1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/protosw.h> 46 #include <sys/sema.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/syscall.h> 50 #include <sys/sysent.h> 51 #include <sys/sysctl.h> 52 #include <sys/sx.h> 53 #include <sys/taskqueue.h> 54 #include <sys/vnode.h> 55 #include <sys/conf.h> 56 #include <sys/event.h> 57 #include <sys/mount.h> 58 59 #include <machine/atomic.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 126 CTLFLAG_RW, &max_aio_procs, 0, 127 "Maximum number of kernel threads to use for handling async IO "); 128 129 static int num_aio_procs = 0; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 131 CTLFLAG_RD, &num_aio_procs, 0, 132 "Number of presently active kernel threads for async IO"); 133 134 /* 135 * The code will adjust the actual number of AIO processes towards this 136 * number when it gets a chance. 137 */ 138 static int target_aio_procs = TARGET_AIO_PROCS; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 140 0, "Preferred number of ready kernel threads for async IO"); 141 142 static int max_queue_count = MAX_AIO_QUEUE; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 144 "Maximum number of aio requests to queue, globally"); 145 146 static int num_queue_count = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 148 "Number of queued aio requests"); 149 150 static int num_buf_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 152 "Number of aio requests presently handled by the buf subsystem"); 153 154 /* Number of async I/O thread in the process of being started */ 155 /* XXX This should be local to aio_aqueue() */ 156 static int num_aio_resv_start = 0; 157 158 static int aiod_timeout; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 160 "Timeout value for synchronous aio operations"); 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int unloadable = 0; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 168 "Allow unload of aio (not recommended)"); 169 170 171 static int max_aio_per_proc = MAX_AIO_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 173 0, "Maximum active aio requests per process (stored in the process)"); 174 175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 177 &max_aio_queue_per_proc, 0, 178 "Maximum queued aio requests per process (stored in the process)"); 179 180 static int max_buf_aio = MAX_BUF_AIO; 181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 182 "Maximum buf aio requests per process (stored in the process)"); 183 184 typedef struct oaiocb { 185 int aio_fildes; /* File descriptor */ 186 off_t aio_offset; /* File offset for I/O */ 187 volatile void *aio_buf; /* I/O buffer in process space */ 188 size_t aio_nbytes; /* Number of bytes for I/O */ 189 struct osigevent aio_sigevent; /* Signal to deliver */ 190 int aio_lio_opcode; /* LIO opcode */ 191 int aio_reqprio; /* Request priority -- ignored */ 192 struct __aiocb_private _aiocb_private; 193 } oaiocb_t; 194 195 /* 196 * Below is a key of locks used to protect each member of struct aiocblist 197 * aioliojob and kaioinfo and any backends. 198 * 199 * * - need not protected 200 * a - locked by kaioinfo lock 201 * b - locked by backend lock, the backend lock can be null in some cases, 202 * for example, BIO belongs to this type, in this case, proc lock is 203 * reused. 204 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 205 */ 206 207 /* 208 * Current, there is only two backends: BIO and generic file I/O. 209 * socket I/O is served by generic file I/O, this is not a good idea, since 210 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 211 * threads, if there is no thread to serve socket I/O, the socket I/O will be 212 * delayed too long or starved, we should create some threads dedicated to 213 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 214 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 215 * structure is not safe because there is race between userland and aio 216 * daemons. 217 */ 218 219 struct aiocblist { 220 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 221 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 222 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 223 int jobflags; /* (a) job flags */ 224 int jobstate; /* (b) job state */ 225 int inputcharge; /* (*) input blockes */ 226 int outputcharge; /* (*) output blockes */ 227 struct buf *bp; /* (*) private to BIO backend, 228 * buffer pointer 229 */ 230 struct proc *userproc; /* (*) user process */ 231 struct ucred *cred; /* (*) active credential when created */ 232 struct file *fd_file; /* (*) pointer to file structure */ 233 struct aioliojob *lio; /* (*) optional lio job */ 234 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 235 struct knlist klist; /* (a) list of knotes */ 236 struct aiocb uaiocb; /* (*) kernel I/O control block */ 237 ksiginfo_t ksi; /* (a) realtime signal info */ 238 struct task biotask; /* (*) private to BIO backend */ 239 uint64_t seqno; /* (*) job number */ 240 int pending; /* (a) number of pending I/O, aio_fsync only */ 241 }; 242 243 /* jobflags */ 244 #define AIOCBLIST_DONE 0x01 245 #define AIOCBLIST_BUFDONE 0x02 246 #define AIOCBLIST_RUNDOWN 0x04 247 #define AIOCBLIST_CHECKSYNC 0x08 248 249 /* 250 * AIO process info 251 */ 252 #define AIOP_FREE 0x1 /* proc on free queue */ 253 254 struct aiothreadlist { 255 int aiothreadflags; /* (c) AIO proc flags */ 256 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 257 struct thread *aiothread; /* (*) the AIO thread */ 258 }; 259 260 /* 261 * data-structure for lio signal management 262 */ 263 struct aioliojob { 264 int lioj_flags; /* (a) listio flags */ 265 int lioj_count; /* (a) listio flags */ 266 int lioj_finished_count; /* (a) listio flags */ 267 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 268 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 269 struct knlist klist; /* (a) list of knotes */ 270 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 271 }; 272 273 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 274 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 275 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 276 277 /* 278 * per process aio data structure 279 */ 280 struct kaioinfo { 281 struct mtx kaio_mtx; /* the lock to protect this struct */ 282 int kaio_flags; /* (a) per process kaio flags */ 283 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 284 int kaio_active_count; /* (c) number of currently used AIOs */ 285 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 286 int kaio_count; /* (a) size of AIO queue */ 287 int kaio_ballowed_count; /* (*) maximum number of buffers */ 288 int kaio_buffer_count; /* (a) number of physio buffers */ 289 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 290 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 291 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 292 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 293 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 294 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 295 * NOT USED YET. 296 */ 297 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 298 struct task kaio_task; /* (*) task to kick aio threads */ 299 }; 300 301 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 302 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 303 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 304 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 305 306 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 307 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 308 309 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 310 static struct sema aio_newproc_sem; 311 static struct mtx aio_job_mtx; 312 static struct mtx aio_sock_mtx; 313 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 314 static struct unrhdr *aiod_unr; 315 316 void aio_init_aioinfo(struct proc *p); 317 static void aio_onceonly(void); 318 static int aio_free_entry(struct aiocblist *aiocbe); 319 static void