2093 	/* The list empty check here is slightly racy */
2094 	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2095 		mtx_lock(&Giant);
2096 		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2097 		mtx_unlock(&Giant);
2098 	}
2099 	if (flushed == 0) {
2100 		/*
2101 		 * Could not find any buffers without rollback
2102 		 * dependencies, so just write the first one
2103 		 * in the hopes of eventually making progress.
2104 		 */
2105 		flushbufqueues(vp, QUEUE_DIRTY, 1);
2106 		if (!TAILQ_EMPTY(
2107 			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2108 			mtx_lock(&Giant);
2109 			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2110 			mtx_unlock(&Giant);
2111 		}
2112 	}
2113 	return (flushed);
2114 }
2115 
2116 static void
2117 buf_daemon()
2118 {
2119 
2120 	/*
2121 	 * This process needs to be suspended prior to shutdown sync.
2122 	 */
2123 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2124 	    SHUTDOWN_PRI_LAST);
2125 
2126 	/*
2127 	 * This process is allowed to take the buffer cache to the limit
2128 	 */
2129 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2130 	mtx_lock(&bdlock);
2131 	for (;;) {
2132 		bd_request = 0;
2133 		mtx_unlock(&bdlock);
2134 
2135 		kproc_suspend_check(bufdaemonproc);
2136 
2137 		/*
2138 		 * Do the flush.  Limit the amount of in-transit I/O we
2139 		 * allow to build up, otherwise we would completely saturate
2140 		 * the I/O system.  Wakeup any waiting processes before we
2141 		 * normally would so they can run in parallel with our drain.
2142 		 */
2143 		while (numdirtybuffers > lodirtybuffers) {
2144 			if (buf_do_flush(NULL) == 0)
2145 				break;
2146 			uio_yield();
2147 		}
2148 
2149 		/*
2150 		 * Only clear bd_request if we have reached our low water
2151 		 * mark.  The buf_daemon normally waits 1 second and
2152 		 * then incrementally flushes any dirty buffers that have
2153 		 * built up, within reason.
2154 		 *
2155 		 * If we were unable to hit our low water mark and couldn't
2156 		 * find any flushable buffers, we sleep half a second.
2157 		 * Otherwise we loop immediately.
2158 		 */
2159 		mtx_lock(&bdlock);
2160 		if (numdirtybuffers <= lodirtybuffers) {
2161 			/*
2162 			 * We reached our low water mark, reset the
2163 			 * request and sleep until we are needed again.
2164 			 * The sleep is just so the suspend code works.
2165 			 */
2166 			bd_request = 0;
2167 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2168 		} else {
2169 			/*
2170 			 * We couldn't find any flushable dirty buffers but
2171 			 * still have too many dirty buffers, we
2172 			 * have to sleep and try again.  (rare)
2173 			 */
2174 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2175 		}
2176 	}
2177 }
2178 
2179 /*
2180  *	flushbufqueues:
2181  *
2182  *	Try to flush a buffer in the dirty queue.  We must be careful to
2183  *	free up B_INVAL buffers instead of write them, which NFS is
2184  *	particularly sensitive to.
2185  */
2186 static int flushwithdeps = 0;
2187 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2188     0, "Number of buffers flushed with dependecies that require rollbacks");
2189 
2190 static int
2191 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2192 {
2193 	struct buf *sentinel;
2194 	struct vnode *vp;
2195 	struct mount *mp;
2196 	struct buf *bp;
2197 	int hasdeps;
2198 	int flushed;
2199 	int target;
2200 
2201 	if (lvp == NULL) {
2202 		target = numdirtybuffers - lodirtybuffers;
2203 		if (flushdeps && target > 2)
2204 			target /= 2;
2205 	} else
2206 		target = flushbufqtarget;
2207 	flushed = 0;
2208 	bp = NULL;
2209 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2210 	sentinel->b_qindex = QUEUE_SENTINEL;
2211 	mtx_lock(&bqlock);
2212 	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2213 	while (flushed != target) {
2214 		bp = TAILQ_NEXT(sentinel, b_freelist);
2215 		if (bp != NULL) {
2216 			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2217 			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2218 			    b_freelist);
2219 		} else
2220 			break;
2221 		/*
2222 		 * Skip sentinels inserted by other invocations of the
2223 		 * flushbufqueues(), taking care to not reorder them.
2224 		 */
2225 		if (bp->b_qindex == QUEUE_SENTINEL)
2226 			continue;
2227 		/*
2228 		 * Only flush the buffers that belong to the
2229 		 * vnode locked by the curthread.
2230 		 */
2231 		if (lvp != NULL && bp->b_vp != lvp)
2232 			continue;
2233 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2234 			continue;
2235 		if (bp->b_pin_count > 0) {
2236 			BUF_UNLOCK(bp);
2237 			continue;
2238 		}
2239 		BO_LOCK(bp->b_bufobj);
2240 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2241 		    (bp->b_flags & B_DELWRI) == 0) {
2242 			BO_UNLOCK(bp->b_bufobj);
2243 			BUF_UNLOCK(bp);
2244 			continue;
2245 		}
2246 		BO_UNLOCK(bp->b_bufobj);
2247 		if (bp->b_flags & B_INVAL) {
2248 			bremfreel(bp);
2249 			mtx_unlock(&bqlock);
2250 			brelse(bp);
2251 			flushed++;
2252 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2253 			mtx_lock(&bqlock);
2254 			continue;
2255 		}
2256 
2257 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2258 			if (flushdeps == 0) {
2259 				BUF_UNLOCK(bp);
2260 				continue;
2261 			}
2262 			hasdeps = 1;
2263 		} else
2264 			hasdeps = 0;
2265 		/*
2266 		 * We must hold the lock on a vnode before writing
2267 		 * one of its buffers. Otherwise we may confuse, or
2268 		 * in the case of a snapshot vnode, deadlock the
2269 		 * system.
2270 		 *
2271 		 * The lock order here is the reverse of the normal
2272 		 * of vnode followed by buf lock.  This is ok because
2273 		 * the NOWAIT will prevent deadlock.
2274 		 */
2275 		vp = bp->b_vp;
2276 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2277 			BUF_UNLOCK(bp);
2278 			continue;
2279 		}
2280 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2281 			mtx_unlock(&bqlock);
2282 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2283 			    bp, bp->b_vp, bp->b_flags);
2284 			if (curproc == bufdaemonproc)
2285 				vfs_bio_awrite(bp);
2286 			else {
2287 				bremfree(bp);
2288 				bwrite(bp);
2289 				notbufdflashes++;
2290 			}
2291 			vn_finished_write(mp);
2292 			VOP_UNLOCK(vp, 0);
2293 			flushwithdeps += hasdeps;
2294 			flushed++;
2295 
2296 			/*
2297 			 * Sleeping on runningbufspace while holding
2298 			 * vnode lock leads to deadlock.
2299 			 */
2300 			if (curproc == bufdaemonproc)
2301 				waitrunningbufspace();
2302 			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2303 			mtx_lock(&bqlock);
2304 			continue;
2305 		}
2306 		vn_finished_write(mp);
2307 		BUF_UNLOCK(bp);
2308 	}
2309 	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2310 	mtx_unlock(&bqlock);
2311 	free(sentinel, M_TEMP);
2312 	return (flushed);
2313 }
2314 
2315 /*
2316  * Check to see if a block is currently memory resident.
2317  */
2318 struct buf *
2319 incore(struct bufobj *bo, daddr_t blkno)
2320 {
2321 	struct buf *bp;
2322 
2323 	BO_LOCK(bo);
2324 	bp = gbincore(bo, blkno);
2325 	BO_UNLOCK(bo);
2326 	return (bp);
2327 }
2328 
2329 /*
2330  * Returns true if no I/O is needed to access the
2331  * associated VM object.  This is like incore except
2332  * it also hunts around in the VM system for the data.
