1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include "opt_compat.h" 27 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/malloc.h> 31 #include <sys/bio.h> 32 #include <sys/buf.h> 33 #include <sys/capsicum.h> 34 #include <sys/eventhandler.h> 35 #include <sys/sysproto.h> 36 #include <sys/filedesc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/kthread.h> 40 #include <sys/fcntl.h> 41 #include <sys/file.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/unistd.h> 46 #include <sys/posix4.h> 47 #include <sys/proc.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <sys/syscallsubr.h> 51 #include <sys/protosw.h> 52 #include <sys/rwlock.h> 53 #include <sys/sema.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/syscall.h> 57 #include <sys/sysent.h> 58 #include <sys/sysctl.h> 59 #include <sys/syslog.h> 60 #include <sys/sx.h> 61 #include <sys/taskqueue.h> 62 #include <sys/vnode.h> 63 #include <sys/conf.h> 64 #include <sys/event.h> 65 #include <sys/mount.h> 66 #include <geom/geom.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_page.h> 72 #include <vm/vm_extern.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_map.h> 75 #include <vm/vm_object.h> 76 #include <vm/uma.h> 77 #include <sys/aio.h> 78 79 /* 80 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 81 * overflow. (XXX will be removed soon.) 82 */ 83 static u_long jobrefid; 84 85 /* 86 * Counter for aio_fsync. 87 */ 88 static uint64_t jobseqno; 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 96 #endif 97 98 #ifndef MAX_AIO_QUEUE 99 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 100 #endif 101 102 #ifndef MAX_BUF_AIO 103 #define MAX_BUF_AIO 16 104 #endif 105 106 FEATURE(aio, "Asynchronous I/O"); 107 SYSCTL_DECL(_p1003_1b); 108 109 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 110 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 111 112 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 113 "Async IO management"); 114 115 static int enable_aio_unsafe = 0; 116 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 117 "Permit asynchronous IO on all file types, not just known-safe types"); 118 119 static unsigned int unsafe_warningcnt = 1; 120 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 121 &unsafe_warningcnt, 0, 122 "Warnings that will be triggered upon failed IO requests on unsafe files"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 126 "Maximum number of kernel processes to use for handling async IO "); 127 128 static int num_aio_procs = 0; 129 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 130 "Number of presently active kernel processes for async IO"); 131 132 /* 133 * The code will adjust the actual number of AIO processes towards this 134 * number when it gets a chance. 135 */ 136 static int target_aio_procs = TARGET_AIO_PROCS; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 138 0, 139 "Preferred number of ready kernel processes for async IO"); 140 141 static int max_queue_count = MAX_AIO_QUEUE; 142 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 143 "Maximum number of aio requests to queue, globally"); 144 145 static int num_queue_count = 0; 146 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 147 "Number of queued aio requests"); 148 149 static int num_buf_aio = 0; 150 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 151 "Number of aio requests presently handled by the buf subsystem"); 152 153 /* Number of async I/O processes in the process of being started */ 154 /* XXX This should be local to aio_aqueue() */ 155 static int num_aio_resv_start = 0; 156 157 static int aiod_lifetime; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 159 "Maximum lifetime for idle aiod"); 160 161 static int max_aio_per_proc = MAX_AIO_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 163 0, 164 "Maximum active aio requests per process (stored in the process)"); 165 166 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 168 &max_aio_queue_per_proc, 0, 169 "Maximum queued aio requests per process (stored in the process)"); 170 171 static int max_buf_aio = MAX_BUF_AIO; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 173 "Maximum buf aio requests per process (stored in the process)"); 174 175 /* 176 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 177 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 178 * vfs.aio.aio_listio_max. 179 */ 180 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 181 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 182 0, "Maximum aio requests for a single lio_listio call"); 183 184 #ifdef COMPAT_FREEBSD6 185 typedef struct oaiocb { 186 int aio_fildes; /* File descriptor */ 187 off_t aio_offset; /* File offset for I/O */ 188 volatile void *aio_buf; /* I/O buffer in process space */ 189 size_t aio_nbytes; /* Number of bytes for I/O */ 190 struct osigevent aio_sigevent; /* Signal to deliver */ 191 int aio_lio_opcode; /* LIO opcode */ 192 int aio_reqprio; /* Request priority -- ignored */ 193 struct __aiocb_private _aiocb_private; 194 } oaiocb_t; 195 #endif 196 197 /* 198 * Below is a key of locks used to protect each member of struct kaiocb 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * If the routine that services an AIO request blocks while running in an 211 * AIO kernel process it can starve other I/O requests. BIO requests 212 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 213 * processes at all. Socket I/O requests use a separate pool of 214 * kprocs and also force non-blocking I/O. Other file I/O requests 215 * use the generic fo_read/fo_write operations which can block. The 216 * fsync and mlock operations can also block while executing. Ideally 217 * none of these requests would block while executing. 218 * 219 * Note that the service routines cannot toggle O_NONBLOCK in the file 220 * structure directly while handling a request due to races with 221 * userland threads. 222 */ 223 224 /* jobflags */ 225 #define KAIOCB_QUEUEING 0x01 226 #define KAIOCB_CANCELLED 0x02 227 #define KAIOCB_CANCELLING 0x04 228 #define KAIOCB_CHECKSYNC 0x08 229 #define KAIOCB_CLEARED 0x10 230 #define KAIOCB_FINISHED 0x20 231 232 /* 233 * AIO process info 234 */ 235 #define AIOP_FREE 0x1 /* proc on free queue */ 236 237 struct aioproc { 238 int aioprocflags; /* (c) AIO proc flags */ 239 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 240 struct proc *aioproc; /* (*) the AIO proc */ 241 }; 242 243 /* 244 * data-structure for lio signal management 245 */ 246 struct aioliojob { 247 int lioj_flags; /* (a) listio flags */ 248 int lioj_count; /* (a) listio flags */ 249 int lioj_finished_count; /* (a) listio flags */ 250 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 251 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 252 struct knlist klist; /* (a) list of knotes */ 253 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 254 }; 255 256 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 257 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 258 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 259 260 /* 261 * per process aio data structure 262 */ 263 struct kaioinfo { 264 struct mtx kaio_mtx; /* the lock to protect this struct */ 265 int kaio_flags; /* (a) per process kaio flags */ 266 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 267 int kaio_active_count; /* (c) number of currently used AIOs */ 268 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 269 int kaio_count; /* (a) size of AIO queue */ 270 int kaio_ballowed_count; /* (*) maximum number of buffers */ 271 int kaio_buffer_count; /* (a) number of physio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_physwakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qphysio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_maxactive_count = max_aio_per_proc; 444 ki->kaio_active_count = 0; 445 ki->kaio_qallowed_count = max_aio_queue_per_proc; 