xref: /freebsd/sys/kern/vfs_bio.c (revision 7d495be8d4bd3a0e315233346b2f7267b8390612)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #define	EXTERR_CATEGORY	EXTERR_CAT_VFSBIO
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/asan.h>
51 #include <sys/bio.h>
52 #include <sys/bitset.h>
53 #include <sys/boottrace.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/devicestat.h>
58 #include <sys/eventhandler.h>
59 #include <sys/exterrvar.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/memdesc.h>
66 #include <sys/mount.h>
67 #include <sys/mutex.h>
68 #include <sys/kernel.h>
69 #include <sys/kthread.h>
70 #include <sys/pctrie.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/refcount.h>
74 #include <sys/resourcevar.h>
75 #include <sys/rwlock.h>
76 #include <sys/sched.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/vmem.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vnode.h>
83 #include <sys/watchdog.h>
84 #include <geom/geom.h>
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_map.h>
94 #include <vm/swap_pager.h>
95 
96 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
97 
98 struct	bio_ops bioops;		/* I/O operation notification */
99 
100 struct	buf_ops buf_ops_bio = {
101 	.bop_name	=	"buf_ops_bio",
102 	.bop_write	=	bufwrite,
103 	.bop_strategy	=	bufstrategy,
104 	.bop_sync	=	bufsync,
105 	.bop_bdflush	=	bufbdflush,
106 };
107 
108 struct bufqueue {
109 	struct mtx_padalign	bq_lock;
110 	TAILQ_HEAD(, buf)	bq_queue;
111 	uint8_t			bq_index;
112 	uint16_t		bq_subqueue;
113 	int			bq_len;
114 } __aligned(CACHE_LINE_SIZE);
115 
116 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
117 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
118 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
119 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
120 
121 struct bufdomain {
122 	struct bufqueue	*bd_subq;
123 	struct bufqueue bd_dirtyq;
124 	struct bufqueue	*bd_cleanq;
125 	struct mtx_padalign bd_run_lock;
126 	/* Constants */
127 	long		bd_maxbufspace;
128 	long		bd_hibufspace;
129 	long 		bd_lobufspace;
130 	long 		bd_bufspacethresh;
131 	int		bd_hifreebuffers;
132 	int		bd_lofreebuffers;
133 	int		bd_hidirtybuffers;
134 	int		bd_lodirtybuffers;
135 	int		bd_dirtybufthresh;
136 	int		bd_lim;
137 	/* atomics */
138 	int		bd_wanted;
139 	bool		bd_shutdown;
140 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
141 	int __aligned(CACHE_LINE_SIZE)	bd_running;
142 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
143 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
144 } __aligned(CACHE_LINE_SIZE);
145 
146 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
147 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
148 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
149 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
150 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
151 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
152 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
153 #define	BD_DOMAIN(bd)		(bd - bdomain)
154 
155 static char *buf;		/* buffer header pool */
156 static struct buf *
nbufp(unsigned i)157 nbufp(unsigned i)
158 {
159 	return ((struct buf *)(buf + (sizeof(struct buf) +
160 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
161 }
162 
163 caddr_t __read_mostly unmapped_buf;
164 #ifdef INVARIANTS
165 void *poisoned_buf = (void *)-1;
166 #endif
167 
168 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
169 struct proc *bufdaemonproc;
170 
171 static void vm_hold_free_pages(struct buf *bp, int newbsize);
172 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
173 		vm_offset_t to);
174 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
175 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
176 		vm_page_t m);
177 static void vfs_clean_pages_dirty_buf(struct buf *bp);
178 static void vfs_setdirty_range(struct buf *bp);
179 static void vfs_vmio_invalidate(struct buf *bp);
180 static void vfs_vmio_truncate(struct buf *bp, int npages);
181 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
182 static int vfs_bio_clcheck(struct vnode *vp, int size,
183 		daddr_t lblkno, daddr_t blkno);
184 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
185 		void (*)(struct buf *));
186 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
187 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
188 static void buf_daemon(void);
189 static __inline void bd_wakeup(void);
190 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
191 static void bufkva_reclaim(vmem_t *, int);
192 static void bufkva_free(struct buf *);
193 static int buf_import(void *, void **, int, int, int);
194 static void buf_release(void *, void **, int);
195 static void maxbcachebuf_adjust(void);
196 static inline struct bufdomain *bufdomain(struct buf *);
197 static void bq_remove(struct bufqueue *bq, struct buf *bp);
198 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
199 static int buf_recycle(struct bufdomain *, bool kva);
200 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
201 	    const char *lockname);
202 static void bd_init(struct bufdomain *bd);
203 static int bd_flushall(struct bufdomain *bd);
204 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
205 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
206 
207 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
208 int vmiodirenable = TRUE;
209 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
210     "Use the VM system for directory writes");
211 static long runningbufspace;
212 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
213     "Amount of presently outstanding async buffer io");
214 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
215     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
216 static counter_u64_t bufkvaspace;
217 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
218     "Kernel virtual memory used for buffers");
219 static long maxbufspace;
220 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
221     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
222     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
223     "Maximum allowed value of bufspace (including metadata)");
224 static long bufmallocspace;
225 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
226     "Amount of malloced memory for buffers");
227 static long maxbufmallocspace;
228 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
229     0, "Maximum amount of malloced memory for buffers");
230 static long lobufspace;
231 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
232     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
233     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
234     "Minimum amount of buffers we want to have");
235 long hibufspace;
236 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
237     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
238     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
239     "Maximum allowed value of bufspace (excluding metadata)");
240 long bufspacethresh;
241 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
242     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
243     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
244     "Bufspace consumed before waking the daemon to free some");
245 static counter_u64_t buffreekvacnt;
246 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
247     "Number of times we have freed the KVA space from some buffer");
248 static counter_u64_t bufdefragcnt;
249 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
250     "Number of times we have had to repeat buffer allocation to defragment");
251 static long lorunningspace;
252 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
253     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
254     "Minimum preferred space used for in-progress I/O");
255 static long hirunningspace;
256 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
257     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
258     "Maximum amount of space to use for in-progress I/O");
259 int dirtybufferflushes;
260 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
261     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
262 int bdwriteskip;
263 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
264     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
265 int altbufferflushes;
266 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
267     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
268 static int recursiveflushes;
269 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
270     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
271 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
272 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
273     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
274     "Number of buffers that are dirty (has unwritten changes) at the moment");
275 static int lodirtybuffers;
276 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
277     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
278     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
279     "How many buffers we want to have free before bufdaemon can sleep");
280 static int hidirtybuffers;
281 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
282     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
283     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
284     "When the number of dirty buffers is considered severe");
285 int dirtybufthresh;
286 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
287     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
288     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
289     "Number of bdwrite to bawrite conversions to clear dirty buffers");
290 static int numfreebuffers;
291 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
292     "Number of free buffers");
293 static int lofreebuffers;
294 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
295     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
296     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
297    "Target number of free buffers");
298 static int hifreebuffers;
299 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
300     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
301     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
302    "Threshold for clean buffer recycling");
303 static counter_u64_t getnewbufcalls;
304 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
305    &getnewbufcalls, "Number of calls to getnewbuf");
306 static counter_u64_t getnewbufrestarts;
307 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
308     &getnewbufrestarts,
309     "Number of times getnewbuf has had to restart a buffer acquisition");
310 static counter_u64_t mappingrestarts;
311 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
312     &mappingrestarts,
313     "Number of times getblk has had to restart a buffer mapping for "
314     "unmapped buffer");
315 static counter_u64_t numbufallocfails;
316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
317     &numbufallocfails, "Number of times buffer allocations failed");
318 static int flushbufqtarget = 100;
319 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
320     "Amount of work to do in flushbufqueues when helping bufdaemon");
321 static counter_u64_t notbufdflushes;
322 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
323     "Number of dirty buffer flushes done by the bufdaemon helpers");
324 static long barrierwrites;
325 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
326     &barrierwrites, 0, "Number of barrier writes");
327 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
328     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
329     &unmapped_buf_allowed, 0,
330     "Permit the use of the unmapped i/o");
331 int maxbcachebuf = MAXBCACHEBUF;
332 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
333     "Maximum size of a buffer cache block");
334 
335 /*
336  * This lock synchronizes access to bd_request.
337  */
338 static struct mtx_padalign __exclusive_cache_line bdlock;
339 
340 /*
341  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
342  * waitrunningbufspace().
343  */
344 static struct mtx_padalign __exclusive_cache_line rbreqlock;
345 
346 /*
347  * Lock that protects bdirtywait.
348  */
349 static struct mtx_padalign __exclusive_cache_line bdirtylock;
350 
351 /*
352  * bufdaemon shutdown request and sleep channel.
353  */
354 static bool bd_shutdown;
355 
356 /*
357  * Wakeup point for bufdaemon, as well as indicator of whether it is already
358  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
359  * is idling.
360  */
361 static int bd_request;
362 
363 /*
364  * Request for the buf daemon to write more buffers than is indicated by
365  * lodirtybuf.  This may be necessary to push out excess dependencies or
366  * defragment the address space where a simple count of the number of dirty
367  * buffers is insufficient to characterize the demand for flushing them.
368  */
369 static int bd_speedupreq;
370 
371 /*
372  * Synchronization (sleep/wakeup) variable for active buffer space requests.
373  * Set when wait starts, cleared prior to wakeup().
374  * Used in runningbufwakeup() and waitrunningbufspace().
375  */
376 static int runningbufreq;
377 
378 /*
379  * Synchronization for bwillwrite() waiters.
380  */
381 static int bdirtywait;
382 
383 /*
384  * Definitions for the buffer free lists.
385  */
386 #define QUEUE_NONE	0	/* on no queue */
387 #define QUEUE_EMPTY	1	/* empty buffer headers */
388 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
389 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
390 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
391 
392 /* Maximum number of buffer domains. */
393 #define	BUF_DOMAINS	8
394 
395 struct bufdomainset bdlodirty;		/* Domains > lodirty */
396 struct bufdomainset bdhidirty;		/* Domains > hidirty */
397 
398 /* Configured number of clean queues. */
399 static int __read_mostly buf_domains;
400 
401 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
402 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
403 struct bufqueue __exclusive_cache_line bqempty;
404 
405 /*
406  * per-cpu empty buffer cache.
407  */
408 uma_zone_t buf_zone;
409 
410 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)411 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
412 {
413 	long value;
414 	int error;
415 
416 	value = *(long *)arg1;
417 	error = sysctl_handle_long(oidp, &value, 0, req);
418 	if (error != 0 || req->newptr == NULL)
419 		return (error);
420 	mtx_lock(&rbreqlock);
421 	if (arg1 == &hirunningspace) {
422 		if (value < lorunningspace)
423 			error = EINVAL;
424 		else
425 			hirunningspace = value;
426 	} else {
427 		KASSERT(arg1 == &lorunningspace,
428 		    ("%s: unknown arg1", __func__));
429 		if (value > hirunningspace)
430 			error = EINVAL;
431 		else
432 			lorunningspace = value;
433 	}
434 	mtx_unlock(&rbreqlock);
435 	return (error);
436 }
437 
438 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)439 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
440 {
441 	int error;
442 	int value;
443 	int i;
444 
445 	value = *(int *)arg1;
446 	error = sysctl_handle_int(oidp, &value, 0, req);
447 	if (error != 0 || req->newptr == NULL)
448 		return (error);
449 	*(int *)arg1 = value;
450 	for (i = 0; i < buf_domains; i++)
451 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
452 		    value / buf_domains;
453 
454 	return (error);
455 }
456 
457 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)458 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
459 {
460 	long value;
461 	int error;
462 	int i;
463 
464 	value = *(long *)arg1;
465 	error = sysctl_handle_long(oidp, &value, 0, req);
466 	if (error != 0 || req->newptr == NULL)
467 		return (error);
468 	*(long *)arg1 = value;
469 	for (i = 0; i < buf_domains; i++)
470 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
471 		    value / buf_domains;
472 
473 	return (error);
474 }
475 
476 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
477     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
478 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)479 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
480 {
481 	long lvalue;
482 	int ivalue;
483 	int i;
484 
485 	lvalue = 0;
486 	for (i = 0; i < buf_domains; i++)
487 		lvalue += bdomain[i].bd_bufspace;
488 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
489 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
490 	if (lvalue > INT_MAX)
491 		/* On overflow, still write out a long to trigger ENOMEM. */
492 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
493 	ivalue = lvalue;
494 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
495 }
496 #else
497 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)498 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
499 {
500 	long lvalue;
501 	int i;
502 
503 	lvalue = 0;
504 	for (i = 0; i < buf_domains; i++)
505 		lvalue += bdomain[i].bd_bufspace;
506 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
507 }
508 #endif
509 
510 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)511 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
512 {
513 	int value;
514 	int i;
515 
516 	value = 0;
517 	for (i = 0; i < buf_domains; i++)
518 		value += bdomain[i].bd_numdirtybuffers;
519 	return (sysctl_handle_int(oidp, &value, 0, req));
520 }
521 
522 /*
523  *	bdirtywakeup:
524  *
525  *	Wakeup any bwillwrite() waiters.
526  */
527 static void
bdirtywakeup(void)528 bdirtywakeup(void)
529 {
530 	mtx_lock(&bdirtylock);
531 	if (bdirtywait) {
532 		bdirtywait = 0;
533 		wakeup(&bdirtywait);
534 	}
535 	mtx_unlock(&bdirtylock);
536 }
537 
538 /*
539  *	bd_clear:
540  *
541  *	Clear a domain from the appropriate bitsets when dirtybuffers
542  *	is decremented.
543  */
544 static void
bd_clear(struct bufdomain * bd)545 bd_clear(struct bufdomain *bd)
546 {
547 
548 	mtx_lock(&bdirtylock);
549 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
550 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
551 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
552 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
553 	mtx_unlock(&bdirtylock);
554 }
555 
556 /*
557  *	bd_set:
558  *
559  *	Set a domain in the appropriate bitsets when dirtybuffers
560  *	is incremented.
561  */
562 static void
bd_set(struct bufdomain * bd)563 bd_set(struct bufdomain *bd)
564 {
565 
566 	mtx_lock(&bdirtylock);
567 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
568 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
569 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
570 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
571 	mtx_unlock(&bdirtylock);
572 }
573 
574 /*
575  *	bdirtysub:
576  *
577  *	Decrement the numdirtybuffers count by one and wakeup any
578  *	threads blocked in bwillwrite().
579  */
580 static void
bdirtysub(struct buf * bp)581 bdirtysub(struct buf *bp)
582 {
583 	struct bufdomain *bd;
584 	int num;
585 
586 	bd = bufdomain(bp);
587 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
588 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
589 		bdirtywakeup();
590 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
591 		bd_clear(bd);
592 }
593 
594 /*
595  *	bdirtyadd:
596  *
597  *	Increment the numdirtybuffers count by one and wakeup the buf
598  *	daemon if needed.
599  */
600 static void
bdirtyadd(struct buf * bp)601 bdirtyadd(struct buf *bp)
602 {
603 	struct bufdomain *bd;
604 	int num;
605 
606 	/*
607 	 * Only do the wakeup once as we cross the boundary.  The
608 	 * buf daemon will keep running until the condition clears.
609 	 */
610 	bd = bufdomain(bp);
611 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
612 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
613 		bd_wakeup();
614 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
615 		bd_set(bd);
616 }
617 
618 /*
619  *	bufspace_daemon_wakeup:
620  *
621  *	Wakeup the daemons responsible for freeing clean bufs.
622  */
623 static void
bufspace_daemon_wakeup(struct bufdomain * bd)624 bufspace_daemon_wakeup(struct bufdomain *bd)
625 {
626 
627 	/*
628 	 * avoid the lock if the daemon is running.
629 	 */
630 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
631 		BD_RUN_LOCK(bd);
632 		atomic_store_int(&bd->bd_running, 1);
633 		wakeup(&bd->bd_running);
634 		BD_RUN_UNLOCK(bd);
635 	}
636 }
637 
638 /*
639  *	bufspace_adjust:
640  *
641  *	Adjust the reported bufspace for a KVA managed buffer, possibly
642  * 	waking any waiters.
643  */
644 static void
bufspace_adjust(struct buf * bp,int bufsize)645 bufspace_adjust(struct buf *bp, int bufsize)
646 {
647 	struct bufdomain *bd;
648 	long space;
649 	int diff;
650 
651 	KASSERT((bp->b_flags & B_MALLOC) == 0,
652 	    ("bufspace_adjust: malloc buf %p", bp));
653 	bd = bufdomain(bp);
654 	diff = bufsize - bp->b_bufsize;
655 	if (diff < 0) {
656 		atomic_subtract_long(&bd->bd_bufspace, -diff);
657 	} else if (diff > 0) {
658 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
659 		/* Wake up the daemon on the transition. */
660 		if (space < bd->bd_bufspacethresh &&
661 		    space + diff >= bd->bd_bufspacethresh)
662 			bufspace_daemon_wakeup(bd);
663 	}
664 	bp->b_bufsize = bufsize;
665 }
666 
667 /*
668  *	bufspace_reserve:
669  *
670  *	Reserve bufspace before calling allocbuf().  metadata has a
671  *	different space limit than data.
672  */
673 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)674 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
675 {
676 	long limit, new;
677 	long space;
678 
679 	if (metadata)
680 		limit = bd->bd_maxbufspace;
681 	else
682 		limit = bd->bd_hibufspace;
683 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
684 	new = space + size;
685 	if (new > limit) {
686 		atomic_subtract_long(&bd->bd_bufspace, size);
687 		return (ENOSPC);
688 	}
689 
690 	/* Wake up the daemon on the transition. */
691 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
692 		bufspace_daemon_wakeup(bd);
693 
694 	return (0);
695 }
696 
697 /*
698  *	bufspace_release:
699  *
700  *	Release reserved bufspace after bufspace_adjust() has consumed it.
701  */
702 static void
bufspace_release(struct bufdomain * bd,int size)703 bufspace_release(struct bufdomain *bd, int size)
704 {
705 
706 	atomic_subtract_long(&bd->bd_bufspace, size);
707 }
708 
709 /*
710  *	bufspace_wait:
711  *
712  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
713  *	supplied.  bd_wanted must be set prior to polling for space.  The
714  *	operation must be re-tried on return.
715  */
716 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)717 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
718     int slpflag, int slptimeo)
719 {
720 	struct thread *td;
721 	int error, fl, norunbuf;
722 
723 	if ((gbflags & GB_NOWAIT_BD) != 0)
724 		return;
725 
726 	td = curthread;
727 	BD_LOCK(bd);
728 	while (bd->bd_wanted) {
729 		if (vp != NULL && vp->v_type != VCHR &&
730 		    (td->td_pflags & TDP_BUFNEED) == 0) {
731 			BD_UNLOCK(bd);
732 			/*
733 			 * getblk() is called with a vnode locked, and
734 			 * some majority of the dirty buffers may as
735 			 * well belong to the vnode.  Flushing the
736 			 * buffers there would make a progress that
737 			 * cannot be achieved by the buf_daemon, that
738 			 * cannot lock the vnode.
739 			 */
740 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
741 			    (td->td_pflags & TDP_NORUNNINGBUF);
742 
743 			/*
744 			 * Play bufdaemon.  The getnewbuf() function
745 			 * may be called while the thread owns lock
746 			 * for another dirty buffer for the same
747 			 * vnode, which makes it impossible to use
748 			 * VOP_FSYNC() there, due to the buffer lock
749 			 * recursion.
750 			 */
751 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
752 			fl = buf_flush(vp, bd, flushbufqtarget);
753 			td->td_pflags &= norunbuf;
754 			BD_LOCK(bd);
755 			if (fl != 0)
756 				continue;
757 			if (bd->bd_wanted == 0)
758 				break;
759 		}
760 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
761 		    PVFS | slpflag, "newbuf", slptimeo);
762 		if (error != 0)
763 			break;
764 	}
765 	BD_UNLOCK(bd);
766 }
767 
768 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)769 bufspace_daemon_shutdown(void *arg, int howto __unused)
770 {
771 	struct bufdomain *bd = arg;
772 	int error;
773 
774 	if (KERNEL_PANICKED())
775 		return;
776 
777 	BD_RUN_LOCK(bd);
778 	bd->bd_shutdown = true;
779 	wakeup(&bd->bd_running);
780 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
781 	    "bufspace_shutdown", 60 * hz);
782 	BD_RUN_UNLOCK(bd);
783 	if (error != 0)
784 		printf("bufspacedaemon wait error: %d\n", error);
785 }
786 
787 /*
788  *	bufspace_daemon:
789  *
790  *	buffer space management daemon.  Tries to maintain some marginal
791  *	amount of free buffer space so that requesting processes neither
792  *	block nor work to reclaim buffers.
793  */
794 static void
bufspace_daemon(void * arg)795 bufspace_daemon(void *arg)
796 {
797 	struct bufdomain *bd = arg;
798 
799 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
800 	    SHUTDOWN_PRI_LAST + 100);
801 
802 	BD_RUN_LOCK(bd);
803 	while (!bd->bd_shutdown) {
804 		BD_RUN_UNLOCK(bd);
805 
806 		/*
807 		 * Free buffers from the clean queue until we meet our
808 		 * targets.
809 		 *
810 		 * Theory of operation:  The buffer cache is most efficient
811 		 * when some free buffer headers and space are always
812 		 * available to getnewbuf().  This daemon attempts to prevent
813 		 * the excessive blocking and synchronization associated
814 		 * with shortfall.  It goes through three phases according
815 		 * demand:
816 		 *
817 		 * 1)	The daemon wakes up voluntarily once per-second
818 		 *	during idle periods when the counters are below
819 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
820 		 *
821 		 * 2)	The daemon wakes up as we cross the thresholds
822 		 *	ahead of any potential blocking.  This may bounce
823 		 *	slightly according to the rate of consumption and
824 		 *	release.
825 		 *
826 		 * 3)	The daemon and consumers are starved for working
827 		 *	clean buffers.  This is the 'bufspace' sleep below
828 		 *	which will inefficiently trade bufs with bqrelse
829 		 *	until we return to condition 2.
830 		 */
831 		while (bd->bd_bufspace > bd->bd_lobufspace ||
832 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
833 			if (buf_recycle(bd, false) != 0) {
834 				if (bd_flushall(bd))
835 					continue;
836 				/*
837 				 * Speedup dirty if we've run out of clean
838 				 * buffers.  This is possible in particular
839 				 * because softdep may held many bufs locked
840 				 * pending writes to other bufs which are
841 				 * marked for delayed write, exhausting
842 				 * clean space until they are written.
