1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/sema.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/syscall.h> 54 #include <sys/sysent.h> 55 #include <sys/sysctl.h> 56 #include <sys/sx.h> 57 #include <sys/taskqueue.h> 58 #include <sys/vnode.h> 59 #include <sys/conf.h> 60 #include <sys/event.h> 61 #include <sys/mount.h> 62 #include <geom/geom.h> 63 64 #include <machine/atomic.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_extern.h> 69 #include <vm/pmap.h> 70 #include <vm/vm_map.h> 71 #include <vm/vm_object.h> 72 #include <vm/uma.h> 73 #include <sys/aio.h> 74 75 #include "opt_vfs_aio.h" 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #define JOBST_NULL 0 89 #define JOBST_JOBQSOCK 1 90 #define JOBST_JOBQGLOBAL 2 91 #define JOBST_JOBRUNNING 3 92 #define JOBST_JOBFINISHED 4 93 #define JOBST_JOBQBUF 5 94 #define JOBST_JOBQSYNC 6 95 96 #ifndef MAX_AIO_PER_PROC 97 #define MAX_AIO_PER_PROC 32 98 #endif 99 100 #ifndef MAX_AIO_QUEUE_PER_PROC 101 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 102 #endif 103 104 #ifndef MAX_AIO_PROCS 105 #define MAX_AIO_PROCS 32 106 #endif 107 108 #ifndef MAX_AIO_QUEUE 109 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 110 #endif 111 112 #ifndef TARGET_AIO_PROCS 113 #define TARGET_AIO_PROCS 4 114 #endif 115 116 #ifndef MAX_BUF_AIO 117 #define MAX_BUF_AIO 16 118 #endif 119 120 #ifndef AIOD_LIFETIME_DEFAULT 121 #define AIOD_LIFETIME_DEFAULT (30 * hz) 122 #endif 123 124 FEATURE(aio, "Asynchronous I/O"); 125 126 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 129 130 static int max_aio_procs = MAX_AIO_PROCS; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 132 CTLFLAG_RW, &max_aio_procs, 0, 133 "Maximum number of kernel threads to use for handling async IO "); 134 135 static int num_aio_procs = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 137 CTLFLAG_RD, &num_aio_procs, 0, 138 "Number of presently active kernel threads for async IO"); 139 140 /* 141 * The code will adjust the actual number of AIO processes towards this 142 * number when it gets a chance. 143 */ 144 static int target_aio_procs = TARGET_AIO_PROCS; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 146 0, "Preferred number of ready kernel threads for async IO"); 147 148 static int max_queue_count = MAX_AIO_QUEUE; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 150 "Maximum number of aio requests to queue, globally"); 151 152 static int num_queue_count = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 154 "Number of queued aio requests"); 155 156 static int num_buf_aio = 0; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 158 "Number of aio requests presently handled by the buf subsystem"); 159 160 /* Number of async I/O thread in the process of being started */ 161 /* XXX This should be local to aio_aqueue() */ 162 static int num_aio_resv_start = 0; 163 164 static int aiod_lifetime; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 166 "Maximum lifetime for idle aiod"); 167 168 static int unloadable = 0; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 170 "Allow unload of aio (not recommended)"); 171 172 173 static int max_aio_per_proc = MAX_AIO_PER_PROC; 174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 175 0, "Maximum active aio requests per process (stored in the process)"); 176 177 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 179 &max_aio_queue_per_proc, 0, 180 "Maximum queued aio requests per process (stored in the process)"); 181 182 static int max_buf_aio = MAX_BUF_AIO; 183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 184 "Maximum buf aio requests per process (stored in the process)"); 185 186 typedef struct oaiocb { 187 int aio_fildes; /* File descriptor */ 188 off_t aio_offset; /* File offset for I/O */ 189 volatile void *aio_buf; /* I/O buffer in process space */ 190 size_t aio_nbytes; /* Number of bytes for I/O */ 191 struct osigevent aio_sigevent; /* Signal to deliver */ 192 int aio_lio_opcode; /* LIO opcode */ 193 int aio_reqprio; /* Request priority -- ignored */ 194 struct __aiocb_private _aiocb_private; 195 } oaiocb_t; 196 197 /* 198 * Below is a key of locks used to protect each member of struct aiocblist 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * Current, there is only two backends: BIO and generic file I/O. 211 * socket I/O is served by generic file I/O, this is not a good idea, since 212 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 213 * threads, if there is no thread to serve socket I/O, the socket I/O will be 214 * delayed too long or starved, we should create some threads dedicated to 215 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 216 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 217 * structure is not safe because there is race between userland and aio 218 * daemons. 219 */ 220 221 struct aiocblist { 222 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 223 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 224 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 225 int jobflags; /* (a) job flags */ 226 int jobstate; /* (b) job state */ 227 int inputcharge; /* (*) input blockes */ 228 int outputcharge; /* (*) output blockes */ 229 struct bio *bp; /* (*) BIO backend BIO pointer */ 230 struct buf *pbuf; /* (*) BIO backend buffer pointer */ 231 struct vm_page *pages[btoc(MAXPHYS)+1]; /* BIO backend pages */ 232 int npages; /* BIO backend number of pages */ 233 struct proc *userproc; /* (*) user process */ 234 struct ucred *cred; /* (*) active credential when created */ 235 struct file *fd_file; /* (*) pointer to file structure */ 236 struct aioliojob *lio; /* (*) optional lio job */ 237 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 238 struct knlist klist; /* (a) list of knotes */ 239 struct aiocb uaiocb; /* (*) kernel I/O control block */ 240 ksiginfo_t ksi; /* (a) realtime signal info */ 241 uint64_t seqno; /* (*) job number */ 242 int pending; /* (a) number of pending I/O, aio_fsync only */ 243 }; 244 245 /* jobflags */ 246 #define AIOCBLIST_DONE 0x01 247 #define AIOCBLIST_BUFDONE 0x02 248 #define AIOCBLIST_RUNDOWN 0x04 249 #define AIOCBLIST_CHECKSYNC 0x08 250 251 /* 252 * AIO process info 253 */ 254 #define AIOP_FREE 0x1 /* proc on free queue */ 255 256 struct aiothreadlist { 257 int aiothreadflags; /* (c) AIO proc flags */ 258 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 259 struct thread *aiothread; /* (*) the AIO thread */ 260 }; 261 262 /* 263 * data-structure for lio signal management 264 */ 265 struct aioliojob { 266 int lioj_flags; /* (a) listio flags */ 267 int lioj_count; /* (a) listio flags */ 268 int lioj_finished_count; /* (a) listio flags */ 269 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 270 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 271 struct knlist klist; /* (a) list of knotes */ 272 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 273 }; 274 275 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 276 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 277 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 278 279 /* 280 * per process aio data structure 281 */ 282 struct kaioinfo { 283 struct mtx kaio_mtx; /* the lock to protect this struct */ 284 int kaio_flags; /* (a) per process kaio flags */ 285 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 286 int kaio_active_count; /* (c) number of currently used AIOs */ 287 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 288 int kaio_count; /* (a) size of AIO queue */ 289 int kaio_ballowed_count; /* (*) maximum number of buffers */ 290 int kaio_buffer_count; /* (a) number of physio buffers */ 291 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 292 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 293 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 294 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 295 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 296 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 297 * NOT USED YET. 298 */ 299 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 300 struct task kaio_task; /* (*) task to kick aio threads */ 301 }; 302 303 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 304 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 305 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 306 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 307 308 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 309 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 310 311 /* 312 * Operations used to interact with userland aio control blocks. 313 * Different ABIs provide their own operations. 314 */ 315 struct aiocb_ops { 316 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 317 long (*fetch_status)(struct aiocb *ujob); 318 long (*fetch_error)(struct aiocb *ujob); 319 int (*store_status)(struct aiocb *ujob, long status); 320 int (*store_error)(struct aiocb *ujob, long error); 321 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 322 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 323 }; 324 325 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 326 static struct sema aio_newproc_sem; 327 static struct mtx aio_job_mtx; 328 static struct mtx aio_sock_mtx; 329 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 330 static struct unrhdr *aiod_unr; 331 332 void aio_init_aioinfo(struct proc *p); 333 static int aio_onceonly(void); 334 static int aio_free_entry(struct aiocblist *aiocbe); 335 static void aio_process_rw(struct aiocblist *aiocbe); 336 static void aio_process_sync(struct aiocblist *aiocbe); 337 static void aio_process_mlock(struct aiocblist *aiocbe); 338 static int aio_newproc(int *); 339 int aio_aqueue(struct thread *td, struct aiocb *job, 340 struct aioliojob *lio, int type, struct aiocb_ops *ops); 341 static void aio_physwakeup(struct bio *bp); 342 static void aio_proc_rundown(void *arg, struct proc *p); 343 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 344 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 345 static void aio_daemon(void *param); 346 static void aio_swake_cb(struct socket *, struct sockbuf *); 347 static int aio_unload(void); 348 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 349 #define DONE_BUF 1 350 #define DONE_QUEUE 2 351 static int aio_kick(struct proc *userp); 352 static void aio_kick_nowait(struct proc *userp); 353 static void aio_kick_helper(void *context, int pending); 354 static int filt_aioattach(struct knote *kn); 355 static void filt_aiodetach(struct knote *kn); 356 static int filt_aio(struct knote *kn, long hint); 357 static int filt_lioattach(struct knote *kn); 358 static void filt_liodetach(struct knote *kn); 359 static int filt_lio(struct knote *kn, long hint); 360 361 /* 362 * Zones for: 363 * kaio Per process async io info 364 * aiop async io thread data 365 * aiocb async io jobs 366 * aiol list io job pointer - internal to aio_suspend XXX 367 * aiolio list io jobs 368 */ 369 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 370 371 /* kqueue filters for aio */ 372 static struct filterops aio_filtops = { 373 .f_isfd = 0, 374 .f_attach = filt_aioattach, 375 .f_detach = filt_aiodetach, 376 .f_event = filt_aio, 377 }; 378 static struct filterops lio_filtops = { 379 .f_isfd = 0, 380 .f_attach = filt_lioattach, 381 .f_detach = filt_liodetach, 382 .f_event = filt_lio 383 }; 384 385 static eventhandler_tag exit_tag, exec_tag; 386 387 TASKQUEUE_DEFINE_THREAD(aiod_kick); 388 389 /* 390 * Main operations function for use as a kernel module. 