1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include "opt_compat.h" 27 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/malloc.h> 31 #include <sys/bio.h> 32 #include <sys/buf.h> 33 #include <sys/capsicum.h> 34 #include <sys/eventhandler.h> 35 #include <sys/sysproto.h> 36 #include <sys/filedesc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/kthread.h> 40 #include <sys/fcntl.h> 41 #include <sys/file.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/unistd.h> 46 #include <sys/posix4.h> 47 #include <sys/proc.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <sys/syscallsubr.h> 51 #include <sys/protosw.h> 52 #include <sys/rwlock.h> 53 #include <sys/sema.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/syscall.h> 57 #include <sys/sysent.h> 58 #include <sys/sysctl.h> 59 #include <sys/syslog.h> 60 #include <sys/sx.h> 61 #include <sys/taskqueue.h> 62 #include <sys/vnode.h> 63 #include <sys/conf.h> 64 #include <sys/event.h> 65 #include <sys/mount.h> 66 #include <geom/geom.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_page.h> 72 #include <vm/vm_extern.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_map.h> 75 #include <vm/vm_object.h> 76 #include <vm/uma.h> 77 #include <sys/aio.h> 78 79 /* 80 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 81 * overflow. (XXX will be removed soon.) 82 */ 83 static u_long jobrefid; 84 85 /* 86 * Counter for aio_fsync. 87 */ 88 static uint64_t jobseqno; 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 96 #endif 97 98 #ifndef MAX_AIO_QUEUE 99 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 100 #endif 101 102 #ifndef MAX_BUF_AIO 103 #define MAX_BUF_AIO 16 104 #endif 105 106 FEATURE(aio, "Asynchronous I/O"); 107 SYSCTL_DECL(_p1003_1b); 108 109 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 110 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 111 112 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 113 "Async IO management"); 114 115 static int enable_aio_unsafe = 0; 116 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 117 "Permit asynchronous IO on all file types, not just known-safe types"); 118 119 static unsigned int unsafe_warningcnt = 1; 120 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 121 &unsafe_warningcnt, 0, 122 "Warnings that will be triggered upon failed IO requests on unsafe files"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 126 "Maximum number of kernel processes to use for handling async IO "); 127 128 static int num_aio_procs = 0; 129 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 130 "Number of presently active kernel processes for async IO"); 131 132 /* 133 * The code will adjust the actual number of AIO processes towards this 134 * number when it gets a chance. 135 */ 136 static int target_aio_procs = TARGET_AIO_PROCS; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 138 0, 139 "Preferred number of ready kernel processes for async IO"); 140 141 static int max_queue_count = MAX_AIO_QUEUE; 142 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 143 "Maximum number of aio requests to queue, globally"); 144 145 static int num_queue_count = 0; 146 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 147 "Number of queued aio requests"); 148 149 static int num_buf_aio = 0; 150 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 151 "Number of aio requests presently handled by the buf subsystem"); 152 153 /* Number of async I/O processes in the process of being started */ 154 /* XXX This should be local to aio_aqueue() */ 155 static int num_aio_resv_start = 0; 156 157 static int aiod_lifetime; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 159 "Maximum lifetime for idle aiod"); 160 161 static int max_aio_per_proc = MAX_AIO_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 163 0, 164 "Maximum active aio requests per process (stored in the process)"); 165 166 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 168 &max_aio_queue_per_proc, 0, 169 "Maximum queued aio requests per process (stored in the process)"); 170 171 static int max_buf_aio = MAX_BUF_AIO; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 173 "Maximum buf aio requests per process (stored in the process)"); 174 175 /* 176 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 177 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 178 * vfs.aio.aio_listio_max. 179 */ 180 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 181 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 182 0, "Maximum aio requests for a single lio_listio call"); 183 184 #ifdef COMPAT_FREEBSD6 185 typedef struct oaiocb { 186 int aio_fildes; /* File descriptor */ 187 off_t aio_offset; /* File offset for I/O */ 188 volatile void *aio_buf; /* I/O buffer in process space */ 189 size_t aio_nbytes; /* Number of bytes for I/O */ 190 struct osigevent aio_sigevent; /* Signal to deliver */ 191 int aio_lio_opcode; /* LIO opcode */ 192 int aio_reqprio; /* Request priority -- ignored */ 193 struct __aiocb_private _aiocb_private; 194 } oaiocb_t; 195 #endif 196 197 /* 198 * Below is a key of locks used to protect each member of struct kaiocb 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * If the routine that services an AIO request blocks while running in an 211 * AIO kernel process it can starve other I/O requests. BIO requests 212 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 213 * processes at all. Socket I/O requests use a separate pool of 214 * kprocs and also force non-blocking I/O. Other file I/O requests 215 * use the generic fo_read/fo_write operations which can block. The 216 * fsync and mlock operations can also block while executing. Ideally 217 * none of these requests would block while executing. 218 * 219 * Note that the service routines cannot toggle O_NONBLOCK in the file 220 * structure directly while handling a request due to races with 221 * userland threads. 222 */ 223 224 /* jobflags */ 225 #define KAIOCB_QUEUEING 0x01 226 #define KAIOCB_CANCELLED 0x02 227 #define KAIOCB_CANCELLING 0x04 228 #define KAIOCB_CHECKSYNC 0x08 229 #define KAIOCB_CLEARED 0x10 230 #define KAIOCB_FINISHED 0x20 231 232 /* 233 * AIO process info 234 */ 235 #define AIOP_FREE 0x1 /* proc on free queue */ 236 237 struct aioproc { 238 int aioprocflags; /* (c) AIO proc flags */ 239 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 240 struct proc *aioproc; /* (*) the AIO proc */ 241 }; 242 243 /* 244 * data-structure for lio signal management 245 */ 246 struct aioliojob { 247 int lioj_flags; /* (a) listio flags */ 248 int lioj_count; /* (a) listio flags */ 249 int lioj_finished_count; /* (a) listio flags */ 250 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 251 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 252 struct knlist klist; /* (a) list of knotes */ 253 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 254 }; 255 256 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 257 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 258 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 259 260 /* 261 * per process aio data structure 262 */ 263 struct kaioinfo { 264 struct mtx kaio_mtx; /* the lock to protect this struct */ 265 int kaio_flags; /* (a) per process kaio flags */ 266 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 267 int kaio_active_count; /* (c) number of currently used AIOs */ 268 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 269 int kaio_count; /* (a) size of AIO queue */ 270 int kaio_ballowed_count; /* (*) maximum number of buffers */ 271 int kaio_buffer_count; /* (a) number of physio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_physwakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qphysio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_maxactive_count = max_aio_per_proc; 444 ki->kaio_active_count = 0; 445 ki->kaio_qallowed_count = max_aio_queue_per_proc; 446 ki->kaio_count = 0; 447 ki->kaio_ballowed_count = max_buf_aio; 448 ki->kaio_buffer_count = 0; 449 TAILQ_INIT(&ki->kaio_all); 450 TAILQ_INIT(&ki->kaio_done); 451 TAILQ_INIT(&ki->kaio_jobqueue); 452 TAILQ_INIT(&ki->kaio_liojoblist); 453 TAILQ_INIT(&ki->kaio_syncqueue); 454 TAILQ_INIT(&ki->kaio_syncready); 455 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 456 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 457 PROC_LOCK(p); 458 if (p->p_aioinfo == NULL) { 459 p->p_aioinfo = ki; 460 PROC_UNLOCK(p); 461 } else { 462 PROC_UNLOCK(p); 463 mtx_destroy(&ki->kaio_mtx); 464 uma_zfree(kaio_zone, ki); 465 } 466 467 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 468 aio_newproc(NULL); 469 } 470 471 static int 472 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 473 { 474 struct thread *td; 475 int error; 476 477 error = sigev_findtd(p, sigev, &td); 478 if (error) 479 return (error); 480 if (!KSI_ONQ(ksi)) { 481 ksiginfo_set_sigev(ksi, sigev); 482 ksi->ksi_code = SI_ASYNCIO; 483 ksi->ksi_flags |= KSI_EXT | KSI_INS; 484 tdsendsignal(p, td, ksi->ksi_signo, ksi); 485 } 486 PROC_UNLOCK(p); 487 return (error); 488 } 489 490 /* 491 * Free a job entry. Wait for completion if it is currently active, but don't 492 * delay forever. If we delay, we return a flag that says that we have to 493 * restart the queue scan. 494 */ 495 static int 496 aio_free_entry(struct kaiocb *job) 497 { 498 struct kaioinfo *ki; 499 struct aioliojob *lj; 500 struct proc *p; 501 502 p = job->userproc; 503 MPASS(curproc == p); 504 ki = p->p_aioinfo; 505 MPASS(ki != NULL); 506 507 AIO_LOCK_ASSERT(ki, MA_OWNED); 508 MPASS(job->jobflags & KAIOCB_FINISHED); 509 510 atomic_subtract_int(&num_queue_count, 1); 511 512 ki->kaio_count--; 513 MPASS(ki->kaio_count >= 0); 514 515 TAILQ_REMOVE(&ki->kaio_done, job, plist); 516 TAILQ_REMOVE(&ki->kaio_all, job, allist); 517 518 lj = job->lio; 519 if (lj) { 520 lj->lioj_count--; 521 lj->lioj_finished_count--; 522 523 if (lj->lioj_count == 0) { 524 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 525 /* lio is going away, we need to destroy any knotes */ 526 knlist_delete(&lj->klist, curthread, 1); 527 PROC_LOCK(p); 528 sigqueue_take(&lj->lioj_ksi); 529 PROC_UNLOCK(p); 530 uma_zfree(aiolio_zone, lj); 531 } 532 } 533 534 /* job is going away, we need to destroy any knotes */ 535 knlist_delete(&job->klist, curthread, 1); 536 PROC_LOCK(p); 537 sigqueue_take(&job->ksi); 538 PROC_UNLOCK(p); 539 540 AIO_UNLOCK(ki); 541 542 /* 543 * The thread argument here is used to find the owning process 544 * and is also passed to fo_close() which may pass it to various 545 * places such as devsw close() routines. Because of that, we 546 * need a thread pointer from the process owning the job that is 547 * persistent and won't disappear out from under us or move to 548 * another process. 