aio_process(struct aiocblist *aiocbe); 320 static int aio_newproc(int *); 321 int aio_aqueue(struct thread *td, struct aiocb *job, 322 struct aioliojob *lio, int type, int osigev); 323 static void aio_physwakeup(struct buf *bp); 324 static void aio_proc_rundown(void *arg, struct proc *p); 325 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 326 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 327 static void biohelper(void *, int); 328 static void aio_daemon(void *param); 329 static void aio_swake_cb(struct socket *, struct sockbuf *); 330 static int aio_unload(void); 331 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 332 #define DONE_BUF 1 333 #define DONE_QUEUE 2 334 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 335 static int aio_kick(struct proc *userp); 336 static void aio_kick_nowait(struct proc *userp); 337 static void aio_kick_helper(void *context, int pending); 338 static int filt_aioattach(struct knote *kn); 339 static void filt_aiodetach(struct knote *kn); 340 static int filt_aio(struct knote *kn, long hint); 341 static int filt_lioattach(struct knote *kn); 342 static void filt_liodetach(struct knote *kn); 343 static int filt_lio(struct knote *kn, long hint); 344 345 /* 346 * Zones for: 347 * kaio Per process async io info 348 * aiop async io thread data 349 * aiocb async io jobs 350 * aiol list io job pointer - internal to aio_suspend XXX 351 * aiolio list io jobs 352 */ 353 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 354 355 /* kqueue filters for aio */ 356 static struct filterops aio_filtops = 357 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 358 static struct filterops lio_filtops = 359 { 0, filt_lioattach, filt_liodetach, filt_lio }; 360 361 static eventhandler_tag exit_tag, exec_tag; 362 363 TASKQUEUE_DEFINE_THREAD(aiod_bio); 364 365 /* 366 * Main operations function for use as a kernel module. 367 */ 368 static int 369 aio_modload(struct module *module, int cmd, void *arg) 370 { 371 int error = 0; 372 373 switch (cmd) { 374 case MOD_LOAD: 375 aio_onceonly(); 376 break; 377 case MOD_UNLOAD: 378 error = aio_unload(); 379 break; 380 case MOD_SHUTDOWN: 381 break; 382 default: 383 error = EINVAL; 384 break; 385 } 386 return (error); 387 } 388 389 static moduledata_t aio_mod = { 390 "aio", 391 &aio_modload, 392 NULL 393 }; 394 395 SYSCALL_MODULE_HELPER(aio_cancel); 396 SYSCALL_MODULE_HELPER(aio_error); 397 SYSCALL_MODULE_HELPER(aio_fsync); 398 SYSCALL_MODULE_HELPER(aio_read); 399 SYSCALL_MODULE_HELPER(aio_return); 400 SYSCALL_MODULE_HELPER(aio_suspend); 401 SYSCALL_MODULE_HELPER(aio_waitcomplete); 402 SYSCALL_MODULE_HELPER(aio_write); 403 SYSCALL_MODULE_HELPER(lio_listio); 404 SYSCALL_MODULE_HELPER(oaio_read); 405 SYSCALL_MODULE_HELPER(oaio_write); 406 SYSCALL_MODULE_HELPER(olio_listio); 407 408 DECLARE_MODULE(aio, aio_mod, 409 SI_SUB_VFS, SI_ORDER_ANY); 410 MODULE_VERSION(aio, 1); 411 412 /* 413 * Startup initialization 414 */ 415 static void 416 aio_onceonly(void) 417 { 418 419 /* XXX: should probably just use so->callback */ 420 aio_swake = &aio_swake_cb; 421 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 422 EVENTHANDLER_PRI_ANY); 423 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 424 EVENTHANDLER_PRI_ANY); 425 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 426 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 427 TAILQ_INIT(&aio_freeproc); 428 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 429 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 430 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 431 TAILQ_INIT(&aio_jobs); 432 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 433 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 434 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 435 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 436 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 437 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 438 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 439 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 440 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 441 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 442 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 443 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 444 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 445 jobrefid = 1; 446 async_io_version = _POSIX_VERSION; 447 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 448 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 449 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 450 } 451 452 /* 453 * Callback for unload of AIO when used as a module. 454 */ 455 static int 456 aio_unload(void) 457 { 458 int error; 459 460 /* 461 * XXX: no unloads by default, it's too dangerous. 462 * perhaps we could do it if locked out callers and then 463 * did an aio_proc_rundown() on each process. 464 * 465 * jhb: aio_proc_rundown() needs to run on curproc though, 466 * so I don't think that would fly. 467 */ 468 if (!unloadable) 469 return (EOPNOTSUPP); 470 471 error = kqueue_del_filteropts(EVFILT_AIO); 472 if (error) 473 return error; 474 error = kqueue_del_filteropts(EVFILT_LIO); 475 if (error) 476 return error; 477 async_io_version = 0; 478 aio_swake = NULL; 479 taskqueue_free(taskqueue_aiod_bio); 480 delete_unrhdr(aiod_unr); 481 uma_zdestroy(kaio_zone); 482 uma_zdestroy(aiop_zone); 483 uma_zdestroy(aiocb_zone); 484 uma_zdestroy(aiol_zone); 485 uma_zdestroy(aiolio_zone); 486 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 487 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 488 mtx_destroy(&aio_job_mtx); 489 mtx_destroy(&aio_sock_mtx); 490 sema_destroy(&aio_newproc_sem); 491 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 492 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 493 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 494 return (0); 495 } 496 497 /* 498 * Init the per-process aioinfo structure. The aioinfo limits are set 499 * per-process for user limit (resource) management. 500 */ 501 void 502 aio_init_aioinfo(struct proc *p) 503 { 504 struct kaioinfo *ki; 505 506 ki = uma_zalloc(kaio_zone, M_WAITOK); 507 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 508 ki->kaio_flags = 0; 509 ki->kaio_maxactive_count = max_aio_per_proc; 510 ki->kaio_active_count = 0; 511 ki->kaio_qallowed_count = max_aio_queue_per_proc; 512 ki->kaio_count = 0; 513 ki->kaio_ballowed_count = max_buf_aio; 514 ki->kaio_buffer_count = 0; 515 TAILQ_INIT(&ki->kaio_all); 516 TAILQ_INIT(&ki->kaio_done); 517 TAILQ_INIT(&ki->kaio_jobqueue); 518 TAILQ_INIT(&ki->kaio_bufqueue); 519 TAILQ_INIT(&ki->kaio_liojoblist); 520 TAILQ_INIT(&ki->kaio_sockqueue); 521 TAILQ_INIT(&ki->kaio_syncqueue); 522 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 523 PROC_LOCK(p); 524 if (p->p_aioinfo == NULL) { 525 p->p_aioinfo = ki; 526 PROC_UNLOCK(p); 527 } else { 528 PROC_UNLOCK(p); 529 mtx_destroy(&ki->kaio_mtx); 530 uma_zfree(kaio_zone, ki); 531 } 532 533 while (num_aio_procs < target_aio_procs) 534 aio_newproc(NULL); 535 } 536 537 static int 538 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 539 { 540 int ret = 0; 541 542 PROC_LOCK(p); 543 if (!KSI_ONQ(ksi)) { 544 ksi->ksi_code = SI_ASYNCIO; 545 ksi->ksi_flags |= KSI_EXT | KSI_INS; 546 ret = psignal_event(p, sigev, ksi); 547 } 548 PROC_UNLOCK(p); 549 return (ret); 550 } 551 552 /* 553 * Free a job entry. Wait for completion if it is currently active, but don't 554 * delay forever. If we delay, we return a flag that says that we have to 555 * restart the queue scan. 556 */ 557 static int 558 aio_free_entry(struct aiocblist *aiocbe) 559 { 560 struct kaioinfo *ki; 561 struct aioliojob *lj; 562 struct proc *p; 563 564 p = aiocbe->userproc; 565 MPASS(curproc == p); 566 ki = p->p_aioinfo; 567 MPASS(ki != NULL); 568 569 AIO_LOCK_ASSERT(ki, MA_OWNED); 570 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 571 572 atomic_subtract_int(&num_queue_count, 