843 				 */
844 				bd_speedup();
845 				BD_LOCK(bd);
846 				if (bd->bd_wanted) {
847 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
848 					    PRIBIO|PDROP, "bufspace", hz/10);
849 				} else
850 					BD_UNLOCK(bd);
851 			}
852 			maybe_yield();
853 		}
854 
855 		/*
856 		 * Re-check our limits and sleep.  bd_running must be
857 		 * cleared prior to checking the limits to avoid missed
858 		 * wakeups.  The waker will adjust one of bufspace or
859 		 * freebuffers prior to checking bd_running.
860 		 */
861 		BD_RUN_LOCK(bd);
862 		if (bd->bd_shutdown)
863 			break;
864 		atomic_store_int(&bd->bd_running, 0);
865 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
866 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
867 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
868 			    PRIBIO, "-", hz);
869 		} else {
870 			/* Avoid spurious wakeups while running. */
871 			atomic_store_int(&bd->bd_running, 1);
872 		}
873 	}
874 	wakeup(&bd->bd_shutdown);
875 	BD_RUN_UNLOCK(bd);
876 	kthread_exit();
877 }
878 
879 /*
880  *	bufmallocadjust:
881  *
882  *	Adjust the reported bufspace for a malloc managed buffer, possibly
883  *	waking any waiters.
884  */
885 static void
bufmallocadjust(struct buf * bp,int bufsize)886 bufmallocadjust(struct buf *bp, int bufsize)
887 {
888 	int diff;
889 
890 	KASSERT((bp->b_flags & B_MALLOC) != 0,
891 	    ("bufmallocadjust: non-malloc buf %p", bp));
892 	diff = bufsize - bp->b_bufsize;
893 	if (diff < 0)
894 		atomic_subtract_long(&bufmallocspace, -diff);
895 	else
896 		atomic_add_long(&bufmallocspace, diff);
897 	bp->b_bufsize = bufsize;
898 }
899 
900 /*
901  *	runningwakeup:
902  *
903  *	Wake up processes that are waiting on asynchronous writes to fall
904  *	below lorunningspace.
905  */
906 static void
runningwakeup(void)907 runningwakeup(void)
908 {
909 
910 	mtx_lock(&rbreqlock);
911 	if (runningbufreq) {
912 		runningbufreq = 0;
913 		wakeup(&runningbufreq);
914 	}
915 	mtx_unlock(&rbreqlock);
916 }
917 
918 /*
919  *	runningbufwakeup:
920  *
921  *	Decrement the outstanding write count according.
922  */
923 void
runningbufwakeup(struct buf * bp)924 runningbufwakeup(struct buf *bp)
925 {
926 	long space, bspace;
927 
928 	bspace = bp->b_runningbufspace;
929 	if (bspace == 0)
930 		return;
931 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
932 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
933 	    space, bspace));
934 	bp->b_runningbufspace = 0;
935 	/*
936 	 * Only acquire the lock and wakeup on the transition from exceeding
937 	 * the threshold to falling below it.
938 	 */
939 	if (space < lorunningspace)
940 		return;
941 	if (space - bspace > lorunningspace)
942 		return;
943 	runningwakeup();
944 }
945 
946 long
runningbufclaim(struct buf * bp,int space)947 runningbufclaim(struct buf *bp, int space)
948 {
949 	long old;
950 
951 	old = atomic_fetchadd_long(&runningbufspace, space);
952 	bp->b_runningbufspace = space;
953 	return (old);
954 }
955 
956 /*
957  *	waitrunningbufspace()
958  *
959  *	runningbufspace is a measure of the amount of I/O currently
960  *	running.  This routine is used in async-write situations to
961  *	prevent creating huge backups of pending writes to a device.
962  *	Only asynchronous writes are governed by this function.
963  *
964  *	This does NOT turn an async write into a sync write.  It waits
965  *	for earlier writes to complete and generally returns before the
966  *	caller's write has reached the device.
967  */
968 void
waitrunningbufspace(void)969 waitrunningbufspace(void)
970 {
971 
972 	mtx_lock(&rbreqlock);
973 	while (runningbufspace > hirunningspace) {
974 		runningbufreq = 1;
975 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
976 	}
977 	mtx_unlock(&rbreqlock);
978 }
979 
980 /*
981  *	vfs_buf_test_cache:
982  *
983  *	Called when a buffer is extended.  This function clears the B_CACHE
984  *	bit if the newly extended portion of the buffer does not contain
985  *	valid data.
986  */
987 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)988 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
989     vm_offset_t size, vm_page_t m)
990 {
991 
992 	/*
993 	 * This function and its results are protected by higher level
994 	 * synchronization requiring vnode and buf locks to page in and
995 	 * validate pages.
996 	 */
997 	if (bp->b_flags & B_CACHE) {
998 		int base = (foff + off) & PAGE_MASK;
999 		if (vm_page_is_valid(m, base, size) == 0)
1000 			bp->b_flags &= ~B_CACHE;
1001 	}
1002 }
1003 
1004 /* Wake up the buffer daemon if necessary */
1005 static void
bd_wakeup(void)1006 bd_wakeup(void)
1007 {
1008 
1009 	mtx_lock(&bdlock);
1010 	if (bd_request == 0) {
1011 		bd_request = 1;
1012 		wakeup(&bd_request);
1013 	}
1014 	mtx_unlock(&bdlock);
1015 }
1016 
1017 /*
1018  * Adjust the maxbcachbuf tunable.
1019  */
1020 static void
maxbcachebuf_adjust(void)1021 maxbcachebuf_adjust(void)
1022 {
1023 	int i;
1024 
1025 	/*
1026 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1027 	 */
1028 	i = 2;
1029 	while (i * 2 <= maxbcachebuf)
1030 		i *= 2;
1031 	maxbcachebuf = i;
1032 	if (maxbcachebuf < MAXBSIZE)
1033 		maxbcachebuf = MAXBSIZE;
1034 	if (maxbcachebuf > maxphys)
1035 		maxbcachebuf = maxphys;
1036 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1037 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1038 }
1039 
1040 /*
1041  * bd_speedup - speedup the buffer cache flushing code
1042  */
1043 void
bd_speedup(void)1044 bd_speedup(void)
1045 {
1046 	int needwake;
1047 
1048 	mtx_lock(&bdlock);
1049 	needwake = 0;
1050 	if (bd_speedupreq == 0 || bd_request == 0)
1051 		needwake = 1;
1052 	bd_speedupreq = 1;
1053 	bd_request = 1;
1054 	if (needwake)
1055 		wakeup(&bd_request);
1056 	mtx_unlock(&bdlock);
1057 }
1058 
1059 #ifdef __i386__
1060 #define	TRANSIENT_DENOM	5
1061 #else
1062 #define	TRANSIENT_DENOM 10
1063 #endif
1064 
1065 /*
1066  * Calculating buffer cache scaling values and reserve space for buffer
1067  * headers.  This is called during low level kernel initialization and
1068  * may be called more then once.  We CANNOT write to the memory area
1069  * being reserved at this time.
1070  */
1071 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1072 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1073 {
1074 	int tuned_nbuf;
1075 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1076 
1077 	/*
1078 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1079 	 * this when sizing maps based on the amount of physical memory
1080 	 * available.
1081 	 */
1082 #if defined(KASAN)
1083 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1084 	    (KASAN_SHADOW_SCALE + 1);
1085 #elif defined(KMSAN)
1086 	physmem_est /= 3;
1087 
1088 	/*
1089 	 * KMSAN cannot reliably determine whether buffer data is initialized
1090 	 * unless it is updated through a KVA mapping.
1091 	 */
1092 	unmapped_buf_allowed = 0;
1093 #endif
1094 
1095 	/*
1096 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1097 	 * PAGE_SIZE is >= 1K)
1098 	 */
1099 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1100 
1101 	maxbcachebuf_adjust();
1102 	/*
1103 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1104 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1105 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1106 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1107 	 * the buffer cache we limit the eventual kva reservation to
1108 	 * maxbcache bytes.
1109 	 *
1110 	 * factor represents the 1/4 x ram conversion.
1111 	 */
1112 	if (nbuf == 0) {
1113 		int factor = 4 * BKVASIZE / 1024;
1114 
1115 		nbuf = 50;
1116 		if (physmem_est > 4096)
1117 			nbuf += min((physmem_est - 4096) / factor,
1118 			    65536 / factor);
1119 		if (physmem_est > 65536)
1120 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1121 			    32 * 1024 * 1024 / (factor * 5));
1122 
1123 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1124 			nbuf = maxbcache / BKVASIZE;
1125 		tuned_nbuf = 1;
1126 	} else
1127 		tuned_nbuf = 0;
1128 
1129 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1130 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1131 	if (nbuf > maxbuf) {
1132 		if (!tuned_nbuf)
1133 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1134 			    maxbuf);
1135 		nbuf = maxbuf;
1136 	}
1137 
1138 	/*
1139 	 * Ideal allocation size for the transient bio submap is 10%
1140 	 * of the maximal space buffer map.  This roughly corresponds
1141 	 * to the amount of the buffer mapped for typical UFS load.
1142 	 *
1143 	 * Clip the buffer map to reserve space for the transient
1144 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1145 	 * maximum buffer map extent on the platform.
1146 	 *
1147 	 * The fall-back to the maxbuf in case of maxbcache unset,
1148 	 * allows to not trim the buffer KVA for the architectures
1149 	 * with ample KVA space.
1150 	 */
1151 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1152 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1153 		buf_sz = (long)nbuf * BKVASIZE;
1154 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1155 		    (TRANSIENT_DENOM - 1)) {
1156 			/*
1157 			 * There is more KVA than memory.  Do not
1158 			 * adjust buffer map size, and assign the rest
1159 			 * of maxbuf to transient map.
1160 			 */
1161 			biotmap_sz = maxbuf_sz - buf_sz;
1162 		} else {
1163 			/*
1164 			 * Buffer map spans all KVA we could afford on
1165 			 * this platform.  Give 10% (20% on i386) of
1166 			 * the buffer map to the transient bio map.
1167 			 */
1168 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1169 			buf_sz -= biotmap_sz;
1170 		}
1171 		if (biotmap_sz / INT_MAX > maxphys)
1172 			bio_transient_maxcnt = INT_MAX;
1173 		else
1174 			bio_transient_maxcnt = biotmap_sz / maxphys;
1175 		/*
1176 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1177 		 * using the transient mapping.
1178 		 */
1179 		if (bio_transient_maxcnt > 1024)
1180 			bio_transient_maxcnt = 1024;
1181 		if (tuned_nbuf)
1182 			nbuf = buf_sz / BKVASIZE;
1183 	}
1184 
1185 	if (nswbuf == 0) {
1186 		/*
1187 		 * Pager buffers are allocated for short periods, so scale the
1188 		 * number of reserved buffers based on the number of CPUs rather
1189 		 * than amount of memory.
1190 		 */
1191 		nswbuf = min(nbuf / 4, 32 * mp_ncpus);
1192 		if (nswbuf < NSWBUF_MIN)
1193 			nswbuf = NSWBUF_MIN;
1194 	}
1195 
1196 	/*
1197 	 * Reserve space for the buffer cache buffers
1198 	 */
1199 	buf = (char *)v;
1200 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1201 	    atop(maxbcachebuf)) * nbuf;
1202 
1203 	return (v);
1204 }
1205 
1206 /*
1207  * Single global constant for BUF_WMESG, to avoid getting multiple
1208  * references.
1209  */
1210 static const char buf_wmesg[] = "bufwait";
1211 
1212 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1213 void
bufinit(void)1214 bufinit(void)
1215 {
1216 	struct buf *bp;
1217 	int i;
1218 
1219 	TSENTER();
1220 	KASSERT(maxbcachebuf >= MAXBSIZE,
1221 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1222 	    MAXBSIZE));
1223 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1224 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1225 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1226 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1227 
1228 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1229 #ifdef INVARIANTS
1230 	poisoned_buf = unmapped_buf;
1231 #endif
1232 
1233 	/* finally, initialize each buffer header and stick on empty q */
1234 	for (i = 0; i < nbuf; i++) {
1235 		bp = nbufp(i);
1236 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1237 		bp->b_flags = B_INVAL;
1238 		bp->b_rcred = NOCRED;
1239 		bp->b_wcred = NOCRED;
1240 		bp->b_qindex = QUEUE_NONE;
1241 		bp->b_domain = -1;
1242 		bp->b_subqueue = mp_maxid + 1;
1243 		bp->b_xflags = 0;
1244 		bp->b_data = bp->b_kvabase = unmapped_buf;
1245 		LIST_INIT(&bp->b_dep);
1246 		BUF_LOCKINIT(bp, buf_wmesg);
1247 		bq_insert(&bqempty, bp, false);
1248 	}
1249 
1250 	/*
1251 	 * maxbufspace is the absolute maximum amount of buffer space we are
1252 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1253 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1254 	 * used by most other requests.  The differential is required to
1255 	 * ensure that metadata deadlocks don't occur.
1256 	 *
1257 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1258 	 * this may result in KVM fragmentation which is not handled optimally
1259 	 * by the system. XXX This is less true with vmem.  We could use
1260 	 * PAGE_SIZE.
1261 	 */
1262 	maxbufspace = (long)nbuf * BKVASIZE;
1263 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1264 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1265 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1266 
1267 	/*
1268 	 * Note: The upper limit for hirunningspace was chosen arbitrarily and
1269 	 * may need further tuning. It corresponds to 128 outstanding write IO
1270 	 * requests, which fits with many RAID controllers' tagged queuing
1271 	 * limits.
1272 	 *
1273 	 * The lower 1 MiB limit is the historical upper limit for
1274 	 * hirunningspace.
1275 	 */
1276 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1277 	    128 * maxphys), 1024 * 1024);
1278 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1279 
1280 	/*
1281 	 * Limit the amount of malloc memory since it is wired permanently into
1282 	 * the kernel space.  Even though this is accounted for in the buffer
1283 	 * allocation, we don't want the malloced region to grow uncontrolled.
1284 	 * The malloc scheme improves memory utilization significantly on
1285 	 * average (small) directories.
1286 	 */
1287 	maxbufmallocspace = hibufspace / 20;
1288 
1289 	/*
1290 	 * Reduce the chance of a deadlock occurring by limiting the number
1291 	 * of delayed-write dirty buffers we allow to stack up.
1292 	 */
1293 	hidirtybuffers = nbuf / 4 + 20;
1294 	dirtybufthresh = hidirtybuffers * 9 / 10;
1295 	/*
1296 	 * To support extreme low-memory systems, make sure hidirtybuffers
1297 	 * cannot eat up all available buffer space.  This occurs when our
1298 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1299 	 * buffer space assuming BKVASIZE'd buffers.
1300 	 */
1301 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1302 		hidirtybuffers >>= 1;
1303 	}
1304 	lodirtybuffers = hidirtybuffers / 2;
1305 
1306 	/*
1307 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1308 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1309 	 * are counted as free but will be unavailable to threads executing
1310 	 * on other cpus.
1311 	 *
1312 	 * hifreebuffers is the free target for the bufspace daemon.  This
1313 	 * should be set appropriately to limit work per-iteration.
1314 	 */
1315 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1316 	hifreebuffers = (3 * lofreebuffers) / 2;
1317 	numfreebuffers = nbuf;
1318 
1319 	/* Setup the kva and free list allocators. */
1320 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1321 	buf_zone = uma_zcache_create("buf free cache",
1322 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1323 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1324 
1325 	/*
1326 	 * Size the clean queue according to the amount of buffer space.
1327 	 * One queue per-256mb up to the max.  More queues gives better
1328 	 * concurrency but less accurate LRU.
1329 	 */
1330 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1331 	for (i = 0 ; i < buf_domains; i++) {
1332 		struct bufdomain *bd;
1333 
1334 		bd = &bdomain[i];
1335 		bd_init(bd);
1336 		bd->bd_freebuffers = nbuf / buf_domains;
1337 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1338 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1339 		bd->bd_bufspace = 0;
1340 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1341 		bd->bd_hibufspace = hibufspace / buf_domains;
1342 		bd->bd_lobufspace = lobufspace / buf_domains;
1343 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1344 		bd->bd_numdirtybuffers = 0;
1345 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1346 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1347 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1348 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1349 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1350 	}
1351 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1352 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1353 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1354 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1355 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1356 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1357 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1358 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1359 	TSEXIT();
1360 }
1361 
1362 #ifdef INVARIANTS
1363 static inline void
vfs_buf_check_mapped(struct buf * bp)1364 vfs_buf_check_mapped(struct buf *bp)
1365 {
1366 
1367 	KASSERT(bp->b_kvabase != unmapped_buf,
1368 	    ("mapped buf: b_kvabase was not updated %p", bp));
1369 	KASSERT(bp->b_data != unmapped_buf,
1370 	    ("mapped buf: b_data was not updated %p", bp));
1371 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1372 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1373 }
1374 
1375 static inline void
vfs_buf_check_unmapped(struct buf * bp)1376 vfs_buf_check_unmapped(struct buf *bp)
1377 {
1378 
1379 	KASSERT(bp->b_data == unmapped_buf,
1380 	    ("unmapped buf: corrupted b_data %p", bp));
1381 }
1382 
1383 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1384 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1385 #else
1386 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1387 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1388 #endif
1389 
1390 static int
isbufbusy(struct buf * bp)1391 isbufbusy(struct buf *bp)
1392 {
1393 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1394 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1395 		return (1);
1396 	return (0);
1397 }
1398 
1399 /*
1400  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1401  */
1402 void
bufshutdown(int show_busybufs)1403 bufshutdown(int show_busybufs)
1404 {
1405 	static int first_buf_printf = 1;
1406 	struct buf *bp;
1407 	int i, iter, nbusy, pbusy;
1408 #ifndef PREEMPTION
1409 	int subiter;
1410 #endif
1411 
1412 	/*
1413 	 * Sync filesystems for shutdown
1414 	 */
1415 	wdog_kern_pat(WD_LASTVAL);
1416 	kern_sync(curthread);
1417 
1418 	/*
1419 	 * With soft updates, some buffers that are
1420 	 * written will be remarked as dirty until other
1421 	 * buffers are written.
1422 	 */
1423 	for (iter = pbusy = 0; iter < 20; iter++) {
1424 		nbusy = 0;
1425 		for (i = nbuf - 1; i >= 0; i--) {
1426 			bp = nbufp(i);
1427 			if (isbufbusy(bp))
1428 				nbusy++;
1429 		}
1430 		if (nbusy == 0) {
1431 			if (first_buf_printf)
1432 				printf("All buffers synced.");
1433 			break;
1434 		}
1435 		if (first_buf_printf) {
1436 			printf("Syncing disks, buffers remaining... ");
1437 			first_buf_printf = 0;
1438 		}
1439 		printf("%d ", nbusy);
1440 		if (nbusy < pbusy)
1441 			iter = 0;
1442 		pbusy = nbusy;
1443 
1444 		wdog_kern_pat(WD_LASTVAL);
1445 		kern_sync(curthread);
1446 
1447 #ifdef PREEMPTION
1448 		/*
1449 		 * Spin for a while to allow interrupt threads to run.
1450 		 */
1451 		DELAY(50000 * iter);
1452 #else
1453 		/*
1454 		 * Context switch several times to allow interrupt
1455 		 * threads to run.
1456 		 */
1457 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1458 			sched_relinquish(curthread);
1459 			DELAY(1000);
1460 		}
1461 #endif
1462 	}
1463 	printf("\n");
1464 	/*
1465 	 * Count only busy local buffers to prevent forcing
1466 	 * a fsck if we're just a client of a wedged NFS server
1467 	 */
1468 	nbusy = 0;
1469 	for (i = nbuf - 1; i >= 0; i--) {
1470 		bp = nbufp(i);
1471 		if (isbufbusy(bp)) {
1472 #if 0
1473 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1474 			if (bp->b_dev == NULL) {
1475 				TAILQ_REMOVE(&mountlist,
1476 				    bp->b_vp->v_mount, mnt_list);
1477 				continue;
1478 			}
1479 #endif
1480 			nbusy++;
1481 			if (show_busybufs > 0) {
1482 				printf(
1483 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1484 				    nbusy, bp, bp->b_vp, bp->b_flags,
1485 				    (intmax_t)bp->b_blkno,
1486 				    (intmax_t)bp->b_lblkno);
1487 				BUF_LOCKPRINTINFO(bp);
1488 				if (show_busybufs > 1)
1489 					vn_printf(bp->b_vp,
1490 					    "vnode content: ");
1491 			}
1492 		}
1493 	}
1494 	if (nbusy) {
1495 		/*
1496 		 * Failed to sync all blocks. Indicate this and don't
1497 		 * unmount filesystems (thus forcing an fsck on reboot).
1498 		 */
1499 		BOOTTRACE("shutdown failed to sync buffers");
1500 		printf("Giving up on %d buffers\n", nbusy);
1501 		DELAY(5000000);	/* 5 seconds */
1502 		swapoff_all();
1503 	} else {
1504 		BOOTTRACE("shutdown sync complete");
1505 		if (!first_buf_printf)
1506 			printf("Final sync complete\n");
1507 
1508 		/*
1509 		 * Unmount filesystems and perform swapoff, to quiesce
1510 		 * the system as much as possible.  In particular, no
1511 		 * I/O should be initiated from top levels since it
1512 		 * might be abruptly terminated by reset, or otherwise
1513 		 * erronously handled because other parts of the
1514 		 * system are disabled.
1515 		 *
1516 		 * Swapoff before unmount, because file-backed swap is
1517 		 * non-operational after unmount of the underlying
1518 		 * filesystem.
1519 		 */
1520 		if (!KERNEL_PANICKED()) {
1521 			swapoff_all();
1522 			vfs_unmountall();
1523 			BOOTTRACE("shutdown unmounted all filesystems");
1524 		}
1525 	}
1526 	DELAY(100000);		/* wait for console output to finish */
1527 }
1528 
1529 static void
bpmap_qenter(struct buf * bp)1530 bpmap_qenter(struct buf *bp)
1531 {
1532 
1533 	BUF_CHECK_MAPPED(bp);
1534 
1535 	/*
1536 	 * bp->b_data is relative to bp->b_offset, but
1537 	 * bp->b_offset may be offset into the first page.