391 */ 392 static int 393 aio_modload(struct module *module, int cmd, void *arg) 394 { 395 int error = 0; 396 397 switch (cmd) { 398 case MOD_LOAD: 399 aio_onceonly(); 400 break; 401 case MOD_UNLOAD: 402 error = aio_unload(); 403 break; 404 case MOD_SHUTDOWN: 405 break; 406 default: 407 error = EINVAL; 408 break; 409 } 410 return (error); 411 } 412 413 static moduledata_t aio_mod = { 414 "aio", 415 &aio_modload, 416 NULL 417 }; 418 419 static struct syscall_helper_data aio_syscalls[] = { 420 SYSCALL_INIT_HELPER(aio_cancel), 421 SYSCALL_INIT_HELPER(aio_error), 422 SYSCALL_INIT_HELPER(aio_fsync), 423 SYSCALL_INIT_HELPER(aio_mlock), 424 SYSCALL_INIT_HELPER(aio_read), 425 SYSCALL_INIT_HELPER(aio_return), 426 SYSCALL_INIT_HELPER(aio_suspend), 427 SYSCALL_INIT_HELPER(aio_waitcomplete), 428 SYSCALL_INIT_HELPER(aio_write), 429 SYSCALL_INIT_HELPER(lio_listio), 430 SYSCALL_INIT_HELPER(oaio_read), 431 SYSCALL_INIT_HELPER(oaio_write), 432 SYSCALL_INIT_HELPER(olio_listio), 433 SYSCALL_INIT_LAST 434 }; 435 436 #ifdef COMPAT_FREEBSD32 437 #include <sys/mount.h> 438 #include <sys/socket.h> 439 #include <compat/freebsd32/freebsd32.h> 440 #include <compat/freebsd32/freebsd32_proto.h> 441 #include <compat/freebsd32/freebsd32_signal.h> 442 #include <compat/freebsd32/freebsd32_syscall.h> 443 #include <compat/freebsd32/freebsd32_util.h> 444 445 static struct syscall_helper_data aio32_syscalls[] = { 446 SYSCALL32_INIT_HELPER(freebsd32_aio_return), 447 SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), 448 SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), 449 SYSCALL32_INIT_HELPER(freebsd32_aio_error), 450 SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), 451 SYSCALL32_INIT_HELPER(freebsd32_aio_mlock), 452 SYSCALL32_INIT_HELPER(freebsd32_aio_read), 453 SYSCALL32_INIT_HELPER(freebsd32_aio_write), 454 SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), 455 SYSCALL32_INIT_HELPER(freebsd32_lio_listio), 456 SYSCALL32_INIT_HELPER(freebsd32_oaio_read), 457 SYSCALL32_INIT_HELPER(freebsd32_oaio_write), 458 SYSCALL32_INIT_HELPER(freebsd32_olio_listio), 459 SYSCALL_INIT_LAST 460 }; 461 #endif 462 463 DECLARE_MODULE(aio, aio_mod, 464 SI_SUB_VFS, SI_ORDER_ANY); 465 MODULE_VERSION(aio, 1); 466 467 /* 468 * Startup initialization 469 */ 470 static int 471 aio_onceonly(void) 472 { 473 int error; 474 475 /* XXX: should probably just use so->callback */ 476 aio_swake = &aio_swake_cb; 477 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 478 EVENTHANDLER_PRI_ANY); 479 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 480 EVENTHANDLER_PRI_ANY); 481 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 482 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 483 TAILQ_INIT(&aio_freeproc); 484 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 485 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 486 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 487 TAILQ_INIT(&aio_jobs); 488 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 489 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 490 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 491 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 492 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 493 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 494 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 495 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 496 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 497 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 498 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 499 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 500 jobrefid = 1; 501 async_io_version = _POSIX_VERSION; 502 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 503 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 504 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 505 506 error = syscall_helper_register(aio_syscalls, SY_THR_STATIC_KLD); 507 if (error) 508 return (error); 509 #ifdef COMPAT_FREEBSD32 510 error = syscall32_helper_register(aio32_syscalls, SY_THR_STATIC_KLD); 511 if (error) 512 return (error); 513 #endif 514 return (0); 515 } 516 517 /* 518 * Callback for unload of AIO when used as a module. 519 */ 520 static int 521 aio_unload(void) 522 { 523 int error; 524 525 /* 526 * XXX: no unloads by default, it's too dangerous. 527 * perhaps we could do it if locked out callers and then 528 * did an aio_proc_rundown() on each process. 529 * 530 * jhb: aio_proc_rundown() needs to run on curproc though, 531 * so I don't think that would fly. 532 */ 533 if (!unloadable) 534 return (EOPNOTSUPP); 535 536 #ifdef COMPAT_FREEBSD32 537 syscall32_helper_unregister(aio32_syscalls); 538 #endif 539 syscall_helper_unregister(aio_syscalls); 540 541 error = kqueue_del_filteropts(EVFILT_AIO); 542 if (error) 543 return error; 544 error = kqueue_del_filteropts(EVFILT_LIO); 545 if (error) 546 return error; 547 async_io_version = 0; 548 aio_swake = NULL; 549 taskqueue_free(taskqueue_aiod_kick); 550 delete_unrhdr(aiod_unr); 551 uma_zdestroy(kaio_zone); 552 uma_zdestroy(aiop_zone); 553 uma_zdestroy(aiocb_zone); 554 uma_zdestroy(aiol_zone); 555 uma_zdestroy(aiolio_zone); 556 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 557 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 558 mtx_destroy(&aio_job_mtx); 559 mtx_destroy(&aio_sock_mtx); 560 sema_destroy(&aio_newproc_sem); 561 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 562 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 563 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 564 return (0); 565 } 566 567 /* 568 * Init the per-process aioinfo structure. The aioinfo limits are set 569 * per-process for user limit (resource) management. 570 */ 571 void 572 aio_init_aioinfo(struct proc *p) 573 { 574 struct kaioinfo *ki; 575 576 ki = uma_zalloc(kaio_zone, M_WAITOK); 577 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 578 ki->kaio_flags = 0; 579 ki->kaio_maxactive_count = max_aio_per_proc; 580 ki->kaio_active_count = 0; 581 ki->kaio_qallowed_count = max_aio_queue_per_proc; 582 ki->kaio_count = 0; 583 ki->kaio_ballowed_count = max_buf_aio; 584 ki->kaio_buffer_count = 0; 585 TAILQ_INIT(&ki->kaio_all); 586 TAILQ_INIT(&ki->kaio_done); 587 TAILQ_INIT(&ki->kaio_jobqueue); 588 TAILQ_INIT(&ki->kaio_bufqueue); 589 TAILQ_INIT(&ki->kaio_liojoblist); 590 TAILQ_INIT(&ki->kaio_sockqueue); 591 TAILQ_INIT(&ki->kaio_syncqueue); 592 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 593 PROC_LOCK(p); 594 if (p->p_aioinfo == NULL) { 595 p->p_aioinfo = ki; 596 PROC_UNLOCK(p); 597 } else { 598 PROC_UNLOCK(p); 599 mtx_destroy(&ki->kaio_mtx); 600 uma_zfree(kaio_zone, ki); 601 } 602 603 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 604 aio_newproc(NULL); 605 } 606 607 static int 608 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 609 { 610 struct thread *td; 611 int error; 612 613 error = sigev_findtd(p, sigev, &td); 614 if (error) 615 return (error); 616 if (!KSI_ONQ(ksi)) { 617 ksiginfo_set_sigev(ksi, sigev); 618 ksi->ksi_code = SI_ASYNCIO; 619 ksi->ksi_flags |= KSI_EXT | KSI_INS; 620 tdsendsignal(p, td, ksi->ksi_signo, ksi); 621 } 622 PROC_UNLOCK(p); 623 return (error); 624 } 625 626 /* 627 * Free a job entry. Wait for completion if it is currently active, but don't 628 * delay forever. If we delay, we return a flag that says that we have to 629 * restart the queue scan. 630 */ 631 static int 632 aio_free_entry(struct aiocblist *aiocbe) 633 { 634 struct kaioinfo *ki; 635 struct aioliojob *lj; 636 struct proc *p; 637 638 p = aiocbe->userproc; 639 MPASS(curproc == p); 640 ki = p->p_aioinfo; 641 MPASS(ki != NULL); 642 643 AIO_LOCK_ASSERT(ki, MA_OWNED); 644 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 645 646 atomic_subtract_int(&num_queue_count, 1); 647 648 ki->kaio_count--; 649 MPASS(ki->kaio_count >= 0); 650 651 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 652 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 653 654 lj = aiocbe->lio; 655 if (lj) { 656 lj->lioj_count--; 657 lj->lioj_finished_count--; 658 659 if (lj->lioj_count == 0) { 660 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 661 /* lio is going away, we need to destroy any knotes */ 662 knlist_delete(&lj->klist, curthread, 1); 663 PROC_LOCK(p); 664 sigqueue_take(&lj->lioj_ksi); 665 PROC_UNLOCK(p); 666 uma_zfree(aiolio_zone, lj); 667 } 668 } 669 670 /* aiocbe is going away, we need to destroy any knotes */ 671 knlist_delete(&aiocbe->klist, curthread, 1); 672 PROC_LOCK(p); 673 sigqueue_take(&aiocbe->ksi); 674 PROC_UNLOCK(p); 675 676 MPASS(aiocbe->bp == NULL); 677 aiocbe->jobstate = JOBST_NULL; 678 AIO_UNLOCK(ki); 679 680 /* 681 * The thread argument here is used to find the owning process 682 * and is also passed to fo_close() which may pass it to various 683 * places such as devsw close() routines. Because of that, we 684 * need a thread pointer from the process owning the job that is 685 * persistent and won't disappear out from under us or move to 686 * another process. 687 * 688 * Currently, all the callers of this function call it to remove 689 * an aiocblist from the current process' job list either via a 690 * syscall or due to the current process calling exit() or 691 * execve(). Thus, we know that p == curproc. We also know that 692 * curthread can't exit since we are curthread. 