xref: /freebsd/sys/kern/vfs_aio.c (revision ee5cf11617a9b7f034d95c639bd4d27d1f09e848)
1 /*-
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  */
16 
17 /*
18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_compat.h"
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capsicum.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/protosw.h>
49 #include <sys/rwlock.h>
50 #include <sys/sema.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syscall.h>
54 #include <sys/sysent.h>
55 #include <sys/sysctl.h>
56 #include <sys/sx.h>
57 #include <sys/taskqueue.h>
58 #include <sys/vnode.h>
59 #include <sys/conf.h>
60 #include <sys/event.h>
61 #include <sys/mount.h>
62 #include <geom/geom.h>
63 
64 #include <machine/atomic.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 #include <vm/uma.h>
73 #include <sys/aio.h>
74 
75 /*
76  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
77  * overflow. (XXX will be removed soon.)
78  */
79 static u_long jobrefid;
80 
81 /*
82  * Counter for aio_fsync.
83  */
84 static uint64_t jobseqno;
85 
86 #ifndef MAX_AIO_PER_PROC
87 #define MAX_AIO_PER_PROC	32
88 #endif
89 
90 #ifndef MAX_AIO_QUEUE_PER_PROC
91 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
92 #endif
93 
94 #ifndef MAX_AIO_QUEUE
95 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
96 #endif
97 
98 #ifndef MAX_BUF_AIO
99 #define MAX_BUF_AIO		16
100 #endif
101 
102 FEATURE(aio, "Asynchronous I/O");
103 
104 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
105 
106 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
107     "Async IO management");
108 
109 static int enable_aio_unsafe = 0;
110 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
111     "Permit asynchronous IO on all file types, not just known-safe types");
112 
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115     "Maximum number of kernel processes to use for handling async IO ");
116 
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119     "Number of presently active kernel processes for async IO");
120 
121 /*
122  * The code will adjust the actual number of AIO processes towards this
123  * number when it gets a chance.
124  */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127     0,
128     "Preferred number of ready kernel processes for async IO");
129 
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132     "Maximum number of aio requests to queue, globally");
133 
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136     "Number of queued aio requests");
137 
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140     "Number of aio requests presently handled by the buf subsystem");
141 
142 /* Number of async I/O processes in the process of being started */
143 /* XXX This should be local to aio_aqueue() */
144 static int num_aio_resv_start = 0;
145 
146 static int aiod_lifetime;
147 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
148     "Maximum lifetime for idle aiod");
149 
150 static int max_aio_per_proc = MAX_AIO_PER_PROC;
151 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
152     0,
153     "Maximum active aio requests per process (stored in the process)");
154 
155 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
157     &max_aio_queue_per_proc, 0,
158     "Maximum queued aio requests per process (stored in the process)");
159 
160 static int max_buf_aio = MAX_BUF_AIO;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
162     "Maximum buf aio requests per process (stored in the process)");
163 
164 #ifdef COMPAT_FREEBSD6
165 typedef struct oaiocb {
166 	int	aio_fildes;		/* File descriptor */
167 	off_t	aio_offset;		/* File offset for I/O */
168 	volatile void *aio_buf;         /* I/O buffer in process space */
169 	size_t	aio_nbytes;		/* Number of bytes for I/O */
170 	struct	osigevent aio_sigevent;	/* Signal to deliver */
171 	int	aio_lio_opcode;		/* LIO opcode */
172 	int	aio_reqprio;		/* Request priority -- ignored */
173 	struct	__aiocb_private	_aiocb_private;
174 } oaiocb_t;
175 #endif
176 
177 /*
178  * Below is a key of locks used to protect each member of struct kaiocb
179  * aioliojob and kaioinfo and any backends.
180  *
181  * * - need not protected
182  * a - locked by kaioinfo lock
183  * b - locked by backend lock, the backend lock can be null in some cases,
184  *     for example, BIO belongs to this type, in this case, proc lock is
185  *     reused.
186  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
187  */
188 
189 /*
190  * If the routine that services an AIO request blocks while running in an
191  * AIO kernel process it can starve other I/O requests.  BIO requests
192  * queued via aio_qphysio() complete in GEOM and do not use AIO kernel
193  * processes at all.  Socket I/O requests use a separate pool of
194  * kprocs and also force non-blocking I/O.  Other file I/O requests
195  * use the generic fo_read/fo_write operations which can block.  The
196  * fsync and mlock operations can also block while executing.  Ideally
197  * none of these requests would block while executing.
198  *
199  * Note that the service routines cannot toggle O_NONBLOCK in the file
200  * structure directly while handling a request due to races with
201  * userland threads.
202  */
203 
204 /* jobflags */
205 #define	KAIOCB_QUEUEING		0x01
206 #define	KAIOCB_CANCELLED	0x02
207 #define	KAIOCB_CANCELLING	0x04
208 #define	KAIOCB_CHECKSYNC	0x08
209 #define	KAIOCB_CLEARED		0x10
210 #define	KAIOCB_FINISHED		0x20
211 
212 /*
213  * AIO process info
214  */
215 #define AIOP_FREE	0x1			/* proc on free queue */
216 
217 struct aioproc {
218 	int	aioprocflags;			/* (c) AIO proc flags */
219 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
220 	struct	proc *aioproc;			/* (*) the AIO proc */
221 };
222 
223 /*
224  * data-structure for lio signal management
225  */
226 struct aioliojob {
227 	int	lioj_flags;			/* (a) listio flags */
228 	int	lioj_count;			/* (a) listio flags */
229 	int	lioj_finished_count;		/* (a) listio flags */
230 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
231 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
232 	struct	knlist klist;			/* (a) list of knotes */
233 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
234 };
235 
236 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
237 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
238 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
239 
240 /*
241  * per process aio data structure
242  */
243 struct kaioinfo {
244 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
245 	int	kaio_flags;		/* (a) per process kaio flags */
246 	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
247 	int	kaio_active_count;	/* (c) number of currently used AIOs */
248 	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
249 	int	kaio_count;		/* (a) size of AIO queue */
250 	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
251 	int	kaio_buffer_count;	/* (a) number of physio buffers */
252 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
253 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
254 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
255 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
256 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
257 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
258 	struct	task kaio_task;		/* (*) task to kick aio processes */
259 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
260 };
261 
262 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
263 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
264 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
265 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
266 
267 #define KAIO_RUNDOWN	0x1	/* process is being run down */
268 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
269 
270 /*
271  * Operations used to interact with userland aio control blocks.
272  * Different ABIs provide their own operations.
273  */
274 struct aiocb_ops {
275 	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
276 	long	(*fetch_status)(struct aiocb *ujob);
277 	long	(*fetch_error)(struct aiocb *ujob);
278 	int	(*store_status)(struct aiocb *ujob, long status);
279 	int	(*store_error)(struct aiocb *ujob, long error);
280 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
281 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
282 };
283 
284 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
285 static struct sema aio_newproc_sem;
286 static struct mtx aio_job_mtx;
287 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
288 static struct unrhdr *aiod_unr;
289 
290 void		aio_init_aioinfo(struct proc *p);
291 static int	aio_onceonly(void);
292 static int	aio_free_entry(struct kaiocb *job);
293 static void	aio_process_rw(struct kaiocb *job);
294 static void	aio_process_sync(struct kaiocb *job);
295 static void	aio_process_mlock(struct kaiocb *job);
296 static void	aio_schedule_fsync(void *context, int pending);
297 static int	aio_newproc(int *);
298 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
299 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
300 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
301 static void	aio_physwakeup(struct bio *bp);
302 static void	aio_proc_rundown(void *arg, struct proc *p);
303 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
304 		    struct image_params *imgp);
305 static int	aio_qphysio(struct proc *p, struct kaiocb *job);
306 static void	aio_daemon(void *param);
307 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
308 static int	aio_kick(struct proc *userp);
309 static void	aio_kick_nowait(struct proc *userp);
310 static void	aio_kick_helper(void *context, int pending);
311 static int	filt_aioattach(struct knote *kn);
312 static void	filt_aiodetach(struct knote *kn);
313 static int	filt_aio(struct knote *kn, long hint);
314 static int	filt_lioattach(struct knote *kn);
315 static void	filt_liodetach(struct knote *kn);
316 static int	filt_lio(struct knote *kn, long hint);
317 
318 /*
319  * Zones for:
320  * 	kaio	Per process async io info
321  *	aiop	async io process data
322  *	aiocb	async io jobs
323  *	aiol	list io job pointer - internal to aio_suspend XXX
324  *	aiolio	list io jobs
325  */
326 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
327 
328 /* kqueue filters for aio */
329 static struct filterops aio_filtops = {
330 	.f_isfd = 0,
331 	.f_attach = filt_aioattach,
332 	.f_detach = filt_aiodetach,
333 	.f_event = filt_aio,
334 };
335 static struct filterops lio_filtops = {
336 	.f_isfd = 0,
337 	.f_attach = filt_lioattach,
338 	.f_detach = filt_liodetach,
339 	.f_event = filt_lio
340 };
341 
342 static eventhandler_tag exit_tag, exec_tag;
343 
344 TASKQUEUE_DEFINE_THREAD(aiod_kick);
345 
346 /*
347  * Main operations function for use as a kernel module.
348  */
349 static int
350 aio_modload(struct module *module, int cmd, void *arg)
351 {
352 	int error = 0;
353 
354 	switch (cmd) {
355 	case MOD_LOAD:
356 		aio_onceonly();
357 		break;
358 	case MOD_SHUTDOWN:
359 		break;
360 	default:
361 		error = EOPNOTSUPP;
362 		break;
363 	}
364 	return (error);
365 }
366 
367 static moduledata_t aio_mod = {
368 	"aio",
369 	&aio_modload,
370 	NULL
371 };
372 
373 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
374 MODULE_VERSION(aio, 1);
375 
376 /*
377  * Startup initialization
378  */
379 static int
380 aio_onceonly(void)
381 {
382 
383 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
384 	    EVENTHANDLER_PRI_ANY);
385 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
386 	    NULL, EVENTHANDLER_PRI_ANY);
387 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
388 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
389 	TAILQ_INIT(&aio_freeproc);
390 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
391 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
392 	TAILQ_INIT(&aio_jobs);
393 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
394 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
395 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
396 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
397 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
398 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
399 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
400 	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
401 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
402 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
403 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
404 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
405 	jobrefid = 1;
406 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
407 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
408 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
409 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
410 
411 	return (0);
412 }
413 
414 /*
415  * Init the per-process aioinfo structure.  The aioinfo limits are set
416  * per-process for user limit (resource) management.