1); 573 574 ki->kaio_count--; 575 MPASS(ki->kaio_count >= 0); 576 577 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 578 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 579 580 lj = aiocbe->lio; 581 if (lj) { 582 lj->lioj_count--; 583 lj->lioj_finished_count--; 584 585 if (lj->lioj_count == 0) { 586 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 587 /* lio is going away, we need to destroy any knotes */ 588 knlist_delete(&lj->klist, curthread, 1); 589 PROC_LOCK(p); 590 sigqueue_take(&lj->lioj_ksi); 591 PROC_UNLOCK(p); 592 uma_zfree(aiolio_zone, lj); 593 } 594 } 595 596 /* aiocbe is going away, we need to destroy any knotes */ 597 knlist_delete(&aiocbe->klist, curthread, 1); 598 PROC_LOCK(p); 599 sigqueue_take(&aiocbe->ksi); 600 PROC_UNLOCK(p); 601 602 MPASS(aiocbe->bp == NULL); 603 aiocbe->jobstate = JOBST_NULL; 604 AIO_UNLOCK(ki); 605 606 /* 607 * The thread argument here is used to find the owning process 608 * and is also passed to fo_close() which may pass it to various 609 * places such as devsw close() routines. Because of that, we 610 * need a thread pointer from the process owning the job that is 611 * persistent and won't disappear out from under us or move to 612 * another process. 613 * 614 * Currently, all the callers of this function call it to remove 615 * an aiocblist from the current process' job list either via a 616 * syscall or due to the current process calling exit() or 617 * execve(). Thus, we know that p == curproc. We also know that 618 * curthread can't exit since we are curthread. 619 * 620 * Therefore, we use curthread as the thread to pass to 621 * knlist_delete(). This does mean that it is possible for the 622 * thread pointer at close time to differ from the thread pointer 623 * at open time, but this is already true of file descriptors in 624 * a multithreaded process. 625 */ 626 fdrop(aiocbe->fd_file, curthread); 627 crfree(aiocbe->cred); 628 uma_zfree(aiocb_zone, aiocbe); 629 AIO_LOCK(ki); 630 631 return (0); 632 } 633 634 static void 635 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 636 { 637 aio_proc_rundown(arg, p); 638 } 639 640 /* 641 * Rundown the jobs for a given process. 642 */ 643 static void 644 aio_proc_rundown(void *arg, struct proc *p) 645 { 646 struct kaioinfo *ki; 647 struct aioliojob *lj; 648 struct aiocblist *cbe, *cbn; 649 struct file *fp; 650 struct socket *so; 651 int remove; 652 653 KASSERT(curthread->td_proc == p, 654 ("%s: called on non-curproc", __func__)); 655 ki = p->p_aioinfo; 656 if (ki == NULL) 657 return; 658 659 AIO_LOCK(ki); 660 ki->kaio_flags |= KAIO_RUNDOWN; 661 662 restart: 663 664 /* 665 * Try to cancel all pending requests. This code simulates 666 * aio_cancel on all pending I/O requests. 667 */ 668 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 669 remove = 0; 670 mtx_lock(&aio_job_mtx); 671 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 672 TAILQ_REMOVE(&aio_jobs, cbe, list); 673 remove = 1; 674 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 675 fp = cbe->fd_file; 676 MPASS(fp->f_type == DTYPE_SOCKET); 677 so = fp->f_data; 678 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 679 remove = 1; 680 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 681 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 682 remove = 1; 683 } 684 mtx_unlock(&aio_job_mtx); 685 686 if (remove) { 687 cbe->jobstate = JOBST_JOBFINISHED; 688 cbe->uaiocb._aiocb_private.status = -1; 689 cbe->uaiocb._aiocb_private.error = ECANCELED; 690 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 691 aio_bio_done_notify(p, cbe, DONE_QUEUE); 692 } 693 } 694 695 /* Wait for all running I/O to be finished */ 696 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 697 TAILQ_FIRST(&ki->kaio_jobqueue)) { 698 ki->kaio_flags |= KAIO_WAKEUP; 699 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 700 goto restart; 701 } 702 703 /* Free all completed I/O requests. */ 704 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 705 aio_free_entry(cbe); 706 707 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 708 if (lj->lioj_count == 0) { 709 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 710 knlist_delete(&lj->klist, curthread, 1); 711 PROC_LOCK(p); 712 sigqueue_take(&lj->lioj_ksi); 713 PROC_UNLOCK(p); 714 uma_zfree(aiolio_zone, lj); 715 } else { 716 panic("LIO job not cleaned up: C:%d, FC:%d\n", 717 lj->lioj_count, lj->lioj_finished_count); 718 } 719 } 720 AIO_UNLOCK(ki); 721 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 722 uma_zfree(kaio_zone, ki); 723 p->p_aioinfo = NULL; 724 } 725 726 /* 727 * Select a job to run (called by an AIO daemon). 728 */ 729 static struct aiocblist * 730 aio_selectjob(struct aiothreadlist *aiop) 731 { 732 struct aiocblist *aiocbe; 733 struct kaioinfo *ki; 734 struct proc *userp; 735 736 mtx_assert(&aio_job_mtx, MA_OWNED); 737 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 738 userp = aiocbe->userproc; 739 ki = userp->p_aioinfo; 740 741 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 742 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 743 /* Account for currently active jobs. */ 744 ki->kaio_active_count++; 745 aiocbe->jobstate = JOBST_JOBRUNNING; 746 break; 747 } 748 } 749 return (aiocbe); 750 } 751 752 /* 753 * Move all data to a permanent storage device, this code 754 * simulates fsync syscall. 755 */ 756 static int 757 aio_fsync_vnode(struct thread *td, struct vnode *vp) 758 { 759 struct mount *mp; 760 int vfslocked; 761 int error; 762 763 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 764 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 765 goto drop; 766 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 767 if (vp->v_object != NULL) { 768 VM_OBJECT_LOCK(vp->v_object); 769 vm_object_page_clean(vp->v_object, 0, 0, 0); 770 VM_OBJECT_UNLOCK(vp->v_object); 771 } 772 error = VOP_FSYNC(vp, MNT_WAIT, td); 773 774 VOP_UNLOCK(vp, 0, td); 775 vn_finished_write(mp); 776 drop: 777 VFS_UNLOCK_GIANT(vfslocked); 778 return (error); 779 } 780 781 /* 782 * The AIO processing activity. This is the code that does the I/O request for 783 * the non-physio version of the operations. The normal vn operations are used, 784 * and this code should work in all instances for every type of file, including 785 * pipes, sockets, fifos, and regular files. 786 * 787 * XXX I don't think it works well for socket, pipe, and fifo. 788 */ 789 static void 790 aio_process(struct aiocblist *aiocbe) 791 { 792 struct ucred *td_savedcred; 793 struct thread *td; 794 struct proc *mycp; 795 struct aiocb *cb; 796 struct file *fp; 797 struct socket *so; 798 struct uio auio; 799 struct iovec aiov; 800 int cnt; 801 int error; 802 int oublock_st, oublock_end; 803 int inblock_st, inblock_end; 804 805 td = curthread; 806 td_savedcred = td->td_ucred; 807 td->td_ucred = aiocbe->cred; 808 mycp = td->td_proc; 809 cb = &aiocbe->uaiocb; 810 fp = aiocbe->fd_file; 811 812 if (cb->aio_lio_opcode == LIO_SYNC) { 813 error = 0; 814 cnt = 0; 815 if (fp->f_vnode != NULL) 816 error = aio_fsync_vnode(td, fp->f_vnode); 817 cb->_aiocb_private.error = error; 818 cb->_aiocb_private.status = 0; 819 td->td_ucred = td_savedcred; 820 return; 821 } 822 823 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 824 aiov.iov_len = cb->aio_nbytes; 825 826 auio.uio_iov = &aiov; 827 auio.uio_iovcnt = 1; 828 auio.uio_offset = cb->aio_offset; 829 auio.uio_resid = cb->aio_nbytes; 830 cnt = cb->aio_nbytes; 831 auio.uio_segflg = UIO_USERSPACE; 832 auio.uio_td = td; 833 834 inblock_st = mycp->p_stats->p_ru.ru_inblock; 835 oublock_st = mycp->p_stats->p_ru.ru_oublock; 836 /* 837 * aio_aqueue() acquires a reference to the file that is 838 * released in aio_free_entry(). 