1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/protosw.h> 46 #include <sys/sema.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/syscall.h> 50 #include <sys/sysent.h> 51 #include <sys/sysctl.h> 52 #include <sys/sx.h> 53 #include <sys/taskqueue.h> 54 #include <sys/vnode.h> 55 #include <sys/conf.h> 56 #include <sys/event.h> 57 #include <sys/mount.h> 58 59 #include <machine/atomic.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 FEATURE(aio, "Asynchronous I/O"); 123 124 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 125 126 static int max_aio_procs = MAX_AIO_PROCS; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 128 CTLFLAG_RW, &max_aio_procs, 0, 129 "Maximum number of kernel threads to use for handling async IO "); 130 131 static int num_aio_procs = 0; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 133 CTLFLAG_RD, &num_aio_procs, 0, 134 "Number of presently active kernel threads for async IO"); 135 136 /* 137 * The code will adjust the actual number of AIO processes towards this 138 * number when it gets a chance. 139 */ 140 static int target_aio_procs = TARGET_AIO_PROCS; 141 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 142 0, "Preferred number of ready kernel threads for async IO"); 143 144 static int max_queue_count = MAX_AIO_QUEUE; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 146 "Maximum number of aio requests to queue, globally"); 147 148 static int num_queue_count = 0; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 150 "Number of queued aio requests"); 151 152 static int num_buf_aio = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 154 "Number of aio requests presently handled by the buf subsystem"); 155 156 /* Number of async I/O thread in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_timeout; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 162 "Timeout value for synchronous aio operations"); 163 164 static int aiod_lifetime; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 166 "Maximum lifetime for idle aiod"); 167 168 static int unloadable = 0; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 170 "Allow unload of aio (not recommended)"); 171 172 173 static int max_aio_per_proc = MAX_AIO_PER_PROC; 174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 175 0, "Maximum active aio requests per process (stored in the process)"); 176 177 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 179 &max_aio_queue_per_proc, 0, 180 "Maximum queued aio requests per process (stored in the process)"); 181 182 static int max_buf_aio = MAX_BUF_AIO; 183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 184 "Maximum buf aio requests per process (stored in the process)"); 185 186 typedef struct oaiocb { 187 int aio_fildes; /* File descriptor */ 188 off_t aio_offset; /* File offset for I/O */ 189 volatile void *aio_buf; /* I/O buffer in process space */ 190 size_t aio_nbytes; /* Number of bytes for I/O */ 191 struct osigevent aio_sigevent; /* Signal to deliver */ 192 int aio_lio_opcode; /* LIO opcode */ 193 int aio_reqprio; /* Request priority -- ignored */ 194 struct __aiocb_private _aiocb_private; 195 } oaiocb_t; 196 197 /* 198 * Below is a key of locks used to protect each member of struct aiocblist 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * Current, there is only two backends: BIO and generic file I/O. 211 * socket I/O is served by generic file I/O, this is not a good idea, since 212 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 213 * threads, if there is no thread to serve socket I/O, the socket I/O will be 214 * delayed too long or starved, we should create some threads dedicated to 215 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 216 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 217 * structure is not safe because there is race between userland and aio 218 * daemons. 219 */ 220 221 struct aiocblist { 222 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 223 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 224 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 225 int jobflags; /* (a) job flags */ 226 int jobstate; /* (b) job state */ 227 int inputcharge; /* (*) input blockes */ 228 int outputcharge; /* (*) output blockes */ 229 struct buf *bp; /* (*) private to BIO backend, 230 * buffer pointer 231 */ 232 struct proc *userproc; /* (*) user process */ 233 struct ucred *cred; /* (*) active credential when created */ 234 struct file *fd_file; /* (*) pointer to file structure */ 235 struct aioliojob *lio; /* (*) optional lio job */ 236 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 237 struct knlist klist; /* (a) list of knotes */ 238 struct aiocb uaiocb; /* (*) kernel I/O control block */ 239 ksiginfo_t ksi; /* (a) realtime signal info */ 240 struct task biotask; /* (*) private to BIO backend */ 241 uint64_t seqno; /* (*) job number */ 242 int pending; /* (a) number of pending I/O, aio_fsync only */ 243 }; 244 245 /* jobflags */ 246 #define AIOCBLIST_DONE 0x01 247 #define AIOCBLIST_BUFDONE 0x02 248 #define AIOCBLIST_RUNDOWN 0x04 249 #define AIOCBLIST_CHECKSYNC 0x08 250 251 /* 252 * AIO process info 253 */ 254 #define AIOP_FREE 0x1 /* proc on free queue */ 255 256 struct aiothreadlist { 257 int aiothreadflags; /* (c) AIO proc flags */ 258 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 259 struct thread *aiothread; /* (*) the AIO thread */ 260 }; 261 262 /* 263 * data-structure for lio signal management 264 */ 265 struct aioliojob { 266 int lioj_flags; /* (a) listio flags */ 267 int lioj_count; /* (a) listio flags */ 268 int lioj_finished_count; /* (a) listio flags */ 269 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 270 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 271 struct knlist klist; /* (a) list of knotes */ 272 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 273 }; 274 275 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 276 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 277 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 278 279 /* 280 * per process aio data structure 281 */ 282 struct kaioinfo { 283 struct mtx kaio_mtx; /* the lock to protect this struct */ 284 int kaio_flags; /* (a) per process kaio flags */ 285 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 286 int kaio_active_count; /* (c) number of currently used AIOs */ 287 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 288 int kaio_count; /* (a) size of AIO queue */ 289 int kaio_ballowed_count; /* (*) maximum number of buffers */ 290 int kaio_buffer_count; /* (a) number of physio buffers */ 291 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 292 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 293 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 294 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 295 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 296 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 297 * NOT USED YET. 298 */ 299 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 300 struct task kaio_task; /* (*) task to kick aio threads */ 301 }; 302 303 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 304 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 305 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 306 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 307 308 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 309 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 310 311 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 312 static struct sema aio_newproc_sem; 313 static struct mtx aio_job_mtx; 314 static struct mtx aio_sock_mtx; 315 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 316 static struct unrhdr *aiod_unr; 317 318 void aio_init_aioinfo(struct proc *p); 319 static void aio_onceonly(void); 320 static int aio_free_entry(struct aiocblist *aiocbe); 321 static void aio_process(struct aiocblist *aiocbe); 322 static int aio_newproc(int *); 