446 ki->kaio_count = 0; 447 ki->kaio_ballowed_count = max_buf_aio; 448 ki->kaio_buffer_count = 0; 449 TAILQ_INIT(&ki->kaio_all); 450 TAILQ_INIT(&ki->kaio_done); 451 TAILQ_INIT(&ki->kaio_jobqueue); 452 TAILQ_INIT(&ki->kaio_liojoblist); 453 TAILQ_INIT(&ki->kaio_syncqueue); 454 TAILQ_INIT(&ki->kaio_syncready); 455 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 456 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 457 PROC_LOCK(p); 458 if (p->p_aioinfo == NULL) { 459 p->p_aioinfo = ki; 460 PROC_UNLOCK(p); 461 } else { 462 PROC_UNLOCK(p); 463 mtx_destroy(&ki->kaio_mtx); 464 uma_zfree(kaio_zone, ki); 465 } 466 467 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 468 aio_newproc(NULL); 469 } 470 471 static int 472 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 473 { 474 struct thread *td; 475 int error; 476 477 error = sigev_findtd(p, sigev, &td); 478 if (error) 479 return (error); 480 if (!KSI_ONQ(ksi)) { 481 ksiginfo_set_sigev(ksi, sigev); 482 ksi->ksi_code = SI_ASYNCIO; 483 ksi->ksi_flags |= KSI_EXT | KSI_INS; 484 tdsendsignal(p, td, ksi->ksi_signo, ksi); 485 } 486 PROC_UNLOCK(p); 487 return (error); 488 } 489 490 /* 491 * Free a job entry. Wait for completion if it is currently active, but don't 492 * delay forever. If we delay, we return a flag that says that we have to 493 * restart the queue scan. 494 */ 495 static int 496 aio_free_entry(struct kaiocb *job) 497 { 498 struct kaioinfo *ki; 499 struct aioliojob *lj; 500 struct proc *p; 501 502 p = job->userproc; 503 MPASS(curproc == p); 504 ki = p->p_aioinfo; 505 MPASS(ki != NULL); 506 507 AIO_LOCK_ASSERT(ki, MA_OWNED); 508 MPASS(job->jobflags & KAIOCB_FINISHED); 509 510 atomic_subtract_int(&num_queue_count, 1); 511 512 ki->kaio_count--; 513 MPASS(ki->kaio_count >= 0); 514 515 TAILQ_REMOVE(&ki->kaio_done, job, plist); 516 TAILQ_REMOVE(&ki->kaio_all, job, allist); 517 518 lj = job->lio; 519 if (lj) { 520 lj->lioj_count--; 521 lj->lioj_finished_count--; 522 523 if (lj->lioj_count == 0) { 524 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 525 /* lio is going away, we need to destroy any knotes */ 526 knlist_delete(&lj->klist, curthread, 1); 527 PROC_LOCK(p); 528 sigqueue_take(&lj->lioj_ksi); 529 PROC_UNLOCK(p); 530 uma_zfree(aiolio_zone, lj); 531 } 532 } 533 534 /* job is going away, we need to destroy any knotes */ 535 knlist_delete(&job->klist, curthread, 1); 536 PROC_LOCK(p); 537 sigqueue_take(&job->ksi); 538 PROC_UNLOCK(p); 539 540 AIO_UNLOCK(ki); 541 542 /* 543 * The thread argument here is used to find the owning process 544 * and is also passed to fo_close() which may pass it to various 545 * places such as devsw close() routines. Because of that, we 546 * need a thread pointer from the process owning the job that is 547 * persistent and won't disappear out from under us or move to 548 * another process. 549 * 550 * Currently, all the callers of this function call it to remove 551 * a kaiocb from the current process' job list either via a 552 * syscall or due to the current process calling exit() or 553 * execve(). Thus, we know that p == curproc. We also know that 554 * curthread can't exit since we are curthread. 555 * 556 * Therefore, we use curthread as the thread to pass to 557 * knlist_delete(). This does mean that it is possible for the 558 * thread pointer at close time to differ from the thread pointer 559 * at open time, but this is already true of file descriptors in 560 * a multithreaded process. 561 */ 562 if (job->fd_file) 563 fdrop(job->fd_file, curthread); 564 crfree(job->cred); 565 uma_zfree(aiocb_zone, job); 566 AIO_LOCK(ki); 567 568 return (0); 569 } 570 571 static void 572 aio_proc_rundown_exec(void *arg, struct proc *p, 573 struct image_params *imgp __unused) 574 { 575 aio_proc_rundown(arg, p); 576 } 577 578 static int 579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 580 { 581 aio_cancel_fn_t *func; 582 int cancelled; 583 584 AIO_LOCK_ASSERT(ki, MA_OWNED); 585 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 586 return (0); 587 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 588 job->jobflags |= KAIOCB_CANCELLED; 589 590 func = job->cancel_fn; 591 592 /* 593 * If there is no cancel routine, just leave the job marked as 594 * cancelled. The job should be in active use by a caller who 595 * should complete it normally or when it fails to install a 596 * cancel routine. 597 */ 598 if (func == NULL) 599 return (0); 600 601 /* 602 * Set the CANCELLING flag so that aio_complete() will defer 603 * completions of this job. This prevents the job from being 604 * freed out from under the cancel callback. After the 605 * callback any deferred completion (whether from the callback 606 * or any other source) will be completed. 607 */ 608 job->jobflags |= KAIOCB_CANCELLING; 609 AIO_UNLOCK(ki); 610 func(job); 611 AIO_LOCK(ki); 612 job->jobflags &= ~KAIOCB_CANCELLING; 613 if (job->jobflags & KAIOCB_FINISHED) { 614 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 615 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 616 aio_bio_done_notify(p, job); 617 } else { 618 /* 619 * The cancel callback might have scheduled an 620 * operation to cancel this request, but it is 621 * only counted as cancelled if the request is 622 * cancelled when the callback returns. 623 */ 624 cancelled = 0; 625 } 626 return (cancelled); 627 } 628 629 /* 630 * Rundown the jobs for a given process. 631 */ 632 static void 633 aio_proc_rundown(void *arg, struct proc *p) 634 { 635 struct kaioinfo *ki; 636 struct aioliojob *lj; 637 struct kaiocb *job, *jobn; 638 639 KASSERT(curthread->td_proc == p, 640 ("%s: called on non-curproc", __func__)); 641 ki = p->p_aioinfo; 642 if (ki == NULL) 643 return; 644 645 AIO_LOCK(ki); 646 ki->kaio_flags |= KAIO_RUNDOWN; 647 648 restart: 649 650 /* 651 * Try to cancel all pending requests. This code simulates 652 * aio_cancel on all pending I/O requests. 653 */ 654 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 655 aio_cancel_job(p, ki, job); 656 } 657 658 /* Wait for all running I/O to be finished */ 659 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 660 ki->kaio_flags |= KAIO_WAKEUP; 661 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 662 goto restart; 663 } 664 665 /* Free all completed I/O requests. */ 666 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 667 aio_free_entry(job); 668 669 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 670 if (lj->lioj_count == 0) { 671 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 672 knlist_delete(&lj->klist, curthread, 1); 673 PROC_LOCK(p); 674 sigqueue_take(&lj->lioj_ksi); 675 PROC_UNLOCK(p); 676 uma_zfree(aiolio_zone, lj); 677 } else { 678 panic("LIO job not cleaned up: C:%d, FC:%d\n", 679 lj->lioj_count, lj->lioj_finished_count); 680 } 681 } 682 AIO_UNLOCK(ki); 683 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 684 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 685 mtx_destroy(&ki->kaio_mtx); 686 uma_zfree(kaio_zone, ki); 687 p->p_aioinfo = NULL; 688 } 689 690 /* 691 * Select a job to run (called by an AIO daemon). 692 */ 693 static struct kaiocb * 694 aio_selectjob(struct aioproc *aiop) 695 { 696 struct kaiocb *job; 697 struct kaioinfo *ki; 698 struct proc *userp; 699 700 mtx_assert(&aio_job_mtx, MA_OWNED); 701 restart: 702 TAILQ_FOREACH(job, &aio_jobs, list) { 703 userp = job->userproc; 704 ki = userp->p_aioinfo; 705 706 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 707 TAILQ_REMOVE(&aio_jobs, job, list); 708 if (!aio_clear_cancel_function(job)) 709 goto restart; 710 711 /* Account for currently active jobs. */ 712 ki->kaio_active_count++; 713 break; 714 } 715 } 716 return (job); 717 } 718 719 /* 720 * Move all data to a permanent storage device. This code 721 * simulates the fsync syscall. 