839 */ 840 if (cb->aio_lio_opcode == LIO_READ) { 841 auio.uio_rw = UIO_READ; 842 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 843 } else { 844 if (fp->f_type == DTYPE_VNODE) 845 bwillwrite(); 846 auio.uio_rw = UIO_WRITE; 847 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 848 } 849 inblock_end = mycp->p_stats->p_ru.ru_inblock; 850 oublock_end = mycp->p_stats->p_ru.ru_oublock; 851 852 aiocbe->inputcharge = inblock_end - inblock_st; 853 aiocbe->outputcharge = oublock_end - oublock_st; 854 855 if ((error) && (auio.uio_resid != cnt)) { 856 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 857 error = 0; 858 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 859 int sigpipe = 1; 860 if (fp->f_type == DTYPE_SOCKET) { 861 so = fp->f_data; 862 if (so->so_options & SO_NOSIGPIPE) 863 sigpipe = 0; 864 } 865 if (sigpipe) { 866 PROC_LOCK(aiocbe->userproc); 867 psignal(aiocbe->userproc, SIGPIPE); 868 PROC_UNLOCK(aiocbe->userproc); 869 } 870 } 871 } 872 873 cnt -= auio.uio_resid; 874 cb->_aiocb_private.error = error; 875 cb->_aiocb_private.status = cnt; 876 td->td_ucred = td_savedcred; 877 } 878 879 static void 880 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 881 { 882 struct aioliojob *lj; 883 struct kaioinfo *ki; 884 struct aiocblist *scb, *scbn; 885 int lj_done; 886 887 ki = userp->p_aioinfo; 888 AIO_LOCK_ASSERT(ki, MA_OWNED); 889 lj = aiocbe->lio; 890 lj_done = 0; 891 if (lj) { 892 lj->lioj_finished_count++; 893 if (lj->lioj_count == lj->lioj_finished_count) 894 lj_done = 1; 895 } 896 if (type == DONE_QUEUE) { 897 aiocbe->jobflags |= AIOCBLIST_DONE; 898 } else { 899 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 900 } 901 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 902 aiocbe->jobstate = JOBST_JOBFINISHED; 903 904 if (ki->kaio_flags & KAIO_RUNDOWN) 905 goto notification_done; 906 907 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 908 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 909 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 910 911 KNOTE_LOCKED(&aiocbe->klist, 1); 912 913 if (lj_done) { 914 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 915 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 916 KNOTE_LOCKED(&lj->klist, 1); 917 } 918 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 919 == LIOJ_SIGNAL 920 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 921 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 922 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 923 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 924 } 925 } 926 927 notification_done: 928 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 929 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 930 if (aiocbe->fd_file == scb->fd_file && 931 aiocbe->seqno < scb->seqno) { 932 if (--scb->pending == 0) { 933 mtx_lock(&aio_job_mtx); 934 scb->jobstate = JOBST_JOBQGLOBAL; 935 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 936 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 937 aio_kick_nowait(userp); 938 mtx_unlock(&aio_job_mtx); 939 } 940 } 941 } 942 } 943 if (ki->kaio_flags & KAIO_WAKEUP) { 944 ki->kaio_flags &= ~KAIO_WAKEUP; 945 wakeup(&userp->p_aioinfo); 946 } 947 } 948 949 /* 950 * The AIO daemon, most of the actual work is done in aio_process, 951 * but the setup (and address space mgmt) is done in this routine. 952 */ 953 static void 954 aio_daemon(void *_id) 955 { 956 struct aiocblist *aiocbe; 957 struct aiothreadlist *aiop; 958 struct kaioinfo *ki; 959 struct proc *curcp, *mycp, *userp; 960 struct vmspace *myvm, *tmpvm; 961 struct thread *td = curthread; 962 int id = (intptr_t)_id; 963 964 /* 965 * Local copies of curproc (cp) and vmspace (myvm) 966 */ 967 mycp = td->td_proc; 968 myvm = mycp->p_vmspace; 969 970 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 971 972 /* 973 * Allocate and ready the aio control info. There is one aiop structure 974 * per daemon. 975 */ 976 aiop = uma_zalloc(aiop_zone, M_WAITOK); 977 aiop->aiothread = td; 978 aiop->aiothreadflags = 0; 979 980 /* The daemon resides in its own pgrp. */ 981 setsid(td, NULL); 982 983 /* 984 * Wakeup parent process. (Parent sleeps to keep from blasting away 985 * and creating too many daemons.) 986 */ 987 sema_post(&aio_newproc_sem); 988 989 mtx_lock(&aio_job_mtx); 990 for (;;) { 991 /* 992 * curcp is the current daemon process context. 993 * userp is the current user process context. 994 */ 995 curcp = mycp; 996 997 /* 998 * Take daemon off of free queue 999 */ 1000 if (aiop->aiothreadflags & AIOP_FREE) { 1001 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1002 aiop->aiothreadflags &= ~AIOP_FREE; 1003 } 1004 1005 /* 1006 * Check for jobs. 1007 */ 1008 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1009 mtx_unlock(&aio_job_mtx); 1010 userp = aiocbe->userproc; 1011 1012 /* 1013 * Connect to process address space for user program. 1014 */ 1015 if (userp != curcp) { 1016 /* 1017 * Save the current address space that we are 1018 * connected to. 1019 */ 1020 tmpvm = mycp->p_vmspace; 1021 1022 /* 1023 * Point to the new user address space, and 1024 * refer to it. 1025 */ 1026 mycp->p_vmspace = userp->p_vmspace; 1027 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1028 1029 /* Activate the new mapping. */ 1030 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1031 1032 /* 1033 * If the old address space wasn't the daemons 1034 * own address space, then we need to remove the 1035 * daemon's reference from the other process 1036 * that it was acting on behalf of. 1037 */ 1038 if (tmpvm != myvm) { 1039 vmspace_free(tmpvm); 1040 } 1041 curcp = userp; 1042 } 1043 1044 ki = userp->p_aioinfo; 1045 1046 /* Do the I/O function. */ 1047 aio_process(aiocbe); 1048 1049 mtx_lock(&aio_job_mtx); 1050 /* Decrement the active job count. */ 1051 ki->kaio_active_count--; 1052 mtx_unlock(&aio_job_mtx); 1053 1054 AIO_LOCK(ki); 1055 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1056 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1057 AIO_UNLOCK(ki); 1058 1059 mtx_lock(&aio_job_mtx); 1060 } 1061 1062 /* 1063 * Disconnect from user address space. 1064 */ 1065 if (curcp != mycp) { 1066 1067 mtx_unlock(&aio_job_mtx); 1068 1069 /* Get the user address space to disconnect from. */ 1070 tmpvm = mycp->p_vmspace; 1071 1072 /* Get original address space for daemon. */ 1073 mycp->p_vmspace = myvm; 1074 1075 /* Activate the daemon's address space. */ 1076 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1077 #ifdef DIAGNOSTIC 1078 if (tmpvm == myvm) { 1079 printf("AIOD: vmspace problem -- %d\n", 1080 mycp->p_pid); 1081 } 1082 #endif 1083 /* Remove our vmspace reference. */ 1084 vmspace_free(tmpvm); 1085 1086 curcp = mycp; 1087 1088 mtx_lock(&aio_job_mtx); 1089 /* 1090 * We have to restart to avoid race, we only sleep if 1091 * no job can be selected, that should be 1092 * curcp == mycp. 1093 */ 1094 continue; 1095 } 1096 1097 mtx_assert(&aio_job_mtx, MA_OWNED); 1098 1099 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1100 aiop->aiothreadflags |= AIOP_FREE; 1101 1102 /* 1103 * If daemon is inactive for a long time, allow it to exit, 1104 * thereby freeing resources. 1105 */ 1106 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1107 aiod_lifetime)) { 1108 if (TAILQ_EMPTY(&aio_jobs)) { 1109 if ((aiop->aiothreadflags & AIOP_FREE) && 1110 (num_aio_procs > target_aio_procs)) { 1111 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1112 num_aio_procs--; 1113 mtx_unlock(&aio_job_mtx); 1114 uma_zfree(aiop_zone, aiop); 1115 free_unr(aiod_unr, id); 1116 #ifdef DIAGNOSTIC 1117 if (mycp->p_vmspace->vm_refcnt <= 1) { 1118 printf("AIOD: bad vm refcnt for" 1119 " exiting daemon: %d\n", 1120 mycp->p_vmspace->vm_refcnt); 1121 } 1122 #endif 1123 kthread_exit(0); 1124 } 1125 } 1126 } 1127 } 1128 mtx_unlock(&aio_job_mtx); 1129 panic("shouldn't be here\n"); 1130 } 1131 1132 /* 1133 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1134 * AIO daemon modifies its environment itself. 1135 */ 1136 static int 1137 aio_newproc(int *start) 1138 { 1139 int error; 1140 struct proc *p; 1141 int id; 1142 1143 id = alloc_unr(aiod_unr); 1144 error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p, 1145 RFNOWAIT, 0, "aiod%d", id); 1146 if (error == 0) { 1147 /* 1148 * Wait until daemon is started. 