323 int aio_aqueue(struct thread *td, struct aiocb *job, 324 struct aioliojob *lio, int type, int osigev); 325 static void aio_physwakeup(struct buf *bp); 326 static void aio_proc_rundown(void *arg, struct proc *p); 327 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 328 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 329 static void biohelper(void *, int); 330 static void aio_daemon(void *param); 331 static void aio_swake_cb(struct socket *, struct sockbuf *); 332 static int aio_unload(void); 333 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 334 #define DONE_BUF 1 335 #define DONE_QUEUE 2 336 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 337 static int aio_kick(struct proc *userp); 338 static void aio_kick_nowait(struct proc *userp); 339 static void aio_kick_helper(void *context, int pending); 340 static int filt_aioattach(struct knote *kn); 341 static void filt_aiodetach(struct knote *kn); 342 static int filt_aio(struct knote *kn, long hint); 343 static int filt_lioattach(struct knote *kn); 344 static void filt_liodetach(struct knote *kn); 345 static int filt_lio(struct knote *kn, long hint); 346 347 /* 348 * Zones for: 349 * kaio Per process async io info 350 * aiop async io thread data 351 * aiocb async io jobs 352 * aiol list io job pointer - internal to aio_suspend XXX 353 * aiolio list io jobs 354 */ 355 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 356 357 /* kqueue filters for aio */ 358 static struct filterops aio_filtops = 359 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 360 static struct filterops lio_filtops = 361 { 0, filt_lioattach, filt_liodetach, filt_lio }; 362 363 static eventhandler_tag exit_tag, exec_tag; 364 365 TASKQUEUE_DEFINE_THREAD(aiod_bio); 366 367 /* 368 * Main operations function for use as a kernel module. 369 */ 370 static int 371 aio_modload(struct module *module, int cmd, void *arg) 372 { 373 int error = 0; 374 375 switch (cmd) { 376 case MOD_LOAD: 377 aio_onceonly(); 378 break; 379 case MOD_UNLOAD: 380 error = aio_unload(); 381 break; 382 case MOD_SHUTDOWN: 383 break; 384 default: 385 error = EINVAL; 386 break; 387 } 388 return (error); 389 } 390 391 static moduledata_t aio_mod = { 392 "aio", 393 &aio_modload, 394 NULL 395 }; 396 397 SYSCALL_MODULE_HELPER(aio_cancel); 398 SYSCALL_MODULE_HELPER(aio_error); 399 SYSCALL_MODULE_HELPER(aio_fsync); 400 SYSCALL_MODULE_HELPER(aio_read); 401 SYSCALL_MODULE_HELPER(aio_return); 402 SYSCALL_MODULE_HELPER(aio_suspend); 403 SYSCALL_MODULE_HELPER(aio_waitcomplete); 404 SYSCALL_MODULE_HELPER(aio_write); 405 SYSCALL_MODULE_HELPER(lio_listio); 406 SYSCALL_MODULE_HELPER(oaio_read); 407 SYSCALL_MODULE_HELPER(oaio_write); 408 SYSCALL_MODULE_HELPER(olio_listio); 409 410 DECLARE_MODULE(aio, aio_mod, 411 SI_SUB_VFS, SI_ORDER_ANY); 412 MODULE_VERSION(aio, 1); 413 414 /* 415 * Startup initialization 416 */ 417 static void 418 aio_onceonly(void) 419 { 420 421 /* XXX: should probably just use so->callback */ 422 aio_swake = &aio_swake_cb; 423 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 424 EVENTHANDLER_PRI_ANY); 425 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 426 EVENTHANDLER_PRI_ANY); 427 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 428 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 429 TAILQ_INIT(&aio_freeproc); 430 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 431 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 432 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 433 TAILQ_INIT(&aio_jobs); 434 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 435 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 436 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 437 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 438 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 439 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 440 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 441 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 442 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 443 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 444 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 445 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 446 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 447 jobrefid = 1; 448 async_io_version = _POSIX_VERSION; 449 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 450 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 451 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 452 } 453 454 /* 455 * Callback for unload of AIO when used as a module. 456 */ 457 static int 458 aio_unload(void) 459 { 460 int error; 461 462 /* 463 * XXX: no unloads by default, it's too dangerous. 464 * perhaps we could do it if locked out callers and then 465 * did an aio_proc_rundown() on each process. 466 * 467 * jhb: aio_proc_rundown() needs to run on curproc though, 468 * so I don't think that would fly. 469 */ 470 if (!unloadable) 471 return (EOPNOTSUPP); 472 473 error = kqueue_del_filteropts(EVFILT_AIO); 474 if (error) 475 return error; 476 error = kqueue_del_filteropts(EVFILT_LIO); 477 if (error) 478 return error; 479 async_io_version = 0; 480 aio_swake = NULL; 481 taskqueue_free(taskqueue_aiod_bio); 482 delete_unrhdr(aiod_unr); 483 uma_zdestroy(kaio_zone); 484 uma_zdestroy(aiop_zone); 485 uma_zdestroy(aiocb_zone); 486 uma_zdestroy(aiol_zone); 487 uma_zdestroy(aiolio_zone); 488 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 489 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 490 mtx_destroy(&aio_job_mtx); 491 mtx_destroy(&aio_sock_mtx); 492 sema_destroy(&aio_newproc_sem); 493 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 494 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 495 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 496 return (0); 497 } 498 499 /* 500 * Init the per-process aioinfo structure. The aioinfo limits are set 501 * per-process for user limit (resource) management. 502 */ 503 void 504 aio_init_aioinfo(struct proc *p) 505 { 506 struct kaioinfo *ki; 507 508 ki = uma_zalloc(kaio_zone, M_WAITOK); 509 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 510 ki->kaio_flags = 0; 511 ki->kaio_maxactive_count = max_aio_per_proc; 512 ki->kaio_active_count = 0; 513 ki->kaio_qallowed_count = max_aio_queue_per_proc; 514 ki->kaio_count = 0; 515 ki->kaio_ballowed_count = max_buf_aio; 516 ki->kaio_buffer_count = 0; 517 TAILQ_INIT(&ki->kaio_all); 518 TAILQ_INIT(&ki->kaio_done); 519 TAILQ_INIT(&ki->kaio_jobqueue); 520 TAILQ_INIT(&ki->kaio_bufqueue); 521 TAILQ_INIT(&ki->kaio_liojoblist); 522 TAILQ_INIT(&ki->kaio_sockqueue); 523 TAILQ_INIT(&ki->kaio_syncqueue); 524 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 525 PROC_LOCK(p); 526 if (p->p_aioinfo == NULL) { 527 p->p_aioinfo = ki; 528 PROC_UNLOCK(p); 529 } else { 530 PROC_UNLOCK(p); 531 mtx_destroy(&ki->kaio_mtx); 532 uma_zfree(kaio_zone, ki); 533 } 534 535 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 536 aio_newproc(NULL); 537 } 538 539 static int 540 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 541 { 542 int ret = 0; 543 544 PROC_LOCK(p); 545 if (!KSI_ONQ(ksi)) { 546 ksi->ksi_code = SI_ASYNCIO; 547 ksi->ksi_flags |= KSI_EXT | KSI_INS; 548 ret = psignal_event(p, sigev, ksi); 549 } 550 PROC_UNLOCK(p); 551 return (ret); 552 } 553 554 /* 555 * Free a job entry. Wait for completion if it is currently active, but don't 556 * delay forever. If we delay, we return a flag that says that we have to 557 * restart the queue scan. 558 */ 559 static int 560 aio_free_entry(struct aiocblist *aiocbe) 561 { 562 struct kaioinfo *ki; 563 struct aioliojob *lj; 564 struct proc *p; 565 566 p = aiocbe->userproc; 567 MPASS(curproc == p); 568 ki = p->p_aioinfo; 569 MPASS(ki != NULL); 570 571 AIO_LOCK_ASSERT(ki, MA_OWNED); 572 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 573 574 atomic_subtract_int(&num_queue_count, 1); 575 576 ki->kaio_count--; 577 MPASS(ki->kaio_count >= 0); 578 579 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 580 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 581 582 lj = aiocbe->lio; 583 if (lj) { 584 lj->lioj_count--; 585 lj->lioj_finished_count--; 586 587 if (lj->lioj_count == 0) { 588 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 589 /* lio is going away, we need to destroy any knotes */ 590 knlist_delete(&lj->klist, curthread, 1); 591 PROC_LOCK(p); 592 sigqueue_take(&lj->lioj_ksi); 593 PROC_UNLOCK(p); 594 uma_zfree(aiolio_zone, lj); 595 } 596 } 597 598 /* aiocbe is going away, we need to destroy any knotes */ 599 knlist_delete(&aiocbe->klist, curthread, 1); 600 PROC_LOCK(p); 601 sigqueue_take(&aiocbe->ksi); 602 PROC_UNLOCK(p); 603 604 MPASS(aiocbe->bp == NULL); 605 aiocbe->jobstate = JOBST_NULL; 606 AIO_UNLOCK(ki); 607 608 /* 609 * The thread argument here is used to find the owning process 610 * and is also passed to fo_close() which may pass it to various 611 * places such as devsw close() routines. Because of that, we 612 * need a thread pointer from the process owning the job that is 613 * persistent and won't disappear out from under us or move to 614 * another process. 