1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include "opt_compat.h" 27 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/malloc.h> 31 #include <sys/bio.h> 32 #include <sys/buf.h> 33 #include <sys/capsicum.h> 34 #include <sys/eventhandler.h> 35 #include <sys/sysproto.h> 36 #include <sys/filedesc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/kthread.h> 40 #include <sys/fcntl.h> 41 #include <sys/file.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/unistd.h> 46 #include <sys/posix4.h> 47 #include <sys/proc.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <sys/syscallsubr.h> 51 #include <sys/protosw.h> 52 #include <sys/rwlock.h> 53 #include <sys/sema.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/syscall.h> 57 #include <sys/sysent.h> 58 #include <sys/sysctl.h> 59 #include <sys/syslog.h> 60 #include <sys/sx.h> 61 #include <sys/taskqueue.h> 62 #include <sys/vnode.h> 63 #include <sys/conf.h> 64 #include <sys/event.h> 65 #include <sys/mount.h> 66 #include <geom/geom.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_page.h> 72 #include <vm/vm_extern.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_map.h> 75 #include <vm/vm_object.h> 76 #include <vm/uma.h> 77 #include <sys/aio.h> 78 79 /* 80 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 81 * overflow. (XXX will be removed soon.) 82 */ 83 static u_long jobrefid; 84 85 /* 86 * Counter for aio_fsync. 87 */ 88 static uint64_t jobseqno; 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 96 #endif 97 98 #ifndef MAX_AIO_QUEUE 99 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 100 #endif 101 102 #ifndef MAX_BUF_AIO 103 #define MAX_BUF_AIO 16 104 #endif 105 106 FEATURE(aio, "Asynchronous I/O"); 107 SYSCTL_DECL(_p1003_1b); 108 109 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 110 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 111 112 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 113 "Async IO management"); 114 115 static int enable_aio_unsafe = 0; 116 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 117 "Permit asynchronous IO on all file types, not just known-safe types"); 118 119 static unsigned int unsafe_warningcnt = 1; 120 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 121 &unsafe_warningcnt, 0, 122 "Warnings that will be triggered upon failed IO requests on unsafe files"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 126 "Maximum number of kernel processes to use for handling async IO "); 127 128 static int num_aio_procs = 0; 129 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 130 "Number of presently active kernel processes for async IO"); 131 132 /* 133 * The code will adjust the actual number of AIO processes towards this 134 * number when it gets a chance. 135 */ 136 static int target_aio_procs = TARGET_AIO_PROCS; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 138 0, 139 "Preferred number of ready kernel processes for async IO"); 140 141 static int max_queue_count = MAX_AIO_QUEUE; 142 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 143 "Maximum number of aio requests to queue, globally"); 144 145 static int num_queue_count = 0; 146 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 147 "Number of queued aio requests"); 148 149 static int num_buf_aio = 0; 150 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 151 "Number of aio requests presently handled by the buf subsystem"); 152 153 static int num_unmapped_aio = 0; 154 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 155 0, 156 "Number of aio requests presently handled by unmapped I/O buffers"); 157 158 /* Number of async I/O processes in the process of being started */ 159 /* XXX This should be local to aio_aqueue() */ 160 static int num_aio_resv_start = 0; 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int max_aio_per_proc = MAX_AIO_PER_PROC; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 168 0, 169 "Maximum active aio requests per process"); 170 171 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 173 &max_aio_queue_per_proc, 0, 174 "Maximum queued aio requests per process"); 175 176 static int max_buf_aio = MAX_BUF_AIO; 177 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 178 "Maximum buf aio requests per process"); 179 180 /* 181 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 182 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 183 * vfs.aio.aio_listio_max. 184 */ 185 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 186 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 187 0, "Maximum aio requests for a single lio_listio call"); 188 189 #ifdef COMPAT_FREEBSD6 190 typedef struct oaiocb { 191 int aio_fildes; /* File descriptor */ 192 off_t aio_offset; /* File offset for I/O */ 193 volatile void *aio_buf; /* I/O buffer in process space */ 194 size_t aio_nbytes; /* Number of bytes for I/O */ 195 struct osigevent aio_sigevent; /* Signal to deliver */ 196 int aio_lio_opcode; /* LIO opcode */ 197 int aio_reqprio; /* Request priority -- ignored */ 198 struct __aiocb_private _aiocb_private; 199 } oaiocb_t; 200 #endif 201 202 /* 203 * Below is a key of locks used to protect each member of struct kaiocb 204 * aioliojob and kaioinfo and any backends. 205 * 206 * * - need not protected 207 * a - locked by kaioinfo lock 208 * b - locked by backend lock, the backend lock can be null in some cases, 209 * for example, BIO belongs to this type, in this case, proc lock is 210 * reused. 211 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 212 */ 213 214 /* 215 * If the routine that services an AIO request blocks while running in an 216 * AIO kernel process it can starve other I/O requests. BIO requests 217 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 218 * processes at all. Socket I/O requests use a separate pool of 219 * kprocs and also force non-blocking I/O. Other file I/O requests 220 * use the generic fo_read/fo_write operations which can block. The 221 * fsync and mlock operations can also block while executing. Ideally 222 * none of these requests would block while executing. 223 * 224 * Note that the service routines cannot toggle O_NONBLOCK in the file 225 * structure directly while handling a request due to races with 226 * userland threads. 227 */ 228 229 /* jobflags */ 230 #define KAIOCB_QUEUEING 0x01 231 #define KAIOCB_CANCELLED 0x02 232 #define KAIOCB_CANCELLING 0x04 233 #define KAIOCB_CHECKSYNC 0x08 234 #define KAIOCB_CLEARED 0x10 235 #define KAIOCB_FINISHED 0x20 236 237 /* 238 * AIO process info 239 */ 240 #define AIOP_FREE 0x1 /* proc on free queue */ 241 242 struct aioproc { 243 int aioprocflags; /* (c) AIO proc flags */ 244 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 245 struct proc *aioproc; /* (*) the AIO proc */ 246 }; 247 248 /* 249 * data-structure for lio signal management 250 */ 251 struct aioliojob { 252 int lioj_flags; /* (a) listio flags */ 253 int lioj_count; /* (a) listio flags */ 254 int lioj_finished_count; /* (a) listio flags */ 255 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 256 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 257 struct knlist klist; /* (a) list of knotes */ 258 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 259 }; 260 261 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 262 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 263 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 264 265 /* 266 * per process aio data structure 267 */ 268 struct kaioinfo { 269 struct mtx kaio_mtx; /* the lock to protect this struct */ 270 int kaio_flags; /* (a) per process kaio flags */ 271 int kaio_active_count; /* (c) number of currently used AIOs */ 272 int kaio_count; /* (a) size of AIO queue */ 273 int kaio_buffer_count; /* (a) number of physio buffers */ 274 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 275 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 276 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 277 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 278 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 279 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 280 struct task kaio_task; /* (*) task to kick aio processes */ 281 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 282 }; 283 284 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 285 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 286 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 287 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 288 289 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 290 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 291 292 /* 293 * Operations used to interact with userland aio control blocks. 294 * Different ABIs provide their own operations. 