693 * 694 * Therefore, we use curthread as the thread to pass to 695 * knlist_delete(). This does mean that it is possible for the 696 * thread pointer at close time to differ from the thread pointer 697 * at open time, but this is already true of file descriptors in 698 * a multithreaded process. 699 */ 700 if (aiocbe->fd_file) 701 fdrop(aiocbe->fd_file, curthread); 702 crfree(aiocbe->cred); 703 uma_zfree(aiocb_zone, aiocbe); 704 AIO_LOCK(ki); 705 706 return (0); 707 } 708 709 static void 710 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 711 { 712 aio_proc_rundown(arg, p); 713 } 714 715 /* 716 * Rundown the jobs for a given process. 717 */ 718 static void 719 aio_proc_rundown(void *arg, struct proc *p) 720 { 721 struct kaioinfo *ki; 722 struct aioliojob *lj; 723 struct aiocblist *cbe, *cbn; 724 struct file *fp; 725 struct socket *so; 726 int remove; 727 728 KASSERT(curthread->td_proc == p, 729 ("%s: called on non-curproc", __func__)); 730 ki = p->p_aioinfo; 731 if (ki == NULL) 732 return; 733 734 AIO_LOCK(ki); 735 ki->kaio_flags |= KAIO_RUNDOWN; 736 737 restart: 738 739 /* 740 * Try to cancel all pending requests. This code simulates 741 * aio_cancel on all pending I/O requests. 742 */ 743 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 744 remove = 0; 745 mtx_lock(&aio_job_mtx); 746 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 747 TAILQ_REMOVE(&aio_jobs, cbe, list); 748 remove = 1; 749 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 750 fp = cbe->fd_file; 751 MPASS(fp->f_type == DTYPE_SOCKET); 752 so = fp->f_data; 753 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 754 remove = 1; 755 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 756 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 757 remove = 1; 758 } 759 mtx_unlock(&aio_job_mtx); 760 761 if (remove) { 762 cbe->jobstate = JOBST_JOBFINISHED; 763 cbe->uaiocb._aiocb_private.status = -1; 764 cbe->uaiocb._aiocb_private.error = ECANCELED; 765 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 766 aio_bio_done_notify(p, cbe, DONE_QUEUE); 767 } 768 } 769 770 /* Wait for all running I/O to be finished */ 771 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 772 TAILQ_FIRST(&ki->kaio_jobqueue)) { 773 ki->kaio_flags |= KAIO_WAKEUP; 774 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 775 goto restart; 776 } 777 778 /* Free all completed I/O requests. */ 779 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 780 aio_free_entry(cbe); 781 782 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 783 if (lj->lioj_count == 0) { 784 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 785 knlist_delete(&lj->klist, curthread, 1); 786 PROC_LOCK(p); 787 sigqueue_take(&lj->lioj_ksi); 788 PROC_UNLOCK(p); 789 uma_zfree(aiolio_zone, lj); 790 } else { 791 panic("LIO job not cleaned up: C:%d, FC:%d\n", 792 lj->lioj_count, lj->lioj_finished_count); 793 } 794 } 795 AIO_UNLOCK(ki); 796 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 797 mtx_destroy(&ki->kaio_mtx); 798 uma_zfree(kaio_zone, ki); 799 p->p_aioinfo = NULL; 800 } 801 802 /* 803 * Select a job to run (called by an AIO daemon). 804 */ 805 static struct aiocblist * 806 aio_selectjob(struct aiothreadlist *aiop) 807 { 808 struct aiocblist *aiocbe; 809 struct kaioinfo *ki; 810 struct proc *userp; 811 812 mtx_assert(&aio_job_mtx, MA_OWNED); 813 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 814 userp = aiocbe->userproc; 815 ki = userp->p_aioinfo; 816 817 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 818 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 819 /* Account for currently active jobs. */ 820 ki->kaio_active_count++; 821 aiocbe->jobstate = JOBST_JOBRUNNING; 822 break; 823 } 824 } 825 return (aiocbe); 826 } 827 828 /* 829 * Move all data to a permanent storage device, this code 830 * simulates fsync syscall. 831 */ 832 static int 833 aio_fsync_vnode(struct thread *td, struct vnode *vp) 834 { 835 struct mount *mp; 836 int error; 837 838 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 839 goto drop; 840 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 841 if (vp->v_object != NULL) { 842 VM_OBJECT_WLOCK(vp->v_object); 843 vm_object_page_clean(vp->v_object, 0, 0, 0); 844 VM_OBJECT_WUNLOCK(vp->v_object); 845 } 846 error = VOP_FSYNC(vp, MNT_WAIT, td); 847 848 VOP_UNLOCK(vp, 0); 849 vn_finished_write(mp); 850 drop: 851 return (error); 852 } 853 854 /* 855 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 856 * does the I/O request for the non-physio version of the operations. The 857 * normal vn operations are used, and this code should work in all instances 858 * for every type of file, including pipes, sockets, fifos, and regular files. 859 * 860 * XXX I don't think it works well for socket, pipe, and fifo. 861 */ 862 static void 863 aio_process_rw(struct aiocblist *aiocbe) 864 { 865 struct ucred *td_savedcred; 866 struct thread *td; 867 struct aiocb *cb; 868 struct file *fp; 869 struct socket *so; 870 struct uio auio; 871 struct iovec aiov; 872 int cnt; 873 int error; 874 int oublock_st, oublock_end; 875 int inblock_st, inblock_end; 876 877 KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_READ || 878 aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE, 879 ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode)); 880 881 td = curthread; 882 td_savedcred = td->td_ucred; 883 td->td_ucred = aiocbe->cred; 884 cb = &aiocbe->uaiocb; 885 fp = aiocbe->fd_file; 886 887 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 888 aiov.iov_len = cb->aio_nbytes; 889 890 auio.uio_iov = &aiov; 891 auio.uio_iovcnt = 1; 892 auio.uio_offset = cb->aio_offset; 893 auio.uio_resid = cb->aio_nbytes; 894 cnt = cb->aio_nbytes; 895 auio.uio_segflg = UIO_USERSPACE; 896 auio.uio_td = td; 897 898 inblock_st = td->td_ru.ru_inblock; 899 oublock_st = td->td_ru.ru_oublock; 900 /* 901 * aio_aqueue() acquires a reference to the file that is 902 * released in aio_free_entry(). 903 */ 904 if (cb->aio_lio_opcode == LIO_READ) { 905 auio.uio_rw = UIO_READ; 906 if (auio.uio_resid == 0) 907 error = 0; 908 else 909 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 910 } else { 911 if (fp->f_type == DTYPE_VNODE) 912 bwillwrite(); 913 auio.uio_rw = UIO_WRITE; 914 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 915 } 916 inblock_end = td->td_ru.ru_inblock; 917 oublock_end = td->td_ru.ru_oublock; 918 919 aiocbe->inputcharge = inblock_end - inblock_st; 920 aiocbe->outputcharge = oublock_end - oublock_st; 921 922 if ((error) && (auio.uio_resid != cnt)) { 923 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 924 error = 0; 925 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 926 int sigpipe = 1; 927 if (fp->f_type == DTYPE_SOCKET) { 928 so = fp->f_data; 929 if (so->so_options & SO_NOSIGPIPE) 930 sigpipe = 0; 931 } 932 if (sigpipe) { 933 PROC_LOCK(aiocbe->userproc); 934 kern_psignal(aiocbe->userproc, SIGPIPE); 935 PROC_UNLOCK(aiocbe->userproc); 936 } 937 } 938 } 939 940 cnt -= auio.uio_resid; 941 cb->_aiocb_private.error = error; 942 cb->_aiocb_private.status = cnt; 943 td->td_ucred = td_savedcred; 944 } 945 946 static void 947 aio_process_sync(struct aiocblist *aiocbe) 948 { 949 struct thread *td = curthread; 950 struct ucred *td_savedcred = td->td_ucred; 951 struct aiocb *cb = &aiocbe->uaiocb; 952 struct file *fp = aiocbe->fd_file; 953 int error = 0; 954 955 KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_SYNC, 956 ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode)); 957 958 td->td_ucred = aiocbe->cred; 959 if (fp->f_vnode != NULL) 960 error = aio_fsync_vnode(td, fp->f_vnode); 961 cb->_aiocb_private.error = error; 962 cb->_aiocb_private.status = 0; 963 td->td_ucred = td_savedcred; 964 } 965 966 static void 967 aio_process_mlock(struct aiocblist *aiocbe) 968 { 969 struct aiocb *cb = &aiocbe->uaiocb; 970 int error; 971 972 KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_MLOCK, 973 ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode)); 974 975 error = vm_mlock(aiocbe->userproc, aiocbe->cred, 976 __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes); 977 cb->_aiocb_private.error = error; 978 cb->_aiocb_private.status = 0; 979 } 980 981 static void 982 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 983 { 984 struct aioliojob *lj; 985 struct kaioinfo *ki; 986 struct aiocblist *scb, *scbn; 987 int lj_done; 988 989 ki = userp->p_aioinfo; 990 AIO_LOCK_ASSERT(ki, MA_OWNED); 991 lj = aiocbe->lio; 992 lj_done = 0; 993 if (lj) { 994 lj->lioj_finished_count++; 995 if (lj->lioj_count == lj->lioj_finished_count) 996 lj_done = 1; 997 } 998 if (type == DONE_QUEUE) { 999 aiocbe->jobflags |= AIOCBLIST_DONE; 1000 } else { 1001 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 1002 } 1003 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 1004 aiocbe->jobstate = JOBST_JOBFINISHED; 1005 1006 if (ki->kaio_flags & KAIO_RUNDOWN) 1007 goto notification_done; 1008 1009 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1010 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 1011 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 1012 1013 KNOTE_LOCKED(&aiocbe->klist, 1); 1014 1015 if (lj_done) { 1016 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 1017 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 1018 KNOTE_LOCKED(&lj->klist, 1); 1019 } 1020 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 1021 == LIOJ_SIGNAL 1022 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 1023 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 1024 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 1025 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 1026 } 1027 } 1028 1029 notification_done: 1030 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 1031 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 1032 if (aiocbe->fd_file == scb->fd_file && 1033 aiocbe->seqno < scb->seqno) { 1034 if (--scb->pending == 0) { 1035 mtx_lock(&aio_job_mtx); 1036 scb->jobstate = JOBST_JOBQGLOBAL; 1037 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 1038 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 1039 aio_kick_nowait(userp); 1040 mtx_unlock(&aio_job_mtx); 1041 } 1042 } 1043 } 1044 } 1045 if (ki->kaio_flags & KAIO_WAKEUP) { 1046 ki->kaio_flags &= ~KAIO_WAKEUP; 1047 wakeup(&userp->p_aioinfo); 1048 } 1049 } 1050 1051 static void 1052 aio_switch_vmspace(struct aiocblist *aiocbe) 1053 { 1054 1055 vmspace_switch_aio(aiocbe->userproc->p_vmspace); 1056 } 1057 1058 /* 1059 * The AIO daemon, most of the actual work is done in aio_process_*, 1060 * but the setup (and address space mgmt) is done in this routine. 