1149 */ 1150 sema_wait(&aio_newproc_sem); 1151 mtx_lock(&aio_job_mtx); 1152 num_aio_procs++; 1153 if (start != NULL) 1154 (*start)--; 1155 mtx_unlock(&aio_job_mtx); 1156 } else { 1157 free_unr(aiod_unr, id); 1158 } 1159 return (error); 1160 } 1161 1162 /* 1163 * Try the high-performance, low-overhead physio method for eligible 1164 * VCHR devices. This method doesn't use an aio helper thread, and 1165 * thus has very low overhead. 1166 * 1167 * Assumes that the caller, aio_aqueue(), has incremented the file 1168 * structure's reference count, preventing its deallocation for the 1169 * duration of this call. 1170 */ 1171 static int 1172 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1173 { 1174 struct aiocb *cb; 1175 struct file *fp; 1176 struct buf *bp; 1177 struct vnode *vp; 1178 struct kaioinfo *ki; 1179 struct aioliojob *lj; 1180 int error; 1181 1182 cb = &aiocbe->uaiocb; 1183 fp = aiocbe->fd_file; 1184 1185 if (fp->f_type != DTYPE_VNODE) 1186 return (-1); 1187 1188 vp = fp->f_vnode; 1189 1190 /* 1191 * If its not a disk, we don't want to return a positive error. 1192 * It causes the aio code to not fall through to try the thread 1193 * way when you're talking to a regular file. 1194 */ 1195 if (!vn_isdisk(vp, &error)) { 1196 if (error == ENOTBLK) 1197 return (-1); 1198 else 1199 return (error); 1200 } 1201 1202 if (vp->v_bufobj.bo_bsize == 0) 1203 return (-1); 1204 1205 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1206 return (-1); 1207 1208 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1209 return (-1); 1210 1211 if (cb->aio_nbytes > 1212 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1213 return (-1); 1214 1215 ki = p->p_aioinfo; 1216 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1217 return (-1); 1218 1219 /* Create and build a buffer header for a transfer. */ 1220 bp = (struct buf *)getpbuf(NULL); 1221 BUF_KERNPROC(bp); 1222 1223 AIO_LOCK(ki); 1224 ki->kaio_count++; 1225 ki->kaio_buffer_count++; 1226 lj = aiocbe->lio; 1227 if (lj) 1228 lj->lioj_count++; 1229 AIO_UNLOCK(ki); 1230 1231 /* 1232 * Get a copy of the kva from the physical buffer. 1233 */ 1234 error = 0; 1235 1236 bp->b_bcount = cb->aio_nbytes; 1237 bp->b_bufsize = cb->aio_nbytes; 1238 bp->b_iodone = aio_physwakeup; 1239 bp->b_saveaddr = bp->b_data; 1240 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1241 bp->b_offset = cb->aio_offset; 1242 bp->b_iooffset = cb->aio_offset; 1243 bp->b_blkno = btodb(cb->aio_offset); 1244 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1245 1246 /* 1247 * Bring buffer into kernel space. 1248 */ 1249 if (vmapbuf(bp) < 0) { 1250 error = EFAULT; 1251 goto doerror; 1252 } 1253 1254 AIO_LOCK(ki); 1255 aiocbe->bp = bp; 1256 bp->b_caller1 = (void *)aiocbe; 1257 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1258 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1259 aiocbe->jobstate = JOBST_JOBQBUF; 1260 cb->_aiocb_private.status = cb->aio_nbytes; 1261 AIO_UNLOCK(ki); 1262 1263 atomic_add_int(&num_queue_count, 1); 1264 atomic_add_int(&num_buf_aio, 1); 1265 1266 bp->b_error = 0; 1267 1268 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1269 1270 /* Perform transfer. */ 1271 dev_strategy(vp->v_rdev, bp); 1272 return (0); 1273 1274 doerror: 1275 AIO_LOCK(ki); 1276 ki->kaio_count--; 1277 ki->kaio_buffer_count--; 1278 if (lj) 1279 lj->lioj_count--; 1280 aiocbe->bp = NULL; 1281 AIO_UNLOCK(ki); 1282 relpbuf(bp, NULL); 1283 return (error); 1284 } 1285 1286 /* 1287 * Wake up aio requests that may be serviceable now. 1288 */ 1289 static void 1290 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1291 { 1292 struct aiocblist *cb, *cbn; 1293 int opcode; 1294 1295 if (sb == &so->so_snd) 1296 opcode = LIO_WRITE; 1297 else 1298 opcode = LIO_READ; 1299 1300 SOCKBUF_LOCK(sb); 1301 sb->sb_flags &= ~SB_AIO; 1302 mtx_lock(&aio_job_mtx); 1303 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1304 if (opcode == cb->uaiocb.aio_lio_opcode) { 1305 if (cb->jobstate != JOBST_JOBQSOCK) 1306 panic("invalid queue value"); 1307 /* XXX 1308 * We don't have actual sockets backend yet, 1309 * so we simply move the requests to the generic 1310 * file I/O backend. 1311 */ 1312 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1313 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1314 aio_kick_nowait(cb->userproc); 1315 } 1316 } 1317 mtx_unlock(&aio_job_mtx); 1318 SOCKBUF_UNLOCK(sb); 1319 } 1320 1321 /* 1322 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1323 * technique is done in this code. 1324 */ 1325 int 1326 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1327 int type, int oldsigev) 1328 { 1329 struct proc *p = td->td_proc; 1330 struct file *fp; 1331 struct socket *so; 1332 struct aiocblist *aiocbe, *cb; 1333 struct kaioinfo *ki; 1334 struct kevent kev; 1335 struct sockbuf *sb; 1336 int opcode; 1337 int error; 1338 int fd, kqfd; 1339 int jid; 1340 1341 if (p->p_aioinfo == NULL) 1342 aio_init_aioinfo(p); 1343 1344 ki = p->p_aioinfo; 1345 1346 suword(&job->_aiocb_private.status, -1); 1347 suword(&job->_aiocb_private.error, 0); 1348 suword(&job->_aiocb_private.kernelinfo, -1); 1349 1350 if (num_queue_count >= max_queue_count || 1351 ki->kaio_count >= ki->kaio_qallowed_count) { 1352 suword(&job->_aiocb_private.error, EAGAIN); 1353 return (EAGAIN); 1354 } 1355 1356 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1357 aiocbe->inputcharge = 0; 1358 aiocbe->outputcharge = 0; 1359 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1360 1361 if (oldsigev) { 1362 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1363 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1364 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1365 sizeof(struct osigevent)); 1366 } else { 1367 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1368 } 1369 if (error) { 1370 suword(&job->_aiocb_private.error, error); 1371 uma_zfree(aiocb_zone, aiocbe); 1372 return (error); 1373 } 1374 1375 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1376 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1377 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1378 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1379 suword(&job->_aiocb_private.error, EINVAL); 1380 uma_zfree(aiocb_zone, aiocbe); 1381 return (EINVAL); 1382 } 1383 1384 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1385 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1386 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1387 uma_zfree(aiocb_zone, aiocbe); 1388 return (EINVAL); 1389 } 1390 1391 ksiginfo_init(&aiocbe->ksi); 1392 1393 /* Save userspace address of the job info. */ 1394 aiocbe->uuaiocb = job; 1395 1396 /* Get the opcode. */ 1397 if (type != LIO_NOP) 1398 aiocbe->uaiocb.aio_lio_opcode = type; 1399 opcode = aiocbe->uaiocb.aio_lio_opcode; 1400 1401 /* Fetch the file object for the specified file descriptor. */ 1402 fd = aiocbe->uaiocb.aio_fildes; 1403 switch (opcode) { 1404 case LIO_WRITE: 1405 error = fget_write(td, fd, &fp); 1406 break; 1407 case LIO_READ: 1408 error = fget_read(td, fd, &fp); 1409 break; 1410 default: 1411 error = fget(td, fd, &fp); 1412 } 1413 if (error) { 1414 uma_zfree(aiocb_zone, aiocbe); 1415 suword(&job->_aiocb_private.error, error); 1416 return (error); 1417 } 1418 1419 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1420 error = EINVAL; 1421 goto aqueue_fail; 1422 } 1423 1424 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1425 error = EINVAL; 1426 goto aqueue_fail; 1427 } 1428 1429 aiocbe->fd_file = fp; 1430 1431 mtx_lock(&aio_job_mtx); 1432 jid = jobrefid++; 1433 aiocbe->seqno = jobseqno++; 1434 mtx_unlock(&aio_job_mtx); 1435 error = suword(&job->_aiocb_private.kernelinfo, jid); 1436 if (error) { 1437 error = EINVAL; 1438 goto aqueue_fail; 1439 } 1440 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1441 1442 if (opcode == LIO_NOP) { 