295 */ 296 struct aiocb_ops { 297 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 298 long (*fetch_status)(struct aiocb *ujob); 299 long (*fetch_error)(struct aiocb *ujob); 300 int (*store_status)(struct aiocb *ujob, long status); 301 int (*store_error)(struct aiocb *ujob, long error); 302 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 303 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 304 }; 305 306 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 307 static struct sema aio_newproc_sem; 308 static struct mtx aio_job_mtx; 309 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 310 static struct unrhdr *aiod_unr; 311 312 void aio_init_aioinfo(struct proc *p); 313 static int aio_onceonly(void); 314 static int aio_free_entry(struct kaiocb *job); 315 static void aio_process_rw(struct kaiocb *job); 316 static void aio_process_sync(struct kaiocb *job); 317 static void aio_process_mlock(struct kaiocb *job); 318 static void aio_schedule_fsync(void *context, int pending); 319 static int aio_newproc(int *); 320 int aio_aqueue(struct thread *td, struct aiocb *ujob, 321 struct aioliojob *lio, int type, struct aiocb_ops *ops); 322 static int aio_queue_file(struct file *fp, struct kaiocb *job); 323 static void aio_physwakeup(struct bio *bp); 324 static void aio_proc_rundown(void *arg, struct proc *p); 325 static void aio_proc_rundown_exec(void *arg, struct proc *p, 326 struct image_params *imgp); 327 static int aio_qphysio(struct proc *p, struct kaiocb *job); 328 static void aio_daemon(void *param); 329 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 330 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 331 static int aio_kick(struct proc *userp); 332 static void aio_kick_nowait(struct proc *userp); 333 static void aio_kick_helper(void *context, int pending); 334 static int filt_aioattach(struct knote *kn); 335 static void filt_aiodetach(struct knote *kn); 336 static int filt_aio(struct knote *kn, long hint); 337 static int filt_lioattach(struct knote *kn); 338 static void filt_liodetach(struct knote *kn); 339 static int filt_lio(struct knote *kn, long hint); 340 341 /* 342 * Zones for: 343 * kaio Per process async io info 344 * aiop async io process data 345 * aiocb async io jobs 346 * aiolio list io jobs 347 */ 348 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 349 350 /* kqueue filters for aio */ 351 static struct filterops aio_filtops = { 352 .f_isfd = 0, 353 .f_attach = filt_aioattach, 354 .f_detach = filt_aiodetach, 355 .f_event = filt_aio, 356 }; 357 static struct filterops lio_filtops = { 358 .f_isfd = 0, 359 .f_attach = filt_lioattach, 360 .f_detach = filt_liodetach, 361 .f_event = filt_lio 362 }; 363 364 static eventhandler_tag exit_tag, exec_tag; 365 366 TASKQUEUE_DEFINE_THREAD(aiod_kick); 367 368 /* 369 * Main operations function for use as a kernel module. 370 */ 371 static int 372 aio_modload(struct module *module, int cmd, void *arg) 373 { 374 int error = 0; 375 376 switch (cmd) { 377 case MOD_LOAD: 378 aio_onceonly(); 379 break; 380 case MOD_SHUTDOWN: 381 break; 382 default: 383 error = EOPNOTSUPP; 384 break; 385 } 386 return (error); 387 } 388 389 static moduledata_t aio_mod = { 390 "aio", 391 &aio_modload, 392 NULL 393 }; 394 395 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 396 MODULE_VERSION(aio, 1); 397 398 /* 399 * Startup initialization 400 */ 401 static int 402 aio_onceonly(void) 403 { 404 405 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 406 EVENTHANDLER_PRI_ANY); 407 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 408 NULL, EVENTHANDLER_PRI_ANY); 409 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 410 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 411 TAILQ_INIT(&aio_freeproc); 412 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 413 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 414 TAILQ_INIT(&aio_jobs); 415 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 416 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 417 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 419 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 421 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 423 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 424 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 425 jobrefid = 1; 426 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 427 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 428 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 429 430 return (0); 431 } 432 433 /* 434 * Init the per-process aioinfo structure. The aioinfo limits are set 435 * per-process for user limit (resource) management. 436 */ 437 void 438 aio_init_aioinfo(struct proc *p) 439 { 440 struct kaioinfo *ki; 441 442 ki = uma_zalloc(kaio_zone, M_WAITOK); 443 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 444 ki->kaio_flags = 0; 445 ki->kaio_active_count = 0; 446 ki->kaio_count = 0; 447 ki->kaio_buffer_count = 0; 448 TAILQ_INIT(&ki->kaio_all); 449 TAILQ_INIT(&ki->kaio_done); 450 TAILQ_INIT(&ki->kaio_jobqueue); 451 TAILQ_INIT(&ki->kaio_liojoblist); 452 TAILQ_INIT(&ki->kaio_syncqueue); 453 TAILQ_INIT(&ki->kaio_syncready); 454 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 455 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 456 PROC_LOCK(p); 457 if (p->p_aioinfo == NULL) { 458 p->p_aioinfo = ki; 459 PROC_UNLOCK(p); 460 } else { 461 PROC_UNLOCK(p); 462 mtx_destroy(&ki->kaio_mtx); 463 uma_zfree(kaio_zone, ki); 464 } 465 466 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 467 aio_newproc(NULL); 468 } 469 470 static int 471 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 472 { 473 struct thread *td; 474 int error; 475 476 error = sigev_findtd(p, sigev, &td); 477 if (error) 478 return (error); 479 if (!KSI_ONQ(ksi)) { 480 ksiginfo_set_sigev(ksi, sigev); 481 ksi->ksi_code = SI_ASYNCIO; 482 ksi->ksi_flags |= KSI_EXT | KSI_INS; 483 tdsendsignal(p, td, ksi->ksi_signo, ksi); 484 } 485 PROC_UNLOCK(p); 486 return (error); 487 } 488 489 /* 490 * Free a job entry. Wait for completion if it is currently active, but don't 491 * delay forever. If we delay, we return a flag that says that we have to 492 * restart the queue scan. 493 */ 494 static int 495 aio_free_entry(struct kaiocb *job) 496 { 497 struct kaioinfo *ki; 498 struct aioliojob *lj; 499 struct proc *p; 500 501 p = job->userproc; 502 MPASS(curproc == p); 503 ki = p->p_aioinfo; 504 MPASS(ki != NULL); 505 506 AIO_LOCK_ASSERT(ki, MA_OWNED); 507 MPASS(job->jobflags & KAIOCB_FINISHED); 508 509 atomic_subtract_int(&num_queue_count, 1); 510 511 ki->kaio_count--; 512 MPASS(ki->kaio_count >= 0); 513 514 TAILQ_REMOVE(&ki->kaio_done, job, plist); 515 TAILQ_REMOVE(&ki->kaio_all, job, allist); 516 517 lj = job->lio; 518 if (lj) { 519 lj->lioj_count--; 520 lj->lioj_finished_count--; 521 522 if (lj->lioj_count == 0) { 523 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 524 /* lio is going away, we need to destroy any knotes */ 525 knlist_delete(&lj->klist, curthread, 1); 526 PROC_LOCK(p); 527 sigqueue_take(&lj->lioj_ksi); 528 PROC_UNLOCK(p); 529 uma_zfree(aiolio_zone, lj); 530 } 531 } 532 533 /* job is going away, we need to destroy any knotes */ 534 knlist_delete(&job->klist, curthread, 1); 535 PROC_LOCK(p); 536 sigqueue_take(&job->ksi); 537 PROC_UNLOCK(p); 538 539 AIO_UNLOCK(ki); 540 541 /* 542 * The thread argument here is used to find the owning process 543 * and is also passed to fo_close() which may pass it to various 544 * places such as devsw close() routines. Because of that, we 545 * need a thread pointer from the process owning the job that is 546 * persistent and won't disappear out from under us or move to 547 * another process. 548 * 549 * Currently, all the callers of this function call it to remove 550 * a kaiocb from the current process' job list either via a 551 * syscall or due to the current process calling exit() or 552 * execve(). Thus, we know that p == curproc. We also know that 553 * curthread can't exit since we are curthread. 554 * 555 * Therefore, we use curthread as the thread to pass to 556 * knlist_delete(). This does mean that it is possible for the 557 * thread pointer at close time to differ from the thread pointer 558 * at open time, but this is already true of file descriptors in 559 * a multithreaded process. 560 */ 561 if (job->fd_file) 562 fdrop(job->fd_file, curthread); 563 crfree(job->cred); 564 uma_zfree(aiocb_zone, job); 565 AIO_LOCK(ki); 566 567 return (0); 568 } 569 570 static void 571 aio_proc_rundown_exec(void *arg, struct proc *p, 572 struct image_params *imgp __unused) 573 { 574 aio_proc_rundown(arg, p); 575 } 576 577 static int 578 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 579 { 580 aio_cancel_fn_t *func; 581 int cancelled; 582 583 AIO_LOCK_ASSERT(ki, MA_OWNED); 584 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 585 return (0); 586 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 587 job->jobflags |= KAIOCB_CANCELLED; 588 589 func = job->cancel_fn; 590 591 /* 592 * If there is no cancel routine, just leave the job marked as 593 * cancelled. The job should be in active use by a caller who 594 * should complete it normally or when it fails to install a 595 * cancel routine. 596 */ 597 if (func == NULL) 598 return (0); 599 600 /* 601 * Set the CANCELLING flag so that aio_complete() will defer 602 * completions of this job. This prevents the job from being 603 * freed out from under the cancel callback. After the 604 * callback any deferred completion (whether from the callback 605 * or any other source) will be completed. 606 */ 607 job->jobflags |= KAIOCB_CANCELLING; 608 AIO_UNLOCK(ki); 609 func(job); 610 AIO_LOCK(ki); 611 job->jobflags &= ~KAIOCB_CANCELLING; 612 if (job->jobflags & KAIOCB_FINISHED) { 613 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 614 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 615 aio_bio_done_notify(p, job); 616 } else { 617 /* 618 * The cancel callback might have scheduled an 619 * operation to cancel this request, but it is 620 * only counted as cancelled if the request is 621 * cancelled when the callback returns. 622 */ 623 cancelled = 0; 624 } 625 return (cancelled); 626 } 627 628 /* 629 * Rundown the jobs for a given process. 630 */ 631 static void 632 aio_proc_rundown(void *arg, struct proc *p) 633 { 634 struct kaioinfo *ki; 635 struct aioliojob *lj; 636 struct kaiocb *job, *jobn; 637 638 KASSERT(curthread->td_proc == p, 639 ("%s: called on non-curproc", __func__)); 640 ki = p->p_aioinfo; 641 if (ki == NULL) 642 return; 643 644 AIO_LOCK(ki); 645 ki->kaio_flags |= KAIO_RUNDOWN; 646 647 restart: 648 649 /* 650 * Try to cancel all pending requests. This code simulates 651 * aio_cancel on all pending I/O requests. 652 */ 653 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 654 aio_cancel_job(p, ki, job); 655 } 656 657 /* Wait for all running I/O to be finished */ 658 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 659 ki->kaio_flags |= KAIO_WAKEUP; 660 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 661 goto restart; 662 } 663 664 /* Free all completed I/O requests. */ 665 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 666 aio_free_entry(job); 667 668 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 669 if (lj->lioj_count == 0) { 670 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 671 knlist_delete(&lj->klist, curthread, 1); 672 PROC_LOCK(p); 673 sigqueue_take(&lj->lioj_ksi); 674 PROC_UNLOCK(p); 675 uma_zfree(aiolio_zone, lj); 676 } else { 677 panic("LIO job not cleaned up: C:%d, FC:%d\n", 678 lj->lioj_count, lj->lioj_finished_count); 679 } 680 } 681 AIO_UNLOCK(ki); 682 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 683 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 684 mtx_destroy(&ki->kaio_mtx); 685 uma_zfree(kaio_zone, ki); 686 p->p_aioinfo = NULL; 687 } 688 689 /* 690 * Select a job to run (called by an AIO daemon). 