549 * 550 * Currently, all the callers of this function call it to remove 551 * a kaiocb from the current process' job list either via a 552 * syscall or due to the current process calling exit() or 553 * execve(). Thus, we know that p == curproc. We also know that 554 * curthread can't exit since we are curthread. 555 * 556 * Therefore, we use curthread as the thread to pass to 557 * knlist_delete(). This does mean that it is possible for the 558 * thread pointer at close time to differ from the thread pointer 559 * at open time, but this is already true of file descriptors in 560 * a multithreaded process. 561 */ 562 if (job->fd_file) 563 fdrop(job->fd_file, curthread); 564 crfree(job->cred); 565 uma_zfree(aiocb_zone, job); 566 AIO_LOCK(ki); 567 568 return (0); 569 } 570 571 static void 572 aio_proc_rundown_exec(void *arg, struct proc *p, 573 struct image_params *imgp __unused) 574 { 575 aio_proc_rundown(arg, p); 576 } 577 578 static int 579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 580 { 581 aio_cancel_fn_t *func; 582 int cancelled; 583 584 AIO_LOCK_ASSERT(ki, MA_OWNED); 585 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 586 return (0); 587 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 588 job->jobflags |= KAIOCB_CANCELLED; 589 590 func = job->cancel_fn; 591 592 /* 593 * If there is no cancel routine, just leave the job marked as 594 * cancelled. The job should be in active use by a caller who 595 * should complete it normally or when it fails to install a 596 * cancel routine. 597 */ 598 if (func == NULL) 599 return (0); 600 601 /* 602 * Set the CANCELLING flag so that aio_complete() will defer 603 * completions of this job. This prevents the job from being 604 * freed out from under the cancel callback. After the 605 * callback any deferred completion (whether from the callback 606 * or any other source) will be completed. 607 */ 608 job->jobflags |= KAIOCB_CANCELLING; 609 AIO_UNLOCK(ki); 610 func(job); 611 AIO_LOCK(ki); 612 job->jobflags &= ~KAIOCB_CANCELLING; 613 if (job->jobflags & KAIOCB_FINISHED) { 614 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 615 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 616 aio_bio_done_notify(p, job); 617 } else { 618 /* 619 * The cancel callback might have scheduled an 620 * operation to cancel this request, but it is 621 * only counted as cancelled if the request is 622 * cancelled when the callback returns. 623 */ 624 cancelled = 0; 625 } 626 return (cancelled); 627 } 628 629 /* 630 * Rundown the jobs for a given process. 631 */ 632 static void 633 aio_proc_rundown(void *arg, struct proc *p) 634 { 635 struct kaioinfo *ki; 636 struct aioliojob *lj; 637 struct kaiocb *job, *jobn; 638 639 KASSERT(curthread->td_proc == p, 640 ("%s: called on non-curproc", __func__)); 641 ki = p->p_aioinfo; 642 if (ki == NULL) 643 return; 644 645 AIO_LOCK(ki); 646 ki->kaio_flags |= KAIO_RUNDOWN; 647 648 restart: 649 650 /* 651 * Try to cancel all pending requests. This code simulates 652 * aio_cancel on all pending I/O requests. 653 */ 654 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 655 aio_cancel_job(p, ki, job); 656 } 657 658 /* Wait for all running I/O to be finished */ 659 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 660 ki->kaio_flags |= KAIO_WAKEUP; 661 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 662 goto restart; 663 } 664 665 /* Free all completed I/O requests. */ 666 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 667 aio_free_entry(job); 668 669 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 670 if (lj->lioj_count == 0) { 671 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 672 knlist_delete(&lj->klist, curthread, 1); 673 PROC_LOCK(p); 674 sigqueue_take(&lj->lioj_ksi); 675 PROC_UNLOCK(p); 676 uma_zfree(aiolio_zone, lj); 677 } else { 678 panic("LIO job not cleaned up: C:%d, FC:%d\n", 679 lj->lioj_count, lj->lioj_finished_count); 680 } 681 } 682 AIO_UNLOCK(ki); 683 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 684 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 685 mtx_destroy(&ki->kaio_mtx); 686 uma_zfree(kaio_zone, ki); 687 p->p_aioinfo = NULL; 688 } 689 690 /* 691 * Select a job to run (called by an AIO daemon). 692 */ 693 static struct kaiocb * 694 aio_selectjob(struct aioproc *aiop) 695 { 696 struct kaiocb *job; 697 struct kaioinfo *ki; 698 struct proc *userp; 699 700 mtx_assert(&aio_job_mtx, MA_OWNED); 701 restart: 702 TAILQ_FOREACH(job, &aio_jobs, list) { 703 userp = job->userproc; 704 ki = userp->p_aioinfo; 705 706 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 707 TAILQ_REMOVE(&aio_jobs, job, list); 708 if (!aio_clear_cancel_function(job)) 709 goto restart; 710 711 /* Account for currently active jobs. */ 712 ki->kaio_active_count++; 713 break; 714 } 715 } 716 return (job); 717 } 718 719 /* 720 * Move all data to a permanent storage device. This code 721 * simulates the fsync syscall. 722 */ 723 static int 724 aio_fsync_vnode(struct thread *td, struct vnode *vp) 725 { 726 struct mount *mp; 727 int error; 728 729 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 730 goto drop; 731 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 732 if (vp->v_object != NULL) { 733 VM_OBJECT_WLOCK(vp->v_object); 734 vm_object_page_clean(vp->v_object, 0, 0, 0); 735 VM_OBJECT_WUNLOCK(vp->v_object); 736 } 737 error = VOP_FSYNC(vp, MNT_WAIT, td); 738 739 VOP_UNLOCK(vp, 0); 740 vn_finished_write(mp); 741 drop: 742 return (error); 743 } 744 745 /* 746 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 747 * does the I/O request for the non-physio version of the operations. The 748 * normal vn operations are used, and this code should work in all instances 749 * for every type of file, including pipes, sockets, fifos, and regular files. 750 * 751 * XXX I don't think it works well for socket, pipe, and fifo. 752 */ 753 static void 754 aio_process_rw(struct kaiocb *job) 755 { 756 struct ucred *td_savedcred; 757 struct thread *td; 758 struct aiocb *cb; 759 struct file *fp; 760 struct uio auio; 761 struct iovec aiov; 762 ssize_t cnt; 763 long msgsnd_st, msgsnd_end; 764 long msgrcv_st, msgrcv_end; 765 long oublock_st, oublock_end; 766 long inblock_st, inblock_end; 767 int error; 768 769 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 770 job->uaiocb.aio_lio_opcode == LIO_WRITE, 771 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 772 773 aio_switch_vmspace(job); 774 td = curthread; 775 td_savedcred = td->td_ucred; 776 td->td_ucred = job->cred; 777 cb = &job->uaiocb; 778 fp = job->fd_file; 779 780 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 781 aiov.iov_len = cb->aio_nbytes; 782 783 auio.uio_iov = &aiov; 784 auio.uio_iovcnt = 1; 785 auio.uio_offset = cb->aio_offset; 786 auio.uio_resid = cb->aio_nbytes; 787 cnt = cb->aio_nbytes; 788 auio.uio_segflg = UIO_USERSPACE; 789 auio.uio_td = td; 790 791 msgrcv_st = td->td_ru.ru_msgrcv; 792 msgsnd_st = td->td_ru.ru_msgsnd; 793 inblock_st = td->td_ru.ru_inblock; 794 oublock_st = td->td_ru.ru_oublock; 795 796 /* 797 * aio_aqueue() acquires a reference to the file that is 798 * released in aio_free_entry(). 