2333  */
2334 
2335 static int
2336 inmem(struct vnode * vp, daddr_t blkno)
2337 {
2338 	vm_object_t obj;
2339 	vm_offset_t toff, tinc, size;
2340 	vm_page_t m;
2341 	vm_ooffset_t off;
2342 
2343 	ASSERT_VOP_LOCKED(vp, "inmem");
2344 
2345 	if (incore(&vp->v_bufobj, blkno))
2346 		return 1;
2347 	if (vp->v_mount == NULL)
2348 		return 0;
2349 	obj = vp->v_object;
2350 	if (obj == NULL)
2351 		return (0);
2352 
2353 	size = PAGE_SIZE;
2354 	if (size > vp->v_mount->mnt_stat.f_iosize)
2355 		size = vp->v_mount->mnt_stat.f_iosize;
2356 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2357 
2358 	VM_OBJECT_LOCK(obj);
2359 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2360 		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2361 		if (!m)
2362 			goto notinmem;
2363 		tinc = size;
2364 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2365 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2366 		if (vm_page_is_valid(m,
2367 		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2368 			goto notinmem;
2369 	}
2370 	VM_OBJECT_UNLOCK(obj);
2371 	return 1;
2372 
2373 notinmem:
2374 	VM_OBJECT_UNLOCK(obj);
2375 	return (0);
2376 }
2377 
2378 /*
2379  *	vfs_setdirty:
2380  *
2381  *	Sets the dirty range for a buffer based on the status of the dirty
2382  *	bits in the pages comprising the buffer.
2383  *
2384  *	The range is limited to the size of the buffer.
2385  *
2386  *	This routine is primarily used by NFS, but is generalized for the
2387  *	B_VMIO case.
2388  */
2389 static void
2390 vfs_setdirty(struct buf *bp)
2391 {
2392 
2393 	/*
2394 	 * Degenerate case - empty buffer
2395 	 */
2396 
2397 	if (bp->b_bufsize == 0)
2398 		return;
2399 
2400 	/*
2401 	 * We qualify the scan for modified pages on whether the
2402 	 * object has been flushed yet.
2403 	 */
2404 
2405 	if ((bp->b_flags & B_VMIO) == 0)
2406 		return;
2407 
2408 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2409 	vfs_setdirty_locked_object(bp);
2410 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2411 }
2412 
2413 static void
2414 vfs_setdirty_locked_object(struct buf *bp)
2415 {
2416 	vm_object_t object;
2417 	int i;
2418 
2419 	object = bp->b_bufobj->bo_object;
2420 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2421 	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2422 		vm_offset_t boffset;
2423 		vm_offset_t eoffset;
2424 
2425 		vm_page_lock_queues();
2426 		/*
2427 		 * test the pages to see if they have been modified directly
2428 		 * by users through the VM system.
2429 		 */
2430 		for (i = 0; i < bp->b_npages; i++)
2431 			vm_page_test_dirty(bp->b_pages[i]);
2432 
2433 		/*
2434 		 * Calculate the encompassing dirty range, boffset and eoffset,
2435 		 * (eoffset - boffset) bytes.
2436 		 */
2437 
2438 		for (i = 0; i < bp->b_npages; i++) {
2439 			if (bp->b_pages[i]->dirty)
2440 				break;
2441 		}
2442 		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2443 
2444 		for (i = bp->b_npages - 1; i >= 0; --i) {
2445 			if (bp->b_pages[i]->dirty) {
2446 				break;
2447 			}
2448 		}
2449 		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2450 
2451 		vm_page_unlock_queues();
2452 		/*
2453 		 * Fit it to the buffer.
2454 		 */
2455 
2456 		if (eoffset > bp->b_bcount)
2457 			eoffset = bp->b_bcount;
2458 
2459 		/*
2460 		 * If we have a good dirty range, merge with the existing
2461 		 * dirty range.
2462 		 */
2463 
2464 		if (boffset < eoffset) {
2465 			if (bp->b_dirtyoff > boffset)
2466 				bp->b_dirtyoff = boffset;
2467 			if (bp->b_dirtyend < eoffset)
2468 				bp->b_dirtyend = eoffset;
2469 		}
2470 	}
2471 }
2472 
2473 /*
2474  *	getblk:
2475  *
2476  *	Get a block given a specified block and offset into a file/device.
2477  *	The buffers B_DONE bit will be cleared on return, making it almost
2478  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2479  *	return.  The caller should clear B_INVAL prior to initiating a
2480  *	READ.
2481  *
2482  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2483  *	an existing buffer.
2484  *
2485  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2486  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2487  *	and then cleared based on the backing VM.  If the previous buffer is
2488  *	non-0-sized but invalid, B_CACHE will be cleared.
2489  *
2490  *	If getblk() must create a new buffer, the new buffer is returned with
2491  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2492  *	case it is returned with B_INVAL clear and B_CACHE set based on the
2493  *	backing VM.
2494  *
2495  *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2496  *	B_CACHE bit is clear.
2497  *
2498  *	What this means, basically, is that the caller should use B_CACHE to
2499  *	determine whether the buffer is fully valid or not and should clear
2500  *	B_INVAL prior to issuing a read.  If the caller intends to validate
2501  *	the buffer by loading its data area with something, the caller needs
2502  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2503  *	the caller should set B_CACHE ( as an optimization ), else the caller
2504  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2505  *	a write attempt or if it was a successfull read.  If the caller
2506  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2507  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2508  */
2509 struct buf *
2510 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2511     int flags)
2512 {
2513 	struct buf *bp;
2514 	struct bufobj *bo;
2515 	int error;
2516 
2517 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2518 	ASSERT_VOP_LOCKED(vp, "getblk");
2519 	if (size > MAXBSIZE)
2520 		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2521 
2522 	bo = &vp->v_bufobj;
2523 loop:
2524 	/*
2525 	 * Block if we are low on buffers.   Certain processes are allowed
2526 	 * to completely exhaust the buffer cache.
2527          *
2528          * If this check ever becomes a bottleneck it may be better to
2529          * move it into the else, when gbincore() fails.  At the moment
2530          * it isn't a problem.
2531 	 *
2532 	 * XXX remove if 0 sections (clean this up after its proven)
2533          */
2534 	if (numfreebuffers == 0) {
2535 		if (TD_IS_IDLETHREAD(curthread))
2536 			return NULL;
2537 		mtx_lock(&nblock);
2538 		needsbuffer |= VFS_BIO_NEED_ANY;
2539 		mtx_unlock(&nblock);
2540 	}
2541 
2542 	BO_LOCK(bo);
2543 	bp = gbincore(bo, blkno);
2544 	if (bp != NULL) {
2545 		int lockflags;
2546 		/*
2547 		 * Buffer is in-core.  If the buffer is not busy, it must
2548 		 * be on a queue.
2549 		 */
2550 		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2551 
2552 		if (flags & GB_LOCK_NOWAIT)
2553 			lockflags |= LK_NOWAIT;
2554 
2555 		error = BUF_TIMELOCK(bp, lockflags,
2556 		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2557 
2558 		/*
2559 		 * If we slept and got the lock we have to restart in case
2560 		 * the buffer changed identities.
2561 		 */
2562 		if (error == ENOLCK)
2563 			goto loop;
2564 		/* We timed out or were interrupted. */
2565 		else if (error)
2566 			return (NULL);
2567 
2568 		/*
2569 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2570 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2571 		 * and for a VMIO buffer B_CACHE is adjusted according to the
2572 		 * backing VM cache.
2573 		 */
2574 		if (bp->b_flags & B_INVAL)
2575 			bp->b_flags &= ~B_CACHE;
2576 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2577 			bp->b_flags |= B_CACHE;
2578 		bremfree(bp);
2579 
2580 		/*
2581 		 * check for size inconsistancies for non-VMIO case.
2582 		 */
2583 
2584 		if (bp->b_bcount != size) {
2585 			if ((bp->b_flags & B_VMIO) == 0 ||
2586 			    (size > bp->b_kvasize)) {
2587 				if (bp->b_flags & B_DELWRI) {
2588 					/*
2589 					 * If buffer is pinned and caller does
2590 					 * not want sleep  waiting for it to be
2591 					 * unpinned, bail out
2592 					 * */
2593 					if (bp->b_pin_count > 0) {
2594 						if (flags & GB_LOCK_NOWAIT) {
2595 							bqrelse(bp);
2596 							return (NULL);
2597 						} else {
2598 							bunpin_wait(bp);
2599 						}
2600 					}
2601 					bp->b_flags |= B_NOCACHE;
2602 					bwrite(bp);
2603 				} else {
2604 					if (LIST_EMPTY(&bp->b_dep)) {
2605 						bp->b_flags |= B_RELBUF;
2606 						brelse(bp);
2607 					} else {
2608 						bp->b_flags |= B_NOCACHE;
2609 						bwrite(bp);
2610 					}
2611 				}
2612 				goto loop;
2613 			}
2614 		}
2615 
2616 		/*
2617 		 * If the size is inconsistant in the VMIO case, we can resize
2618 		 * the buffer.  This might lead to B_CACHE getting set or
2619 		 * cleared.  If the size has not changed, B_CACHE remains
2620 		 * unchanged from its previous state.