722 */ 723 static int 724 aio_fsync_vnode(struct thread *td, struct vnode *vp) 725 { 726 struct mount *mp; 727 int error; 728 729 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 730 goto drop; 731 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 732 if (vp->v_object != NULL) { 733 VM_OBJECT_WLOCK(vp->v_object); 734 vm_object_page_clean(vp->v_object, 0, 0, 0); 735 VM_OBJECT_WUNLOCK(vp->v_object); 736 } 737 error = VOP_FSYNC(vp, MNT_WAIT, td); 738 739 VOP_UNLOCK(vp, 0); 740 vn_finished_write(mp); 741 drop: 742 return (error); 743 } 744 745 /* 746 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 747 * does the I/O request for the non-physio version of the operations. The 748 * normal vn operations are used, and this code should work in all instances 749 * for every type of file, including pipes, sockets, fifos, and regular files. 750 * 751 * XXX I don't think it works well for socket, pipe, and fifo. 752 */ 753 static void 754 aio_process_rw(struct kaiocb *job) 755 { 756 struct ucred *td_savedcred; 757 struct thread *td; 758 struct aiocb *cb; 759 struct file *fp; 760 struct uio auio; 761 struct iovec aiov; 762 ssize_t cnt; 763 long msgsnd_st, msgsnd_end; 764 long msgrcv_st, msgrcv_end; 765 long oublock_st, oublock_end; 766 long inblock_st, inblock_end; 767 int error; 768 769 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 770 job->uaiocb.aio_lio_opcode == LIO_WRITE, 771 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 772 773 aio_switch_vmspace(job); 774 td = curthread; 775 td_savedcred = td->td_ucred; 776 td->td_ucred = job->cred; 777 cb = &job->uaiocb; 778 fp = job->fd_file; 779 780 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 781 aiov.iov_len = cb->aio_nbytes; 782 783 auio.uio_iov = &aiov; 784 auio.uio_iovcnt = 1; 785 auio.uio_offset = cb->aio_offset; 786 auio.uio_resid = cb->aio_nbytes; 787 cnt = cb->aio_nbytes; 788 auio.uio_segflg = UIO_USERSPACE; 789 auio.uio_td = td; 790 791 msgrcv_st = td->td_ru.ru_msgrcv; 792 msgsnd_st = td->td_ru.ru_msgsnd; 793 inblock_st = td->td_ru.ru_inblock; 794 oublock_st = td->td_ru.ru_oublock; 795 796 /* 797 * aio_aqueue() acquires a reference to the file that is 798 * released in aio_free_entry(). 799 */ 800 if (cb->aio_lio_opcode == LIO_READ) { 801 auio.uio_rw = UIO_READ; 802 if (auio.uio_resid == 0) 803 error = 0; 804 else 805 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 806 } else { 807 if (fp->f_type == DTYPE_VNODE) 808 bwillwrite(); 809 auio.uio_rw = UIO_WRITE; 810 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 811 } 812 msgrcv_end = td->td_ru.ru_msgrcv; 813 msgsnd_end = td->td_ru.ru_msgsnd; 814 inblock_end = td->td_ru.ru_inblock; 815 oublock_end = td->td_ru.ru_oublock; 816 817 job->msgrcv = msgrcv_end - msgrcv_st; 818 job->msgsnd = msgsnd_end - msgsnd_st; 819 job->inblock = inblock_end - inblock_st; 820 job->outblock = oublock_end - oublock_st; 821 822 if ((error) && (auio.uio_resid != cnt)) { 823 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 824 error = 0; 825 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 826 PROC_LOCK(job->userproc); 827 kern_psignal(job->userproc, SIGPIPE); 828 PROC_UNLOCK(job->userproc); 829 } 830 } 831 832 cnt -= auio.uio_resid; 833 td->td_ucred = td_savedcred; 834 if (error) 835 aio_complete(job, -1, error); 836 else 837 aio_complete(job, cnt, 0); 838 } 839 840 static void 841 aio_process_sync(struct kaiocb *job) 842 { 843 struct thread *td = curthread; 844 struct ucred *td_savedcred = td->td_ucred; 845 struct file *fp = job->fd_file; 846 int error = 0; 847 848 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 849 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 850 851 td->td_ucred = job->cred; 852 if (fp->f_vnode != NULL) 853 error = aio_fsync_vnode(td, fp->f_vnode); 854 td->td_ucred = td_savedcred; 855 if (error) 856 aio_complete(job, -1, error); 857 else 858 aio_complete(job, 0, 0); 859 } 860 861 static void 862 aio_process_mlock(struct kaiocb *job) 863 { 864 struct aiocb *cb = &job->uaiocb; 865 int error; 866 867 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 868 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 869 870 aio_switch_vmspace(job); 871 error = kern_mlock(job->userproc, job->cred, 872 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 873 aio_complete(job, error != 0 ? -1 : 0, error); 874 } 875 876 static void 877 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 878 { 879 struct aioliojob *lj; 880 struct kaioinfo *ki; 881 struct kaiocb *sjob, *sjobn; 882 int lj_done; 883 bool schedule_fsync; 884 885 ki = userp->p_aioinfo; 886 AIO_LOCK_ASSERT(ki, MA_OWNED); 887 lj = job->lio; 888 lj_done = 0; 889 if (lj) { 890 lj->lioj_finished_count++; 891 if (lj->lioj_count == lj->lioj_finished_count) 892 lj_done = 1; 893 } 894 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 895 MPASS(job->jobflags & KAIOCB_FINISHED); 896 897 if (ki->kaio_flags & KAIO_RUNDOWN) 898 goto notification_done; 899 900 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 901 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 902 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 903 904 KNOTE_LOCKED(&job->klist, 1); 905 906 if (lj_done) { 907 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 908 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 909 KNOTE_LOCKED(&lj->klist, 1); 910 } 911 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 912 == LIOJ_SIGNAL 913 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 914 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 915 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 916 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 917 } 918 } 919 920 notification_done: 921 if (job->jobflags & KAIOCB_CHECKSYNC) { 922 schedule_fsync = false; 923 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 924 if (job->fd_file != sjob->fd_file || 925 job->seqno >= sjob->seqno) 926 continue; 927 if (--sjob->pending > 0) 928 continue; 929 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 930 if (!aio_clear_cancel_function_locked(sjob)) 931 continue; 932 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 933 schedule_fsync = true; 934 } 935 if (schedule_fsync) 936 taskqueue_enqueue(taskqueue_aiod_kick, 937 &ki->kaio_sync_task); 938 } 939 if (ki->kaio_flags & KAIO_WAKEUP) { 940 ki->kaio_flags &= ~KAIO_WAKEUP; 941 wakeup(&userp->p_aioinfo); 942 } 943 } 944 945 static void 946 aio_schedule_fsync(void *context, int pending) 947 { 948 struct kaioinfo *ki; 949 struct kaiocb *job; 950 951 ki = context; 952 AIO_LOCK(ki); 953 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 954 job = TAILQ_FIRST(&ki->kaio_syncready); 955 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 956 AIO_UNLOCK(ki); 957 aio_schedule(job, aio_process_sync); 958 AIO_LOCK(ki); 959 } 960 AIO_UNLOCK(ki); 961 } 962 963 bool 964 aio_cancel_cleared(struct kaiocb *job) 965 { 966 967 /* 968 * The caller should hold the same queue lock held when 969 * aio_clear_cancel_function() was called and set this flag 970 * ensuring this check sees an up-to-date value. However, 971 * there is no way to assert that. 972 */ 973 return ((job->jobflags & KAIOCB_CLEARED) != 0); 974 } 975 976 static bool 977 aio_clear_cancel_function_locked(struct kaiocb *job) 978 { 979 980 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 981 MPASS(job->cancel_fn != NULL); 982 if (job->jobflags & KAIOCB_CANCELLING) { 983 job->jobflags |= KAIOCB_CLEARED; 984 return (false); 985 } 986 job->cancel_fn = NULL; 987 return (true); 988 } 989 990 bool 991 aio_clear_cancel_function(struct kaiocb *job) 992 { 993 struct kaioinfo *ki; 994 bool ret; 995 996 ki = job->userproc->p_aioinfo; 997 AIO_LOCK(ki); 998 ret = aio_clear_cancel_function_locked(job); 999 AIO_UNLOCK(ki); 1000 return (ret); 1001 } 1002 1003 static bool 1004 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1005 { 1006 1007 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1008 if (job->jobflags & KAIOCB_CANCELLED) 1009 return (false); 1010 