691 */ 692 static struct kaiocb * 693 aio_selectjob(struct aioproc *aiop) 694 { 695 struct kaiocb *job; 696 struct kaioinfo *ki; 697 struct proc *userp; 698 699 mtx_assert(&aio_job_mtx, MA_OWNED); 700 restart: 701 TAILQ_FOREACH(job, &aio_jobs, list) { 702 userp = job->userproc; 703 ki = userp->p_aioinfo; 704 705 if (ki->kaio_active_count < max_aio_per_proc) { 706 TAILQ_REMOVE(&aio_jobs, job, list); 707 if (!aio_clear_cancel_function(job)) 708 goto restart; 709 710 /* Account for currently active jobs. */ 711 ki->kaio_active_count++; 712 break; 713 } 714 } 715 return (job); 716 } 717 718 /* 719 * Move all data to a permanent storage device. This code 720 * simulates the fsync syscall. 721 */ 722 static int 723 aio_fsync_vnode(struct thread *td, struct vnode *vp) 724 { 725 struct mount *mp; 726 int error; 727 728 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 729 goto drop; 730 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 731 if (vp->v_object != NULL) { 732 VM_OBJECT_WLOCK(vp->v_object); 733 vm_object_page_clean(vp->v_object, 0, 0, 0); 734 VM_OBJECT_WUNLOCK(vp->v_object); 735 } 736 error = VOP_FSYNC(vp, MNT_WAIT, td); 737 738 VOP_UNLOCK(vp, 0); 739 vn_finished_write(mp); 740 drop: 741 return (error); 742 } 743 744 /* 745 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 746 * does the I/O request for the non-physio version of the operations. The 747 * normal vn operations are used, and this code should work in all instances 748 * for every type of file, including pipes, sockets, fifos, and regular files. 749 * 750 * XXX I don't think it works well for socket, pipe, and fifo. 751 */ 752 static void 753 aio_process_rw(struct kaiocb *job) 754 { 755 struct ucred *td_savedcred; 756 struct thread *td; 757 struct aiocb *cb; 758 struct file *fp; 759 struct uio auio; 760 struct iovec aiov; 761 ssize_t cnt; 762 long msgsnd_st, msgsnd_end; 763 long msgrcv_st, msgrcv_end; 764 long oublock_st, oublock_end; 765 long inblock_st, inblock_end; 766 int error; 767 768 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 769 job->uaiocb.aio_lio_opcode == LIO_WRITE, 770 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 771 772 aio_switch_vmspace(job); 773 td = curthread; 774 td_savedcred = td->td_ucred; 775 td->td_ucred = job->cred; 776 cb = &job->uaiocb; 777 fp = job->fd_file; 778 779 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 780 aiov.iov_len = cb->aio_nbytes; 781 782 auio.uio_iov = &aiov; 783 auio.uio_iovcnt = 1; 784 auio.uio_offset = cb->aio_offset; 785 auio.uio_resid = cb->aio_nbytes; 786 cnt = cb->aio_nbytes; 787 auio.uio_segflg = UIO_USERSPACE; 788 auio.uio_td = td; 789 790 msgrcv_st = td->td_ru.ru_msgrcv; 791 msgsnd_st = td->td_ru.ru_msgsnd; 792 inblock_st = td->td_ru.ru_inblock; 793 oublock_st = td->td_ru.ru_oublock; 794 795 /* 796 * aio_aqueue() acquires a reference to the file that is 797 * released in aio_free_entry(). 798 */ 799 if (cb->aio_lio_opcode == LIO_READ) { 800 auio.uio_rw = UIO_READ; 801 if (auio.uio_resid == 0) 802 error = 0; 803 else 804 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 805 } else { 806 if (fp->f_type == DTYPE_VNODE) 807 bwillwrite(); 808 auio.uio_rw = UIO_WRITE; 809 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 810 } 811 msgrcv_end = td->td_ru.ru_msgrcv; 812 msgsnd_end = td->td_ru.ru_msgsnd; 813 inblock_end = td->td_ru.ru_inblock; 814 oublock_end = td->td_ru.ru_oublock; 815 816 job->msgrcv = msgrcv_end - msgrcv_st; 817 job->msgsnd = msgsnd_end - msgsnd_st; 818 job->inblock = inblock_end - inblock_st; 819 job->outblock = oublock_end - oublock_st; 820 821 if ((error) && (auio.uio_resid != cnt)) { 822 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 823 error = 0; 824 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 825 PROC_LOCK(job->userproc); 826 kern_psignal(job->userproc, SIGPIPE); 827 PROC_UNLOCK(job->userproc); 828 } 829 } 830 831 cnt -= auio.uio_resid; 832 td->td_ucred = td_savedcred; 833 if (error) 834 aio_complete(job, -1, error); 835 else 836 aio_complete(job, cnt, 0); 837 } 838 839 static void 840 aio_process_sync(struct kaiocb *job) 841 { 842 struct thread *td = curthread; 843 struct ucred *td_savedcred = td->td_ucred; 844 struct file *fp = job->fd_file; 845 int error = 0; 846 847 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 848 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 849 850 td->td_ucred = job->cred; 851 if (fp->f_vnode != NULL) 852 error = aio_fsync_vnode(td, fp->f_vnode); 853 td->td_ucred = td_savedcred; 854 if (error) 855 aio_complete(job, -1, error); 856 else 857 aio_complete(job, 0, 0); 858 } 859 860 static void 861 aio_process_mlock(struct kaiocb *job) 862 { 863 struct aiocb *cb = &job->uaiocb; 864 int error; 865 866 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 867 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 868 869 aio_switch_vmspace(job); 870 error = kern_mlock(job->userproc, job->cred, 871 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 872 aio_complete(job, error != 0 ? -1 : 0, error); 873 } 874 875 static void 876 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 877 { 878 struct aioliojob *lj; 879 struct kaioinfo *ki; 880 struct kaiocb *sjob, *sjobn; 881 int lj_done; 882 bool schedule_fsync; 883 884 ki = userp->p_aioinfo; 885 AIO_LOCK_ASSERT(ki, MA_OWNED); 886 lj = job->lio; 887 lj_done = 0; 888 if (lj) { 889 lj->lioj_finished_count++; 890 if (lj->lioj_count == lj->lioj_finished_count) 891 lj_done = 1; 892 } 893 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 894 MPASS(job->jobflags & KAIOCB_FINISHED); 895 896 if (ki->kaio_flags & KAIO_RUNDOWN) 897 goto notification_done; 898 899 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 900 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 901 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 902 903 KNOTE_LOCKED(&job->klist, 1); 904 905 if (lj_done) { 906 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 907 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 908 KNOTE_LOCKED(&lj->klist, 1); 909 } 910 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 911 == LIOJ_SIGNAL 912 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 913 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 914 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 915 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 916 } 917 } 918 919 notification_done: 920 if (job->jobflags & KAIOCB_CHECKSYNC) { 921 schedule_fsync = false; 922 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 923 if (job->fd_file != sjob->fd_file || 924 job->seqno >= sjob->seqno) 925 continue; 926 if (--sjob->pending > 0) 927 continue; 928 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 929 if (!aio_clear_cancel_function_locked(sjob)) 930 continue; 931 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 932 schedule_fsync = true; 933 } 934 if (schedule_fsync) 935 taskqueue_enqueue(taskqueue_aiod_kick, 936 &ki->kaio_sync_task); 937 } 938 if (ki->kaio_flags & KAIO_WAKEUP) { 939 ki->kaio_flags &= ~KAIO_WAKEUP; 940 wakeup(&userp->p_aioinfo); 941 } 942 } 943 944 static void 945 aio_schedule_fsync(void *context, int pending) 946 { 947 struct kaioinfo *ki; 948 struct kaiocb *job; 949 950 ki = context; 951 AIO_LOCK(ki); 952 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 953 job = TAILQ_FIRST(&ki->kaio_syncready); 954 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 955 AIO_UNLOCK(ki); 956 aio_schedule(job, aio_process_sync); 957 AIO_LOCK(ki); 958 } 959 AIO_UNLOCK(ki); 960 } 961 962 bool 963 aio_cancel_cleared(struct kaiocb *job) 964 { 965 966 /* 967 * The caller should hold the same queue lock held when 968 * aio_clear_cancel_function() was called and set this flag 969 * ensuring this check sees an up-to-date value. However, 970 * there is no way to assert that. 971 */ 972 return ((job->jobflags & KAIOCB_CLEARED) != 0); 973 } 974 975 static bool 976 aio_clear_cancel_function_locked(struct kaiocb *job) 977 { 978 979 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 980 MPASS(job->cancel_fn != NULL); 981 if (job->jobflags & KAIOCB_CANCELLING) { 982 job->jobflags |= KAIOCB_CLEARED; 983 return (false); 984 } 985 job->cancel_fn = NULL; 986 return (true); 987 } 988 989 bool 990 aio_clear_cancel_function(struct kaiocb *job) 991 { 992 struct kaioinfo *ki; 993 bool ret; 994 995 ki = job->userproc->p_aioinfo; 996 AIO_LOCK(ki); 997 ret = aio_clear_cancel_function_locked(job); 998 AIO_UNLOCK(ki); 999 return (ret); 1000 } 1001 1002 static bool 1003 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1004 { 1005 1006 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1007 if (job->jobflags & KAIOCB_CANCELLED) 1008 return (false); 1009 job->cancel_fn = func; 1010 return (true); 1011 } 1012 1013 bool 1014 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1015 { 1016 struct kaioinfo *ki; 1017 bool ret; 1018 1019 ki = job->userproc->p_aioinfo; 1020 AIO_LOCK(ki); 1021 ret = aio_set_cancel_function_locked(job, func); 1022 AIO_UNLOCK(ki); 1023 return (ret); 1024 } 1025 1026 void 1027 aio_complete(struct kaiocb *job, long status, int error) 1028 { 1029 struct kaioinfo *ki; 1030 struct proc *userp; 1031 1032 job->uaiocb._aiocb_private.error = error; 1033 job->uaiocb._aiocb_private.status = status; 1034 1035 userp = job->userproc; 1036 ki = userp->p_aioinfo; 1037 1038 AIO_LOCK(ki); 1039 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1040 ("duplicate aio_complete")); 1041 job->jobflags |= KAIOCB_FINISHED; 1042 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1043 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1044 aio_bio_done_notify(userp, job); 1045 } 1046 AIO_UNLOCK(ki); 1047 } 1048 1049 void 1050 aio_cancel(struct kaiocb *job) 1051 { 1052 1053 aio_complete(job, -1, ECANCELED); 1054 } 1055 1056 void 1057 aio_switch_vmspace(struct kaiocb *job) 1058 { 1059 1060 vmspace_switch_aio(job->userproc->p_vmspace); 1061 } 1062 1063 /* 1064 * The AIO daemon, most of the actual work is done in aio_process_*, 1065 * but the setup (and address space mgmt) is done in this routine. 