1061 */ 1062 static void 1063 aio_daemon(void *_id) 1064 { 1065 struct aiocblist *aiocbe; 1066 struct aiothreadlist *aiop; 1067 struct kaioinfo *ki; 1068 struct proc *p, *userp; 1069 struct vmspace *myvm; 1070 struct thread *td = curthread; 1071 int id = (intptr_t)_id; 1072 1073 /* 1074 * Grab an extra reference on the daemon's vmspace so that it 1075 * doesn't get freed by jobs that switch to a different 1076 * vmspace. 1077 */ 1078 p = td->td_proc; 1079 myvm = vmspace_acquire_ref(p); 1080 1081 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1082 1083 /* 1084 * Allocate and ready the aio control info. There is one aiop structure 1085 * per daemon. 1086 */ 1087 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1088 aiop->aiothread = td; 1089 aiop->aiothreadflags = 0; 1090 1091 /* 1092 * Wakeup parent process. (Parent sleeps to keep from blasting away 1093 * and creating too many daemons.) 1094 */ 1095 sema_post(&aio_newproc_sem); 1096 1097 mtx_lock(&aio_job_mtx); 1098 for (;;) { 1099 /* 1100 * Take daemon off of free queue 1101 */ 1102 if (aiop->aiothreadflags & AIOP_FREE) { 1103 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1104 aiop->aiothreadflags &= ~AIOP_FREE; 1105 } 1106 1107 /* 1108 * Check for jobs. 1109 */ 1110 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1111 mtx_unlock(&aio_job_mtx); 1112 userp = aiocbe->userproc; 1113 1114 /* 1115 * Connect to process address space for user program. 1116 */ 1117 aio_switch_vmspace(aiocbe); 1118 1119 ki = userp->p_aioinfo; 1120 1121 /* Do the I/O function. */ 1122 switch(aiocbe->uaiocb.aio_lio_opcode) { 1123 case LIO_READ: 1124 case LIO_WRITE: 1125 aio_process_rw(aiocbe); 1126 break; 1127 case LIO_SYNC: 1128 aio_process_sync(aiocbe); 1129 break; 1130 case LIO_MLOCK: 1131 aio_process_mlock(aiocbe); 1132 break; 1133 } 1134 1135 mtx_lock(&aio_job_mtx); 1136 /* Decrement the active job count. */ 1137 ki->kaio_active_count--; 1138 mtx_unlock(&aio_job_mtx); 1139 1140 AIO_LOCK(ki); 1141 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1142 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1143 AIO_UNLOCK(ki); 1144 1145 mtx_lock(&aio_job_mtx); 1146 } 1147 1148 /* 1149 * Disconnect from user address space. 1150 */ 1151 if (p->p_vmspace != myvm) { 1152 mtx_unlock(&aio_job_mtx); 1153 vmspace_switch_aio(myvm); 1154 mtx_lock(&aio_job_mtx); 1155 /* 1156 * We have to restart to avoid race, we only sleep if 1157 * no job can be selected. 1158 */ 1159 continue; 1160 } 1161 1162 mtx_assert(&aio_job_mtx, MA_OWNED); 1163 1164 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1165 aiop->aiothreadflags |= AIOP_FREE; 1166 1167 /* 1168 * If daemon is inactive for a long time, allow it to exit, 1169 * thereby freeing resources. 1170 */ 1171 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1172 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1173 (aiop->aiothreadflags & AIOP_FREE) && 1174 num_aio_procs > target_aio_procs) 1175 break; 1176 } 1177 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1178 num_aio_procs--; 1179 mtx_unlock(&aio_job_mtx); 1180 uma_zfree(aiop_zone, aiop); 1181 free_unr(aiod_unr, id); 1182 vmspace_free(myvm); 1183 1184 KASSERT(p->p_vmspace == myvm, 1185 ("AIOD: bad vmspace for exiting daemon")); 1186 KASSERT(myvm->vm_refcnt > 1, 1187 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1188 kproc_exit(0); 1189 } 1190 1191 /* 1192 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1193 * AIO daemon modifies its environment itself. 1194 */ 1195 static int 1196 aio_newproc(int *start) 1197 { 1198 int error; 1199 struct proc *p; 1200 int id; 1201 1202 id = alloc_unr(aiod_unr); 1203 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1204 RFNOWAIT, 0, "aiod%d", id); 1205 if (error == 0) { 1206 /* 1207 * Wait until daemon is started. 1208 */ 1209 sema_wait(&aio_newproc_sem); 1210 mtx_lock(&aio_job_mtx); 1211 num_aio_procs++; 1212 if (start != NULL) 1213 (*start)--; 1214 mtx_unlock(&aio_job_mtx); 1215 } else { 1216 free_unr(aiod_unr, id); 1217 } 1218 return (error); 1219 } 1220 1221 /* 1222 * Try the high-performance, low-overhead physio method for eligible 1223 * VCHR devices. This method doesn't use an aio helper thread, and 1224 * thus has very low overhead. 1225 * 1226 * Assumes that the caller, aio_aqueue(), has incremented the file 1227 * structure's reference count, preventing its deallocation for the 1228 * duration of this call. 1229 */ 1230 static int 1231 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1232 { 1233 struct aiocb *cb; 1234 struct file *fp; 1235 struct bio *bp; 1236 struct buf *pbuf; 1237 struct vnode *vp; 1238 struct cdevsw *csw; 1239 struct cdev *dev; 1240 struct kaioinfo *ki; 1241 struct aioliojob *lj; 1242 int error, ref, unmap, poff; 1243 vm_prot_t prot; 1244 1245 cb = &aiocbe->uaiocb; 1246 fp = aiocbe->fd_file; 1247 1248 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1249 return (-1); 1250 1251 vp = fp->f_vnode; 1252 if (vp->v_type != VCHR) 1253 return (-1); 1254 if (vp->v_bufobj.bo_bsize == 0) 1255 return (-1); 1256 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1257 return (-1); 1258 1259 ref = 0; 1260 csw = devvn_refthread(vp, &dev, &ref); 1261 if (csw == NULL) 1262 return (ENXIO); 1263 1264 if ((csw->d_flags & D_DISK) == 0) { 1265 error = -1; 1266 goto unref; 1267 } 1268 if (cb->aio_nbytes > dev->si_iosize_max) { 1269 error = -1; 1270 goto unref; 1271 } 1272 1273 ki = p->p_aioinfo; 1274 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1275 unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed); 1276 if (unmap) { 1277 if (cb->aio_nbytes > MAXPHYS) { 1278 error = -1; 1279 goto unref; 1280 } 1281 } else { 1282 if (cb->aio_nbytes > MAXPHYS - poff) { 1283 error = -1; 1284 goto unref; 1285 } 1286 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1287 error = -1; 1288 goto unref; 1289 } 1290 } 1291 aiocbe->bp = bp = g_alloc_bio(); 1292 if (!unmap) { 1293 aiocbe->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1294 BUF_KERNPROC(pbuf); 1295 } 1296 1297 AIO_LOCK(ki); 1298 ki->kaio_count++; 1299 if (!unmap) 1300 ki->kaio_buffer_count++; 1301 lj = aiocbe->lio; 1302 if (lj) 1303 lj->lioj_count++; 1304 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1305 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1306 aiocbe->jobstate = JOBST_JOBQBUF; 1307 cb->_aiocb_private.status = cb->aio_nbytes; 1308 AIO_UNLOCK(ki); 1309 1310 bp->bio_length = cb->aio_nbytes; 1311 bp->bio_bcount = cb->aio_nbytes; 1312 bp->bio_done = aio_physwakeup; 1313 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1314 bp->bio_offset = cb->aio_offset; 1315 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1316 bp->bio_dev = dev; 1317 bp->bio_caller1 = (void *)aiocbe; 1318 1319 prot = VM_PROT_READ; 1320 if (cb->aio_lio_opcode == LIO_READ) 1321 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1322 if ((aiocbe->npages = vm_fault_quick_hold_pages( 1323 &curproc->p_vmspace->vm_map, 1324 (vm_offset_t)bp->bio_data, bp->bio_length, prot, aiocbe->pages, 1325 sizeof(aiocbe->pages)/sizeof(aiocbe->pages[0]))) < 0) { 1326 error = EFAULT; 1327 goto doerror; 1328 } 1329 if (!unmap) { 1330 pmap_qenter((vm_offset_t)pbuf->b_data, 1331 aiocbe->pages, aiocbe->npages); 1332 bp->bio_data = pbuf->b_data + poff; 1333 } else { 1334 bp->bio_ma = aiocbe->pages; 1335 bp->bio_ma_n = aiocbe->npages; 1336 bp->bio_ma_offset = poff; 1337 bp->bio_data = unmapped_buf; 1338 bp->bio_flags |= BIO_UNMAPPED; 1339 } 1340 1341 atomic_add_int(&num_queue_count, 1); 1342 if (!unmap) 1343 atomic_add_int(&num_buf_aio, 1); 1344 1345 /* Perform transfer. */ 1346 csw->d_strategy(bp); 1347 dev_relthread(dev, ref); 1348 return (0); 1349 1350 doerror: 1351 AIO_LOCK(ki); 1352 aiocbe->jobstate = JOBST_NULL; 1353 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1354 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 1355 ki->kaio_count--; 1356 if (!unmap) 1357 ki->kaio_buffer_count--; 1358 if (lj) 1359 lj->lioj_count--; 1360 AIO_UNLOCK(ki); 1361 if (pbuf) { 1362 relpbuf(pbuf, NULL); 1363 aiocbe->pbuf = NULL; 1364 } 1365 g_destroy_bio(bp); 1366 aiocbe->bp = NULL; 1367 unref: 1368 dev_relthread(dev, ref); 1369 return (error); 1370 } 1371 1372 /* 1373 * Wake up aio requests that may be serviceable now. 1374 */ 1375 static void 1376 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1377 { 1378 struct aiocblist *cb, *cbn; 1379 int opcode; 1380 1381 SOCKBUF_LOCK_ASSERT(sb); 1382 if (sb == &so->so_snd) 1383 opcode = LIO_WRITE; 1384 else 1385 opcode = LIO_READ; 1386 1387 sb->sb_flags &= ~SB_AIO; 1388 mtx_lock(&aio_job_mtx); 1389 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1390 if (opcode == cb->uaiocb.aio_lio_opcode) { 1391 if (cb->jobstate != JOBST_JOBQSOCK) 1392 panic("invalid queue value"); 1393 /* XXX 1394 * We don't have actual sockets backend yet, 1395 * so we simply move the requests to the generic 1396 * file I/O backend. 1397 */ 1398 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1399 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1400 aio_kick_nowait(cb->userproc); 1401 } 1402 } 1403 mtx_unlock(&aio_job_mtx); 1404 } 1405 1406 static int 1407 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1408 { 1409 1410 /* 1411 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1412 * supported by AIO with the old sigevent structure. 1413 */ 1414 nsig->sigev_notify = osig->sigev_notify; 1415 switch (nsig->sigev_notify) { 1416 case SIGEV_NONE: 1417 break; 1418 case SIGEV_SIGNAL: 1419 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1420 break; 1421 case SIGEV_KEVENT: 1422 nsig->sigev_notify_kqueue = 1423 osig->__sigev_u.