1443 fdrop(fp, td); 1444 uma_zfree(aiocb_zone, aiocbe); 1445 return (0); 1446 } 1447 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1448 (opcode != LIO_SYNC)) { 1449 error = EINVAL; 1450 goto aqueue_fail; 1451 } 1452 1453 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1454 goto no_kqueue; 1455 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1456 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1457 kev.filter = EVFILT_AIO; 1458 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1459 kev.data = (intptr_t)aiocbe; 1460 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1461 error = kqfd_register(kqfd, &kev, td, 1); 1462 aqueue_fail: 1463 if (error) { 1464 fdrop(fp, td); 1465 uma_zfree(aiocb_zone, aiocbe); 1466 suword(&job->_aiocb_private.error, error); 1467 goto done; 1468 } 1469 no_kqueue: 1470 1471 suword(&job->_aiocb_private.error, EINPROGRESS); 1472 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1473 aiocbe->userproc = p; 1474 aiocbe->cred = crhold(td->td_ucred); 1475 aiocbe->jobflags = 0; 1476 aiocbe->lio = lj; 1477 1478 if (opcode == LIO_SYNC) 1479 goto queueit; 1480 1481 if (fp->f_type == DTYPE_SOCKET) { 1482 /* 1483 * Alternate queueing for socket ops: Reach down into the 1484 * descriptor to get the socket data. Then check to see if the 1485 * socket is ready to be read or written (based on the requested 1486 * operation). 1487 * 1488 * If it is not ready for io, then queue the aiocbe on the 1489 * socket, and set the flags so we get a call when sbnotify() 1490 * happens. 1491 * 1492 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1493 * and unlock the snd sockbuf for no reason. 1494 */ 1495 so = fp->f_data; 1496 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1497 SOCKBUF_LOCK(sb); 1498 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1499 LIO_WRITE) && (!sowriteable(so)))) { 1500 sb->sb_flags |= SB_AIO; 1501 1502 mtx_lock(&aio_job_mtx); 1503 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1504 mtx_unlock(&aio_job_mtx); 1505 1506 AIO_LOCK(ki); 1507 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1508 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1509 aiocbe->jobstate = JOBST_JOBQSOCK; 1510 ki->kaio_count++; 1511 if (lj) 1512 lj->lioj_count++; 1513 AIO_UNLOCK(ki); 1514 SOCKBUF_UNLOCK(sb); 1515 atomic_add_int(&num_queue_count, 1); 1516 error = 0; 1517 goto done; 1518 } 1519 SOCKBUF_UNLOCK(sb); 1520 } 1521 1522 if ((error = aio_qphysio(p, aiocbe)) == 0) 1523 goto done; 1524 #if 0 1525 if (error > 0) { 1526 aiocbe->uaiocb._aiocb_private.error = error; 1527 suword(&job->_aiocb_private.error, error); 1528 goto done; 1529 } 1530 #endif 1531 queueit: 1532 /* No buffer for daemon I/O. */ 1533 aiocbe->bp = NULL; 1534 atomic_add_int(&num_queue_count, 1); 1535 1536 AIO_LOCK(ki); 1537 ki->kaio_count++; 1538 if (lj) 1539 lj->lioj_count++; 1540 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1541 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1542 if (opcode == LIO_SYNC) { 1543 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1544 if (cb->fd_file == aiocbe->fd_file && 1545 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1546 cb->seqno < aiocbe->seqno) { 1547 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1548 aiocbe->pending++; 1549 } 1550 } 1551 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1552 if (cb->fd_file == aiocbe->fd_file && 1553 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1554 cb->seqno < aiocbe->seqno) { 1555 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1556 aiocbe->pending++; 1557 } 1558 } 1559 if (aiocbe->pending != 0) { 1560 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1561 aiocbe->jobstate = JOBST_JOBQSYNC; 1562 AIO_UNLOCK(ki); 1563 goto done; 1564 } 1565 } 1566 mtx_lock(&aio_job_mtx); 1567 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1568 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1569 aio_kick_nowait(p); 1570 mtx_unlock(&aio_job_mtx); 1571 AIO_UNLOCK(ki); 1572 error = 0; 1573 done: 1574 return (error); 1575 } 1576 1577 static void 1578 aio_kick_nowait(struct proc *userp) 1579 { 1580 struct kaioinfo *ki = userp->p_aioinfo; 1581 struct aiothreadlist *aiop; 1582 1583 mtx_assert(&aio_job_mtx, MA_OWNED); 1584 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1585 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1586 aiop->aiothreadflags &= ~AIOP_FREE; 1587 wakeup(aiop->aiothread); 1588 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1589 ((ki->kaio_active_count + num_aio_resv_start) < 1590 ki->kaio_maxactive_count)) { 1591 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1592 } 1593 } 1594 1595 static int 1596 aio_kick(struct proc *userp) 1597 { 1598 struct kaioinfo *ki = userp->p_aioinfo; 1599 struct aiothreadlist *aiop; 1600 int error, ret = 0; 1601 1602 mtx_assert(&aio_job_mtx, MA_OWNED); 1603 retryproc: 1604 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1605 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1606 aiop->aiothreadflags &= ~AIOP_FREE; 1607 wakeup(aiop->aiothread); 1608 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1609 ((ki->kaio_active_count + num_aio_resv_start) < 1610 ki->kaio_maxactive_count)) { 1611 num_aio_resv_start++; 1612 mtx_unlock(&aio_job_mtx); 1613 error = aio_newproc(&num_aio_resv_start); 1614 mtx_lock(&aio_job_mtx); 1615 if (error) { 1616 num_aio_resv_start--; 1617 goto retryproc; 1618 } 1619 } else { 1620 ret = -1; 1621 } 1622 return (ret); 1623 } 1624 1625 static void 1626 aio_kick_helper(void *context, int pending) 1627 { 1628 struct proc *userp = context; 1629 1630 mtx_lock(&aio_job_mtx); 1631 while (--pending >= 0) { 1632 if (aio_kick(userp)) 1633 break; 1634 } 1635 mtx_unlock(&aio_job_mtx); 1636 } 1637 1638 /* 1639 * Support the aio_return system call, as a side-effect, kernel resources are 1640 * released. 1641 */ 1642 int 1643 aio_return(struct thread *td, struct aio_return_args *uap) 1644 { 1645 struct proc *p = td->td_proc; 1646 struct aiocblist *cb; 1647 struct aiocb *uaiocb; 1648 struct kaioinfo *ki; 1649 int status, error; 1650 1651 ki = p->p_aioinfo; 1652 if (ki == NULL) 1653 return (EINVAL); 1654 uaiocb = uap->aiocbp; 1655 AIO_LOCK(ki); 1656 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1657 if (cb->uuaiocb == uaiocb) 1658 break; 1659 } 1660 if (cb != NULL) { 1661 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1662 status = cb->uaiocb._aiocb_private.status; 1663 error = cb->uaiocb._aiocb_private.error; 1664 td->td_retval[0] = status; 1665 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1666 p->p_stats->p_ru.ru_oublock += 1667 cb->outputcharge; 1668 cb->outputcharge = 0; 1669 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1670 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1671 cb->inputcharge = 0; 1672 } 1673 aio_free_entry(cb); 1674 AIO_UNLOCK(ki); 1675 suword(&uaiocb->_aiocb_private.error, error); 1676 suword(&uaiocb->_aiocb_private.status, status); 1677 } else { 1678 error = EINVAL; 1679 AIO_UNLOCK(ki); 1680 } 1681 return (error); 1682 } 1683 1684 /* 1685 * Allow a process to wakeup when any of the I/O requests are completed. 