615 * 616 * Currently, all the callers of this function call it to remove 617 * an aiocblist from the current process' job list either via a 618 * syscall or due to the current process calling exit() or 619 * execve(). Thus, we know that p == curproc. We also know that 620 * curthread can't exit since we are curthread. 621 * 622 * Therefore, we use curthread as the thread to pass to 623 * knlist_delete(). This does mean that it is possible for the 624 * thread pointer at close time to differ from the thread pointer 625 * at open time, but this is already true of file descriptors in 626 * a multithreaded process. 627 */ 628 fdrop(aiocbe->fd_file, curthread); 629 crfree(aiocbe->cred); 630 uma_zfree(aiocb_zone, aiocbe); 631 AIO_LOCK(ki); 632 633 return (0); 634 } 635 636 static void 637 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 638 { 639 aio_proc_rundown(arg, p); 640 } 641 642 /* 643 * Rundown the jobs for a given process. 644 */ 645 static void 646 aio_proc_rundown(void *arg, struct proc *p) 647 { 648 struct kaioinfo *ki; 649 struct aioliojob *lj; 650 struct aiocblist *cbe, *cbn; 651 struct file *fp; 652 struct socket *so; 653 int remove; 654 655 KASSERT(curthread->td_proc == p, 656 ("%s: called on non-curproc", __func__)); 657 ki = p->p_aioinfo; 658 if (ki == NULL) 659 return; 660 661 AIO_LOCK(ki); 662 ki->kaio_flags |= KAIO_RUNDOWN; 663 664 restart: 665 666 /* 667 * Try to cancel all pending requests. This code simulates 668 * aio_cancel on all pending I/O requests. 669 */ 670 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 671 remove = 0; 672 mtx_lock(&aio_job_mtx); 673 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 674 TAILQ_REMOVE(&aio_jobs, cbe, list); 675 remove = 1; 676 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 677 fp = cbe->fd_file; 678 MPASS(fp->f_type == DTYPE_SOCKET); 679 so = fp->f_data; 680 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 681 remove = 1; 682 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 683 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 684 remove = 1; 685 } 686 mtx_unlock(&aio_job_mtx); 687 688 if (remove) { 689 cbe->jobstate = JOBST_JOBFINISHED; 690 cbe->uaiocb._aiocb_private.status = -1; 691 cbe->uaiocb._aiocb_private.error = ECANCELED; 692 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 693 aio_bio_done_notify(p, cbe, DONE_QUEUE); 694 } 695 } 696 697 /* Wait for all running I/O to be finished */ 698 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 699 TAILQ_FIRST(&ki->kaio_jobqueue)) { 700 ki->kaio_flags |= KAIO_WAKEUP; 701 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 702 goto restart; 703 } 704 705 /* Free all completed I/O requests. */ 706 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 707 aio_free_entry(cbe); 708 709 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 710 if (lj->lioj_count == 0) { 711 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 712 knlist_delete(&lj->klist, curthread, 1); 713 PROC_LOCK(p); 714 sigqueue_take(&lj->lioj_ksi); 715 PROC_UNLOCK(p); 716 uma_zfree(aiolio_zone, lj); 717 } else { 718 panic("LIO job not cleaned up: C:%d, FC:%d\n", 719 lj->lioj_count, lj->lioj_finished_count); 720 } 721 } 722 AIO_UNLOCK(ki); 723 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 724 mtx_destroy(&ki->kaio_mtx); 725 uma_zfree(kaio_zone, ki); 726 p->p_aioinfo = NULL; 727 } 728 729 /* 730 * Select a job to run (called by an AIO daemon). 731 */ 732 static struct aiocblist * 733 aio_selectjob(struct aiothreadlist *aiop) 734 { 735 struct aiocblist *aiocbe; 736 struct kaioinfo *ki; 737 struct proc *userp; 738 739 mtx_assert(&aio_job_mtx, MA_OWNED); 740 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 741 userp = aiocbe->userproc; 742 ki = userp->p_aioinfo; 743 744 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 745 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 746 /* Account for currently active jobs. */ 747 ki->kaio_active_count++; 748 aiocbe->jobstate = JOBST_JOBRUNNING; 749 break; 750 } 751 } 752 return (aiocbe); 753 } 754 755 /* 756 * Move all data to a permanent storage device, this code 757 * simulates fsync syscall. 758 */ 759 static int 760 aio_fsync_vnode(struct thread *td, struct vnode *vp) 761 { 762 struct mount *mp; 763 int vfslocked; 764 int error; 765 766 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 767 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 768 goto drop; 769 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 770 if (vp->v_object != NULL) { 771 VM_OBJECT_LOCK(vp->v_object); 772 vm_object_page_clean(vp->v_object, 0, 0, 0); 773 VM_OBJECT_UNLOCK(vp->v_object); 774 } 775 error = VOP_FSYNC(vp, MNT_WAIT, td); 776 777 VOP_UNLOCK(vp, 0); 778 vn_finished_write(mp); 779 drop: 780 VFS_UNLOCK_GIANT(vfslocked); 781 return (error); 782 } 783 784 /* 785 * The AIO processing activity. This is the code that does the I/O request for 786 * the non-physio version of the operations. The normal vn operations are used, 787 * and this code should work in all instances for every type of file, including 788 * pipes, sockets, fifos, and regular files. 789 * 790 * XXX I don't think it works well for socket, pipe, and fifo. 791 */ 792 static void 793 aio_process(struct aiocblist *aiocbe) 794 { 795 struct ucred *td_savedcred; 796 struct thread *td; 797 struct aiocb *cb; 798 struct file *fp; 799 struct socket *so; 800 struct uio auio; 801 struct iovec aiov; 802 int cnt; 803 int error; 804 int oublock_st, oublock_end; 805 int inblock_st, inblock_end; 806 807 td = curthread; 808 td_savedcred = td->td_ucred; 809 td->td_ucred = aiocbe->cred; 810 cb = &aiocbe->uaiocb; 811 fp = aiocbe->fd_file; 812 813 if (cb->aio_lio_opcode == LIO_SYNC) { 814 error = 0; 815 cnt = 0; 816 if (fp->f_vnode != NULL) 817 error = aio_fsync_vnode(td, fp->f_vnode); 818 cb->_aiocb_private.error = error; 819 cb->_aiocb_private.status = 0; 820 td->td_ucred = td_savedcred; 821 return; 822 } 823 824 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 825 aiov.iov_len = cb->aio_nbytes; 826 827 auio.uio_iov = &aiov; 828 auio.uio_iovcnt = 1; 829 auio.uio_offset = cb->aio_offset; 830 auio.uio_resid = cb->aio_nbytes; 831 cnt = cb->aio_nbytes; 832 auio.uio_segflg = UIO_USERSPACE; 833 auio.uio_td = td; 834 835 inblock_st = td->td_ru.ru_inblock; 836 oublock_st = td->td_ru.ru_oublock; 837 /* 838 * aio_aqueue() acquires a reference to the file that is 839 * released in aio_free_entry(). 