job->cancel_fn = func; 1011 return (true); 1012 } 1013 1014 bool 1015 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1016 { 1017 struct kaioinfo *ki; 1018 bool ret; 1019 1020 ki = job->userproc->p_aioinfo; 1021 AIO_LOCK(ki); 1022 ret = aio_set_cancel_function_locked(job, func); 1023 AIO_UNLOCK(ki); 1024 return (ret); 1025 } 1026 1027 void 1028 aio_complete(struct kaiocb *job, long status, int error) 1029 { 1030 struct kaioinfo *ki; 1031 struct proc *userp; 1032 1033 job->uaiocb._aiocb_private.error = error; 1034 job->uaiocb._aiocb_private.status = status; 1035 1036 userp = job->userproc; 1037 ki = userp->p_aioinfo; 1038 1039 AIO_LOCK(ki); 1040 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1041 ("duplicate aio_complete")); 1042 job->jobflags |= KAIOCB_FINISHED; 1043 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1044 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1045 aio_bio_done_notify(userp, job); 1046 } 1047 AIO_UNLOCK(ki); 1048 } 1049 1050 void 1051 aio_cancel(struct kaiocb *job) 1052 { 1053 1054 aio_complete(job, -1, ECANCELED); 1055 } 1056 1057 void 1058 aio_switch_vmspace(struct kaiocb *job) 1059 { 1060 1061 vmspace_switch_aio(job->userproc->p_vmspace); 1062 } 1063 1064 /* 1065 * The AIO daemon, most of the actual work is done in aio_process_*, 1066 * but the setup (and address space mgmt) is done in this routine. 1067 */ 1068 static void 1069 aio_daemon(void *_id) 1070 { 1071 struct kaiocb *job; 1072 struct aioproc *aiop; 1073 struct kaioinfo *ki; 1074 struct proc *p; 1075 struct vmspace *myvm; 1076 struct thread *td = curthread; 1077 int id = (intptr_t)_id; 1078 1079 /* 1080 * Grab an extra reference on the daemon's vmspace so that it 1081 * doesn't get freed by jobs that switch to a different 1082 * vmspace. 1083 */ 1084 p = td->td_proc; 1085 myvm = vmspace_acquire_ref(p); 1086 1087 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1088 1089 /* 1090 * Allocate and ready the aio control info. There is one aiop structure 1091 * per daemon. 1092 */ 1093 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1094 aiop->aioproc = p; 1095 aiop->aioprocflags = 0; 1096 1097 /* 1098 * Wakeup parent process. (Parent sleeps to keep from blasting away 1099 * and creating too many daemons.) 1100 */ 1101 sema_post(&aio_newproc_sem); 1102 1103 mtx_lock(&aio_job_mtx); 1104 for (;;) { 1105 /* 1106 * Take daemon off of free queue 1107 */ 1108 if (aiop->aioprocflags & AIOP_FREE) { 1109 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1110 aiop->aioprocflags &= ~AIOP_FREE; 1111 } 1112 1113 /* 1114 * Check for jobs. 1115 */ 1116 while ((job = aio_selectjob(aiop)) != NULL) { 1117 mtx_unlock(&aio_job_mtx); 1118 1119 ki = job->userproc->p_aioinfo; 1120 job->handle_fn(job); 1121 1122 mtx_lock(&aio_job_mtx); 1123 /* Decrement the active job count. */ 1124 ki->kaio_active_count--; 1125 } 1126 1127 /* 1128 * Disconnect from user address space. 1129 */ 1130 if (p->p_vmspace != myvm) { 1131 mtx_unlock(&aio_job_mtx); 1132 vmspace_switch_aio(myvm); 1133 mtx_lock(&aio_job_mtx); 1134 /* 1135 * We have to restart to avoid race, we only sleep if 1136 * no job can be selected. 1137 */ 1138 continue; 1139 } 1140 1141 mtx_assert(&aio_job_mtx, MA_OWNED); 1142 1143 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1144 aiop->aioprocflags |= AIOP_FREE; 1145 1146 /* 1147 * If daemon is inactive for a long time, allow it to exit, 1148 * thereby freeing resources. 1149 */ 1150 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1151 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1152 (aiop->aioprocflags & AIOP_FREE) && 1153 num_aio_procs > target_aio_procs) 1154 break; 1155 } 1156 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1157 num_aio_procs--; 1158 mtx_unlock(&aio_job_mtx); 1159 uma_zfree(aiop_zone, aiop); 1160 free_unr(aiod_unr, id); 1161 vmspace_free(myvm); 1162 1163 KASSERT(p->p_vmspace == myvm, 1164 ("AIOD: bad vmspace for exiting daemon")); 1165 KASSERT(myvm->vm_refcnt > 1, 1166 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1167 kproc_exit(0); 1168 } 1169 1170 /* 1171 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1172 * AIO daemon modifies its environment itself. 1173 */ 1174 static int 1175 aio_newproc(int *start) 1176 { 1177 int error; 1178 struct proc *p; 1179 int id; 1180 1181 id = alloc_unr(aiod_unr); 1182 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1183 RFNOWAIT, 0, "aiod%d", id); 1184 if (error == 0) { 1185 /* 1186 * Wait until daemon is started. 1187 */ 1188 sema_wait(&aio_newproc_sem); 1189 mtx_lock(&aio_job_mtx); 1190 num_aio_procs++; 1191 if (start != NULL) 1192 (*start)--; 1193 mtx_unlock(&aio_job_mtx); 1194 } else { 1195 free_unr(aiod_unr, id); 1196 } 1197 return (error); 1198 } 1199 1200 /* 1201 * Try the high-performance, low-overhead physio method for eligible 1202 * VCHR devices. This method doesn't use an aio helper thread, and 1203 * thus has very low overhead. 1204 * 1205 * Assumes that the caller, aio_aqueue(), has incremented the file 1206 * structure's reference count, preventing its deallocation for the 1207 * duration of this call. 1208 */ 1209 static int 1210 aio_qphysio(struct proc *p, struct kaiocb *job) 1211 { 1212 struct aiocb *cb; 1213 struct file *fp; 1214 struct bio *bp; 1215 struct buf *pbuf; 1216 struct vnode *vp; 1217 struct cdevsw *csw; 1218 struct cdev *dev; 1219 struct kaioinfo *ki; 1220 int error, ref, poff; 1221 vm_prot_t prot; 1222 1223 cb = &job->uaiocb; 1224 fp = job->fd_file; 1225 1226 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1227 return (-1); 1228 1229 vp = fp->f_vnode; 1230 if (vp->v_type != VCHR) 1231 return (-1); 1232 if (vp->v_bufobj.bo_bsize == 0) 1233 return (-1); 1234 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1235 return (-1); 1236 1237 ref = 0; 1238 csw = devvn_refthread(vp, &dev, &ref); 1239 if (csw == NULL) 1240 return (ENXIO); 1241 1242 if ((csw->d_flags & D_DISK) == 0) { 1243 error = -1; 1244 goto unref; 1245 } 1246 if (cb->aio_nbytes > dev->si_iosize_max) { 1247 error = -1; 1248 goto unref; 1249 } 1250 1251 ki = p->p_aioinfo; 1252 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1253 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1254 if (cb->aio_nbytes > MAXPHYS) { 1255 error = -1; 1256 goto unref; 1257 } 1258 1259 pbuf = NULL; 1260 } else { 1261 if (cb->aio_nbytes > MAXPHYS - poff) { 1262 error = -1; 1263 goto unref; 1264 } 1265 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1266 error = -1; 1267 goto unref; 1268 } 1269 1270 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1271 BUF_KERNPROC(pbuf); 1272 AIO_LOCK(ki); 1273 ki->kaio_buffer_count++; 1274 AIO_UNLOCK(ki); 1275 } 1276 job->bp = bp = g_alloc_bio(); 1277 1278 bp->bio_length = cb->aio_nbytes; 1279 bp->bio_bcount = cb->aio_nbytes; 1280 bp->bio_done = aio_physwakeup; 1281 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1282 bp->bio_offset = cb->aio_offset; 1283 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1284 bp->bio_dev = dev; 1285 bp->bio_caller1 = (void *)job; 1286 1287 prot = VM_PROT_READ; 1288 if (cb->aio_lio_opcode == LIO_READ) 1289 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1290 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1291 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1292 nitems(job->pages)); 1293 if (job->npages < 0) { 1294 error = EFAULT; 1295 goto doerror; 1296 } 1297 if (pbuf != NULL) { 1298 pmap_qenter((vm_offset_t)pbuf->b_data, 1299 job->pages, job->npages); 1300 bp->bio_data = pbuf->b_data + poff; 1301 atomic_add_int(&num_buf_aio, 1); 1302 } else { 1303 bp->bio_ma = job->pages; 1304 bp->bio_ma_n = job->npages; 1305 bp->bio_ma_offset = poff; 1306 bp->bio_data = unmapped_buf; 1307 bp->bio_flags |= BIO_UNMAPPED; 1308 } 1309 1310 /* Perform transfer. */ 1311 csw->d_strategy(bp); 1312 dev_relthread(dev, ref); 1313 return (0); 1314 1315 doerror: 1316 if (pbuf != NULL) { 1317 AIO_LOCK(ki); 1318 ki->kaio_buffer_count--; 1319 AIO_UNLOCK(ki); 1320 relpbuf(pbuf, NULL); 1321 job->pbuf = NULL; 1322 } 1323 g_destroy_bio(bp); 1324 job->bp = NULL; 1325 unref: 1326 dev_relthread(dev, ref); 1327 return (error); 1328 } 1329 1330 #ifdef COMPAT_FREEBSD6 1331 static int 1332 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1333 { 1334 1335 /* 1336 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1337 * supported by AIO with the old sigevent structure. 