1686 */ 1687 int 1688 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1689 { 1690 struct proc *p = td->td_proc; 1691 struct timeval atv; 1692 struct timespec ts; 1693 struct aiocb *const *cbptr, *cbp; 1694 struct kaioinfo *ki; 1695 struct aiocblist *cb, *cbfirst; 1696 struct aiocb **ujoblist; 1697 int njoblist; 1698 int error; 1699 int timo; 1700 int i; 1701 1702 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1703 return (EINVAL); 1704 1705 timo = 0; 1706 if (uap->timeout) { 1707 /* Get timespec struct. */ 1708 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1709 return (error); 1710 1711 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1712 return (EINVAL); 1713 1714 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1715 if (itimerfix(&atv)) 1716 return (EINVAL); 1717 timo = tvtohz(&atv); 1718 } 1719 1720 ki = p->p_aioinfo; 1721 if (ki == NULL) 1722 return (EAGAIN); 1723 1724 njoblist = 0; 1725 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1726 cbptr = uap->aiocbp; 1727 1728 for (i = 0; i < uap->nent; i++) { 1729 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1730 if (cbp == 0) 1731 continue; 1732 ujoblist[njoblist] = cbp; 1733 njoblist++; 1734 } 1735 1736 if (njoblist == 0) { 1737 uma_zfree(aiol_zone, ujoblist); 1738 return (0); 1739 } 1740 1741 AIO_LOCK(ki); 1742 for (;;) { 1743 cbfirst = NULL; 1744 error = 0; 1745 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1746 for (i = 0; i < njoblist; i++) { 1747 if (cb->uuaiocb == ujoblist[i]) { 1748 if (cbfirst == NULL) 1749 cbfirst = cb; 1750 if (cb->jobstate == JOBST_JOBFINISHED) 1751 goto RETURN; 1752 } 1753 } 1754 } 1755 /* All tasks were finished. */ 1756 if (cbfirst == NULL) 1757 break; 1758 1759 ki->kaio_flags |= KAIO_WAKEUP; 1760 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1761 "aiospn", timo); 1762 if (error == ERESTART) 1763 error = EINTR; 1764 if (error) 1765 break; 1766 } 1767 RETURN: 1768 AIO_UNLOCK(ki); 1769 uma_zfree(aiol_zone, ujoblist); 1770 return (error); 1771 } 1772 1773 /* 1774 * aio_cancel cancels any non-physio aio operations not currently in 1775 * progress. 1776 */ 1777 int 1778 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1779 { 1780 struct proc *p = td->td_proc; 1781 struct kaioinfo *ki; 1782 struct aiocblist *cbe, *cbn; 1783 struct file *fp; 1784 struct socket *so; 1785 int error; 1786 int remove; 1787 int cancelled = 0; 1788 int notcancelled = 0; 1789 struct vnode *vp; 1790 1791 /* Lookup file object. */ 1792 error = fget(td, uap->fd, &fp); 1793 if (error) 1794 return (error); 1795 1796 ki = p->p_aioinfo; 1797 if (ki == NULL) 1798 goto done; 1799 1800 if (fp->f_type == DTYPE_VNODE) { 1801 vp = fp->f_vnode; 1802 if (vn_isdisk(vp, &error)) { 1803 fdrop(fp, td); 1804 td->td_retval[0] = AIO_NOTCANCELED; 1805 return (0); 1806 } 1807 } 1808 1809 AIO_LOCK(ki); 1810 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1811 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1812 ((uap->aiocbp == NULL) || 1813 (uap->aiocbp == cbe->uuaiocb))) { 1814 remove = 0; 1815 1816 mtx_lock(&aio_job_mtx); 1817 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1818 TAILQ_REMOVE(&aio_jobs, cbe, list); 1819 remove = 1; 1820 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1821 MPASS(fp->f_type == DTYPE_SOCKET); 1822 so = fp->f_data; 1823 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1824 remove = 1; 1825 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1826 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1827 remove = 1; 1828 } 1829 mtx_unlock(&aio_job_mtx); 1830 1831 if (remove) { 1832 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1833 cbe->uaiocb._aiocb_private.status = -1; 1834 cbe->uaiocb._aiocb_private.error = ECANCELED; 1835 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1836 cancelled++; 1837 } else { 1838 notcancelled++; 1839 } 1840 if (uap->aiocbp != NULL) 1841 break; 1842 } 1843 } 1844 AIO_UNLOCK(ki); 1845 1846 done: 1847 fdrop(fp, td); 1848 1849 if (uap->aiocbp != NULL) { 1850 if (cancelled) { 1851 td->td_retval[0] = AIO_CANCELED; 1852 return (0); 1853 } 1854 } 1855 1856 if (notcancelled) { 1857 td->td_retval[0] = AIO_NOTCANCELED; 1858 return (0); 1859 } 1860 1861 if (cancelled) { 1862 td->td_retval[0] = AIO_CANCELED; 1863 return (0); 1864 } 1865 1866 td->td_retval[0] = AIO_ALLDONE; 1867 1868 return (0); 1869 } 1870 1871 /* 1872 * aio_error is implemented in the kernel level for compatibility purposes 1873 * only. For a user mode async implementation, it would be best to do it in 1874 * a userland subroutine. 1875 */ 1876 int 1877 aio_error(struct thread *td, struct aio_error_args *uap) 1878 { 1879 struct proc *p = td->td_proc; 1880 struct aiocblist *cb; 1881 struct kaioinfo *ki; 1882 int status; 1883 1884 ki = p->p_aioinfo; 1885 if (ki == NULL) { 1886 td->td_retval[0] = EINVAL; 1887 return (0); 1888 } 1889 1890 AIO_LOCK(ki); 1891 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1892 if (cb->uuaiocb == uap->aiocbp) { 1893 if (cb->jobstate == JOBST_JOBFINISHED) 1894 td->td_retval[0] = 1895 cb->uaiocb._aiocb_private.error; 1896 else 1897 td->td_retval[0] = EINPROGRESS; 1898 AIO_UNLOCK(ki); 1899 return (0); 1900 } 1901 } 1902 AIO_UNLOCK(ki); 1903 1904 /* 1905 * Hack for failure of aio_aqueue. 1906 */ 1907 status = fuword(&uap->aiocbp->_aiocb_private.status); 1908 if (status == -1) { 1909 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1910 return (0); 1911 } 1912 1913 td->td_retval[0] = EINVAL; 1914 return (0); 1915 } 1916 1917 /* syscall - asynchronous read from a file (REALTIME) */ 1918 int 1919 oaio_read(struct thread *td, struct oaio_read_args *uap) 1920 { 1921 1922 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1923 } 1924 1925 int 1926 aio_read(struct thread *td, struct aio_read_args *uap) 1927 { 1928 1929 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1930 } 1931 1932 /* syscall - asynchronous write to a file (REALTIME) */ 1933 int 1934 oaio_write(struct thread *td, struct oaio_write_args *uap) 1935 { 1936 1937 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1938 } 1939 1940 int 1941 aio_write(struct thread *td, struct aio_write_args *uap) 1942 { 1943 1944 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1945 } 1946 1947 /* syscall - list directed I/O (REALTIME) */ 1948 int 1949 olio_listio(struct thread *td, struct olio_listio_args *uap) 1950 { 1951 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1952 } 1953 1954 /* syscall - list directed I/O (REALTIME) */ 1955 int 1956 lio_listio(struct thread *td, struct lio_listio_args *uap) 1957 { 1958 return do_lio_listio(td, uap, 0); 1959 } 1960 1961 static int 1962 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1963 { 1964 struct proc *p = td->td_proc; 1965 struct aiocb *iocb, * const *cbptr; 1966 struct kaioinfo *ki; 1967 struct aioliojob *lj; 1968 struct kevent kev; 1969 int nent; 1970 int error; 1971 int nerror; 1972 int i; 1973 1974 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1975 return (EINVAL); 1976 1977 nent = uap->nent; 1978 if (nent < 0 || nent > AIO_LISTIO_MAX) 1979 return (EINVAL); 1980 1981 if (p->p_aioinfo == NULL) 1982 aio_init_aioinfo(p); 1983 1984 ki = p->p_aioinfo; 1985 1986 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1987 lj->lioj_flags = 0; 1988 lj->lioj_count = 0; 1989 lj->lioj_finished_count = 0; 1990 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 1991 ksiginfo_init(&lj->lioj_ksi); 1992 1993 /* 1994 * Setup signal. 1995 */ 1996 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1997 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 1998 error = copyin(uap->sig, &lj->lioj_signal, 1999 oldsigev ? sizeof(struct osigevent) : 2000 sizeof(struct sigevent)); 2001 if (error) { 2002 uma_zfree(aiolio_zone, lj); 2003 return (error); 2004 } 2005 2006 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2007 /* Assume only new style KEVENT */ 2008 kev.filter = EVFILT_LIO; 2009 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2010 kev.ident = (uintptr_t)uap->acb_list; /* something unique */ 2011 kev.data = (intptr_t)lj; 2012 /* pass user defined sigval data */ 2013 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2014 error = kqfd_register( 2015 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2016 if (error) { 2017 uma_zfree(aiolio_zone, lj); 2018 return (error); 2019 } 2020 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2021 ; 2022 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2023 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2024 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2025 uma_zfree(aiolio_zone, lj); 2026 return EINVAL; 2027 } 2028 lj->lioj_flags |= LIOJ_SIGNAL; 2029 } else { 2030 uma_zfree(aiolio_zone, lj); 2031 return EINVAL; 2032 } 2033 } 2034 2035 AIO_LOCK(ki); 2036 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2037 /* 2038 * Add extra aiocb count to avoid the lio to be freed 2039 * by other threads doing aio_waitcomplete or aio_return, 2040 * and prevent event from being sent until we have queued 2041 * all tasks. 