2621 		 */
2622 
2623 		if (bp->b_bcount != size)
2624 			allocbuf(bp, size);
2625 
2626 		KASSERT(bp->b_offset != NOOFFSET,
2627 		    ("getblk: no buffer offset"));
2628 
2629 		/*
2630 		 * A buffer with B_DELWRI set and B_CACHE clear must
2631 		 * be committed before we can return the buffer in
2632 		 * order to prevent the caller from issuing a read
2633 		 * ( due to B_CACHE not being set ) and overwriting
2634 		 * it.
2635 		 *
2636 		 * Most callers, including NFS and FFS, need this to
2637 		 * operate properly either because they assume they
2638 		 * can issue a read if B_CACHE is not set, or because
2639 		 * ( for example ) an uncached B_DELWRI might loop due
2640 		 * to softupdates re-dirtying the buffer.  In the latter
2641 		 * case, B_CACHE is set after the first write completes,
2642 		 * preventing further loops.
2643 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2644 		 * above while extending the buffer, we cannot allow the
2645 		 * buffer to remain with B_CACHE set after the write
2646 		 * completes or it will represent a corrupt state.  To
2647 		 * deal with this we set B_NOCACHE to scrap the buffer
2648 		 * after the write.
2649 		 *
2650 		 * We might be able to do something fancy, like setting
2651 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2652 		 * so the below call doesn't set B_CACHE, but that gets real
2653 		 * confusing.  This is much easier.
2654 		 */
2655 
2656 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2657 			bp->b_flags |= B_NOCACHE;
2658 			bwrite(bp);
2659 			goto loop;
2660 		}
2661 		bp->b_flags &= ~B_DONE;
2662 	} else {
2663 		int bsize, maxsize, vmio;
2664 		off_t offset;
2665 
2666 		/*
2667 		 * Buffer is not in-core, create new buffer.  The buffer
2668 		 * returned by getnewbuf() is locked.  Note that the returned
2669 		 * buffer is also considered valid (not marked B_INVAL).
2670 		 */
2671 		BO_UNLOCK(bo);
2672 		/*
2673 		 * If the user does not want us to create the buffer, bail out
2674 		 * here.
2675 		 */
2676 		if (flags & GB_NOCREAT)
2677 			return NULL;
2678 		bsize = bo->bo_bsize;
2679 		offset = blkno * bsize;
2680 		vmio = vp->v_object != NULL;
2681 		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2682 		maxsize = imax(maxsize, bsize);
2683 
2684 		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2685 		if (bp == NULL) {
2686 			if (slpflag || slptimeo)
2687 				return NULL;
2688 			goto loop;
2689 		}
2690 
2691 		/*
2692 		 * This code is used to make sure that a buffer is not
2693 		 * created while the getnewbuf routine is blocked.
2694 		 * This can be a problem whether the vnode is locked or not.
2695 		 * If the buffer is created out from under us, we have to
2696 		 * throw away the one we just created.
2697 		 *
2698 		 * Note: this must occur before we associate the buffer
2699 		 * with the vp especially considering limitations in
2700 		 * the splay tree implementation when dealing with duplicate
2701 		 * lblkno's.
2702 		 */
2703 		BO_LOCK(bo);
2704 		if (gbincore(bo, blkno)) {
2705 			BO_UNLOCK(bo);
2706 			bp->b_flags |= B_INVAL;
2707 			brelse(bp);
2708 			goto loop;
2709 		}
2710 
2711 		/*
2712 		 * Insert the buffer into the hash, so that it can
2713 		 * be found by incore.
2714 		 */
2715 		bp->b_blkno = bp->b_lblkno = blkno;
2716 		bp->b_offset = offset;
2717 		bgetvp(vp, bp);
2718 		BO_UNLOCK(bo);
2719 
2720 		/*
2721 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2722 		 * buffer size starts out as 0, B_CACHE will be set by
2723 		 * allocbuf() for the VMIO case prior to it testing the
2724 		 * backing store for validity.
2725 		 */
2726 
2727 		if (vmio) {
2728 			bp->b_flags |= B_VMIO;
2729 #if defined(VFS_BIO_DEBUG)
2730 			if (vn_canvmio(vp) != TRUE)
2731 				printf("getblk: VMIO on vnode type %d\n",
2732 					vp->v_type);
2733 #endif
2734 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2735 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2736 			    bp, vp->v_object, bp->b_bufobj->bo_object));
2737 		} else {
2738 			bp->b_flags &= ~B_VMIO;
2739 			KASSERT(bp->b_bufobj->bo_object == NULL,
2740 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2741 			    bp, bp->b_bufobj->bo_object));
2742 		}
2743 
2744 		allocbuf(bp, size);
2745 		bp->b_flags &= ~B_DONE;
2746 	}
2747 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2748 	BUF_ASSERT_HELD(bp);
2749 	KASSERT(bp->b_bufobj == bo,
2750 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2751 	return (bp);
2752 }
2753 
2754 /*
2755  * Get an empty, disassociated buffer of given size.  The buffer is initially
2756  * set to B_INVAL.
2757  */
2758 struct buf *
2759 geteblk(int size, int flags)
2760 {
2761 	struct buf *bp;
2762 	int maxsize;
2763 
2764 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2765 	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2766 		if ((flags & GB_NOWAIT_BD) &&
2767 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2768 			return (NULL);
2769 	}
2770 	allocbuf(bp, size);
2771 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2772 	BUF_ASSERT_HELD(bp);
2773 	return (bp);
2774 }
2775 
2776 
2777 /*
2778  * This code constitutes the buffer memory from either anonymous system
2779  * memory (in the case of non-VMIO operations) or from an associated
2780  * VM object (in the case of VMIO operations).  This code is able to
2781  * resize a buffer up or down.
2782  *
2783  * Note that this code is tricky, and has many complications to resolve
2784  * deadlock or inconsistant data situations.  Tread lightly!!!
2785  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2786  * the caller.  Calling this code willy nilly can result in the loss of data.
2787  *
2788  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2789  * B_CACHE for the non-VMIO case.
2790  */
2791 
2792 int
2793 allocbuf(struct buf *bp, int size)
2794 {
2795 	int newbsize, mbsize;
2796 	int i;
2797 
2798 	BUF_ASSERT_HELD(bp);
2799 
2800 	if (bp->b_kvasize < size)
2801 		panic("allocbuf: buffer too small");
2802 
2803 	if ((bp->b_flags & B_VMIO) == 0) {
2804 		caddr_t origbuf;
2805 		int origbufsize;
2806 		/*
2807 		 * Just get anonymous memory from the kernel.  Don't
2808 		 * mess with B_CACHE.
2809 		 */
2810 		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2811 		if (bp->b_flags & B_MALLOC)
2812 			newbsize = mbsize;
2813 		else
2814 			newbsize = round_page(size);
2815 
2816 		if (newbsize < bp->b_bufsize) {
2817 			/*
2818 			 * malloced buffers are not shrunk
2819 			 */
2820 			if (bp->b_flags & B_MALLOC) {
2821 				if (newbsize) {
2822 					bp->b_bcount = size;
2823 				} else {
2824 					free(bp->b_data, M_BIOBUF);
2825 					if (bp->b_bufsize) {
2826 						atomic_subtract_long(
2827 						    &bufmallocspace,
2828 						    bp->b_bufsize);
2829 						bufspacewakeup();
2830 						bp->b_bufsize = 0;
2831 					}
2832 					bp->b_saveaddr = bp->b_kvabase;
2833 					bp->b_data = bp->b_saveaddr;
2834 					bp->b_bcount = 0;
2835 					bp->b_flags &= ~B_MALLOC;
2836 				}
2837 				return 1;
2838 			}
2839 			vm_hold_free_pages(
2840 			    bp,
2841 			    (vm_offset_t) bp->b_data + newbsize,
2842 			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2843 		} else if (newbsize > bp->b_bufsize) {
2844 			/*
2845 			 * We only use malloced memory on the first allocation.
2846 			 * and revert to page-allocated memory when the buffer
2847 			 * grows.
2848 			 */
2849 			/*
2850 			 * There is a potential smp race here that could lead
2851 			 * to bufmallocspace slightly passing the max.  It
2852 			 * is probably extremely rare and not worth worrying
2853 			 * over.