1538 	 */
1539 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1540 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1541 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1542 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1543 }
1544 
1545 static inline struct bufdomain *
bufdomain(struct buf * bp)1546 bufdomain(struct buf *bp)
1547 {
1548 
1549 	return (&bdomain[bp->b_domain]);
1550 }
1551 
1552 static struct bufqueue *
bufqueue(struct buf * bp)1553 bufqueue(struct buf *bp)
1554 {
1555 
1556 	switch (bp->b_qindex) {
1557 	case QUEUE_NONE:
1558 		/* FALLTHROUGH */
1559 	case QUEUE_SENTINEL:
1560 		return (NULL);
1561 	case QUEUE_EMPTY:
1562 		return (&bqempty);
1563 	case QUEUE_DIRTY:
1564 		return (&bufdomain(bp)->bd_dirtyq);
1565 	case QUEUE_CLEAN:
1566 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1567 	default:
1568 		break;
1569 	}
1570 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1571 }
1572 
1573 /*
1574  * Return the locked bufqueue that bp is a member of.
1575  */
1576 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1577 bufqueue_acquire(struct buf *bp)
1578 {
1579 	struct bufqueue *bq, *nbq;
1580 
1581 	/*
1582 	 * bp can be pushed from a per-cpu queue to the
1583 	 * cleanq while we're waiting on the lock.  Retry
1584 	 * if the queues don't match.
1585 	 */
1586 	bq = bufqueue(bp);
1587 	BQ_LOCK(bq);
1588 	for (;;) {
1589 		nbq = bufqueue(bp);
1590 		if (bq == nbq)
1591 			break;
1592 		BQ_UNLOCK(bq);
1593 		BQ_LOCK(nbq);
1594 		bq = nbq;
1595 	}
1596 	return (bq);
1597 }
1598 
1599 /*
1600  *	binsfree:
1601  *
1602  *	Insert the buffer into the appropriate free list.  Requires a
1603  *	locked buffer on entry and buffer is unlocked before return.
1604  */
1605 static void
binsfree(struct buf * bp,int qindex)1606 binsfree(struct buf *bp, int qindex)
1607 {
1608 	struct bufdomain *bd;
1609 	struct bufqueue *bq;
1610 
1611 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1612 	    ("binsfree: Invalid qindex %d", qindex));
1613 	BUF_ASSERT_XLOCKED(bp);
1614 
1615 	/*
1616 	 * Handle delayed bremfree() processing.
1617 	 */
1618 	if (bp->b_flags & B_REMFREE) {
1619 		if (bp->b_qindex == qindex) {
1620 			bp->b_flags |= B_REUSE;
1621 			bp->b_flags &= ~B_REMFREE;
1622 			BUF_UNLOCK(bp);
1623 			return;
1624 		}
1625 		bq = bufqueue_acquire(bp);
1626 		bq_remove(bq, bp);
1627 		BQ_UNLOCK(bq);
1628 	}
1629 	bd = bufdomain(bp);
1630 	if (qindex == QUEUE_CLEAN) {
1631 		if (bd->bd_lim != 0)
1632 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1633 		else
1634 			bq = bd->bd_cleanq;
1635 	} else
1636 		bq = &bd->bd_dirtyq;
1637 	bq_insert(bq, bp, true);
1638 }
1639 
1640 /*
1641  * buf_free:
1642  *
1643  *	Free a buffer to the buf zone once it no longer has valid contents.
1644  */
1645 static void
buf_free(struct buf * bp)1646 buf_free(struct buf *bp)
1647 {
1648 
1649 	if (bp->b_flags & B_REMFREE)
1650 		bremfreef(bp);
1651 	if (bp->b_vflags & BV_BKGRDINPROG)
1652 		panic("losing buffer 1");
1653 	if (bp->b_rcred != NOCRED) {
1654 		crfree(bp->b_rcred);
1655 		bp->b_rcred = NOCRED;
1656 	}
1657 	if (bp->b_wcred != NOCRED) {
1658 		crfree(bp->b_wcred);
1659 		bp->b_wcred = NOCRED;
1660 	}
1661 	if (!LIST_EMPTY(&bp->b_dep))
1662 		buf_deallocate(bp);
1663 	bufkva_free(bp);
1664 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1665 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1666 	BUF_UNLOCK(bp);
1667 	uma_zfree(buf_zone, bp);
1668 }
1669 
1670 /*
1671  * buf_import:
1672  *
1673  *	Import bufs into the uma cache from the buf list.  The system still
1674  *	expects a static array of bufs and much of the synchronization
1675  *	around bufs assumes type stable storage.  As a result, UMA is used
1676  *	only as a per-cpu cache of bufs still maintained on a global list.
1677  */
1678 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1679 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1680 {
1681 	struct buf *bp;
1682 	int i;
1683 
1684 	BQ_LOCK(&bqempty);
1685 	for (i = 0; i < cnt; i++) {
1686 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1687 		if (bp == NULL)
1688 			break;
1689 		bq_remove(&bqempty, bp);
1690 		store[i] = bp;
1691 	}
1692 	BQ_UNLOCK(&bqempty);
1693 
1694 	return (i);
1695 }
1696 
1697 /*
1698  * buf_release:
1699  *
1700  *	Release bufs from the uma cache back to the buffer queues.
1701  */
1702 static void
buf_release(void * arg,void ** store,int cnt)1703 buf_release(void *arg, void **store, int cnt)
1704 {
1705 	struct bufqueue *bq;
1706 	struct buf *bp;
1707         int i;
1708 
1709 	bq = &bqempty;
1710 	BQ_LOCK(bq);
1711         for (i = 0; i < cnt; i++) {
1712 		bp = store[i];
1713 		/* Inline bq_insert() to batch locking. */
1714 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1715 		bp->b_flags &= ~(B_AGE | B_REUSE);
1716 		bq->bq_len++;
1717 		bp->b_qindex = bq->bq_index;
1718 	}
1719 	BQ_UNLOCK(bq);
1720 }
1721 
1722 /*
1723  * buf_alloc:
1724  *
1725  *	Allocate an empty buffer header.
1726  */
1727 static struct buf *
buf_alloc(struct bufdomain * bd)1728 buf_alloc(struct bufdomain *bd)
1729 {
1730 	struct buf *bp;
1731 	int freebufs, error;
1732 
1733 	/*
1734 	 * We can only run out of bufs in the buf zone if the average buf
1735 	 * is less than BKVASIZE.  In this case the actual wait/block will
1736 	 * come from buf_reycle() failing to flush one of these small bufs.
1737 	 */
1738 	bp = NULL;
1739 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1740 	if (freebufs > 0)
1741 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1742 	if (bp == NULL) {
1743 		atomic_add_int(&bd->bd_freebuffers, 1);
1744 		bufspace_daemon_wakeup(bd);
1745 		counter_u64_add(numbufallocfails, 1);
1746 		return (NULL);
1747 	}
1748 	/*
1749 	 * Wake-up the bufspace daemon on transition below threshold.
1750 	 */
1751 	if (freebufs == bd->bd_lofreebuffers)
1752 		bufspace_daemon_wakeup(bd);
1753 
1754 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1755 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1756 	    error));
1757 	(void)error;
1758 
1759 	KASSERT(bp->b_vp == NULL,
1760 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1761 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1762 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1763 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1764 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1765 	KASSERT(bp->b_npages == 0,
1766 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1767 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1768 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1769 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1770 
1771 	bp->b_domain = BD_DOMAIN(bd);
1772 	bp->b_flags = 0;
1773 	bp->b_ioflags = 0;
1774 	bp->b_xflags = 0;
1775 	bp->b_vflags = 0;
1776 	bp->b_vp = NULL;
1777 	bp->b_blkno = bp->b_lblkno = 0;
1778 	bp->b_offset = NOOFFSET;
1779 	bp->b_iodone = 0;
1780 	bp->b_resid = 0;
1781 	bp->b_bcount = 0;
1782 	bp->b_npages = 0;
1783 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1784 	bp->b_bufobj = NULL;
1785 	bp->b_data = bp->b_kvabase = unmapped_buf;
1786 	bp->b_fsprivate1 = NULL;
1787 	bp->b_fsprivate2 = NULL;
1788 	bp->b_fsprivate3 = NULL;
1789 	exterr_clear(&bp->b_exterr);
1790 	LIST_INIT(&bp->b_dep);
1791 
1792 	return (bp);
1793 }
1794 
1795 /*
1796  *	buf_recycle:
1797  *
1798  *	Free a buffer from the given bufqueue.  kva controls whether the
1799  *	freed buf must own some kva resources.  This is used for
1800  *	defragmenting.
1801  */
1802 static int
buf_recycle(struct bufdomain * bd,bool kva)1803 buf_recycle(struct bufdomain *bd, bool kva)
1804 {
1805 	struct bufqueue *bq;
1806 	struct buf *bp, *nbp;
1807 
1808 	if (kva)
1809 		counter_u64_add(bufdefragcnt, 1);
1810 	nbp = NULL;
1811 	bq = bd->bd_cleanq;
1812 	BQ_LOCK(bq);
1813 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1814 	    ("buf_recycle: Locks don't match"));
1815 	nbp = TAILQ_FIRST(&bq->bq_queue);
1816 
1817 	/*
1818 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1819 	 * depending.
1820 	 */
1821 	while ((bp = nbp) != NULL) {
1822 		/*
1823 		 * Calculate next bp (we can only use it if we do not
1824 		 * release the bqlock).
1825 		 */
1826 		nbp = TAILQ_NEXT(bp, b_freelist);
1827 
1828 		/*
1829 		 * If we are defragging then we need a buffer with
1830 		 * some kva to reclaim.
1831 		 */
1832 		if (kva && bp->b_kvasize == 0)
1833 			continue;
1834 
1835 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1836 			continue;
1837 
1838 		/*
1839 		 * Implement a second chance algorithm for frequently
1840 		 * accessed buffers.
1841 		 */
1842 		if ((bp->b_flags & B_REUSE) != 0) {
1843 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1844 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1845 			bp->b_flags &= ~B_REUSE;
1846 			BUF_UNLOCK(bp);
1847 			continue;
1848 		}
1849 
1850 		/*
1851 		 * Skip buffers with background writes in progress.
1852 		 */
1853 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1854 			BUF_UNLOCK(bp);
1855 			continue;
1856 		}
1857 
1858 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1859 		    ("buf_recycle: inconsistent queue %d bp %p",
1860 		    bp->b_qindex, bp));
1861 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1862 		    ("getnewbuf: queue domain %d doesn't match request %d",
1863 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1864 		/*
1865 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1866 		 * the scan from this point on.
1867 		 */
1868 		bq_remove(bq, bp);
1869 		BQ_UNLOCK(bq);
1870 
1871 		/*
1872 		 * Requeue the background write buffer with error and
1873 		 * restart the scan.
1874 		 */
1875 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1876 			bqrelse(bp);
1877 			BQ_LOCK(bq);
1878 			nbp = TAILQ_FIRST(&bq->bq_queue);
1879 			continue;
1880 		}
1881 		bp->b_flags |= B_INVAL;
1882 		brelse(bp);
1883 		return (0);
1884 	}
1885 	bd->bd_wanted = 1;
1886 	BQ_UNLOCK(bq);
1887 
1888 	return (ENOBUFS);
1889 }
1890 
1891 /*
1892  *	bremfree:
1893  *
1894  *	Mark the buffer for removal from the appropriate free list.
1895  *
1896  */
1897 void
bremfree(struct buf * bp)1898 bremfree(struct buf *bp)
1899 {
1900 
1901 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1902 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1903 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1904 	KASSERT(bp->b_qindex != QUEUE_NONE,
1905 	    ("bremfree: buffer %p not on a queue.", bp));
1906 	BUF_ASSERT_XLOCKED(bp);
1907 
1908 	bp->b_flags |= B_REMFREE;
1909 }
1910 
1911 /*
1912  *	bremfreef:
1913  *
1914  *	Force an immediate removal from a free list.  Used only in nfs when
1915  *	it abuses the b_freelist pointer.
1916  */
1917 void
bremfreef(struct buf * bp)1918 bremfreef(struct buf *bp)
1919 {
1920 	struct bufqueue *bq;
1921 
1922 	bq = bufqueue_acquire(bp);
1923 	bq_remove(bq, bp);
1924 	BQ_UNLOCK(bq);
1925 }
1926 
1927 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1928 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1929 {
1930 
1931 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1932 	TAILQ_INIT(&bq->bq_queue);
1933 	bq->bq_len = 0;
1934 	bq->bq_index = qindex;
1935 	bq->bq_subqueue = subqueue;
1936 }
1937 
1938 static void
bd_init(struct bufdomain * bd)1939 bd_init(struct bufdomain *bd)
1940 {
1941 	int i;
1942 
1943 	/* Per-CPU clean buf queues, plus one global queue. */
1944 	bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
1945 	    M_BIOBUF, M_WAITOK | M_ZERO);
1946 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1947 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1948 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1949 	for (i = 0; i <= mp_maxid; i++)
1950 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1951 		    "bufq clean subqueue lock");
1952 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1953 }
1954 
1955 /*
1956  *	bq_remove:
1957  *
1958  *	Removes a buffer from the free list, must be called with the
1959  *	correct qlock held.
1960  */
1961 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1962 bq_remove(struct bufqueue *bq, struct buf *bp)
1963 {
1964 
1965 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1966 	    bp, bp->b_vp, bp->b_flags);
1967 	KASSERT(bp->b_qindex != QUEUE_NONE,
1968 	    ("bq_remove: buffer %p not on a queue.", bp));
1969 	KASSERT(bufqueue(bp) == bq,
1970 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1971 
1972 	BQ_ASSERT_LOCKED(bq);
1973 	if (bp->b_qindex != QUEUE_EMPTY) {
1974 		BUF_ASSERT_XLOCKED(bp);
1975 	}
1976 	KASSERT(bq->bq_len >= 1,
1977 	    ("queue %d underflow", bp->b_qindex));
1978 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1979 	bq->bq_len--;
1980 	bp->b_qindex = QUEUE_NONE;
1981 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1982 }
1983 
1984 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1985 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1986 {
1987 	struct buf *bp;
1988 
1989 	BQ_ASSERT_LOCKED(bq);
1990 	if (bq != bd->bd_cleanq) {
1991 		BD_LOCK(bd);
1992 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1993 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1994 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1995 			    b_freelist);
1996 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1997 		}
1998 		bd->bd_cleanq->bq_len += bq->bq_len;
1999 		bq->bq_len = 0;
2000 	}
2001 	if (bd->bd_wanted) {
2002 		bd->bd_wanted = 0;
2003 		wakeup(&bd->bd_wanted);
2004 	}
2005 	if (bq != bd->bd_cleanq)
2006 		BD_UNLOCK(bd);
2007 }
2008 
2009 static int
bd_flushall(struct bufdomain * bd)2010 bd_flushall(struct bufdomain *bd)
2011 {
2012 	struct bufqueue *bq;
2013 	int flushed;
2014 	int i;
2015 
2016 	if (bd->bd_lim == 0)
2017 		return (0);
2018 	flushed = 0;
2019 	for (i = 0; i <= mp_maxid; i++) {
2020 		bq = &bd->bd_subq[i];
2021 		if (bq->bq_len == 0)
2022 			continue;
2023 		BQ_LOCK(bq);
2024 		bd_flush(bd, bq);
2025 		BQ_UNLOCK(bq);
2026 		flushed++;
2027 	}
2028 
2029 	return (flushed);
2030 }
2031 
2032 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)2033 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
2034 {
2035 	struct bufdomain *bd;
2036 
2037 	if (bp->b_qindex != QUEUE_NONE)
2038 		panic("bq_insert: free buffer %p onto another queue?", bp);
2039 
2040 	bd = bufdomain(bp);
2041 	if (bp->b_flags & B_AGE) {
2042 		/* Place this buf directly on the real queue. */
2043 		if (bq->bq_index == QUEUE_CLEAN)
2044 			bq = bd->bd_cleanq;
2045 		BQ_LOCK(bq);
2046 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2047 	} else {
2048 		BQ_LOCK(bq);
2049 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2050 	}
2051 	bp->b_flags &= ~(B_AGE | B_REUSE);
2052 	bq->bq_len++;
2053 	bp->b_qindex = bq->bq_index;
2054 	bp->b_subqueue = bq->bq_subqueue;
2055 
2056 	/*
2057 	 * Unlock before we notify so that we don't wakeup a waiter that
2058 	 * fails a trylock on the buf and sleeps again.
2059 	 */
2060 	if (unlock)
2061 		BUF_UNLOCK(bp);
2062 
2063 	if (bp->b_qindex == QUEUE_CLEAN) {
2064 		/*
2065 		 * Flush the per-cpu queue and notify any waiters.
2066 		 */
2067 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2068 		    bq->bq_len >= bd->bd_lim))
2069 			bd_flush(bd, bq);
2070 	}
2071 	BQ_UNLOCK(bq);
2072 }
2073 
2074 /*
2075  *	bufkva_free:
2076  *
2077  *	Free the kva allocation for a buffer.
2078  *
2079  */
2080 static void
bufkva_free(struct buf * bp)2081 bufkva_free(struct buf *bp)
2082 {
2083 
2084 #ifdef INVARIANTS
2085 	if (bp->b_kvasize == 0) {
2086 		KASSERT(bp->b_kvabase == unmapped_buf &&
2087 		    bp->b_data == unmapped_buf,
2088 		    ("Leaked KVA space on %p", bp));
2089 	} else if (buf_mapped(bp))
2090 		BUF_CHECK_MAPPED(bp);
2091 	else
2092 		BUF_CHECK_UNMAPPED(bp);
2093 #endif
2094 	if (bp->b_kvasize == 0)
2095 		return;
2096 
2097 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2098 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2099 	counter_u64_add(buffreekvacnt, 1);
2100 	bp->b_data = bp->b_kvabase = unmapped_buf;
2101 	bp->b_kvasize = 0;
2102 }
2103 
2104 /*
2105  *	bufkva_alloc:
2106  *
2107  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2108  */
2109 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2110 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2111 {
2112 	vm_offset_t addr;
2113 	int error;
2114 
2115 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2116 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2117 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2118 	KASSERT(maxsize <= maxbcachebuf,
2119 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2120 
2121 	bufkva_free(bp);
2122 
2123 	addr = 0;
2124 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2125 	if (error != 0) {
2126 		/*
2127 		 * Buffer map is too fragmented.  Request the caller
2128 		 * to defragment the map.
2129 		 */
2130 		return (error);
2131 	}
2132 	bp->b_kvabase = (caddr_t)addr;
2133 	bp->b_kvasize = maxsize;
2134 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2135 	if ((gbflags & GB_UNMAPPED) != 0) {
2136 		bp->b_data = unmapped_buf;
2137 		BUF_CHECK_UNMAPPED(bp);
2138 	} else {
2139 		bp->b_data = bp->b_kvabase;
2140 		BUF_CHECK_MAPPED(bp);
2141 	}
2142 	return (0);
2143 }
2144 
2145 /*
2146  *	bufkva_reclaim:
2147  *
2148  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2149  *	callback that fires to avoid returning failure.
2150  */
2151 static void
bufkva_reclaim(vmem_t * vmem,int flags)2152 bufkva_reclaim(vmem_t *vmem, int flags)
2153 {
2154 	bool done;
2155 	int q;
2156 	int i;
2157 
2158 	done = false;
2159 	for (i = 0; i < 5; i++) {
2160 		for (q = 0; q < buf_domains; q++)
2161 			if (buf_recycle(&bdomain[q], true) != 0)
2162 				done = true;
2163 		if (done)
2164 			break;
2165 	}
2166 	return;
2167 }
2168 
2169 /*
2170  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2171  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2172  * the buffer is valid and we do not have to do anything.
2173  */
2174 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2175 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2176     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2177 {
2178 	struct buf *rabp;
2179 	struct thread *td;
2180 	int i;
2181 
2182 	td = curthread;
2183 
2184 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2185 		if (inmem(vp, *rablkno))
2186 			continue;
2187 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2188 		if ((rabp->b_flags & B_CACHE) != 0) {
2189 			brelse(rabp);
2190 			continue;
2191 		}
2192 #ifdef RACCT
2193 		if (racct_enable) {
2194 			PROC_LOCK(curproc);
2195 			racct_add_buf(curproc, rabp, 0);
2196 			PROC_UNLOCK(curproc);
2197 		}
2198 #endif /* RACCT */
2199 		td->td_ru.ru_inblock++;
2200 		rabp->b_flags |= B_ASYNC;
2201 		rabp->b_flags &= ~B_INVAL;
2202 		if ((flags & GB_CKHASH) != 0) {
2203 			rabp->b_flags |= B_CKHASH;
2204 			rabp->b_ckhashcalc = ckhashfunc;
2205 		}
2206 		rabp->b_ioflags &= ~BIO_ERROR;
2207 		rabp->b_iocmd = BIO_READ;
2208 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2209 			rabp->b_rcred = crhold(cred);
2210 		vfs_busy_pages(rabp, 0);
2211 		BUF_KERNPROC(rabp);
2212 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2213 		bstrategy(rabp);
2214 	}
2215 }
2216 
2217 /*
2218  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2219  *
2220  * Get a buffer with the specified data.  Look in the cache first.  We
2221  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2222  * is set, the buffer is valid and we do not have to do anything, see
2223  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2224  *
2225  * Always return a NULL buffer pointer (in bpp) when returning an error.
2226  *
2227  * The blkno parameter is the logical block being requested. Normally
2228  * the mapping of logical block number to disk block address is done
2229  * by calling VOP_BMAP(). However, if the mapping is already known, the
2230  * disk block address can be passed using the dblkno parameter. If the
2231  * disk block address is not known, then the same value should be passed
2232  * for blkno and dblkno.
2233  */
2234 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2235 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2236     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2237     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2238 {
2239 	struct buf *bp;
2240 	struct thread *td;
2241 	int error, readwait, rv;
2242 
2243 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2244 	td = curthread;
2245 	/*
2246 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2247 	 * are specified.