417  */
418 void
419 aio_init_aioinfo(struct proc *p)
420 {
421 	struct kaioinfo *ki;
422 
423 	ki = uma_zalloc(kaio_zone, M_WAITOK);
424 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
425 	ki->kaio_flags = 0;
426 	ki->kaio_maxactive_count = max_aio_per_proc;
427 	ki->kaio_active_count = 0;
428 	ki->kaio_qallowed_count = max_aio_queue_per_proc;
429 	ki->kaio_count = 0;
430 	ki->kaio_ballowed_count = max_buf_aio;
431 	ki->kaio_buffer_count = 0;
432 	TAILQ_INIT(&ki->kaio_all);
433 	TAILQ_INIT(&ki->kaio_done);
434 	TAILQ_INIT(&ki->kaio_jobqueue);
435 	TAILQ_INIT(&ki->kaio_liojoblist);
436 	TAILQ_INIT(&ki->kaio_syncqueue);
437 	TAILQ_INIT(&ki->kaio_syncready);
438 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
439 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
440 	PROC_LOCK(p);
441 	if (p->p_aioinfo == NULL) {
442 		p->p_aioinfo = ki;
443 		PROC_UNLOCK(p);
444 	} else {
445 		PROC_UNLOCK(p);
446 		mtx_destroy(&ki->kaio_mtx);
447 		uma_zfree(kaio_zone, ki);
448 	}
449 
450 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
451 		aio_newproc(NULL);
452 }
453 
454 static int
455 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
456 {
457 	struct thread *td;
458 	int error;
459 
460 	error = sigev_findtd(p, sigev, &td);
461 	if (error)
462 		return (error);
463 	if (!KSI_ONQ(ksi)) {
464 		ksiginfo_set_sigev(ksi, sigev);
465 		ksi->ksi_code = SI_ASYNCIO;
466 		ksi->ksi_flags |= KSI_EXT | KSI_INS;
467 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
468 	}
469 	PROC_UNLOCK(p);
470 	return (error);
471 }
472 
473 /*
474  * Free a job entry.  Wait for completion if it is currently active, but don't
475  * delay forever.  If we delay, we return a flag that says that we have to
476  * restart the queue scan.
477  */
478 static int
479 aio_free_entry(struct kaiocb *job)
480 {
481 	struct kaioinfo *ki;
482 	struct aioliojob *lj;
483 	struct proc *p;
484 
485 	p = job->userproc;
486 	MPASS(curproc == p);
487 	ki = p->p_aioinfo;
488 	MPASS(ki != NULL);
489 
490 	AIO_LOCK_ASSERT(ki, MA_OWNED);
491 	MPASS(job->jobflags & KAIOCB_FINISHED);
492 
493 	atomic_subtract_int(&num_queue_count, 1);
494 
495 	ki->kaio_count--;
496 	MPASS(ki->kaio_count >= 0);
497 
498 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
499 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
500 
501 	lj = job->lio;
502 	if (lj) {
503 		lj->lioj_count--;
504 		lj->lioj_finished_count--;
505 
506 		if (lj->lioj_count == 0) {
507 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
508 			/* lio is going away, we need to destroy any knotes */
509 			knlist_delete(&lj->klist, curthread, 1);
510 			PROC_LOCK(p);
511 			sigqueue_take(&lj->lioj_ksi);
512 			PROC_UNLOCK(p);
513 			uma_zfree(aiolio_zone, lj);
514 		}
515 	}
516 
517 	/* job is going away, we need to destroy any knotes */
518 	knlist_delete(&job->klist, curthread, 1);
519 	PROC_LOCK(p);
520 	sigqueue_take(&job->ksi);
521 	PROC_UNLOCK(p);
522 
523 	MPASS(job->bp == NULL);
524 	AIO_UNLOCK(ki);
525 
526 	/*
527 	 * The thread argument here is used to find the owning process
528 	 * and is also passed to fo_close() which may pass it to various
529 	 * places such as devsw close() routines.  Because of that, we
530 	 * need a thread pointer from the process owning the job that is
531 	 * persistent and won't disappear out from under us or move to
532 	 * another process.
533 	 *
534 	 * Currently, all the callers of this function call it to remove
535 	 * a kaiocb from the current process' job list either via a
536 	 * syscall or due to the current process calling exit() or
537 	 * execve().  Thus, we know that p == curproc.  We also know that
538 	 * curthread can't exit since we are curthread.
539 	 *
540 	 * Therefore, we use curthread as the thread to pass to
541 	 * knlist_delete().  This does mean that it is possible for the
542 	 * thread pointer at close time to differ from the thread pointer
543 	 * at open time, but this is already true of file descriptors in
544 	 * a multithreaded process.
545 	 */
546 	if (job->fd_file)
547 		fdrop(job->fd_file, curthread);
548 	crfree(job->cred);
549 	uma_zfree(aiocb_zone, job);
550 	AIO_LOCK(ki);
551 
552 	return (0);
553 }
554 
555 static void
556 aio_proc_rundown_exec(void *arg, struct proc *p,
557     struct image_params *imgp __unused)
558 {
559    	aio_proc_rundown(arg, p);
560 }
561 
562 static int
563 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
564 {
565 	aio_cancel_fn_t *func;
566 	int cancelled;
567 
568 	AIO_LOCK_ASSERT(ki, MA_OWNED);
569 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
570 		return (0);
571 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
572 	job->jobflags |= KAIOCB_CANCELLED;
573 
574 	func = job->cancel_fn;
575 
576 	/*
577 	 * If there is no cancel routine, just leave the job marked as
578 	 * cancelled.  The job should be in active use by a caller who
579 	 * should complete it normally or when it fails to install a
580 	 * cancel routine.
581 	 */
582 	if (func == NULL)
583 		return (0);
584 
585 	/*
586 	 * Set the CANCELLING flag so that aio_complete() will defer
587 	 * completions of this job.  This prevents the job from being
588 	 * freed out from under the cancel callback.  After the
589 	 * callback any deferred completion (whether from the callback
590 	 * or any other source) will be completed.
591 	 */
592 	job->jobflags |= KAIOCB_CANCELLING;
593 	AIO_UNLOCK(ki);
594 	func(job);
595 	AIO_LOCK(ki);
596 	job->jobflags &= ~KAIOCB_CANCELLING;
597 	if (job->jobflags & KAIOCB_FINISHED) {
598 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
599 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
600 		aio_bio_done_notify(p, job);
601 	} else {
602 		/*
603 		 * The cancel callback might have scheduled an
604 		 * operation to cancel this request, but it is
605 		 * only counted as cancelled if the request is
606 		 * cancelled when the callback returns.
607 		 */
608 		cancelled = 0;
609 	}
610 	return (cancelled);
611 }
612 
613 /*
614  * Rundown the jobs for a given process.
615  */
616 static void
617 aio_proc_rundown(void *arg, struct proc *p)
618 {
619 	struct kaioinfo *ki;
620 	struct aioliojob *lj;
621 	struct kaiocb *job, *jobn;
622 
623 	KASSERT(curthread->td_proc == p,
624 	    ("%s: called on non-curproc", __func__));
625 	ki = p->p_aioinfo;
626 	if (ki == NULL)
627 		return;
628 
629 	AIO_LOCK(ki);
630 	ki->kaio_flags |= KAIO_RUNDOWN;
631 
632 restart:
633 
634 	/*
635 	 * Try to cancel all pending requests. This code simulates
636 	 * aio_cancel on all pending I/O requests.
637 	 */
638 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
639 		aio_cancel_job(p, ki, job);
640 	}
641 
642 	/* Wait for all running I/O to be finished */
643 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
644 		ki->kaio_flags |= KAIO_WAKEUP;
645 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
646 		goto restart;
647 	}
648 
649 	/* Free all completed I/O requests. */
650 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
651 		aio_free_entry(job);
652 
653 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
654 		if (lj->lioj_count == 0) {
655 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
656 			knlist_delete(&lj->klist, curthread, 1);
657 			PROC_LOCK(p);
658 			sigqueue_take(&lj->lioj_ksi);
659 			PROC_UNLOCK(p);
660 			uma_zfree(aiolio_zone, lj);
661 		} else {
662 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
663 			    lj->lioj_count, lj->lioj_finished_count);
664 		}
665 	}
666 	AIO_UNLOCK(ki);
667 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
668 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
669 	mtx_destroy(&ki->kaio_mtx);
670 	uma_zfree(kaio_zone, ki);
671 	p->p_aioinfo = NULL;
672 }
673 
674 /*
675  * Select a job to run (called by an AIO daemon).
676  */
677 static struct kaiocb *
678 aio_selectjob(struct aioproc *aiop)
679 {
680 	struct kaiocb *job;
681 	struct kaioinfo *ki;
682 	struct proc *userp;
683 
684 	mtx_assert(&aio_job_mtx, MA_OWNED);
685 restart:
686 	TAILQ_FOREACH(job, &aio_jobs, list) {
687 		userp = job->userproc;
688 		ki = userp->p_aioinfo;
689 
690 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
691 			TAILQ_REMOVE(&aio_jobs, job, list);
692 			if (!aio_clear_cancel_function(job))
693 				goto restart;
694 
695 			/* Account for currently active jobs. */
696 			ki->kaio_active_count++;
697 			break;
698 		}
699 	}
700 	return (job);
701 }
702 
703 /*
704  * Move all data to a permanent storage device.  This code
705  * simulates the fsync syscall.
706  */
707 static int
708 aio_fsync_vnode(struct thread *td, struct vnode *vp)
709 {
710 	struct mount *mp;
711 	int error;
712 
713 	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
714 		goto drop;
715 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
716 	if (vp->v_object != NULL) {
717 		VM_OBJECT_WLOCK(vp->v_object);
718 		vm_object_page_clean(vp->v_object, 0, 0, 0);
719 		VM_OBJECT_WUNLOCK(vp->v_object);
720 	}
721 	error = VOP_FSYNC(vp, MNT_WAIT, td);
722 
723 	VOP_UNLOCK(vp, 0);
724 	vn_finished_write(mp);
725 drop:
726 	return (error);
727 }
728 
729 /*
730  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
731  * does the I/O request for the non-physio version of the operations.  The
732  * normal vn operations are used, and this code should work in all instances
733  * for every type of file, including pipes, sockets, fifos, and regular files.
734  *
735  * XXX I don't think it works well for socket, pipe, and fifo.
736  */
737 static void
738 aio_process_rw(struct kaiocb *job)
739 {
740 	struct ucred *td_savedcred;
741 	struct thread *td;
742 	struct aiocb *cb;
743 	struct file *fp;
744 	struct uio auio;
745 	struct iovec aiov;
746 	ssize_t cnt;
747 	int error;
748 	int oublock_st, oublock_end;
749 	int inblock_st, inblock_end;
750 
751 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
752 	    job->uaiocb.aio_lio_opcode == LIO_WRITE,
753 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
754 
755 	aio_switch_vmspace(job);
756 	td = curthread;
757 	td_savedcred = td->td_ucred;
758 	td->td_ucred = job->cred;
759 	cb = &job->uaiocb;
760 	fp = job->fd_file;
761 
762 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
763 	aiov.iov_len = cb->aio_nbytes;
764 
765 	auio.uio_iov = &aiov;
766 	auio.uio_iovcnt = 1;
767 	auio.uio_offset = cb->aio_offset;
768 	auio.uio_resid = cb->aio_nbytes;
769 	cnt = cb->aio_nbytes;
770 	auio.uio_segflg = UIO_USERSPACE;
771 	auio.uio_td = td;
772 
773 	inblock_st = td->td_ru.ru_inblock;
774 	oublock_st = td->td_ru.ru_oublock;
775 	/*
776 	 * aio_aqueue() acquires a reference to the file that is
777 	 * released in aio_free_entry().