799 */ 800 if (cb->aio_lio_opcode == LIO_READ) { 801 auio.uio_rw = UIO_READ; 802 if (auio.uio_resid == 0) 803 error = 0; 804 else 805 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 806 } else { 807 if (fp->f_type == DTYPE_VNODE) 808 bwillwrite(); 809 auio.uio_rw = UIO_WRITE; 810 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 811 } 812 msgrcv_end = td->td_ru.ru_msgrcv; 813 msgsnd_end = td->td_ru.ru_msgsnd; 814 inblock_end = td->td_ru.ru_inblock; 815 oublock_end = td->td_ru.ru_oublock; 816 817 job->msgrcv = msgrcv_end - msgrcv_st; 818 job->msgsnd = msgsnd_end - msgsnd_st; 819 job->inblock = inblock_end - inblock_st; 820 job->outblock = oublock_end - oublock_st; 821 822 if ((error) && (auio.uio_resid != cnt)) { 823 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 824 error = 0; 825 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 826 PROC_LOCK(job->userproc); 827 kern_psignal(job->userproc, SIGPIPE); 828 PROC_UNLOCK(job->userproc); 829 } 830 } 831 832 cnt -= auio.uio_resid; 833 td->td_ucred = td_savedcred; 834 if (error) 835 aio_complete(job, -1, error); 836 else 837 aio_complete(job, cnt, 0); 838 } 839 840 static void 841 aio_process_sync(struct kaiocb *job) 842 { 843 struct thread *td = curthread; 844 struct ucred *td_savedcred = td->td_ucred; 845 struct file *fp = job->fd_file; 846 int error = 0; 847 848 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 849 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 850 851 td->td_ucred = job->cred; 852 if (fp->f_vnode != NULL) 853 error = aio_fsync_vnode(td, fp->f_vnode); 854 td->td_ucred = td_savedcred; 855 if (error) 856 aio_complete(job, -1, error); 857 else 858 aio_complete(job, 0, 0); 859 } 860 861 static void 862 aio_process_mlock(struct kaiocb *job) 863 { 864 struct aiocb *cb = &job->uaiocb; 865 int error; 866 867 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 868 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 869 870 aio_switch_vmspace(job); 871 error = kern_mlock(job->userproc, job->cred, 872 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 873 aio_complete(job, error != 0 ? -1 : 0, error); 874 } 875 876 static void 877 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 878 { 879 struct aioliojob *lj; 880 struct kaioinfo *ki; 881 struct kaiocb *sjob, *sjobn; 882 int lj_done; 883 bool schedule_fsync; 884 885 ki = userp->p_aioinfo; 886 AIO_LOCK_ASSERT(ki, MA_OWNED); 887 lj = job->lio; 888 lj_done = 0; 889 if (lj) { 890 lj->lioj_finished_count++; 891 if (lj->lioj_count == lj->lioj_finished_count) 892 lj_done = 1; 893 } 894 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 895 MPASS(job->jobflags & KAIOCB_FINISHED); 896 897 if (ki->kaio_flags & KAIO_RUNDOWN) 898 goto notification_done; 899 900 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 901 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 902 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 903 904 KNOTE_LOCKED(&job->klist, 1); 905 906 if (lj_done) { 907 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 908 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 909 KNOTE_LOCKED(&lj->klist, 1); 910 } 911 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 912 == LIOJ_SIGNAL 913 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 914 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 915 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 916 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 917 } 918 } 919 920 notification_done: 921 if (job->jobflags & KAIOCB_CHECKSYNC) { 922 schedule_fsync = false; 923 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 924 if (job->fd_file != sjob->fd_file || 925 job->seqno >= sjob->seqno) 926 continue; 927 if (--sjob->pending > 0) 928 continue; 929 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 930 if (!aio_clear_cancel_function_locked(sjob)) 931 continue; 932 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 933 schedule_fsync = true; 934 } 935 if (schedule_fsync) 936 taskqueue_enqueue(taskqueue_aiod_kick, 937 &ki->kaio_sync_task); 938 } 939 if (ki->kaio_flags & KAIO_WAKEUP) { 940 ki->kaio_flags &= ~KAIO_WAKEUP; 941 wakeup(&userp->p_aioinfo); 942 } 943 } 944 945 static void 946 aio_schedule_fsync(void *context, int pending) 947 { 948 struct kaioinfo *ki; 949 struct kaiocb *job; 950 951 ki = context; 952 AIO_LOCK(ki); 953 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 954 job = TAILQ_FIRST(&ki->kaio_syncready); 955 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 956 AIO_UNLOCK(ki); 957 aio_schedule(job, aio_process_sync); 958 AIO_LOCK(ki); 959 } 960 AIO_UNLOCK(ki); 961 } 962 963 bool 964 aio_cancel_cleared(struct kaiocb *job) 965 { 966 struct kaioinfo *ki; 967 968 /* 969 * The caller should hold the same queue lock held when 970 * aio_clear_cancel_function() was called and set this flag 971 * ensuring this check sees an up-to-date value. However, 972 * there is no way to assert that. 973 */ 974 ki = job->userproc->p_aioinfo; 975 return ((job->jobflags & KAIOCB_CLEARED) != 0); 976 } 977 978 static bool 979 aio_clear_cancel_function_locked(struct kaiocb *job) 980 { 981 982 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 983 MPASS(job->cancel_fn != NULL); 984 if (job->jobflags & KAIOCB_CANCELLING) { 985 job->jobflags |= KAIOCB_CLEARED; 986 return (false); 987 } 988 job->cancel_fn = NULL; 989 return (true); 990 } 991 992 bool 993 aio_clear_cancel_function(struct kaiocb *job) 994 { 995 struct kaioinfo *ki; 996 bool ret; 997 998 ki = job->userproc->p_aioinfo; 999 AIO_LOCK(ki); 1000 ret = aio_clear_cancel_function_locked(job); 1001 AIO_UNLOCK(ki); 1002 return (ret); 1003 } 1004 1005 static bool 1006 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1007 { 1008 1009 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1010 if (job->jobflags & KAIOCB_CANCELLED) 1011 return (false); 1012 job->cancel_fn = func; 1013 return (true); 1014 } 1015 1016 bool 1017 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1018 { 1019 struct kaioinfo *ki; 1020 bool ret; 1021 1022 ki = job->userproc->p_aioinfo; 1023 AIO_LOCK(ki); 1024 ret = aio_set_cancel_function_locked(job, func); 1025 AIO_UNLOCK(ki); 1026 return (ret); 1027 } 1028 1029 void 1030 aio_complete(struct kaiocb *job, long status, int error) 1031 { 1032 struct kaioinfo *ki; 1033 struct proc *userp; 1034 1035 job->uaiocb._aiocb_private.error = error; 1036 job->uaiocb._aiocb_private.status = status; 1037 1038 userp = job->userproc; 1039 ki = userp->p_aioinfo; 1040 1041 AIO_LOCK(ki); 1042 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1043 ("duplicate aio_complete")); 1044 job->jobflags |= KAIOCB_FINISHED; 1045 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1046 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1047 aio_bio_done_notify(userp, job); 1048 } 1049 AIO_UNLOCK(ki); 1050 } 1051 1052 void 1053 aio_cancel(struct kaiocb *job) 1054 { 1055 1056 aio_complete(job, -1, ECANCELED); 1057 } 1058 1059 void 1060 aio_switch_vmspace(struct kaiocb *job) 1061 { 1062 1063 vmspace_switch_aio(job->userproc->p_vmspace); 1064 } 1065 1066 /* 1067 * The AIO daemon, most of the actual work is done in aio_process_*, 1068 * but the setup (and address space mgmt) is done in this routine. 1069 */ 1070 static void 1071 aio_daemon(void *_id) 1072 { 1073 struct kaiocb *job; 1074 struct aioproc *aiop; 1075 struct kaioinfo *ki; 1076 struct proc *p; 1077 struct vmspace *myvm; 1078 struct thread *td = curthread; 1079 int id = (intptr_t)_id; 1080 1081 /* 1082 * Grab an extra reference on the daemon's vmspace so that it 1083 * doesn't get freed by jobs that switch to a different 1084 * vmspace. 1085 */ 1086 p = td->td_proc; 1087 myvm = vmspace_acquire_ref(p); 1088 1089 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1090 1091 /* 1092 * Allocate and ready the aio control info. There is one aiop structure 1093 * per daemon. 1094 */ 1095 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1096 aiop->aioproc = p; 1097 aiop->aioprocflags = 0; 1098 1099 /* 1100 * Wakeup parent process. (Parent sleeps to keep from blasting away 1101 * and creating too many daemons.) 1102 */ 1103 sema_post(&aio_newproc_sem); 1104 1105 mtx_lock(&aio_job_mtx); 1106 for (;;) { 1107 /* 1108 * Take daemon off of free queue 1109 */ 1110 if (aiop->aioprocflags & AIOP_FREE) { 1111 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1112 aiop->aioprocflags &= ~AIOP_FREE; 1113 } 1114 1115 /* 1116 * Check for jobs. 1117 */ 1118 while ((job = aio_selectjob(aiop)) != NULL) { 1119 mtx_unlock(&aio_job_mtx); 1120 1121 ki = job->userproc->p_aioinfo; 1122 job->handle_fn(job); 1123 1124 mtx_lock(&aio_job_mtx); 1125 /* Decrement the active job count. */ 1126 ki->kaio_active_count--; 1127 } 1128 1129 /* 1130 * Disconnect from user address space. 1131 */ 1132 if (p->p_vmspace != myvm) { 1133 mtx_unlock(&aio_job_mtx); 1134 vmspace_switch_aio(myvm); 1135 mtx_lock(&aio_job_mtx); 1136 /* 1137 * We have to restart to avoid race, we only sleep if 1138 * no job can be selected. 1139 */ 1140 continue; 1141 } 1142 1143 mtx_assert(&aio_job_mtx, MA_OWNED); 1144 1145 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1146 aiop->aioprocflags |= AIOP_FREE; 1147 1148 /* 1149 * If daemon is inactive for a long time, allow it to exit, 1150 * thereby freeing resources. 1151 */ 1152 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1153 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1154 (aiop->aioprocflags & AIOP_FREE) && 1155 num_aio_procs > target_aio_procs) 1156 break; 1157 } 1158 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1159 num_aio_procs--; 1160 mtx_unlock(&aio_job_mtx); 1161 uma_zfree(aiop_zone, aiop); 1162 free_unr(aiod_unr, id); 1163 vmspace_free(myvm); 1164 1165 KASSERT(p->p_vmspace == myvm, 1166 ("AIOD: bad vmspace for exiting daemon")); 1167 KASSERT(myvm->vm_refcnt > 1, 1168 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1169 kproc_exit(0); 1170 } 1171 1172 /* 1173 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1174 * AIO daemon modifies its environment itself. 1175 */ 1176 static int 1177 aio_newproc(int *start) 1178 { 1179 int error; 1180 struct proc *p; 1181 int id; 1182 1183 id = alloc_unr(aiod_unr); 1184 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1185 RFNOWAIT, 0, "aiod%d", id); 1186 if (error == 0) { 1187 /* 1188 * Wait until daemon is started. 