2248 	 */
2249 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2250 	if (error != 0) {
2251 		*bpp = NULL;
2252 		return (error);
2253 	}
2254 	KASSERT(blkno == bp->b_lblkno,
2255 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2256 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2257 	flags &= ~GB_NOSPARSE;
2258 	*bpp = bp;
2259 
2260 	/*
2261 	 * If not found in cache, do some I/O
2262 	 */
2263 	readwait = 0;
2264 	if ((bp->b_flags & B_CACHE) == 0) {
2265 #ifdef RACCT
2266 		if (racct_enable) {
2267 			PROC_LOCK(td->td_proc);
2268 			racct_add_buf(td->td_proc, bp, 0);
2269 			PROC_UNLOCK(td->td_proc);
2270 		}
2271 #endif /* RACCT */
2272 		td->td_ru.ru_inblock++;
2273 		bp->b_iocmd = BIO_READ;
2274 		bp->b_flags &= ~B_INVAL;
2275 		if ((flags & GB_CKHASH) != 0) {
2276 			bp->b_flags |= B_CKHASH;
2277 			bp->b_ckhashcalc = ckhashfunc;
2278 		}
2279 		if ((flags & GB_CVTENXIO) != 0)
2280 			bp->b_xflags |= BX_CVTENXIO;
2281 		bp->b_ioflags &= ~(BIO_ERROR | BIO_EXTERR);
2282 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2283 			bp->b_rcred = crhold(cred);
2284 		vfs_busy_pages(bp, 0);
2285 		bp->b_iooffset = dbtob(bp->b_blkno);
2286 		bstrategy(bp);
2287 		++readwait;
2288 	}
2289 
2290 	/*
2291 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2292 	 */
2293 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2294 
2295 	rv = 0;
2296 	if (readwait) {
2297 		rv = bufwait(bp);
2298 		if (rv != 0) {
2299 			brelse(bp);
2300 			*bpp = NULL;
2301 		}
2302 	}
2303 	return (rv);
2304 }
2305 
2306 /*
2307  * Write, release buffer on completion.  (Done by iodone
2308  * if async).  Do not bother writing anything if the buffer
2309  * is invalid.
2310  *
2311  * Note that we set B_CACHE here, indicating that buffer is
2312  * fully valid and thus cacheable.  This is true even of NFS
2313  * now so we set it generally.  This could be set either here
2314  * or in biodone() since the I/O is synchronous.  We put it
2315  * here.
2316  */
2317 int
bufwrite(struct buf * bp)2318 bufwrite(struct buf *bp)
2319 {
2320 	struct vnode *vp;
2321 	long space;
2322 	int oldflags, retval;
2323 	bool vp_md;
2324 
2325 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2326 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2327 		bp->b_flags |= B_INVAL | B_RELBUF;
2328 		bp->b_flags &= ~B_CACHE;
2329 		brelse(bp);
2330 		return (ENXIO);
2331 	}
2332 	if ((bp->b_flags & B_INVAL) != 0) {
2333 		brelse(bp);
2334 		return (0);
2335 	}
2336 
2337 	if ((bp->b_flags & B_BARRIER) != 0)
2338 		atomic_add_long(&barrierwrites, 1);
2339 
2340 	oldflags = bp->b_flags;
2341 
2342 	KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
2343 	    ("FFS background buffer should not get here %p", bp));
2344 
2345 	vp = bp->b_vp;
2346 	vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
2347 
2348 	/*
2349 	 * Mark the buffer clean.  Increment the bufobj write count
2350 	 * before bundirty() call, to prevent other thread from seeing
2351 	 * empty dirty list and zero counter for writes in progress,
2352 	 * falsely indicating that the bufobj is clean.
2353 	 */
2354 	bufobj_wref(bp->b_bufobj);
2355 	bundirty(bp);
2356 
2357 	bp->b_flags &= ~B_DONE;
2358 	bp->b_ioflags &= ~(BIO_ERROR | BIO_EXTERR);
2359 	bp->b_flags |= B_CACHE;
2360 	bp->b_iocmd = BIO_WRITE;
2361 
2362 	vfs_busy_pages(bp, 1);
2363 
2364 	/*
2365 	 * Normal bwrites pipeline writes
2366 	 */
2367 	space = runningbufclaim(bp, bp->b_bufsize);
2368 
2369 #ifdef RACCT
2370 	if (racct_enable) {
2371 		PROC_LOCK(curproc);
2372 		racct_add_buf(curproc, bp, 1);
2373 		PROC_UNLOCK(curproc);
2374 	}
2375 #endif /* RACCT */
2376 	curthread->td_ru.ru_oublock++;
2377 	if ((oldflags & B_ASYNC) != 0)
2378 		BUF_KERNPROC(bp);
2379 	bp->b_iooffset = dbtob(bp->b_blkno);
2380 	buf_track(bp, __func__);
2381 	bstrategy(bp);
2382 
2383 	if ((oldflags & B_ASYNC) == 0) {
2384 		retval = bufwait(bp);
2385 		brelse(bp);
2386 		return (retval);
2387 	} else if (space > hirunningspace) {
2388 		/*
2389 		 * Don't allow the async write to saturate the I/O
2390 		 * system.  We do not block here if it is the update
2391 		 * or syncer daemon trying to clean up as that can
2392 		 * lead to deadlock.
2393 		 */
2394 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2395 			waitrunningbufspace();
2396 	}
2397 
2398 	return (0);
2399 }
2400 
2401 void
bufbdflush(struct bufobj * bo,struct buf * bp)2402 bufbdflush(struct bufobj *bo, struct buf *bp)
2403 {
2404 	struct buf *nbp;
2405 	struct bufdomain *bd;
2406 
2407 	bd = &bdomain[bo->bo_domain];
2408 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2409 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2410 		altbufferflushes++;
2411 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2412 		BO_LOCK(bo);
2413 		/*
2414 		 * Try to find a buffer to flush.
2415 		 */
2416 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2417 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2418 			    BUF_LOCK(nbp,
2419 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2420 				continue;
2421 			if (bp == nbp)
2422 				panic("bdwrite: found ourselves");
2423 			BO_UNLOCK(bo);
2424 			/* Don't countdeps with the bo lock held. */
2425 			if (buf_countdeps(nbp, 0)) {
2426 				BO_LOCK(bo);
2427 				BUF_UNLOCK(nbp);
2428 				continue;
2429 			}
2430 			if (nbp->b_flags & B_CLUSTEROK) {
2431 				vfs_bio_awrite(nbp);
2432 			} else {
2433 				bremfree(nbp);
2434 				bawrite(nbp);
2435 			}
2436 			dirtybufferflushes++;
2437 			break;
2438 		}
2439 		if (nbp == NULL)
2440 			BO_UNLOCK(bo);
2441 	}
2442 }
2443 
2444 /*
2445  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2446  * anything if the buffer is marked invalid.
2447  *
2448  * Note that since the buffer must be completely valid, we can safely
2449  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2450  * biodone() in order to prevent getblk from writing the buffer
2451  * out synchronously.
2452  */
2453 void
bdwrite(struct buf * bp)2454 bdwrite(struct buf *bp)
2455 {
2456 	struct thread *td = curthread;
2457 	struct vnode *vp;
2458 	struct bufobj *bo;
2459 
2460 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2461 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2462 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2463 	    ("Barrier request in delayed write %p", bp));
2464 
2465 	if (bp->b_flags & B_INVAL) {
2466 		brelse(bp);
2467 		return;
2468 	}
2469 
2470 	/*
2471 	 * If we have too many dirty buffers, don't create any more.
2472 	 * If we are wildly over our limit, then force a complete
2473 	 * cleanup. Otherwise, just keep the situation from getting
2474 	 * out of control. Note that we have to avoid a recursive
2475 	 * disaster and not try to clean up after our own cleanup!
2476 	 */
2477 	vp = bp->b_vp;
2478 	bo = bp->b_bufobj;
2479 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2480 		td->td_pflags |= TDP_INBDFLUSH;
2481 		BO_BDFLUSH(bo, bp);
2482 		td->td_pflags &= ~TDP_INBDFLUSH;
2483 	} else
2484 		recursiveflushes++;
2485 
2486 	bdirty(bp);
2487 	/*
2488 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2489 	 * true even of NFS now.
2490 	 */
2491 	bp->b_flags |= B_CACHE;
2492 
2493 	/*
2494 	 * This bmap keeps the system from needing to do the bmap later,
2495 	 * perhaps when the system is attempting to do a sync.  Since it
2496 	 * is likely that the indirect block -- or whatever other datastructure
2497 	 * that the filesystem needs is still in memory now, it is a good
2498 	 * thing to do this.  Note also, that if the pageout daemon is
2499 	 * requesting a sync -- there might not be enough memory to do
2500 	 * the bmap then...  So, this is important to do.
2501 	 */
2502 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2503 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2504 	}
2505 
2506 	buf_track(bp, __func__);
2507 
2508 	/*
2509 	 * Set the *dirty* buffer range based upon the VM system dirty
2510 	 * pages.
2511 	 *
2512 	 * Mark the buffer pages as clean.  We need to do this here to
2513 	 * satisfy the vnode_pager and the pageout daemon, so that it
2514 	 * thinks that the pages have been "cleaned".  Note that since
2515 	 * the pages are in a delayed write buffer -- the VFS layer
2516 	 * "will" see that the pages get written out on the next sync,
2517 	 * or perhaps the cluster will be completed.
2518 	 */
2519 	vfs_clean_pages_dirty_buf(bp);
2520 	bqrelse(bp);
2521 
2522 	/*
2523 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2524 	 * due to the softdep code.
2525 	 */
2526 }
2527 
2528 /*
2529  *	bdirty:
2530  *
2531  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2532  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2533  *	itself to properly update it in the dirty/clean lists.  We mark it
2534  *	B_DONE to ensure that any asynchronization of the buffer properly
2535  *	clears B_DONE ( else a panic will occur later ).
2536  *
2537  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2538  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2539  *	should only be called if the buffer is known-good.
2540  *
2541  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2542  *	count.
2543  *
2544  *	The buffer must be on QUEUE_NONE.
2545  */
2546 void
bdirty(struct buf * bp)2547 bdirty(struct buf *bp)
2548 {
2549 
2550 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2551 	    bp, bp->b_vp, bp->b_flags);
2552 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2553 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2554 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2555 	bp->b_flags &= ~(B_RELBUF);
2556 	bp->b_iocmd = BIO_WRITE;
2557 
2558 	if ((bp->b_flags & B_DELWRI) == 0) {
2559 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2560 		reassignbuf(bp);
2561 		bdirtyadd(bp);
2562 	}
2563 }
2564 
2565 /*
2566  *	bundirty:
2567  *
2568  *	Clear B_DELWRI for buffer.
2569  *
2570  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2571  *	count.
2572  *
2573  *	The buffer must be on QUEUE_NONE.
2574  */
2575 
2576 void
bundirty(struct buf * bp)2577 bundirty(struct buf *bp)
2578 {
2579 
2580 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2581 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2582 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2583 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2584 
2585 	if (bp->b_flags & B_DELWRI) {
2586 		bp->b_flags &= ~B_DELWRI;
2587 		reassignbuf(bp);
2588 		bdirtysub(bp);
2589 	}
2590 	/*
2591 	 * Since it is now being written, we can clear its deferred write flag.
2592 	 */
2593 	bp->b_flags &= ~B_DEFERRED;
2594 }
2595 
2596 /*
2597  *	bawrite:
2598  *
2599  *	Asynchronous write.  Start output on a buffer, but do not wait for
2600  *	it to complete.  The buffer is released when the output completes.
2601  *
2602  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2603  *	B_INVAL buffers.  Not us.
2604  */
2605 void
bawrite(struct buf * bp)2606 bawrite(struct buf *bp)
2607 {
2608 
2609 	bp->b_flags |= B_ASYNC;
2610 	(void) bwrite(bp);
2611 }
2612 
2613 /*
2614  *	babarrierwrite:
2615  *
2616  *	Asynchronous barrier write.  Start output on a buffer, but do not
2617  *	wait for it to complete.  Place a write barrier after this write so
2618  *	that this buffer and all buffers written before it are committed to
2619  *	the disk before any buffers written after this write are committed
2620  *	to the disk.  The buffer is released when the output completes.
2621  */
2622 void
babarrierwrite(struct buf * bp)2623 babarrierwrite(struct buf *bp)
2624 {
2625 
2626 	bp->b_flags |= B_ASYNC | B_BARRIER;
2627 	(void) bwrite(bp);
2628 }
2629 
2630 /*
2631  *	bbarrierwrite:
2632  *
2633  *	Synchronous barrier write.  Start output on a buffer and wait for
2634  *	it to complete.  Place a write barrier after this write so that
2635  *	this buffer and all buffers written before it are committed to
2636  *	the disk before any buffers written after this write are committed
2637  *	to the disk.  The buffer is released when the output completes.
2638  */
2639 int
bbarrierwrite(struct buf * bp)2640 bbarrierwrite(struct buf *bp)
2641 {
2642 
2643 	bp->b_flags |= B_BARRIER;
2644 	return (bwrite(bp));
2645 }
2646 
2647 /*
2648  *	bwillwrite:
2649  *
2650  *	Called prior to the locking of any vnodes when we are expecting to
2651  *	write.  We do not want to starve the buffer cache with too many
2652  *	dirty buffers so we block here.  By blocking prior to the locking
2653  *	of any vnodes we attempt to avoid the situation where a locked vnode
2654  *	prevents the various system daemons from flushing related buffers.
2655  */
2656 void
bwillwrite(void)2657 bwillwrite(void)
2658 {
2659 
2660 	if (buf_dirty_count_severe()) {
2661 		mtx_lock(&bdirtylock);
2662 		while (buf_dirty_count_severe()) {
2663 			bdirtywait = 1;
2664 			msleep(&bdirtywait, &bdirtylock, PVFS, "flswai", 0);
2665 		}
2666 		mtx_unlock(&bdirtylock);
2667 	}
2668 }
2669 
2670 /*
2671  * Return true if we have too many dirty buffers.
2672  */
2673 int
buf_dirty_count_severe(void)2674 buf_dirty_count_severe(void)
2675 {
2676 
2677 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2678 }
2679 
2680 /*
2681  *	brelse:
2682  *
2683  *	Release a busy buffer and, if requested, free its resources.  The
2684  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2685  *	to be accessed later as a cache entity or reused for other purposes.
2686  */
2687 void
brelse(struct buf * bp)2688 brelse(struct buf *bp)
2689 {
2690 	struct mount *v_mnt;
2691 	int qindex;
2692 
2693 	/*
2694 	 * Many functions erroneously call brelse with a NULL bp under rare
2695 	 * error conditions. Simply return when called with a NULL bp.
2696 	 */
2697 	if (bp == NULL)
2698 		return;
2699 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2700 	    bp, bp->b_vp, bp->b_flags);
2701 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2702 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2703 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2704 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2705 
2706 	if (BUF_LOCKRECURSED(bp)) {
2707 		/*
2708 		 * Do not process, in particular, do not handle the
2709 		 * B_INVAL/B_RELBUF and do not release to free list.
2710 		 */
2711 		BUF_UNLOCK(bp);
2712 		return;
2713 	}
2714 
2715 	if (bp->b_flags & B_MANAGED) {
2716 		bqrelse(bp);
2717 		return;
2718 	}
2719 
2720 	if (LIST_EMPTY(&bp->b_dep)) {
2721 		bp->b_flags &= ~B_IOSTARTED;
2722 	} else {
2723 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2724 		    ("brelse: SU io not finished bp %p", bp));
2725 	}
2726 
2727 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2728 		BO_LOCK(bp->b_bufobj);
2729 		bp->b_vflags &= ~BV_BKGRDERR;
2730 		BO_UNLOCK(bp->b_bufobj);
2731 		bdirty(bp);
2732 	}
2733 
2734 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2735 	    (bp->b_flags & B_INVALONERR)) {
2736 		/*
2737 		 * Forced invalidation of dirty buffer contents, to be used
2738 		 * after a failed write in the rare case that the loss of the
2739 		 * contents is acceptable.  The buffer is invalidated and
2740 		 * freed.
2741 		 */
2742 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2743 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2744 	}
2745 
2746 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2747 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2748 	    !(bp->b_flags & B_INVAL)) {
2749 		/*
2750 		 * Failed write, redirty.  All errors except ENXIO (which
2751 		 * means the device is gone) are treated as being
2752 		 * transient.
2753 		 *
2754 		 * XXX Treating EIO as transient is not correct; the
2755 		 * contract with the local storage device drivers is that
2756 		 * they will only return EIO once the I/O is no longer
2757 		 * retriable.  Network I/O also respects this through the
2758 		 * guarantees of TCP and/or the internal retries of NFS.
2759 		 * ENOMEM might be transient, but we also have no way of
2760 		 * knowing when its ok to retry/reschedule.  In general,
2761 		 * this entire case should be made obsolete through better
2762 		 * error handling/recovery and resource scheduling.
2763 		 *
2764 		 * Do this also for buffers that failed with ENXIO, but have
2765 		 * non-empty dependencies - the soft updates code might need
2766 		 * to access the buffer to untangle them.
2767 		 *
2768 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2769 		 */
2770 		bp->b_ioflags &= ~BIO_ERROR;
2771 		bdirty(bp);
2772 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2773 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2774 		/*
2775 		 * Either a failed read I/O, or we were asked to free or not
2776 		 * cache the buffer, or we failed to write to a device that's
2777 		 * no longer present.
2778 		 */
2779 		bp->b_flags |= B_INVAL;
2780 		if (!LIST_EMPTY(&bp->b_dep))
2781 			buf_deallocate(bp);
2782 		if (bp->b_flags & B_DELWRI)
2783 			bdirtysub(bp);
2784 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2785 		if ((bp->b_flags & B_VMIO) == 0) {
2786 			allocbuf(bp, 0);
2787 			if (bp->b_vp)
2788 				brelvp(bp);
2789 		}
2790 	}
2791 
2792 	/*
2793 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2794 	 * is called with B_DELWRI set, the underlying pages may wind up
2795 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2796 	 * because pages associated with a B_DELWRI bp are marked clean.
2797 	 *
2798 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2799 	 * if B_DELWRI is set.
2800 	 */
2801 	if (bp->b_flags & B_DELWRI)
2802 		bp->b_flags &= ~B_RELBUF;
2803 
2804 	/*
2805 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2806 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2807 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2808 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2809 	 *
2810 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2811 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2812 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2813 	 *
2814 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2815 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2816 	 * the commit state and we cannot afford to lose the buffer. If the
2817 	 * buffer has a background write in progress, we need to keep it
2818 	 * around to prevent it from being reconstituted and starting a second
2819 	 * background write.
2820 	 */
2821 
2822 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2823 
2824 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2825 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2826 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2827 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2828 		vfs_vmio_invalidate(bp);
2829 		allocbuf(bp, 0);
2830 	}
2831 
2832 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2833 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2834 		allocbuf(bp, 0);
2835 		bp->b_flags &= ~B_NOREUSE;
2836 		if (bp->b_vp != NULL)
2837 			brelvp(bp);
2838 	}
2839 
2840 	/*
2841 	 * If the buffer has junk contents signal it and eventually
2842 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2843 	 * doesn't find it.
2844 	 */
2845 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2846 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2847 		bp->b_flags |= B_INVAL;
2848 	if (bp->b_flags & B_INVAL) {
2849 		if (bp->b_flags & B_DELWRI)
2850 			bundirty(bp);
2851 		if (bp->b_vp)
2852 			brelvp(bp);
2853 	}
2854 
2855 	buf_track(bp, __func__);
2856 
2857 	/* buffers with no memory */
2858 	if (bp->b_bufsize == 0) {
2859 		buf_free(bp);
2860 		return;
2861 	}
2862 	/* buffers with junk contents */
2863 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2864 	    (bp->b_ioflags & BIO_ERROR)) {
2865 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2866 		if (bp->b_vflags & BV_BKGRDINPROG)
2867 			panic("losing buffer 2");
2868 		qindex = QUEUE_CLEAN;
2869 		bp->b_flags |= B_AGE;
2870 	/* remaining buffers */
2871 	} else if (bp->b_flags & B_DELWRI)
2872 		qindex = QUEUE_DIRTY;
2873 	else
2874 		qindex = QUEUE_CLEAN;
2875 
2876 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2877 		panic("brelse: not dirty");
2878 
2879 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2880 	bp->b_xflags &= ~(BX_CVTENXIO);
2881 	/* binsfree unlocks bp. */
2882 	binsfree(bp, qindex);
2883 }
2884 
2885 /*
2886  * Release a buffer back to the appropriate queue but do not try to free
2887  * it.  The buffer is expected to be used again soon.
2888  *
2889  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2890  * biodone() to requeue an async I/O on completion.  It is also used when
2891  * known good buffers need to be requeued but we think we may need the data
2892  * again soon.
2893  *
2894  * XXX we should be able to leave the B_RELBUF hint set on completion.
2895  */
2896 void
bqrelse(struct buf * bp)2897 bqrelse(struct buf *bp)
2898 {
2899 	int qindex;
2900 
2901 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2902 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2903 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2904 
2905 	qindex = QUEUE_NONE;
2906 	if (BUF_LOCKRECURSED(bp)) {
2907 		/* do not release to free list */
2908 		BUF_UNLOCK(bp);
2909 		return;
2910 	}
2911 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2912 	bp->b_xflags &= ~(BX_CVTENXIO);
2913 
2914 	if (LIST_EMPTY(&bp->b_dep)) {
2915 		bp->b_flags &= ~B_IOSTARTED;
2916 	} else {
2917 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2918 		    ("bqrelse: SU io not finished bp %p", bp));
2919 	}
2920 
2921 	if (bp->b_flags & B_MANAGED) {
2922 		if (bp->b_flags & B_REMFREE)
2923 			bremfreef(bp);
2924 		goto out;
2925 	}
2926 
2927 	/* buffers with stale but valid contents */
2928 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2929 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2930 		BO_LOCK(bp->b_bufobj);
2931 		bp->b_vflags &= ~BV_BKGRDERR;
2932 		BO_UNLOCK(bp->b_bufobj);
2933 		qindex = QUEUE_DIRTY;
2934 	} else {
2935 		if ((bp->b_flags & B_DELWRI) == 0 &&
2936 		    (bp->b_xflags & BX_VNDIRTY))
2937 			panic("bqrelse: not dirty");
2938 		if ((bp->b_flags & B_NOREUSE) != 0) {
2939 			brelse(bp);
2940 			return;
2941 		}
2942 		qindex = QUEUE_CLEAN;
2943 	}
2944 	buf_track(bp, __func__);
2945 	/* binsfree unlocks bp. */
2946 	binsfree(bp, qindex);
2947 	return;
2948 
2949 out:
2950 	buf_track(bp, __func__);
2951 	/* unlock */
2952 	BUF_UNLOCK(bp);
2953 }
2954 
2955 /*
2956  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2957  * restore bogus pages.