778 	 */
779 	if (cb->aio_lio_opcode == LIO_READ) {
780 		auio.uio_rw = UIO_READ;
781 		if (auio.uio_resid == 0)
782 			error = 0;
783 		else
784 			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
785 	} else {
786 		if (fp->f_type == DTYPE_VNODE)
787 			bwillwrite();
788 		auio.uio_rw = UIO_WRITE;
789 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
790 	}
791 	inblock_end = td->td_ru.ru_inblock;
792 	oublock_end = td->td_ru.ru_oublock;
793 
794 	job->inputcharge = inblock_end - inblock_st;
795 	job->outputcharge = oublock_end - oublock_st;
796 
797 	if ((error) && (auio.uio_resid != cnt)) {
798 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
799 			error = 0;
800 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
801 			PROC_LOCK(job->userproc);
802 			kern_psignal(job->userproc, SIGPIPE);
803 			PROC_UNLOCK(job->userproc);
804 		}
805 	}
806 
807 	cnt -= auio.uio_resid;
808 	td->td_ucred = td_savedcred;
809 	if (error)
810 		aio_complete(job, -1, error);
811 	else
812 		aio_complete(job, cnt, 0);
813 }
814 
815 static void
816 aio_process_sync(struct kaiocb *job)
817 {
818 	struct thread *td = curthread;
819 	struct ucred *td_savedcred = td->td_ucred;
820 	struct file *fp = job->fd_file;
821 	int error = 0;
822 
823 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
824 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
825 
826 	td->td_ucred = job->cred;
827 	if (fp->f_vnode != NULL)
828 		error = aio_fsync_vnode(td, fp->f_vnode);
829 	td->td_ucred = td_savedcred;
830 	if (error)
831 		aio_complete(job, -1, error);
832 	else
833 		aio_complete(job, 0, 0);
834 }
835 
836 static void
837 aio_process_mlock(struct kaiocb *job)
838 {
839 	struct aiocb *cb = &job->uaiocb;
840 	int error;
841 
842 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
843 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
844 
845 	aio_switch_vmspace(job);
846 	error = vm_mlock(job->userproc, job->cred,
847 	    __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes);
848 	if (error)
849 		aio_complete(job, -1, error);
850 	else
851 		aio_complete(job, 0, 0);
852 }
853 
854 static void
855 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
856 {
857 	struct aioliojob *lj;
858 	struct kaioinfo *ki;
859 	struct kaiocb *sjob, *sjobn;
860 	int lj_done;
861 	bool schedule_fsync;
862 
863 	ki = userp->p_aioinfo;
864 	AIO_LOCK_ASSERT(ki, MA_OWNED);
865 	lj = job->lio;
866 	lj_done = 0;
867 	if (lj) {
868 		lj->lioj_finished_count++;
869 		if (lj->lioj_count == lj->lioj_finished_count)
870 			lj_done = 1;
871 	}
872 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
873 	MPASS(job->jobflags & KAIOCB_FINISHED);
874 
875 	if (ki->kaio_flags & KAIO_RUNDOWN)
876 		goto notification_done;
877 
878 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
879 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
880 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi);
881 
882 	KNOTE_LOCKED(&job->klist, 1);
883 
884 	if (lj_done) {
885 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
886 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
887 			KNOTE_LOCKED(&lj->klist, 1);
888 		}
889 		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
890 		    == LIOJ_SIGNAL
891 		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
892 		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
893 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
894 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
895 		}
896 	}
897 
898 notification_done:
899 	if (job->jobflags & KAIOCB_CHECKSYNC) {
900 		schedule_fsync = false;
901 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
902 			if (job->fd_file == sjob->fd_file &&
903 			    job->seqno < sjob->seqno) {
904 				if (--sjob->pending == 0) {
905 					TAILQ_REMOVE(&ki->kaio_syncqueue, sjob,
906 					    list);
907 					if (!aio_clear_cancel_function(sjob))
908 						continue;
909 					TAILQ_INSERT_TAIL(&ki->kaio_syncready,
910 					    sjob, list);
911 					schedule_fsync = true;
912 				}
913 			}
914 		}
915 		if (schedule_fsync)
916 			taskqueue_enqueue(taskqueue_aiod_kick,
917 			    &ki->kaio_sync_task);
918 	}
919 	if (ki->kaio_flags & KAIO_WAKEUP) {
920 		ki->kaio_flags &= ~KAIO_WAKEUP;
921 		wakeup(&userp->p_aioinfo);
922 	}
923 }
924 
925 static void
926 aio_schedule_fsync(void *context, int pending)
927 {
928 	struct kaioinfo *ki;
929 	struct kaiocb *job;
930 
931 	ki = context;
932 	AIO_LOCK(ki);
933 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
934 		job = TAILQ_FIRST(&ki->kaio_syncready);
935 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
936 		AIO_UNLOCK(ki);
937 		aio_schedule(job, aio_process_sync);
938 		AIO_LOCK(ki);
939 	}
940 	AIO_UNLOCK(ki);
941 }
942 
943 bool
944 aio_cancel_cleared(struct kaiocb *job)
945 {
946 	struct kaioinfo *ki;
947 
948 	/*
949 	 * The caller should hold the same queue lock held when
950 	 * aio_clear_cancel_function() was called and set this flag
951 	 * ensuring this check sees an up-to-date value.  However,
952 	 * there is no way to assert that.
953 	 */
954 	ki = job->userproc->p_aioinfo;
955 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
956 }
957 
958 bool
959 aio_clear_cancel_function(struct kaiocb *job)
960 {
961 	struct kaioinfo *ki;
962 
963 	ki = job->userproc->p_aioinfo;
964 	AIO_LOCK(ki);
965 	MPASS(job->cancel_fn != NULL);
966 	if (job->jobflags & KAIOCB_CANCELLING) {
967 		job->jobflags |= KAIOCB_CLEARED;
968 		AIO_UNLOCK(ki);
969 		return (false);
970 	}
971 	job->cancel_fn = NULL;
972 	AIO_UNLOCK(ki);
973 	return (true);
974 }
975 
976 bool
977 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
978 {
979 	struct kaioinfo *ki;
980 
981 	ki = job->userproc->p_aioinfo;
982 	AIO_LOCK(ki);
983 	if (job->jobflags & KAIOCB_CANCELLED) {
984 		AIO_UNLOCK(ki);
985 		return (false);
986 	}
987 	job->cancel_fn = func;
988 	AIO_UNLOCK(ki);
989 	return (true);
990 }
991 
992 void
993 aio_complete(struct kaiocb *job, long status, int error)
994 {
995 	struct kaioinfo *ki;
996 	struct proc *userp;
997 
998 	job->uaiocb._aiocb_private.error = error;
999 	job->uaiocb._aiocb_private.status = status;
1000 
1001 	userp = job->userproc;
1002 	ki = userp->p_aioinfo;
1003 
1004 	AIO_LOCK(ki);
1005 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1006 	    ("duplicate aio_complete"));
1007 	job->jobflags |= KAIOCB_FINISHED;
1008 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1009 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1010 		aio_bio_done_notify(userp, job);
1011 	}
1012 	AIO_UNLOCK(ki);
1013 }
1014 
1015 void
1016 aio_cancel(struct kaiocb *job)
1017 {
1018 
1019 	aio_complete(job, -1, ECANCELED);
1020 }
1021 
1022 void
1023 aio_switch_vmspace(struct kaiocb *job)
1024 {
1025 
1026 	vmspace_switch_aio(job->userproc->p_vmspace);
1027 }
1028 
1029 /*
1030  * The AIO daemon, most of the actual work is done in aio_process_*,
1031  * but the setup (and address space mgmt) is done in this routine.
1032  */
1033 static void
1034 aio_daemon(void *_id)
1035 {
1036 	struct kaiocb *job;
1037 	struct aioproc *aiop;
1038 	struct kaioinfo *ki;
1039 	struct proc *p;
1040 	struct vmspace *myvm;
1041 	struct thread *td = curthread;
1042 	int id = (intptr_t)_id;
1043 
1044 	/*
1045 	 * Grab an extra reference on the daemon's vmspace so that it
1046 	 * doesn't get freed by jobs that switch to a different
1047 	 * vmspace.
1048 	 */
1049 	p = td->td_proc;
1050 	myvm = vmspace_acquire_ref(p);
1051 
1052 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1053 
1054 	/*
1055 	 * Allocate and ready the aio control info.  There is one aiop structure
1056 	 * per daemon.
1057 	 */
1058 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1059 	aiop->aioproc = p;
1060 	aiop->aioprocflags = 0;
1061 
1062 	/*
1063 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1064 	 * and creating too many daemons.)
1065 	 */
1066 	sema_post(&aio_newproc_sem);
1067 
1068 	mtx_lock(&aio_job_mtx);
1069 	for (;;) {
1070 		/*
1071 		 * Take daemon off of free queue
1072 		 */
1073 		if (aiop->aioprocflags & AIOP_FREE) {
1074 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1075 			aiop->aioprocflags &= ~AIOP_FREE;
1076 		}
1077 
1078 		/*
1079 		 * Check for jobs.
1080 		 */
1081 		while ((job = aio_selectjob(aiop)) != NULL) {
1082 			mtx_unlock(&aio_job_mtx);
1083 
1084 			ki = job->userproc->p_aioinfo;
1085 			job->handle_fn(job);
1086 
1087 			mtx_lock(&aio_job_mtx);
1088 			/* Decrement the active job count. */
1089 			ki->kaio_active_count--;
1090 		}
1091 
1092 		/*
1093 		 * Disconnect from user address space.
1094 		 */
1095 		if (p->p_vmspace != myvm) {
1096 			mtx_unlock(&aio_job_mtx);
1097 			vmspace_switch_aio(myvm);
1098 			mtx_lock(&aio_job_mtx);
1099 			/*
1100 			 * We have to restart to avoid race, we only sleep if
1101 			 * no job can be selected.
1102 			 */
1103 			continue;
1104 		}
1105 
1106 		mtx_assert(&aio_job_mtx, MA_OWNED);
1107 
1108 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1109 		aiop->aioprocflags |= AIOP_FREE;
1110 
1111 		/*
1112 		 * If daemon is inactive for a long time, allow it to exit,
1113 		 * thereby freeing resources.
1114 		 */
1115 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1116 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1117 		    (aiop->aioprocflags & AIOP_FREE) &&
1118 		    num_aio_procs > target_aio_procs)
1119 			break;
1120 	}
1121 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1122 	num_aio_procs--;
1123 	mtx_unlock(&aio_job_mtx);
1124 	uma_zfree(aiop_zone, aiop);
1125 	free_unr(aiod_unr, id);
1126 	vmspace_free(myvm);
1127 
1128 	KASSERT(p->p_vmspace == myvm,
1129 	    ("AIOD: bad vmspace for exiting daemon"));
1130 	KASSERT(myvm->vm_refcnt > 1,
1131 	    ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
1132 	kproc_exit(0);
1133 }
1134 
1135 /*
1136  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1137  * AIO daemon modifies its environment itself.