840 */ 841 if (cb->aio_lio_opcode == LIO_READ) { 842 auio.uio_rw = UIO_READ; 843 if (auio.uio_resid == 0) 844 error = 0; 845 else 846 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 847 } else { 848 if (fp->f_type == DTYPE_VNODE) 849 bwillwrite(); 850 auio.uio_rw = UIO_WRITE; 851 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 852 } 853 inblock_end = td->td_ru.ru_inblock; 854 oublock_end = td->td_ru.ru_oublock; 855 856 aiocbe->inputcharge = inblock_end - inblock_st; 857 aiocbe->outputcharge = oublock_end - oublock_st; 858 859 if ((error) && (auio.uio_resid != cnt)) { 860 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 861 error = 0; 862 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 863 int sigpipe = 1; 864 if (fp->f_type == DTYPE_SOCKET) { 865 so = fp->f_data; 866 if (so->so_options & SO_NOSIGPIPE) 867 sigpipe = 0; 868 } 869 if (sigpipe) { 870 PROC_LOCK(aiocbe->userproc); 871 psignal(aiocbe->userproc, SIGPIPE); 872 PROC_UNLOCK(aiocbe->userproc); 873 } 874 } 875 } 876 877 cnt -= auio.uio_resid; 878 cb->_aiocb_private.error = error; 879 cb->_aiocb_private.status = cnt; 880 td->td_ucred = td_savedcred; 881 } 882 883 static void 884 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 885 { 886 struct aioliojob *lj; 887 struct kaioinfo *ki; 888 struct aiocblist *scb, *scbn; 889 int lj_done; 890 891 ki = userp->p_aioinfo; 892 AIO_LOCK_ASSERT(ki, MA_OWNED); 893 lj = aiocbe->lio; 894 lj_done = 0; 895 if (lj) { 896 lj->lioj_finished_count++; 897 if (lj->lioj_count == lj->lioj_finished_count) 898 lj_done = 1; 899 } 900 if (type == DONE_QUEUE) { 901 aiocbe->jobflags |= AIOCBLIST_DONE; 902 } else { 903 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 904 } 905 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 906 aiocbe->jobstate = JOBST_JOBFINISHED; 907 908 if (ki->kaio_flags & KAIO_RUNDOWN) 909 goto notification_done; 910 911 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 912 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 913 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 914 915 KNOTE_LOCKED(&aiocbe->klist, 1); 916 917 if (lj_done) { 918 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 919 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 920 KNOTE_LOCKED(&lj->klist, 1); 921 } 922 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 923 == LIOJ_SIGNAL 924 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 925 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 926 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 927 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 928 } 929 } 930 931 notification_done: 932 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 933 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 934 if (aiocbe->fd_file == scb->fd_file && 935 aiocbe->seqno < scb->seqno) { 936 if (--scb->pending == 0) { 937 mtx_lock(&aio_job_mtx); 938 scb->jobstate = JOBST_JOBQGLOBAL; 939 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 940 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 941 aio_kick_nowait(userp); 942 mtx_unlock(&aio_job_mtx); 943 } 944 } 945 } 946 } 947 if (ki->kaio_flags & KAIO_WAKEUP) { 948 ki->kaio_flags &= ~KAIO_WAKEUP; 949 wakeup(&userp->p_aioinfo); 950 } 951 } 952 953 /* 954 * The AIO daemon, most of the actual work is done in aio_process, 955 * but the setup (and address space mgmt) is done in this routine. 956 */ 957 static void 958 aio_daemon(void *_id) 959 { 960 struct aiocblist *aiocbe; 961 struct aiothreadlist *aiop; 962 struct kaioinfo *ki; 963 struct proc *curcp, *mycp, *userp; 964 struct vmspace *myvm, *tmpvm; 965 struct thread *td = curthread; 966 int id = (intptr_t)_id; 967 968 /* 969 * Local copies of curproc (cp) and vmspace (myvm) 970 */ 971 mycp = td->td_proc; 972 myvm = mycp->p_vmspace; 973 974 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 975 976 /* 977 * Allocate and ready the aio control info. There is one aiop structure 978 * per daemon. 979 */ 980 aiop = uma_zalloc(aiop_zone, M_WAITOK); 981 aiop->aiothread = td; 982 aiop->aiothreadflags = 0; 983 984 /* The daemon resides in its own pgrp. */ 985 setsid(td, NULL); 986 987 /* 988 * Wakeup parent process. (Parent sleeps to keep from blasting away 989 * and creating too many daemons.) 990 */ 991 sema_post(&aio_newproc_sem); 992 993 mtx_lock(&aio_job_mtx); 994 for (;;) { 995 /* 996 * curcp is the current daemon process context. 997 * userp is the current user process context. 998 */ 999 curcp = mycp; 1000 1001 /* 1002 * Take daemon off of free queue 1003 */ 1004 if (aiop->aiothreadflags & AIOP_FREE) { 1005 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1006 aiop->aiothreadflags &= ~AIOP_FREE; 1007 } 1008 1009 /* 1010 * Check for jobs. 1011 */ 1012 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1013 mtx_unlock(&aio_job_mtx); 1014 userp = aiocbe->userproc; 1015 1016 /* 1017 * Connect to process address space for user program. 1018 */ 1019 if (userp != curcp) { 1020 /* 1021 * Save the current address space that we are 1022 * connected to. 1023 */ 1024 tmpvm = mycp->p_vmspace; 1025 1026 /* 1027 * Point to the new user address space, and 1028 * refer to it. 1029 */ 1030 mycp->p_vmspace = userp->p_vmspace; 1031 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1032 1033 /* Activate the new mapping. */ 1034 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1035 1036 /* 1037 * If the old address space wasn't the daemons 1038 * own address space, then we need to remove the 1039 * daemon's reference from the other process 1040 * that it was acting on behalf of. 1041 */ 1042 if (tmpvm != myvm) { 1043 vmspace_free(tmpvm); 1044 } 1045 curcp = userp; 1046 } 1047 1048 ki = userp->p_aioinfo; 1049 1050 /* Do the I/O function. */ 1051 aio_process(aiocbe); 1052 1053 mtx_lock(&aio_job_mtx); 1054 /* Decrement the active job count. */ 1055 ki->kaio_active_count--; 1056 mtx_unlock(&aio_job_mtx); 1057 1058 AIO_LOCK(ki); 1059 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1060 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1061 AIO_UNLOCK(ki); 1062 1063 mtx_lock(&aio_job_mtx); 1064 } 1065 1066 /* 1067 * Disconnect from user address space. 1068 */ 1069 if (curcp != mycp) { 1070 1071 mtx_unlock(&aio_job_mtx); 1072 1073 /* Get the user address space to disconnect from. */ 1074 tmpvm = mycp->p_vmspace; 1075 1076 /* Get original address space for daemon. */ 1077 mycp->p_vmspace = myvm; 1078 1079 /* Activate the daemon's address space. */ 1080 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1081 #ifdef DIAGNOSTIC 1082 if (tmpvm == myvm) { 1083 printf("AIOD: vmspace problem -- %d\n", 1084 mycp->p_pid); 1085 } 1086 #endif 1087 /* Remove our vmspace reference. */ 1088 vmspace_free(tmpvm); 1089 1090 curcp = mycp; 1091 1092 mtx_lock(&aio_job_mtx); 1093 /* 1094 * We have to restart to avoid race, we only sleep if 1095 * no job can be selected, that should be 1096 * curcp == mycp. 1097 */ 1098 continue; 1099 } 1100 1101 mtx_assert(&aio_job_mtx, MA_OWNED); 1102 1103 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1104 aiop->aiothreadflags |= AIOP_FREE; 1105 1106 /* 1107 * If daemon is inactive for a long time, allow it to exit, 1108 * thereby freeing resources. 1109 */ 1110 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1111 aiod_lifetime)) { 1112 if (TAILQ_EMPTY(&aio_jobs)) { 1113 if ((aiop->aiothreadflags & AIOP_FREE) && 1114 (num_aio_procs > target_aio_procs)) { 1115 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1116 num_aio_procs--; 1117 mtx_unlock(&aio_job_mtx); 1118 uma_zfree(aiop_zone, aiop); 1119 free_unr(aiod_unr, id); 1120 #ifdef DIAGNOSTIC 1121 if (mycp->p_vmspace->vm_refcnt <= 1) { 1122 printf("AIOD: bad vm refcnt for" 1123 " exiting daemon: %d\n", 1124 mycp->p_vmspace->vm_refcnt); 1125 } 1126 #endif 1127 kproc_exit(0); 1128 } 1129 } 1130 } 1131 } 1132 mtx_unlock(&aio_job_mtx); 1133 panic("shouldn't be here\n"); 1134 } 1135 1136 /* 1137 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1138 * AIO daemon modifies its environment itself. 1139 */ 1140 static int 1141 aio_newproc(int *start) 1142 { 1143 int error; 1144 struct proc *p; 1145 int id; 1146 1147 id = alloc_unr(aiod_unr); 1148 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1149 RFNOWAIT, 0, "aiod%d", id); 1150 if (error == 0) { 1151 /* 1152 * Wait until daemon is started. 