1066 */ 1067 static void 1068 aio_daemon(void *_id) 1069 { 1070 struct kaiocb *job; 1071 struct aioproc *aiop; 1072 struct kaioinfo *ki; 1073 struct proc *p; 1074 struct vmspace *myvm; 1075 struct thread *td = curthread; 1076 int id = (intptr_t)_id; 1077 1078 /* 1079 * Grab an extra reference on the daemon's vmspace so that it 1080 * doesn't get freed by jobs that switch to a different 1081 * vmspace. 1082 */ 1083 p = td->td_proc; 1084 myvm = vmspace_acquire_ref(p); 1085 1086 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1087 1088 /* 1089 * Allocate and ready the aio control info. There is one aiop structure 1090 * per daemon. 1091 */ 1092 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1093 aiop->aioproc = p; 1094 aiop->aioprocflags = 0; 1095 1096 /* 1097 * Wakeup parent process. (Parent sleeps to keep from blasting away 1098 * and creating too many daemons.) 1099 */ 1100 sema_post(&aio_newproc_sem); 1101 1102 mtx_lock(&aio_job_mtx); 1103 for (;;) { 1104 /* 1105 * Take daemon off of free queue 1106 */ 1107 if (aiop->aioprocflags & AIOP_FREE) { 1108 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1109 aiop->aioprocflags &= ~AIOP_FREE; 1110 } 1111 1112 /* 1113 * Check for jobs. 1114 */ 1115 while ((job = aio_selectjob(aiop)) != NULL) { 1116 mtx_unlock(&aio_job_mtx); 1117 1118 ki = job->userproc->p_aioinfo; 1119 job->handle_fn(job); 1120 1121 mtx_lock(&aio_job_mtx); 1122 /* Decrement the active job count. */ 1123 ki->kaio_active_count--; 1124 } 1125 1126 /* 1127 * Disconnect from user address space. 1128 */ 1129 if (p->p_vmspace != myvm) { 1130 mtx_unlock(&aio_job_mtx); 1131 vmspace_switch_aio(myvm); 1132 mtx_lock(&aio_job_mtx); 1133 /* 1134 * We have to restart to avoid race, we only sleep if 1135 * no job can be selected. 1136 */ 1137 continue; 1138 } 1139 1140 mtx_assert(&aio_job_mtx, MA_OWNED); 1141 1142 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1143 aiop->aioprocflags |= AIOP_FREE; 1144 1145 /* 1146 * If daemon is inactive for a long time, allow it to exit, 1147 * thereby freeing resources. 1148 */ 1149 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1150 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1151 (aiop->aioprocflags & AIOP_FREE) && 1152 num_aio_procs > target_aio_procs) 1153 break; 1154 } 1155 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1156 num_aio_procs--; 1157 mtx_unlock(&aio_job_mtx); 1158 uma_zfree(aiop_zone, aiop); 1159 free_unr(aiod_unr, id); 1160 vmspace_free(myvm); 1161 1162 KASSERT(p->p_vmspace == myvm, 1163 ("AIOD: bad vmspace for exiting daemon")); 1164 KASSERT(myvm->vm_refcnt > 1, 1165 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1166 kproc_exit(0); 1167 } 1168 1169 /* 1170 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1171 * AIO daemon modifies its environment itself. 1172 */ 1173 static int 1174 aio_newproc(int *start) 1175 { 1176 int error; 1177 struct proc *p; 1178 int id; 1179 1180 id = alloc_unr(aiod_unr); 1181 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1182 RFNOWAIT, 0, "aiod%d", id); 1183 if (error == 0) { 1184 /* 1185 * Wait until daemon is started. 1186 */ 1187 sema_wait(&aio_newproc_sem); 1188 mtx_lock(&aio_job_mtx); 1189 num_aio_procs++; 1190 if (start != NULL) 1191 (*start)--; 1192 mtx_unlock(&aio_job_mtx); 1193 } else { 1194 free_unr(aiod_unr, id); 1195 } 1196 return (error); 1197 } 1198 1199 /* 1200 * Try the high-performance, low-overhead physio method for eligible 1201 * VCHR devices. This method doesn't use an aio helper thread, and 1202 * thus has very low overhead. 1203 * 1204 * Assumes that the caller, aio_aqueue(), has incremented the file 1205 * structure's reference count, preventing its deallocation for the 1206 * duration of this call. 1207 */ 1208 static int 1209 aio_qphysio(struct proc *p, struct kaiocb *job) 1210 { 1211 struct aiocb *cb; 1212 struct file *fp; 1213 struct bio *bp; 1214 struct buf *pbuf; 1215 struct vnode *vp; 1216 struct cdevsw *csw; 1217 struct cdev *dev; 1218 struct kaioinfo *ki; 1219 int error, ref, poff; 1220 vm_prot_t prot; 1221 1222 cb = &job->uaiocb; 1223 fp = job->fd_file; 1224 1225 if (!(cb->aio_lio_opcode == LIO_WRITE || 1226 cb->aio_lio_opcode == LIO_READ)) 1227 return (-1); 1228 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1229 return (-1); 1230 1231 vp = fp->f_vnode; 1232 if (vp->v_type != VCHR) 1233 return (-1); 1234 if (vp->v_bufobj.bo_bsize == 0) 1235 return (-1); 1236 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1237 return (-1); 1238 1239 ref = 0; 1240 csw = devvn_refthread(vp, &dev, &ref); 1241 if (csw == NULL) 1242 return (ENXIO); 1243 1244 if ((csw->d_flags & D_DISK) == 0) { 1245 error = -1; 1246 goto unref; 1247 } 1248 if (cb->aio_nbytes > dev->si_iosize_max) { 1249 error = -1; 1250 goto unref; 1251 } 1252 1253 ki = p->p_aioinfo; 1254 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1255 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1256 if (cb->aio_nbytes > MAXPHYS) { 1257 error = -1; 1258 goto unref; 1259 } 1260 1261 pbuf = NULL; 1262 } else { 1263 if (cb->aio_nbytes > MAXPHYS - poff) { 1264 error = -1; 1265 goto unref; 1266 } 1267 if (ki->kaio_buffer_count >= max_buf_aio) { 1268 error = EAGAIN; 1269 goto unref; 1270 } 1271 1272 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1273 BUF_KERNPROC(pbuf); 1274 AIO_LOCK(ki); 1275 ki->kaio_buffer_count++; 1276 AIO_UNLOCK(ki); 1277 } 1278 job->bp = bp = g_alloc_bio(); 1279 1280 bp->bio_length = cb->aio_nbytes; 1281 bp->bio_bcount = cb->aio_nbytes; 1282 bp->bio_done = aio_physwakeup; 1283 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1284 bp->bio_offset = cb->aio_offset; 1285 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1286 bp->bio_dev = dev; 1287 bp->bio_caller1 = (void *)job; 1288 1289 prot = VM_PROT_READ; 1290 if (cb->aio_lio_opcode == LIO_READ) 1291 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1292 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1293 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1294 nitems(job->pages)); 1295 if (job->npages < 0) { 1296 error = EFAULT; 1297 goto doerror; 1298 } 1299 if (pbuf != NULL) { 1300 pmap_qenter((vm_offset_t)pbuf->b_data, 1301 job->pages, job->npages); 1302 bp->bio_data = pbuf->b_data + poff; 1303 atomic_add_int(&num_buf_aio, 1); 1304 } else { 1305 bp->bio_ma = job->pages; 1306 bp->bio_ma_n = job->npages; 1307 bp->bio_ma_offset = poff; 1308 bp->bio_data = unmapped_buf; 1309 bp->bio_flags |= BIO_UNMAPPED; 1310 atomic_add_int(&num_unmapped_aio, 1); 1311 } 1312 1313 /* Perform transfer. */ 1314 csw->d_strategy(bp); 1315 dev_relthread(dev, ref); 1316 return (0); 1317 1318 doerror: 1319 if (pbuf != NULL) { 1320 AIO_LOCK(ki); 1321 ki->kaio_buffer_count--; 1322 AIO_UNLOCK(ki); 1323 relpbuf(pbuf, NULL); 1324 job->pbuf = NULL; 1325 } 1326 g_destroy_bio(bp); 1327 job->bp = NULL; 1328 unref: 1329 dev_relthread(dev, ref); 1330 return (error); 1331 } 1332 1333 #ifdef COMPAT_FREEBSD6 1334 static int 1335 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1336 { 1337 1338 /* 1339 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1340 * supported by AIO with the old sigevent structure. 1341 */ 1342 nsig->sigev_notify = osig->sigev_notify; 1343 switch (nsig->sigev_notify) { 1344 case SIGEV_NONE: 1345 break; 1346 case SIGEV_SIGNAL: 1347 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1348 break; 1349 case SIGEV_KEVENT: 1350 nsig->sigev_notify_kqueue = 1351 osig->__sigev_u.__sigev_notify_kqueue; 1352 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1353 break; 1354 default: 1355 return (EINVAL); 1356 } 1357 return (0); 1358 } 1359 1360 static int 1361 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1362 { 1363 struct oaiocb *ojob; 1364 int error; 1365 1366 bzero(kjob, sizeof(struct aiocb)); 1367 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1368 if (error) 1369 return (error); 1370 ojob = (struct oaiocb *)kjob; 1371 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1372 } 1373 #endif 1374 1375 static int 1376 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1377 { 1378 1379 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1380 } 1381 1382 static long 1383 aiocb_fetch_status(struct aiocb *ujob) 1384 { 1385 1386 return (fuword(&ujob->_aiocb_private.status)); 1387 } 1388 1389 static long 1390 aiocb_fetch_error(struct aiocb *ujob) 1391 { 1392 1393 return (fuword(&ujob->_aiocb_private.error)); 1394 } 1395 1396 static int 1397 aiocb_store_status(struct aiocb *ujob, long status) 1398 { 1399 1400 return (suword(&ujob->_aiocb_private.status, status)); 1401 } 1402 1403 static int 1404 aiocb_store_error(struct aiocb *ujob, long error) 1405 { 1406 1407 return (suword(&ujob->_aiocb_private.error, error)); 1408 } 1409 1410 static int 1411 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1412 { 1413 1414 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1415 } 1416 1417 static int 1418 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1419 { 1420 1421 return (suword(ujobp, (long)ujob)); 1422 } 1423 1424 static struct aiocb_ops aiocb_ops = { 1425 .copyin = aiocb_copyin, 1426 .fetch_status = aiocb_fetch_status, 1427 .fetch_error = aiocb_fetch_error, 1428 .store_status = aiocb_store_status, 1429 .store_error = aiocb_store_error, 1430 .store_kernelinfo = aiocb_store_kernelinfo, 1431 .store_aiocb = aiocb_store_aiocb, 1432 }; 1433 1434 #ifdef COMPAT_FREEBSD6 1435 static struct aiocb_ops aiocb_ops_osigevent = { 1436 .copyin = aiocb_copyin_old_sigevent, 1437 .fetch_status = aiocb_fetch_status, 1438 .fetch_error = aiocb_fetch_error, 1439 .store_status = aiocb_store_status, 1440 .store_error = aiocb_store_error, 1441 .store_kernelinfo = aiocb_store_kernelinfo, 1442 .store_aiocb = aiocb_store_aiocb, 1443 }; 1444 #endif 1445 1446 /* 1447 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1448 * technique is done in this code. 1449 */ 1450 int 1451 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1452 int type, struct aiocb_ops *ops) 1453 { 1454 struct proc *p = td->td_proc; 1455 cap_rights_t rights; 1456 struct file *fp; 1457 struct kaiocb *job; 1458 struct kaioinfo *ki; 1459 struct kevent kev; 1460 int opcode; 1461 int error; 1462 int fd, kqfd; 1463 int jid; 1464 u_short evflags; 1465 1466 if (p->p_aioinfo == NULL) 1467 aio_init_aioinfo(p); 1468 1469 ki = p->p_aioinfo; 1470 1471 ops->store_status(ujob, -1); 1472 ops->store_error(ujob, 0); 1473 ops->store_kernelinfo(ujob, -1); 1474 1475 if (num_queue_count >= max_queue_count || 1476 ki->kaio_count >= max_aio_queue_per_proc) { 1477 ops->store_error(ujob, EAGAIN); 1478 return (EAGAIN); 1479 } 1480 1481 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1482 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1483 1484 error = ops->copyin(ujob, &job->uaiocb); 1485 if (error) { 1486 ops->store_error(ujob, error); 1487 uma_zfree(aiocb_zone, job); 1488 return (error); 1489 } 1490 1491 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1492 uma_zfree(aiocb_zone, job); 1493 return (EINVAL); 1494 } 1495 1496 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1497 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1498 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1499 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1500 ops->store_error(ujob, EINVAL); 1501 uma_zfree(aiocb_zone, job); 1502 return (EINVAL); 1503 } 1504 1505 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1506 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1507 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1508 uma_zfree(aiocb_zone, job); 1509 return (EINVAL); 1510 } 1511 1512 ksiginfo_init(&job->ksi); 1513 1514 /* Save userspace address of the job info. */ 1515 job->ujob = ujob; 1516 1517 /* Get the opcode. */ 1518 if (type != LIO_NOP) 1519 job->uaiocb.aio_lio_opcode = type; 1520 opcode = job->uaiocb.aio_lio_opcode; 1521 1522 /* 1523 * Validate the opcode and fetch the file object for the specified 1524 * file descriptor. 1525 * 1526 * XXXRW: Moved the opcode validation up here so that we don't 1527 * retrieve a file descriptor without knowing what the capabiltity 1528 * should be. 1529 */ 1530 fd = job->uaiocb.aio_fildes; 1531 switch (opcode) { 1532 case LIO_WRITE: 1533 error = fget_write(td, fd, 1534 cap_rights_init(&rights, CAP_PWRITE), &fp); 1535 break; 1536 case LIO_READ: 1537 error = fget_read(td, fd, 1538 cap_rights_init(&rights, CAP_PREAD), &fp); 1539 break; 1540 case LIO_SYNC: 1541 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1542 break; 1543 case LIO_MLOCK: 1544 fp = NULL; 1545 break; 1546 case LIO_NOP: 1547 error = fget(td, fd, cap_rights_init(&rights), &fp); 1548 break; 1549 default: 1550 error = EINVAL; 1551 } 1552 if (error) { 1553 uma_zfree(aiocb_zone, job); 1554 ops->store_error(ujob, error); 1555 return (error); 1556 } 1557 1558 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1559 error = EINVAL; 1560 goto aqueue_fail; 1561 } 1562 1563 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1564 job->uaiocb.aio_offset < 0 && 1565 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1566 error = EINVAL; 1567 goto aqueue_fail; 1568 } 1569 1570 job->fd_file = fp; 1571 1572 mtx_lock(&aio_job_mtx); 1573 jid = jobrefid++; 1574 job->seqno = jobseqno++; 1575 mtx_unlock(&aio_job_mtx); 1576 error = ops->store_kernelinfo(ujob, jid); 1577 if (error) { 1578 error = EINVAL; 1579 goto aqueue_fail; 1580 } 1581 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1582 1583 if (opcode == LIO_NOP) { 1584 fdrop(fp, td); 1585 uma_zfree(aiocb_zone, job); 1586 return (0); 1587 } 1588 1589 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1590 goto no_kqueue; 1591 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1592 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1593 error = EINVAL; 1594 goto aqueue_fail; 1595 } 1596 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1597 kev.ident = (uintptr_t)job->ujob; 1598 kev.filter = EVFILT_AIO; 1599 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1600 kev.data = (intptr_t)job; 1601 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1602 error = kqfd_register(kqfd, &kev, td, 1); 1603 if (error) 1604 goto aqueue_fail; 1605 1606 no_kqueue: 1607 1608 ops->store_error(ujob, EINPROGRESS); 1609 job->uaiocb._aiocb_private.error = EINPROGRESS; 1610 job->userproc = p; 1611 job->cred = crhold(td->td_ucred); 1612 job->jobflags = KAIOCB_QUEUEING; 1613 job->lio = lj; 1614 1615 if (opcode == LIO_MLOCK) { 1616 aio_schedule(job, aio_process_mlock); 1617 error = 0; 1618 } else if (fp->f_ops->fo_aio_queue == NULL) 1619 error = aio_queue_file(fp, job); 1620 else 1621 error = fo_aio_queue(fp, job); 1622 if (error) 1623 goto aqueue_fail; 1624 1625 AIO_LOCK(ki); 1626 job->jobflags &= ~KAIOCB_QUEUEING; 1627 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1628 ki->kaio_count++; 1629 if (lj) 1630 lj->lioj_count++; 1631 atomic_add_int(&num_queue_count, 1); 1632 if (job->jobflags & KAIOCB_FINISHED) { 1633 /* 1634 * The queue callback completed the request synchronously. 1635 * The bulk of the completion is deferred in that case 1636 * until this point. 1637 */ 1638 aio_bio_done_notify(p, job); 1639 } else 1640 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1641 AIO_UNLOCK(ki); 1642 return (0); 1643 1644 aqueue_fail: 1645 knlist_delete(&job->klist, curthread, 0); 1646 if (fp) 1647 fdrop(fp, td); 1648 uma_zfree(aiocb_zone, job); 1649 ops->store_error(ujob, error); 1650 return (error); 1651 } 1652 1653 static void 1654 aio_cancel_daemon_job(struct kaiocb *job) 1655 { 1656 1657 mtx_lock(&aio_job_mtx); 1658 if (!aio_cancel_cleared(job)) 1659 TAILQ_REMOVE(&aio_jobs, job, list); 1660 mtx_unlock(&aio_job_mtx); 1661 aio_cancel(job); 1662 } 1663 1664 void 1665 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1666 { 1667 1668 mtx_lock(&aio_job_mtx); 1669 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1670 mtx_unlock(&aio_job_mtx); 1671 aio_cancel(job); 1672 return; 1673 } 1674 job->handle_fn = func; 1675 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1676 aio_kick_nowait(job->userproc); 1677 mtx_unlock(&aio_job_mtx); 1678 } 1679 1680 static void 1681 aio_cancel_sync(struct kaiocb *job) 1682 { 1683 struct kaioinfo *ki; 1684 1685 ki = job->userproc->p_aioinfo; 1686 AIO_LOCK(ki); 1687 if (!aio_cancel_cleared(job)) 1688 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1689 AIO_UNLOCK(ki); 1690 aio_cancel(job); 1691 } 1692 1693 int 1694 aio_queue_file(struct file *fp, struct kaiocb *job) 1695 { 1696 struct kaioinfo *ki; 1697 struct kaiocb *job2; 1698 struct vnode *vp; 1699 struct mount *mp; 1700 int error; 1701 bool safe; 1702 1703 ki = job->userproc->p_aioinfo; 1704 error = aio_qphysio(job->userproc, job); 1705 if (error >= 0) 1706 return (error); 1707 safe = false; 1708 if (fp->f_type == DTYPE_VNODE) { 1709 vp = fp->f_vnode; 1710 if (vp->v_type == VREG || vp->v_type == VDIR) { 1711 mp = fp->f_vnode->v_mount; 1712 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1713 safe = true; 1714 } 1715 } 1716 if (!(safe || enable_aio_unsafe)) { 1717 counted_warning(&unsafe_warningcnt, 1718 "is attempting to use unsafe AIO requests"); 1719 return (EOPNOTSUPP); 1720 } 1721 1722 switch (job->uaiocb.aio_lio_opcode) { 1723 case LIO_READ: 1724 case LIO_WRITE: 1725 aio_schedule(job, aio_process_rw); 1726 error = 0; 1727 break; 1728 case LIO_SYNC: 1729 AIO_LOCK(ki); 1730 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1731 if (job2->fd_file == job->fd_file && 1732 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1733 job2->seqno < job->seqno) { 1734 job2->jobflags |= KAIOCB_CHECKSYNC; 1735 job->pending++; 1736 } 1737 } 1738 if (job->pending != 0) { 1739 if (!aio_set_cancel_function_locked(job, 1740 aio_cancel_sync)) { 1741 AIO_UNLOCK(ki); 1742 aio_cancel(job); 1743 return (0); 1744 } 1745 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1746 AIO_UNLOCK(ki); 1747 return (0); 1748 } 1749 AIO_UNLOCK(ki); 1750 aio_schedule(job, aio_process_sync); 1751 error = 0; 1752 break; 1753 default: 1754 error = EINVAL; 1755 } 1756 return (error); 1757 } 1758 1759 static void 1760 aio_kick_nowait(struct proc *userp) 1761 { 1762 struct kaioinfo *ki = userp->p_aioinfo; 1763 struct aioproc *aiop; 1764 1765 mtx_assert(&aio_job_mtx, MA_OWNED); 1766 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1767 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1768 aiop->aioprocflags &= ~AIOP_FREE; 1769 wakeup(aiop->aioproc); 1770 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1771 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1772 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1773 } 1774 } 1775 1776 static int 1777 aio_kick(struct proc *userp) 1778 { 1779 struct kaioinfo *ki = userp->p_aioinfo; 1780 struct aioproc *aiop; 1781 int error, ret = 0; 1782 1783 mtx_assert(&aio_job_mtx, MA_OWNED); 1784 retryproc: 1785 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1786 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1787 aiop->aioprocflags &= ~AIOP_FREE; 1788 wakeup(aiop->aioproc); 1789 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1790 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1791 num_aio_resv_start++; 1792 mtx_unlock(&aio_job_mtx); 1793 error = aio_newproc(&num_aio_resv_start); 1794 mtx_lock(&aio_job_mtx); 1795 if (error) { 1796 num_aio_resv_start--; 1797 goto retryproc; 1798 } 1799 } else { 1800 ret = -1; 1801 } 1802 return (ret); 1803 } 1804 1805 static void 1806 aio_kick_helper(void *context, int pending) 1807 { 1808 struct proc *userp = context; 1809 1810 mtx_lock(&aio_job_mtx); 1811 while (--pending >= 0) { 1812 if (aio_kick(userp)) 1813 break; 1814 } 1815 mtx_unlock(&aio_job_mtx); 1816 } 1817 1818 /* 1819 * Support the aio_return system call, as a side-effect, kernel resources are 1820 * released. 