1138  */
1139 static int
1140 aio_newproc(int *start)
1141 {
1142 	int error;
1143 	struct proc *p;
1144 	int id;
1145 
1146 	id = alloc_unr(aiod_unr);
1147 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1148 		RFNOWAIT, 0, "aiod%d", id);
1149 	if (error == 0) {
1150 		/*
1151 		 * Wait until daemon is started.
1152 		 */
1153 		sema_wait(&aio_newproc_sem);
1154 		mtx_lock(&aio_job_mtx);
1155 		num_aio_procs++;
1156 		if (start != NULL)
1157 			(*start)--;
1158 		mtx_unlock(&aio_job_mtx);
1159 	} else {
1160 		free_unr(aiod_unr, id);
1161 	}
1162 	return (error);
1163 }
1164 
1165 /*
1166  * Try the high-performance, low-overhead physio method for eligible
1167  * VCHR devices.  This method doesn't use an aio helper thread, and
1168  * thus has very low overhead.
1169  *
1170  * Assumes that the caller, aio_aqueue(), has incremented the file
1171  * structure's reference count, preventing its deallocation for the
1172  * duration of this call.
1173  */
1174 static int
1175 aio_qphysio(struct proc *p, struct kaiocb *job)
1176 {
1177 	struct aiocb *cb;
1178 	struct file *fp;
1179 	struct bio *bp;
1180 	struct buf *pbuf;
1181 	struct vnode *vp;
1182 	struct cdevsw *csw;
1183 	struct cdev *dev;
1184 	struct kaioinfo *ki;
1185 	int error, ref, poff;
1186 	vm_prot_t prot;
1187 
1188 	cb = &job->uaiocb;
1189 	fp = job->fd_file;
1190 
1191 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1192 		return (-1);
1193 
1194 	vp = fp->f_vnode;
1195 	if (vp->v_type != VCHR)
1196 		return (-1);
1197 	if (vp->v_bufobj.bo_bsize == 0)
1198 		return (-1);
1199 	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1200 		return (-1);
1201 
1202 	ref = 0;
1203 	csw = devvn_refthread(vp, &dev, &ref);
1204 	if (csw == NULL)
1205 		return (ENXIO);
1206 
1207 	if ((csw->d_flags & D_DISK) == 0) {
1208 		error = -1;
1209 		goto unref;
1210 	}
1211 	if (cb->aio_nbytes > dev->si_iosize_max) {
1212 		error = -1;
1213 		goto unref;
1214 	}
1215 
1216 	ki = p->p_aioinfo;
1217 	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
1218 	if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
1219 		if (cb->aio_nbytes > MAXPHYS) {
1220 			error = -1;
1221 			goto unref;
1222 		}
1223 
1224 		pbuf = NULL;
1225 	} else {
1226 		if (cb->aio_nbytes > MAXPHYS - poff) {
1227 			error = -1;
1228 			goto unref;
1229 		}
1230 		if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
1231 			error = -1;
1232 			goto unref;
1233 		}
1234 
1235 		job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
1236 		BUF_KERNPROC(pbuf);
1237 		AIO_LOCK(ki);
1238 		ki->kaio_buffer_count++;
1239 		AIO_UNLOCK(ki);
1240 	}
1241 	job->bp = bp = g_alloc_bio();
1242 
1243 	bp->bio_length = cb->aio_nbytes;
1244 	bp->bio_bcount = cb->aio_nbytes;
1245 	bp->bio_done = aio_physwakeup;
1246 	bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
1247 	bp->bio_offset = cb->aio_offset;
1248 	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1249 	bp->bio_dev = dev;
1250 	bp->bio_caller1 = (void *)job;
1251 
1252 	prot = VM_PROT_READ;
1253 	if (cb->aio_lio_opcode == LIO_READ)
1254 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1255 	job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1256 	    (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages,
1257 	    nitems(job->pages));
1258 	if (job->npages < 0) {
1259 		error = EFAULT;
1260 		goto doerror;
1261 	}
1262 	if (pbuf != NULL) {
1263 		pmap_qenter((vm_offset_t)pbuf->b_data,
1264 		    job->pages, job->npages);
1265 		bp->bio_data = pbuf->b_data + poff;
1266 		atomic_add_int(&num_buf_aio, 1);
1267 	} else {
1268 		bp->bio_ma = job->pages;
1269 		bp->bio_ma_n = job->npages;
1270 		bp->bio_ma_offset = poff;
1271 		bp->bio_data = unmapped_buf;
1272 		bp->bio_flags |= BIO_UNMAPPED;
1273 	}
1274 
1275 	/* Perform transfer. */
1276 	csw->d_strategy(bp);
1277 	dev_relthread(dev, ref);
1278 	return (0);
1279 
1280 doerror:
1281 	if (pbuf != NULL) {
1282 		AIO_LOCK(ki);
1283 		ki->kaio_buffer_count--;
1284 		AIO_UNLOCK(ki);
1285 		relpbuf(pbuf, NULL);
1286 		job->pbuf = NULL;
1287 	}
1288 	g_destroy_bio(bp);
1289 	job->bp = NULL;
1290 unref:
1291 	dev_relthread(dev, ref);
1292 	return (error);
1293 }
1294 
1295 #ifdef COMPAT_FREEBSD6
1296 static int
1297 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1298 {
1299 
1300 	/*
1301 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1302 	 * supported by AIO with the old sigevent structure.
1303 	 */
1304 	nsig->sigev_notify = osig->sigev_notify;
1305 	switch (nsig->sigev_notify) {
1306 	case SIGEV_NONE:
1307 		break;
1308 	case SIGEV_SIGNAL:
1309 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1310 		break;
1311 	case SIGEV_KEVENT:
1312 		nsig->sigev_notify_kqueue =
1313 		    osig->__sigev_u.__sigev_notify_kqueue;
1314 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1315 		break;
1316 	default:
1317 		return (EINVAL);
1318 	}
1319 	return (0);
1320 }
1321 
1322 static int
1323 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1324 {
1325 	struct oaiocb *ojob;
1326 	int error;
1327 
1328 	bzero(kjob, sizeof(struct aiocb));
1329 	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1330 	if (error)
1331 		return (error);
1332 	ojob = (struct oaiocb *)kjob;
1333 	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1334 }
1335 #endif
1336 
1337 static int
1338 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1339 {
1340 
1341 	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1342 }
1343 
1344 static long
1345 aiocb_fetch_status(struct aiocb *ujob)
1346 {
1347 
1348 	return (fuword(&ujob->_aiocb_private.status));
1349 }
1350 
1351 static long
1352 aiocb_fetch_error(struct aiocb *ujob)
1353 {
1354 
1355 	return (fuword(&ujob->_aiocb_private.error));
1356 }
1357 
1358 static int
1359 aiocb_store_status(struct aiocb *ujob, long status)
1360 {
1361 
1362 	return (suword(&ujob->_aiocb_private.status, status));
1363 }
1364 
1365 static int
1366 aiocb_store_error(struct aiocb *ujob, long error)
1367 {
1368 
1369 	return (suword(&ujob->_aiocb_private.error, error));
1370 }
1371 
1372 static int
1373 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1374 {
1375 
1376 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1377 }
1378 
1379 static int
1380 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1381 {
1382 
1383 	return (suword(ujobp, (long)ujob));
1384 }
1385 
1386 static struct aiocb_ops aiocb_ops = {
1387 	.copyin = aiocb_copyin,
1388 	.fetch_status = aiocb_fetch_status,
1389 	.fetch_error = aiocb_fetch_error,
1390 	.store_status = aiocb_store_status,
1391 	.store_error = aiocb_store_error,
1392 	.store_kernelinfo = aiocb_store_kernelinfo,
1393 	.store_aiocb = aiocb_store_aiocb,
1394 };
1395 
1396 #ifdef COMPAT_FREEBSD6
1397 static struct aiocb_ops aiocb_ops_osigevent = {
1398 	.copyin = aiocb_copyin_old_sigevent,
1399 	.fetch_status = aiocb_fetch_status,
1400 	.fetch_error = aiocb_fetch_error,
1401 	.store_status = aiocb_store_status,
1402 	.store_error = aiocb_store_error,
1403 	.store_kernelinfo = aiocb_store_kernelinfo,
1404 	.store_aiocb = aiocb_store_aiocb,
1405 };
1406 #endif
1407 
1408 /*
1409  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1410  * technique is done in this code.
1411  */
1412 int
1413 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1414 	int type, struct aiocb_ops *ops)
1415 {
1416 	struct proc *p = td->td_proc;
1417 	cap_rights_t rights;
1418 	struct file *fp;
1419 	struct kaiocb *job;
1420 	struct kaioinfo *ki;
1421 	struct kevent kev;
1422 	int opcode;
1423 	int error;
1424 	int fd, kqfd;
1425 	int jid;
1426 	u_short evflags;
1427 
1428 	if (p->p_aioinfo == NULL)
1429 		aio_init_aioinfo(p);
1430 
1431 	ki = p->p_aioinfo;
1432 
1433 	ops->store_status(ujob, -1);
1434 	ops->store_error(ujob, 0);
1435 	ops->store_kernelinfo(ujob, -1);
1436 
1437 	if (num_queue_count >= max_queue_count ||
1438 	    ki->kaio_count >= ki->kaio_qallowed_count) {
1439 		ops->store_error(ujob, EAGAIN);
1440 		return (EAGAIN);
1441 	}
1442 
1443 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1444 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1445 
1446 	error = ops->copyin(ujob, &job->uaiocb);
1447 	if (error) {
1448 		ops->store_error(ujob, error);
1449 		uma_zfree(aiocb_zone, job);
1450 		return (error);
1451 	}
1452 
1453 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1454 		uma_zfree(aiocb_zone, job);
1455 		return (EINVAL);
1456 	}
1457 
1458 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1459 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1460 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1461 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1462 		ops->store_error(ujob, EINVAL);
1463 		uma_zfree(aiocb_zone, job);
1464 		return (EINVAL);
1465 	}
1466 
1467 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1468 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1469 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1470 		uma_zfree(aiocb_zone, job);
1471 		return (EINVAL);
1472 	}
1473 
1474 	ksiginfo_init(&job->ksi);
1475 
1476 	/* Save userspace address of the job info. */
1477 	job->ujob = ujob;
1478 
1479 	/* Get the opcode. */
1480 	if (type != LIO_NOP)
1481 		job->uaiocb.aio_lio_opcode = type;
1482 	opcode = job->uaiocb.aio_lio_opcode;
1483 
1484 	/*
1485 	 * Validate the opcode and fetch the file object for the specified
1486 	 * file descriptor.
1487 	 *
1488 	 * XXXRW: Moved the opcode validation up here so that we don't
1489 	 * retrieve a file descriptor without knowing what the capabiltity
1490 	 * should be.