1153 */ 1154 sema_wait(&aio_newproc_sem); 1155 mtx_lock(&aio_job_mtx); 1156 num_aio_procs++; 1157 if (start != NULL) 1158 (*start)--; 1159 mtx_unlock(&aio_job_mtx); 1160 } else { 1161 free_unr(aiod_unr, id); 1162 } 1163 return (error); 1164 } 1165 1166 /* 1167 * Try the high-performance, low-overhead physio method for eligible 1168 * VCHR devices. This method doesn't use an aio helper thread, and 1169 * thus has very low overhead. 1170 * 1171 * Assumes that the caller, aio_aqueue(), has incremented the file 1172 * structure's reference count, preventing its deallocation for the 1173 * duration of this call. 1174 */ 1175 static int 1176 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1177 { 1178 struct aiocb *cb; 1179 struct file *fp; 1180 struct buf *bp; 1181 struct vnode *vp; 1182 struct kaioinfo *ki; 1183 struct aioliojob *lj; 1184 int error; 1185 1186 cb = &aiocbe->uaiocb; 1187 fp = aiocbe->fd_file; 1188 1189 if (fp->f_type != DTYPE_VNODE) 1190 return (-1); 1191 1192 vp = fp->f_vnode; 1193 1194 /* 1195 * If its not a disk, we don't want to return a positive error. 1196 * It causes the aio code to not fall through to try the thread 1197 * way when you're talking to a regular file. 1198 */ 1199 if (!vn_isdisk(vp, &error)) { 1200 if (error == ENOTBLK) 1201 return (-1); 1202 else 1203 return (error); 1204 } 1205 1206 if (vp->v_bufobj.bo_bsize == 0) 1207 return (-1); 1208 1209 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1210 return (-1); 1211 1212 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1213 return (-1); 1214 1215 if (cb->aio_nbytes > 1216 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1217 return (-1); 1218 1219 ki = p->p_aioinfo; 1220 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1221 return (-1); 1222 1223 /* Create and build a buffer header for a transfer. */ 1224 bp = (struct buf *)getpbuf(NULL); 1225 BUF_KERNPROC(bp); 1226 1227 AIO_LOCK(ki); 1228 ki->kaio_count++; 1229 ki->kaio_buffer_count++; 1230 lj = aiocbe->lio; 1231 if (lj) 1232 lj->lioj_count++; 1233 AIO_UNLOCK(ki); 1234 1235 /* 1236 * Get a copy of the kva from the physical buffer. 1237 */ 1238 error = 0; 1239 1240 bp->b_bcount = cb->aio_nbytes; 1241 bp->b_bufsize = cb->aio_nbytes; 1242 bp->b_iodone = aio_physwakeup; 1243 bp->b_saveaddr = bp->b_data; 1244 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1245 bp->b_offset = cb->aio_offset; 1246 bp->b_iooffset = cb->aio_offset; 1247 bp->b_blkno = btodb(cb->aio_offset); 1248 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1249 1250 /* 1251 * Bring buffer into kernel space. 1252 */ 1253 if (vmapbuf(bp) < 0) { 1254 error = EFAULT; 1255 goto doerror; 1256 } 1257 1258 AIO_LOCK(ki); 1259 aiocbe->bp = bp; 1260 bp->b_caller1 = (void *)aiocbe; 1261 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1262 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1263 aiocbe->jobstate = JOBST_JOBQBUF; 1264 cb->_aiocb_private.status = cb->aio_nbytes; 1265 AIO_UNLOCK(ki); 1266 1267 atomic_add_int(&num_queue_count, 1); 1268 atomic_add_int(&num_buf_aio, 1); 1269 1270 bp->b_error = 0; 1271 1272 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1273 1274 /* Perform transfer. */ 1275 dev_strategy(vp->v_rdev, bp); 1276 return (0); 1277 1278 doerror: 1279 AIO_LOCK(ki); 1280 ki->kaio_count--; 1281 ki->kaio_buffer_count--; 1282 if (lj) 1283 lj->lioj_count--; 1284 aiocbe->bp = NULL; 1285 AIO_UNLOCK(ki); 1286 relpbuf(bp, NULL); 1287 return (error); 1288 } 1289 1290 /* 1291 * Wake up aio requests that may be serviceable now. 1292 */ 1293 static void 1294 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1295 { 1296 struct aiocblist *cb, *cbn; 1297 int opcode; 1298 1299 if (sb == &so->so_snd) 1300 opcode = LIO_WRITE; 1301 else 1302 opcode = LIO_READ; 1303 1304 SOCKBUF_LOCK(sb); 1305 sb->sb_flags &= ~SB_AIO; 1306 mtx_lock(&aio_job_mtx); 1307 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1308 if (opcode == cb->uaiocb.aio_lio_opcode) { 1309 if (cb->jobstate != JOBST_JOBQSOCK) 1310 panic("invalid queue value"); 1311 /* XXX 1312 * We don't have actual sockets backend yet, 1313 * so we simply move the requests to the generic 1314 * file I/O backend. 1315 */ 1316 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1317 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1318 aio_kick_nowait(cb->userproc); 1319 } 1320 } 1321 mtx_unlock(&aio_job_mtx); 1322 SOCKBUF_UNLOCK(sb); 1323 } 1324 1325 /* 1326 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1327 * technique is done in this code. 1328 */ 1329 int 1330 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1331 int type, int oldsigev) 1332 { 1333 struct proc *p = td->td_proc; 1334 struct file *fp; 1335 struct socket *so; 1336 struct aiocblist *aiocbe, *cb; 1337 struct kaioinfo *ki; 1338 struct kevent kev; 1339 struct sockbuf *sb; 1340 int opcode; 1341 int error; 1342 int fd, kqfd; 1343 int jid; 1344 1345 if (p->p_aioinfo == NULL) 1346 aio_init_aioinfo(p); 1347 1348 ki = p->p_aioinfo; 1349 1350 suword(&job->_aiocb_private.status, -1); 1351 suword(&job->_aiocb_private.error, 0); 1352 suword(&job->_aiocb_private.kernelinfo, -1); 1353 1354 if (num_queue_count >= max_queue_count || 1355 ki->kaio_count >= ki->kaio_qallowed_count) { 1356 suword(&job->_aiocb_private.error, EAGAIN); 1357 return (EAGAIN); 1358 } 1359 1360 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1361 aiocbe->inputcharge = 0; 1362 aiocbe->outputcharge = 0; 1363 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1364 1365 if (oldsigev) { 1366 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1367 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1368 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1369 sizeof(struct osigevent)); 1370 } else { 1371 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1372 } 1373 if (error) { 1374 suword(&job->_aiocb_private.error, error); 1375 uma_zfree(aiocb_zone, aiocbe); 1376 return (error); 1377 } 1378 1379 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1380 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1381 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1382 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1383 suword(&job->_aiocb_private.error, EINVAL); 1384 uma_zfree(aiocb_zone, aiocbe); 1385 return (EINVAL); 1386 } 1387 1388 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1389 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1390 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1391 uma_zfree(aiocb_zone, aiocbe); 1392 return (EINVAL); 1393 } 1394 1395 ksiginfo_init(&aiocbe->ksi); 1396 1397 /* Save userspace address of the job info. */ 1398 aiocbe->uuaiocb = job; 1399 1400 /* Get the opcode. */ 1401 if (type != LIO_NOP) 1402 aiocbe->uaiocb.aio_lio_opcode = type; 1403 opcode = aiocbe->uaiocb.aio_lio_opcode; 1404 1405 /* Fetch the file object for the specified file descriptor. */ 1406 fd = aiocbe->uaiocb.aio_fildes; 1407 switch (opcode) { 1408 case LIO_WRITE: 1409 error = fget_write(td, fd, &fp); 1410 break; 1411 case LIO_READ: 1412 error = fget_read(td, fd, &fp); 1413 break; 1414 default: 1415 error = fget(td, fd, &fp); 1416 } 1417 if (error) { 1418 uma_zfree(aiocb_zone, aiocbe); 1419 suword(&job->_aiocb_private.error, error); 1420 return (error); 1421 } 1422 1423 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1424 error = EINVAL; 1425 goto aqueue_fail; 1426 } 1427 1428 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1429 error = EINVAL; 1430 goto aqueue_fail; 1431 } 1432 1433 aiocbe->fd_file = fp; 1434 1435 mtx_lock(&aio_job_mtx); 1436 jid = jobrefid++; 1437 aiocbe->seqno = jobseqno++; 1438 mtx_unlock(&aio_job_mtx); 1439 error = suword(&job->_aiocb_private.kernelinfo, jid); 1440 if (error) { 1441 error = EINVAL; 1442 goto aqueue_fail; 1443 } 1444 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1445 1446 if (opcode == LIO_NOP) { 1447 fdrop(fp, td); 1448 