2854 			 */
2855 			if ( (bufmallocspace < maxbufmallocspace) &&
2856 				(bp->b_bufsize == 0) &&
2857 				(mbsize <= PAGE_SIZE/2)) {
2858 
2859 				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2860 				bp->b_bufsize = mbsize;
2861 				bp->b_bcount = size;
2862 				bp->b_flags |= B_MALLOC;
2863 				atomic_add_long(&bufmallocspace, mbsize);
2864 				return 1;
2865 			}
2866 			origbuf = NULL;
2867 			origbufsize = 0;
2868 			/*
2869 			 * If the buffer is growing on its other-than-first allocation,
2870 			 * then we revert to the page-allocation scheme.
2871 			 */
2872 			if (bp->b_flags & B_MALLOC) {
2873 				origbuf = bp->b_data;
2874 				origbufsize = bp->b_bufsize;
2875 				bp->b_data = bp->b_kvabase;
2876 				if (bp->b_bufsize) {
2877 					atomic_subtract_long(&bufmallocspace,
2878 					    bp->b_bufsize);
2879 					bufspacewakeup();
2880 					bp->b_bufsize = 0;
2881 				}
2882 				bp->b_flags &= ~B_MALLOC;
2883 				newbsize = round_page(newbsize);
2884 			}
2885 			vm_hold_load_pages(
2886 			    bp,
2887 			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2888 			    (vm_offset_t) bp->b_data + newbsize);
2889 			if (origbuf) {
2890 				bcopy(origbuf, bp->b_data, origbufsize);
2891 				free(origbuf, M_BIOBUF);
2892 			}
2893 		}
2894 	} else {
2895 		int desiredpages;
2896 
2897 		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2898 		desiredpages = (size == 0) ? 0 :
2899 			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2900 
2901 		if (bp->b_flags & B_MALLOC)
2902 			panic("allocbuf: VMIO buffer can't be malloced");
2903 		/*
2904 		 * Set B_CACHE initially if buffer is 0 length or will become
2905 		 * 0-length.
2906 		 */
2907 		if (size == 0 || bp->b_bufsize == 0)
2908 			bp->b_flags |= B_CACHE;
2909 
2910 		if (newbsize < bp->b_bufsize) {
2911 			/*
2912 			 * DEV_BSIZE aligned new buffer size is less then the
2913 			 * DEV_BSIZE aligned existing buffer size.  Figure out
2914 			 * if we have to remove any pages.
2915 			 */
2916 			if (desiredpages < bp->b_npages) {
2917 				vm_page_t m;
2918 
2919 				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2920 				vm_page_lock_queues();
2921 				for (i = desiredpages; i < bp->b_npages; i++) {
2922 					/*
2923 					 * the page is not freed here -- it
2924 					 * is the responsibility of
2925 					 * vnode_pager_setsize
2926 					 */
2927 					m = bp->b_pages[i];
2928 					KASSERT(m != bogus_page,
2929 					    ("allocbuf: bogus page found"));
2930 					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2931 						vm_page_lock_queues();
2932 
2933 					bp->b_pages[i] = NULL;
2934 					vm_page_unwire(m, 0);
2935 				}
2936 				vm_page_unlock_queues();
2937 				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2938 				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2939 				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2940 				bp->b_npages = desiredpages;
2941 			}
2942 		} else if (size > bp->b_bcount) {
2943 			/*
2944 			 * We are growing the buffer, possibly in a
2945 			 * byte-granular fashion.
2946 			 */
2947 			struct vnode *vp;
2948 			vm_object_t obj;
2949 			vm_offset_t toff;
2950 			vm_offset_t tinc;
2951 
2952 			/*
2953 			 * Step 1, bring in the VM pages from the object,
2954 			 * allocating them if necessary.  We must clear
2955 			 * B_CACHE if these pages are not valid for the
2956 			 * range covered by the buffer.
2957 			 */
2958 
2959 			vp = bp->b_vp;
2960 			obj = bp->b_bufobj->bo_object;
2961 
2962 			VM_OBJECT_LOCK(obj);
2963 			while (bp->b_npages < desiredpages) {
2964 				vm_page_t m;
2965 				vm_pindex_t pi;
2966 
2967 				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2968 				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2969 					/*
2970 					 * note: must allocate system pages
2971 					 * since blocking here could intefere
2972 					 * with paging I/O, no matter which
2973 					 * process we are.
2974 					 */
2975 					m = vm_page_alloc(obj, pi,
2976 					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2977 					    VM_ALLOC_WIRED);
2978 					if (m == NULL) {
2979 						atomic_add_int(&vm_pageout_deficit,
2980 						    desiredpages - bp->b_npages);
2981 						VM_OBJECT_UNLOCK(obj);
2982 						VM_WAIT;
2983 						VM_OBJECT_LOCK(obj);
2984 					} else {
2985 						if (m->valid == 0)
2986 							bp->b_flags &= ~B_CACHE;
2987 						bp->b_pages[bp->b_npages] = m;
2988 						++bp->b_npages;
2989 					}
2990 					continue;
2991 				}
2992 
2993 				/*
2994 				 * We found a page.  If we have to sleep on it,
2995 				 * retry because it might have gotten freed out
2996 				 * from under us.
2997 				 *
2998 				 * We can only test VPO_BUSY here.  Blocking on
2999 				 * m->busy might lead to a deadlock:
3000 				 *
3001 				 *  vm_fault->getpages->cluster_read->allocbuf
3002 				 *
3003 				 */
3004 				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
3005 					continue;
3006 
3007 				/*
3008 				 * We have a good page.
3009 				 */
3010 				vm_page_lock_queues();
3011 				vm_page_wire(m);
3012 				vm_page_unlock_queues();
3013 				bp->b_pages[bp->b_npages] = m;
3014 				++bp->b_npages;
3015 			}
3016 
3017 			/*
3018 			 * Step 2.  We've loaded the pages into the buffer,
3019 			 * we have to figure out if we can still have B_CACHE
3020 			 * set.  Note that B_CACHE is set according to the
3021 			 * byte-granular range ( bcount and size ), new the
3022 			 * aligned range ( newbsize ).
3023 			 *
3024 			 * The VM test is against m->valid, which is DEV_BSIZE
3025 			 * aligned.  Needless to say, the validity of the data
3026 			 * needs to also be DEV_BSIZE aligned.  Note that this
3027 			 * fails with NFS if the server or some other client
3028 			 * extends the file's EOF.  If our buffer is resized,
3029 			 * B_CACHE may remain set! XXX
3030 			 */
3031 
3032 			toff = bp->b_bcount;
3033 			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3034 
3035 			while ((bp->b_flags & B_CACHE) && toff < size) {
3036 				vm_pindex_t pi;
3037 
3038 				if (tinc > (size - toff))
3039 					tinc = size - toff;
3040 
3041 				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3042 				    PAGE_SHIFT;
3043 
3044 				vfs_buf_test_cache(
3045 				    bp,
3046 				    bp->b_offset,
3047 				    toff,
3048 				    tinc,
3049 				    bp->b_pages[pi]
3050 				);
3051 				toff += tinc;
3052 				tinc = PAGE_SIZE;
3053 			}
3054 			VM_OBJECT_UNLOCK(obj);
3055 
3056 			/*
3057 			 * Step 3, fixup the KVM pmap.  Remember that
3058 			 * bp->b_data is relative to bp->b_offset, but
3059 			 * bp->b_offset may be offset into the first page.
3060 			 */
3061 
3062 			bp->b_data = (caddr_t)
3063 			    trunc_page((vm_offset_t)bp->b_data);
3064 			pmap_qenter(
3065 			    (vm_offset_t)bp->b_data,
3066 			    bp->b_pages,
3067 			    bp->b_npages
3068 			);
3069 
3070 			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3071 			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3072 		}
3073 	}
3074 	if (newbsize < bp->b_bufsize)
3075 		bufspacewakeup();
3076 	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3077 	bp->b_bcount = size;		/* requested buffer size	*/
3078 	return 1;
3079 }
3080 
3081 void
3082 biodone(struct bio *bp)
3083 {
3084 	struct mtx *mtxp;
3085 	void (*done)(struct bio *);
3086 
3087 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3088 	mtx_lock(mtxp);
3089 	bp->bio_flags |= BIO_DONE;
3090 	done = bp->bio_done;
3091 	if (done == NULL)
3092 		wakeup(bp);
3093 	mtx_unlock(mtxp);
3094 	if (done != NULL)
3095 		done(bp);
3096 }
3097 
3098 /*
3099  * Wait for a BIO to finish.