1491 	 */
1492 	fd = job->uaiocb.aio_fildes;
1493 	switch (opcode) {
1494 	case LIO_WRITE:
1495 		error = fget_write(td, fd,
1496 		    cap_rights_init(&rights, CAP_PWRITE), &fp);
1497 		break;
1498 	case LIO_READ:
1499 		error = fget_read(td, fd,
1500 		    cap_rights_init(&rights, CAP_PREAD), &fp);
1501 		break;
1502 	case LIO_SYNC:
1503 		error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
1504 		break;
1505 	case LIO_MLOCK:
1506 		fp = NULL;
1507 		break;
1508 	case LIO_NOP:
1509 		error = fget(td, fd, cap_rights_init(&rights), &fp);
1510 		break;
1511 	default:
1512 		error = EINVAL;
1513 	}
1514 	if (error) {
1515 		uma_zfree(aiocb_zone, job);
1516 		ops->store_error(ujob, error);
1517 		return (error);
1518 	}
1519 
1520 	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1521 		error = EINVAL;
1522 		goto aqueue_fail;
1523 	}
1524 
1525 	if (opcode != LIO_SYNC && job->uaiocb.aio_offset == -1LL) {
1526 		error = EINVAL;
1527 		goto aqueue_fail;
1528 	}
1529 
1530 	job->fd_file = fp;
1531 
1532 	mtx_lock(&aio_job_mtx);
1533 	jid = jobrefid++;
1534 	job->seqno = jobseqno++;
1535 	mtx_unlock(&aio_job_mtx);
1536 	error = ops->store_kernelinfo(ujob, jid);
1537 	if (error) {
1538 		error = EINVAL;
1539 		goto aqueue_fail;
1540 	}
1541 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1542 
1543 	if (opcode == LIO_NOP) {
1544 		fdrop(fp, td);
1545 		uma_zfree(aiocb_zone, job);
1546 		return (0);
1547 	}
1548 
1549 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1550 		goto no_kqueue;
1551 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1552 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1553 		error = EINVAL;
1554 		goto aqueue_fail;
1555 	}
1556 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1557 	kev.ident = (uintptr_t)job->ujob;
1558 	kev.filter = EVFILT_AIO;
1559 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1560 	kev.data = (intptr_t)job;
1561 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1562 	error = kqfd_register(kqfd, &kev, td, 1);
1563 	if (error)
1564 		goto aqueue_fail;
1565 
1566 no_kqueue:
1567 
1568 	ops->store_error(ujob, EINPROGRESS);
1569 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1570 	job->userproc = p;
1571 	job->cred = crhold(td->td_ucred);
1572 	job->jobflags = KAIOCB_QUEUEING;
1573 	job->lio = lj;
1574 
1575 	if (opcode == LIO_MLOCK) {
1576 		aio_schedule(job, aio_process_mlock);
1577 		error = 0;
1578 	} else if (fp->f_ops->fo_aio_queue == NULL)
1579 		error = aio_queue_file(fp, job);
1580 	else
1581 		error = fo_aio_queue(fp, job);
1582 	if (error)
1583 		goto aqueue_fail;
1584 
1585 	AIO_LOCK(ki);
1586 	job->jobflags &= ~KAIOCB_QUEUEING;
1587 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1588 	ki->kaio_count++;
1589 	if (lj)
1590 		lj->lioj_count++;
1591 	atomic_add_int(&num_queue_count, 1);
1592 	if (job->jobflags & KAIOCB_FINISHED) {
1593 		/*
1594 		 * The queue callback completed the request synchronously.
1595 		 * The bulk of the completion is deferred in that case
1596 		 * until this point.
1597 		 */
1598 		aio_bio_done_notify(p, job);
1599 	} else
1600 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1601 	AIO_UNLOCK(ki);
1602 	return (0);
1603 
1604 aqueue_fail:
1605 	knlist_delete(&job->klist, curthread, 0);
1606 	if (fp)
1607 		fdrop(fp, td);
1608 	uma_zfree(aiocb_zone, job);
1609 	ops->store_error(ujob, error);
1610 	return (error);
1611 }
1612 
1613 static void
1614 aio_cancel_daemon_job(struct kaiocb *job)
1615 {
1616 
1617 	mtx_lock(&aio_job_mtx);
1618 	if (!aio_cancel_cleared(job))
1619 		TAILQ_REMOVE(&aio_jobs, job, list);
1620 	mtx_unlock(&aio_job_mtx);
1621 	aio_cancel(job);
1622 }
1623 
1624 void
1625 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1626 {
1627 
1628 	mtx_lock(&aio_job_mtx);
1629 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1630 		mtx_unlock(&aio_job_mtx);
1631 		aio_cancel(job);
1632 		return;
1633 	}
1634 	job->handle_fn = func;
1635 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1636 	aio_kick_nowait(job->userproc);
1637 	mtx_unlock(&aio_job_mtx);
1638 }
1639 
1640 static void
1641 aio_cancel_sync(struct kaiocb *job)
1642 {
1643 	struct kaioinfo *ki;
1644 
1645 	ki = job->userproc->p_aioinfo;
1646 	mtx_lock(&aio_job_mtx);
1647 	if (!aio_cancel_cleared(job))
1648 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1649 	mtx_unlock(&aio_job_mtx);
1650 	aio_cancel(job);
1651 }
1652 
1653 int
1654 aio_queue_file(struct file *fp, struct kaiocb *job)
1655 {
1656 	struct aioliojob *lj;
1657 	struct kaioinfo *ki;
1658 	struct kaiocb *job2;
1659 	int error, opcode;
1660 
1661 	lj = job->lio;
1662 	ki = job->userproc->p_aioinfo;
1663 	opcode = job->uaiocb.aio_lio_opcode;
1664 	if (opcode == LIO_SYNC)
1665 		goto queueit;
1666 
1667 	if ((error = aio_qphysio(job->userproc, job)) == 0)
1668 		goto done;
1669 #if 0
1670 	/*
1671 	 * XXX: This means qphysio() failed with EFAULT.  The current
1672 	 * behavior is to retry the operation via fo_read/fo_write.
1673 	 * Wouldn't it be better to just complete the request with an
1674 	 * error here?
1675 	 */
1676 	if (error > 0)
1677 		goto done;
1678 #endif
1679 queueit:
1680 	if (!enable_aio_unsafe)
1681 		return (EOPNOTSUPP);
1682 
1683 	if (opcode == LIO_SYNC) {
1684 		AIO_LOCK(ki);
1685 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1686 			if (job2->fd_file == job->fd_file &&
1687 			    job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
1688 			    job2->seqno < job->seqno) {
1689 				job2->jobflags |= KAIOCB_CHECKSYNC;
1690 				job->pending++;
1691 			}
1692 		}
1693 		if (job->pending != 0) {
1694 			if (!aio_set_cancel_function(job, aio_cancel_sync)) {
1695 				AIO_UNLOCK(ki);
1696 				aio_cancel(job);
1697 				return (0);
1698 			}
1699 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1700 			AIO_UNLOCK(ki);
1701 			return (0);
1702 		}
1703 		AIO_UNLOCK(ki);
1704 	}
1705 
1706 	switch (opcode) {
1707 	case LIO_READ:
1708 	case LIO_WRITE:
1709 		aio_schedule(job, aio_process_rw);
1710 		error = 0;
1711 		break;
1712 	case LIO_SYNC:
1713 		aio_schedule(job, aio_process_sync);
1714 		error = 0;
1715 		break;
1716 	default:
1717 		error = EINVAL;
1718 	}
1719 done:
1720 	return (error);
1721 }
1722 
1723 static void
1724 aio_kick_nowait(struct proc *userp)
1725 {
1726 	struct kaioinfo *ki = userp->p_aioinfo;
1727 	struct aioproc *aiop;
1728 
1729 	mtx_assert(&aio_job_mtx, MA_OWNED);
1730 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1731 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1732 		aiop->aioprocflags &= ~AIOP_FREE;
1733 		wakeup(aiop->aioproc);
1734 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1735 	    ki->kaio_active_count + num_aio_resv_start <
1736 	    ki->kaio_maxactive_count) {
1737 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1738 	}
1739 }
1740 
1741 static int
1742 aio_kick(struct proc *userp)
1743 {
1744 	struct kaioinfo *ki = userp->p_aioinfo;
1745 	struct aioproc *aiop;
1746 	int error, ret = 0;
1747 
1748 	mtx_assert(&aio_job_mtx, MA_OWNED);
1749 retryproc:
1750 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1751 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1752 		aiop->aioprocflags &= ~AIOP_FREE;
1753 		wakeup(aiop->aioproc);
1754 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1755 	    ki->kaio_active_count + num_aio_resv_start <
1756 	    ki->kaio_maxactive_count) {
1757 		num_aio_resv_start++;
1758 		mtx_unlock(&aio_job_mtx);
1759 		error = aio_newproc(&num_aio_resv_start);
1760 		mtx_lock(&aio_job_mtx);
1761 		if (error) {
1762 			num_aio_resv_start--;
1763 			goto retryproc;
1764 		}
1765 	} else {
1766 		ret = -1;
1767 	}
1768 	return (ret);
1769 }
1770 
1771 static void
1772 aio_kick_helper(void *context, int pending)
1773 {
1774 	struct proc *userp = context;
1775 
1776 	mtx_lock(&aio_job_mtx);
1777 	while (--pending >= 0) {
1778 		if (aio_kick(userp))
1779 			break;
1780 	}
1781 	mtx_unlock(&aio_job_mtx);
1782 }
1783 
1784 /*
1785  * Support the aio_return system call, as a side-effect, kernel resources are
1786  * released.
1787  */
1788 static int
1789 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1790 {
1791 	struct proc *p = td->td_proc;
1792 	struct kaiocb *job;
1793 	struct kaioinfo *ki;
1794 	long status, error;
1795 
1796 	ki = p->p_aioinfo;
1797 	if (ki == NULL)
1798 		return (EINVAL);
1799 	AIO_LOCK(ki);
1800 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1801 		if (job->ujob == ujob)
1802 			break;
1803 	}
1804 	if (job != NULL) {
1805 		MPASS(job->jobflags & KAIOCB_FINISHED);
1806 		status = job->uaiocb._aiocb_private.status;
1807 		error = job->uaiocb._aiocb_private.error;
1808 		td->td_retval[0] = status;
1809 		if (job->uaiocb.aio_lio_opcode == LIO_WRITE) {
1810 			td->td_ru.ru_oublock += job->outputcharge;
1811 			job->outputcharge = 0;
1812 		} else if (job->uaiocb.aio_lio_opcode == LIO_READ) {
1813 			td->td_ru.ru_inblock += job->inputcharge;
1814 			job->inputcharge = 0;
1815 		}
1816 		aio_free_entry(job);
1817 		AIO_UNLOCK(ki);
1818 		ops->store_error(ujob, error);
1819 		ops->store_status(ujob, status);
1820 	} else {
1821 		error = EINVAL;
1822 		AIO_UNLOCK(ki);
1823 	}
1824 	return (error);
1825 }
1826 
1827 int
1828 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1829 {
1830 
1831 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1832 }
1833 
1834 /*
1835  * Allow a process to wakeup when any of the I/O requests are completed.