1821 */ 1822 static int 1823 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1824 { 1825 struct proc *p = td->td_proc; 1826 struct kaiocb *job; 1827 struct kaioinfo *ki; 1828 long status, error; 1829 1830 ki = p->p_aioinfo; 1831 if (ki == NULL) 1832 return (EINVAL); 1833 AIO_LOCK(ki); 1834 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1835 if (job->ujob == ujob) 1836 break; 1837 } 1838 if (job != NULL) { 1839 MPASS(job->jobflags & KAIOCB_FINISHED); 1840 status = job->uaiocb._aiocb_private.status; 1841 error = job->uaiocb._aiocb_private.error; 1842 td->td_retval[0] = status; 1843 td->td_ru.ru_oublock += job->outblock; 1844 td->td_ru.ru_inblock += job->inblock; 1845 td->td_ru.ru_msgsnd += job->msgsnd; 1846 td->td_ru.ru_msgrcv += job->msgrcv; 1847 aio_free_entry(job); 1848 AIO_UNLOCK(ki); 1849 ops->store_error(ujob, error); 1850 ops->store_status(ujob, status); 1851 } else { 1852 error = EINVAL; 1853 AIO_UNLOCK(ki); 1854 } 1855 return (error); 1856 } 1857 1858 int 1859 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1860 { 1861 1862 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1863 } 1864 1865 /* 1866 * Allow a process to wakeup when any of the I/O requests are completed. 1867 */ 1868 static int 1869 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1870 struct timespec *ts) 1871 { 1872 struct proc *p = td->td_proc; 1873 struct timeval atv; 1874 struct kaioinfo *ki; 1875 struct kaiocb *firstjob, *job; 1876 int error, i, timo; 1877 1878 timo = 0; 1879 if (ts) { 1880 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1881 return (EINVAL); 1882 1883 TIMESPEC_TO_TIMEVAL(&atv, ts); 1884 if (itimerfix(&atv)) 1885 return (EINVAL); 1886 timo = tvtohz(&atv); 1887 } 1888 1889 ki = p->p_aioinfo; 1890 if (ki == NULL) 1891 return (EAGAIN); 1892 1893 if (njoblist == 0) 1894 return (0); 1895 1896 AIO_LOCK(ki); 1897 for (;;) { 1898 firstjob = NULL; 1899 error = 0; 1900 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1901 for (i = 0; i < njoblist; i++) { 1902 if (job->ujob == ujoblist[i]) { 1903 if (firstjob == NULL) 1904 firstjob = job; 1905 if (job->jobflags & KAIOCB_FINISHED) 1906 goto RETURN; 1907 } 1908 } 1909 } 1910 /* All tasks were finished. */ 1911 if (firstjob == NULL) 1912 break; 1913 1914 ki->kaio_flags |= KAIO_WAKEUP; 1915 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1916 "aiospn", timo); 1917 if (error == ERESTART) 1918 error = EINTR; 1919 if (error) 1920 break; 1921 } 1922 RETURN: 1923 AIO_UNLOCK(ki); 1924 return (error); 1925 } 1926 1927 int 1928 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1929 { 1930 struct timespec ts, *tsp; 1931 struct aiocb **ujoblist; 1932 int error; 1933 1934 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1935 return (EINVAL); 1936 1937 if (uap->timeout) { 1938 /* Get timespec struct. */ 1939 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1940 return (error); 1941 tsp = &ts; 1942 } else 1943 tsp = NULL; 1944 1945 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1946 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1947 if (error == 0) 1948 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1949 free(ujoblist, M_AIOS); 1950 return (error); 1951 } 1952 1953 /* 1954 * aio_cancel cancels any non-physio aio operations not currently in 1955 * progress. 1956 */ 1957 int 1958 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1959 { 1960 struct proc *p = td->td_proc; 1961 struct kaioinfo *ki; 1962 struct kaiocb *job, *jobn; 1963 struct file *fp; 1964 cap_rights_t rights; 1965 int error; 1966 int cancelled = 0; 1967 int notcancelled = 0; 1968 struct vnode *vp; 1969 1970 /* Lookup file object. */ 1971 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1972 if (error) 1973 return (error); 1974 1975 ki = p->p_aioinfo; 1976 if (ki == NULL) 1977 goto done; 1978 1979 if (fp->f_type == DTYPE_VNODE) { 1980 vp = fp->f_vnode; 1981 if (vn_isdisk(vp, &error)) { 1982 fdrop(fp, td); 1983 td->td_retval[0] = AIO_NOTCANCELED; 1984 return (0); 1985 } 1986 } 1987 1988 AIO_LOCK(ki); 1989 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1990 if ((uap->fd == job->uaiocb.aio_fildes) && 1991 ((uap->aiocbp == NULL) || 1992 (uap->aiocbp == job->ujob))) { 1993 if (aio_cancel_job(p, ki, job)) { 1994 cancelled++; 1995 } else { 1996 notcancelled++; 1997 } 1998 if (uap->aiocbp != NULL) 1999 break; 2000 } 2001 } 2002 AIO_UNLOCK(ki); 2003 2004 done: 2005 fdrop(fp, td); 2006 2007 if (uap->aiocbp != NULL) { 2008 if (cancelled) { 2009 td->td_retval[0] = AIO_CANCELED; 2010 return (0); 2011 } 2012 } 2013 2014 if (notcancelled) { 2015 td->td_retval[0] = AIO_NOTCANCELED; 2016 return (0); 2017 } 2018 2019 if (cancelled) { 2020 td->td_retval[0] = AIO_CANCELED; 2021 return (0); 2022 } 2023 2024 td->td_retval[0] = AIO_ALLDONE; 2025 2026 return (0); 2027 } 2028 2029 /* 2030 * aio_error is implemented in the kernel level for compatibility purposes 2031 * only. For a user mode async implementation, it would be best to do it in 2032 * a userland subroutine. 2033 */ 2034 static int 2035 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2036 { 2037 struct proc *p = td->td_proc; 2038 struct kaiocb *job; 2039 struct kaioinfo *ki; 2040 int status; 2041 2042 ki = p->p_aioinfo; 2043 if (ki == NULL) { 2044 td->td_retval[0] = EINVAL; 2045 return (0); 2046 } 2047 2048 AIO_LOCK(ki); 2049 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2050 if (job->ujob == ujob) { 2051 if (job->jobflags & KAIOCB_FINISHED) 2052 td->td_retval[0] = 2053 job->uaiocb._aiocb_private.error; 2054 else 2055 td->td_retval[0] = EINPROGRESS; 2056 AIO_UNLOCK(ki); 2057 return (0); 2058 } 2059 } 2060 AIO_UNLOCK(ki); 2061 2062 /* 2063 * Hack for failure of aio_aqueue. 2064 */ 2065 status = ops->fetch_status(ujob); 2066 if (status == -1) { 2067 td->td_retval[0] = ops->fetch_error(ujob); 2068 return (0); 2069 } 2070 2071 td->td_retval[0] = EINVAL; 2072 return (0); 2073 } 2074 2075 int 2076 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2077 { 2078 2079 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2080 } 2081 2082 /* syscall - asynchronous read from a file (REALTIME) */ 2083 #ifdef COMPAT_FREEBSD6 2084 int 2085 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2086 { 2087 2088 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2089 &aiocb_ops_osigevent)); 2090 } 2091 #endif 2092 2093 int 2094 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2095 { 2096 2097 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2098 } 2099 2100 /* syscall - asynchronous write to a file (REALTIME) */ 2101 #ifdef COMPAT_FREEBSD6 2102 int 2103 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2104 { 2105 2106 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2107 &aiocb_ops_osigevent)); 2108 } 2109 #endif 2110 2111 int 2112 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2113 { 2114 2115 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2116 } 2117 2118 int 2119 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2120 { 2121 2122 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2123 } 2124 2125 static int 2126 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2127 struct aiocb **acb_list, int nent, struct sigevent *sig, 2128 struct aiocb_ops *ops) 2129 { 2130 struct proc *p = td->td_proc; 2131 struct aiocb *job; 2132 struct kaioinfo *ki; 2133 struct aioliojob *lj; 2134 struct kevent kev; 2135 int error; 2136 int nerror; 2137 int i; 2138 2139 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2140 return (EINVAL); 2141 2142 if (nent < 0 || nent > max_aio_queue_per_proc) 2143 return (EINVAL); 2144 2145 if (p->p_aioinfo == NULL) 2146 aio_init_aioinfo(p); 2147 2148 ki = p->p_aioinfo; 2149 2150 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2151 lj->lioj_flags = 0; 2152 lj->lioj_count = 0; 2153 lj->lioj_finished_count = 0; 2154 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2155 ksiginfo_init(&lj->lioj_ksi); 2156 2157 /* 2158 * Setup signal. 2159 */ 2160 if (sig && (mode == LIO_NOWAIT)) { 2161 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2162 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2163 /* Assume only new style KEVENT */ 2164 kev.filter = EVFILT_LIO; 2165 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2166 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2167 kev.data = (intptr_t)lj; 2168 /* pass user defined sigval data */ 2169 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2170 error = kqfd_register( 2171 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2172 if (error) { 2173 uma_zfree(aiolio_zone, lj); 2174 return (error); 2175 } 2176 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2177 ; 2178 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2179 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2180 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2181 uma_zfree(aiolio_zone, lj); 2182 return EINVAL; 2183 } 2184 lj->lioj_flags |= LIOJ_SIGNAL; 2185 } else { 2186 uma_zfree(aiolio_zone, lj); 2187 return EINVAL; 2188 } 2189 } 2190 2191 AIO_LOCK(ki); 2192 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2193 /* 2194 * Add extra aiocb count to avoid the lio to be freed 2195 * by other threads doing aio_waitcomplete or aio_return, 2196 * and prevent event from being sent until we have queued 2197 * all tasks. 2198 */ 2199 lj->lioj_count = 1; 2200 AIO_UNLOCK(ki); 2201 2202 /* 2203 * Get pointers to the list of I/O requests. 