3100  *
3101  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3102  * case is not yet clear.
3103  */
3104 int
3105 biowait(struct bio *bp, const char *wchan)
3106 {
3107 	struct mtx *mtxp;
3108 
3109 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3110 	mtx_lock(mtxp);
3111 	while ((bp->bio_flags & BIO_DONE) == 0)
3112 		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3113 	mtx_unlock(mtxp);
3114 	if (bp->bio_error != 0)
3115 		return (bp->bio_error);
3116 	if (!(bp->bio_flags & BIO_ERROR))
3117 		return (0);
3118 	return (EIO);
3119 }
3120 
3121 void
3122 biofinish(struct bio *bp, struct devstat *stat, int error)
3123 {
3124 
3125 	if (error) {
3126 		bp->bio_error = error;
3127 		bp->bio_flags |= BIO_ERROR;
3128 	}
3129 	if (stat != NULL)
3130 		devstat_end_transaction_bio(stat, bp);
3131 	biodone(bp);
3132 }
3133 
3134 /*
3135  *	bufwait:
3136  *
3137  *	Wait for buffer I/O completion, returning error status.  The buffer
3138  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3139  *	error and cleared.
3140  */
3141 int
3142 bufwait(struct buf *bp)
3143 {
3144 	if (bp->b_iocmd == BIO_READ)
3145 		bwait(bp, PRIBIO, "biord");
3146 	else
3147 		bwait(bp, PRIBIO, "biowr");
3148 	if (bp->b_flags & B_EINTR) {
3149 		bp->b_flags &= ~B_EINTR;
3150 		return (EINTR);
3151 	}
3152 	if (bp->b_ioflags & BIO_ERROR) {
3153 		return (bp->b_error ? bp->b_error : EIO);
3154 	} else {
3155 		return (0);
3156 	}
3157 }
3158 
3159  /*
3160   * Call back function from struct bio back up to struct buf.
3161   */
3162 static void
3163 bufdonebio(struct bio *bip)
3164 {
3165 	struct buf *bp;
3166 
3167 	bp = bip->bio_caller2;
3168 	bp->b_resid = bp->b_bcount - bip->bio_completed;
3169 	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3170 	bp->b_ioflags = bip->bio_flags;
3171 	bp->b_error = bip->bio_error;
3172 	if (bp->b_error)
3173 		bp->b_ioflags |= BIO_ERROR;
3174 	bufdone(bp);
3175 	g_destroy_bio(bip);
3176 }
3177 
3178 void
3179 dev_strategy(struct cdev *dev, struct buf *bp)
3180 {
3181 	struct cdevsw *csw;
3182 	struct bio *bip;
3183 
3184 	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3185 		panic("b_iocmd botch");
3186 	for (;;) {
3187 		bip = g_new_bio();
3188 		if (bip != NULL)
3189 			break;
3190 		/* Try again later */
3191 		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3192 	}
3193 	bip->bio_cmd = bp->b_iocmd;
3194 	bip->bio_offset = bp->b_iooffset;
3195 	bip->bio_length = bp->b_bcount;
3196 	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3197 	bip->bio_data = bp->b_data;
3198 	bip->bio_done = bufdonebio;
3199 	bip->bio_caller2 = bp;
3200 	bip->bio_dev = dev;
3201 	KASSERT(dev->si_refcount > 0,
3202 	    ("dev_strategy on un-referenced struct cdev *(%s)",
3203 	    devtoname(dev)));
3204 	csw = dev_refthread(dev);
3205 	if (csw == NULL) {
3206 		g_destroy_bio(bip);
3207 		bp->b_error = ENXIO;
3208 		bp->b_ioflags = BIO_ERROR;
3209 		bufdone(bp);
3210 		return;
3211 	}
3212 	(*csw->d_strategy)(bip);
3213 	dev_relthread(dev);
3214 }
3215 
3216 /*
3217  *	bufdone:
3218  *
3219  *	Finish I/O on a buffer, optionally calling a completion function.
3220  *	This is usually called from an interrupt so process blocking is
3221  *	not allowed.
3222  *
3223  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3224  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3225  *	assuming B_INVAL is clear.
3226  *
3227  *	For the VMIO case, we set B_CACHE if the op was a read and no
3228  *	read error occured, or if the op was a write.  B_CACHE is never
3229  *	set if the buffer is invalid or otherwise uncacheable.
3230  *
3231  *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3232  *	initiator to leave B_INVAL set to brelse the buffer out of existance
3233  *	in the biodone routine.
3234  */
3235 void
3236 bufdone(struct buf *bp)
3237 {
3238 	struct bufobj *dropobj;
3239 	void    (*biodone)(struct buf *);
3240 
3241 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3242 	dropobj = NULL;
3243 
3244 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3245 	BUF_ASSERT_HELD(bp);
3246 
3247 	runningbufwakeup(bp);
3248 	if (bp->b_iocmd == BIO_WRITE)
3249 		dropobj = bp->b_bufobj;
3250 	/* call optional completion function if requested */
3251 	if (bp->b_iodone != NULL) {
3252 		biodone = bp->b_iodone;
3253 		bp->b_iodone = NULL;
3254 		(*biodone) (bp);
3255 		if (dropobj)
3256 			bufobj_wdrop(dropobj);
3257 		return;
3258 	}
3259 
3260 	bufdone_finish(bp);
3261 
3262 	if (dropobj)
3263 		bufobj_wdrop(dropobj);
3264 }
3265 
3266 void
3267 bufdone_finish(struct buf *bp)
3268 {
3269 	BUF_ASSERT_HELD(bp);
3270 
3271 	if (!LIST_EMPTY(&bp->b_dep))
3272 		buf_complete(bp);
3273 
3274 	if (bp->b_flags & B_VMIO) {
3275 		int i;
3276 		vm_ooffset_t foff;
3277 		vm_page_t m;
3278 		vm_object_t obj;
3279 		int iosize;
3280 		struct vnode *vp = bp->b_vp;
3281 
3282 		obj = bp->b_bufobj->bo_object;
3283 
3284 #if defined(VFS_BIO_DEBUG)
3285 		mp_fixme("usecount and vflag accessed without locks.");
3286 		if (vp->v_usecount == 0) {
3287 			panic("biodone: zero vnode ref count");
3288 		}
3289 
3290 		KASSERT(vp->v_object != NULL,
3291 			("biodone: vnode %p has no vm_object", vp));
3292 #endif
3293 
3294 		foff = bp->b_offset;
3295 		KASSERT(bp->b_offset != NOOFFSET,
3296 		    ("biodone: no buffer offset"));
3297 
3298 		VM_OBJECT_LOCK(obj);
3299 #if defined(VFS_BIO_DEBUG)
3300 		if (obj->paging_in_progress < bp->b_npages) {
3301 			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3302 			    obj->paging_in_progress, bp->b_npages);
3303 		}
3304 #endif
3305 
3306 		/*
3307 		 * Set B_CACHE if the op was a normal read and no error
3308 		 * occured.  B_CACHE is set for writes in the b*write()
3309 		 * routines.
3310 		 */
3311 		iosize = bp->b_bcount - bp->b_resid;
3312 		if (bp->b_iocmd == BIO_READ &&
3313 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3314 		    !(bp->b_ioflags & BIO_ERROR)) {
3315 			bp->b_flags |= B_CACHE;
3316 		}
3317 		for (i = 0; i < bp->b_npages; i++) {
3318 			int bogusflag = 0;
3319 			int resid;
3320 
3321 			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3322 			if (resid > iosize)
3323 				resid = iosize;
3324 
3325 			/*
3326 			 * cleanup bogus pages, restoring the originals
3327 			 */
3328 			m = bp->b_pages[i];
3329 			if (m == bogus_page) {
3330 				bogusflag = 1;
3331 				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3332 				if (m == NULL)
3333 					panic("biodone: page disappeared!");
3334 				bp->b_pages[i] = m;
3335 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3336 				    bp->b_pages, bp->b_npages);
3337 			}
3338 #if defined(VFS_BIO_DEBUG)
3339 			if (OFF_TO_IDX(foff) != m->pindex) {
3340 				printf(
3341 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3342 				    (intmax_t)foff, (uintmax_t)m->pindex);
3343 			}
3344 #endif
3345 
3346 			/*
3347 			 * In the write case, the valid and clean bits are
3348 			 * already changed correctly ( see bdwrite() ), so we
3349 			 * only need to do this here in the read case.