1836  */
1837 static int
1838 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1839     struct timespec *ts)
1840 {
1841 	struct proc *p = td->td_proc;
1842 	struct timeval atv;
1843 	struct kaioinfo *ki;
1844 	struct kaiocb *firstjob, *job;
1845 	int error, i, timo;
1846 
1847 	timo = 0;
1848 	if (ts) {
1849 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1850 			return (EINVAL);
1851 
1852 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1853 		if (itimerfix(&atv))
1854 			return (EINVAL);
1855 		timo = tvtohz(&atv);
1856 	}
1857 
1858 	ki = p->p_aioinfo;
1859 	if (ki == NULL)
1860 		return (EAGAIN);
1861 
1862 	if (njoblist == 0)
1863 		return (0);
1864 
1865 	AIO_LOCK(ki);
1866 	for (;;) {
1867 		firstjob = NULL;
1868 		error = 0;
1869 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1870 			for (i = 0; i < njoblist; i++) {
1871 				if (job->ujob == ujoblist[i]) {
1872 					if (firstjob == NULL)
1873 						firstjob = job;
1874 					if (job->jobflags & KAIOCB_FINISHED)
1875 						goto RETURN;
1876 				}
1877 			}
1878 		}
1879 		/* All tasks were finished. */
1880 		if (firstjob == NULL)
1881 			break;
1882 
1883 		ki->kaio_flags |= KAIO_WAKEUP;
1884 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1885 		    "aiospn", timo);
1886 		if (error == ERESTART)
1887 			error = EINTR;
1888 		if (error)
1889 			break;
1890 	}
1891 RETURN:
1892 	AIO_UNLOCK(ki);
1893 	return (error);
1894 }
1895 
1896 int
1897 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1898 {
1899 	struct timespec ts, *tsp;
1900 	struct aiocb **ujoblist;
1901 	int error;
1902 
1903 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
1904 		return (EINVAL);
1905 
1906 	if (uap->timeout) {
1907 		/* Get timespec struct. */
1908 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1909 			return (error);
1910 		tsp = &ts;
1911 	} else
1912 		tsp = NULL;
1913 
1914 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
1915 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
1916 	if (error == 0)
1917 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
1918 	uma_zfree(aiol_zone, ujoblist);
1919 	return (error);
1920 }
1921 
1922 /*
1923  * aio_cancel cancels any non-physio aio operations not currently in
1924  * progress.
1925  */
1926 int
1927 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
1928 {
1929 	struct proc *p = td->td_proc;
1930 	struct kaioinfo *ki;
1931 	struct kaiocb *job, *jobn;
1932 	struct file *fp;
1933 	cap_rights_t rights;
1934 	int error;
1935 	int cancelled = 0;
1936 	int notcancelled = 0;
1937 	struct vnode *vp;
1938 
1939 	/* Lookup file object. */
1940 	error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
1941 	if (error)
1942 		return (error);
1943 
1944 	ki = p->p_aioinfo;
1945 	if (ki == NULL)
1946 		goto done;
1947 
1948 	if (fp->f_type == DTYPE_VNODE) {
1949 		vp = fp->f_vnode;
1950 		if (vn_isdisk(vp, &error)) {
1951 			fdrop(fp, td);
1952 			td->td_retval[0] = AIO_NOTCANCELED;
1953 			return (0);
1954 		}
1955 	}
1956 
1957 	AIO_LOCK(ki);
1958 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
1959 		if ((uap->fd == job->uaiocb.aio_fildes) &&
1960 		    ((uap->aiocbp == NULL) ||
1961 		     (uap->aiocbp == job->ujob))) {
1962 			if (aio_cancel_job(p, ki, job)) {
1963 				cancelled++;
1964 			} else {
1965 				notcancelled++;
1966 			}
1967 			if (uap->aiocbp != NULL)
1968 				break;
1969 		}
1970 	}
1971 	AIO_UNLOCK(ki);
1972 
1973 done:
1974 	fdrop(fp, td);
1975 
1976 	if (uap->aiocbp != NULL) {
1977 		if (cancelled) {
1978 			td->td_retval[0] = AIO_CANCELED;
1979 			return (0);
1980 		}
1981 	}
1982 
1983 	if (notcancelled) {
1984 		td->td_retval[0] = AIO_NOTCANCELED;
1985 		return (0);
1986 	}
1987 
1988 	if (cancelled) {
1989 		td->td_retval[0] = AIO_CANCELED;
1990 		return (0);
1991 	}
1992 
1993 	td->td_retval[0] = AIO_ALLDONE;
1994 
1995 	return (0);
1996 }
1997 
1998 /*
1999  * aio_error is implemented in the kernel level for compatibility purposes
2000  * only.  For a user mode async implementation, it would be best to do it in
2001  * a userland subroutine.
2002  */
2003 static int
2004 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2005 {
2006 	struct proc *p = td->td_proc;
2007 	struct kaiocb *job;
2008 	struct kaioinfo *ki;
2009 	int status;
2010 
2011 	ki = p->p_aioinfo;
2012 	if (ki == NULL) {
2013 		td->td_retval[0] = EINVAL;
2014 		return (0);
2015 	}
2016 
2017 	AIO_LOCK(ki);
2018 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2019 		if (job->ujob == ujob) {
2020 			if (job->jobflags & KAIOCB_FINISHED)
2021 				td->td_retval[0] =
2022 					job->uaiocb._aiocb_private.error;
2023 			else
2024 				td->td_retval[0] = EINPROGRESS;
2025 			AIO_UNLOCK(ki);
2026 			return (0);
2027 		}
2028 	}
2029 	AIO_UNLOCK(ki);
2030 
2031 	/*
2032 	 * Hack for failure of aio_aqueue.
2033 	 */
2034 	status = ops->fetch_status(ujob);
2035 	if (status == -1) {
2036 		td->td_retval[0] = ops->fetch_error(ujob);
2037 		return (0);
2038 	}
2039 
2040 	td->td_retval[0] = EINVAL;
2041 	return (0);
2042 }
2043 
2044 int
2045 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2046 {
2047 
2048 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2049 }
2050 
2051 /* syscall - asynchronous read from a file (REALTIME) */
2052 #ifdef COMPAT_FREEBSD6
2053 int
2054 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2055 {
2056 
2057 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2058 	    &aiocb_ops_osigevent));
2059 }
2060 #endif
2061 
2062 int
2063 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2064 {
2065 
2066 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2067 }
2068 
2069 /* syscall - asynchronous write to a file (REALTIME) */
2070 #ifdef COMPAT_FREEBSD6
2071 int
2072 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2073 {
2074 
2075 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2076 	    &aiocb_ops_osigevent));
2077 }
2078 #endif
2079 
2080 int
2081 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2082 {
2083 
2084 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2085 }
2086 
2087 int
2088 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2089 {
2090 
2091 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2092 }
2093 
2094 static int
2095 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2096     struct aiocb **acb_list, int nent, struct sigevent *sig,
2097     struct aiocb_ops *ops)
2098 {
2099 	struct proc *p = td->td_proc;
2100 	struct aiocb *job;
2101 	struct kaioinfo *ki;
2102 	struct aioliojob *lj;
2103 	struct kevent kev;
2104 	int error;
2105 	int nerror;
2106 	int i;
2107 
2108 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2109 		return (EINVAL);
2110 
2111 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2112 		return (EINVAL);
2113 
2114 	if (p->p_aioinfo == NULL)
2115 		aio_init_aioinfo(p);
2116 
2117 	ki = p->p_aioinfo;
2118 
2119 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2120 	lj->lioj_flags = 0;
2121 	lj->lioj_count = 0;
2122 	lj->lioj_finished_count = 0;
2123 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2124 	ksiginfo_init(&lj->lioj_ksi);
2125 
2126 	/*
2127 	 * Setup signal.
2128 	 */
2129 	if (sig && (mode == LIO_NOWAIT)) {
2130 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2131 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2132 			/* Assume only new style KEVENT */
2133 			kev.filter = EVFILT_LIO;
2134 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2135 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2136 			kev.data = (intptr_t)lj;
2137 			/* pass user defined sigval data */
2138 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2139 			error = kqfd_register(
2140 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
2141 			if (error) {
2142 				uma_zfree(aiolio_zone, lj);
2143 				return (error);
2144 			}
2145 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2146 			;
2147 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2148 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2149 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2150 					uma_zfree(aiolio_zone, lj);
2151 					return EINVAL;
2152 				}
2153 				lj->lioj_flags |= LIOJ_SIGNAL;
2154 		} else {
2155 			uma_zfree(aiolio_zone, lj);
2156 			return EINVAL;
2157 		}
2158 	}
2159 
2160 	AIO_LOCK(ki);
2161 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2162 	/*
2163 	 * Add extra aiocb count to avoid the lio to be freed
2164 	 * by other threads doing aio_waitcomplete or aio_return,
2165 	 * and prevent event from being sent until we have queued
2166 	 * all tasks.
2167 	 */
2168 	lj->lioj_count = 1;
2169 	AIO_UNLOCK(ki);
2170 
2171 	/*
2172 	 * Get pointers to the list of I/O requests.