1338 */ 1339 nsig->sigev_notify = osig->sigev_notify; 1340 switch (nsig->sigev_notify) { 1341 case SIGEV_NONE: 1342 break; 1343 case SIGEV_SIGNAL: 1344 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1345 break; 1346 case SIGEV_KEVENT: 1347 nsig->sigev_notify_kqueue = 1348 osig->__sigev_u.__sigev_notify_kqueue; 1349 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1350 break; 1351 default: 1352 return (EINVAL); 1353 } 1354 return (0); 1355 } 1356 1357 static int 1358 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1359 { 1360 struct oaiocb *ojob; 1361 int error; 1362 1363 bzero(kjob, sizeof(struct aiocb)); 1364 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1365 if (error) 1366 return (error); 1367 ojob = (struct oaiocb *)kjob; 1368 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1369 } 1370 #endif 1371 1372 static int 1373 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1374 { 1375 1376 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1377 } 1378 1379 static long 1380 aiocb_fetch_status(struct aiocb *ujob) 1381 { 1382 1383 return (fuword(&ujob->_aiocb_private.status)); 1384 } 1385 1386 static long 1387 aiocb_fetch_error(struct aiocb *ujob) 1388 { 1389 1390 return (fuword(&ujob->_aiocb_private.error)); 1391 } 1392 1393 static int 1394 aiocb_store_status(struct aiocb *ujob, long status) 1395 { 1396 1397 return (suword(&ujob->_aiocb_private.status, status)); 1398 } 1399 1400 static int 1401 aiocb_store_error(struct aiocb *ujob, long error) 1402 { 1403 1404 return (suword(&ujob->_aiocb_private.error, error)); 1405 } 1406 1407 static int 1408 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1409 { 1410 1411 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1412 } 1413 1414 static int 1415 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1416 { 1417 1418 return (suword(ujobp, (long)ujob)); 1419 } 1420 1421 static struct aiocb_ops aiocb_ops = { 1422 .copyin = aiocb_copyin, 1423 .fetch_status = aiocb_fetch_status, 1424 .fetch_error = aiocb_fetch_error, 1425 .store_status = aiocb_store_status, 1426 .store_error = aiocb_store_error, 1427 .store_kernelinfo = aiocb_store_kernelinfo, 1428 .store_aiocb = aiocb_store_aiocb, 1429 }; 1430 1431 #ifdef COMPAT_FREEBSD6 1432 static struct aiocb_ops aiocb_ops_osigevent = { 1433 .copyin = aiocb_copyin_old_sigevent, 1434 .fetch_status = aiocb_fetch_status, 1435 .fetch_error = aiocb_fetch_error, 1436 .store_status = aiocb_store_status, 1437 .store_error = aiocb_store_error, 1438 .store_kernelinfo = aiocb_store_kernelinfo, 1439 .store_aiocb = aiocb_store_aiocb, 1440 }; 1441 #endif 1442 1443 /* 1444 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1445 * technique is done in this code. 1446 */ 1447 int 1448 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1449 int type, struct aiocb_ops *ops) 1450 { 1451 struct proc *p = td->td_proc; 1452 cap_rights_t rights; 1453 struct file *fp; 1454 struct kaiocb *job; 1455 struct kaioinfo *ki; 1456 struct kevent kev; 1457 int opcode; 1458 int error; 1459 int fd, kqfd; 1460 int jid; 1461 u_short evflags; 1462 1463 if (p->p_aioinfo == NULL) 1464 aio_init_aioinfo(p); 1465 1466 ki = p->p_aioinfo; 1467 1468 ops->store_status(ujob, -1); 1469 ops->store_error(ujob, 0); 1470 ops->store_kernelinfo(ujob, -1); 1471 1472 if (num_queue_count >= max_queue_count || 1473 ki->kaio_count >= ki->kaio_qallowed_count) { 1474 ops->store_error(ujob, EAGAIN); 1475 return (EAGAIN); 1476 } 1477 1478 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1479 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1480 1481 error = ops->copyin(ujob, &job->uaiocb); 1482 if (error) { 1483 ops->store_error(ujob, error); 1484 uma_zfree(aiocb_zone, job); 1485 return (error); 1486 } 1487 1488 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1489 uma_zfree(aiocb_zone, job); 1490 return (EINVAL); 1491 } 1492 1493 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1494 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1495 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1496 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1497 ops->store_error(ujob, EINVAL); 1498 uma_zfree(aiocb_zone, job); 1499 return (EINVAL); 1500 } 1501 1502 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1503 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1504 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1505 uma_zfree(aiocb_zone, job); 1506 return (EINVAL); 1507 } 1508 1509 ksiginfo_init(&job->ksi); 1510 1511 /* Save userspace address of the job info. */ 1512 job->ujob = ujob; 1513 1514 /* Get the opcode. */ 1515 if (type != LIO_NOP) 1516 job->uaiocb.aio_lio_opcode = type; 1517 opcode = job->uaiocb.aio_lio_opcode; 1518 1519 /* 1520 * Validate the opcode and fetch the file object for the specified 1521 * file descriptor. 1522 * 1523 * XXXRW: Moved the opcode validation up here so that we don't 1524 * retrieve a file descriptor without knowing what the capabiltity 1525 * should be. 1526 */ 1527 fd = job->uaiocb.aio_fildes; 1528 switch (opcode) { 1529 case LIO_WRITE: 1530 error = fget_write(td, fd, 1531 cap_rights_init(&rights, CAP_PWRITE), &fp); 1532 break; 1533 case LIO_READ: 1534 error = fget_read(td, fd, 1535 cap_rights_init(&rights, CAP_PREAD), &fp); 1536 break; 1537 case LIO_SYNC: 1538 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1539 break; 1540 case LIO_MLOCK: 1541 fp = NULL; 1542 break; 1543 case LIO_NOP: 1544 error = fget(td, fd, cap_rights_init(&rights), &fp); 1545 break; 1546 default: 1547 error = EINVAL; 1548 } 1549 if (error) { 1550 uma_zfree(aiocb_zone, job); 1551 ops->store_error(ujob, error); 1552 return (error); 1553 } 1554 1555 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1556 error = EINVAL; 1557 goto aqueue_fail; 1558 } 1559 1560 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1561 job->uaiocb.aio_offset < 0 && 1562 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1563 error = EINVAL; 1564 goto aqueue_fail; 1565 } 1566 1567 job->fd_file = fp; 1568 1569 mtx_lock(&aio_job_mtx); 1570 jid = jobrefid++; 1571 job->seqno = jobseqno++; 1572 mtx_unlock(&aio_job_mtx); 1573 error = ops->store_kernelinfo(ujob, jid); 1574 if (error) { 1575 error = EINVAL; 1576 goto aqueue_fail; 1577 } 1578 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1579 1580 if (opcode == LIO_NOP) { 1581 fdrop(fp, td); 1582 uma_zfree(aiocb_zone, job); 1583 return (0); 1584 } 1585 1586 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1587 goto no_kqueue; 1588 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1589 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1590 error = EINVAL; 1591 goto aqueue_fail; 1592 } 1593 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1594 kev.ident = (uintptr_t)job->ujob; 1595 kev.filter = EVFILT_AIO; 1596 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1597 kev.data = (intptr_t)job; 1598 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1599 error = kqfd_register(kqfd, &kev, td, 1); 1600 if (error) 1601 goto aqueue_fail; 1602 1603 no_kqueue: 1604 1605 ops->store_error(ujob, EINPROGRESS); 1606 job->uaiocb._aiocb_private.error = EINPROGRESS; 1607 job->userproc = p; 1608 job->cred = crhold(td->td_ucred); 1609 job->jobflags = KAIOCB_QUEUEING; 1610 job->lio = lj; 1611 1612 if (opcode == LIO_MLOCK) { 1613 aio_schedule(job, aio_process_mlock); 1614 error = 0; 1615 } else if (fp->f_ops->fo_aio_queue == NULL) 1616 error = aio_queue_file(fp, job); 1617 else 1618 error = fo_aio_queue(fp, job); 1619 if (error) 1620 goto aqueue_fail; 1621 1622 AIO_LOCK(ki); 1623 job->jobflags &= ~KAIOCB_QUEUEING; 1624 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1625 ki->kaio_count++; 1626 if (lj) 1627 lj->lioj_count++; 1628 atomic_add_int(&num_queue_count, 1); 1629 if (job->jobflags & KAIOCB_FINISHED) { 1630 /* 1631 * The queue callback completed the request synchronously. 