2958  */
2959 static void
vfs_vmio_iodone(struct buf * bp)2960 vfs_vmio_iodone(struct buf *bp)
2961 {
2962 	vm_ooffset_t foff;
2963 	vm_page_t m;
2964 	vm_object_t obj;
2965 	struct vnode *vp __unused;
2966 	int i, iosize, resid;
2967 	bool bogus;
2968 
2969 	obj = bp->b_bufobj->bo_object;
2970 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2971 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2972 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2973 
2974 	vp = bp->b_vp;
2975 	VNPASS(vp->v_holdcnt > 0, vp);
2976 	VNPASS(vp->v_object != NULL, vp);
2977 
2978 	foff = bp->b_offset;
2979 	KASSERT(bp->b_offset != NOOFFSET,
2980 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2981 
2982 	bogus = false;
2983 	iosize = bp->b_bcount - bp->b_resid;
2984 	for (i = 0; i < bp->b_npages; i++) {
2985 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2986 		if (resid > iosize)
2987 			resid = iosize;
2988 
2989 		/*
2990 		 * cleanup bogus pages, restoring the originals
2991 		 */
2992 		m = bp->b_pages[i];
2993 		if (m == bogus_page) {
2994 			bogus = true;
2995 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2996 			if (m == NULL)
2997 				panic("biodone: page disappeared!");
2998 			bp->b_pages[i] = m;
2999 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
3000 			/*
3001 			 * In the write case, the valid and clean bits are
3002 			 * already changed correctly ( see bdwrite() ), so we
3003 			 * only need to do this here in the read case.
3004 			 */
3005 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
3006 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
3007 			    "has unexpected dirty bits", m));
3008 			vfs_page_set_valid(bp, foff, m);
3009 		}
3010 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
3011 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
3012 		    (intmax_t)foff, (uintmax_t)m->pindex));
3013 
3014 		vm_page_sunbusy(m);
3015 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3016 		iosize -= resid;
3017 	}
3018 	vm_object_pip_wakeupn(obj, bp->b_npages);
3019 	if (bogus && buf_mapped(bp)) {
3020 		BUF_CHECK_MAPPED(bp);
3021 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3022 		    bp->b_pages, bp->b_npages);
3023 	}
3024 }
3025 
3026 /*
3027  * Perform page invalidation when a buffer is released.  The fully invalid
3028  * pages will be reclaimed later in vfs_vmio_truncate().
3029  */
3030 static void
vfs_vmio_invalidate(struct buf * bp)3031 vfs_vmio_invalidate(struct buf *bp)
3032 {
3033 	vm_object_t obj;
3034 	vm_page_t m;
3035 	int flags, i, resid, poffset, presid;
3036 
3037 	if (buf_mapped(bp)) {
3038 		BUF_CHECK_MAPPED(bp);
3039 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3040 	} else
3041 		BUF_CHECK_UNMAPPED(bp);
3042 	/*
3043 	 * Get the base offset and length of the buffer.  Note that
3044 	 * in the VMIO case if the buffer block size is not
3045 	 * page-aligned then b_data pointer may not be page-aligned.
3046 	 * But our b_pages[] array *IS* page aligned.
3047 	 *
3048 	 * block sizes less then DEV_BSIZE (usually 512) are not
3049 	 * supported due to the page granularity bits (m->valid,
3050 	 * m->dirty, etc...).
3051 	 *
3052 	 * See man buf(9) for more information
3053 	 */
3054 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3055 	obj = bp->b_bufobj->bo_object;
3056 	resid = bp->b_bufsize;
3057 	poffset = bp->b_offset & PAGE_MASK;
3058 	VM_OBJECT_WLOCK(obj);
3059 	for (i = 0; i < bp->b_npages; i++) {
3060 		m = bp->b_pages[i];
3061 		if (m == bogus_page)
3062 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3063 		bp->b_pages[i] = NULL;
3064 
3065 		presid = resid > (PAGE_SIZE - poffset) ?
3066 		    (PAGE_SIZE - poffset) : resid;
3067 		KASSERT(presid >= 0, ("brelse: extra page"));
3068 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3069 		if (pmap_page_wired_mappings(m) == 0)
3070 			vm_page_set_invalid(m, poffset, presid);
3071 		vm_page_sunbusy(m);
3072 		vm_page_release_locked(m, flags);
3073 		resid -= presid;
3074 		poffset = 0;
3075 	}
3076 	VM_OBJECT_WUNLOCK(obj);
3077 	bp->b_npages = 0;
3078 }
3079 
3080 /*
3081  * Page-granular truncation of an existing VMIO buffer.
3082  */
3083 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3084 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3085 {
3086 	vm_object_t obj;
3087 	vm_page_t m;
3088 	int flags, i;
3089 
3090 	if (bp->b_npages == desiredpages)
3091 		return;
3092 
3093 	if (buf_mapped(bp)) {
3094 		BUF_CHECK_MAPPED(bp);
3095 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3096 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3097 	} else
3098 		BUF_CHECK_UNMAPPED(bp);
3099 
3100 	/*
3101 	 * The object lock is needed only if we will attempt to free pages.
3102 	 */
3103 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3104 	if ((bp->b_flags & B_DIRECT) != 0) {
3105 		flags |= VPR_TRYFREE;
3106 		obj = bp->b_bufobj->bo_object;
3107 		VM_OBJECT_WLOCK(obj);
3108 	} else {
3109 		obj = NULL;
3110 	}
3111 	for (i = desiredpages; i < bp->b_npages; i++) {
3112 		m = bp->b_pages[i];
3113 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3114 		bp->b_pages[i] = NULL;
3115 		if (obj != NULL)
3116 			vm_page_release_locked(m, flags);
3117 		else
3118 			vm_page_release(m, flags);
3119 	}
3120 	if (obj != NULL)
3121 		VM_OBJECT_WUNLOCK(obj);
3122 	bp->b_npages = desiredpages;
3123 }
3124 
3125 /*
3126  * Byte granular extension of VMIO buffers.
3127  */
3128 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3129 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3130 {
3131 	/*
3132 	 * We are growing the buffer, possibly in a
3133 	 * byte-granular fashion.
3134 	 */
3135 	vm_object_t obj;
3136 	vm_offset_t toff;
3137 	vm_offset_t tinc;
3138 	vm_page_t m;
3139 
3140 	/*
3141 	 * Step 1, bring in the VM pages from the object, allocating
3142 	 * them if necessary.  We must clear B_CACHE if these pages
3143 	 * are not valid for the range covered by the buffer.
3144 	 */
3145 	obj = bp->b_bufobj->bo_object;
3146 	if (bp->b_npages < desiredpages) {
3147 		KASSERT(desiredpages <= atop(maxbcachebuf),
3148 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3149 		    bp, desiredpages, maxbcachebuf));
3150 
3151 		/*
3152 		 * We must allocate system pages since blocking
3153 		 * here could interfere with paging I/O, no
3154 		 * matter which process we are.
3155 		 *
3156 		 * Only exclusive busy can be tested here.
3157 		 * Blocking on shared busy might lead to
3158 		 * deadlocks once allocbuf() is called after
3159 		 * pages are vfs_busy_pages().
3160 		 */
3161 		(void)vm_page_grab_pages_unlocked(obj,
3162 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3163 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3164 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3165 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3166 		bp->b_npages = desiredpages;
3167 	}
3168 
3169 	/*
3170 	 * Step 2.  We've loaded the pages into the buffer,
3171 	 * we have to figure out if we can still have B_CACHE
3172 	 * set.  Note that B_CACHE is set according to the
3173 	 * byte-granular range ( bcount and size ), not the
3174 	 * aligned range ( newbsize ).
3175 	 *
3176 	 * The VM test is against m->valid, which is DEV_BSIZE
3177 	 * aligned.  Needless to say, the validity of the data
3178 	 * needs to also be DEV_BSIZE aligned.  Note that this
3179 	 * fails with NFS if the server or some other client
3180 	 * extends the file's EOF.  If our buffer is resized,
3181 	 * B_CACHE may remain set! XXX
3182 	 */
3183 	toff = bp->b_bcount;
3184 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3185 	while ((bp->b_flags & B_CACHE) && toff < size) {
3186 		vm_pindex_t pi;
3187 
3188 		if (tinc > (size - toff))
3189 			tinc = size - toff;
3190 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3191 		m = bp->b_pages[pi];
3192 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3193 		toff += tinc;
3194 		tinc = PAGE_SIZE;
3195 	}
3196 
3197 	/*
3198 	 * Step 3, fixup the KVA pmap.
3199 	 */
3200 	if (buf_mapped(bp))
3201 		bpmap_qenter(bp);
3202 	else
3203 		BUF_CHECK_UNMAPPED(bp);
3204 }
3205 
3206 /*
3207  * Check to see if a block at a particular lbn is available for a clustered
3208  * write.
3209  */
3210 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3211 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3212 {
3213 	struct buf *bpa;
3214 	int match;
3215 
3216 	match = 0;
3217 
3218 	/* If the buf isn't in core skip it */
3219 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3220 		return (0);
3221 
3222 	/* If the buf is busy we don't want to wait for it */
3223 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3224 		return (0);
3225 
3226 	/* Only cluster with valid clusterable delayed write buffers */
3227 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3228 	    (B_DELWRI | B_CLUSTEROK))
3229 		goto done;
3230 
3231 	if (bpa->b_bufsize != size)
3232 		goto done;
3233 
3234 	/*
3235 	 * Check to see if it is in the expected place on disk and that the
3236 	 * block has been mapped.
3237 	 */
3238 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3239 		match = 1;
3240 done:
3241 	BUF_UNLOCK(bpa);
3242 	return (match);
3243 }
3244 
3245 /*
3246  *	vfs_bio_awrite:
3247  *
3248  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3249  *	This is much better then the old way of writing only one buffer at
3250  *	a time.  Note that we may not be presented with the buffers in the
3251  *	correct order, so we search for the cluster in both directions.
3252  */
3253 int
vfs_bio_awrite(struct buf * bp)3254 vfs_bio_awrite(struct buf *bp)
3255 {
3256 	struct bufobj *bo;
3257 	int i;
3258 	int j;
3259 	daddr_t lblkno = bp->b_lblkno;
3260 	struct vnode *vp = bp->b_vp;
3261 	int ncl;
3262 	int nwritten;
3263 	int size;
3264 	int maxcl;
3265 	int gbflags;
3266 
3267 	bo = &vp->v_bufobj;
3268 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3269 	/*
3270 	 * right now we support clustered writing only to regular files.  If
3271 	 * we find a clusterable block we could be in the middle of a cluster
3272 	 * rather then at the beginning.
3273 	 */
3274 	if ((vp->v_type == VREG) &&
3275 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3276 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3277 		size = vp->v_mount->mnt_stat.f_iosize;
3278 		maxcl = maxphys / size;
3279 
3280 		BO_RLOCK(bo);
3281 		for (i = 1; i < maxcl; i++)
3282 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3283 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3284 				break;
3285 
3286 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3287 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3288 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3289 				break;
3290 		BO_RUNLOCK(bo);
3291 		--j;
3292 		ncl = i + j;
3293 		/*
3294 		 * this is a possible cluster write
3295 		 */
3296 		if (ncl != 1) {
3297 			BUF_UNLOCK(bp);
3298 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3299 			    gbflags);
3300 			return (nwritten);
3301 		}
3302 	}
3303 	bremfree(bp);
3304 	bp->b_flags |= B_ASYNC;
3305 	/*
3306 	 * default (old) behavior, writing out only one block
3307 	 *
3308 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3309 	 */
3310 	nwritten = bp->b_bufsize;
3311 	(void) bwrite(bp);
3312 
3313 	return (nwritten);
3314 }
3315 
3316 /*
3317  *	getnewbuf_kva:
3318  *
3319  *	Allocate KVA for an empty buf header according to gbflags.
3320  */
3321 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3322 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3323 {
3324 
3325 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3326 		/*
3327 		 * In order to keep fragmentation sane we only allocate kva
3328 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3329 		 */
3330 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3331 
3332 		if (maxsize != bp->b_kvasize &&
3333 		    bufkva_alloc(bp, maxsize, gbflags))
3334 			return (ENOSPC);
3335 	}
3336 	return (0);
3337 }
3338 
3339 /*
3340  *	getnewbuf:
3341  *
3342  *	Find and initialize a new buffer header, freeing up existing buffers
3343  *	in the bufqueues as necessary.  The new buffer is returned locked.
3344  *
3345  *	We block if:
3346  *		We have insufficient buffer headers
3347  *		We have insufficient buffer space
3348  *		buffer_arena is too fragmented ( space reservation fails )
3349  *		If we have to flush dirty buffers ( but we try to avoid this )
3350  *
3351  *	The caller is responsible for releasing the reserved bufspace after
3352  *	allocbuf() is called.
3353  */
3354 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3355 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3356 {
3357 	struct bufdomain *bd;
3358 	struct buf *bp;
3359 	bool metadata, reserved;
3360 
3361 	bp = NULL;
3362 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3363 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3364 	if (!unmapped_buf_allowed)
3365 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3366 
3367 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3368 	    vp->v_type == VCHR)
3369 		metadata = true;
3370 	else
3371 		metadata = false;
3372 	if (vp == NULL)
3373 		bd = &bdomain[0];
3374 	else
3375 		bd = &bdomain[vp->v_bufobj.bo_domain];
3376 
3377 	counter_u64_add(getnewbufcalls, 1);
3378 	reserved = false;
3379 	do {
3380 		if (reserved == false &&
3381 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3382 			counter_u64_add(getnewbufrestarts, 1);
3383 			continue;
3384 		}
3385 		reserved = true;
3386 		if ((bp = buf_alloc(bd)) == NULL) {
3387 			counter_u64_add(getnewbufrestarts, 1);
3388 			continue;
3389 		}
3390 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3391 			return (bp);
3392 		break;
3393 	} while (buf_recycle(bd, false) == 0);
3394 
3395 	if (reserved)
3396 		bufspace_release(bd, maxsize);
3397 	if (bp != NULL) {
3398 		bp->b_flags |= B_INVAL;
3399 		brelse(bp);
3400 	}
3401 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3402 
3403 	return (NULL);
3404 }
3405 
3406 /*
3407  *	buf_daemon:
3408  *
3409  *	buffer flushing daemon.  Buffers are normally flushed by the
3410  *	update daemon but if it cannot keep up this process starts to
3411  *	take the load in an attempt to prevent getnewbuf() from blocking.
3412  */
3413 static struct kproc_desc buf_kp = {
3414 	"bufdaemon",
3415 	buf_daemon,
3416 	&bufdaemonproc
3417 };
3418 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3419 
3420 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3421 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3422 {
3423 	int flushed;
3424 
3425 	flushed = flushbufqueues(vp, bd, target, 0);
3426 	if (flushed == 0) {
3427 		/*
3428 		 * Could not find any buffers without rollback
3429 		 * dependencies, so just write the first one
3430 		 * in the hopes of eventually making progress.
3431 		 */
3432 		if (vp != NULL && target > 2)
3433 			target /= 2;
3434 		flushbufqueues(vp, bd, target, 1);
3435 	}
3436 	return (flushed);
3437 }
3438 
3439 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3440 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3441 {
3442 	int error;
3443 
3444 	if (KERNEL_PANICKED())
3445 		return;
3446 
3447 	mtx_lock(&bdlock);
3448 	bd_shutdown = true;
3449 	wakeup(&bd_request);
3450 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3451 	    60 * hz);
3452 	mtx_unlock(&bdlock);
3453 	if (error != 0)
3454 		printf("bufdaemon wait error: %d\n", error);
3455 }
3456 
3457 static void
buf_daemon(void)3458 buf_daemon(void)
3459 {
3460 	struct bufdomain *bd;
3461 	int speedupreq;
3462 	int lodirty;
3463 	int i;
3464 
3465 	/*
3466 	 * This process needs to be suspended prior to shutdown sync.
3467 	 */
3468 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3469 	    SHUTDOWN_PRI_LAST + 100);
3470 
3471 	/*
3472 	 * Start the buf clean daemons as children threads.
3473 	 */
3474 	for (i = 0 ; i < buf_domains; i++) {
3475 		int error;
3476 
3477 		error = kthread_add((void (*)(void *))bufspace_daemon,
3478 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3479 		if (error)
3480 			panic("error %d spawning bufspace daemon", error);
3481 	}
3482 
3483 	/*
3484 	 * This process is allowed to take the buffer cache to the limit
3485 	 */
3486 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3487 	mtx_lock(&bdlock);
3488 	while (!bd_shutdown) {
3489 		bd_request = 0;
3490 		mtx_unlock(&bdlock);
3491 
3492 		/*
3493 		 * Save speedupreq for this pass and reset to capture new
3494 		 * requests.
3495 		 */
3496 		speedupreq = bd_speedupreq;
3497 		bd_speedupreq = 0;
3498 
3499 		/*
3500 		 * Flush each domain sequentially according to its level and
3501 		 * the speedup request.
3502 		 */
3503 		for (i = 0; i < buf_domains; i++) {
3504 			bd = &bdomain[i];
3505 			if (speedupreq)
3506 				lodirty = bd->bd_numdirtybuffers / 2;
3507 			else
3508 				lodirty = bd->bd_lodirtybuffers;
3509 			while (bd->bd_numdirtybuffers > lodirty) {
3510 				if (buf_flush(NULL, bd,
3511 				    bd->bd_numdirtybuffers - lodirty) == 0)
3512 					break;
3513 				kern_yield(PRI_USER);
3514 			}
3515 		}
3516 
3517 		/*
3518 		 * Only clear bd_request if we have reached our low water
3519 		 * mark.  The buf_daemon normally waits 1 second and
3520 		 * then incrementally flushes any dirty buffers that have
3521 		 * built up, within reason.
3522 		 *
3523 		 * If we were unable to hit our low water mark and couldn't
3524 		 * find any flushable buffers, we sleep for a short period
3525 		 * to avoid endless loops on unlockable buffers.
3526 		 */
3527 		mtx_lock(&bdlock);
3528 		if (bd_shutdown)
3529 			break;
3530 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3531 			/*
3532 			 * We reached our low water mark, reset the
3533 			 * request and sleep until we are needed again.
3534 			 * The sleep is just so the suspend code works.
3535 			 */
3536 			bd_request = 0;
3537 			/*
3538 			 * Do an extra wakeup in case dirty threshold
3539 			 * changed via sysctl and the explicit transition
3540 			 * out of shortfall was missed.
3541 			 */
3542 			bdirtywakeup();
3543 			if (runningbufspace <= lorunningspace)
3544 				runningwakeup();
3545 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3546 		} else {
3547 			/*
3548 			 * We couldn't find any flushable dirty buffers but
3549 			 * still have too many dirty buffers, we
3550 			 * have to sleep and try again.  (rare)
3551 			 */
3552 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3553 		}
3554 	}
3555 	wakeup(&bd_shutdown);
3556 	mtx_unlock(&bdlock);
3557 	kthread_exit();
3558 }
3559 
3560 /*
3561  *	flushbufqueues:
3562  *
3563  *	Try to flush a buffer in the dirty queue.  We must be careful to
3564  *	free up B_INVAL buffers instead of write them, which NFS is
3565  *	particularly sensitive to.
3566  */
3567 static int flushwithdeps = 0;
3568 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3569     &flushwithdeps, 0,
3570     "Number of buffers flushed with dependencies that require rollbacks");
3571 
3572 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3573 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3574     int flushdeps)
3575 {
3576 	struct bufqueue *bq;
3577 	struct buf *sentinel;
3578 	struct vnode *vp;
3579 	struct mount *mp;
3580 	struct buf *bp;
3581 	int hasdeps;
3582 	int flushed;
3583 	int error;
3584 	bool unlock;
3585 
3586 	flushed = 0;
3587 	bq = &bd->bd_dirtyq;
3588 	bp = NULL;
3589 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3590 	sentinel->b_qindex = QUEUE_SENTINEL;
3591 	BQ_LOCK(bq);
3592 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3593 	BQ_UNLOCK(bq);
3594 	while (flushed != target) {
3595 		maybe_yield();
3596 		BQ_LOCK(bq);
3597 		bp = TAILQ_NEXT(sentinel, b_freelist);
3598 		if (bp != NULL) {
3599 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3600 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3601 			    b_freelist);
3602 		} else {
3603 			BQ_UNLOCK(bq);
3604 			break;
3605 		}
3606 		/*
3607 		 * Skip sentinels inserted by other invocations of the
3608 		 * flushbufqueues(), taking care to not reorder them.
3609 		 *
3610 		 * Only flush the buffers that belong to the
3611 		 * vnode locked by the curthread.
3612 		 */
3613 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3614 		    bp->b_vp != lvp)) {
3615 			BQ_UNLOCK(bq);
3616 			continue;
3617 		}
3618 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3619 		BQ_UNLOCK(bq);
3620 		if (error != 0)
3621 			continue;
3622 
3623 		/*
3624 		 * BKGRDINPROG can only be set with the buf and bufobj
3625 		 * locks both held.  We tolerate a race to clear it here.
3626 		 */
3627 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3628 		    (bp->b_flags & B_DELWRI) == 0) {
3629 			BUF_UNLOCK(bp);
3630 			continue;
3631 		}
3632 		if (bp->b_flags & B_INVAL) {
3633 			bremfreef(bp);
3634 			brelse(bp);
3635 			flushed++;
3636 			continue;
3637 		}
3638 
3639 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3640 			if (flushdeps == 0) {
3641 				BUF_UNLOCK(bp);
3642 				continue;
3643 			}
3644 			hasdeps = 1;
3645 		} else
3646 			hasdeps = 0;
3647 		/*
3648 		 * We must hold the lock on a vnode before writing
3649 		 * one of its buffers. Otherwise we may confuse, or
3650 		 * in the case of a snapshot vnode, deadlock the
3651 		 * system.