__sigev_notify_kqueue; 1424 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1425 break; 1426 default: 1427 return (EINVAL); 1428 } 1429 return (0); 1430 } 1431 1432 static int 1433 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1434 { 1435 struct oaiocb *ojob; 1436 int error; 1437 1438 bzero(kjob, sizeof(struct aiocb)); 1439 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1440 if (error) 1441 return (error); 1442 ojob = (struct oaiocb *)kjob; 1443 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1444 } 1445 1446 static int 1447 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1448 { 1449 1450 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1451 } 1452 1453 static long 1454 aiocb_fetch_status(struct aiocb *ujob) 1455 { 1456 1457 return (fuword(&ujob->_aiocb_private.status)); 1458 } 1459 1460 static long 1461 aiocb_fetch_error(struct aiocb *ujob) 1462 { 1463 1464 return (fuword(&ujob->_aiocb_private.error)); 1465 } 1466 1467 static int 1468 aiocb_store_status(struct aiocb *ujob, long status) 1469 { 1470 1471 return (suword(&ujob->_aiocb_private.status, status)); 1472 } 1473 1474 static int 1475 aiocb_store_error(struct aiocb *ujob, long error) 1476 { 1477 1478 return (suword(&ujob->_aiocb_private.error, error)); 1479 } 1480 1481 static int 1482 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1483 { 1484 1485 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1486 } 1487 1488 static int 1489 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1490 { 1491 1492 return (suword(ujobp, (long)ujob)); 1493 } 1494 1495 static struct aiocb_ops aiocb_ops = { 1496 .copyin = aiocb_copyin, 1497 .fetch_status = aiocb_fetch_status, 1498 .fetch_error = aiocb_fetch_error, 1499 .store_status = aiocb_store_status, 1500 .store_error = aiocb_store_error, 1501 .store_kernelinfo = aiocb_store_kernelinfo, 1502 .store_aiocb = aiocb_store_aiocb, 1503 }; 1504 1505 static struct aiocb_ops aiocb_ops_osigevent = { 1506 .copyin = aiocb_copyin_old_sigevent, 1507 .fetch_status = aiocb_fetch_status, 1508 .fetch_error = aiocb_fetch_error, 1509 .store_status = aiocb_store_status, 1510 .store_error = aiocb_store_error, 1511 .store_kernelinfo = aiocb_store_kernelinfo, 1512 .store_aiocb = aiocb_store_aiocb, 1513 }; 1514 1515 /* 1516 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1517 * technique is done in this code. 1518 */ 1519 int 1520 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1521 int type, struct aiocb_ops *ops) 1522 { 1523 struct proc *p = td->td_proc; 1524 cap_rights_t rights; 1525 struct file *fp; 1526 struct socket *so; 1527 struct aiocblist *aiocbe, *cb; 1528 struct kaioinfo *ki; 1529 struct kevent kev; 1530 struct sockbuf *sb; 1531 int opcode; 1532 int error; 1533 int fd, kqfd; 1534 int jid; 1535 u_short evflags; 1536 1537 if (p->p_aioinfo == NULL) 1538 aio_init_aioinfo(p); 1539 1540 ki = p->p_aioinfo; 1541 1542 ops->store_status(job, -1); 1543 ops->store_error(job, 0); 1544 ops->store_kernelinfo(job, -1); 1545 1546 if (num_queue_count >= max_queue_count || 1547 ki->kaio_count >= ki->kaio_qallowed_count) { 1548 ops->store_error(job, EAGAIN); 1549 return (EAGAIN); 1550 } 1551 1552 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1553 knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki)); 1554 1555 error = ops->copyin(job, &aiocbe->uaiocb); 1556 if (error) { 1557 ops->store_error(job, error); 1558 uma_zfree(aiocb_zone, aiocbe); 1559 return (error); 1560 } 1561 1562 /* XXX: aio_nbytes is later casted to signed types. */ 1563 if (aiocbe->uaiocb.aio_nbytes > INT_MAX) { 1564 uma_zfree(aiocb_zone, aiocbe); 1565 return (EINVAL); 1566 } 1567 1568 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1569 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1570 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1571 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1572 ops->store_error(job, EINVAL); 1573 uma_zfree(aiocb_zone, aiocbe); 1574 return (EINVAL); 1575 } 1576 1577 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1578 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1579 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1580 uma_zfree(aiocb_zone, aiocbe); 1581 return (EINVAL); 1582 } 1583 1584 ksiginfo_init(&aiocbe->ksi); 1585 1586 /* Save userspace address of the job info. */ 1587 aiocbe->uuaiocb = job; 1588 1589 /* Get the opcode. */ 1590 if (type != LIO_NOP) 1591 aiocbe->uaiocb.aio_lio_opcode = type; 1592 opcode = aiocbe->uaiocb.aio_lio_opcode; 1593 1594 /* 1595 * Validate the opcode and fetch the file object for the specified 1596 * file descriptor. 1597 * 1598 * XXXRW: Moved the opcode validation up here so that we don't 1599 * retrieve a file descriptor without knowing what the capabiltity 1600 * should be. 1601 */ 1602 fd = aiocbe->uaiocb.aio_fildes; 1603 switch (opcode) { 1604 case LIO_WRITE: 1605 error = fget_write(td, fd, 1606 cap_rights_init(&rights, CAP_PWRITE), &fp); 1607 break; 1608 case LIO_READ: 1609 error = fget_read(td, fd, 1610 cap_rights_init(&rights, CAP_PREAD), &fp); 1611 break; 1612 case LIO_SYNC: 1613 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1614 break; 1615 case LIO_MLOCK: 1616 fp = NULL; 1617 break; 1618 case LIO_NOP: 1619 error = fget(td, fd, cap_rights_init(&rights), &fp); 1620 break; 1621 default: 1622 error = EINVAL; 1623 } 1624 if (error) { 1625 uma_zfree(aiocb_zone, aiocbe); 1626 ops->store_error(job, error); 1627 return (error); 1628 } 1629 1630 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1631 error = EINVAL; 1632 goto aqueue_fail; 1633 } 1634 1635 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1636 error = EINVAL; 1637 goto aqueue_fail; 1638 } 1639 1640 aiocbe->fd_file = fp; 1641 1642 mtx_lock(&aio_job_mtx); 1643 jid = jobrefid++; 1644 aiocbe->seqno = jobseqno++; 1645 mtx_unlock(&aio_job_mtx); 1646 error = ops->store_kernelinfo(job, jid); 1647 if (error) { 1648 error = EINVAL; 1649 goto aqueue_fail; 1650 } 1651 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1652 1653 if (opcode == LIO_NOP) { 1654 fdrop(fp, td); 1655 uma_zfree(aiocb_zone, aiocbe); 1656 return (0); 1657 } 1658 1659 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1660 goto no_kqueue; 1661 evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1662 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1663 error = EINVAL; 1664 goto aqueue_fail; 1665 } 1666 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1667 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1668 kev.filter = EVFILT_AIO; 1669 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1670 kev.data = (intptr_t)aiocbe; 1671 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1672 error = kqfd_register(kqfd, &kev, td, 1); 1673 aqueue_fail: 1674 if (error) { 1675 if (fp) 1676 fdrop(fp, td); 1677 uma_zfree(aiocb_zone, aiocbe); 1678 ops->store_error(job, error); 1679 goto done; 1680 } 1681 no_kqueue: 1682 1683 ops->store_error(job, EINPROGRESS); 1684 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1685 aiocbe->userproc = p; 1686 aiocbe->cred = crhold(td->td_ucred); 1687 aiocbe->jobflags = 0; 1688 aiocbe->lio = lj; 1689 1690 if (opcode == LIO_SYNC) 1691 goto queueit; 1692 1693 if (fp && fp->f_type == DTYPE_SOCKET) { 1694 /* 1695 * Alternate queueing for socket ops: Reach down into the 1696 * descriptor to get the socket data. Then check to see if the 1697 * socket is ready to be read or written (based on the requested 1698 * operation). 1699 * 1700 * If it is not ready for io, then queue the aiocbe on the 1701 * socket, and set the flags so we get a call when sbnotify() 1702 * happens. 1703 * 1704 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1705 * and unlock the snd sockbuf for no reason. 1706 */ 1707 so = fp->f_data; 1708 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1709 SOCKBUF_LOCK(sb); 1710 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1711 LIO_WRITE) && (!sowriteable(so)))) { 1712 sb->sb_flags |= SB_AIO; 1713 1714 mtx_lock(&aio_job_mtx); 1715 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1716 mtx_unlock(&aio_job_mtx); 1717 1718 AIO_LOCK(ki); 1719 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1720 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1721 aiocbe->jobstate = JOBST_JOBQSOCK; 1722 ki->kaio_count++; 1723 if (lj) 1724 lj->lioj_count++; 1725 AIO_UNLOCK(ki); 1726 SOCKBUF_UNLOCK(sb); 1727 atomic_add_int(&num_queue_count, 1); 1728 error = 0; 1729 goto done; 1730 } 1731 SOCKBUF_UNLOCK(sb); 1732 } 1733 1734 if ((error = aio_qphysio(p, aiocbe)) == 0) 1735 goto done; 1736 #if 0 1737 if (error > 0) { 1738 aiocbe->uaiocb._aiocb_private.error = error; 1739 ops->store_error(job, error); 1740 goto done; 1741 } 1742 #endif 1743 queueit: 1744 atomic_add_int(&num_queue_count, 1); 1745 1746 AIO_LOCK(ki); 1747 ki->kaio_count++; 1748 if (lj) 1749 lj->lioj_count++; 1750 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1751 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1752 if (opcode == LIO_SYNC) { 1753 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1754 if (cb->fd_file == aiocbe->fd_file && 1755 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1756 cb->seqno < aiocbe->seqno) { 1757 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1758 aiocbe->pending++; 1759 } 1760 } 1761 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1762 if (cb->fd_file == aiocbe->fd_file && 1763 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1764 cb->seqno < aiocbe->seqno) { 1765 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1766 aiocbe->pending++; 1767 } 1768 } 1769 if (aiocbe->pending != 0) { 1770 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1771 aiocbe->jobstate = JOBST_JOBQSYNC; 1772 AIO_UNLOCK(ki); 1773 goto done; 1774 } 1775 } 1776 mtx_lock(&aio_job_mtx); 1777 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1778 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1779 aio_kick_nowait(p); 1780 mtx_unlock(&aio_job_mtx); 1781 AIO_UNLOCK(ki); 1782 error = 0; 1783 done: 1784 return (error); 1785 } 1786 1787 static void 1788 aio_kick_nowait(struct proc *userp) 1789 { 1790 struct kaioinfo *ki = userp->p_aioinfo; 1791 struct aiothreadlist *aiop; 1792 1793 mtx_assert(&aio_job_mtx, MA_OWNED); 1794 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1795 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1796 aiop->aiothreadflags &= ~AIOP_FREE; 1797 wakeup(aiop->aiothread); 1798 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1799 ((ki->kaio_active_count + num_aio_resv_start) < 1800 ki->kaio_maxactive_count)) { 1801 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1802 } 1803 } 1804 1805 static int 1806 aio_kick(struct proc *userp) 1807 { 1808 struct kaioinfo *ki = userp->p_aioinfo; 1809 struct aiothreadlist *aiop; 1810 int error, ret = 0; 1811 1812 mtx_assert(&aio_job_mtx, MA_OWNED); 1813 retryproc: 1814 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1815 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1816 aiop->aiothreadflags &= ~AIOP_FREE; 1817 wakeup(aiop->aiothread); 1818 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1819 ((ki->kaio_active_count + num_aio_resv_start) < 1820 ki->kaio_maxactive_count)) { 1821 num_aio_resv_start++; 1822 mtx_unlock(&aio_job_mtx); 1823 error = aio_newproc(&num_aio_resv_start); 1824 mtx_lock(&aio_job_mtx); 1825 if (error) { 1826 num_aio_resv_start--; 1827 goto retryproc; 1828 } 1829 } else { 1830 ret = -1; 1831 } 1832 return (ret); 1833 } 1834 1835 static void 1836 aio_kick_helper(void *context, int pending) 1837 { 1838 struct proc *userp = context; 1839 1840 mtx_lock(&aio_job_mtx); 1841 while (--pending >= 0) { 1842 if (aio_kick(userp)) 1843 break; 1844 } 1845 mtx_unlock(&aio_job_mtx); 1846 } 1847 1848 /* 1849 * Support the aio_return system call, as a side-effect, kernel resources are 1850 * released. 