1189 */ 1190 sema_wait(&aio_newproc_sem); 1191 mtx_lock(&aio_job_mtx); 1192 num_aio_procs++; 1193 if (start != NULL) 1194 (*start)--; 1195 mtx_unlock(&aio_job_mtx); 1196 } else { 1197 free_unr(aiod_unr, id); 1198 } 1199 return (error); 1200 } 1201 1202 /* 1203 * Try the high-performance, low-overhead physio method for eligible 1204 * VCHR devices. This method doesn't use an aio helper thread, and 1205 * thus has very low overhead. 1206 * 1207 * Assumes that the caller, aio_aqueue(), has incremented the file 1208 * structure's reference count, preventing its deallocation for the 1209 * duration of this call. 1210 */ 1211 static int 1212 aio_qphysio(struct proc *p, struct kaiocb *job) 1213 { 1214 struct aiocb *cb; 1215 struct file *fp; 1216 struct bio *bp; 1217 struct buf *pbuf; 1218 struct vnode *vp; 1219 struct cdevsw *csw; 1220 struct cdev *dev; 1221 struct kaioinfo *ki; 1222 int error, ref, poff; 1223 vm_prot_t prot; 1224 1225 cb = &job->uaiocb; 1226 fp = job->fd_file; 1227 1228 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1229 return (-1); 1230 1231 vp = fp->f_vnode; 1232 if (vp->v_type != VCHR) 1233 return (-1); 1234 if (vp->v_bufobj.bo_bsize == 0) 1235 return (-1); 1236 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1237 return (-1); 1238 1239 ref = 0; 1240 csw = devvn_refthread(vp, &dev, &ref); 1241 if (csw == NULL) 1242 return (ENXIO); 1243 1244 if ((csw->d_flags & D_DISK) == 0) { 1245 error = -1; 1246 goto unref; 1247 } 1248 if (cb->aio_nbytes > dev->si_iosize_max) { 1249 error = -1; 1250 goto unref; 1251 } 1252 1253 ki = p->p_aioinfo; 1254 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1255 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1256 if (cb->aio_nbytes > MAXPHYS) { 1257 error = -1; 1258 goto unref; 1259 } 1260 1261 pbuf = NULL; 1262 } else { 1263 if (cb->aio_nbytes > MAXPHYS - poff) { 1264 error = -1; 1265 goto unref; 1266 } 1267 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1268 error = -1; 1269 goto unref; 1270 } 1271 1272 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1273 BUF_KERNPROC(pbuf); 1274 AIO_LOCK(ki); 1275 ki->kaio_buffer_count++; 1276 AIO_UNLOCK(ki); 1277 } 1278 job->bp = bp = g_alloc_bio(); 1279 1280 bp->bio_length = cb->aio_nbytes; 1281 bp->bio_bcount = cb->aio_nbytes; 1282 bp->bio_done = aio_physwakeup; 1283 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1284 bp->bio_offset = cb->aio_offset; 1285 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1286 bp->bio_dev = dev; 1287 bp->bio_caller1 = (void *)job; 1288 1289 prot = VM_PROT_READ; 1290 if (cb->aio_lio_opcode == LIO_READ) 1291 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1292 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1293 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1294 nitems(job->pages)); 1295 if (job->npages < 0) { 1296 error = EFAULT; 1297 goto doerror; 1298 } 1299 if (pbuf != NULL) { 1300 pmap_qenter((vm_offset_t)pbuf->b_data, 1301 job->pages, job->npages); 1302 bp->bio_data = pbuf->b_data + poff; 1303 atomic_add_int(&num_buf_aio, 1); 1304 } else { 1305 bp->bio_ma = job->pages; 1306 bp->bio_ma_n = job->npages; 1307 bp->bio_ma_offset = poff; 1308 bp->bio_data = unmapped_buf; 1309 bp->bio_flags |= BIO_UNMAPPED; 1310 } 1311 1312 /* Perform transfer. */ 1313 csw->d_strategy(bp); 1314 dev_relthread(dev, ref); 1315 return (0); 1316 1317 doerror: 1318 if (pbuf != NULL) { 1319 AIO_LOCK(ki); 1320 ki->kaio_buffer_count--; 1321 AIO_UNLOCK(ki); 1322 relpbuf(pbuf, NULL); 1323 job->pbuf = NULL; 1324 } 1325 g_destroy_bio(bp); 1326 job->bp = NULL; 1327 unref: 1328 dev_relthread(dev, ref); 1329 return (error); 1330 } 1331 1332 #ifdef COMPAT_FREEBSD6 1333 static int 1334 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1335 { 1336 1337 /* 1338 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1339 * supported by AIO with the old sigevent structure. 1340 */ 1341 nsig->sigev_notify = osig->sigev_notify; 1342 switch (nsig->sigev_notify) { 1343 case SIGEV_NONE: 1344 break; 1345 case SIGEV_SIGNAL: 1346 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1347 break; 1348 case SIGEV_KEVENT: 1349 nsig->sigev_notify_kqueue = 1350 osig->__sigev_u.__sigev_notify_kqueue; 1351 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1352 break; 1353 default: 1354 return (EINVAL); 1355 } 1356 return (0); 1357 } 1358 1359 static int 1360 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1361 { 1362 struct oaiocb *ojob; 1363 int error; 1364 1365 bzero(kjob, sizeof(struct aiocb)); 1366 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1367 if (error) 1368 return (error); 1369 ojob = (struct oaiocb *)kjob; 1370 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1371 } 1372 #endif 1373 1374 static int 1375 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1376 { 1377 1378 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1379 } 1380 1381 static long 1382 aiocb_fetch_status(struct aiocb *ujob) 1383 { 1384 1385 return (fuword(&ujob->_aiocb_private.status)); 1386 } 1387 1388 static long 1389 aiocb_fetch_error(struct aiocb *ujob) 1390 { 1391 1392 return (fuword(&ujob->_aiocb_private.error)); 1393 } 1394 1395 static int 1396 aiocb_store_status(struct aiocb *ujob, long status) 1397 { 1398 1399 return (suword(&ujob->_aiocb_private.status, status)); 1400 } 1401 1402 static int 1403 aiocb_store_error(struct aiocb *ujob, long error) 1404 { 1405 1406 return (suword(&ujob->_aiocb_private.error, error)); 1407 } 1408 1409 static int 1410 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1411 { 1412 1413 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1414 } 1415 1416 static int 1417 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1418 { 1419 1420 return (suword(ujobp, (long)ujob)); 1421 } 1422 1423 static struct aiocb_ops aiocb_ops = { 1424 .copyin = aiocb_copyin, 1425 .fetch_status = aiocb_fetch_status, 1426 .fetch_error = aiocb_fetch_error, 1427 .store_status = aiocb_store_status, 1428 .store_error = aiocb_store_error, 1429 .store_kernelinfo = aiocb_store_kernelinfo, 1430 .store_aiocb = aiocb_store_aiocb, 1431 }; 1432 1433 #ifdef COMPAT_FREEBSD6 1434 static struct aiocb_ops aiocb_ops_osigevent = { 1435 .copyin = aiocb_copyin_old_sigevent, 1436 .fetch_status = aiocb_fetch_status, 1437 .fetch_error = aiocb_fetch_error, 1438 .store_status = aiocb_store_status, 1439 .store_error = aiocb_store_error, 1440 .store_kernelinfo = aiocb_store_kernelinfo, 1441 .store_aiocb = aiocb_store_aiocb, 1442 }; 1443 #endif 1444 1445 /* 1446 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1447 * technique is done in this code. 1448 */ 1449 int 1450 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1451 int type, struct aiocb_ops *ops) 1452 { 1453 struct proc *p = td->td_proc; 1454 cap_rights_t rights; 1455 struct file *fp; 1456 struct kaiocb *job; 1457 struct kaioinfo *ki; 1458 struct kevent kev; 1459 int opcode; 1460 int error; 1461 int fd, kqfd; 1462 int jid; 1463 u_short evflags; 1464 1465 if (p->p_aioinfo == NULL) 1466 aio_init_aioinfo(p); 1467 1468 ki = p->p_aioinfo; 1469 1470 ops->store_status(ujob, -1); 1471 ops->store_error(ujob, 0); 1472 ops->store_kernelinfo(ujob, -1); 1473 1474 if (num_queue_count >= max_queue_count || 1475 ki->kaio_count >= ki->kaio_qallowed_count) { 1476 ops->store_error(ujob, EAGAIN); 1477 return (EAGAIN); 1478 } 1479 1480 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1481 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1482 1483 error = ops->copyin(ujob, &job->uaiocb); 1484 if (error) { 1485 ops->store_error(ujob, error); 1486 uma_zfree(aiocb_zone, job); 1487 return (error); 1488 } 1489 1490 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1491 uma_zfree(aiocb_zone, job); 1492 return (EINVAL); 1493 } 1494 1495 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1496 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1497 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1498 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1499 ops->store_error(ujob, EINVAL); 1500 uma_zfree(aiocb_zone, job); 1501 return (EINVAL); 1502 } 1503 1504 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1505 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1506 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1507 uma_zfree(aiocb_zone, job); 1508 return (EINVAL); 1509 } 1510 1511 ksiginfo_init(&job->ksi); 1512 1513 /* Save userspace address of the job info. */ 1514 job->ujob = ujob; 1515 1516 /* Get the opcode. */ 1517 if (type != LIO_NOP) 1518 job->uaiocb.aio_lio_opcode = type; 1519 opcode = job->uaiocb.aio_lio_opcode; 1520 1521 /* 1522 * Validate the opcode and fetch the file object for the specified 1523 * file descriptor. 