3350 			 */
3351 			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3352 				KASSERT((m->dirty & vm_page_bits(foff &
3353 				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3354 				    " page %p has unexpected dirty bits", m));
3355 				vfs_page_set_valid(bp, foff, m);
3356 			}
3357 
3358 			/*
3359 			 * when debugging new filesystems or buffer I/O methods, this
3360 			 * is the most common error that pops up.  if you see this, you
3361 			 * have not set the page busy flag correctly!!!
3362 			 */
3363 			if (m->busy == 0) {
3364 				printf("biodone: page busy < 0, "
3365 				    "pindex: %d, foff: 0x(%x,%x), "
3366 				    "resid: %d, index: %d\n",
3367 				    (int) m->pindex, (int)(foff >> 32),
3368 						(int) foff & 0xffffffff, resid, i);
3369 				if (!vn_isdisk(vp, NULL))
3370 					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3371 					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3372 					    (intmax_t) bp->b_lblkno,
3373 					    bp->b_flags, bp->b_npages);
3374 				else
3375 					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3376 					    (intmax_t) bp->b_lblkno,
3377 					    bp->b_flags, bp->b_npages);
3378 				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3379 				    (u_long)m->valid, (u_long)m->dirty,
3380 				    m->wire_count);
3381 				panic("biodone: page busy < 0\n");
3382 			}
3383 			vm_page_io_finish(m);
3384 			vm_object_pip_subtract(obj, 1);
3385 			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3386 			iosize -= resid;
3387 		}
3388 		vm_object_pip_wakeupn(obj, 0);
3389 		VM_OBJECT_UNLOCK(obj);
3390 	}
3391 
3392 	/*
3393 	 * For asynchronous completions, release the buffer now. The brelse
3394 	 * will do a wakeup there if necessary - so no need to do a wakeup
3395 	 * here in the async case. The sync case always needs to do a wakeup.
3396 	 */
3397 
3398 	if (bp->b_flags & B_ASYNC) {
3399 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3400 			brelse(bp);
3401 		else
3402 			bqrelse(bp);
3403 	} else
3404 		bdone(bp);
3405 }
3406 
3407 /*
3408  * This routine is called in lieu of iodone in the case of
3409  * incomplete I/O.  This keeps the busy status for pages
3410  * consistant.
3411  */
3412 void
3413 vfs_unbusy_pages(struct buf *bp)
3414 {
3415 	int i;
3416 	vm_object_t obj;
3417 	vm_page_t m;
3418 
3419 	runningbufwakeup(bp);
3420 	if (!(bp->b_flags & B_VMIO))
3421 		return;
3422 
3423 	obj = bp->b_bufobj->bo_object;
3424 	VM_OBJECT_LOCK(obj);
3425 	for (i = 0; i < bp->b_npages; i++) {
3426 		m = bp->b_pages[i];
3427 		if (m == bogus_page) {
3428 			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3429 			if (!m)
3430 				panic("vfs_unbusy_pages: page missing\n");
3431 			bp->b_pages[i] = m;
3432 			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3433 			    bp->b_pages, bp->b_npages);
3434 		}
3435 		vm_object_pip_subtract(obj, 1);
3436 		vm_page_io_finish(m);
3437 	}
3438 	vm_object_pip_wakeupn(obj, 0);
3439 	VM_OBJECT_UNLOCK(obj);
3440 }
3441 
3442 /*
3443  * vfs_page_set_valid:
3444  *
3445  *	Set the valid bits in a page based on the supplied offset.   The
3446  *	range is restricted to the buffer's size.
3447  *
3448  *	This routine is typically called after a read completes.
3449  */
3450 static void
3451 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3452 {
3453 	vm_ooffset_t eoff;
3454 
3455 	/*
3456 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3457 	 * page boundary and eoff is not greater than the end of the buffer.
3458 	 * The end of the buffer, in this case, is our file EOF, not the
3459 	 * allocation size of the buffer.
3460 	 */
3461 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3462 	if (eoff > bp->b_offset + bp->b_bcount)
3463 		eoff = bp->b_offset + bp->b_bcount;
3464 
3465 	/*
3466 	 * Set valid range.  This is typically the entire buffer and thus the
3467 	 * entire page.
3468 	 */
3469 	if (eoff > off)
3470 		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3471 }
3472 
3473 /*
3474  * vfs_page_set_validclean:
3475  *
3476  *	Set the valid bits and clear the dirty bits in a page based on the
3477  *	supplied offset.   The range is restricted to the buffer's size.
3478  */
3479 static void
3480 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3481 {
3482 	vm_ooffset_t soff, eoff;
3483 
3484 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3485 	/*
3486 	 * Start and end offsets in buffer.  eoff - soff may not cross a
3487 	 * page boundry or cross the end of the buffer.  The end of the
3488 	 * buffer, in this case, is our file EOF, not the allocation size
3489 	 * of the buffer.
3490 	 */
3491 	soff = off;
3492 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3493 	if (eoff > bp->b_offset + bp->b_bcount)
3494 		eoff = bp->b_offset + bp->b_bcount;
3495 
3496 	/*
3497 	 * Set valid range.  This is typically the entire buffer and thus the
3498 	 * entire page.
3499 	 */
3500 	if (eoff > soff) {
3501 		vm_page_set_validclean(
3502 		    m,
3503 		   (vm_offset_t) (soff & PAGE_MASK),
3504 		   (vm_offset_t) (eoff - soff)
3505 		);
3506 	}
3507 }
3508 
3509 /*
3510  * This routine is called before a device strategy routine.
3511  * It is used to tell the VM system that paging I/O is in
3512  * progress, and treat the pages associated with the buffer
3513  * almost as being VPO_BUSY.  Also the object paging_in_progress
3514  * flag is handled to make sure that the object doesn't become
3515  * inconsistant.
3516  *
3517  * Since I/O has not been initiated yet, certain buffer flags
3518  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3519  * and should be ignored.
3520  */
3521 void
3522 vfs_busy_pages(struct buf *bp, int clear_modify)
3523 {
3524 	int i, bogus;
3525 	vm_object_t obj;
3526 	vm_ooffset_t foff;
3527 	vm_page_t m;
3528 
3529 	if (!(bp->b_flags & B_VMIO))
3530 		return;
3531 
3532 	obj = bp->b_bufobj->bo_object;
3533 	foff = bp->b_offset;
3534 	KASSERT(bp->b_offset != NOOFFSET,
3535 	    ("vfs_busy_pages: no buffer offset"));
3536 	VM_OBJECT_LOCK(obj);
3537 	if (bp->b_bufsize != 0)
3538 		vfs_setdirty_locked_object(bp);
3539 retry:
3540 	for (i = 0; i < bp->b_npages; i++) {
3541 		m = bp->b_pages[i];
3542 
3543 		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3544 			goto retry;
3545 	}
3546 	bogus = 0;
3547 	if (clear_modify)
3548 		vm_page_lock_queues();
3549 	for (i = 0; i < bp->b_npages; i++) {
3550 		m = bp->b_pages[i];
3551 
3552 		if ((bp->b_flags & B_CLUSTER) == 0) {
3553 			vm_object_pip_add(obj, 1);
3554 			vm_page_io_start(m);
3555 		}
3556 		/*
3557 		 * When readying a buffer for a read ( i.e
3558 		 * clear_modify == 0 ), it is important to do
3559 		 * bogus_page replacement for valid pages in
3560 		 * partially instantiated buffers.  Partially
3561 		 * instantiated buffers can, in turn, occur when
3562 		 * reconstituting a buffer from its VM backing store
3563 		 * base.  We only have to do this if B_CACHE is
3564 		 * clear ( which causes the I/O to occur in the
3565 		 * first place ).  The replacement prevents the read
3566 		 * I/O from overwriting potentially dirty VM-backed
3567 		 * pages.  XXX bogus page replacement is, uh, bogus.
3568 		 * It may not work properly with small-block devices.
3569 		 * We need to find a better way.
3570 		 */
3571 		if (clear_modify) {
3572 			pmap_remove_write(m);
3573 			vfs_page_set_validclean(bp, foff, m);
3574 		} else if (m->valid == VM_PAGE_BITS_ALL &&
3575 		    (bp->b_flags & B_CACHE) == 0) {
3576 			bp->b_pages[i] = bogus_page;
3577 			bogus++;
3578 		}
3579 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3580 	}
3581 	if (clear_modify)
3582 		vm_page_unlock_queues();
3583 	VM_OBJECT_UNLOCK(obj);
3584 	if (bogus)
3585 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3586 		    bp->b_pages, bp->b_npages);
3587 }
3588 
3589 /*
3590  * Tell the VM system that the pages associated with this buffer
3591  * are clean.  This is used for delayed writes where the data is
3592  * going to go to disk eventually without additional VM intevention.