3652 		 *
3653 		 * The lock order here is the reverse of the normal
3654 		 * of vnode followed by buf lock.  This is ok because
3655 		 * the NOWAIT will prevent deadlock.
3656 		 */
3657 		vp = bp->b_vp;
3658 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3659 			BUF_UNLOCK(bp);
3660 			continue;
3661 		}
3662 		if (lvp == NULL) {
3663 			unlock = true;
3664 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3665 		} else {
3666 			ASSERT_VOP_LOCKED(vp, "getbuf");
3667 			unlock = false;
3668 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3669 			    vn_lock(vp, LK_TRYUPGRADE);
3670 		}
3671 		if (error == 0) {
3672 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3673 			    bp, bp->b_vp, bp->b_flags);
3674 			if (curproc == bufdaemonproc) {
3675 				vfs_bio_awrite(bp);
3676 			} else {
3677 				bremfree(bp);
3678 				bwrite(bp);
3679 				counter_u64_add(notbufdflushes, 1);
3680 			}
3681 			vn_finished_write(mp);
3682 			if (unlock)
3683 				VOP_UNLOCK(vp);
3684 			flushwithdeps += hasdeps;
3685 			flushed++;
3686 
3687 			/*
3688 			 * Sleeping on runningbufspace while holding
3689 			 * vnode lock leads to deadlock.
3690 			 */
3691 			if (curproc == bufdaemonproc &&
3692 			    runningbufspace > hirunningspace)
3693 				waitrunningbufspace();
3694 			continue;
3695 		}
3696 		vn_finished_write(mp);
3697 		BUF_UNLOCK(bp);
3698 	}
3699 	BQ_LOCK(bq);
3700 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3701 	BQ_UNLOCK(bq);
3702 	free(sentinel, M_TEMP);
3703 	return (flushed);
3704 }
3705 
3706 /*
3707  * Check to see if a block is currently memory resident.
3708  */
3709 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3710 incore(struct bufobj *bo, daddr_t blkno)
3711 {
3712 	return (gbincore_unlocked(bo, blkno));
3713 }
3714 
3715 /*
3716  * Returns true if no I/O is needed to access the
3717  * associated VM object.  This is like incore except
3718  * it also hunts around in the VM system for the data.
3719  */
3720 bool
inmem(struct vnode * vp,daddr_t blkno)3721 inmem(struct vnode * vp, daddr_t blkno)
3722 {
3723 	vm_object_t obj;
3724 	vm_offset_t toff, tinc, size;
3725 	vm_page_t m, n;
3726 	vm_ooffset_t off;
3727 	int valid;
3728 
3729 	ASSERT_VOP_LOCKED(vp, "inmem");
3730 
3731 	if (incore(&vp->v_bufobj, blkno))
3732 		return (true);
3733 	if (vp->v_mount == NULL)
3734 		return (false);
3735 	obj = vp->v_object;
3736 	if (obj == NULL)
3737 		return (false);
3738 
3739 	size = PAGE_SIZE;
3740 	if (size > vp->v_mount->mnt_stat.f_iosize)
3741 		size = vp->v_mount->mnt_stat.f_iosize;
3742 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3743 
3744 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3745 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3746 recheck:
3747 		if (m == NULL)
3748 			return (false);
3749 
3750 		tinc = size;
3751 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3752 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3753 		/*
3754 		 * Consider page validity only if page mapping didn't change
3755 		 * during the check.
3756 		 */
3757 		valid = vm_page_is_valid(m,
3758 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3759 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3760 		if (m != n) {
3761 			m = n;
3762 			goto recheck;
3763 		}
3764 		if (!valid)
3765 			return (false);
3766 	}
3767 	return (true);
3768 }
3769 
3770 /*
3771  * Set the dirty range for a buffer based on the status of the dirty
3772  * bits in the pages comprising the buffer.  The range is limited
3773  * to the size of the buffer.
3774  *
3775  * Tell the VM system that the pages associated with this buffer
3776  * are clean.  This is used for delayed writes where the data is
3777  * going to go to disk eventually without additional VM intevention.
3778  *
3779  * Note that while we only really need to clean through to b_bcount, we
3780  * just go ahead and clean through to b_bufsize.
3781  */
3782 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3783 vfs_clean_pages_dirty_buf(struct buf *bp)
3784 {
3785 	vm_ooffset_t foff, noff, eoff;
3786 	vm_page_t m;
3787 	int i;
3788 
3789 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3790 		return;
3791 
3792 	foff = bp->b_offset;
3793 	KASSERT(bp->b_offset != NOOFFSET,
3794 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3795 
3796 	vfs_busy_pages_acquire(bp);
3797 	vfs_setdirty_range(bp);
3798 	for (i = 0; i < bp->b_npages; i++) {
3799 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3800 		eoff = noff;
3801 		if (eoff > bp->b_offset + bp->b_bufsize)
3802 			eoff = bp->b_offset + bp->b_bufsize;
3803 		m = bp->b_pages[i];
3804 		vfs_page_set_validclean(bp, foff, m);
3805 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3806 		foff = noff;
3807 	}
3808 	vfs_busy_pages_release(bp);
3809 }
3810 
3811 static void
vfs_setdirty_range(struct buf * bp)3812 vfs_setdirty_range(struct buf *bp)
3813 {
3814 	vm_offset_t boffset;
3815 	vm_offset_t eoffset;
3816 	int i;
3817 
3818 	/*
3819 	 * test the pages to see if they have been modified directly
3820 	 * by users through the VM system.
3821 	 */
3822 	for (i = 0; i < bp->b_npages; i++)
3823 		vm_page_test_dirty(bp->b_pages[i]);
3824 
3825 	/*
3826 	 * Calculate the encompassing dirty range, boffset and eoffset,
3827 	 * (eoffset - boffset) bytes.
3828 	 */
3829 
3830 	for (i = 0; i < bp->b_npages; i++) {
3831 		if (bp->b_pages[i]->dirty)
3832 			break;
3833 	}
3834 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3835 
3836 	for (i = bp->b_npages - 1; i >= 0; --i) {
3837 		if (bp->b_pages[i]->dirty) {
3838 			break;
3839 		}
3840 	}
3841 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3842 
3843 	/*
3844 	 * Fit it to the buffer.
3845 	 */
3846 
3847 	if (eoffset > bp->b_bcount)
3848 		eoffset = bp->b_bcount;
3849 
3850 	/*
3851 	 * If we have a good dirty range, merge with the existing
3852 	 * dirty range.
3853 	 */
3854 
3855 	if (boffset < eoffset) {
3856 		if (bp->b_dirtyoff > boffset)
3857 			bp->b_dirtyoff = boffset;
3858 		if (bp->b_dirtyend < eoffset)
3859 			bp->b_dirtyend = eoffset;
3860 	}
3861 }
3862 
3863 /*
3864  * Allocate the KVA mapping for an existing buffer.
3865  * If an unmapped buffer is provided but a mapped buffer is requested, take
3866  * also care to properly setup mappings between pages and KVA.
3867  */
3868 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3869 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3870 {
3871 	int bsize, maxsize, need_mapping, need_kva;
3872 	off_t offset;
3873 
3874 	need_mapping = bp->b_data == unmapped_buf &&
3875 	    (gbflags & GB_UNMAPPED) == 0;
3876 	need_kva = bp->b_kvabase == unmapped_buf &&
3877 	    bp->b_data == unmapped_buf &&
3878 	    (gbflags & GB_KVAALLOC) != 0;
3879 	if (!need_mapping && !need_kva)
3880 		return;
3881 
3882 	BUF_CHECK_UNMAPPED(bp);
3883 
3884 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3885 		/*
3886 		 * Buffer is not mapped, but the KVA was already
3887 		 * reserved at the time of the instantiation.  Use the
3888 		 * allocated space.
3889 		 */
3890 		goto has_addr;
3891 	}
3892 
3893 	/*
3894 	 * Calculate the amount of the address space we would reserve
3895 	 * if the buffer was mapped.
3896 	 */
3897 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3898 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3899 	offset = blkno * bsize;
3900 	maxsize = size + (offset & PAGE_MASK);
3901 	maxsize = imax(maxsize, bsize);
3902 
3903 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3904 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3905 			/*
3906 			 * XXXKIB: defragmentation cannot
3907 			 * succeed, not sure what else to do.
3908 			 */
3909 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3910 		}
3911 		counter_u64_add(mappingrestarts, 1);
3912 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3913 	}
3914 has_addr:
3915 	if (need_mapping) {
3916 		/* b_offset is handled by bpmap_qenter. */
3917 		bp->b_data = bp->b_kvabase;
3918 		BUF_CHECK_MAPPED(bp);
3919 		bpmap_qenter(bp);
3920 	}
3921 }
3922 
3923 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3924 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3925     int flags)
3926 {
3927 	struct buf *bp;
3928 	int error;
3929 
3930 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3931 	if (error != 0)
3932 		return (NULL);
3933 	return (bp);
3934 }
3935 
3936 /*
3937  *	getblkx:
3938  *
3939  *	Get a block given a specified block and offset into a file/device.
3940  *	The buffers B_DONE bit will be cleared on return, making it almost
3941  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3942  *	return.  The caller should clear B_INVAL prior to initiating a
3943  *	READ.
3944  *
3945  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3946  *	an existing buffer.
3947  *
3948  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3949  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3950  *	and then cleared based on the backing VM.  If the previous buffer is
3951  *	non-0-sized but invalid, B_CACHE will be cleared.
3952  *
3953  *	If getblk() must create a new buffer, the new buffer is returned with
3954  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3955  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3956  *	backing VM.
3957  *
3958  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3959  *	B_CACHE bit is clear.
3960  *
3961  *	What this means, basically, is that the caller should use B_CACHE to
3962  *	determine whether the buffer is fully valid or not and should clear
3963  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3964  *	the buffer by loading its data area with something, the caller needs
3965  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3966  *	the caller should set B_CACHE ( as an optimization ), else the caller
3967  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3968  *	a write attempt or if it was a successful read.  If the caller
3969  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3970  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3971  *
3972  *	The blkno parameter is the logical block being requested. Normally
3973  *	the mapping of logical block number to disk block address is done
3974  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3975  *	disk block address can be passed using the dblkno parameter. If the
3976  *	disk block address is not known, then the same value should be passed
3977  *	for blkno and dblkno.
3978  */
3979 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3980 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3981     int slptimeo, int flags, struct buf **bpp)
3982 {
3983 	struct buf *bp;
3984 	struct bufobj *bo;
3985 	daddr_t d_blkno;
3986 	int bsize, error, maxsize, vmio;
3987 	off_t offset;
3988 
3989 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3990 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3991 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3992 	if (vp->v_type != VCHR)
3993 		ASSERT_VOP_LOCKED(vp, "getblk");
3994 	if (size > maxbcachebuf) {
3995 		printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
3996 		    maxbcachebuf);
3997 		return (EIO);
3998 	}
3999 	if (!unmapped_buf_allowed)
4000 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4001 
4002 	bo = &vp->v_bufobj;
4003 	d_blkno = dblkno;
4004 
4005 	/* Attempt lockless lookup first. */
4006 	bp = gbincore_unlocked(bo, blkno);
4007 	if (bp == NULL) {
4008 		/*
4009 		 * With GB_NOCREAT we must be sure about not finding the buffer
4010 		 * as it may have been reassigned during unlocked lookup.
4011 		 * If BO_NONSTERILE is still unset, no reassign has occurred.
4012 		 */
4013 		if ((flags & GB_NOCREAT) != 0) {
4014 			/* Ensure bo_flag is loaded after gbincore_unlocked. */
4015 			atomic_thread_fence_acq();
4016 			if ((bo->bo_flag & BO_NONSTERILE) == 0)
4017 				return (EEXIST);
4018 			goto loop;
4019 		}
4020 		goto newbuf_unlocked;
4021 	}
4022 
4023 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
4024 	    0);
4025 	if (error != 0) {
4026 		KASSERT(error == EBUSY,
4027 		    ("getblk: unexpected error %d from buf try-lock", error));
4028 		/*
4029 		 * We failed a buf try-lock.
4030 		 *
4031 		 * With GB_LOCK_NOWAIT, just return, rather than taking the
4032 		 * bufobj interlock and trying again, since we would probably
4033 		 * fail again anyway.  This is okay even if the buf's identity
4034 		 * changed and we contended on the wrong lock, as changing
4035 		 * identity itself requires the buf lock, and we could have
4036 		 * contended on the right lock.
4037 		 */
4038 		if ((flags & GB_LOCK_NOWAIT) != 0)
4039 			return (error);
4040 		goto loop;
4041 	}
4042 
4043 	/* Verify buf identify has not changed since lookup. */
4044 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
4045 		goto foundbuf_fastpath;
4046 
4047 	/* It changed, fallback to locked lookup. */
4048 	BUF_UNLOCK_RAW(bp);
4049 
4050 	/* As above, with GB_LOCK_NOWAIT, just return. */
4051 	if ((flags & GB_LOCK_NOWAIT) != 0)
4052 		return (EBUSY);
4053 
4054 loop:
4055 	BO_RLOCK(bo);
4056 	bp = gbincore(bo, blkno);
4057 	if (bp != NULL) {
4058 		int lockflags;
4059 
4060 		/*
4061 		 * Buffer is in-core.  If the buffer is not busy nor managed,
4062 		 * it must be on a queue.
4063 		 */
4064 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4065 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4066 #ifdef WITNESS
4067 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4068 #endif
4069 
4070 		error = BUF_TIMELOCK(bp, lockflags,
4071 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4072 
4073 		/*
4074 		 * If we slept and got the lock we have to restart in case
4075 		 * the buffer changed identities.
4076 		 */
4077 		if (error == ENOLCK)
4078 			goto loop;
4079 		/* We timed out or were interrupted. */
4080 		else if (error != 0)
4081 			return (error);
4082 
4083 foundbuf_fastpath:
4084 		/* If recursed, assume caller knows the rules. */
4085 		if (BUF_LOCKRECURSED(bp))
4086 			goto end;
4087 
4088 		/*
4089 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
4090 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
4091 		 * and for a VMIO buffer B_CACHE is adjusted according to the
4092 		 * backing VM cache.
4093 		 */
4094 		if (bp->b_flags & B_INVAL)
4095 			bp->b_flags &= ~B_CACHE;
4096 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4097 			bp->b_flags |= B_CACHE;
4098 		if (bp->b_flags & B_MANAGED)
4099 			MPASS(bp->b_qindex == QUEUE_NONE);
4100 		else
4101 			bremfree(bp);
4102 
4103 		/*
4104 		 * check for size inconsistencies for non-VMIO case.
4105 		 */
4106 		if (bp->b_bcount != size) {
4107 			if ((bp->b_flags & B_VMIO) == 0 ||
4108 			    (size > bp->b_kvasize)) {
4109 				if (bp->b_flags & B_DELWRI) {
4110 					bp->b_flags |= B_NOCACHE;
4111 					bwrite(bp);
4112 				} else {
4113 					if (LIST_EMPTY(&bp->b_dep)) {
4114 						bp->b_flags |= B_RELBUF;
4115 						brelse(bp);
4116 					} else {
4117 						bp->b_flags |= B_NOCACHE;
4118 						bwrite(bp);
4119 					}
4120 				}
4121 				goto loop;
4122 			}
4123 		}
4124 
4125 		/*
4126 		 * Handle the case of unmapped buffer which should
4127 		 * become mapped, or the buffer for which KVA
4128 		 * reservation is requested.
4129 		 */
4130 		bp_unmapped_get_kva(bp, blkno, size, flags);
4131 
4132 		/*
4133 		 * If the size is inconsistent in the VMIO case, we can resize
4134 		 * the buffer.  This might lead to B_CACHE getting set or
4135 		 * cleared.  If the size has not changed, B_CACHE remains
4136 		 * unchanged from its previous state.
4137 		 */
4138 		allocbuf(bp, size);
4139 
4140 		KASSERT(bp->b_offset != NOOFFSET,
4141 		    ("getblk: no buffer offset"));
4142 
4143 		/*
4144 		 * A buffer with B_DELWRI set and B_CACHE clear must
4145 		 * be committed before we can return the buffer in
4146 		 * order to prevent the caller from issuing a read
4147 		 * ( due to B_CACHE not being set ) and overwriting
4148 		 * it.
4149 		 *
4150 		 * Most callers, including NFS and FFS, need this to
4151 		 * operate properly either because they assume they
4152 		 * can issue a read if B_CACHE is not set, or because
4153 		 * ( for example ) an uncached B_DELWRI might loop due
4154 		 * to softupdates re-dirtying the buffer.  In the latter
4155 		 * case, B_CACHE is set after the first write completes,
4156 		 * preventing further loops.
4157 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4158 		 * above while extending the buffer, we cannot allow the
4159 		 * buffer to remain with B_CACHE set after the write
4160 		 * completes or it will represent a corrupt state.  To
4161 		 * deal with this we set B_NOCACHE to scrap the buffer
4162 		 * after the write.
4163 		 *
4164 		 * We might be able to do something fancy, like setting
4165 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4166 		 * so the below call doesn't set B_CACHE, but that gets real
4167 		 * confusing.  This is much easier.
4168 		 */
4169 
4170 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4171 			bp->b_flags |= B_NOCACHE;
4172 			bwrite(bp);
4173 			goto loop;
4174 		}
4175 		bp->b_flags &= ~B_DONE;
4176 	} else {
4177 		/*
4178 		 * Buffer is not in-core, create new buffer.  The buffer
4179 		 * returned by getnewbuf() is locked.  Note that the returned
4180 		 * buffer is also considered valid (not marked B_INVAL).
4181 		 */
4182 		BO_RUNLOCK(bo);
4183 newbuf_unlocked:
4184 		/*
4185 		 * If the user does not want us to create the buffer, bail out
4186 		 * here.
4187 		 */
4188 		if (flags & GB_NOCREAT)
4189 			return (EEXIST);
4190 
4191 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4192 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4193 		offset = blkno * bsize;
4194 		vmio = vp->v_object != NULL;
4195 		if (vmio) {
4196 			maxsize = size + (offset & PAGE_MASK);
4197 			if (maxsize > maxbcachebuf) {
4198 				printf(
4199 			    "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
4200 				    maxsize, maxbcachebuf);
4201 				return (EIO);
4202 			}
4203 		} else {
4204 			maxsize = size;
4205 			/* Do not allow non-VMIO notmapped buffers. */
4206 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4207 		}
4208 		maxsize = imax(maxsize, bsize);
4209 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4210 		    !vn_isdisk(vp)) {
4211 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4212 			KASSERT(error != EOPNOTSUPP,
4213 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4214 			    vp));
4215 			if (error != 0)
4216 				return (error);
4217 			if (d_blkno == -1)
4218 				return (EJUSTRETURN);
4219 		}
4220 
4221 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4222 		if (bp == NULL) {
4223 			if (slpflag || slptimeo)
4224 				return (ETIMEDOUT);
4225 			/*
4226 			 * XXX This is here until the sleep path is diagnosed
4227 			 * enough to work under very low memory conditions.
4228 			 *
4229 			 * There's an issue on low memory, 4BSD+non-preempt
4230 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4231 			 * exhaustion occurs without sleeping for buffer
4232 			 * reclaimation.  This just sticks in a loop and
4233 			 * constantly attempts to allocate a buffer, which
4234 			 * hits exhaustion and tries to wakeup bufdaemon.
4235 			 * This never happens because we never yield.
4236 			 *
4237 			 * The real solution is to identify and fix these cases
4238 			 * so we aren't effectively busy-waiting in a loop
4239 			 * until the reclaimation path has cycles to run.
4240 			 */
4241 			kern_yield(PRI_USER);
4242 			goto loop;
4243 		}
4244 
4245 		/*
4246 		 *
4247 		 * Insert the buffer into the hash, so that it can
4248 		 * be found by incore.
4249 		 *
4250 		 * We don't hold the bufobj interlock while allocating the new
4251 		 * buffer.  Consequently, we can race on buffer creation.  This
4252 		 * can be a problem whether the vnode is locked or not.  If the
4253 		 * buffer is created out from under us, we have to throw away
4254 		 * the one we just created.
4255 		 */
4256 		bp->b_lblkno = blkno;
4257 		bp->b_blkno = d_blkno;
4258 		bp->b_offset = offset;
4259 		error = bgetvp(vp, bp);
4260 		if (error != 0) {
4261 			KASSERT(error == EEXIST,
4262 			    ("getblk: unexpected error %d from bgetvp",
4263 			    error));
4264 			bp->b_flags |= B_INVAL;
4265 			bufspace_release(bufdomain(bp), maxsize);
4266 			brelse(bp);
4267 			goto loop;
4268 		}
4269 
4270 		/*
4271 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4272 		 * buffer size starts out as 0, B_CACHE will be set by
4273 		 * allocbuf() for the VMIO case prior to it testing the
4274 		 * backing store for validity.
4275 		 */
4276 
4277 		if (vmio) {
4278 			bp->b_flags |= B_VMIO;
4279 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4280 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4281 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4282 		} else {
4283 			bp->b_flags &= ~B_VMIO;
4284 			KASSERT(bp->b_bufobj->bo_object == NULL,
4285 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4286 			    bp, bp->b_bufobj->bo_object));
4287 			BUF_CHECK_MAPPED(bp);
4288 		}
4289 
4290 		allocbuf(bp, size);
4291 		bufspace_release(bufdomain(bp), maxsize);
4292 		bp->b_flags &= ~B_DONE;
4293 	}
4294 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4295 end:
4296 	buf_track(bp, __func__);
4297 	KASSERT(bp->b_bufobj == bo,
4298 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4299 	*bpp = bp;
4300 	return (0);
4301 }
4302 
4303 /*
4304  * Get an empty, disassociated buffer of given size.  The buffer is initially
4305  * set to B_INVAL.
4306  */
4307 struct buf *
geteblk(int size,int flags)4308 geteblk(int size, int flags)
4309 {
4310 	struct buf *bp;
4311 	int maxsize;
4312 
4313 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4314 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4315 		if ((flags & GB_NOWAIT_BD) &&
4316 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4317 			return (NULL);
4318 	}
4319 	allocbuf(bp, size);
4320 	bufspace_release(bufdomain(bp), maxsize);
4321 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4322 	return (bp);
4323 }
4324 
4325 /*
4326  * Truncate the backing store for a non-vmio buffer.