1524 * 1525 * XXXRW: Moved the opcode validation up here so that we don't 1526 * retrieve a file descriptor without knowing what the capabiltity 1527 * should be. 1528 */ 1529 fd = job->uaiocb.aio_fildes; 1530 switch (opcode) { 1531 case LIO_WRITE: 1532 error = fget_write(td, fd, 1533 cap_rights_init(&rights, CAP_PWRITE), &fp); 1534 break; 1535 case LIO_READ: 1536 error = fget_read(td, fd, 1537 cap_rights_init(&rights, CAP_PREAD), &fp); 1538 break; 1539 case LIO_SYNC: 1540 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1541 break; 1542 case LIO_MLOCK: 1543 fp = NULL; 1544 break; 1545 case LIO_NOP: 1546 error = fget(td, fd, cap_rights_init(&rights), &fp); 1547 break; 1548 default: 1549 error = EINVAL; 1550 } 1551 if (error) { 1552 uma_zfree(aiocb_zone, job); 1553 ops->store_error(ujob, error); 1554 return (error); 1555 } 1556 1557 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1558 error = EINVAL; 1559 goto aqueue_fail; 1560 } 1561 1562 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1563 job->uaiocb.aio_offset < 0 && 1564 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1565 error = EINVAL; 1566 goto aqueue_fail; 1567 } 1568 1569 job->fd_file = fp; 1570 1571 mtx_lock(&aio_job_mtx); 1572 jid = jobrefid++; 1573 job->seqno = jobseqno++; 1574 mtx_unlock(&aio_job_mtx); 1575 error = ops->store_kernelinfo(ujob, jid); 1576 if (error) { 1577 error = EINVAL; 1578 goto aqueue_fail; 1579 } 1580 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1581 1582 if (opcode == LIO_NOP) { 1583 fdrop(fp, td); 1584 uma_zfree(aiocb_zone, job); 1585 return (0); 1586 } 1587 1588 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1589 goto no_kqueue; 1590 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1591 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1592 error = EINVAL; 1593 goto aqueue_fail; 1594 } 1595 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1596 kev.ident = (uintptr_t)job->ujob; 1597 kev.filter = EVFILT_AIO; 1598 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1599 kev.data = (intptr_t)job; 1600 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1601 error = kqfd_register(kqfd, &kev, td, 1); 1602 if (error) 1603 goto aqueue_fail; 1604 1605 no_kqueue: 1606 1607 ops->store_error(ujob, EINPROGRESS); 1608 job->uaiocb._aiocb_private.error = EINPROGRESS; 1609 job->userproc = p; 1610 job->cred = crhold(td->td_ucred); 1611 job->jobflags = KAIOCB_QUEUEING; 1612 job->lio = lj; 1613 1614 if (opcode == LIO_MLOCK) { 1615 aio_schedule(job, aio_process_mlock); 1616 error = 0; 1617 } else if (fp->f_ops->fo_aio_queue == NULL) 1618 error = aio_queue_file(fp, job); 1619 else 1620 error = fo_aio_queue(fp, job); 1621 if (error) 1622 goto aqueue_fail; 1623 1624 AIO_LOCK(ki); 1625 job->jobflags &= ~KAIOCB_QUEUEING; 1626 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1627 ki->kaio_count++; 1628 if (lj) 1629 lj->lioj_count++; 1630 atomic_add_int(&num_queue_count, 1); 1631 if (job->jobflags & KAIOCB_FINISHED) { 1632 /* 1633 * The queue callback completed the request synchronously. 1634 * The bulk of the completion is deferred in that case 1635 * until this point. 1636 */ 1637 aio_bio_done_notify(p, job); 1638 } else 1639 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1640 AIO_UNLOCK(ki); 1641 return (0); 1642 1643 aqueue_fail: 1644 knlist_delete(&job->klist, curthread, 0); 1645 if (fp) 1646 fdrop(fp, td); 1647 uma_zfree(aiocb_zone, job); 1648 ops->store_error(ujob, error); 1649 return (error); 1650 } 1651 1652 static void 1653 aio_cancel_daemon_job(struct kaiocb *job) 1654 { 1655 1656 mtx_lock(&aio_job_mtx); 1657 if (!aio_cancel_cleared(job)) 1658 TAILQ_REMOVE(&aio_jobs, job, list); 1659 mtx_unlock(&aio_job_mtx); 1660 aio_cancel(job); 1661 } 1662 1663 void 1664 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1665 { 1666 1667 mtx_lock(&aio_job_mtx); 1668 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1669 mtx_unlock(&aio_job_mtx); 1670 aio_cancel(job); 1671 return; 1672 } 1673 job->handle_fn = func; 1674 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1675 aio_kick_nowait(job->userproc); 1676 mtx_unlock(&aio_job_mtx); 1677 } 1678 1679 static void 1680 aio_cancel_sync(struct kaiocb *job) 1681 { 1682 struct kaioinfo *ki; 1683 1684 ki = job->userproc->p_aioinfo; 1685 AIO_LOCK(ki); 1686 if (!aio_cancel_cleared(job)) 1687 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1688 AIO_UNLOCK(ki); 1689 aio_cancel(job); 1690 } 1691 1692 int 1693 aio_queue_file(struct file *fp, struct kaiocb *job) 1694 { 1695 struct aioliojob *lj; 1696 struct kaioinfo *ki; 1697 struct kaiocb *job2; 1698 struct vnode *vp; 1699 struct mount *mp; 1700 int error, opcode; 1701 bool safe; 1702 1703 lj = job->lio; 1704 ki = job->userproc->p_aioinfo; 1705 opcode = job->uaiocb.aio_lio_opcode; 1706 if (opcode == LIO_SYNC) 1707 goto queueit; 1708 1709 if ((error = aio_qphysio(job->userproc, job)) == 0) 1710 goto done; 1711 #if 0 1712 /* 1713 * XXX: This means qphysio() failed with EFAULT. The current 1714 * behavior is to retry the operation via fo_read/fo_write. 1715 * Wouldn't it be better to just complete the request with an 1716 * error here? 1717 */ 1718 if (error > 0) 1719 goto done; 1720 #endif 1721 queueit: 1722 safe = false; 1723 if (fp->f_type == DTYPE_VNODE) { 1724 vp = fp->f_vnode; 1725 if (vp->v_type == VREG || vp->v_type == VDIR) { 1726 mp = fp->f_vnode->v_mount; 1727 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1728 safe = true; 1729 } 1730 } 1731 if (!(safe || enable_aio_unsafe)) { 1732 counted_warning(&unsafe_warningcnt, 1733 "is attempting to use unsafe AIO requests"); 1734 return (EOPNOTSUPP); 1735 } 1736 1737 if (opcode == LIO_SYNC) { 1738 AIO_LOCK(ki); 1739 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1740 if (job2->fd_file == job->fd_file && 1741 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1742 job2->seqno < job->seqno) { 1743 job2->jobflags |= KAIOCB_CHECKSYNC; 1744 job->pending++; 1745 } 1746 } 1747 if (job->pending != 0) { 1748 if (!aio_set_cancel_function_locked(job, 1749 aio_cancel_sync)) { 1750 AIO_UNLOCK(ki); 1751 aio_cancel(job); 1752 return (0); 1753 } 1754 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1755 AIO_UNLOCK(ki); 1756 return (0); 1757 } 1758 AIO_UNLOCK(ki); 1759 } 1760 1761 switch (opcode) { 1762 case LIO_READ: 1763 case LIO_WRITE: 1764 aio_schedule(job, aio_process_rw); 1765 error = 0; 1766 break; 1767 case LIO_SYNC: 1768 aio_schedule(job, aio_process_sync); 1769 error = 0; 1770 break; 1771 default: 1772 error = EINVAL; 1773 } 1774 done: 1775 return (error); 1776 } 1777 1778 static void 1779 aio_kick_nowait(struct proc *userp) 1780 { 1781 struct kaioinfo *ki = userp->p_aioinfo; 1782 struct aioproc *aiop; 1783 1784 mtx_assert(&aio_job_mtx, MA_OWNED); 1785 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1786 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1787 aiop->aioprocflags &= ~AIOP_FREE; 1788 wakeup(aiop->aioproc); 1789 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1790 ki->kaio_active_count + num_aio_resv_start < 1791 ki->kaio_maxactive_count) { 1792 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1793 } 1794 } 1795 1796 static int 1797 aio_kick(struct proc *userp) 1798 { 1799 struct kaioinfo *ki = userp->p_aioinfo; 1800 struct aioproc *aiop; 1801 int error, ret = 0; 1802 1803 mtx_assert(&aio_job_mtx, MA_OWNED); 1804 retryproc: 1805 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1806 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1807 aiop->aioprocflags &= ~AIOP_FREE; 1808 wakeup(aiop->aioproc); 1809 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1810 ki->kaio_active_count + num_aio_resv_start < 1811 ki->kaio_maxactive_count) { 1812 num_aio_resv_start++; 1813 mtx_unlock(&aio_job_mtx); 1814 error = aio_newproc(&num_aio_resv_start); 1815 mtx_lock(&aio_job_mtx); 1816 if (error) { 1817 num_aio_resv_start--; 1818 goto retryproc; 1819 } 1820 } else { 1821 ret = -1; 1822 } 1823 return (ret); 1824 } 1825 1826 static void 1827 aio_kick_helper(void *context, int pending) 1828 { 1829 struct proc *userp = context; 1830 1831 mtx_lock(&aio_job_mtx); 1832 while (--pending >= 0) { 1833 if (aio_kick(userp)) 1834 break; 1835 } 1836 mtx_unlock(&aio_job_mtx); 1837 } 1838 1839 /* 1840 * Support the aio_return system call, as a side-effect, kernel resources are 1841 * released. 1842 */ 1843 static int 1844 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1845 { 1846 struct proc *p = td->td_proc; 1847 struct kaiocb *job; 1848 struct kaioinfo *ki; 1849 long status, error; 1850 1851 ki = p->p_aioinfo; 1852 if (ki == NULL) 1853 return (EINVAL); 1854 AIO_LOCK(ki); 1855 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1856 if (job->ujob == ujob) 1857 break; 1858 } 1859 if (job != NULL) { 1860 MPASS(job->jobflags & KAIOCB_FINISHED); 1861 status = job->uaiocb._aiocb_private.status; 1862 error = job->uaiocb._aiocb_private.error; 1863 td->td_retval[0] = status; 1864 td->td_ru.ru_oublock += job->outblock; 1865 td->td_ru.ru_inblock += job->inblock; 1866 td->td_ru.ru_msgsnd += job->msgsnd; 1867 td->td_ru.ru_msgrcv += job->msgrcv; 1868 aio_free_entry(job); 1869 AIO_UNLOCK(ki); 1870 ops->store_error(ujob, error); 1871 ops->store_status(ujob, status); 1872 } else { 1873 error = EINVAL; 1874 AIO_UNLOCK(ki); 1875 } 1876 return (error); 1877 } 1878 1879 int 1880 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1881 { 1882 1883 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1884 } 1885 1886 /* 1887 * Allow a process to wakeup when any of the I/O requests are completed. 