1632 * The bulk of the completion is deferred in that case 1633 * until this point. 1634 */ 1635 aio_bio_done_notify(p, job); 1636 } else 1637 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1638 AIO_UNLOCK(ki); 1639 return (0); 1640 1641 aqueue_fail: 1642 knlist_delete(&job->klist, curthread, 0); 1643 if (fp) 1644 fdrop(fp, td); 1645 uma_zfree(aiocb_zone, job); 1646 ops->store_error(ujob, error); 1647 return (error); 1648 } 1649 1650 static void 1651 aio_cancel_daemon_job(struct kaiocb *job) 1652 { 1653 1654 mtx_lock(&aio_job_mtx); 1655 if (!aio_cancel_cleared(job)) 1656 TAILQ_REMOVE(&aio_jobs, job, list); 1657 mtx_unlock(&aio_job_mtx); 1658 aio_cancel(job); 1659 } 1660 1661 void 1662 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1663 { 1664 1665 mtx_lock(&aio_job_mtx); 1666 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1667 mtx_unlock(&aio_job_mtx); 1668 aio_cancel(job); 1669 return; 1670 } 1671 job->handle_fn = func; 1672 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1673 aio_kick_nowait(job->userproc); 1674 mtx_unlock(&aio_job_mtx); 1675 } 1676 1677 static void 1678 aio_cancel_sync(struct kaiocb *job) 1679 { 1680 struct kaioinfo *ki; 1681 1682 ki = job->userproc->p_aioinfo; 1683 AIO_LOCK(ki); 1684 if (!aio_cancel_cleared(job)) 1685 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1686 AIO_UNLOCK(ki); 1687 aio_cancel(job); 1688 } 1689 1690 int 1691 aio_queue_file(struct file *fp, struct kaiocb *job) 1692 { 1693 struct kaioinfo *ki; 1694 struct kaiocb *job2; 1695 struct vnode *vp; 1696 struct mount *mp; 1697 int error, opcode; 1698 bool safe; 1699 1700 ki = job->userproc->p_aioinfo; 1701 opcode = job->uaiocb.aio_lio_opcode; 1702 if (opcode == LIO_SYNC) 1703 goto queueit; 1704 1705 if ((error = aio_qphysio(job->userproc, job)) == 0) 1706 goto done; 1707 #if 0 1708 /* 1709 * XXX: This means qphysio() failed with EFAULT. The current 1710 * behavior is to retry the operation via fo_read/fo_write. 1711 * Wouldn't it be better to just complete the request with an 1712 * error here? 1713 */ 1714 if (error > 0) 1715 goto done; 1716 #endif 1717 queueit: 1718 safe = false; 1719 if (fp->f_type == DTYPE_VNODE) { 1720 vp = fp->f_vnode; 1721 if (vp->v_type == VREG || vp->v_type == VDIR) { 1722 mp = fp->f_vnode->v_mount; 1723 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1724 safe = true; 1725 } 1726 } 1727 if (!(safe || enable_aio_unsafe)) { 1728 counted_warning(&unsafe_warningcnt, 1729 "is attempting to use unsafe AIO requests"); 1730 return (EOPNOTSUPP); 1731 } 1732 1733 if (opcode == LIO_SYNC) { 1734 AIO_LOCK(ki); 1735 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1736 if (job2->fd_file == job->fd_file && 1737 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1738 job2->seqno < job->seqno) { 1739 job2->jobflags |= KAIOCB_CHECKSYNC; 1740 job->pending++; 1741 } 1742 } 1743 if (job->pending != 0) { 1744 if (!aio_set_cancel_function_locked(job, 1745 aio_cancel_sync)) { 1746 AIO_UNLOCK(ki); 1747 aio_cancel(job); 1748 return (0); 1749 } 1750 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1751 AIO_UNLOCK(ki); 1752 return (0); 1753 } 1754 AIO_UNLOCK(ki); 1755 } 1756 1757 switch (opcode) { 1758 case LIO_READ: 1759 case LIO_WRITE: 1760 aio_schedule(job, aio_process_rw); 1761 error = 0; 1762 break; 1763 case LIO_SYNC: 1764 aio_schedule(job, aio_process_sync); 1765 error = 0; 1766 break; 1767 default: 1768 error = EINVAL; 1769 } 1770 done: 1771 return (error); 1772 } 1773 1774 static void 1775 aio_kick_nowait(struct proc *userp) 1776 { 1777 struct kaioinfo *ki = userp->p_aioinfo; 1778 struct aioproc *aiop; 1779 1780 mtx_assert(&aio_job_mtx, MA_OWNED); 1781 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1782 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1783 aiop->aioprocflags &= ~AIOP_FREE; 1784 wakeup(aiop->aioproc); 1785 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1786 ki->kaio_active_count + num_aio_resv_start < 1787 ki->kaio_maxactive_count) { 1788 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1789 } 1790 } 1791 1792 static int 1793 aio_kick(struct proc *userp) 1794 { 1795 struct kaioinfo *ki = userp->p_aioinfo; 1796 struct aioproc *aiop; 1797 int error, ret = 0; 1798 1799 mtx_assert(&aio_job_mtx, MA_OWNED); 1800 retryproc: 1801 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1802 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1803 aiop->aioprocflags &= ~AIOP_FREE; 1804 wakeup(aiop->aioproc); 1805 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1806 ki->kaio_active_count + num_aio_resv_start < 1807 ki->kaio_maxactive_count) { 1808 num_aio_resv_start++; 1809 mtx_unlock(&aio_job_mtx); 1810 error = aio_newproc(&num_aio_resv_start); 1811 mtx_lock(&aio_job_mtx); 1812 if (error) { 1813 num_aio_resv_start--; 1814 goto retryproc; 1815 } 1816 } else { 1817 ret = -1; 1818 } 1819 return (ret); 1820 } 1821 1822 static void 1823 aio_kick_helper(void *context, int pending) 1824 { 1825 struct proc *userp = context; 1826 1827 mtx_lock(&aio_job_mtx); 1828 while (--pending >= 0) { 1829 if (aio_kick(userp)) 1830 break; 1831 } 1832 mtx_unlock(&aio_job_mtx); 1833 } 1834 1835 /* 1836 * Support the aio_return system call, as a side-effect, kernel resources are 1837 * released. 1838 */ 1839 static int 1840 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1841 { 1842 struct proc *p = td->td_proc; 1843 struct kaiocb *job; 1844 struct kaioinfo *ki; 1845 long status, error; 1846 1847 ki = p->p_aioinfo; 1848 if (ki == NULL) 1849 return (EINVAL); 1850 AIO_LOCK(ki); 1851 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1852 if (job->ujob == ujob) 1853 break; 1854 } 1855 if (job != NULL) { 1856 MPASS(job->jobflags & KAIOCB_FINISHED); 1857 status = job->uaiocb._aiocb_private.status; 1858 error = job->uaiocb._aiocb_private.error; 1859 td->td_retval[0] = status; 1860 td->td_ru.ru_oublock += job->outblock; 1861 td->td_ru.ru_inblock += job->inblock; 1862 td->td_ru.ru_msgsnd += job->msgsnd; 1863 td->td_ru.ru_msgrcv += job->msgrcv; 1864 aio_free_entry(job); 1865 AIO_UNLOCK(ki); 1866 ops->store_error(ujob, error); 1867 ops->store_status(ujob, status); 1868 } else { 1869 error = EINVAL; 1870 AIO_UNLOCK(ki); 1871 } 1872 return (error); 1873 } 1874 1875 int 1876 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1877 { 1878 1879 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1880 } 1881 1882 /* 1883 * Allow a process to wakeup when any of the I/O requests are completed. 