uma_zfree(aiocb_zone, aiocbe); 1449 return (0); 1450 } 1451 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1452 (opcode != LIO_SYNC)) { 1453 error = EINVAL; 1454 goto aqueue_fail; 1455 } 1456 1457 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1458 goto no_kqueue; 1459 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1460 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1461 kev.filter = EVFILT_AIO; 1462 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1463 kev.data = (intptr_t)aiocbe; 1464 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1465 error = kqfd_register(kqfd, &kev, td, 1); 1466 aqueue_fail: 1467 if (error) { 1468 fdrop(fp, td); 1469 uma_zfree(aiocb_zone, aiocbe); 1470 suword(&job->_aiocb_private.error, error); 1471 goto done; 1472 } 1473 no_kqueue: 1474 1475 suword(&job->_aiocb_private.error, EINPROGRESS); 1476 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1477 aiocbe->userproc = p; 1478 aiocbe->cred = crhold(td->td_ucred); 1479 aiocbe->jobflags = 0; 1480 aiocbe->lio = lj; 1481 1482 if (opcode == LIO_SYNC) 1483 goto queueit; 1484 1485 if (fp->f_type == DTYPE_SOCKET) { 1486 /* 1487 * Alternate queueing for socket ops: Reach down into the 1488 * descriptor to get the socket data. Then check to see if the 1489 * socket is ready to be read or written (based on the requested 1490 * operation). 1491 * 1492 * If it is not ready for io, then queue the aiocbe on the 1493 * socket, and set the flags so we get a call when sbnotify() 1494 * happens. 1495 * 1496 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1497 * and unlock the snd sockbuf for no reason. 1498 */ 1499 so = fp->f_data; 1500 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1501 SOCKBUF_LOCK(sb); 1502 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1503 LIO_WRITE) && (!sowriteable(so)))) { 1504 sb->sb_flags |= SB_AIO; 1505 1506 mtx_lock(&aio_job_mtx); 1507 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1508 mtx_unlock(&aio_job_mtx); 1509 1510 AIO_LOCK(ki); 1511 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1512 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1513 aiocbe->jobstate = JOBST_JOBQSOCK; 1514 ki->kaio_count++; 1515 if (lj) 1516 lj->lioj_count++; 1517 AIO_UNLOCK(ki); 1518 SOCKBUF_UNLOCK(sb); 1519 atomic_add_int(&num_queue_count, 1); 1520 error = 0; 1521 goto done; 1522 } 1523 SOCKBUF_UNLOCK(sb); 1524 } 1525 1526 if ((error = aio_qphysio(p, aiocbe)) == 0) 1527 goto done; 1528 #if 0 1529 if (error > 0) { 1530 aiocbe->uaiocb._aiocb_private.error = error; 1531 suword(&job->_aiocb_private.error, error); 1532 goto done; 1533 } 1534 #endif 1535 queueit: 1536 /* No buffer for daemon I/O. */ 1537 aiocbe->bp = NULL; 1538 atomic_add_int(&num_queue_count, 1); 1539 1540 AIO_LOCK(ki); 1541 ki->kaio_count++; 1542 if (lj) 1543 lj->lioj_count++; 1544 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1545 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1546 if (opcode == LIO_SYNC) { 1547 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1548 if (cb->fd_file == aiocbe->fd_file && 1549 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1550 cb->seqno < aiocbe->seqno) { 1551 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1552 aiocbe->pending++; 1553 } 1554 } 1555 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1556 if (cb->fd_file == aiocbe->fd_file && 1557 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1558 cb->seqno < aiocbe->seqno) { 1559 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1560 aiocbe->pending++; 1561 } 1562 } 1563 if (aiocbe->pending != 0) { 1564 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1565 aiocbe->jobstate = JOBST_JOBQSYNC; 1566 AIO_UNLOCK(ki); 1567 goto done; 1568 } 1569 } 1570 mtx_lock(&aio_job_mtx); 1571 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1572 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1573 aio_kick_nowait(p); 1574 mtx_unlock(&aio_job_mtx); 1575 AIO_UNLOCK(ki); 1576 error = 0; 1577 done: 1578 return (error); 1579 } 1580 1581 static void 1582 aio_kick_nowait(struct proc *userp) 1583 { 1584 struct kaioinfo *ki = userp->p_aioinfo; 1585 struct aiothreadlist *aiop; 1586 1587 mtx_assert(&aio_job_mtx, MA_OWNED); 1588 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1589 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1590 aiop->aiothreadflags &= ~AIOP_FREE; 1591 wakeup(aiop->aiothread); 1592 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1593 ((ki->kaio_active_count + num_aio_resv_start) < 1594 ki->kaio_maxactive_count)) { 1595 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1596 } 1597 } 1598 1599 static int 1600 aio_kick(struct proc *userp) 1601 { 1602 struct kaioinfo *ki = userp->p_aioinfo; 1603 struct aiothreadlist *aiop; 1604 int error, ret = 0; 1605 1606 mtx_assert(&aio_job_mtx, MA_OWNED); 1607 retryproc: 1608 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1609 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1610 aiop->aiothreadflags &= ~AIOP_FREE; 1611 wakeup(aiop->aiothread); 1612 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1613 ((ki->kaio_active_count + num_aio_resv_start) < 1614 ki->kaio_maxactive_count)) { 1615 num_aio_resv_start++; 1616 mtx_unlock(&aio_job_mtx); 1617 error = aio_newproc(&num_aio_resv_start); 1618 mtx_lock(&aio_job_mtx); 1619 if (error) { 1620 num_aio_resv_start--; 1621 goto retryproc; 1622 } 1623 } else { 1624 ret = -1; 1625 } 1626 return (ret); 1627 } 1628 1629 static void 1630 aio_kick_helper(void *context, int pending) 1631 { 1632 struct proc *userp = context; 1633 1634 mtx_lock(&aio_job_mtx); 1635 while (--pending >= 0) { 1636 if (aio_kick(userp)) 1637 break; 1638 } 1639 mtx_unlock(&aio_job_mtx); 1640 } 1641 1642 /* 1643 * Support the aio_return system call, as a side-effect, kernel resources are 1644 * released. 1645 */ 1646 int 1647 aio_return(struct thread *td, struct aio_return_args *uap) 1648 { 1649 struct proc *p = td->td_proc; 1650 struct aiocblist *cb; 1651 struct aiocb *uaiocb; 1652 struct kaioinfo *ki; 1653 int status, error; 1654 1655 ki = p->p_aioinfo; 1656 if (ki == NULL) 1657 return (EINVAL); 1658 uaiocb = uap->aiocbp; 1659 AIO_LOCK(ki); 1660 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1661 if (cb->uuaiocb == uaiocb) 1662 break; 1663 } 1664 if (cb != NULL) { 1665 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1666 status = cb->uaiocb._aiocb_private.status; 1667 error = cb->uaiocb._aiocb_private.error; 1668 td->td_retval[0] = status; 1669 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1670 td->td_ru.ru_oublock += cb->outputcharge; 1671 cb->outputcharge = 0; 1672 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1673 td->td_ru.ru_inblock += cb->inputcharge; 1674 cb->inputcharge = 0; 1675 } 1676 aio_free_entry(cb); 1677 AIO_UNLOCK(ki); 1678 suword(&uaiocb->_aiocb_private.error, error); 1679 suword(&uaiocb->_aiocb_private.status, status); 1680 } else { 1681 error = EINVAL; 1682 AIO_UNLOCK(ki); 1683 } 1684 return (error); 1685 } 1686 1687 /* 1688 * Allow a process to wakeup when any of the I/O requests are completed. 