1851 */ 1852 static int 1853 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) 1854 { 1855 struct proc *p = td->td_proc; 1856 struct aiocblist *cb; 1857 struct kaioinfo *ki; 1858 int status, error; 1859 1860 ki = p->p_aioinfo; 1861 if (ki == NULL) 1862 return (EINVAL); 1863 AIO_LOCK(ki); 1864 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1865 if (cb->uuaiocb == uaiocb) 1866 break; 1867 } 1868 if (cb != NULL) { 1869 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1870 status = cb->uaiocb._aiocb_private.status; 1871 error = cb->uaiocb._aiocb_private.error; 1872 td->td_retval[0] = status; 1873 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1874 td->td_ru.ru_oublock += cb->outputcharge; 1875 cb->outputcharge = 0; 1876 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1877 td->td_ru.ru_inblock += cb->inputcharge; 1878 cb->inputcharge = 0; 1879 } 1880 aio_free_entry(cb); 1881 AIO_UNLOCK(ki); 1882 ops->store_error(uaiocb, error); 1883 ops->store_status(uaiocb, status); 1884 } else { 1885 error = EINVAL; 1886 AIO_UNLOCK(ki); 1887 } 1888 return (error); 1889 } 1890 1891 int 1892 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1893 { 1894 1895 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1896 } 1897 1898 /* 1899 * Allow a process to wakeup when any of the I/O requests are completed. 1900 */ 1901 static int 1902 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1903 struct timespec *ts) 1904 { 1905 struct proc *p = td->td_proc; 1906 struct timeval atv; 1907 struct kaioinfo *ki; 1908 struct aiocblist *cb, *cbfirst; 1909 int error, i, timo; 1910 1911 timo = 0; 1912 if (ts) { 1913 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1914 return (EINVAL); 1915 1916 TIMESPEC_TO_TIMEVAL(&atv, ts); 1917 if (itimerfix(&atv)) 1918 return (EINVAL); 1919 timo = tvtohz(&atv); 1920 } 1921 1922 ki = p->p_aioinfo; 1923 if (ki == NULL) 1924 return (EAGAIN); 1925 1926 if (njoblist == 0) 1927 return (0); 1928 1929 AIO_LOCK(ki); 1930 for (;;) { 1931 cbfirst = NULL; 1932 error = 0; 1933 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1934 for (i = 0; i < njoblist; i++) { 1935 if (cb->uuaiocb == ujoblist[i]) { 1936 if (cbfirst == NULL) 1937 cbfirst = cb; 1938 if (cb->jobstate == JOBST_JOBFINISHED) 1939 goto RETURN; 1940 } 1941 } 1942 } 1943 /* All tasks were finished. */ 1944 if (cbfirst == NULL) 1945 break; 1946 1947 ki->kaio_flags |= KAIO_WAKEUP; 1948 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1949 "aiospn", timo); 1950 if (error == ERESTART) 1951 error = EINTR; 1952 if (error) 1953 break; 1954 } 1955 RETURN: 1956 AIO_UNLOCK(ki); 1957 return (error); 1958 } 1959 1960 int 1961 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1962 { 1963 struct timespec ts, *tsp; 1964 struct aiocb **ujoblist; 1965 int error; 1966 1967 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1968 return (EINVAL); 1969 1970 if (uap->timeout) { 1971 /* Get timespec struct. */ 1972 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1973 return (error); 1974 tsp = &ts; 1975 } else 1976 tsp = NULL; 1977 1978 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1979 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1980 if (error == 0) 1981 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1982 uma_zfree(aiol_zone, ujoblist); 1983 return (error); 1984 } 1985 1986 /* 1987 * aio_cancel cancels any non-physio aio operations not currently in 1988 * progress. 1989 */ 1990 int 1991 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1992 { 1993 struct proc *p = td->td_proc; 1994 struct kaioinfo *ki; 1995 struct aiocblist *cbe, *cbn; 1996 struct file *fp; 1997 struct socket *so; 1998 cap_rights_t rights; 1999 int error; 2000 int remove; 2001 int cancelled = 0; 2002 int notcancelled = 0; 2003 struct vnode *vp; 2004 2005 /* Lookup file object. */ 2006 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 2007 if (error) 2008 return (error); 2009 2010 ki = p->p_aioinfo; 2011 if (ki == NULL) 2012 goto done; 2013 2014 if (fp->f_type == DTYPE_VNODE) { 2015 vp = fp->f_vnode; 2016 if (vn_isdisk(vp, &error)) { 2017 fdrop(fp, td); 2018 td->td_retval[0] = AIO_NOTCANCELED; 2019 return (0); 2020 } 2021 } 2022 2023 AIO_LOCK(ki); 2024 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 2025 if ((uap->fd == cbe->uaiocb.aio_fildes) && 2026 ((uap->aiocbp == NULL) || 2027 (uap->aiocbp == cbe->uuaiocb))) { 2028 remove = 0; 2029 2030 mtx_lock(&aio_job_mtx); 2031 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 2032 TAILQ_REMOVE(&aio_jobs, cbe, list); 2033 remove = 1; 2034 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 2035 MPASS(fp->f_type == DTYPE_SOCKET); 2036 so = fp->f_data; 2037 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 2038 remove = 1; 2039 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 2040 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 2041 remove = 1; 2042 } 2043 mtx_unlock(&aio_job_mtx); 2044 2045 if (remove) { 2046 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 2047 cbe->uaiocb._aiocb_private.status = -1; 2048 cbe->uaiocb._aiocb_private.error = ECANCELED; 2049 aio_bio_done_notify(p, cbe, DONE_QUEUE); 2050 cancelled++; 2051 } else { 2052 notcancelled++; 2053 } 2054 if (uap->aiocbp != NULL) 2055 break; 2056 } 2057 } 2058 AIO_UNLOCK(ki); 2059 2060 done: 2061 fdrop(fp, td); 2062 2063 if (uap->aiocbp != NULL) { 2064 if (cancelled) { 2065 td->td_retval[0] = AIO_CANCELED; 2066 return (0); 2067 } 2068 } 2069 2070 if (notcancelled) { 2071 td->td_retval[0] = AIO_NOTCANCELED; 2072 return (0); 2073 } 2074 2075 if (cancelled) { 2076 td->td_retval[0] = AIO_CANCELED; 2077 return (0); 2078 } 2079 2080 td->td_retval[0] = AIO_ALLDONE; 2081 2082 return (0); 2083 } 2084 2085 /* 2086 * aio_error is implemented in the kernel level for compatibility purposes 2087 * only. For a user mode async implementation, it would be best to do it in 2088 * a userland subroutine. 2089 */ 2090 static int 2091 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) 2092 { 2093 struct proc *p = td->td_proc; 2094 struct aiocblist *cb; 2095 struct kaioinfo *ki; 2096 int status; 2097 2098 ki = p->p_aioinfo; 2099 if (ki == NULL) { 2100 td->td_retval[0] = EINVAL; 2101 return (0); 2102 } 2103 2104 AIO_LOCK(ki); 2105 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 2106 if (cb->uuaiocb == aiocbp) { 2107 if (cb->jobstate == JOBST_JOBFINISHED) 2108 td->td_retval[0] = 2109 cb->uaiocb._aiocb_private.error; 2110 else 2111 td->td_retval[0] = EINPROGRESS; 2112 AIO_UNLOCK(ki); 2113 return (0); 2114 } 2115 } 2116 AIO_UNLOCK(ki); 2117 2118 /* 2119 * Hack for failure of aio_aqueue. 2120 */ 2121 status = ops->fetch_status(aiocbp); 2122 if (status == -1) { 2123 td->td_retval[0] = ops->fetch_error(aiocbp); 2124 return (0); 2125 } 2126 2127 td->td_retval[0] = EINVAL; 2128 return (0); 2129 } 2130 2131 int 2132 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2133 { 2134 2135 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2136 } 2137 2138 /* syscall - asynchronous read from a file (REALTIME) */ 2139 int 2140 sys_oaio_read(struct thread *td, struct oaio_read_args *uap) 2141 { 2142 2143 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2144 &aiocb_ops_osigevent)); 2145 } 2146 2147 int 2148 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2149 { 2150 2151 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2152 } 2153 2154 /* syscall - asynchronous write to a file (REALTIME) */ 2155 int 2156 sys_oaio_write(struct thread *td, struct oaio_write_args *uap) 2157 { 2158 2159 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2160 &aiocb_ops_osigevent)); 2161 } 2162 2163 int 2164 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2165 { 2166 2167 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2168 } 2169 2170 int 2171 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2172 { 2173 2174 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2175 } 2176 2177 static int 2178 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2179 struct aiocb **acb_list, int nent, struct sigevent *sig, 2180 struct aiocb_ops *ops) 2181 { 2182 struct proc *p = td->td_proc; 2183 struct aiocb *iocb; 2184 struct kaioinfo *ki; 2185 struct aioliojob *lj; 2186 struct kevent kev; 2187 int error; 2188 int nerror; 2189 int i; 2190 2191 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2192 return (EINVAL); 2193 2194 if (nent < 0 || nent > AIO_LISTIO_MAX) 2195 return (EINVAL); 2196 2197 if (p->p_aioinfo == NULL) 2198 aio_init_aioinfo(p); 2199 2200 ki = p->p_aioinfo; 2201 2202 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2203 lj->lioj_flags = 0; 2204 lj->lioj_count = 0; 2205 lj->lioj_finished_count = 0; 2206 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2207 ksiginfo_init(&lj->lioj_ksi); 2208 2209 /* 2210 * Setup signal. 2211 */ 2212 if (sig && (mode == LIO_NOWAIT)) { 2213 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2214 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2215 /* Assume only new style KEVENT */ 2216 kev.filter = EVFILT_LIO; 2217 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2218 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2219 kev.data = (intptr_t)lj; 2220 /* pass user defined sigval data */ 2221 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2222 error = kqfd_register( 2223 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2224 if (error) { 2225 uma_zfree(aiolio_zone, lj); 2226 return (error); 2227 } 2228 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2229 ; 2230 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2231 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2232 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2233 uma_zfree(aiolio_zone, lj); 2234 return EINVAL; 2235 } 2236 lj->lioj_flags |= LIOJ_SIGNAL; 2237 } else { 2238 uma_zfree(aiolio_zone, lj); 2239 return EINVAL; 2240 } 2241 } 2242 2243 AIO_LOCK(ki); 2244 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2245 /* 2246 * Add extra aiocb count to avoid the lio to be freed 2247 * by other threads doing aio_waitcomplete or aio_return, 2248 * and prevent event from being sent until we have queued 2249 * all tasks. 