3593  *
3594  * Note that while we only really need to clean through to b_bcount, we
3595  * just go ahead and clean through to b_bufsize.
3596  */
3597 static void
3598 vfs_clean_pages(struct buf *bp)
3599 {
3600 	int i;
3601 	vm_ooffset_t foff, noff, eoff;
3602 	vm_page_t m;
3603 
3604 	if (!(bp->b_flags & B_VMIO))
3605 		return;
3606 
3607 	foff = bp->b_offset;
3608 	KASSERT(bp->b_offset != NOOFFSET,
3609 	    ("vfs_clean_pages: no buffer offset"));
3610 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3611 	vm_page_lock_queues();
3612 	for (i = 0; i < bp->b_npages; i++) {
3613 		m = bp->b_pages[i];
3614 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3615 		eoff = noff;
3616 
3617 		if (eoff > bp->b_offset + bp->b_bufsize)
3618 			eoff = bp->b_offset + bp->b_bufsize;
3619 		vfs_page_set_validclean(bp, foff, m);
3620 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3621 		foff = noff;
3622 	}
3623 	vm_page_unlock_queues();
3624 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3625 }
3626 
3627 /*
3628  *	vfs_bio_set_valid:
3629  *
3630  *	Set the range within the buffer to valid.  The range is
3631  *	relative to the beginning of the buffer, b_offset.  Note that
3632  *	b_offset itself may be offset from the beginning of the first
3633  *	page.
3634  */
3635 void
3636 vfs_bio_set_valid(struct buf *bp, int base, int size)
3637 {
3638 	int i, n;
3639 	vm_page_t m;
3640 
3641 	if (!(bp->b_flags & B_VMIO))
3642 		return;
3643 
3644 	/*
3645 	 * Fixup base to be relative to beginning of first page.
3646 	 * Set initial n to be the maximum number of bytes in the
3647 	 * first page that can be validated.
3648 	 */
3649 	base += (bp->b_offset & PAGE_MASK);
3650 	n = PAGE_SIZE - (base & PAGE_MASK);
3651 
3652 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3653 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3654 		m = bp->b_pages[i];
3655 		if (n > size)
3656 			n = size;
3657 		vm_page_set_valid(m, base & PAGE_MASK, n);
3658 		base += n;
3659 		size -= n;
3660 		n = PAGE_SIZE;
3661 	}
3662 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3663 }
3664 
3665 /*
3666  *	vfs_bio_set_validclean:
3667  *
3668  *	Set the range within the buffer to valid and clean.  The range is
3669  *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3670  *	itself may be offset from the beginning of the first page.
3671  *
3672  */
3673 
3674 void
3675 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3676 {
3677 	int i, n;
3678 	vm_page_t m;
3679 
3680 	if (!(bp->b_flags & B_VMIO))
3681 		return;
3682 	/*
3683 	 * Fixup base to be relative to beginning of first page.
3684 	 * Set initial n to be the maximum number of bytes in the
3685 	 * first page that can be validated.
3686 	 */
3687 
3688 	base += (bp->b_offset & PAGE_MASK);
3689 	n = PAGE_SIZE - (base & PAGE_MASK);
3690 
3691 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3692 	vm_page_lock_queues();
3693 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3694 		m = bp->b_pages[i];
3695 		if (n > size)
3696 			n = size;
3697 		vm_page_set_validclean(m, base & PAGE_MASK, n);
3698 		base += n;
3699 		size -= n;
3700 		n = PAGE_SIZE;
3701 	}
3702 	vm_page_unlock_queues();
3703 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3704 }
3705 
3706 /*
3707  *	vfs_bio_clrbuf:
3708  *
3709  *	If the specified buffer is a non-VMIO buffer, clear the entire
3710  *	buffer.  If the specified buffer is a VMIO buffer, clear and
3711  *	validate only the previously invalid portions of the buffer.
3712  *	This routine essentially fakes an I/O, so we need to clear
3713  *	BIO_ERROR and B_INVAL.
3714  *
3715  *	Note that while we only theoretically need to clear through b_bcount,
3716  *	we go ahead and clear through b_bufsize.
3717  */
3718 void
3719 vfs_bio_clrbuf(struct buf *bp)
3720 {
3721 	int i, j, mask;
3722 	caddr_t sa, ea;
3723 
3724 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3725 		clrbuf(bp);
3726 		return;
3727 	}
3728 	bp->b_flags &= ~B_INVAL;
3729 	bp->b_ioflags &= ~BIO_ERROR;
3730 	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3731 	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3732 	    (bp->b_offset & PAGE_MASK) == 0) {
3733 		if (bp->b_pages[0] == bogus_page)
3734 			goto unlock;
3735 		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3736 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3737 		if ((bp->b_pages[0]->valid & mask) == mask)
3738 			goto unlock;
3739 		if ((bp->b_pages[0]->valid & mask) == 0) {
3740 			bzero(bp->b_data, bp->b_bufsize);
3741 			bp->b_pages[0]->valid |= mask;
3742 			goto unlock;
3743 		}
3744 	}
3745 	ea = sa = bp->b_data;
3746 	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3747 		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3748 		ea = (caddr_t)(vm_offset_t)ulmin(
3749 		    (u_long)(vm_offset_t)ea,
3750 		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3751 		if (bp->b_pages[i] == bogus_page)
3752 			continue;
3753 		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3754 		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3755 		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3756 		if ((bp->b_pages[i]->valid & mask) == mask)
3757 			continue;
3758 		if ((bp->b_pages[i]->valid & mask) == 0)
3759 			bzero(sa, ea - sa);
3760 		else {
3761 			for (; sa < ea; sa += DEV_BSIZE, j++) {
3762 				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3763 					bzero(sa, DEV_BSIZE);
3764 			}
3765 		}
3766 		bp->b_pages[i]->valid |= mask;
3767 	}
3768 unlock:
3769 	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3770 	bp->b_resid = 0;
3771 }
3772 
3773 /*
3774  * vm_hold_load_pages and vm_hold_free_pages get pages into
3775  * a buffers address space.  The pages are anonymous and are
3776  * not associated with a file object.
3777  */
3778 static void
3779 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3780 {
3781 	vm_offset_t pg;
3782 	vm_page_t p;
3783 	int index;
3784 
3785 	to = round_page(to);
3786 	from = round_page(from);
3787 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3788 
3789 	VM_OBJECT_LOCK(kernel_object);
3790 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3791 tryagain:
3792 		/*
3793 		 * note: must allocate system pages since blocking here
3794 		 * could intefere with paging I/O, no matter which
3795 		 * process we are.
3796 		 */
3797 		p = vm_page_alloc(kernel_object,
3798 			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3799 		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3800 		if (!p) {
3801 			atomic_add_int(&vm_pageout_deficit,
3802 			    (to - pg) >> PAGE_SHIFT);
3803 			VM_OBJECT_UNLOCK(kernel_object);
3804 			VM_WAIT;
3805 			VM_OBJECT_LOCK(kernel_object);
3806 			goto tryagain;
3807 		}
3808 		p->valid = VM_PAGE_BITS_ALL;
3809 		pmap_qenter(pg, &p, 1);
3810 		bp->b_pages[index] = p;
3811 	}
3812 	VM_OBJECT_UNLOCK(kernel_object);
3813 	bp->b_npages = index;
3814 }
3815 
3816 /* Return pages associated with this buf to the vm system */
3817 static void
3818 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3819 {
3820 	vm_offset_t pg;
3821 	vm_page_t p;
3822 	int index, newnpages;
3823 
3824 	from = round_page(from);
3825 	to = round_page(to);
3826 	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3827 
3828 	VM_OBJECT_LOCK(kernel_object);
3829 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3830 		p = bp->b_pages[index];
3831 		if (p && (index < bp->b_npages)) {
3832 			if (p->busy) {
3833 				printf(
3834 			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3835 				    (intmax_t)bp->b_blkno,
3836 				    (intmax_t)bp->b_lblkno);
3837 			}
3838 			bp->b_pages[index] = NULL;
3839 			pmap_qremove(pg, 1);
3840 			vm_page_lock_queues();
3841 			vm_page_unwire(p, 0);
3842 			vm_page_free(p);
3843 			vm_page_unlock_queues();
3844 		}
3845 	}
3846 	VM_OBJECT_UNLOCK(kernel_object);
3847 	bp->b_npages = newnpages;
3848 }
3849 
3850 /*
3851  * Map an IO request into kernel virtual address space.