1689 */ 1690 int 1691 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1692 { 1693 struct proc *p = td->td_proc; 1694 struct timeval atv; 1695 struct timespec ts; 1696 struct aiocb *const *cbptr, *cbp; 1697 struct kaioinfo *ki; 1698 struct aiocblist *cb, *cbfirst; 1699 struct aiocb **ujoblist; 1700 int njoblist; 1701 int error; 1702 int timo; 1703 int i; 1704 1705 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1706 return (EINVAL); 1707 1708 timo = 0; 1709 if (uap->timeout) { 1710 /* Get timespec struct. */ 1711 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1712 return (error); 1713 1714 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1715 return (EINVAL); 1716 1717 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1718 if (itimerfix(&atv)) 1719 return (EINVAL); 1720 timo = tvtohz(&atv); 1721 } 1722 1723 ki = p->p_aioinfo; 1724 if (ki == NULL) 1725 return (EAGAIN); 1726 1727 njoblist = 0; 1728 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1729 cbptr = uap->aiocbp; 1730 1731 for (i = 0; i < uap->nent; i++) { 1732 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1733 if (cbp == 0) 1734 continue; 1735 ujoblist[njoblist] = cbp; 1736 njoblist++; 1737 } 1738 1739 if (njoblist == 0) { 1740 uma_zfree(aiol_zone, ujoblist); 1741 return (0); 1742 } 1743 1744 AIO_LOCK(ki); 1745 for (;;) { 1746 cbfirst = NULL; 1747 error = 0; 1748 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1749 for (i = 0; i < njoblist; i++) { 1750 if (cb->uuaiocb == ujoblist[i]) { 1751 if (cbfirst == NULL) 1752 cbfirst = cb; 1753 if (cb->jobstate == JOBST_JOBFINISHED) 1754 goto RETURN; 1755 } 1756 } 1757 } 1758 /* All tasks were finished. */ 1759 if (cbfirst == NULL) 1760 break; 1761 1762 ki->kaio_flags |= KAIO_WAKEUP; 1763 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1764 "aiospn", timo); 1765 if (error == ERESTART) 1766 error = EINTR; 1767 if (error) 1768 break; 1769 } 1770 RETURN: 1771 AIO_UNLOCK(ki); 1772 uma_zfree(aiol_zone, ujoblist); 1773 return (error); 1774 } 1775 1776 /* 1777 * aio_cancel cancels any non-physio aio operations not currently in 1778 * progress. 1779 */ 1780 int 1781 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1782 { 1783 struct proc *p = td->td_proc; 1784 struct kaioinfo *ki; 1785 struct aiocblist *cbe, *cbn; 1786 struct file *fp; 1787 struct socket *so; 1788 int error; 1789 int remove; 1790 int cancelled = 0; 1791 int notcancelled = 0; 1792 struct vnode *vp; 1793 1794 /* Lookup file object. */ 1795 error = fget(td, uap->fd, &fp); 1796 if (error) 1797 return (error); 1798 1799 ki = p->p_aioinfo; 1800 if (ki == NULL) 1801 goto done; 1802 1803 if (fp->f_type == DTYPE_VNODE) { 1804 vp = fp->f_vnode; 1805 if (vn_isdisk(vp, &error)) { 1806 fdrop(fp, td); 1807 td->td_retval[0] = AIO_NOTCANCELED; 1808 return (0); 1809 } 1810 } 1811 1812 AIO_LOCK(ki); 1813 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1814 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1815 ((uap->aiocbp == NULL) || 1816 (uap->aiocbp == cbe->uuaiocb))) { 1817 remove = 0; 1818 1819 mtx_lock(&aio_job_mtx); 1820 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1821 TAILQ_REMOVE(&aio_jobs, cbe, list); 1822 remove = 1; 1823 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1824 MPASS(fp->f_type == DTYPE_SOCKET); 1825 so = fp->f_data; 1826 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1827 remove = 1; 1828 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1829 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1830 remove = 1; 1831 } 1832 mtx_unlock(&aio_job_mtx); 1833 1834 if (remove) { 1835 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1836 cbe->uaiocb._aiocb_private.status = -1; 1837 cbe->uaiocb._aiocb_private.error = ECANCELED; 1838 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1839 cancelled++; 1840 } else { 1841 notcancelled++; 1842 } 1843 if (uap->aiocbp != NULL) 1844 break; 1845 } 1846 } 1847 AIO_UNLOCK(ki); 1848 1849 done: 1850 fdrop(fp, td); 1851 1852 if (uap->aiocbp != NULL) { 1853 if (cancelled) { 1854 td->td_retval[0] = AIO_CANCELED; 1855 return (0); 1856 } 1857 } 1858 1859 if (notcancelled) { 1860 td->td_retval[0] = AIO_NOTCANCELED; 1861 return (0); 1862 } 1863 1864 if (cancelled) { 1865 td->td_retval[0] = AIO_CANCELED; 1866 return (0); 1867 } 1868 1869 td->td_retval[0] = AIO_ALLDONE; 1870 1871 return (0); 1872 } 1873 1874 /* 1875 * aio_error is implemented in the kernel level for compatibility purposes 1876 * only. For a user mode async implementation, it would be best to do it in 1877 * a userland subroutine. 1878 */ 1879 int 1880 aio_error(struct thread *td, struct aio_error_args *uap) 1881 { 1882 struct proc *p = td->td_proc; 1883 struct aiocblist *cb; 1884 struct kaioinfo *ki; 1885 int status; 1886 1887 ki = p->p_aioinfo; 1888 if (ki == NULL) { 1889 td->td_retval[0] = EINVAL; 1890 return (0); 1891 } 1892 1893 AIO_LOCK(ki); 1894 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1895 if (cb->uuaiocb == uap->aiocbp) { 1896 if (cb->jobstate == JOBST_JOBFINISHED) 1897 td->td_retval[0] = 1898 cb->uaiocb._aiocb_private.error; 1899 else 1900 td->td_retval[0] = EINPROGRESS; 1901 AIO_UNLOCK(ki); 1902 return (0); 1903 } 1904 } 1905 AIO_UNLOCK(ki); 1906 1907 /* 1908 * Hack for failure of aio_aqueue. 1909 */ 1910 status = fuword(&uap->aiocbp->_aiocb_private.status); 1911 if (status == -1) { 1912 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1913 return (0); 1914 } 1915 1916 td->td_retval[0] = EINVAL; 1917 return (0); 1918 } 1919 1920 /* syscall - asynchronous read from a file (REALTIME) */ 1921 int 1922 oaio_read(struct thread *td, struct oaio_read_args *uap) 1923 { 1924 1925 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1926 } 1927 1928 int 1929 aio_read(struct thread *td, struct aio_read_args *uap) 1930 { 1931 1932 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1933 } 1934 1935 /* syscall - asynchronous write to a file (REALTIME) */ 1936 int 1937 oaio_write(struct thread *td, struct oaio_write_args *uap) 1938 { 1939 1940 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1941 } 1942 1943 int 1944 aio_write(struct thread *td, struct aio_write_args *uap) 1945 { 1946 1947 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1948 } 1949 1950 /* syscall - list directed I/O (REALTIME) */ 1951 int 1952 olio_listio(struct thread *td, struct olio_listio_args *uap) 1953 { 1954 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1955 } 1956 1957 /* syscall - list directed I/O (REALTIME) */ 1958 int 1959 lio_listio(struct thread *td, struct lio_listio_args *uap) 1960 { 1961 return do_lio_listio(td, uap, 0); 1962 } 1963 1964 static int 1965 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1966 { 1967 struct proc *p = td->td_proc; 1968 struct aiocb *iocb, * const *cbptr; 1969 struct kaioinfo *ki; 1970 struct aioliojob *lj; 1971 struct kevent kev; 1972 int nent; 1973 int error; 1974 int nerror; 1975 int i; 1976 1977 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1978 return (EINVAL); 1979 1980 nent = uap->nent; 1981 if (nent < 0 || nent > AIO_LISTIO_MAX) 1982 return (EINVAL); 1983 1984 if (p->p_aioinfo == NULL) 1985 aio_init_aioinfo(p); 1986 1987 ki = p->p_aioinfo; 1988 1989 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1990 lj->lioj_flags = 0; 1991 lj->lioj_count = 0; 1992 lj->lioj_finished_count = 0; 1993 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 1994 ksiginfo_init(&lj->lioj_ksi); 1995 1996 /* 1997 * Setup signal. 1998 */ 1999 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2000 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 2001 error = copyin(uap->sig, &lj->lioj_signal, 2002 oldsigev ? sizeof(struct osigevent) : 2003 sizeof(struct sigevent)); 2004 if (error) { 2005 uma_zfree(aiolio_zone, lj); 2006 return (error); 2007 } 2008 2009 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2010 /* Assume only new style KEVENT */ 2011 kev.filter = EVFILT_LIO; 2012 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2013 kev.ident = (uintptr_t)uap->acb_list; /* something unique */ 2014 kev.data = (intptr_t)lj; 2015 /* pass user defined sigval data */ 2016 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2017 error = kqfd_register( 2018 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2019 if (error) { 2020 uma_zfree(aiolio_zone, lj); 2021 return (error); 2022 } 2023 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2024 ; 2025 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2026 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2027 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2028 uma_zfree(aiolio_zone, lj); 2029 return EINVAL; 2030 } 2031 lj->lioj_flags |= LIOJ_SIGNAL; 2032 } else { 2033 uma_zfree(aiolio_zone, lj); 2034 return EINVAL; 2035 } 2036 } 2037 2038 AIO_LOCK(ki); 2039 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2040 /* 2041 * Add extra aiocb count to avoid the lio to be freed 2042 * by other threads doing aio_waitcomplete or aio_return, 2043 * and prevent event from being sent until we have queued 2044 * all tasks. 