2250 */ 2251 lj->lioj_count = 1; 2252 AIO_UNLOCK(ki); 2253 2254 /* 2255 * Get pointers to the list of I/O requests. 2256 */ 2257 nerror = 0; 2258 for (i = 0; i < nent; i++) { 2259 iocb = acb_list[i]; 2260 if (iocb != NULL) { 2261 error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); 2262 if (error != 0) 2263 nerror++; 2264 } 2265 } 2266 2267 error = 0; 2268 AIO_LOCK(ki); 2269 if (mode == LIO_WAIT) { 2270 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2271 ki->kaio_flags |= KAIO_WAKEUP; 2272 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2273 PRIBIO | PCATCH, "aiospn", 0); 2274 if (error == ERESTART) 2275 error = EINTR; 2276 if (error) 2277 break; 2278 } 2279 } else { 2280 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2281 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2282 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2283 KNOTE_LOCKED(&lj->klist, 1); 2284 } 2285 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2286 == LIOJ_SIGNAL 2287 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2288 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2289 aio_sendsig(p, &lj->lioj_signal, 2290 &lj->lioj_ksi); 2291 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2292 } 2293 } 2294 } 2295 lj->lioj_count--; 2296 if (lj->lioj_count == 0) { 2297 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2298 knlist_delete(&lj->klist, curthread, 1); 2299 PROC_LOCK(p); 2300 sigqueue_take(&lj->lioj_ksi); 2301 PROC_UNLOCK(p); 2302 AIO_UNLOCK(ki); 2303 uma_zfree(aiolio_zone, lj); 2304 } else 2305 AIO_UNLOCK(ki); 2306 2307 if (nerror) 2308 return (EIO); 2309 return (error); 2310 } 2311 2312 /* syscall - list directed I/O (REALTIME) */ 2313 int 2314 sys_olio_listio(struct thread *td, struct olio_listio_args *uap) 2315 { 2316 struct aiocb **acb_list; 2317 struct sigevent *sigp, sig; 2318 struct osigevent osig; 2319 int error, nent; 2320 2321 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2322 return (EINVAL); 2323 2324 nent = uap->nent; 2325 if (nent < 0 || nent > AIO_LISTIO_MAX) 2326 return (EINVAL); 2327 2328 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2329 error = copyin(uap->sig, &osig, sizeof(osig)); 2330 if (error) 2331 return (error); 2332 error = convert_old_sigevent(&osig, &sig); 2333 if (error) 2334 return (error); 2335 sigp = &sig; 2336 } else 2337 sigp = NULL; 2338 2339 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2340 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2341 if (error == 0) 2342 error = kern_lio_listio(td, uap->mode, 2343 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2344 &aiocb_ops_osigevent); 2345 free(acb_list, M_LIO); 2346 return (error); 2347 } 2348 2349 /* syscall - list directed I/O (REALTIME) */ 2350 int 2351 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2352 { 2353 struct aiocb **acb_list; 2354 struct sigevent *sigp, sig; 2355 int error, nent; 2356 2357 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2358 return (EINVAL); 2359 2360 nent = uap->nent; 2361 if (nent < 0 || nent > AIO_LISTIO_MAX) 2362 return (EINVAL); 2363 2364 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2365 error = copyin(uap->sig, &sig, sizeof(sig)); 2366 if (error) 2367 return (error); 2368 sigp = &sig; 2369 } else 2370 sigp = NULL; 2371 2372 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2373 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2374 if (error == 0) 2375 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2376 nent, sigp, &aiocb_ops); 2377 free(acb_list, M_LIO); 2378 return (error); 2379 } 2380 2381 static void 2382 aio_physwakeup(struct bio *bp) 2383 { 2384 struct aiocblist *aiocbe = (struct aiocblist *)bp->bio_caller1; 2385 struct proc *userp; 2386 struct kaioinfo *ki; 2387 int nblks; 2388 2389 /* Release mapping into kernel space. */ 2390 if (aiocbe->pbuf) { 2391 pmap_qremove((vm_offset_t)aiocbe->pbuf->b_data, aiocbe->npages); 2392 relpbuf(aiocbe->pbuf, NULL); 2393 aiocbe->pbuf = NULL; 2394 atomic_subtract_int(&num_buf_aio, 1); 2395 } 2396 vm_page_unhold_pages(aiocbe->pages, aiocbe->npages); 2397 2398 bp = aiocbe->bp; 2399 aiocbe->bp = NULL; 2400 userp = aiocbe->userproc; 2401 ki = userp->p_aioinfo; 2402 AIO_LOCK(ki); 2403 aiocbe->uaiocb._aiocb_private.status -= bp->bio_resid; 2404 aiocbe->uaiocb._aiocb_private.error = 0; 2405 if (bp->bio_flags & BIO_ERROR) 2406 aiocbe->uaiocb._aiocb_private.error = bp->bio_error; 2407 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2408 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2409 aiocbe->outputcharge += nblks; 2410 else 2411 aiocbe->inputcharge += nblks; 2412 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2413 ki->kaio_buffer_count--; 2414 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2415 AIO_UNLOCK(ki); 2416 2417 g_destroy_bio(bp); 2418 } 2419 2420 /* syscall - wait for the next completion of an aio request */ 2421 static int 2422 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, 2423 struct timespec *ts, struct aiocb_ops *ops) 2424 { 2425 struct proc *p = td->td_proc; 2426 struct timeval atv; 2427 struct kaioinfo *ki; 2428 struct aiocblist *cb; 2429 struct aiocb *uuaiocb; 2430 int error, status, timo; 2431 2432 ops->store_aiocb(aiocbp, NULL); 2433 2434 if (ts == NULL) { 2435 timo = 0; 2436 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2437 timo = -1; 2438 } else { 2439 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2440 return (EINVAL); 2441 2442 TIMESPEC_TO_TIMEVAL(&atv, ts); 2443 if (itimerfix(&atv)) 2444 return (EINVAL); 2445 timo = tvtohz(&atv); 2446 } 2447 2448 if (p->p_aioinfo == NULL) 2449 aio_init_aioinfo(p); 2450 ki = p->p_aioinfo; 2451 2452 error = 0; 2453 cb = NULL; 2454 AIO_LOCK(ki); 2455 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2456 if (timo == -1) { 2457 error = EWOULDBLOCK; 2458 break; 2459 } 2460 ki->kaio_flags |= KAIO_WAKEUP; 2461 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2462 "aiowc", timo); 2463 if (timo && error == ERESTART) 2464 error = EINTR; 2465 if (error) 2466 break; 2467 } 2468 2469 if (cb != NULL) { 2470 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2471 uuaiocb = cb->uuaiocb; 2472 status = cb->uaiocb._aiocb_private.status; 2473 error = cb->uaiocb._aiocb_private.error; 2474 td->td_retval[0] = status; 2475 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2476 td->td_ru.ru_oublock += cb->outputcharge; 2477 cb->outputcharge = 0; 2478 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2479 td->td_ru.ru_inblock += cb->inputcharge; 2480 cb->inputcharge = 0; 2481 } 2482 aio_free_entry(cb); 2483 AIO_UNLOCK(ki); 2484 ops->store_aiocb(aiocbp, uuaiocb); 2485 ops->store_error(uuaiocb, error); 2486 ops->store_status(uuaiocb, status); 2487 } else 2488 AIO_UNLOCK(ki); 2489 2490 return (error); 2491 } 2492 2493 int 2494 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2495 { 2496 struct timespec ts, *tsp; 2497 int error; 2498 2499 if (uap->timeout) { 2500 /* Get timespec struct. */ 2501 error = copyin(uap->timeout, &ts, sizeof(ts)); 2502 if (error) 2503 return (error); 2504 tsp = &ts; 2505 } else 2506 tsp = NULL; 2507 2508 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2509 } 2510 2511 static int 2512 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, 2513 struct aiocb_ops *ops) 2514 { 2515 struct proc *p = td->td_proc; 2516 struct kaioinfo *ki; 2517 2518 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2519 return (EINVAL); 2520 ki = p->p_aioinfo; 2521 if (ki == NULL) 2522 aio_init_aioinfo(p); 2523 return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); 2524 } 2525 2526 int 2527 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2528 { 2529 2530 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2531 } 2532 2533 /* kqueue attach function */ 2534 static int 2535 filt_aioattach(struct knote *kn) 2536 { 2537 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2538 2539 /* 2540 * The aiocbe pointer must be validated before using it, so 2541 * registration is restricted to the kernel; the user cannot 2542 * set EV_FLAG1. 2543 */ 2544 if ((kn->kn_flags & EV_FLAG1) == 0) 2545 return (EPERM); 2546 kn->kn_ptr.p_aio = aiocbe; 2547 kn->kn_flags &= ~EV_FLAG1; 2548 2549 knlist_add(&aiocbe->klist, kn, 0); 2550 2551 return (0); 2552 } 2553 2554 /* kqueue detach function */ 2555 static void 2556 filt_aiodetach(struct knote *kn) 2557 { 2558 struct knlist *knl; 2559 2560 knl = &kn->kn_ptr.p_aio->klist; 2561 knl->kl_lock(knl->kl_lockarg); 2562 if (!knlist_empty(knl)) 2563 knlist_remove(knl, kn, 1); 2564 knl->kl_unlock(knl->kl_lockarg); 2565 } 2566 2567 /* kqueue filter function */ 2568 /*ARGSUSED*/ 2569 static int 2570 filt_aio(struct knote *kn, long hint) 2571 { 2572 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2573 2574 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2575 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2576 return (0); 2577 kn->kn_flags |= EV_EOF; 2578 return (1); 2579 } 2580 2581 /* kqueue attach function */ 2582 static int 2583 filt_lioattach(struct knote *kn) 2584 { 2585 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2586 2587 /* 2588 * The aioliojob pointer must be validated before using it, so 2589 * registration is restricted to the kernel; the user cannot 2590 * set EV_FLAG1. 