4327  */
4328 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4329 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4330 {
4331 
4332 	if (bp->b_flags & B_MALLOC) {
4333 		/*
4334 		 * malloced buffers are not shrunk
4335 		 */
4336 		if (newbsize == 0) {
4337 			bufmallocadjust(bp, 0);
4338 			free(bp->b_data, M_BIOBUF);
4339 			bp->b_data = bp->b_kvabase;
4340 			bp->b_flags &= ~B_MALLOC;
4341 		}
4342 		return;
4343 	}
4344 	vm_hold_free_pages(bp, newbsize);
4345 	bufspace_adjust(bp, newbsize);
4346 }
4347 
4348 /*
4349  * Extend the backing for a non-VMIO buffer.
4350  */
4351 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4352 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4353 {
4354 	caddr_t origbuf;
4355 	int origbufsize;
4356 
4357 	/*
4358 	 * We only use malloced memory on the first allocation.
4359 	 * and revert to page-allocated memory when the buffer
4360 	 * grows.
4361 	 *
4362 	 * There is a potential smp race here that could lead
4363 	 * to bufmallocspace slightly passing the max.  It
4364 	 * is probably extremely rare and not worth worrying
4365 	 * over.
4366 	 */
4367 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4368 	    bufmallocspace < maxbufmallocspace) {
4369 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4370 		bp->b_flags |= B_MALLOC;
4371 		bufmallocadjust(bp, newbsize);
4372 		return;
4373 	}
4374 
4375 	/*
4376 	 * If the buffer is growing on its other-than-first
4377 	 * allocation then we revert to the page-allocation
4378 	 * scheme.
4379 	 */
4380 	origbuf = NULL;
4381 	origbufsize = 0;
4382 	if (bp->b_flags & B_MALLOC) {
4383 		origbuf = bp->b_data;
4384 		origbufsize = bp->b_bufsize;
4385 		bp->b_data = bp->b_kvabase;
4386 		bufmallocadjust(bp, 0);
4387 		bp->b_flags &= ~B_MALLOC;
4388 		newbsize = round_page(newbsize);
4389 	}
4390 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4391 	    (vm_offset_t) bp->b_data + newbsize);
4392 	if (origbuf != NULL) {
4393 		bcopy(origbuf, bp->b_data, origbufsize);
4394 		free(origbuf, M_BIOBUF);
4395 	}
4396 	bufspace_adjust(bp, newbsize);
4397 }
4398 
4399 /*
4400  * This code constitutes the buffer memory from either anonymous system
4401  * memory (in the case of non-VMIO operations) or from an associated
4402  * VM object (in the case of VMIO operations).  This code is able to
4403  * resize a buffer up or down.
4404  *
4405  * Note that this code is tricky, and has many complications to resolve
4406  * deadlock or inconsistent data situations.  Tread lightly!!!
4407  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4408  * the caller.  Calling this code willy nilly can result in the loss of data.
4409  *
4410  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4411  * B_CACHE for the non-VMIO case.
4412  */
4413 int
allocbuf(struct buf * bp,int size)4414 allocbuf(struct buf *bp, int size)
4415 {
4416 	int newbsize;
4417 
4418 	if (bp->b_bcount == size)
4419 		return (1);
4420 
4421 	KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
4422 	    ("allocbuf: buffer too small %p %#x %#x",
4423 	    bp, bp->b_kvasize, size));
4424 
4425 	newbsize = roundup2(size, DEV_BSIZE);
4426 	if ((bp->b_flags & B_VMIO) == 0) {
4427 		if ((bp->b_flags & B_MALLOC) == 0)
4428 			newbsize = round_page(newbsize);
4429 		/*
4430 		 * Just get anonymous memory from the kernel.  Don't
4431 		 * mess with B_CACHE.
4432 		 */
4433 		if (newbsize < bp->b_bufsize)
4434 			vfs_nonvmio_truncate(bp, newbsize);
4435 		else if (newbsize > bp->b_bufsize)
4436 			vfs_nonvmio_extend(bp, newbsize);
4437 	} else {
4438 		int desiredpages;
4439 
4440 		desiredpages = size == 0 ? 0 :
4441 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4442 
4443 		KASSERT((bp->b_flags & B_MALLOC) == 0,
4444 		    ("allocbuf: VMIO buffer can't be malloced %p", bp));
4445 
4446 		/*
4447 		 * Set B_CACHE initially if buffer is 0 length or will become
4448 		 * 0-length.
4449 		 */
4450 		if (size == 0 || bp->b_bufsize == 0)
4451 			bp->b_flags |= B_CACHE;
4452 
4453 		if (newbsize < bp->b_bufsize)
4454 			vfs_vmio_truncate(bp, desiredpages);
4455 		/* XXX This looks as if it should be newbsize > b_bufsize */
4456 		else if (size > bp->b_bcount)
4457 			vfs_vmio_extend(bp, desiredpages, size);
4458 		bufspace_adjust(bp, newbsize);
4459 	}
4460 	bp->b_bcount = size;		/* requested buffer size. */
4461 	return (1);
4462 }
4463 
4464 extern int inflight_transient_maps;
4465 
4466 static struct bio_queue nondump_bios;
4467 
4468 void
biodone(struct bio * bp)4469 biodone(struct bio *bp)
4470 {
4471 	struct mtx *mtxp;
4472 	void (*done)(struct bio *);
4473 	vm_offset_t start, end;
4474 
4475 	biotrack(bp, __func__);
4476 
4477 	/*
4478 	 * Avoid completing I/O when dumping after a panic since that may
4479 	 * result in a deadlock in the filesystem or pager code.  Note that
4480 	 * this doesn't affect dumps that were started manually since we aim
4481 	 * to keep the system usable after it has been resumed.
4482 	 */
4483 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4484 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4485 		return;
4486 	}
4487 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4488 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4489 		bp->bio_flags |= BIO_UNMAPPED;
4490 		start = trunc_page((vm_offset_t)bp->bio_data);
4491 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4492 		bp->bio_data = unmapped_buf;
4493 		pmap_qremove(start, atop(end - start));
4494 		vmem_free(transient_arena, start, end - start);
4495 		atomic_add_int(&inflight_transient_maps, -1);
4496 	}
4497 	done = bp->bio_done;
4498 	/*
4499 	 * The check for done == biodone is to allow biodone to be
4500 	 * used as a bio_done routine.
4501 	 */
4502 	if (done == NULL || done == biodone) {
4503 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4504 		mtx_lock(mtxp);
4505 		bp->bio_flags |= BIO_DONE;
4506 		wakeup(bp);
4507 		mtx_unlock(mtxp);
4508 	} else
4509 		done(bp);
4510 }
4511 
4512 /*
4513  * Wait for a BIO to finish.
4514  */
4515 int
biowait(struct bio * bp,const char * wmesg)4516 biowait(struct bio *bp, const char *wmesg)
4517 {
4518 	struct mtx *mtxp;
4519 
4520 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4521 	mtx_lock(mtxp);
4522 	while ((bp->bio_flags & BIO_DONE) == 0)
4523 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4524 	mtx_unlock(mtxp);
4525 	if (bp->bio_error != 0) {
4526 		if ((bp->bio_flags & BIO_EXTERR) != 0)
4527 			return (exterr_set_from(&bp->bio_exterr));
4528 		return (bp->bio_error);
4529 	}
4530 	if (!(bp->bio_flags & BIO_ERROR))
4531 		return (0);
4532 	return (EIO);
4533 }
4534 
4535 void
biofinish(struct bio * bp,struct devstat * stat,int error)4536 biofinish(struct bio *bp, struct devstat *stat, int error)
4537 {
4538 
4539 	if (error) {
4540 		bp->bio_error = error;
4541 		bp->bio_flags |= BIO_ERROR;
4542 	}
4543 	if (stat != NULL)
4544 		devstat_end_transaction_bio(stat, bp);
4545 	biodone(bp);
4546 }
4547 
4548 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4549 void
biotrack_buf(struct bio * bp,const char * location)4550 biotrack_buf(struct bio *bp, const char *location)
4551 {
4552 
4553 	buf_track(bp->bio_track_bp, location);
4554 }
4555 #endif
4556 
4557 /*
4558  *	bufwait:
4559  *
4560  *	Wait for buffer I/O completion, returning error status.  The buffer
4561  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4562  *	error and cleared.
4563  */
4564 int
bufwait(struct buf * bp)4565 bufwait(struct buf *bp)
4566 {
4567 	if (bp->b_iocmd == BIO_READ)
4568 		bwait(bp, PRIBIO, "biord");
4569 	else
4570 		bwait(bp, PRIBIO, "biowr");
4571 	if (bp->b_flags & B_EINTR) {
4572 		bp->b_flags &= ~B_EINTR;
4573 		return (EINTR);
4574 	}
4575 	if (bp->b_ioflags & BIO_ERROR) {
4576 		if ((bp->b_ioflags & BIO_EXTERR) != 0)
4577 			exterr_set_from(&bp->b_exterr);
4578 		return (bp->b_error ? bp->b_error : EIO);
4579 	} else {
4580 		return (0);
4581 	}
4582 }
4583 
4584 /*
4585  *	bufdone:
4586  *
4587  *	Finish I/O on a buffer, optionally calling a completion function.
4588  *	This is usually called from an interrupt so process blocking is
4589  *	not allowed.
4590  *
4591  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4592  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4593  *	assuming B_INVAL is clear.
4594  *
4595  *	For the VMIO case, we set B_CACHE if the op was a read and no
4596  *	read error occurred, or if the op was a write.  B_CACHE is never
4597  *	set if the buffer is invalid or otherwise uncacheable.
4598  *
4599  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4600  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4601  *	in the biodone routine.
4602  */
4603 void
bufdone(struct buf * bp)4604 bufdone(struct buf *bp)
4605 {
4606 	struct bufobj *dropobj;
4607 	void    (*biodone)(struct buf *);
4608 
4609 	buf_track(bp, __func__);
4610 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4611 	dropobj = NULL;
4612 
4613 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4614 
4615 	runningbufwakeup(bp);
4616 	if (bp->b_iocmd == BIO_WRITE)
4617 		dropobj = bp->b_bufobj;
4618 	/* call optional completion function if requested */
4619 	if (bp->b_iodone != NULL) {
4620 		biodone = bp->b_iodone;
4621 		bp->b_iodone = NULL;
4622 		(*biodone) (bp);
4623 		if (dropobj)
4624 			bufobj_wdrop(dropobj);
4625 		return;
4626 	}
4627 	if (bp->b_flags & B_VMIO) {
4628 		/*
4629 		 * Set B_CACHE if the op was a normal read and no error
4630 		 * occurred.  B_CACHE is set for writes in the b*write()
4631 		 * routines.
4632 		 */
4633 		if (bp->b_iocmd == BIO_READ &&
4634 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4635 		    !(bp->b_ioflags & BIO_ERROR))
4636 			bp->b_flags |= B_CACHE;
4637 		vfs_vmio_iodone(bp);
4638 	}
4639 	if (!LIST_EMPTY(&bp->b_dep))
4640 		buf_complete(bp);
4641 	if ((bp->b_flags & B_CKHASH) != 0) {
4642 		KASSERT(bp->b_iocmd == BIO_READ,
4643 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4644 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4645 		(*bp->b_ckhashcalc)(bp);
4646 	}
4647 	/*
4648 	 * For asynchronous completions, release the buffer now. The brelse
4649 	 * will do a wakeup there if necessary - so no need to do a wakeup
4650 	 * here in the async case. The sync case always needs to do a wakeup.
4651 	 */
4652 	if (bp->b_flags & B_ASYNC) {
4653 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4654 		    (bp->b_ioflags & BIO_ERROR))
4655 			brelse(bp);
4656 		else
4657 			bqrelse(bp);
4658 	} else
4659 		bdone(bp);
4660 	if (dropobj)
4661 		bufobj_wdrop(dropobj);
4662 }
4663 
4664 /*
4665  * This routine is called in lieu of iodone in the case of
4666  * incomplete I/O.  This keeps the busy status for pages
4667  * consistent.
4668  */
4669 void
vfs_unbusy_pages(struct buf * bp)4670 vfs_unbusy_pages(struct buf *bp)
4671 {
4672 	int i;
4673 	vm_object_t obj;
4674 	vm_page_t m;
4675 
4676 	runningbufwakeup(bp);
4677 	if (!(bp->b_flags & B_VMIO))
4678 		return;
4679 
4680 	obj = bp->b_bufobj->bo_object;
4681 	for (i = 0; i < bp->b_npages; i++) {
4682 		m = bp->b_pages[i];
4683 		if (m == bogus_page) {
4684 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4685 			if (!m)
4686 				panic("vfs_unbusy_pages: page missing\n");
4687 			bp->b_pages[i] = m;
4688 			if (buf_mapped(bp)) {
4689 				BUF_CHECK_MAPPED(bp);
4690 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4691 				    bp->b_pages, bp->b_npages);
4692 			} else
4693 				BUF_CHECK_UNMAPPED(bp);
4694 		}
4695 		vm_page_sunbusy(m);
4696 	}
4697 	vm_object_pip_wakeupn(obj, bp->b_npages);
4698 }
4699 
4700 /*
4701  * vfs_page_set_valid:
4702  *
4703  *	Set the valid bits in a page based on the supplied offset.   The
4704  *	range is restricted to the buffer's size.
4705  *
4706  *	This routine is typically called after a read completes.
4707  */
4708 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4709 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4710 {
4711 	vm_ooffset_t eoff;
4712 
4713 	/*
4714 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4715 	 * page boundary and eoff is not greater than the end of the buffer.
4716 	 * The end of the buffer, in this case, is our file EOF, not the
4717 	 * allocation size of the buffer.
4718 	 */
4719 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4720 	if (eoff > bp->b_offset + bp->b_bcount)
4721 		eoff = bp->b_offset + bp->b_bcount;
4722 
4723 	/*
4724 	 * Set valid range.  This is typically the entire buffer and thus the
4725 	 * entire page.
4726 	 */
4727 	if (eoff > off)
4728 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4729 }
4730 
4731 /*
4732  * vfs_page_set_validclean:
4733  *
4734  *	Set the valid bits and clear the dirty bits in a page based on the
4735  *	supplied offset.   The range is restricted to the buffer's size.
4736  */
4737 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4738 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4739 {
4740 	vm_ooffset_t soff, eoff;
4741 
4742 	/*
4743 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4744 	 * page boundary or cross the end of the buffer.  The end of the
4745 	 * buffer, in this case, is our file EOF, not the allocation size
4746 	 * of the buffer.
4747 	 */
4748 	soff = off;
4749 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4750 	if (eoff > bp->b_offset + bp->b_bcount)
4751 		eoff = bp->b_offset + bp->b_bcount;
4752 
4753 	/*
4754 	 * Set valid range.  This is typically the entire buffer and thus the
4755 	 * entire page.
4756 	 */
4757 	if (eoff > soff) {
4758 		vm_page_set_validclean(
4759 		    m,
4760 		   (vm_offset_t) (soff & PAGE_MASK),
4761 		   (vm_offset_t) (eoff - soff)
4762 		);
4763 	}
4764 }
4765 
4766 /*
4767  * Acquire a shared busy on all pages in the buf.
4768  */
4769 void
vfs_busy_pages_acquire(struct buf * bp)4770 vfs_busy_pages_acquire(struct buf *bp)
4771 {
4772 	int i;
4773 
4774 	for (i = 0; i < bp->b_npages; i++)
4775 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4776 }
4777 
4778 void
vfs_busy_pages_release(struct buf * bp)4779 vfs_busy_pages_release(struct buf *bp)
4780 {
4781 	int i;
4782 
4783 	for (i = 0; i < bp->b_npages; i++)
4784 		vm_page_sunbusy(bp->b_pages[i]);
4785 }
4786 
4787 /*
4788  * This routine is called before a device strategy routine.
4789  * It is used to tell the VM system that paging I/O is in
4790  * progress, and treat the pages associated with the buffer
4791  * almost as being exclusive busy.  Also the object paging_in_progress
4792  * flag is handled to make sure that the object doesn't become
4793  * inconsistent.
4794  *
4795  * Since I/O has not been initiated yet, certain buffer flags
4796  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4797  * and should be ignored.
4798  */
4799 void
vfs_busy_pages(struct buf * bp,int clear_modify)4800 vfs_busy_pages(struct buf *bp, int clear_modify)
4801 {
4802 	vm_object_t obj;
4803 	vm_ooffset_t foff;
4804 	vm_page_t m;
4805 	int i;
4806 	bool bogus;
4807 
4808 	if (!(bp->b_flags & B_VMIO))
4809 		return;
4810 
4811 	obj = bp->b_bufobj->bo_object;
4812 	foff = bp->b_offset;
4813 	KASSERT(bp->b_offset != NOOFFSET,
4814 	    ("vfs_busy_pages: no buffer offset"));
4815 	if ((bp->b_flags & B_CLUSTER) == 0) {
4816 		vm_object_pip_add(obj, bp->b_npages);
4817 		vfs_busy_pages_acquire(bp);
4818 	}
4819 	if (bp->b_bufsize != 0)
4820 		vfs_setdirty_range(bp);
4821 	bogus = false;
4822 	for (i = 0; i < bp->b_npages; i++) {
4823 		m = bp->b_pages[i];
4824 		vm_page_assert_sbusied(m);
4825 
4826 		/*
4827 		 * When readying a buffer for a read ( i.e
4828 		 * clear_modify == 0 ), it is important to do
4829 		 * bogus_page replacement for valid pages in
4830 		 * partially instantiated buffers.  Partially
4831 		 * instantiated buffers can, in turn, occur when
4832 		 * reconstituting a buffer from its VM backing store
4833 		 * base.  We only have to do this if B_CACHE is
4834 		 * clear ( which causes the I/O to occur in the
4835 		 * first place ).  The replacement prevents the read
4836 		 * I/O from overwriting potentially dirty VM-backed
4837 		 * pages.  XXX bogus page replacement is, uh, bogus.
4838 		 * It may not work properly with small-block devices.
4839 		 * We need to find a better way.
4840 		 */
4841 		if (clear_modify) {
4842 			pmap_remove_write(m);
4843 			vfs_page_set_validclean(bp, foff, m);
4844 		} else if (vm_page_all_valid(m) &&
4845 		    (bp->b_flags & B_CACHE) == 0) {
4846 			bp->b_pages[i] = bogus_page;
4847 			bogus = true;
4848 		}
4849 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4850 	}
4851 	if (bogus && buf_mapped(bp)) {
4852 		BUF_CHECK_MAPPED(bp);
4853 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4854 		    bp->b_pages, bp->b_npages);
4855 	}
4856 }
4857 
4858 /*
4859  *	vfs_bio_set_valid:
4860  *
4861  *	Set the range within the buffer to valid.  The range is
4862  *	relative to the beginning of the buffer, b_offset.  Note that
4863  *	b_offset itself may be offset from the beginning of the first
4864  *	page.
4865  */
4866 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4867 vfs_bio_set_valid(struct buf *bp, int base, int size)
4868 {
4869 	int i, n;
4870 	vm_page_t m;
4871 
4872 	if (!(bp->b_flags & B_VMIO))
4873 		return;
4874 
4875 	/*
4876 	 * Fixup base to be relative to beginning of first page.
4877 	 * Set initial n to be the maximum number of bytes in the
4878 	 * first page that can be validated.
4879 	 */
4880 	base += (bp->b_offset & PAGE_MASK);
4881 	n = PAGE_SIZE - (base & PAGE_MASK);
4882 
4883 	/*
4884 	 * Busy may not be strictly necessary here because the pages are
4885 	 * unlikely to be fully valid and the vnode lock will synchronize
4886 	 * their access via getpages.  It is grabbed for consistency with
4887 	 * other page validation.
4888 	 */
4889 	vfs_busy_pages_acquire(bp);
4890 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4891 		m = bp->b_pages[i];
4892 		if (n > size)
4893 			n = size;
4894 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4895 		base += n;
4896 		size -= n;
4897 		n = PAGE_SIZE;
4898 	}
4899 	vfs_busy_pages_release(bp);
4900 }
4901 
4902 /*
4903  *	vfs_bio_clrbuf:
4904  *
4905  *	If the specified buffer is a non-VMIO buffer, clear the entire
4906  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4907  *	validate only the previously invalid portions of the buffer.
4908  *	This routine essentially fakes an I/O, so we need to clear
4909  *	BIO_ERROR and B_INVAL.
4910  *
4911  *	Note that while we only theoretically need to clear through b_bcount,
4912  *	we go ahead and clear through b_bufsize.
4913  */
4914 void
vfs_bio_clrbuf(struct buf * bp)4915 vfs_bio_clrbuf(struct buf *bp)
4916 {
4917 	int i, j, sa, ea, slide, zbits;
4918 	vm_page_bits_t mask;
4919 
4920 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4921 		clrbuf(bp);
4922 		return;
4923 	}
4924 	bp->b_flags &= ~B_INVAL;
4925 	bp->b_ioflags &= ~BIO_ERROR;
4926 	vfs_busy_pages_acquire(bp);
4927 	sa = bp->b_offset & PAGE_MASK;
4928 	slide = 0;
4929 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4930 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4931 		ea = slide & PAGE_MASK;
4932 		if (ea == 0)
4933 			ea = PAGE_SIZE;
4934 		if (bp->b_pages[i] == bogus_page)
4935 			continue;
4936 		j = sa / DEV_BSIZE;
4937 		zbits = (sizeof(vm_page_bits_t) * NBBY) -
4938 		    (ea - sa) / DEV_BSIZE;
4939 		mask = (VM_PAGE_BITS_ALL >> zbits) << j;
4940 		if ((bp->b_pages[i]->valid & mask) == mask)
4941 			continue;
4942 		if ((bp->b_pages[i]->valid & mask) == 0)
4943 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4944 		else {
4945 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4946 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4947 					pmap_zero_page_area(bp->b_pages[i],
4948 					    sa, DEV_BSIZE);
4949 				}
4950 			}
4951 		}
4952 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4953 		    roundup2(ea - sa, DEV_BSIZE));
4954 	}
4955 	vfs_busy_pages_release(bp);
4956 	bp->b_resid = 0;
4957 }
4958 
4959 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4960 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4961 {
4962 	vm_page_t m;
4963 	int i, n;
4964 
4965 	if (buf_mapped(bp)) {
4966 		BUF_CHECK_MAPPED(bp);
4967 		bzero(bp->b_data + base, size);
4968 	} else {
4969 		BUF_CHECK_UNMAPPED(bp);
4970 		n = PAGE_SIZE - (base & PAGE_MASK);
4971 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4972 			m = bp->b_pages[i];
4973 			if (n > size)
4974 				n = size;
4975 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4976 			base += n;
4977 			size -= n;
4978 			n = PAGE_SIZE;
4979 		}
4980 	}
4981 }
4982 
4983 /*
4984  * Update buffer flags based on I/O request parameters, optionally releasing the
4985  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4986  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4987  * I/O).  Otherwise the buffer is released to the cache.