2045 */ 2046 lj->lioj_count = 1; 2047 AIO_UNLOCK(ki); 2048 2049 /* 2050 * Get pointers to the list of I/O requests. 2051 */ 2052 nerror = 0; 2053 cbptr = uap->acb_list; 2054 for (i = 0; i < uap->nent; i++) { 2055 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2056 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2057 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2058 if (error != 0) 2059 nerror++; 2060 } 2061 } 2062 2063 error = 0; 2064 AIO_LOCK(ki); 2065 if (uap->mode == LIO_WAIT) { 2066 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2067 ki->kaio_flags |= KAIO_WAKEUP; 2068 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2069 PRIBIO | PCATCH, "aiospn", 0); 2070 if (error == ERESTART) 2071 error = EINTR; 2072 if (error) 2073 break; 2074 } 2075 } else { 2076 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2077 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2078 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2079 KNOTE_LOCKED(&lj->klist, 1); 2080 } 2081 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2082 == LIOJ_SIGNAL 2083 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2084 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2085 aio_sendsig(p, &lj->lioj_signal, 2086 &lj->lioj_ksi); 2087 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2088 } 2089 } 2090 } 2091 lj->lioj_count--; 2092 if (lj->lioj_count == 0) { 2093 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2094 knlist_delete(&lj->klist, curthread, 1); 2095 PROC_LOCK(p); 2096 sigqueue_take(&lj->lioj_ksi); 2097 PROC_UNLOCK(p); 2098 AIO_UNLOCK(ki); 2099 uma_zfree(aiolio_zone, lj); 2100 } else 2101 AIO_UNLOCK(ki); 2102 2103 if (nerror) 2104 return (EIO); 2105 return (error); 2106 } 2107 2108 /* 2109 * Called from interrupt thread for physio, we should return as fast 2110 * as possible, so we schedule a biohelper task. 2111 */ 2112 static void 2113 aio_physwakeup(struct buf *bp) 2114 { 2115 struct aiocblist *aiocbe; 2116 2117 aiocbe = (struct aiocblist *)bp->b_caller1; 2118 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2119 } 2120 2121 /* 2122 * Task routine to perform heavy tasks, process wakeup, and signals. 2123 */ 2124 static void 2125 biohelper(void *context, int pending) 2126 { 2127 struct aiocblist *aiocbe = context; 2128 struct buf *bp; 2129 struct proc *userp; 2130 struct kaioinfo *ki; 2131 int nblks; 2132 2133 bp = aiocbe->bp; 2134 userp = aiocbe->userproc; 2135 ki = userp->p_aioinfo; 2136 AIO_LOCK(ki); 2137 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2138 aiocbe->uaiocb._aiocb_private.error = 0; 2139 if (bp->b_ioflags & BIO_ERROR) 2140 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2141 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2142 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2143 aiocbe->outputcharge += nblks; 2144 else 2145 aiocbe->inputcharge += nblks; 2146 aiocbe->bp = NULL; 2147 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2148 ki->kaio_buffer_count--; 2149 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2150 AIO_UNLOCK(ki); 2151 2152 /* Release mapping into kernel space. */ 2153 vunmapbuf(bp); 2154 relpbuf(bp, NULL); 2155 atomic_subtract_int(&num_buf_aio, 1); 2156 } 2157 2158 /* syscall - wait for the next completion of an aio request */ 2159 int 2160 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2161 { 2162 struct proc *p = td->td_proc; 2163 struct timeval atv; 2164 struct timespec ts; 2165 struct kaioinfo *ki; 2166 struct aiocblist *cb; 2167 struct aiocb *uuaiocb; 2168 int error, status, timo; 2169 2170 suword(uap->aiocbp, (long)NULL); 2171 2172 timo = 0; 2173 if (uap->timeout) { 2174 /* Get timespec struct. */ 2175 error = copyin(uap->timeout, &ts, sizeof(ts)); 2176 if (error) 2177 return (error); 2178 2179 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2180 return (EINVAL); 2181 2182 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2183 if (itimerfix(&atv)) 2184 return (EINVAL); 2185 timo = tvtohz(&atv); 2186 } 2187 2188 if (p->p_aioinfo == NULL) 2189 aio_init_aioinfo(p); 2190 ki = p->p_aioinfo; 2191 2192 error = 0; 2193 cb = NULL; 2194 AIO_LOCK(ki); 2195 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2196 ki->kaio_flags |= KAIO_WAKEUP; 2197 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2198 "aiowc", timo); 2199 if (timo && error == ERESTART) 2200 error = EINTR; 2201 if (error) 2202 break; 2203 } 2204 2205 if (cb != NULL) { 2206 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2207 uuaiocb = cb->uuaiocb; 2208 status = cb->uaiocb._aiocb_private.status; 2209 error = cb->uaiocb._aiocb_private.error; 2210 td->td_retval[0] = status; 2211 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2212 td->td_ru.ru_oublock += cb->outputcharge; 2213 cb->outputcharge = 0; 2214 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2215 td->td_ru.ru_inblock += cb->inputcharge; 2216 cb->inputcharge = 0; 2217 } 2218 aio_free_entry(cb); 2219 AIO_UNLOCK(ki); 2220 suword(uap->aiocbp, (long)uuaiocb); 2221 suword(&uuaiocb->_aiocb_private.error, error); 2222 suword(&uuaiocb->_aiocb_private.status, status); 2223 } else 2224 AIO_UNLOCK(ki); 2225 2226 return (error); 2227 } 2228 2229 int 2230 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2231 { 2232 struct proc *p = td->td_proc; 2233 struct kaioinfo *ki; 2234 2235 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2236 return (EINVAL); 2237 ki = p->p_aioinfo; 2238 if (ki == NULL) 2239 aio_init_aioinfo(p); 2240 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2241 } 2242 2243 /* kqueue attach function */ 2244 static int 2245 filt_aioattach(struct knote *kn) 2246 { 2247 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2248 2249 /* 2250 * The aiocbe pointer must be validated before using it, so 2251 * registration is restricted to the kernel; the user cannot 2252 * set EV_FLAG1. 2253 */ 2254 if ((kn->kn_flags & EV_FLAG1) == 0) 2255 return (EPERM); 2256 kn->kn_ptr.p_aio = aiocbe; 2257 kn->kn_flags &= ~EV_FLAG1; 2258 2259 knlist_add(&aiocbe->klist, kn, 0); 2260 2261 return (0); 2262 } 2263 2264 /* kqueue detach function */ 2265 static void 2266 filt_aiodetach(struct knote *kn) 2267 { 2268 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2269 2270 if (!knlist_empty(&aiocbe->klist)) 2271 knlist_remove(&aiocbe->klist, kn, 0); 2272 } 2273 2274 /* kqueue filter function */ 2275 /*ARGSUSED*/ 2276 static int 2277 filt_aio(struct knote *kn, long hint) 2278 { 2279 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2280 2281 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2282 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2283 return (0); 2284 kn->kn_flags |= EV_EOF; 2285 return (1); 2286 } 2287 2288 /* kqueue attach function */ 2289 static int 2290 filt_lioattach(struct knote *kn) 2291 { 2292 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2293 2294 /* 2295 * The aioliojob pointer must be validated before using it, so 2296 * registration is restricted to the kernel; the user cannot 2297 * set EV_FLAG1. 2298 */ 2299 if ((kn->kn_flags & EV_FLAG1) == 0) 2300 return (EPERM); 2301 kn->kn_ptr.p_lio = lj; 2302 kn->kn_flags &= ~EV_FLAG1; 2303 2304 knlist_add(&lj->klist, kn, 0); 2305 2306 return (0); 2307 } 2308 2309 /* kqueue detach function */ 2310 static void 2311 filt_liodetach(struct knote *kn) 2312 { 2313 struct aioliojob * lj = kn->kn_ptr.p_lio; 2314 2315 if (!knlist_empty(&lj->klist)) 2316 knlist_remove(&lj->klist, kn, 0); 2317 } 2318 2319 /* kqueue filter function */ 2320 /*ARGSUSED*/ 2321 static int 2322 filt_lio(struct knote *kn, long hint) 2323 { 2324 struct aioliojob * lj = kn->kn_ptr.p_lio; 2325 2326 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2327 } 2328