2173 	 */
2174 	nerror = 0;
2175 	for (i = 0; i < nent; i++) {
2176 		job = acb_list[i];
2177 		if (job != NULL) {
2178 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2179 			if (error != 0)
2180 				nerror++;
2181 		}
2182 	}
2183 
2184 	error = 0;
2185 	AIO_LOCK(ki);
2186 	if (mode == LIO_WAIT) {
2187 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2188 			ki->kaio_flags |= KAIO_WAKEUP;
2189 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2190 			    PRIBIO | PCATCH, "aiospn", 0);
2191 			if (error == ERESTART)
2192 				error = EINTR;
2193 			if (error)
2194 				break;
2195 		}
2196 	} else {
2197 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2198 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2199 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2200 				KNOTE_LOCKED(&lj->klist, 1);
2201 			}
2202 			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
2203 			    == LIOJ_SIGNAL
2204 			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2205 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2206 				aio_sendsig(p, &lj->lioj_signal,
2207 					    &lj->lioj_ksi);
2208 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2209 			}
2210 		}
2211 	}
2212 	lj->lioj_count--;
2213 	if (lj->lioj_count == 0) {
2214 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2215 		knlist_delete(&lj->klist, curthread, 1);
2216 		PROC_LOCK(p);
2217 		sigqueue_take(&lj->lioj_ksi);
2218 		PROC_UNLOCK(p);
2219 		AIO_UNLOCK(ki);
2220 		uma_zfree(aiolio_zone, lj);
2221 	} else
2222 		AIO_UNLOCK(ki);
2223 
2224 	if (nerror)
2225 		return (EIO);
2226 	return (error);
2227 }
2228 
2229 /* syscall - list directed I/O (REALTIME) */
2230 #ifdef COMPAT_FREEBSD6
2231 int
2232 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2233 {
2234 	struct aiocb **acb_list;
2235 	struct sigevent *sigp, sig;
2236 	struct osigevent osig;
2237 	int error, nent;
2238 
2239 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2240 		return (EINVAL);
2241 
2242 	nent = uap->nent;
2243 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2244 		return (EINVAL);
2245 
2246 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2247 		error = copyin(uap->sig, &osig, sizeof(osig));
2248 		if (error)
2249 			return (error);
2250 		error = convert_old_sigevent(&osig, &sig);
2251 		if (error)
2252 			return (error);
2253 		sigp = &sig;
2254 	} else
2255 		sigp = NULL;
2256 
2257 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2258 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2259 	if (error == 0)
2260 		error = kern_lio_listio(td, uap->mode,
2261 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2262 		    &aiocb_ops_osigevent);
2263 	free(acb_list, M_LIO);
2264 	return (error);
2265 }
2266 #endif
2267 
2268 /* syscall - list directed I/O (REALTIME) */
2269 int
2270 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2271 {
2272 	struct aiocb **acb_list;
2273 	struct sigevent *sigp, sig;
2274 	int error, nent;
2275 
2276 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2277 		return (EINVAL);
2278 
2279 	nent = uap->nent;
2280 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2281 		return (EINVAL);
2282 
2283 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2284 		error = copyin(uap->sig, &sig, sizeof(sig));
2285 		if (error)
2286 			return (error);
2287 		sigp = &sig;
2288 	} else
2289 		sigp = NULL;
2290 
2291 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2292 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2293 	if (error == 0)
2294 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2295 		    nent, sigp, &aiocb_ops);
2296 	free(acb_list, M_LIO);
2297 	return (error);
2298 }
2299 
2300 static void
2301 aio_physwakeup(struct bio *bp)
2302 {
2303 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2304 	struct proc *userp;
2305 	struct kaioinfo *ki;
2306 	size_t nbytes;
2307 	int error, nblks;
2308 
2309 	/* Release mapping into kernel space. */
2310 	userp = job->userproc;
2311 	ki = userp->p_aioinfo;
2312 	if (job->pbuf) {
2313 		pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
2314 		relpbuf(job->pbuf, NULL);
2315 		job->pbuf = NULL;
2316 		atomic_subtract_int(&num_buf_aio, 1);
2317 		AIO_LOCK(ki);
2318 		ki->kaio_buffer_count--;
2319 		AIO_UNLOCK(ki);
2320 	}
2321 	vm_page_unhold_pages(job->pages, job->npages);
2322 
2323 	bp = job->bp;
2324 	job->bp = NULL;
2325 	nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
2326 	error = 0;
2327 	if (bp->bio_flags & BIO_ERROR)
2328 		error = bp->bio_error;
2329 	nblks = btodb(nbytes);
2330 	if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
2331 		job->outputcharge += nblks;
2332 	else
2333 		job->inputcharge += nblks;
2334 
2335 	if (error)
2336 		aio_complete(job, -1, error);
2337 	else
2338 		aio_complete(job, nbytes, 0);
2339 
2340 	g_destroy_bio(bp);
2341 }
2342 
2343 /* syscall - wait for the next completion of an aio request */
2344 static int
2345 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2346     struct timespec *ts, struct aiocb_ops *ops)
2347 {
2348 	struct proc *p = td->td_proc;
2349 	struct timeval atv;
2350 	struct kaioinfo *ki;
2351 	struct kaiocb *job;
2352 	struct aiocb *ujob;
2353 	long error, status;
2354 	int timo;
2355 
2356 	ops->store_aiocb(ujobp, NULL);
2357 
2358 	if (ts == NULL) {
2359 		timo = 0;
2360 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2361 		timo = -1;
2362 	} else {
2363 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2364 			return (EINVAL);
2365 
2366 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2367 		if (itimerfix(&atv))
2368 			return (EINVAL);
2369 		timo = tvtohz(&atv);
2370 	}
2371 
2372 	if (p->p_aioinfo == NULL)
2373 		aio_init_aioinfo(p);
2374 	ki = p->p_aioinfo;
2375 
2376 	error = 0;
2377 	job = NULL;
2378 	AIO_LOCK(ki);
2379 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2380 		if (timo == -1) {
2381 			error = EWOULDBLOCK;
2382 			break;
2383 		}
2384 		ki->kaio_flags |= KAIO_WAKEUP;
2385 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2386 		    "aiowc", timo);
2387 		if (timo && error == ERESTART)
2388 			error = EINTR;
2389 		if (error)
2390 			break;
2391 	}
2392 
2393 	if (job != NULL) {
2394 		MPASS(job->jobflags & KAIOCB_FINISHED);
2395 		ujob = job->ujob;
2396 		status = job->uaiocb._aiocb_private.status;
2397 		error = job->uaiocb._aiocb_private.error;
2398 		td->td_retval[0] = status;
2399 		if (job->uaiocb.aio_lio_opcode == LIO_WRITE) {
2400 			td->td_ru.ru_oublock += job->outputcharge;
2401 			job->outputcharge = 0;
2402 		} else if (job->uaiocb.aio_lio_opcode == LIO_READ) {
2403 			td->td_ru.ru_inblock += job->inputcharge;
2404 			job->inputcharge = 0;
2405 		}
2406 		aio_free_entry(job);
2407 		AIO_UNLOCK(ki);
2408 		ops->store_aiocb(ujobp, ujob);
2409 		ops->store_error(ujob, error);
2410 		ops->store_status(ujob, status);
2411 	} else
2412 		AIO_UNLOCK(ki);
2413 
2414 	return (error);
2415 }
2416 
2417 int
2418 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2419 {
2420 	struct timespec ts, *tsp;
2421 	int error;
2422 
2423 	if (uap->timeout) {
2424 		/* Get timespec struct. */
2425 		error = copyin(uap->timeout, &ts, sizeof(ts));
2426 		if (error)
2427 			return (error);
2428 		tsp = &ts;
2429 	} else
2430 		tsp = NULL;
2431 
2432 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2433 }
2434 
2435 static int
2436 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2437     struct aiocb_ops *ops)
2438 {
2439 	struct proc *p = td->td_proc;
2440 	struct kaioinfo *ki;
2441 
2442 	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2443 		return (EINVAL);
2444 	ki = p->p_aioinfo;
2445 	if (ki == NULL)
2446 		aio_init_aioinfo(p);
2447 	return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
2448 }
2449 
2450 int
2451 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2452 {
2453 
2454 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2455 }
2456 
2457 /* kqueue attach function */
2458 static int
2459 filt_aioattach(struct knote *kn)
2460 {
2461 	struct kaiocb *job = (struct kaiocb *)kn->kn_sdata;
2462 
2463 	/*
2464 	 * The job pointer must be validated before using it, so
2465 	 * registration is restricted to the kernel; the user cannot
2466 	 * set EV_FLAG1.
2467 	 */
2468 	if ((kn->kn_flags & EV_FLAG1) == 0)
2469 		return (EPERM);
2470 	kn->kn_ptr.p_aio = job;
2471 	kn->kn_flags &= ~EV_FLAG1;
2472 
2473 	knlist_add(&job->klist, kn, 0);
2474 
2475 	return (0);
2476 }
2477 
2478 /* kqueue detach function */
2479 static void
2480 filt_aiodetach(struct knote *kn)
2481 {
2482 	struct knlist *knl;
2483 
2484 	knl = &kn->kn_ptr.p_aio->klist;
2485 	knl->kl_lock(knl->kl_lockarg);
2486 	if (!knlist_empty(knl))
2487 		knlist_remove(knl, kn, 1);
2488 	knl->kl_unlock(knl->kl_lockarg);
2489 }
2490 
2491 /* kqueue filter function */
2492 /*ARGSUSED*/
2493 static int
2494 filt_aio(struct knote *kn, long hint)
2495 {
2496 	struct kaiocb *job = kn->kn_ptr.p_aio;
2497 
2498 	kn->kn_data = job->uaiocb._aiocb_private.error;
2499 	if (!(job->jobflags & KAIOCB_FINISHED))
2500 		return (0);
2501 	kn->kn_flags |= EV_EOF;
2502 	return (1);
2503 }
2504 
2505 /* kqueue attach function */
2506 static int
2507 filt_lioattach(struct knote *kn)
2508 {
2509 	struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
2510 
2511 	/*
2512 	 * The aioliojob pointer must be validated before using it, so
2513 	 * registration is restricted to the kernel; the user cannot
2514 	 * set EV_FLAG1.
2515 	 */
2516 	if ((kn->kn_flags & EV_FLAG1) == 0)
2517 		return (EPERM);
2518 	kn->kn_ptr.p_lio = lj;
2519 	kn->kn_flags &= ~EV_FLAG1;
2520 
2521 	knlist_add(&lj->klist, kn, 0);
2522 
2523 	return (0);
2524 }
2525 
2526 /* kqueue detach function */
2527 static void
2528 filt_liodetach(struct knote *kn)
2529 {
2530 	struct knlist *knl;
2531 
2532 	knl = &kn->kn_ptr.p_lio->klist;
2533 	knl->kl_lock(knl->kl_lockarg);
2534 	if (!knlist_empty(knl))
2535 		knlist_remove(knl, kn, 1);
2536 	knl->kl_unlock(knl->kl_lockarg);
2537 }
2538 
2539 /* kqueue filter function */
2540 /*ARGSUSED*/
2541 static int
2542 filt_lio(struct knote *kn, long hint)
2543 {
2544 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2545 
2546 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2547 }
2548 
2549 #ifdef COMPAT_FREEBSD32
2550 #include <sys/mount.h>
2551 #include <sys/socket.h>
2552 #include <compat/freebsd32/freebsd32.h>
2553 #include <compat/freebsd32/freebsd32_proto.h>
2554 #include <compat/freebsd32/freebsd32_signal.h>
2555 #include <compat/freebsd32/freebsd32_syscall.h>
2556 #include <compat/freebsd32/freebsd32_util.h>
2557 
2558 struct __aiocb_private32 {
2559 	int32_t	status;
2560 	int32_t	error;
2561 	uint32_t kernelinfo;
2562 };
2563 
2564 #ifdef COMPAT_FREEBSD6
2565 typedef struct oaiocb32 {
2566 	int	aio_fildes;		/* File descriptor */
2567 	uint64_t aio_offset __packed;	/* File offset for I/O */
2568 	uint32_t aio_buf;		/* I/O buffer in process space */
2569 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2570 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2571 	int	aio_lio_opcode;		/* LIO opcode */
2572 	int	aio_reqprio;		/* Request priority -- ignored */
2573 	struct	__aiocb_private32 _aiocb_private;
2574 } oaiocb32_t;
2575 #endif
2576 
2577 typedef struct aiocb32 {
2578 	int32_t	aio_fildes;		/* File descriptor */
2579 	uint64_t aio_offset __packed;	/* File offset for I/O */
2580 	uint32_t aio_buf;		/* I/O buffer in process space */
2581 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2582 	int	__spare__[2];
2583 	uint32_t __spare2__;
2584 	int	aio_lio_opcode;		/* LIO opcode */
2585 	int	aio_reqprio;		/* Request priority -- ignored */
2586 	struct	__aiocb_private32 _aiocb_private;
2587 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2588 } aiocb32_t;
2589 
2590 #ifdef COMPAT_FREEBSD6
2591 static int
2592 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2593 {
2594 
2595 	/*
2596 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2597 	 * supported by AIO with the old sigevent structure.