3852  *
3853  * All requests are (re)mapped into kernel VA space.
3854  * Notice that we use b_bufsize for the size of the buffer
3855  * to be mapped.  b_bcount might be modified by the driver.
3856  *
3857  * Note that even if the caller determines that the address space should
3858  * be valid, a race or a smaller-file mapped into a larger space may
3859  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3860  * check the return value.
3861  */
3862 int
3863 vmapbuf(struct buf *bp)
3864 {
3865 	caddr_t addr, kva;
3866 	vm_prot_t prot;
3867 	int pidx, i;
3868 	struct vm_page *m;
3869 	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3870 
3871 	if (bp->b_bufsize < 0)
3872 		return (-1);
3873 	prot = VM_PROT_READ;
3874 	if (bp->b_iocmd == BIO_READ)
3875 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3876 	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3877 	     addr < bp->b_data + bp->b_bufsize;
3878 	     addr += PAGE_SIZE, pidx++) {
3879 		/*
3880 		 * Do the vm_fault if needed; do the copy-on-write thing
3881 		 * when reading stuff off device into memory.
3882 		 *
3883 		 * NOTE! Must use pmap_extract() because addr may be in
3884 		 * the userland address space, and kextract is only guarenteed
3885 		 * to work for the kernland address space (see: sparc64 port).
3886 		 */
3887 retry:
3888 		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3889 		    prot) < 0) {
3890 			vm_page_lock_queues();
3891 			for (i = 0; i < pidx; ++i) {
3892 				vm_page_unhold(bp->b_pages[i]);
3893 				bp->b_pages[i] = NULL;
3894 			}
3895 			vm_page_unlock_queues();
3896 			return(-1);
3897 		}
3898 		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3899 		if (m == NULL)
3900 			goto retry;
3901 		bp->b_pages[pidx] = m;
3902 	}
3903 	if (pidx > btoc(MAXPHYS))
3904 		panic("vmapbuf: mapped more than MAXPHYS");
3905 	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3906 
3907 	kva = bp->b_saveaddr;
3908 	bp->b_npages = pidx;
3909 	bp->b_saveaddr = bp->b_data;
3910 	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3911 	return(0);
3912 }
3913 
3914 /*
3915  * Free the io map PTEs associated with this IO operation.
3916  * We also invalidate the TLB entries and restore the original b_addr.
3917  */
3918 void
3919 vunmapbuf(struct buf *bp)
3920 {
3921 	int pidx;
3922 	int npages;
3923 
3924 	npages = bp->b_npages;
3925 	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3926 	vm_page_lock_queues();
3927 	for (pidx = 0; pidx < npages; pidx++)
3928 		vm_page_unhold(bp->b_pages[pidx]);
3929 	vm_page_unlock_queues();
3930 
3931 	bp->b_data = bp->b_saveaddr;
3932 }
3933 
3934 void
3935 bdone(struct buf *bp)
3936 {
3937 	struct mtx *mtxp;
3938 
3939 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3940 	mtx_lock(mtxp);
3941 	bp->b_flags |= B_DONE;
3942 	wakeup(bp);
3943 	mtx_unlock(mtxp);
3944 }
3945 
3946 void
3947 bwait(struct buf *bp, u_char pri, const char *wchan)
3948 {
3949 	struct mtx *mtxp;
3950 
3951 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3952 	mtx_lock(mtxp);
3953 	while ((bp->b_flags & B_DONE) == 0)
3954 		msleep(bp, mtxp, pri, wchan, 0);
3955 	mtx_unlock(mtxp);
3956 }
3957 
3958 int
3959 bufsync(struct bufobj *bo, int waitfor)
3960 {
3961 
3962 	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3963 }
3964 
3965 void
3966 bufstrategy(struct bufobj *bo, struct buf *bp)
3967 {
3968 	int i = 0;
3969 	struct vnode *vp;
3970 
3971 	vp = bp->b_vp;
3972 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3973 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3974 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3975 	i = VOP_STRATEGY(vp, bp);
3976 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3977 }
3978 
3979 void
3980 bufobj_wrefl(struct bufobj *bo)
3981 {
3982 
3983 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3984 	ASSERT_BO_LOCKED(bo);
3985 	bo->bo_numoutput++;
3986 }
3987 
3988 void
3989 bufobj_wref(struct bufobj *bo)
3990 {
3991 
3992 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3993 	BO_LOCK(bo);
3994 	bo->bo_numoutput++;
3995 	BO_UNLOCK(bo);
3996 }
3997 
3998 void
3999 bufobj_wdrop(struct bufobj *bo)
4000 {
4001 
4002 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4003 	BO_LOCK(bo);
4004 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4005 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4006 		bo->bo_flag &= ~BO_WWAIT;
4007 		wakeup(&bo->bo_numoutput);
4008 	}
4009 	BO_UNLOCK(bo);
4010 }
4011 
4012 int
4013 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4014 {
4015 	int error;
4016 
4017 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4018 	ASSERT_BO_LOCKED(bo);
4019 	error = 0;
4020 	while (bo->bo_numoutput) {
4021 		bo->bo_flag |= BO_WWAIT;
4022 		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
4023 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4024 		if (error)
4025 			break;
4026 	}
4027 	return (error);
4028 }
4029 
4030 void
4031 bpin(struct buf *bp)
4032 {
4033 	struct mtx *mtxp;
4034 
4035 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4036 	mtx_lock(mtxp);
4037 	bp->b_pin_count++;
4038 	mtx_unlock(mtxp);
4039 }
4040 
4041 void
4042 bunpin(struct buf *bp)
4043 {
4044 	struct mtx *mtxp;
4045 
4046 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4047 	mtx_lock(mtxp);
4048 	if (--bp->b_pin_count == 0)
4049 		wakeup(bp);
4050 	mtx_unlock(mtxp);
4051 }
4052 
4053 void
4054 bunpin_wait(struct buf *bp)
4055 {
4056 	struct mtx *mtxp;
4057 
4058 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4059 	mtx_lock(mtxp);
4060 	while (bp->b_pin_count > 0)
4061 		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4062 	mtx_unlock(mtxp);
4063 }
4064 
4065 #include "opt_ddb.h"
4066 #ifdef DDB
4067 #include <ddb/ddb.h>
4068 
4069 /* DDB command to show buffer data */
4070 DB_SHOW_COMMAND(buffer, db_show_buffer)
4071 {
4072 	/* get args */
4073 	struct buf *bp = (struct buf *)addr;
4074 
4075 	if (!have_addr) {
4076 		db_printf("usage: show buffer <addr>\n");
4077 		return;
4078 	}
4079 
4080 	db_printf("buf at %p\n", bp);
4081 	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4082 	db_printf(
4083 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4084 	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4085 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4086 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4087 	    bp->b_dep.lh_first);
4088 	if (bp->b_npages) {
4089 		int i;
4090 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4091 		for (i = 0; i < bp->b_npages; i++) {
4092 			vm_page_t m;
4093 			m = bp->b_pages[i];
4094 			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4095 			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4096 			if ((i + 1) < bp->b_npages)
4097 				db_printf(",");
4098 		}
4099 		db_printf("\n");
4100 	}
4101 	db_printf(" ");
4102 	lockmgr_printinfo(&bp->b_lock);
4103 }
4104 
4105 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4106 {
4107 	struct buf *bp;
4108 	int i;
4109 
4110 	for (i = 0; i < nbuf; i++) {
4111 		bp = &buf[i];
4112 		if (BUF_ISLOCKED(bp)) {
4113 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4114 			db_printf("\n");
4115 		}
4116 	}
4117 }
4118 
4119 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4120 {
4121 	struct vnode *vp;
4122 	struct buf *bp;
4123 
4124 	if (!have_addr) {
4125 		db_printf("usage: show vnodebufs <addr>\n");
4126 		return;
4127 	}
4128 	vp = (struct vnode *)addr;
4129 	db_printf("Clean buffers:\n");
4130 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4131 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4132 		db_printf("\n");
4133 	}
4134 	db_printf("Dirty buffers:\n");
4135 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4136 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4137 		db_printf("\n");
4138 	}
4139 }
4140 #endif /* DDB */
4141