2204 */ 2205 nerror = 0; 2206 for (i = 0; i < nent; i++) { 2207 job = acb_list[i]; 2208 if (job != NULL) { 2209 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2210 if (error != 0) 2211 nerror++; 2212 } 2213 } 2214 2215 error = 0; 2216 AIO_LOCK(ki); 2217 if (mode == LIO_WAIT) { 2218 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2219 ki->kaio_flags |= KAIO_WAKEUP; 2220 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2221 PRIBIO | PCATCH, "aiospn", 0); 2222 if (error == ERESTART) 2223 error = EINTR; 2224 if (error) 2225 break; 2226 } 2227 } else { 2228 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2229 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2230 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2231 KNOTE_LOCKED(&lj->klist, 1); 2232 } 2233 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2234 == LIOJ_SIGNAL 2235 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2236 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2237 aio_sendsig(p, &lj->lioj_signal, 2238 &lj->lioj_ksi); 2239 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2240 } 2241 } 2242 } 2243 lj->lioj_count--; 2244 if (lj->lioj_count == 0) { 2245 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2246 knlist_delete(&lj->klist, curthread, 1); 2247 PROC_LOCK(p); 2248 sigqueue_take(&lj->lioj_ksi); 2249 PROC_UNLOCK(p); 2250 AIO_UNLOCK(ki); 2251 uma_zfree(aiolio_zone, lj); 2252 } else 2253 AIO_UNLOCK(ki); 2254 2255 if (nerror) 2256 return (EIO); 2257 return (error); 2258 } 2259 2260 /* syscall - list directed I/O (REALTIME) */ 2261 #ifdef COMPAT_FREEBSD6 2262 int 2263 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2264 { 2265 struct aiocb **acb_list; 2266 struct sigevent *sigp, sig; 2267 struct osigevent osig; 2268 int error, nent; 2269 2270 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2271 return (EINVAL); 2272 2273 nent = uap->nent; 2274 if (nent < 0 || nent > max_aio_queue_per_proc) 2275 return (EINVAL); 2276 2277 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2278 error = copyin(uap->sig, &osig, sizeof(osig)); 2279 if (error) 2280 return (error); 2281 error = convert_old_sigevent(&osig, &sig); 2282 if (error) 2283 return (error); 2284 sigp = &sig; 2285 } else 2286 sigp = NULL; 2287 2288 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2289 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2290 if (error == 0) 2291 error = kern_lio_listio(td, uap->mode, 2292 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2293 &aiocb_ops_osigevent); 2294 free(acb_list, M_LIO); 2295 return (error); 2296 } 2297 #endif 2298 2299 /* syscall - list directed I/O (REALTIME) */ 2300 int 2301 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2302 { 2303 struct aiocb **acb_list; 2304 struct sigevent *sigp, sig; 2305 int error, nent; 2306 2307 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2308 return (EINVAL); 2309 2310 nent = uap->nent; 2311 if (nent < 0 || nent > max_aio_queue_per_proc) 2312 return (EINVAL); 2313 2314 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2315 error = copyin(uap->sig, &sig, sizeof(sig)); 2316 if (error) 2317 return (error); 2318 sigp = &sig; 2319 } else 2320 sigp = NULL; 2321 2322 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2323 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2324 if (error == 0) 2325 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2326 nent, sigp, &aiocb_ops); 2327 free(acb_list, M_LIO); 2328 return (error); 2329 } 2330 2331 static void 2332 aio_physwakeup(struct bio *bp) 2333 { 2334 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2335 struct proc *userp; 2336 struct kaioinfo *ki; 2337 size_t nbytes; 2338 int error, nblks; 2339 2340 /* Release mapping into kernel space. */ 2341 userp = job->userproc; 2342 ki = userp->p_aioinfo; 2343 if (job->pbuf) { 2344 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2345 relpbuf(job->pbuf, NULL); 2346 job->pbuf = NULL; 2347 atomic_subtract_int(&num_buf_aio, 1); 2348 AIO_LOCK(ki); 2349 ki->kaio_buffer_count--; 2350 AIO_UNLOCK(ki); 2351 } else 2352 atomic_subtract_int(&num_unmapped_aio, 1); 2353 vm_page_unhold_pages(job->pages, job->npages); 2354 2355 bp = job->bp; 2356 job->bp = NULL; 2357 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2358 error = 0; 2359 if (bp->bio_flags & BIO_ERROR) 2360 error = bp->bio_error; 2361 nblks = btodb(nbytes); 2362 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2363 job->outblock += nblks; 2364 else 2365 job->inblock += nblks; 2366 2367 if (error) 2368 aio_complete(job, -1, error); 2369 else 2370 aio_complete(job, nbytes, 0); 2371 2372 g_destroy_bio(bp); 2373 } 2374 2375 /* syscall - wait for the next completion of an aio request */ 2376 static int 2377 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2378 struct timespec *ts, struct aiocb_ops *ops) 2379 { 2380 struct proc *p = td->td_proc; 2381 struct timeval atv; 2382 struct kaioinfo *ki; 2383 struct kaiocb *job; 2384 struct aiocb *ujob; 2385 long error, status; 2386 int timo; 2387 2388 ops->store_aiocb(ujobp, NULL); 2389 2390 if (ts == NULL) { 2391 timo = 0; 2392 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2393 timo = -1; 2394 } else { 2395 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2396 return (EINVAL); 2397 2398 TIMESPEC_TO_TIMEVAL(&atv, ts); 2399 if (itimerfix(&atv)) 2400 return (EINVAL); 2401 timo = tvtohz(&atv); 2402 } 2403 2404 if (p->p_aioinfo == NULL) 2405 aio_init_aioinfo(p); 2406 ki = p->p_aioinfo; 2407 2408 error = 0; 2409 job = NULL; 2410 AIO_LOCK(ki); 2411 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2412 if (timo == -1) { 2413 error = EWOULDBLOCK; 2414 break; 2415 } 2416 ki->kaio_flags |= KAIO_WAKEUP; 2417 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2418 "aiowc", timo); 2419 if (timo && error == ERESTART) 2420 error = EINTR; 2421 if (error) 2422 break; 2423 } 2424 2425 if (job != NULL) { 2426 MPASS(job->jobflags & KAIOCB_FINISHED); 2427 ujob = job->ujob; 2428 status = job->uaiocb._aiocb_private.status; 2429 error = job->uaiocb._aiocb_private.error; 2430 td->td_retval[0] = status; 2431 td->td_ru.ru_oublock += job->outblock; 2432 td->td_ru.ru_inblock += job->inblock; 2433 td->td_ru.ru_msgsnd += job->msgsnd; 2434 td->td_ru.ru_msgrcv += job->msgrcv; 2435 aio_free_entry(job); 2436 AIO_UNLOCK(ki); 2437 ops->store_aiocb(ujobp, ujob); 2438 ops->store_error(ujob, error); 2439 ops->store_status(ujob, status); 2440 } else 2441 AIO_UNLOCK(ki); 2442 2443 return (error); 2444 } 2445 2446 int 2447 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2448 { 2449 struct timespec ts, *tsp; 2450 int error; 2451 2452 if (uap->timeout) { 2453 /* Get timespec struct. */ 2454 error = copyin(uap->timeout, &ts, sizeof(ts)); 2455 if (error) 2456 return (error); 2457 tsp = &ts; 2458 } else 2459 tsp = NULL; 2460 2461 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2462 } 2463 2464 static int 2465 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2466 struct aiocb_ops *ops) 2467 { 2468 2469 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2470 return (EINVAL); 2471 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2472 } 2473 2474 int 2475 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2476 { 2477 2478 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2479 } 2480 2481 /* kqueue attach function */ 2482 static int 2483 filt_aioattach(struct knote *kn) 2484 { 2485 struct kaiocb *job; 2486 2487 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2488 2489 /* 2490 * The job pointer must be validated before using it, so 2491 * registration is restricted to the kernel; the user cannot 2492 * set EV_FLAG1. 2493 */ 2494 if ((kn->kn_flags & EV_FLAG1) == 0) 2495 return (EPERM); 2496 kn->kn_ptr.p_aio = job; 2497 kn->kn_flags &= ~EV_FLAG1; 2498 2499 knlist_add(&job->klist, kn, 0); 2500 2501 return (0); 2502 } 2503 2504 /* kqueue detach function */ 2505 static void 2506 filt_aiodetach(struct knote *kn) 2507 { 2508 struct knlist *knl; 2509 2510 knl = &kn->kn_ptr.p_aio->klist; 2511 knl->kl_lock(knl->kl_lockarg); 2512 if (!knlist_empty(knl)) 2513 knlist_remove(knl, kn, 1); 2514 knl->kl_unlock(knl->kl_lockarg); 2515 } 2516 2517 /* kqueue filter function */ 2518 /*ARGSUSED*/ 2519 static int 2520 filt_aio(struct knote *kn, long hint) 2521 { 2522 struct kaiocb *job = kn->kn_ptr.p_aio; 2523 2524 kn->kn_data = job->uaiocb._aiocb_private.error; 2525 if (!(job->jobflags & KAIOCB_FINISHED)) 2526 return (0); 2527 kn->kn_flags |= EV_EOF; 2528 return (1); 2529 } 2530 2531 /* kqueue attach function */ 2532 static int 2533 filt_lioattach(struct knote *kn) 2534 { 2535 struct aioliojob *lj; 2536 2537 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2538 2539 /* 2540 * The aioliojob pointer must be validated before using it, so 2541 * registration is restricted to the kernel; the user cannot 2542 * set EV_FLAG1. 2543 */ 2544 if ((kn->kn_flags & EV_FLAG1) == 0) 2545 return (EPERM); 2546 kn->kn_ptr.p_lio = lj; 2547 kn->kn_flags &= ~EV_FLAG1; 2548 2549 knlist_add(&lj->klist, kn, 0); 2550 2551 return (0); 2552 } 2553 2554 /* kqueue detach function */ 2555 static void 2556 filt_liodetach(struct knote *kn) 2557 { 2558 struct knlist *knl; 2559 2560 knl = &kn->kn_ptr.p_lio->klist; 2561 knl->kl_lock(knl->kl_lockarg); 2562 if (!knlist_empty(knl)) 2563 knlist_remove(knl, kn, 1); 2564 knl->kl_unlock(knl->kl_lockarg); 2565 } 2566 2567 /* kqueue filter function */ 2568 /*ARGSUSED*/ 2569 static int 2570 filt_lio(struct knote *kn, long hint) 2571 { 2572 struct aioliojob * lj = kn->kn_ptr.p_lio; 2573 2574 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2575 } 2576 2577 #ifdef COMPAT_FREEBSD32 2578 #include <sys/mount.h> 2579 #include <sys/socket.h> 2580 #include <compat/freebsd32/freebsd32.h> 2581 #include <compat/freebsd32/freebsd32_proto.h> 2582 #include <compat/freebsd32/freebsd32_signal.h> 2583 #include <compat/freebsd32/freebsd32_syscall.h> 2584 #include <compat/freebsd32/freebsd32_util.h> 2585 2586 struct __aiocb_private32 { 2587 int32_t status; 2588 int32_t error; 2589 uint32_t kernelinfo; 2590 }; 2591 2592 #ifdef COMPAT_FREEBSD6 2593 typedef struct oaiocb32 { 2594 int aio_fildes; /* File descriptor */ 2595 uint64_t aio_offset __packed; /* File offset for I/O */ 2596 uint32_t aio_buf; /* I/O buffer in process space */ 2597 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2598 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2599 int aio_lio_opcode; /* LIO opcode */ 2600 int aio_reqprio; /* Request priority -- ignored */ 2601 struct __aiocb_private32 _aiocb_private; 2602 } oaiocb32_t; 2603 #endif 2604 2605 typedef struct aiocb32 { 2606 int32_t aio_fildes; /* File descriptor */ 2607 uint64_t aio_offset __packed; /* File offset for I/O */ 2608 uint32_t aio_buf; /* I/O buffer in process space */ 2609 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2610 int __spare__[2]; 2611 uint32_t __spare2__; 2612 int aio_lio_opcode; /* LIO opcode */ 2613 int aio_reqprio; /* Request priority -- ignored */ 2614 struct __aiocb_private32 _aiocb_private; 2615 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2616 } aiocb32_t; 2617 2618 #ifdef COMPAT_FREEBSD6 2619 static int 2620 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2621 { 2622 2623 /* 2624 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2625 * supported by AIO with the old sigevent structure. 