1884 */ 1885 static int 1886 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1887 struct timespec *ts) 1888 { 1889 struct proc *p = td->td_proc; 1890 struct timeval atv; 1891 struct kaioinfo *ki; 1892 struct kaiocb *firstjob, *job; 1893 int error, i, timo; 1894 1895 timo = 0; 1896 if (ts) { 1897 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1898 return (EINVAL); 1899 1900 TIMESPEC_TO_TIMEVAL(&atv, ts); 1901 if (itimerfix(&atv)) 1902 return (EINVAL); 1903 timo = tvtohz(&atv); 1904 } 1905 1906 ki = p->p_aioinfo; 1907 if (ki == NULL) 1908 return (EAGAIN); 1909 1910 if (njoblist == 0) 1911 return (0); 1912 1913 AIO_LOCK(ki); 1914 for (;;) { 1915 firstjob = NULL; 1916 error = 0; 1917 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1918 for (i = 0; i < njoblist; i++) { 1919 if (job->ujob == ujoblist[i]) { 1920 if (firstjob == NULL) 1921 firstjob = job; 1922 if (job->jobflags & KAIOCB_FINISHED) 1923 goto RETURN; 1924 } 1925 } 1926 } 1927 /* All tasks were finished. */ 1928 if (firstjob == NULL) 1929 break; 1930 1931 ki->kaio_flags |= KAIO_WAKEUP; 1932 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1933 "aiospn", timo); 1934 if (error == ERESTART) 1935 error = EINTR; 1936 if (error) 1937 break; 1938 } 1939 RETURN: 1940 AIO_UNLOCK(ki); 1941 return (error); 1942 } 1943 1944 int 1945 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1946 { 1947 struct timespec ts, *tsp; 1948 struct aiocb **ujoblist; 1949 int error; 1950 1951 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1952 return (EINVAL); 1953 1954 if (uap->timeout) { 1955 /* Get timespec struct. */ 1956 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1957 return (error); 1958 tsp = &ts; 1959 } else 1960 tsp = NULL; 1961 1962 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1963 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1964 if (error == 0) 1965 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1966 free(ujoblist, M_AIOS); 1967 return (error); 1968 } 1969 1970 /* 1971 * aio_cancel cancels any non-physio aio operations not currently in 1972 * progress. 1973 */ 1974 int 1975 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1976 { 1977 struct proc *p = td->td_proc; 1978 struct kaioinfo *ki; 1979 struct kaiocb *job, *jobn; 1980 struct file *fp; 1981 cap_rights_t rights; 1982 int error; 1983 int cancelled = 0; 1984 int notcancelled = 0; 1985 struct vnode *vp; 1986 1987 /* Lookup file object. */ 1988 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1989 if (error) 1990 return (error); 1991 1992 ki = p->p_aioinfo; 1993 if (ki == NULL) 1994 goto done; 1995 1996 if (fp->f_type == DTYPE_VNODE) { 1997 vp = fp->f_vnode; 1998 if (vn_isdisk(vp, &error)) { 1999 fdrop(fp, td); 2000 td->td_retval[0] = AIO_NOTCANCELED; 2001 return (0); 2002 } 2003 } 2004 2005 AIO_LOCK(ki); 2006 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2007 if ((uap->fd == job->uaiocb.aio_fildes) && 2008 ((uap->aiocbp == NULL) || 2009 (uap->aiocbp == job->ujob))) { 2010 if (aio_cancel_job(p, ki, job)) { 2011 cancelled++; 2012 } else { 2013 notcancelled++; 2014 } 2015 if (uap->aiocbp != NULL) 2016 break; 2017 } 2018 } 2019 AIO_UNLOCK(ki); 2020 2021 done: 2022 fdrop(fp, td); 2023 2024 if (uap->aiocbp != NULL) { 2025 if (cancelled) { 2026 td->td_retval[0] = AIO_CANCELED; 2027 return (0); 2028 } 2029 } 2030 2031 if (notcancelled) { 2032 td->td_retval[0] = AIO_NOTCANCELED; 2033 return (0); 2034 } 2035 2036 if (cancelled) { 2037 td->td_retval[0] = AIO_CANCELED; 2038 return (0); 2039 } 2040 2041 td->td_retval[0] = AIO_ALLDONE; 2042 2043 return (0); 2044 } 2045 2046 /* 2047 * aio_error is implemented in the kernel level for compatibility purposes 2048 * only. For a user mode async implementation, it would be best to do it in 2049 * a userland subroutine. 2050 */ 2051 static int 2052 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2053 { 2054 struct proc *p = td->td_proc; 2055 struct kaiocb *job; 2056 struct kaioinfo *ki; 2057 int status; 2058 2059 ki = p->p_aioinfo; 2060 if (ki == NULL) { 2061 td->td_retval[0] = EINVAL; 2062 return (0); 2063 } 2064 2065 AIO_LOCK(ki); 2066 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2067 if (job->ujob == ujob) { 2068 if (job->jobflags & KAIOCB_FINISHED) 2069 td->td_retval[0] = 2070 job->uaiocb._aiocb_private.error; 2071 else 2072 td->td_retval[0] = EINPROGRESS; 2073 AIO_UNLOCK(ki); 2074 return (0); 2075 } 2076 } 2077 AIO_UNLOCK(ki); 2078 2079 /* 2080 * Hack for failure of aio_aqueue. 2081 */ 2082 status = ops->fetch_status(ujob); 2083 if (status == -1) { 2084 td->td_retval[0] = ops->fetch_error(ujob); 2085 return (0); 2086 } 2087 2088 td->td_retval[0] = EINVAL; 2089 return (0); 2090 } 2091 2092 int 2093 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2094 { 2095 2096 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2097 } 2098 2099 /* syscall - asynchronous read from a file (REALTIME) */ 2100 #ifdef COMPAT_FREEBSD6 2101 int 2102 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2103 { 2104 2105 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2106 &aiocb_ops_osigevent)); 2107 } 2108 #endif 2109 2110 int 2111 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2112 { 2113 2114 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2115 } 2116 2117 /* syscall - asynchronous write to a file (REALTIME) */ 2118 #ifdef COMPAT_FREEBSD6 2119 int 2120 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2121 { 2122 2123 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2124 &aiocb_ops_osigevent)); 2125 } 2126 #endif 2127 2128 int 2129 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2130 { 2131 2132 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2133 } 2134 2135 int 2136 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2137 { 2138 2139 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2140 } 2141 2142 static int 2143 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2144 struct aiocb **acb_list, int nent, struct sigevent *sig, 2145 struct aiocb_ops *ops) 2146 { 2147 struct proc *p = td->td_proc; 2148 struct aiocb *job; 2149 struct kaioinfo *ki; 2150 struct aioliojob *lj; 2151 struct kevent kev; 2152 int error; 2153 int nerror; 2154 int i; 2155 2156 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2157 return (EINVAL); 2158 2159 if (nent < 0 || nent > max_aio_queue_per_proc) 2160 return (EINVAL); 2161 2162 if (p->p_aioinfo == NULL) 2163 aio_init_aioinfo(p); 2164 2165 ki = p->p_aioinfo; 2166 2167 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2168 lj->lioj_flags = 0; 2169 lj->lioj_count = 0; 2170 lj->lioj_finished_count = 0; 2171 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2172 ksiginfo_init(&lj->lioj_ksi); 2173 2174 /* 2175 * Setup signal. 2176 */ 2177 if (sig && (mode == LIO_NOWAIT)) { 2178 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2179 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2180 /* Assume only new style KEVENT */ 2181 kev.filter = EVFILT_LIO; 2182 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2183 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2184 kev.data = (intptr_t)lj; 2185 /* pass user defined sigval data */ 2186 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2187 error = kqfd_register( 2188 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2189 if (error) { 2190 uma_zfree(aiolio_zone, lj); 2191 return (error); 2192 } 2193 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2194 ; 2195 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2196 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2197 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2198 uma_zfree(aiolio_zone, lj); 2199 return EINVAL; 2200 } 2201 lj->lioj_flags |= LIOJ_SIGNAL; 2202 } else { 2203 uma_zfree(aiolio_zone, lj); 2204 return EINVAL; 2205 } 2206 } 2207 2208 AIO_LOCK(ki); 2209 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2210 /* 2211 * Add extra aiocb count to avoid the lio to be freed 2212 * by other threads doing aio_waitcomplete or aio_return, 2213 * and prevent event from being sent until we have queued 2214 * all tasks. 2215 */ 2216 lj->lioj_count = 1; 2217 AIO_UNLOCK(ki); 2218 2219 /* 2220 * Get pointers to the list of I/O requests. 