1888 */ 1889 static int 1890 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1891 struct timespec *ts) 1892 { 1893 struct proc *p = td->td_proc; 1894 struct timeval atv; 1895 struct kaioinfo *ki; 1896 struct kaiocb *firstjob, *job; 1897 int error, i, timo; 1898 1899 timo = 0; 1900 if (ts) { 1901 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1902 return (EINVAL); 1903 1904 TIMESPEC_TO_TIMEVAL(&atv, ts); 1905 if (itimerfix(&atv)) 1906 return (EINVAL); 1907 timo = tvtohz(&atv); 1908 } 1909 1910 ki = p->p_aioinfo; 1911 if (ki == NULL) 1912 return (EAGAIN); 1913 1914 if (njoblist == 0) 1915 return (0); 1916 1917 AIO_LOCK(ki); 1918 for (;;) { 1919 firstjob = NULL; 1920 error = 0; 1921 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1922 for (i = 0; i < njoblist; i++) { 1923 if (job->ujob == ujoblist[i]) { 1924 if (firstjob == NULL) 1925 firstjob = job; 1926 if (job->jobflags & KAIOCB_FINISHED) 1927 goto RETURN; 1928 } 1929 } 1930 } 1931 /* All tasks were finished. */ 1932 if (firstjob == NULL) 1933 break; 1934 1935 ki->kaio_flags |= KAIO_WAKEUP; 1936 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1937 "aiospn", timo); 1938 if (error == ERESTART) 1939 error = EINTR; 1940 if (error) 1941 break; 1942 } 1943 RETURN: 1944 AIO_UNLOCK(ki); 1945 return (error); 1946 } 1947 1948 int 1949 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1950 { 1951 struct timespec ts, *tsp; 1952 struct aiocb **ujoblist; 1953 int error; 1954 1955 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1956 return (EINVAL); 1957 1958 if (uap->timeout) { 1959 /* Get timespec struct. */ 1960 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1961 return (error); 1962 tsp = &ts; 1963 } else 1964 tsp = NULL; 1965 1966 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1967 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1968 if (error == 0) 1969 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1970 free(ujoblist, M_AIOS); 1971 return (error); 1972 } 1973 1974 /* 1975 * aio_cancel cancels any non-physio aio operations not currently in 1976 * progress. 1977 */ 1978 int 1979 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1980 { 1981 struct proc *p = td->td_proc; 1982 struct kaioinfo *ki; 1983 struct kaiocb *job, *jobn; 1984 struct file *fp; 1985 cap_rights_t rights; 1986 int error; 1987 int cancelled = 0; 1988 int notcancelled = 0; 1989 struct vnode *vp; 1990 1991 /* Lookup file object. */ 1992 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1993 if (error) 1994 return (error); 1995 1996 ki = p->p_aioinfo; 1997 if (ki == NULL) 1998 goto done; 1999 2000 if (fp->f_type == DTYPE_VNODE) { 2001 vp = fp->f_vnode; 2002 if (vn_isdisk(vp, &error)) { 2003 fdrop(fp, td); 2004 td->td_retval[0] = AIO_NOTCANCELED; 2005 return (0); 2006 } 2007 } 2008 2009 AIO_LOCK(ki); 2010 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2011 if ((uap->fd == job->uaiocb.aio_fildes) && 2012 ((uap->aiocbp == NULL) || 2013 (uap->aiocbp == job->ujob))) { 2014 if (aio_cancel_job(p, ki, job)) { 2015 cancelled++; 2016 } else { 2017 notcancelled++; 2018 } 2019 if (uap->aiocbp != NULL) 2020 break; 2021 } 2022 } 2023 AIO_UNLOCK(ki); 2024 2025 done: 2026 fdrop(fp, td); 2027 2028 if (uap->aiocbp != NULL) { 2029 if (cancelled) { 2030 td->td_retval[0] = AIO_CANCELED; 2031 return (0); 2032 } 2033 } 2034 2035 if (notcancelled) { 2036 td->td_retval[0] = AIO_NOTCANCELED; 2037 return (0); 2038 } 2039 2040 if (cancelled) { 2041 td->td_retval[0] = AIO_CANCELED; 2042 return (0); 2043 } 2044 2045 td->td_retval[0] = AIO_ALLDONE; 2046 2047 return (0); 2048 } 2049 2050 /* 2051 * aio_error is implemented in the kernel level for compatibility purposes 2052 * only. For a user mode async implementation, it would be best to do it in 2053 * a userland subroutine. 2054 */ 2055 static int 2056 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2057 { 2058 struct proc *p = td->td_proc; 2059 struct kaiocb *job; 2060 struct kaioinfo *ki; 2061 int status; 2062 2063 ki = p->p_aioinfo; 2064 if (ki == NULL) { 2065 td->td_retval[0] = EINVAL; 2066 return (0); 2067 } 2068 2069 AIO_LOCK(ki); 2070 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2071 if (job->ujob == ujob) { 2072 if (job->jobflags & KAIOCB_FINISHED) 2073 td->td_retval[0] = 2074 job->uaiocb._aiocb_private.error; 2075 else 2076 td->td_retval[0] = EINPROGRESS; 2077 AIO_UNLOCK(ki); 2078 return (0); 2079 } 2080 } 2081 AIO_UNLOCK(ki); 2082 2083 /* 2084 * Hack for failure of aio_aqueue. 2085 */ 2086 status = ops->fetch_status(ujob); 2087 if (status == -1) { 2088 td->td_retval[0] = ops->fetch_error(ujob); 2089 return (0); 2090 } 2091 2092 td->td_retval[0] = EINVAL; 2093 return (0); 2094 } 2095 2096 int 2097 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2098 { 2099 2100 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2101 } 2102 2103 /* syscall - asynchronous read from a file (REALTIME) */ 2104 #ifdef COMPAT_FREEBSD6 2105 int 2106 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2107 { 2108 2109 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2110 &aiocb_ops_osigevent)); 2111 } 2112 #endif 2113 2114 int 2115 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2116 { 2117 2118 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2119 } 2120 2121 /* syscall - asynchronous write to a file (REALTIME) */ 2122 #ifdef COMPAT_FREEBSD6 2123 int 2124 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2125 { 2126 2127 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2128 &aiocb_ops_osigevent)); 2129 } 2130 #endif 2131 2132 int 2133 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2134 { 2135 2136 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2137 } 2138 2139 int 2140 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2141 { 2142 2143 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2144 } 2145 2146 static int 2147 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2148 struct aiocb **acb_list, int nent, struct sigevent *sig, 2149 struct aiocb_ops *ops) 2150 { 2151 struct proc *p = td->td_proc; 2152 struct aiocb *job; 2153 struct kaioinfo *ki; 2154 struct aioliojob *lj; 2155 struct kevent kev; 2156 int error; 2157 int nerror; 2158 int i; 2159 2160 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2161 return (EINVAL); 2162 2163 if (nent < 0 || nent > max_aio_queue_per_proc) 2164 return (EINVAL); 2165 2166 if (p->p_aioinfo == NULL) 2167 aio_init_aioinfo(p); 2168 2169 ki = p->p_aioinfo; 2170 2171 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2172 lj->lioj_flags = 0; 2173 lj->lioj_count = 0; 2174 lj->lioj_finished_count = 0; 2175 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2176 ksiginfo_init(&lj->lioj_ksi); 2177 2178 /* 2179 * Setup signal. 2180 */ 2181 if (sig && (mode == LIO_NOWAIT)) { 2182 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2183 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2184 /* Assume only new style KEVENT */ 2185 kev.filter = EVFILT_LIO; 2186 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2187 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2188 kev.data = (intptr_t)lj; 2189 /* pass user defined sigval data */ 2190 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2191 error = kqfd_register( 2192 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2193 if (error) { 2194 uma_zfree(aiolio_zone, lj); 2195 return (error); 2196 } 2197 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2198 ; 2199 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2200 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2201 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2202 uma_zfree(aiolio_zone, lj); 2203 return EINVAL; 2204 } 2205 lj->lioj_flags |= LIOJ_SIGNAL; 2206 } else { 2207 uma_zfree(aiolio_zone, lj); 2208 return EINVAL; 2209 } 2210 } 2211 2212 AIO_LOCK(ki); 2213 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2214 /* 2215 * Add extra aiocb count to avoid the lio to be freed 2216 * by other threads doing aio_waitcomplete or aio_return, 2217 * and prevent event from being sent until we have queued 2218 * all tasks. 2219 */ 2220 lj->lioj_count = 1; 2221 AIO_UNLOCK(ki); 2222 2223 /* 2224 * Get pointers to the list of I/O requests. 2225 */ 2226 nerror = 0; 2227 for (i = 0; i < nent; i++) { 2228 job = acb_list[i]; 2229 if (job != NULL) { 2230 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2231 if (error != 0) 2232 nerror++; 2233 } 2234 } 2235 2236 error = 0; 2237 AIO_LOCK(ki); 2238 if (mode == LIO_WAIT) { 2239 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2240 ki->kaio_flags |= KAIO_WAKEUP; 2241 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2242 PRIBIO | PCATCH, "aiospn", 0); 2243 if (error == ERESTART) 2244 error = EINTR; 2245 if (error) 2246 break; 2247 } 2248 } else { 2249 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2250 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2251 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2252 KNOTE_LOCKED(&lj->klist, 1); 2253 } 2254 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2255 == LIOJ_SIGNAL 2256 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2257 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2258 aio_sendsig(p, &lj->lioj_signal, 2259 &lj->lioj_ksi); 2260 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2261 } 2262 } 2263 } 2264 lj->lioj_count--; 2265 if (lj->lioj_count == 0) { 2266 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2267 knlist_delete(&lj->klist, curthread, 1); 2268 PROC_LOCK(p); 2269 sigqueue_take(&lj->lioj_ksi); 2270 PROC_UNLOCK(p); 2271 AIO_UNLOCK(ki); 2272 uma_zfree(aiolio_zone, lj); 2273 } else 2274 AIO_UNLOCK(ki); 2275 2276 if (nerror) 2277 return (EIO); 2278 return (error); 2279 } 2280 2281 /* syscall - list directed I/O (REALTIME) */ 2282 #ifdef COMPAT_FREEBSD6 2283 int 2284 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2285 { 2286 struct aiocb **acb_list; 2287 struct sigevent *sigp, sig; 2288 struct osigevent osig; 2289 int error, nent; 2290 2291 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2292 return (EINVAL); 2293 2294 nent = uap->nent; 2295 if (nent < 0 || nent > max_aio_queue_per_proc) 2296 return (EINVAL); 2297 2298 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2299 error = copyin(uap->sig, &osig, sizeof(osig)); 2300 if (error) 2301 return (error); 2302 error = convert_old_sigevent(&osig, &sig); 2303 if (error) 2304 return (error); 2305 sigp = &sig; 2306 } else 2307 sigp = NULL; 2308 2309 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2310 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2311 if (error == 0) 2312 error = kern_lio_listio(td, uap->mode, 2313 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2314 &aiocb_ops_osigevent); 2315 free(acb_list, M_LIO); 2316 return (error); 2317 } 2318 #endif 2319 2320 /* syscall - list directed I/O (REALTIME) */ 2321 int 2322 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2323 { 2324 struct aiocb **acb_list; 2325 struct sigevent *sigp, sig; 2326 int error, nent; 2327 2328 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2329 return (EINVAL); 2330 2331 nent = uap->nent; 2332 if (nent < 0 || nent > max_aio_queue_per_proc) 2333 return (EINVAL); 2334 2335 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2336 error = copyin(uap->sig, &sig, sizeof(sig)); 2337 if (error) 2338 return (error); 2339 sigp = &sig; 2340 } else 2341 sigp = NULL; 2342 2343 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2344 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2345 if (error == 0) 2346 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2347 nent, sigp, &aiocb_ops); 2348 free(acb_list, M_LIO); 2349 return (error); 2350 } 2351 2352 static void 2353 aio_physwakeup(struct bio *bp) 2354 { 2355 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2356 struct proc *userp; 2357 struct kaioinfo *ki; 2358 size_t nbytes; 2359 int error, nblks; 2360 2361 /* Release mapping into kernel space. */ 2362 userp = job->userproc; 2363 ki = userp->p_aioinfo; 2364 if (job->pbuf) { 2365 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2366 relpbuf(job->pbuf, NULL); 2367 job->pbuf = NULL; 2368 atomic_subtract_int(&num_buf_aio, 1); 2369 AIO_LOCK(ki); 2370 ki->kaio_buffer_count--; 2371 AIO_UNLOCK(ki); 2372 } 2373 vm_page_unhold_pages(job->pages, job->npages); 2374 2375 bp = job->bp; 2376 job->bp = NULL; 2377 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2378 error = 0; 2379 if (bp->bio_flags & BIO_ERROR) 2380 error = bp->bio_error; 2381 nblks = btodb(nbytes); 2382 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2383 job->outblock += nblks; 2384 else 2385 job->inblock += nblks; 2386 2387 if (error) 2388 aio_complete(job, -1, error); 2389 else 2390 aio_complete(job, nbytes, 0); 2391 2392 g_destroy_bio(bp); 2393 } 2394 2395 /* syscall - wait for the next completion of an aio request */ 2396 static int 2397 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2398 struct timespec *ts, struct aiocb_ops *ops) 2399 { 2400 struct proc *p = td->td_proc; 2401 struct timeval atv; 2402 struct kaioinfo *ki; 2403 struct kaiocb *job; 2404 struct aiocb *ujob; 2405 long error, status; 2406 int timo; 2407 2408 ops->store_aiocb(ujobp, NULL); 2409 2410 if (ts == NULL) { 2411 timo = 0; 2412 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2413 timo = -1; 2414 } else { 2415 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2416 return (EINVAL); 2417 2418 TIMESPEC_TO_TIMEVAL(&atv, ts); 2419 if (itimerfix(&atv)) 2420 return (EINVAL); 2421 timo = tvtohz(&atv); 2422 } 2423 2424 if (p->p_aioinfo == NULL) 2425 aio_init_aioinfo(p); 2426 ki = p->p_aioinfo; 2427 2428 error = 0; 2429 job = NULL; 2430 AIO_LOCK(ki); 2431 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2432 if (timo == -1) { 2433 error = EWOULDBLOCK; 2434 break; 2435 } 2436 ki->kaio_flags |= KAIO_WAKEUP; 2437 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2438 "aiowc", timo); 2439 if (timo && error == ERESTART) 2440 error = EINTR; 2441 if (error) 2442 break; 2443 } 2444 2445 if (job != NULL) { 2446 MPASS(job->jobflags & KAIOCB_FINISHED); 2447 ujob = job->ujob; 2448 status = job->uaiocb._aiocb_private.status; 2449 error = job->uaiocb._aiocb_private.error; 2450 td->td_retval[0] = status; 2451 td->td_ru.ru_oublock += job->outblock; 2452 td->td_ru.ru_inblock += job->inblock; 2453 td->td_ru.ru_msgsnd += job->msgsnd; 2454 td->td_ru.ru_msgrcv += job->msgrcv; 2455 aio_free_entry(job); 2456 AIO_UNLOCK(ki); 2457 ops->store_aiocb(ujobp, ujob); 2458 ops->store_error(ujob, error); 2459 ops->store_status(ujob, status); 2460 } else 2461 AIO_UNLOCK(ki); 2462 2463 return (error); 2464 } 2465 2466 int 2467 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2468 { 2469 struct timespec ts, *tsp; 2470 int error; 2471 2472 if (uap->timeout) { 2473 /* Get timespec struct. */ 2474 error = copyin(uap->timeout, &ts, sizeof(ts)); 2475 if (error) 2476 return (error); 2477 tsp = &ts; 2478 } else 2479 tsp = NULL; 2480 2481 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2482 } 2483 2484 static int 2485 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2486 struct aiocb_ops *ops) 2487 { 2488 2489 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2490 return (EINVAL); 2491 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2492 } 2493 2494 int 2495 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2496 { 2497 2498 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2499 } 2500 2501 /* kqueue attach function */ 2502 static int 2503 filt_aioattach(struct knote *kn) 2504 { 2505 struct kaiocb *job; 2506 2507 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2508 2509 /* 2510 * The job pointer must be validated before using it, so 2511 * registration is restricted to the kernel; the user cannot 2512 * set EV_FLAG1. 2513 */ 2514 if ((kn->kn_flags & EV_FLAG1) == 0) 2515 return (EPERM); 2516 kn->kn_ptr.p_aio = job; 2517 kn->kn_flags &= ~EV_FLAG1; 2518 2519 knlist_add(&job->klist, kn, 0); 2520 2521 return (0); 2522 } 2523 2524 /* kqueue detach function */ 2525 static void 2526 filt_aiodetach(struct knote *kn) 2527 { 2528 struct knlist *knl; 2529 2530 knl = &kn->kn_ptr.p_aio->klist; 2531 knl->kl_lock(knl->kl_lockarg); 2532 if (!knlist_empty(knl)) 2533 knlist_remove(knl, kn, 1); 2534 knl->kl_unlock(knl->kl_lockarg); 2535 } 2536 2537 /* kqueue filter function */ 2538 /*ARGSUSED*/ 2539 static int 2540 filt_aio(struct knote *kn, long hint) 2541 { 2542 struct kaiocb *job = kn->kn_ptr.p_aio; 2543 2544 kn->kn_data = job->uaiocb._aiocb_private.error; 2545 if (!(job->jobflags & KAIOCB_FINISHED)) 2546 return (0); 2547 kn->kn_flags |= EV_EOF; 2548 return (1); 2549 } 2550 2551 /* kqueue attach function */ 2552 static int 2553 filt_lioattach(struct knote *kn) 2554 { 2555 struct aioliojob *lj; 2556 2557 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2558 2559 /* 2560 * The aioliojob pointer must be validated before using it, so 2561 * registration is restricted to the kernel; the user cannot 2562 * set EV_FLAG1. 2563 */ 2564 if ((kn->kn_flags & EV_FLAG1) == 0) 2565 return (EPERM); 2566 kn->kn_ptr.p_lio = lj; 2567 kn->kn_flags &= ~EV_FLAG1; 2568 2569 knlist_add(&lj->klist, kn, 0); 2570 2571 return (0); 2572 } 2573 2574 /* kqueue detach function */ 2575 static void 2576 filt_liodetach(struct knote *kn) 2577 { 2578 struct knlist *knl; 2579 2580 knl = &kn->kn_ptr.p_lio->klist; 2581 knl->kl_lock(knl->kl_lockarg); 2582 if (!knlist_empty(knl)) 2583 knlist_remove(knl, kn, 1); 2584 knl->kl_unlock(knl->kl_lockarg); 2585 } 2586 2587 /* kqueue filter function */ 2588 /*ARGSUSED*/ 2589 static int 2590 filt_lio(struct knote *kn, long hint) 2591 { 2592 struct aioliojob * lj = kn->kn_ptr.p_lio; 2593 2594 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2595 } 2596 2597 #ifdef COMPAT_FREEBSD32 2598 #include <sys/mount.h> 2599 #include <sys/socket.h> 2600 #include <compat/freebsd32/freebsd32.h> 2601 #include <compat/freebsd32/freebsd32_proto.h> 2602 #include <compat/freebsd32/freebsd32_signal.h> 2603 #include <compat/freebsd32/freebsd32_syscall.h> 2604 #include <compat/freebsd32/freebsd32_util.h> 2605 2606 struct __aiocb_private32 { 2607 int32_t status; 2608 int32_t error; 2609 uint32_t kernelinfo; 2610 }; 2611 2612 #ifdef COMPAT_FREEBSD6 2613 typedef struct oaiocb32 { 2614 int aio_fildes; /* File descriptor */ 2615 uint64_t aio_offset __packed; /* File offset for I/O */ 2616 uint32_t aio_buf; /* I/O buffer in process space */ 2617 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2618 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2619 int aio_lio_opcode; /* LIO opcode */ 2620 int aio_reqprio; /* Request priority -- ignored */ 2621 struct __aiocb_private32 _aiocb_private; 2622 } oaiocb32_t; 2623 #endif 2624 2625 typedef struct aiocb32 { 2626 int32_t aio_fildes; /* File descriptor */ 2627 uint64_t aio_offset __packed; /* File offset for I/O */ 2628 uint32_t aio_buf; /* I/O buffer in process space */ 2629 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2630 int __spare__[2]; 2631 uint32_t __spare2__; 2632 int aio_lio_opcode; /* LIO opcode */ 2633 int aio_reqprio; /* Request priority -- ignored */ 2634 struct __aiocb_private32 _aiocb_private; 2635 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2636 } aiocb32_t; 2637 2638 #ifdef COMPAT_FREEBSD6 2639 static int 2640 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2641 { 2642 2643 /* 2644 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2645 * supported by AIO with the old sigevent structure. 