2626 */ 2627 CP(*osig, *nsig, sigev_notify); 2628 switch (nsig->sigev_notify) { 2629 case SIGEV_NONE: 2630 break; 2631 case SIGEV_SIGNAL: 2632 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2633 break; 2634 case SIGEV_KEVENT: 2635 nsig->sigev_notify_kqueue = 2636 osig->__sigev_u.__sigev_notify_kqueue; 2637 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2638 break; 2639 default: 2640 return (EINVAL); 2641 } 2642 return (0); 2643 } 2644 2645 static int 2646 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2647 { 2648 struct oaiocb32 job32; 2649 int error; 2650 2651 bzero(kjob, sizeof(struct aiocb)); 2652 error = copyin(ujob, &job32, sizeof(job32)); 2653 if (error) 2654 return (error); 2655 2656 CP(job32, *kjob, aio_fildes); 2657 CP(job32, *kjob, aio_offset); 2658 PTRIN_CP(job32, *kjob, aio_buf); 2659 CP(job32, *kjob, aio_nbytes); 2660 CP(job32, *kjob, aio_lio_opcode); 2661 CP(job32, *kjob, aio_reqprio); 2662 CP(job32, *kjob, _aiocb_private.status); 2663 CP(job32, *kjob, _aiocb_private.error); 2664 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2665 return (convert_old_sigevent32(&job32.aio_sigevent, 2666 &kjob->aio_sigevent)); 2667 } 2668 #endif 2669 2670 static int 2671 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2672 { 2673 struct aiocb32 job32; 2674 int error; 2675 2676 error = copyin(ujob, &job32, sizeof(job32)); 2677 if (error) 2678 return (error); 2679 CP(job32, *kjob, aio_fildes); 2680 CP(job32, *kjob, aio_offset); 2681 PTRIN_CP(job32, *kjob, aio_buf); 2682 CP(job32, *kjob, aio_nbytes); 2683 CP(job32, *kjob, aio_lio_opcode); 2684 CP(job32, *kjob, aio_reqprio); 2685 CP(job32, *kjob, _aiocb_private.status); 2686 CP(job32, *kjob, _aiocb_private.error); 2687 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2688 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2689 } 2690 2691 static long 2692 aiocb32_fetch_status(struct aiocb *ujob) 2693 { 2694 struct aiocb32 *ujob32; 2695 2696 ujob32 = (struct aiocb32 *)ujob; 2697 return (fuword32(&ujob32->_aiocb_private.status)); 2698 } 2699 2700 static long 2701 aiocb32_fetch_error(struct aiocb *ujob) 2702 { 2703 struct aiocb32 *ujob32; 2704 2705 ujob32 = (struct aiocb32 *)ujob; 2706 return (fuword32(&ujob32->_aiocb_private.error)); 2707 } 2708 2709 static int 2710 aiocb32_store_status(struct aiocb *ujob, long status) 2711 { 2712 struct aiocb32 *ujob32; 2713 2714 ujob32 = (struct aiocb32 *)ujob; 2715 return (suword32(&ujob32->_aiocb_private.status, status)); 2716 } 2717 2718 static int 2719 aiocb32_store_error(struct aiocb *ujob, long error) 2720 { 2721 struct aiocb32 *ujob32; 2722 2723 ujob32 = (struct aiocb32 *)ujob; 2724 return (suword32(&ujob32->_aiocb_private.error, error)); 2725 } 2726 2727 static int 2728 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2729 { 2730 struct aiocb32 *ujob32; 2731 2732 ujob32 = (struct aiocb32 *)ujob; 2733 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2734 } 2735 2736 static int 2737 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2738 { 2739 2740 return (suword32(ujobp, (long)ujob)); 2741 } 2742 2743 static struct aiocb_ops aiocb32_ops = { 2744 .copyin = aiocb32_copyin, 2745 .fetch_status = aiocb32_fetch_status, 2746 .fetch_error = aiocb32_fetch_error, 2747 .store_status = aiocb32_store_status, 2748 .store_error = aiocb32_store_error, 2749 .store_kernelinfo = aiocb32_store_kernelinfo, 2750 .store_aiocb = aiocb32_store_aiocb, 2751 }; 2752 2753 #ifdef COMPAT_FREEBSD6 2754 static struct aiocb_ops aiocb32_ops_osigevent = { 2755 .copyin = aiocb32_copyin_old_sigevent, 2756 .fetch_status = aiocb32_fetch_status, 2757 .fetch_error = aiocb32_fetch_error, 2758 .store_status = aiocb32_store_status, 2759 .store_error = aiocb32_store_error, 2760 .store_kernelinfo = aiocb32_store_kernelinfo, 2761 .store_aiocb = aiocb32_store_aiocb, 2762 }; 2763 #endif 2764 2765 int 2766 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2767 { 2768 2769 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2770 } 2771 2772 int 2773 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2774 { 2775 struct timespec32 ts32; 2776 struct timespec ts, *tsp; 2777 struct aiocb **ujoblist; 2778 uint32_t *ujoblist32; 2779 int error, i; 2780 2781 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2782 return (EINVAL); 2783 2784 if (uap->timeout) { 2785 /* Get timespec struct. */ 2786 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2787 return (error); 2788 CP(ts32, ts, tv_sec); 2789 CP(ts32, ts, tv_nsec); 2790 tsp = &ts; 2791 } else 2792 tsp = NULL; 2793 2794 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2795 ujoblist32 = (uint32_t *)ujoblist; 2796 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2797 sizeof(ujoblist32[0])); 2798 if (error == 0) { 2799 for (i = uap->nent - 1; i >= 0; i--) 2800 ujoblist[i] = PTRIN(ujoblist32[i]); 2801 2802 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2803 } 2804 free(ujoblist, M_AIOS); 2805 return (error); 2806 } 2807 2808 int 2809 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2810 { 2811 2812 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2813 } 2814 2815 #ifdef COMPAT_FREEBSD6 2816 int 2817 freebsd6_freebsd32_aio_read(struct thread *td, 2818 struct freebsd6_freebsd32_aio_read_args *uap) 2819 { 2820 2821 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2822 &aiocb32_ops_osigevent)); 2823 } 2824 #endif 2825 2826 int 2827 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2828 { 2829 2830 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2831 &aiocb32_ops)); 2832 } 2833 2834 #ifdef COMPAT_FREEBSD6 2835 int 2836 freebsd6_freebsd32_aio_write(struct thread *td, 2837 struct freebsd6_freebsd32_aio_write_args *uap) 2838 { 2839 2840 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2841 &aiocb32_ops_osigevent)); 2842 } 2843 #endif 2844 2845 int 2846 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2847 { 2848 2849 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2850 &aiocb32_ops)); 2851 } 2852 2853 int 2854 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2855 { 2856 2857 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2858 &aiocb32_ops)); 2859 } 2860 2861 int 2862 freebsd32_aio_waitcomplete(struct thread *td, 2863 struct freebsd32_aio_waitcomplete_args *uap) 2864 { 2865 struct timespec32 ts32; 2866 struct timespec ts, *tsp; 2867 int error; 2868 2869 if (uap->timeout) { 2870 /* Get timespec struct. */ 2871 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2872 if (error) 2873 return (error); 2874 CP(ts32, ts, tv_sec); 2875 CP(ts32, ts, tv_nsec); 2876 tsp = &ts; 2877 } else 2878 tsp = NULL; 2879 2880 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2881 &aiocb32_ops)); 2882 } 2883 2884 int 2885 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2886 { 2887 2888 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2889 &aiocb32_ops)); 2890 } 2891 2892 #ifdef COMPAT_FREEBSD6 2893 int 2894 freebsd6_freebsd32_lio_listio(struct thread *td, 2895 struct freebsd6_freebsd32_lio_listio_args *uap) 2896 { 2897 struct aiocb **acb_list; 2898 struct sigevent *sigp, sig; 2899 struct osigevent32 osig; 2900 uint32_t *acb_list32; 2901 int error, i, nent; 2902 2903 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2904 return (EINVAL); 2905 2906 nent = uap->nent; 2907 if (nent < 0 || nent > max_aio_queue_per_proc) 2908 return (EINVAL); 2909 2910 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2911 error = copyin(uap->sig, &osig, sizeof(osig)); 2912 if (error) 2913 return (error); 2914 error = convert_old_sigevent32(&osig, &sig); 2915 if (error) 2916 return (error); 2917 sigp = &sig; 2918 } else 2919 sigp = NULL; 2920 2921 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2922 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2923 if (error) { 2924 free(acb_list32, M_LIO); 2925 return (error); 2926 } 2927 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2928 for (i = 0; i < nent; i++) 2929 acb_list[i] = PTRIN(acb_list32[i]); 2930 free(acb_list32, M_LIO); 2931 2932 error = kern_lio_listio(td, uap->mode, 2933 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2934 &aiocb32_ops_osigevent); 2935 free(acb_list, M_LIO); 2936 return (error); 2937 } 2938 #endif 2939 2940 int 2941 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2942 { 2943 struct aiocb **acb_list; 2944 struct sigevent *sigp, sig; 2945 struct sigevent32 sig32; 2946 uint32_t *acb_list32; 2947 int error, i, nent; 2948 2949 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2950 return (EINVAL); 2951 2952 nent = uap->nent; 2953 if (nent < 0 || nent > max_aio_queue_per_proc) 2954 return (EINVAL); 2955 2956 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2957 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2958 if (error) 2959 return (error); 2960 error = convert_sigevent32(&sig32, &sig); 2961 if (error) 2962 return (error); 2963 sigp = &sig; 2964 } else 2965 sigp = NULL; 2966 2967 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2968 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2969 if (error) { 2970 free(acb_list32, M_LIO); 2971 return (error); 2972 } 2973 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2974 for (i = 0; i < nent; i++) 2975 acb_list[i] = PTRIN(acb_list32[i]); 2976 free(acb_list32, M_LIO); 2977 2978 error = kern_lio_listio(td, uap->mode, 2979 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2980 &aiocb32_ops); 2981 free(acb_list, M_LIO); 2982 return (error); 2983 } 2984 2985 #endif 2986