4988  */
4989 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4990 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4991 {
4992 
4993 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4994 	    ("buf %p non-VMIO noreuse", bp));
4995 
4996 	if ((ioflag & IO_DIRECT) != 0)
4997 		bp->b_flags |= B_DIRECT;
4998 	if ((ioflag & IO_EXT) != 0)
4999 		bp->b_xflags |= BX_ALTDATA;
5000 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
5001 		bp->b_flags |= B_RELBUF;
5002 		if ((ioflag & IO_NOREUSE) != 0)
5003 			bp->b_flags |= B_NOREUSE;
5004 		if (release)
5005 			brelse(bp);
5006 	} else if (release)
5007 		bqrelse(bp);
5008 }
5009 
5010 void
vfs_bio_brelse(struct buf * bp,int ioflag)5011 vfs_bio_brelse(struct buf *bp, int ioflag)
5012 {
5013 
5014 	b_io_dismiss(bp, ioflag, true);
5015 }
5016 
5017 void
vfs_bio_set_flags(struct buf * bp,int ioflag)5018 vfs_bio_set_flags(struct buf *bp, int ioflag)
5019 {
5020 
5021 	b_io_dismiss(bp, ioflag, false);
5022 }
5023 
5024 /*
5025  * vm_hold_load_pages and vm_hold_free_pages get pages into
5026  * a buffers address space.  The pages are anonymous and are
5027  * not associated with a file object.
5028  */
5029 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)5030 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
5031 {
5032 	vm_offset_t pg;
5033 	vm_page_t p;
5034 	int index;
5035 
5036 	BUF_CHECK_MAPPED(bp);
5037 
5038 	to = round_page(to);
5039 	from = round_page(from);
5040 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5041 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
5042 	KASSERT(to - from <= maxbcachebuf,
5043 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
5044 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
5045 
5046 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
5047 		/*
5048 		 * note: must allocate system pages since blocking here
5049 		 * could interfere with paging I/O, no matter which
5050 		 * process we are.
5051 		 */
5052 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
5053 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
5054 		pmap_qenter(pg, &p, 1);
5055 		bp->b_pages[index] = p;
5056 	}
5057 	bp->b_npages = index;
5058 }
5059 
5060 /* Return pages associated with this buf to the vm system */
5061 static void
vm_hold_free_pages(struct buf * bp,int newbsize)5062 vm_hold_free_pages(struct buf *bp, int newbsize)
5063 {
5064 	vm_offset_t from;
5065 	vm_page_t p;
5066 	int index, newnpages;
5067 
5068 	BUF_CHECK_MAPPED(bp);
5069 
5070 	from = round_page((vm_offset_t)bp->b_data + newbsize);
5071 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5072 	if (bp->b_npages > newnpages)
5073 		pmap_qremove(from, bp->b_npages - newnpages);
5074 	for (index = newnpages; index < bp->b_npages; index++) {
5075 		p = bp->b_pages[index];
5076 		bp->b_pages[index] = NULL;
5077 		vm_page_unwire_noq(p);
5078 		vm_page_free(p);
5079 	}
5080 	bp->b_npages = newnpages;
5081 }
5082 
5083 /*
5084  * Map an IO request into kernel virtual address space.
5085  *
5086  * All requests are (re)mapped into kernel VA space.
5087  * Notice that we use b_bufsize for the size of the buffer
5088  * to be mapped.  b_bcount might be modified by the driver.
5089  *
5090  * Note that even if the caller determines that the address space should
5091  * be valid, a race or a smaller-file mapped into a larger space may
5092  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5093  * check the return value.
5094  *
5095  * This function only works with pager buffers.
5096  */
5097 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5098 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5099 {
5100 	vm_prot_t prot;
5101 	int pidx;
5102 
5103 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
5104 	prot = VM_PROT_READ;
5105 	if (bp->b_iocmd == BIO_READ)
5106 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
5107 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5108 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5109 	if (pidx < 0)
5110 		return (-1);
5111 	bp->b_bufsize = len;
5112 	bp->b_npages = pidx;
5113 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5114 	if (mapbuf || !unmapped_buf_allowed) {
5115 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5116 		bp->b_data = bp->b_kvabase + bp->b_offset;
5117 	} else
5118 		bp->b_data = unmapped_buf;
5119 	return (0);
5120 }
5121 
5122 /*
5123  * Free the io map PTEs associated with this IO operation.
5124  * We also invalidate the TLB entries and restore the original b_addr.
5125  *
5126  * This function only works with pager buffers.
5127  */
5128 void
vunmapbuf(struct buf * bp)5129 vunmapbuf(struct buf *bp)
5130 {
5131 	int npages;
5132 
5133 	npages = bp->b_npages;
5134 	if (buf_mapped(bp))
5135 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5136 	vm_page_unhold_pages(bp->b_pages, npages);
5137 
5138 	bp->b_data = unmapped_buf;
5139 }
5140 
5141 void
bdone(struct buf * bp)5142 bdone(struct buf *bp)
5143 {
5144 	struct mtx *mtxp;
5145 
5146 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5147 	mtx_lock(mtxp);
5148 	bp->b_flags |= B_DONE;
5149 	wakeup(bp);
5150 	mtx_unlock(mtxp);
5151 }
5152 
5153 void
bwait(struct buf * bp,u_char pri,const char * wchan)5154 bwait(struct buf *bp, u_char pri, const char *wchan)
5155 {
5156 	struct mtx *mtxp;
5157 
5158 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5159 	mtx_lock(mtxp);
5160 	while ((bp->b_flags & B_DONE) == 0)
5161 		msleep(bp, mtxp, pri, wchan, 0);
5162 	mtx_unlock(mtxp);
5163 }
5164 
5165 int
bufsync(struct bufobj * bo,int waitfor)5166 bufsync(struct bufobj *bo, int waitfor)
5167 {
5168 
5169 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5170 }
5171 
5172 void
bufstrategy(struct bufobj * bo,struct buf * bp)5173 bufstrategy(struct bufobj *bo, struct buf *bp)
5174 {
5175 	int i __unused;
5176 	struct vnode *vp;
5177 
5178 	vp = bp->b_vp;
5179 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5180 	KASSERT(!VN_ISDEV(vp),
5181 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5182 	i = VOP_STRATEGY(vp, bp);
5183 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5184 }
5185 
5186 /*
5187  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5188  */
5189 void
bufobj_init(struct bufobj * bo,void * private)5190 bufobj_init(struct bufobj *bo, void *private)
5191 {
5192 	static volatile int bufobj_cleanq;
5193 
5194         bo->bo_domain =
5195             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5196         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5197         bo->bo_private = private;
5198         TAILQ_INIT(&bo->bo_clean.bv_hd);
5199 	pctrie_init(&bo->bo_clean.bv_root);
5200         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5201 	pctrie_init(&bo->bo_dirty.bv_root);
5202 }
5203 
5204 void
bufobj_wrefl(struct bufobj * bo)5205 bufobj_wrefl(struct bufobj *bo)
5206 {
5207 
5208 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5209 	ASSERT_BO_WLOCKED(bo);
5210 	bo->bo_numoutput++;
5211 }
5212 
5213 void
bufobj_wref(struct bufobj * bo)5214 bufobj_wref(struct bufobj *bo)
5215 {
5216 
5217 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5218 	BO_LOCK(bo);
5219 	bo->bo_numoutput++;
5220 	BO_UNLOCK(bo);
5221 }
5222 
5223 void
bufobj_wdrop(struct bufobj * bo)5224 bufobj_wdrop(struct bufobj *bo)
5225 {
5226 
5227 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5228 	BO_LOCK(bo);
5229 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5230 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5231 		bo->bo_flag &= ~BO_WWAIT;
5232 		wakeup(&bo->bo_numoutput);
5233 	}
5234 	BO_UNLOCK(bo);
5235 }
5236 
5237 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5238 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5239 {
5240 	int error;
5241 
5242 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5243 	ASSERT_BO_WLOCKED(bo);
5244 	error = 0;
5245 	while (bo->bo_numoutput) {
5246 		bo->bo_flag |= BO_WWAIT;
5247 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5248 		    slpflag | PRIBIO, "bo_wwait", timeo);
5249 		if (error)
5250 			break;
5251 	}
5252 	return (error);
5253 }
5254 
5255 /*
5256  * Set bio_data or bio_ma for struct bio from the struct buf.
5257  */
5258 void
bdata2bio(struct buf * bp,struct bio * bip)5259 bdata2bio(struct buf *bp, struct bio *bip)
5260 {
5261 
5262 	if (!buf_mapped(bp)) {
5263 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5264 		bip->bio_ma = bp->b_pages;
5265 		bip->bio_ma_n = bp->b_npages;
5266 		bip->bio_data = unmapped_buf;
5267 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5268 		bip->bio_flags |= BIO_UNMAPPED;
5269 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5270 		    PAGE_SIZE == bp->b_npages,
5271 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5272 		    (long long)bip->bio_length, bip->bio_ma_n));
5273 	} else {
5274 		bip->bio_data = bp->b_data;
5275 		bip->bio_ma = NULL;
5276 	}
5277 }
5278 
5279 struct memdesc
memdesc_bio(struct bio * bio)5280 memdesc_bio(struct bio *bio)
5281 {
5282 	if ((bio->bio_flags & BIO_VLIST) != 0)
5283 		return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
5284 		    bio->bio_ma_n));
5285 
5286 	if ((bio->bio_flags & BIO_UNMAPPED) != 0)
5287 		return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
5288 		    bio->bio_ma_offset));
5289 
5290 	return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
5291 }
5292 
5293 static int buf_pager_relbuf;
5294 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5295     &buf_pager_relbuf, 0,
5296     "Make buffer pager release buffers after reading");
5297 
5298 /*
5299  * The buffer pager.  It uses buffer reads to validate pages.
5300  *
5301  * In contrast to the generic local pager from vm/vnode_pager.c, this
5302  * pager correctly and easily handles volumes where the underlying
5303  * device block size is greater than the machine page size.  The
5304  * buffer cache transparently extends the requested page run to be
5305  * aligned at the block boundary, and does the necessary bogus page
5306  * replacements in the addends to avoid obliterating already valid
5307  * pages.
5308  *
5309  * The only non-trivial issue is that the exclusive busy state for
5310  * pages, which is assumed by the vm_pager_getpages() interface, is
5311  * incompatible with the VMIO buffer cache's desire to share-busy the
5312  * pages.  This function performs a trivial downgrade of the pages'
5313  * state before reading buffers, and a less trivial upgrade from the
5314  * shared-busy to excl-busy state after the read.
5315  */
5316 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5317 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5318     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5319     vbg_get_blksize_t get_blksize)
5320 {
5321 	vm_page_t m;
5322 	vm_object_t object;
5323 	struct buf *bp;
5324 	struct mount *mp;
5325 	daddr_t lbn, lbnp;
5326 	vm_ooffset_t la, lb, poff, poffe;
5327 	long bo_bs, bsize;
5328 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5329 	bool redo, lpart;
5330 
5331 	object = vp->v_object;
5332 	mp = vp->v_mount;
5333 	error = 0;
5334 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5335 	if (la >= object->un_pager.vnp.vnp_size)
5336 		return (VM_PAGER_BAD);
5337 
5338 	/*
5339 	 * Change the meaning of la from where the last requested page starts
5340 	 * to where it ends, because that's the end of the requested region
5341 	 * and the start of the potential read-ahead region.
5342 	 */
5343 	la += PAGE_SIZE;
5344 	lpart = la > object->un_pager.vnp.vnp_size;
5345 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5346 	    &bo_bs);
5347 	if (error != 0)
5348 		return (VM_PAGER_ERROR);
5349 
5350 	/*
5351 	 * Calculate read-ahead, behind and total pages.
5352 	 */
5353 	pgsin = count;
5354 	lb = IDX_TO_OFF(ma[0]->pindex);
5355 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5356 	pgsin += pgsin_b;
5357 	if (rbehind != NULL)
5358 		*rbehind = pgsin_b;
5359 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5360 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5361 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5362 		    PAGE_SIZE) - la);
5363 	pgsin += pgsin_a;
5364 	if (rahead != NULL)
5365 		*rahead = pgsin_a;
5366 	VM_CNT_INC(v_vnodein);
5367 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5368 
5369 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5370 	    != 0) ? GB_UNMAPPED : 0;
5371 again:
5372 	for (i = 0; i < count; i++) {
5373 		if (ma[i] != bogus_page)
5374 			vm_page_busy_downgrade(ma[i]);
5375 	}
5376 
5377 	lbnp = -1;
5378 	for (i = 0; i < count; i++) {
5379 		m = ma[i];
5380 		if (m == bogus_page)
5381 			continue;
5382 
5383 		/*
5384 		 * Pages are shared busy and the object lock is not
5385 		 * owned, which together allow for the pages'
5386 		 * invalidation.  The racy test for validity avoids
5387 		 * useless creation of the buffer for the most typical
5388 		 * case when invalidation is not used in redo or for
5389 		 * parallel read.  The shared->excl upgrade loop at
5390 		 * the end of the function catches the race in a
5391 		 * reliable way (protected by the object lock).
5392 		 */
5393 		if (vm_page_all_valid(m))
5394 			continue;
5395 
5396 		poff = IDX_TO_OFF(m->pindex);
5397 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5398 		for (; poff < poffe; poff += bsize) {
5399 			lbn = get_lblkno(vp, poff);
5400 			if (lbn == lbnp)
5401 				goto next_page;
5402 			lbnp = lbn;
5403 
5404 			error = get_blksize(vp, lbn, &bsize);
5405 			if (error == 0)
5406 				error = bread_gb(vp, lbn, bsize,
5407 				    curthread->td_ucred, br_flags, &bp);
5408 			if (error != 0)
5409 				goto end_pages;
5410 			if (bp->b_rcred == curthread->td_ucred) {
5411 				crfree(bp->b_rcred);
5412 				bp->b_rcred = NOCRED;
5413 			}
5414 			if (LIST_EMPTY(&bp->b_dep)) {
5415 				/*
5416 				 * Invalidation clears m->valid, but
5417 				 * may leave B_CACHE flag if the
5418 				 * buffer existed at the invalidation
5419 				 * time.  In this case, recycle the
5420 				 * buffer to do real read on next
5421 				 * bread() after redo.
5422 				 *
5423 				 * Otherwise B_RELBUF is not strictly
5424 				 * necessary, enable to reduce buf
5425 				 * cache pressure.
5426 				 */
5427 				if (buf_pager_relbuf ||
5428 				    !vm_page_all_valid(m))
5429 					bp->b_flags |= B_RELBUF;
5430 
5431 				bp->b_flags &= ~B_NOCACHE;
5432 				brelse(bp);
5433 			} else {
5434 				bqrelse(bp);
5435 			}
5436 		}
5437 		KASSERT(1 /* racy, enable for debugging */ ||
5438 		    vm_page_all_valid(m) || i == count - 1,
5439 		    ("buf %d %p invalid", i, m));
5440 		if (i == count - 1 && lpart) {
5441 			if (!vm_page_none_valid(m) &&
5442 			    !vm_page_all_valid(m))
5443 				vm_page_zero_invalid(m, TRUE);
5444 		}
5445 next_page:;
5446 	}
5447 end_pages:
5448 
5449 	redo = false;
5450 	for (i = 0; i < count; i++) {
5451 		if (ma[i] == bogus_page)
5452 			continue;
5453 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5454 			vm_page_sunbusy(ma[i]);
5455 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5456 			    VM_ALLOC_NORMAL);
5457 		}
5458 
5459 		/*
5460 		 * Since the pages were only sbusy while neither the
5461 		 * buffer nor the object lock was held by us, or
5462 		 * reallocated while vm_page_grab() slept for busy
5463 		 * relinguish, they could have been invalidated.
5464 		 * Recheck the valid bits and re-read as needed.
5465 		 *
5466 		 * Note that the last page is made fully valid in the
5467 		 * read loop, and partial validity for the page at
5468 		 * index count - 1 could mean that the page was
5469 		 * invalidated or removed, so we must restart for
5470 		 * safety as well.
5471 		 */
5472 		if (!vm_page_all_valid(ma[i]))
5473 			redo = true;
5474 	}
5475 	if (redo && error == 0)
5476 		goto again;
5477 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5478 }
5479 
5480 #include "opt_ddb.h"
5481 #ifdef DDB
5482 #include <ddb/ddb.h>
5483 
5484 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5485 DB_SHOW_COMMAND(buffer, db_show_buffer)
5486 {
5487 	/* get args */
5488 	struct buf *bp = (struct buf *)addr;
5489 #ifdef FULL_BUF_TRACKING
5490 	uint32_t i, j;
5491 #endif
5492 
5493 	if (!have_addr) {
5494 		db_printf("usage: show buffer <addr>\n");
5495 		return;
5496 	}
5497 
5498 	db_printf("buf at %p\n", bp);
5499 	db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
5500 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5501 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5502 	db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
5503 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5504 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5505 	db_printf(
5506 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5507 	    "b_bufobj = %p, b_data = %p\n"
5508 	    "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
5509 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5510 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5511 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5512 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5513 	    bp->b_kvabase, bp->b_kvasize);
5514 	if (bp->b_npages) {
5515 		int i;
5516 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5517 		for (i = 0; i < bp->b_npages; i++) {
5518 			vm_page_t m;
5519 			m = bp->b_pages[i];
5520 			if (m != NULL)
5521 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5522 				    (u_long)m->pindex,
5523 				    (u_long)VM_PAGE_TO_PHYS(m));
5524 			else
5525 				db_printf("( ??? )");
5526 			if ((i + 1) < bp->b_npages)
5527 				db_printf(",");
5528 		}
5529 		db_printf("\n");
5530 	}
5531 	BUF_LOCKPRINTINFO(bp);
5532 	if ((bp->b_ioflags & BIO_EXTERR) != 0)
5533 		exterr_db_print(&bp->b_exterr);
5534 #if defined(FULL_BUF_TRACKING)
5535 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5536 
5537 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5538 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5539 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5540 			continue;
5541 		db_printf(" %2u: %s\n", j,
5542 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5543 	}
5544 #elif defined(BUF_TRACKING)
5545 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5546 #endif
5547 }
5548 
DB_SHOW_COMMAND_FLAGS(bufqueues,bufqueues,DB_CMD_MEMSAFE)5549 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
5550 {
5551 	struct bufdomain *bd;
5552 	struct buf *bp;
5553 	long total;
5554 	int i, j, cnt;
5555 
5556 	db_printf("bqempty: %d\n", bqempty.bq_len);
5557 
5558 	for (i = 0; i < buf_domains; i++) {
5559 		bd = &bdomain[i];
5560 		db_printf("Buf domain %d\n", i);
5561 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5562 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5563 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5564 		db_printf("\n");
5565 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5566 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5567 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5568 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5569 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5570 		db_printf("\n");
5571 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5572 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5573 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5574 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5575 		db_printf("\n");
5576 		total = 0;
5577 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5578 			total += bp->b_bufsize;
5579 		db_printf("\tcleanq count\t%d (%ld)\n",
5580 		    bd->bd_cleanq->bq_len, total);
5581 		total = 0;
5582 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5583 			total += bp->b_bufsize;
5584 		db_printf("\tdirtyq count\t%d (%ld)\n",
5585 		    bd->bd_dirtyq.bq_len, total);
5586 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5587 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5588 		db_printf("\tCPU ");
5589 		for (j = 0; j <= mp_maxid; j++)
5590 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5591 		db_printf("\n");
5592 		cnt = 0;
5593 		total = 0;
5594 		for (j = 0; j < nbuf; j++) {
5595 			bp = nbufp(j);
5596 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5597 				cnt++;
5598 				total += bp->b_bufsize;
5599 			}
5600 		}
5601 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5602 		cnt = 0;
5603 		total = 0;
5604 		for (j = 0; j < nbuf; j++) {
5605 			bp = nbufp(j);
5606 			if (bp->b_domain == i) {
5607 				cnt++;
5608 				total += bp->b_bufsize;
5609 			}
5610 		}
5611 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5612 	}
5613 }
5614 
DB_SHOW_COMMAND_FLAGS(lockedbufs,lockedbufs,DB_CMD_MEMSAFE)5615 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
5616 {
5617 	struct buf *bp;
5618 	int i;
5619 
5620 	for (i = 0; i < nbuf; i++) {
5621 		bp = nbufp(i);
5622 		if (BUF_ISLOCKED(bp)) {
5623 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5624 			db_printf("\n");
5625 			if (db_pager_quit)
5626 				break;
5627 		}
5628 	}
5629 }
5630 
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5631 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5632 {
5633 	struct vnode *vp;
5634 	struct buf *bp;
5635 
5636 	if (!have_addr) {
5637 		db_printf("usage: show vnodebufs <addr>\n");
5638 		return;
5639 	}
5640 	vp = (struct vnode *)addr;
5641 	db_printf("Clean buffers:\n");
5642 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5643 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5644 		db_printf("\n");
5645 	}
5646 	db_printf("Dirty buffers:\n");
5647 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5648 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5649 		db_printf("\n");
5650 	}
5651 }
5652 
DB_COMMAND_FLAGS(countfreebufs,db_coundfreebufs,DB_CMD_MEMSAFE)5653 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
5654 {
5655 	struct buf *bp;
5656 	int i, used = 0, nfree = 0;
5657 
5658 	if (have_addr) {
5659 		db_printf("usage: countfreebufs\n");
5660 		return;
5661 	}
5662 
5663 	for (i = 0; i < nbuf; i++) {
5664 		bp = nbufp(i);
5665 		if (bp->b_qindex == QUEUE_EMPTY)
5666 			nfree++;
5667 		else
5668 			used++;
5669 	}
5670 
5671 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5672 	    nfree + used);
5673 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5674 }
5675 #endif /* DDB */
5676