2646 */ 2647 CP(*osig, *nsig, sigev_notify); 2648 switch (nsig->sigev_notify) { 2649 case SIGEV_NONE: 2650 break; 2651 case SIGEV_SIGNAL: 2652 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2653 break; 2654 case SIGEV_KEVENT: 2655 nsig->sigev_notify_kqueue = 2656 osig->__sigev_u.__sigev_notify_kqueue; 2657 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2658 break; 2659 default: 2660 return (EINVAL); 2661 } 2662 return (0); 2663 } 2664 2665 static int 2666 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2667 { 2668 struct oaiocb32 job32; 2669 int error; 2670 2671 bzero(kjob, sizeof(struct aiocb)); 2672 error = copyin(ujob, &job32, sizeof(job32)); 2673 if (error) 2674 return (error); 2675 2676 CP(job32, *kjob, aio_fildes); 2677 CP(job32, *kjob, aio_offset); 2678 PTRIN_CP(job32, *kjob, aio_buf); 2679 CP(job32, *kjob, aio_nbytes); 2680 CP(job32, *kjob, aio_lio_opcode); 2681 CP(job32, *kjob, aio_reqprio); 2682 CP(job32, *kjob, _aiocb_private.status); 2683 CP(job32, *kjob, _aiocb_private.error); 2684 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2685 return (convert_old_sigevent32(&job32.aio_sigevent, 2686 &kjob->aio_sigevent)); 2687 } 2688 #endif 2689 2690 static int 2691 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2692 { 2693 struct aiocb32 job32; 2694 int error; 2695 2696 error = copyin(ujob, &job32, sizeof(job32)); 2697 if (error) 2698 return (error); 2699 CP(job32, *kjob, aio_fildes); 2700 CP(job32, *kjob, aio_offset); 2701 PTRIN_CP(job32, *kjob, aio_buf); 2702 CP(job32, *kjob, aio_nbytes); 2703 CP(job32, *kjob, aio_lio_opcode); 2704 CP(job32, *kjob, aio_reqprio); 2705 CP(job32, *kjob, _aiocb_private.status); 2706 CP(job32, *kjob, _aiocb_private.error); 2707 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2708 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2709 } 2710 2711 static long 2712 aiocb32_fetch_status(struct aiocb *ujob) 2713 { 2714 struct aiocb32 *ujob32; 2715 2716 ujob32 = (struct aiocb32 *)ujob; 2717 return (fuword32(&ujob32->_aiocb_private.status)); 2718 } 2719 2720 static long 2721 aiocb32_fetch_error(struct aiocb *ujob) 2722 { 2723 struct aiocb32 *ujob32; 2724 2725 ujob32 = (struct aiocb32 *)ujob; 2726 return (fuword32(&ujob32->_aiocb_private.error)); 2727 } 2728 2729 static int 2730 aiocb32_store_status(struct aiocb *ujob, long status) 2731 { 2732 struct aiocb32 *ujob32; 2733 2734 ujob32 = (struct aiocb32 *)ujob; 2735 return (suword32(&ujob32->_aiocb_private.status, status)); 2736 } 2737 2738 static int 2739 aiocb32_store_error(struct aiocb *ujob, long error) 2740 { 2741 struct aiocb32 *ujob32; 2742 2743 ujob32 = (struct aiocb32 *)ujob; 2744 return (suword32(&ujob32->_aiocb_private.error, error)); 2745 } 2746 2747 static int 2748 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2749 { 2750 struct aiocb32 *ujob32; 2751 2752 ujob32 = (struct aiocb32 *)ujob; 2753 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2754 } 2755 2756 static int 2757 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2758 { 2759 2760 return (suword32(ujobp, (long)ujob)); 2761 } 2762 2763 static struct aiocb_ops aiocb32_ops = { 2764 .copyin = aiocb32_copyin, 2765 .fetch_status = aiocb32_fetch_status, 2766 .fetch_error = aiocb32_fetch_error, 2767 .store_status = aiocb32_store_status, 2768 .store_error = aiocb32_store_error, 2769 .store_kernelinfo = aiocb32_store_kernelinfo, 2770 .store_aiocb = aiocb32_store_aiocb, 2771 }; 2772 2773 #ifdef COMPAT_FREEBSD6 2774 static struct aiocb_ops aiocb32_ops_osigevent = { 2775 .copyin = aiocb32_copyin_old_sigevent, 2776 .fetch_status = aiocb32_fetch_status, 2777 .fetch_error = aiocb32_fetch_error, 2778 .store_status = aiocb32_store_status, 2779 .store_error = aiocb32_store_error, 2780 .store_kernelinfo = aiocb32_store_kernelinfo, 2781 .store_aiocb = aiocb32_store_aiocb, 2782 }; 2783 #endif 2784 2785 int 2786 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2787 { 2788 2789 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2790 } 2791 2792 int 2793 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2794 { 2795 struct timespec32 ts32; 2796 struct timespec ts, *tsp; 2797 struct aiocb **ujoblist; 2798 uint32_t *ujoblist32; 2799 int error, i; 2800 2801 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2802 return (EINVAL); 2803 2804 if (uap->timeout) { 2805 /* Get timespec struct. */ 2806 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2807 return (error); 2808 CP(ts32, ts, tv_sec); 2809 CP(ts32, ts, tv_nsec); 2810 tsp = &ts; 2811 } else 2812 tsp = NULL; 2813 2814 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2815 ujoblist32 = (uint32_t *)ujoblist; 2816 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2817 sizeof(ujoblist32[0])); 2818 if (error == 0) { 2819 for (i = uap->nent - 1; i >= 0; i--) 2820 ujoblist[i] = PTRIN(ujoblist32[i]); 2821 2822 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2823 } 2824 free(ujoblist, M_AIOS); 2825 return (error); 2826 } 2827 2828 int 2829 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2830 { 2831 2832 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2833 } 2834 2835 #ifdef COMPAT_FREEBSD6 2836 int 2837 freebsd6_freebsd32_aio_read(struct thread *td, 2838 struct freebsd6_freebsd32_aio_read_args *uap) 2839 { 2840 2841 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2842 &aiocb32_ops_osigevent)); 2843 } 2844 #endif 2845 2846 int 2847 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2848 { 2849 2850 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2851 &aiocb32_ops)); 2852 } 2853 2854 #ifdef COMPAT_FREEBSD6 2855 int 2856 freebsd6_freebsd32_aio_write(struct thread *td, 2857 struct freebsd6_freebsd32_aio_write_args *uap) 2858 { 2859 2860 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2861 &aiocb32_ops_osigevent)); 2862 } 2863 #endif 2864 2865 int 2866 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2867 { 2868 2869 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2870 &aiocb32_ops)); 2871 } 2872 2873 int 2874 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2875 { 2876 2877 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2878 &aiocb32_ops)); 2879 } 2880 2881 int 2882 freebsd32_aio_waitcomplete(struct thread *td, 2883 struct freebsd32_aio_waitcomplete_args *uap) 2884 { 2885 struct timespec32 ts32; 2886 struct timespec ts, *tsp; 2887 int error; 2888 2889 if (uap->timeout) { 2890 /* Get timespec struct. */ 2891 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2892 if (error) 2893 return (error); 2894 CP(ts32, ts, tv_sec); 2895 CP(ts32, ts, tv_nsec); 2896 tsp = &ts; 2897 } else 2898 tsp = NULL; 2899 2900 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2901 &aiocb32_ops)); 2902 } 2903 2904 int 2905 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2906 { 2907 2908 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2909 &aiocb32_ops)); 2910 } 2911 2912 #ifdef COMPAT_FREEBSD6 2913 int 2914 freebsd6_freebsd32_lio_listio(struct thread *td, 2915 struct freebsd6_freebsd32_lio_listio_args *uap) 2916 { 2917 struct aiocb **acb_list; 2918 struct sigevent *sigp, sig; 2919 struct osigevent32 osig; 2920 uint32_t *acb_list32; 2921 int error, i, nent; 2922 2923 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2924 return (EINVAL); 2925 2926 nent = uap->nent; 2927 if (nent < 0 || nent > max_aio_queue_per_proc) 2928 return (EINVAL); 2929 2930 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2931 error = copyin(uap->sig, &osig, sizeof(osig)); 2932 if (error) 2933 return (error); 2934 error = convert_old_sigevent32(&osig, &sig); 2935 if (error) 2936 return (error); 2937 sigp = &sig; 2938 } else 2939 sigp = NULL; 2940 2941 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2942 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2943 if (error) { 2944 free(acb_list32, M_LIO); 2945 return (error); 2946 } 2947 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2948 for (i = 0; i < nent; i++) 2949 acb_list[i] = PTRIN(acb_list32[i]); 2950 free(acb_list32, M_LIO); 2951 2952 error = kern_lio_listio(td, uap->mode, 2953 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2954 &aiocb32_ops_osigevent); 2955 free(acb_list, M_LIO); 2956 return (error); 2957 } 2958 #endif 2959 2960 int 2961 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2962 { 2963 struct aiocb **acb_list; 2964 struct sigevent *sigp, sig; 2965 struct sigevent32 sig32; 2966 uint32_t *acb_list32; 2967 int error, i, nent; 2968 2969 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2970 return (EINVAL); 2971 2972 nent = uap->nent; 2973 if (nent < 0 || nent > max_aio_queue_per_proc) 2974 return (EINVAL); 2975 2976 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2977 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2978 if (error) 2979 return (error); 2980 error = convert_sigevent32(&sig32, &sig); 2981 if (error) 2982 return (error); 2983 sigp = &sig; 2984 } else 2985 sigp = NULL; 2986 2987 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2988 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2989 if (error) { 2990 free(acb_list32, M_LIO); 2991 return (error); 2992 } 2993 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2994 for (i = 0; i < nent; i++) 2995 acb_list[i] = PTRIN(acb_list32[i]); 2996 free(acb_list32, M_LIO); 2997 2998 error = kern_lio_listio(td, uap->mode, 2999 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3000 &aiocb32_ops); 3001 free(acb_list, M_LIO); 3002 return (error); 3003 } 3004 3005 #endif 3006