2042 */ 2043 lj->lioj_count = 1; 2044 AIO_UNLOCK(ki); 2045 2046 /* 2047 * Get pointers to the list of I/O requests. 2048 */ 2049 nerror = 0; 2050 cbptr = uap->acb_list; 2051 for (i = 0; i < uap->nent; i++) { 2052 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2053 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2054 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2055 if (error != 0) 2056 nerror++; 2057 } 2058 } 2059 2060 error = 0; 2061 AIO_LOCK(ki); 2062 if (uap->mode == LIO_WAIT) { 2063 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2064 ki->kaio_flags |= KAIO_WAKEUP; 2065 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2066 PRIBIO | PCATCH, "aiospn", 0); 2067 if (error == ERESTART) 2068 error = EINTR; 2069 if (error) 2070 break; 2071 } 2072 } else { 2073 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2074 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2075 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2076 KNOTE_LOCKED(&lj->klist, 1); 2077 } 2078 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2079 == LIOJ_SIGNAL 2080 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2081 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2082 aio_sendsig(p, &lj->lioj_signal, 2083 &lj->lioj_ksi); 2084 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2085 } 2086 } 2087 } 2088 lj->lioj_count--; 2089 if (lj->lioj_count == 0) { 2090 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2091 knlist_delete(&lj->klist, curthread, 1); 2092 PROC_LOCK(p); 2093 sigqueue_take(&lj->lioj_ksi); 2094 PROC_UNLOCK(p); 2095 AIO_UNLOCK(ki); 2096 uma_zfree(aiolio_zone, lj); 2097 } else 2098 AIO_UNLOCK(ki); 2099 2100 if (nerror) 2101 return (EIO); 2102 return (error); 2103 } 2104 2105 /* 2106 * Called from interrupt thread for physio, we should return as fast 2107 * as possible, so we schedule a biohelper task. 2108 */ 2109 static void 2110 aio_physwakeup(struct buf *bp) 2111 { 2112 struct aiocblist *aiocbe; 2113 2114 aiocbe = (struct aiocblist *)bp->b_caller1; 2115 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2116 } 2117 2118 /* 2119 * Task routine to perform heavy tasks, process wakeup, and signals. 2120 */ 2121 static void 2122 biohelper(void *context, int pending) 2123 { 2124 struct aiocblist *aiocbe = context; 2125 struct buf *bp; 2126 struct proc *userp; 2127 struct kaioinfo *ki; 2128 int nblks; 2129 2130 bp = aiocbe->bp; 2131 userp = aiocbe->userproc; 2132 ki = userp->p_aioinfo; 2133 AIO_LOCK(ki); 2134 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2135 aiocbe->uaiocb._aiocb_private.error = 0; 2136 if (bp->b_ioflags & BIO_ERROR) 2137 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2138 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2139 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2140 aiocbe->outputcharge += nblks; 2141 else 2142 aiocbe->inputcharge += nblks; 2143 aiocbe->bp = NULL; 2144 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2145 ki->kaio_buffer_count--; 2146 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2147 AIO_UNLOCK(ki); 2148 2149 /* Release mapping into kernel space. */ 2150 vunmapbuf(bp); 2151 relpbuf(bp, NULL); 2152 atomic_subtract_int(&num_buf_aio, 1); 2153 } 2154 2155 /* syscall - wait for the next completion of an aio request */ 2156 int 2157 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2158 { 2159 struct proc *p = td->td_proc; 2160 struct timeval atv; 2161 struct timespec ts; 2162 struct kaioinfo *ki; 2163 struct aiocblist *cb; 2164 struct aiocb *uuaiocb; 2165 int error, status, timo; 2166 2167 suword(uap->aiocbp, (long)NULL); 2168 2169 timo = 0; 2170 if (uap->timeout) { 2171 /* Get timespec struct. */ 2172 error = copyin(uap->timeout, &ts, sizeof(ts)); 2173 if (error) 2174 return (error); 2175 2176 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2177 return (EINVAL); 2178 2179 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2180 if (itimerfix(&atv)) 2181 return (EINVAL); 2182 timo = tvtohz(&atv); 2183 } 2184 2185 if (p->p_aioinfo == NULL) 2186 aio_init_aioinfo(p); 2187 ki = p->p_aioinfo; 2188 2189 error = 0; 2190 cb = NULL; 2191 AIO_LOCK(ki); 2192 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2193 ki->kaio_flags |= KAIO_WAKEUP; 2194 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2195 "aiowc", timo); 2196 if (timo && error == ERESTART) 2197 error = EINTR; 2198 if (error) 2199 break; 2200 } 2201 2202 if (cb != NULL) { 2203 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2204 uuaiocb = cb->uuaiocb; 2205 status = cb->uaiocb._aiocb_private.status; 2206 error = cb->uaiocb._aiocb_private.error; 2207 td->td_retval[0] = status; 2208 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2209 p->p_stats->p_ru.ru_oublock += cb->outputcharge; 2210 cb->outputcharge = 0; 2211 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2212 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2213 cb->inputcharge = 0; 2214 } 2215 aio_free_entry(cb); 2216 AIO_UNLOCK(ki); 2217 suword(uap->aiocbp, (long)uuaiocb); 2218 suword(&uuaiocb->_aiocb_private.error, error); 2219 suword(&uuaiocb->_aiocb_private.status, status); 2220 } else 2221 AIO_UNLOCK(ki); 2222 2223 return (error); 2224 } 2225 2226 int 2227 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2228 { 2229 struct proc *p = td->td_proc; 2230 struct kaioinfo *ki; 2231 2232 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2233 return (EINVAL); 2234 ki = p->p_aioinfo; 2235 if (ki == NULL) 2236 aio_init_aioinfo(p); 2237 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2238 } 2239 2240 /* kqueue attach function */ 2241 static int 2242 filt_aioattach(struct knote *kn) 2243 { 2244 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2245 2246 /* 2247 * The aiocbe pointer must be validated before using it, so 2248 * registration is restricted to the kernel; the user cannot 2249 * set EV_FLAG1. 2250 */ 2251 if ((kn->kn_flags & EV_FLAG1) == 0) 2252 return (EPERM); 2253 kn->kn_flags &= ~EV_FLAG1; 2254 2255 knlist_add(&aiocbe->klist, kn, 0); 2256 2257 return (0); 2258 } 2259 2260 /* kqueue detach function */ 2261 static void 2262 filt_aiodetach(struct knote *kn) 2263 { 2264 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2265 2266 if (!knlist_empty(&aiocbe->klist)) 2267 knlist_remove(&aiocbe->klist, kn, 0); 2268 } 2269 2270 /* kqueue filter function */ 2271 /*ARGSUSED*/ 2272 static int 2273 filt_aio(struct knote *kn, long hint) 2274 { 2275 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2276 2277 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2278 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2279 return (0); 2280 kn->kn_flags |= EV_EOF; 2281 return (1); 2282 } 2283 2284 /* kqueue attach function */ 2285 static int 2286 filt_lioattach(struct knote *kn) 2287 { 2288 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2289 2290 /* 2291 * The aioliojob pointer must be validated before using it, so 2292 * registration is restricted to the kernel; the user cannot 2293 * set EV_FLAG1. 2294 */ 2295 if ((kn->kn_flags & EV_FLAG1) == 0) 2296 return (EPERM); 2297 kn->kn_flags &= ~EV_FLAG1; 2298 2299 knlist_add(&lj->klist, kn, 0); 2300 2301 return (0); 2302 } 2303 2304 /* kqueue detach function */ 2305 static void 2306 filt_liodetach(struct knote *kn) 2307 { 2308 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2309 2310 if (!knlist_empty(&lj->klist)) 2311 knlist_remove(&lj->klist, kn, 0); 2312 } 2313 2314 /* kqueue filter function */ 2315 /*ARGSUSED*/ 2316 static int 2317 filt_lio(struct knote *kn, long hint) 2318 { 2319 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2320 2321 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2322 } 2323