2591 */ 2592 if ((kn->kn_flags & EV_FLAG1) == 0) 2593 return (EPERM); 2594 kn->kn_ptr.p_lio = lj; 2595 kn->kn_flags &= ~EV_FLAG1; 2596 2597 knlist_add(&lj->klist, kn, 0); 2598 2599 return (0); 2600 } 2601 2602 /* kqueue detach function */ 2603 static void 2604 filt_liodetach(struct knote *kn) 2605 { 2606 struct knlist *knl; 2607 2608 knl = &kn->kn_ptr.p_lio->klist; 2609 knl->kl_lock(knl->kl_lockarg); 2610 if (!knlist_empty(knl)) 2611 knlist_remove(knl, kn, 1); 2612 knl->kl_unlock(knl->kl_lockarg); 2613 } 2614 2615 /* kqueue filter function */ 2616 /*ARGSUSED*/ 2617 static int 2618 filt_lio(struct knote *kn, long hint) 2619 { 2620 struct aioliojob * lj = kn->kn_ptr.p_lio; 2621 2622 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2623 } 2624 2625 #ifdef COMPAT_FREEBSD32 2626 2627 struct __aiocb_private32 { 2628 int32_t status; 2629 int32_t error; 2630 uint32_t kernelinfo; 2631 }; 2632 2633 typedef struct oaiocb32 { 2634 int aio_fildes; /* File descriptor */ 2635 uint64_t aio_offset __packed; /* File offset for I/O */ 2636 uint32_t aio_buf; /* I/O buffer in process space */ 2637 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2638 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2639 int aio_lio_opcode; /* LIO opcode */ 2640 int aio_reqprio; /* Request priority -- ignored */ 2641 struct __aiocb_private32 _aiocb_private; 2642 } oaiocb32_t; 2643 2644 typedef struct aiocb32 { 2645 int32_t aio_fildes; /* File descriptor */ 2646 uint64_t aio_offset __packed; /* File offset for I/O */ 2647 uint32_t aio_buf; /* I/O buffer in process space */ 2648 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2649 int __spare__[2]; 2650 uint32_t __spare2__; 2651 int aio_lio_opcode; /* LIO opcode */ 2652 int aio_reqprio; /* Request priority -- ignored */ 2653 struct __aiocb_private32 _aiocb_private; 2654 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2655 } aiocb32_t; 2656 2657 static int 2658 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2659 { 2660 2661 /* 2662 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2663 * supported by AIO with the old sigevent structure. 2664 */ 2665 CP(*osig, *nsig, sigev_notify); 2666 switch (nsig->sigev_notify) { 2667 case SIGEV_NONE: 2668 break; 2669 case SIGEV_SIGNAL: 2670 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2671 break; 2672 case SIGEV_KEVENT: 2673 nsig->sigev_notify_kqueue = 2674 osig->__sigev_u.__sigev_notify_kqueue; 2675 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2676 break; 2677 default: 2678 return (EINVAL); 2679 } 2680 return (0); 2681 } 2682 2683 static int 2684 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2685 { 2686 struct oaiocb32 job32; 2687 int error; 2688 2689 bzero(kjob, sizeof(struct aiocb)); 2690 error = copyin(ujob, &job32, sizeof(job32)); 2691 if (error) 2692 return (error); 2693 2694 CP(job32, *kjob, aio_fildes); 2695 CP(job32, *kjob, aio_offset); 2696 PTRIN_CP(job32, *kjob, aio_buf); 2697 CP(job32, *kjob, aio_nbytes); 2698 CP(job32, *kjob, aio_lio_opcode); 2699 CP(job32, *kjob, aio_reqprio); 2700 CP(job32, *kjob, _aiocb_private.status); 2701 CP(job32, *kjob, _aiocb_private.error); 2702 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2703 return (convert_old_sigevent32(&job32.aio_sigevent, 2704 &kjob->aio_sigevent)); 2705 } 2706 2707 static int 2708 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2709 { 2710 struct aiocb32 job32; 2711 int error; 2712 2713 error = copyin(ujob, &job32, sizeof(job32)); 2714 if (error) 2715 return (error); 2716 CP(job32, *kjob, aio_fildes); 2717 CP(job32, *kjob, aio_offset); 2718 PTRIN_CP(job32, *kjob, aio_buf); 2719 CP(job32, *kjob, aio_nbytes); 2720 CP(job32, *kjob, aio_lio_opcode); 2721 CP(job32, *kjob, aio_reqprio); 2722 CP(job32, *kjob, _aiocb_private.status); 2723 CP(job32, *kjob, _aiocb_private.error); 2724 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2725 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2726 } 2727 2728 static long 2729 aiocb32_fetch_status(struct aiocb *ujob) 2730 { 2731 struct aiocb32 *ujob32; 2732 2733 ujob32 = (struct aiocb32 *)ujob; 2734 return (fuword32(&ujob32->_aiocb_private.status)); 2735 } 2736 2737 static long 2738 aiocb32_fetch_error(struct aiocb *ujob) 2739 { 2740 struct aiocb32 *ujob32; 2741 2742 ujob32 = (struct aiocb32 *)ujob; 2743 return (fuword32(&ujob32->_aiocb_private.error)); 2744 } 2745 2746 static int 2747 aiocb32_store_status(struct aiocb *ujob, long status) 2748 { 2749 struct aiocb32 *ujob32; 2750 2751 ujob32 = (struct aiocb32 *)ujob; 2752 return (suword32(&ujob32->_aiocb_private.status, status)); 2753 } 2754 2755 static int 2756 aiocb32_store_error(struct aiocb *ujob, long error) 2757 { 2758 struct aiocb32 *ujob32; 2759 2760 ujob32 = (struct aiocb32 *)ujob; 2761 return (suword32(&ujob32->_aiocb_private.error, error)); 2762 } 2763 2764 static int 2765 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2766 { 2767 struct aiocb32 *ujob32; 2768 2769 ujob32 = (struct aiocb32 *)ujob; 2770 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2771 } 2772 2773 static int 2774 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2775 { 2776 2777 return (suword32(ujobp, (long)ujob)); 2778 } 2779 2780 static struct aiocb_ops aiocb32_ops = { 2781 .copyin = aiocb32_copyin, 2782 .fetch_status = aiocb32_fetch_status, 2783 .fetch_error = aiocb32_fetch_error, 2784 .store_status = aiocb32_store_status, 2785 .store_error = aiocb32_store_error, 2786 .store_kernelinfo = aiocb32_store_kernelinfo, 2787 .store_aiocb = aiocb32_store_aiocb, 2788 }; 2789 2790 static struct aiocb_ops aiocb32_ops_osigevent = { 2791 .copyin = aiocb32_copyin_old_sigevent, 2792 .fetch_status = aiocb32_fetch_status, 2793 .fetch_error = aiocb32_fetch_error, 2794 .store_status = aiocb32_store_status, 2795 .store_error = aiocb32_store_error, 2796 .store_kernelinfo = aiocb32_store_kernelinfo, 2797 .store_aiocb = aiocb32_store_aiocb, 2798 }; 2799 2800 int 2801 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2802 { 2803 2804 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2805 } 2806 2807 int 2808 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2809 { 2810 struct timespec32 ts32; 2811 struct timespec ts, *tsp; 2812 struct aiocb **ujoblist; 2813 uint32_t *ujoblist32; 2814 int error, i; 2815 2816 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2817 return (EINVAL); 2818 2819 if (uap->timeout) { 2820 /* Get timespec struct. */ 2821 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2822 return (error); 2823 CP(ts32, ts, tv_sec); 2824 CP(ts32, ts, tv_nsec); 2825 tsp = &ts; 2826 } else 2827 tsp = NULL; 2828 2829 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2830 ujoblist32 = (uint32_t *)ujoblist; 2831 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2832 sizeof(ujoblist32[0])); 2833 if (error == 0) { 2834 for (i = uap->nent; i > 0; i--) 2835 ujoblist[i] = PTRIN(ujoblist32[i]); 2836 2837 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2838 } 2839 uma_zfree(aiol_zone, ujoblist); 2840 return (error); 2841 } 2842 2843 int 2844 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2845 { 2846 2847 return (sys_aio_cancel(td, (struct aio_cancel_args *)uap)); 2848 } 2849 2850 int 2851 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2852 { 2853 2854 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2855 } 2856 2857 int 2858 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2859 { 2860 2861 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2862 &aiocb32_ops_osigevent)); 2863 } 2864 2865 int 2866 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2867 { 2868 2869 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2870 &aiocb32_ops)); 2871 } 2872 2873 int 2874 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2875 { 2876 2877 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2878 &aiocb32_ops_osigevent)); 2879 } 2880 2881 int 2882 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2883 { 2884 2885 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2886 &aiocb32_ops)); 2887 } 2888 2889 int 2890 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2891 { 2892 2893 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2894 &aiocb32_ops)); 2895 } 2896 2897 int 2898 freebsd32_aio_waitcomplete(struct thread *td, 2899 struct freebsd32_aio_waitcomplete_args *uap) 2900 { 2901 struct timespec32 ts32; 2902 struct timespec ts, *tsp; 2903 int error; 2904 2905 if (uap->timeout) { 2906 /* Get timespec struct. */ 2907 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2908 if (error) 2909 return (error); 2910 CP(ts32, ts, tv_sec); 2911 CP(ts32, ts, tv_nsec); 2912 tsp = &ts; 2913 } else 2914 tsp = NULL; 2915 2916 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2917 &aiocb32_ops)); 2918 } 2919 2920 int 2921 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2922 { 2923 2924 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2925 &aiocb32_ops)); 2926 } 2927 2928 int 2929 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2930 { 2931 struct aiocb **acb_list; 2932 struct sigevent *sigp, sig; 2933 struct osigevent32 osig; 2934 uint32_t *acb_list32; 2935 int error, i, nent; 2936 2937 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2938 return (EINVAL); 2939 2940 nent = uap->nent; 2941 if (nent < 0 || nent > AIO_LISTIO_MAX) 2942 return (EINVAL); 2943 2944 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2945 error = copyin(uap->sig, &osig, sizeof(osig)); 2946 if (error) 2947 return (error); 2948 error = convert_old_sigevent32(&osig, &sig); 2949 if (error) 2950 return (error); 2951 sigp = &sig; 2952 } else 2953 sigp = NULL; 2954 2955 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2956 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2957 if (error) { 2958 free(acb_list32, M_LIO); 2959 return (error); 2960 } 2961 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2962 for (i = 0; i < nent; i++) 2963 acb_list[i] = PTRIN(acb_list32[i]); 2964 free(acb_list32, M_LIO); 2965 2966 error = kern_lio_listio(td, uap->mode, 2967 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2968 &aiocb32_ops_osigevent); 2969 free(acb_list, M_LIO); 2970 return (error); 2971 } 2972 2973 int 2974 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2975 { 2976 struct aiocb **acb_list; 2977 struct sigevent *sigp, sig; 2978 struct sigevent32 sig32; 2979 uint32_t *acb_list32; 2980 int error, i, nent; 2981 2982 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2983 return (EINVAL); 2984 2985 nent = uap->nent; 2986 if (nent < 0 || nent > AIO_LISTIO_MAX) 2987 return (EINVAL); 2988 2989 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2990 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2991 if (error) 2992 return (error); 2993 error = convert_sigevent32(&sig32, &sig); 2994 if (error) 2995 return (error); 2996 sigp = &sig; 2997 } else 2998 sigp = NULL; 2999 3000 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3001 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3002 if (error) { 3003 free(acb_list32, M_LIO); 3004 return (error); 3005 } 3006 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3007 for (i = 0; i < nent; i++) 3008 acb_list[i] = PTRIN(acb_list32[i]); 3009 free(acb_list32, M_LIO); 3010 3011 error = kern_lio_listio(td, uap->mode, 3012 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3013 &aiocb32_ops); 3014 free(acb_list, M_LIO); 3015 return (error); 3016 } 3017 3018 #endif 3019