2598 	 */
2599 	CP(*osig, *nsig, sigev_notify);
2600 	switch (nsig->sigev_notify) {
2601 	case SIGEV_NONE:
2602 		break;
2603 	case SIGEV_SIGNAL:
2604 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2605 		break;
2606 	case SIGEV_KEVENT:
2607 		nsig->sigev_notify_kqueue =
2608 		    osig->__sigev_u.__sigev_notify_kqueue;
2609 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2610 		break;
2611 	default:
2612 		return (EINVAL);
2613 	}
2614 	return (0);
2615 }
2616 
2617 static int
2618 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2619 {
2620 	struct oaiocb32 job32;
2621 	int error;
2622 
2623 	bzero(kjob, sizeof(struct aiocb));
2624 	error = copyin(ujob, &job32, sizeof(job32));
2625 	if (error)
2626 		return (error);
2627 
2628 	CP(job32, *kjob, aio_fildes);
2629 	CP(job32, *kjob, aio_offset);
2630 	PTRIN_CP(job32, *kjob, aio_buf);
2631 	CP(job32, *kjob, aio_nbytes);
2632 	CP(job32, *kjob, aio_lio_opcode);
2633 	CP(job32, *kjob, aio_reqprio);
2634 	CP(job32, *kjob, _aiocb_private.status);
2635 	CP(job32, *kjob, _aiocb_private.error);
2636 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2637 	return (convert_old_sigevent32(&job32.aio_sigevent,
2638 	    &kjob->aio_sigevent));
2639 }
2640 #endif
2641 
2642 static int
2643 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2644 {
2645 	struct aiocb32 job32;
2646 	int error;
2647 
2648 	error = copyin(ujob, &job32, sizeof(job32));
2649 	if (error)
2650 		return (error);
2651 	CP(job32, *kjob, aio_fildes);
2652 	CP(job32, *kjob, aio_offset);
2653 	PTRIN_CP(job32, *kjob, aio_buf);
2654 	CP(job32, *kjob, aio_nbytes);
2655 	CP(job32, *kjob, aio_lio_opcode);
2656 	CP(job32, *kjob, aio_reqprio);
2657 	CP(job32, *kjob, _aiocb_private.status);
2658 	CP(job32, *kjob, _aiocb_private.error);
2659 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2660 	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2661 }
2662 
2663 static long
2664 aiocb32_fetch_status(struct aiocb *ujob)
2665 {
2666 	struct aiocb32 *ujob32;
2667 
2668 	ujob32 = (struct aiocb32 *)ujob;
2669 	return (fuword32(&ujob32->_aiocb_private.status));
2670 }
2671 
2672 static long
2673 aiocb32_fetch_error(struct aiocb *ujob)
2674 {
2675 	struct aiocb32 *ujob32;
2676 
2677 	ujob32 = (struct aiocb32 *)ujob;
2678 	return (fuword32(&ujob32->_aiocb_private.error));
2679 }
2680 
2681 static int
2682 aiocb32_store_status(struct aiocb *ujob, long status)
2683 {
2684 	struct aiocb32 *ujob32;
2685 
2686 	ujob32 = (struct aiocb32 *)ujob;
2687 	return (suword32(&ujob32->_aiocb_private.status, status));
2688 }
2689 
2690 static int
2691 aiocb32_store_error(struct aiocb *ujob, long error)
2692 {
2693 	struct aiocb32 *ujob32;
2694 
2695 	ujob32 = (struct aiocb32 *)ujob;
2696 	return (suword32(&ujob32->_aiocb_private.error, error));
2697 }
2698 
2699 static int
2700 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2701 {
2702 	struct aiocb32 *ujob32;
2703 
2704 	ujob32 = (struct aiocb32 *)ujob;
2705 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2706 }
2707 
2708 static int
2709 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2710 {
2711 
2712 	return (suword32(ujobp, (long)ujob));
2713 }
2714 
2715 static struct aiocb_ops aiocb32_ops = {
2716 	.copyin = aiocb32_copyin,
2717 	.fetch_status = aiocb32_fetch_status,
2718 	.fetch_error = aiocb32_fetch_error,
2719 	.store_status = aiocb32_store_status,
2720 	.store_error = aiocb32_store_error,
2721 	.store_kernelinfo = aiocb32_store_kernelinfo,
2722 	.store_aiocb = aiocb32_store_aiocb,
2723 };
2724 
2725 #ifdef COMPAT_FREEBSD6
2726 static struct aiocb_ops aiocb32_ops_osigevent = {
2727 	.copyin = aiocb32_copyin_old_sigevent,
2728 	.fetch_status = aiocb32_fetch_status,
2729 	.fetch_error = aiocb32_fetch_error,
2730 	.store_status = aiocb32_store_status,
2731 	.store_error = aiocb32_store_error,
2732 	.store_kernelinfo = aiocb32_store_kernelinfo,
2733 	.store_aiocb = aiocb32_store_aiocb,
2734 };
2735 #endif
2736 
2737 int
2738 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2739 {
2740 
2741 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2742 }
2743 
2744 int
2745 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2746 {
2747 	struct timespec32 ts32;
2748 	struct timespec ts, *tsp;
2749 	struct aiocb **ujoblist;
2750 	uint32_t *ujoblist32;
2751 	int error, i;
2752 
2753 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2754 		return (EINVAL);
2755 
2756 	if (uap->timeout) {
2757 		/* Get timespec struct. */
2758 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2759 			return (error);
2760 		CP(ts32, ts, tv_sec);
2761 		CP(ts32, ts, tv_nsec);
2762 		tsp = &ts;
2763 	} else
2764 		tsp = NULL;
2765 
2766 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2767 	ujoblist32 = (uint32_t *)ujoblist;
2768 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2769 	    sizeof(ujoblist32[0]));
2770 	if (error == 0) {
2771 		for (i = uap->nent; i > 0; i--)
2772 			ujoblist[i] = PTRIN(ujoblist32[i]);
2773 
2774 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2775 	}
2776 	uma_zfree(aiol_zone, ujoblist);
2777 	return (error);
2778 }
2779 
2780 int
2781 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2782 {
2783 
2784 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2785 }
2786 
2787 #ifdef COMPAT_FREEBSD6
2788 int
2789 freebsd6_freebsd32_aio_read(struct thread *td,
2790     struct freebsd6_freebsd32_aio_read_args *uap)
2791 {
2792 
2793 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2794 	    &aiocb32_ops_osigevent));
2795 }
2796 #endif
2797 
2798 int
2799 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2800 {
2801 
2802 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2803 	    &aiocb32_ops));
2804 }
2805 
2806 #ifdef COMPAT_FREEBSD6
2807 int
2808 freebsd6_freebsd32_aio_write(struct thread *td,
2809     struct freebsd6_freebsd32_aio_write_args *uap)
2810 {
2811 
2812 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2813 	    &aiocb32_ops_osigevent));
2814 }
2815 #endif
2816 
2817 int
2818 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2819 {
2820 
2821 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2822 	    &aiocb32_ops));
2823 }
2824 
2825 int
2826 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2827 {
2828 
2829 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2830 	    &aiocb32_ops));
2831 }
2832 
2833 int
2834 freebsd32_aio_waitcomplete(struct thread *td,
2835     struct freebsd32_aio_waitcomplete_args *uap)
2836 {
2837 	struct timespec32 ts32;
2838 	struct timespec ts, *tsp;
2839 	int error;
2840 
2841 	if (uap->timeout) {
2842 		/* Get timespec struct. */
2843 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2844 		if (error)
2845 			return (error);
2846 		CP(ts32, ts, tv_sec);
2847 		CP(ts32, ts, tv_nsec);
2848 		tsp = &ts;
2849 	} else
2850 		tsp = NULL;
2851 
2852 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2853 	    &aiocb32_ops));
2854 }
2855 
2856 int
2857 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2858 {
2859 
2860 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2861 	    &aiocb32_ops));
2862 }
2863 
2864 #ifdef COMPAT_FREEBSD6
2865 int
2866 freebsd6_freebsd32_lio_listio(struct thread *td,
2867     struct freebsd6_freebsd32_lio_listio_args *uap)
2868 {
2869 	struct aiocb **acb_list;
2870 	struct sigevent *sigp, sig;
2871 	struct osigevent32 osig;
2872 	uint32_t *acb_list32;
2873 	int error, i, nent;
2874 
2875 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2876 		return (EINVAL);
2877 
2878 	nent = uap->nent;
2879 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2880 		return (EINVAL);
2881 
2882 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2883 		error = copyin(uap->sig, &osig, sizeof(osig));
2884 		if (error)
2885 			return (error);
2886 		error = convert_old_sigevent32(&osig, &sig);
2887 		if (error)
2888 			return (error);
2889 		sigp = &sig;
2890 	} else
2891 		sigp = NULL;
2892 
2893 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2894 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2895 	if (error) {
2896 		free(acb_list32, M_LIO);
2897 		return (error);
2898 	}
2899 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2900 	for (i = 0; i < nent; i++)
2901 		acb_list[i] = PTRIN(acb_list32[i]);
2902 	free(acb_list32, M_LIO);
2903 
2904 	error = kern_lio_listio(td, uap->mode,
2905 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2906 	    &aiocb32_ops_osigevent);
2907 	free(acb_list, M_LIO);
2908 	return (error);
2909 }
2910 #endif
2911 
2912 int
2913 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
2914 {
2915 	struct aiocb **acb_list;
2916 	struct sigevent *sigp, sig;
2917 	struct sigevent32 sig32;
2918 	uint32_t *acb_list32;
2919 	int error, i, nent;
2920 
2921 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2922 		return (EINVAL);
2923 
2924 	nent = uap->nent;
2925 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2926 		return (EINVAL);
2927 
2928 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2929 		error = copyin(uap->sig, &sig32, sizeof(sig32));
2930 		if (error)
2931 			return (error);
2932 		error = convert_sigevent32(&sig32, &sig);
2933 		if (error)
2934 			return (error);
2935 		sigp = &sig;
2936 	} else
2937 		sigp = NULL;
2938 
2939 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
2940 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
2941 	if (error) {
2942 		free(acb_list32, M_LIO);
2943 		return (error);
2944 	}
2945 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2946 	for (i = 0; i < nent; i++)
2947 		acb_list[i] = PTRIN(acb_list32[i]);
2948 	free(acb_list32, M_LIO);
2949 
2950 	error = kern_lio_listio(td, uap->mode,
2951 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2952 	    &aiocb32_ops);
2953 	free(acb_list, M_LIO);
2954 	return (error);
2955 }
2956 
2957 #endif
2958