2221 */ 2222 nerror = 0; 2223 for (i = 0; i < nent; i++) { 2224 job = acb_list[i]; 2225 if (job != NULL) { 2226 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2227 if (error != 0) 2228 nerror++; 2229 } 2230 } 2231 2232 error = 0; 2233 AIO_LOCK(ki); 2234 if (mode == LIO_WAIT) { 2235 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2236 ki->kaio_flags |= KAIO_WAKEUP; 2237 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2238 PRIBIO | PCATCH, "aiospn", 0); 2239 if (error == ERESTART) 2240 error = EINTR; 2241 if (error) 2242 break; 2243 } 2244 } else { 2245 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2246 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2247 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2248 KNOTE_LOCKED(&lj->klist, 1); 2249 } 2250 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2251 == LIOJ_SIGNAL 2252 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2253 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2254 aio_sendsig(p, &lj->lioj_signal, 2255 &lj->lioj_ksi); 2256 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2257 } 2258 } 2259 } 2260 lj->lioj_count--; 2261 if (lj->lioj_count == 0) { 2262 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2263 knlist_delete(&lj->klist, curthread, 1); 2264 PROC_LOCK(p); 2265 sigqueue_take(&lj->lioj_ksi); 2266 PROC_UNLOCK(p); 2267 AIO_UNLOCK(ki); 2268 uma_zfree(aiolio_zone, lj); 2269 } else 2270 AIO_UNLOCK(ki); 2271 2272 if (nerror) 2273 return (EIO); 2274 return (error); 2275 } 2276 2277 /* syscall - list directed I/O (REALTIME) */ 2278 #ifdef COMPAT_FREEBSD6 2279 int 2280 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2281 { 2282 struct aiocb **acb_list; 2283 struct sigevent *sigp, sig; 2284 struct osigevent osig; 2285 int error, nent; 2286 2287 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2288 return (EINVAL); 2289 2290 nent = uap->nent; 2291 if (nent < 0 || nent > max_aio_queue_per_proc) 2292 return (EINVAL); 2293 2294 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2295 error = copyin(uap->sig, &osig, sizeof(osig)); 2296 if (error) 2297 return (error); 2298 error = convert_old_sigevent(&osig, &sig); 2299 if (error) 2300 return (error); 2301 sigp = &sig; 2302 } else 2303 sigp = NULL; 2304 2305 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2306 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2307 if (error == 0) 2308 error = kern_lio_listio(td, uap->mode, 2309 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2310 &aiocb_ops_osigevent); 2311 free(acb_list, M_LIO); 2312 return (error); 2313 } 2314 #endif 2315 2316 /* syscall - list directed I/O (REALTIME) */ 2317 int 2318 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2319 { 2320 struct aiocb **acb_list; 2321 struct sigevent *sigp, sig; 2322 int error, nent; 2323 2324 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2325 return (EINVAL); 2326 2327 nent = uap->nent; 2328 if (nent < 0 || nent > max_aio_queue_per_proc) 2329 return (EINVAL); 2330 2331 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2332 error = copyin(uap->sig, &sig, sizeof(sig)); 2333 if (error) 2334 return (error); 2335 sigp = &sig; 2336 } else 2337 sigp = NULL; 2338 2339 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2340 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2341 if (error == 0) 2342 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2343 nent, sigp, &aiocb_ops); 2344 free(acb_list, M_LIO); 2345 return (error); 2346 } 2347 2348 static void 2349 aio_physwakeup(struct bio *bp) 2350 { 2351 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2352 struct proc *userp; 2353 struct kaioinfo *ki; 2354 size_t nbytes; 2355 int error, nblks; 2356 2357 /* Release mapping into kernel space. */ 2358 userp = job->userproc; 2359 ki = userp->p_aioinfo; 2360 if (job->pbuf) { 2361 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2362 relpbuf(job->pbuf, NULL); 2363 job->pbuf = NULL; 2364 atomic_subtract_int(&num_buf_aio, 1); 2365 AIO_LOCK(ki); 2366 ki->kaio_buffer_count--; 2367 AIO_UNLOCK(ki); 2368 } 2369 vm_page_unhold_pages(job->pages, job->npages); 2370 2371 bp = job->bp; 2372 job->bp = NULL; 2373 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2374 error = 0; 2375 if (bp->bio_flags & BIO_ERROR) 2376 error = bp->bio_error; 2377 nblks = btodb(nbytes); 2378 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2379 job->outblock += nblks; 2380 else 2381 job->inblock += nblks; 2382 2383 if (error) 2384 aio_complete(job, -1, error); 2385 else 2386 aio_complete(job, nbytes, 0); 2387 2388 g_destroy_bio(bp); 2389 } 2390 2391 /* syscall - wait for the next completion of an aio request */ 2392 static int 2393 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2394 struct timespec *ts, struct aiocb_ops *ops) 2395 { 2396 struct proc *p = td->td_proc; 2397 struct timeval atv; 2398 struct kaioinfo *ki; 2399 struct kaiocb *job; 2400 struct aiocb *ujob; 2401 long error, status; 2402 int timo; 2403 2404 ops->store_aiocb(ujobp, NULL); 2405 2406 if (ts == NULL) { 2407 timo = 0; 2408 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2409 timo = -1; 2410 } else { 2411 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2412 return (EINVAL); 2413 2414 TIMESPEC_TO_TIMEVAL(&atv, ts); 2415 if (itimerfix(&atv)) 2416 return (EINVAL); 2417 timo = tvtohz(&atv); 2418 } 2419 2420 if (p->p_aioinfo == NULL) 2421 aio_init_aioinfo(p); 2422 ki = p->p_aioinfo; 2423 2424 error = 0; 2425 job = NULL; 2426 AIO_LOCK(ki); 2427 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2428 if (timo == -1) { 2429 error = EWOULDBLOCK; 2430 break; 2431 } 2432 ki->kaio_flags |= KAIO_WAKEUP; 2433 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2434 "aiowc", timo); 2435 if (timo && error == ERESTART) 2436 error = EINTR; 2437 if (error) 2438 break; 2439 } 2440 2441 if (job != NULL) { 2442 MPASS(job->jobflags & KAIOCB_FINISHED); 2443 ujob = job->ujob; 2444 status = job->uaiocb._aiocb_private.status; 2445 error = job->uaiocb._aiocb_private.error; 2446 td->td_retval[0] = status; 2447 td->td_ru.ru_oublock += job->outblock; 2448 td->td_ru.ru_inblock += job->inblock; 2449 td->td_ru.ru_msgsnd += job->msgsnd; 2450 td->td_ru.ru_msgrcv += job->msgrcv; 2451 aio_free_entry(job); 2452 AIO_UNLOCK(ki); 2453 ops->store_aiocb(ujobp, ujob); 2454 ops->store_error(ujob, error); 2455 ops->store_status(ujob, status); 2456 } else 2457 AIO_UNLOCK(ki); 2458 2459 return (error); 2460 } 2461 2462 int 2463 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2464 { 2465 struct timespec ts, *tsp; 2466 int error; 2467 2468 if (uap->timeout) { 2469 /* Get timespec struct. */ 2470 error = copyin(uap->timeout, &ts, sizeof(ts)); 2471 if (error) 2472 return (error); 2473 tsp = &ts; 2474 } else 2475 tsp = NULL; 2476 2477 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2478 } 2479 2480 static int 2481 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2482 struct aiocb_ops *ops) 2483 { 2484 2485 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2486 return (EINVAL); 2487 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2488 } 2489 2490 int 2491 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2492 { 2493 2494 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2495 } 2496 2497 /* kqueue attach function */ 2498 static int 2499 filt_aioattach(struct knote *kn) 2500 { 2501 struct kaiocb *job; 2502 2503 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2504 2505 /* 2506 * The job pointer must be validated before using it, so 2507 * registration is restricted to the kernel; the user cannot 2508 * set EV_FLAG1. 2509 */ 2510 if ((kn->kn_flags & EV_FLAG1) == 0) 2511 return (EPERM); 2512 kn->kn_ptr.p_aio = job; 2513 kn->kn_flags &= ~EV_FLAG1; 2514 2515 knlist_add(&job->klist, kn, 0); 2516 2517 return (0); 2518 } 2519 2520 /* kqueue detach function */ 2521 static void 2522 filt_aiodetach(struct knote *kn) 2523 { 2524 struct knlist *knl; 2525 2526 knl = &kn->kn_ptr.p_aio->klist; 2527 knl->kl_lock(knl->kl_lockarg); 2528 if (!knlist_empty(knl)) 2529 knlist_remove(knl, kn, 1); 2530 knl->kl_unlock(knl->kl_lockarg); 2531 } 2532 2533 /* kqueue filter function */ 2534 /*ARGSUSED*/ 2535 static int 2536 filt_aio(struct knote *kn, long hint) 2537 { 2538 struct kaiocb *job = kn->kn_ptr.p_aio; 2539 2540 kn->kn_data = job->uaiocb._aiocb_private.error; 2541 if (!(job->jobflags & KAIOCB_FINISHED)) 2542 return (0); 2543 kn->kn_flags |= EV_EOF; 2544 return (1); 2545 } 2546 2547 /* kqueue attach function */ 2548 static int 2549 filt_lioattach(struct knote *kn) 2550 { 2551 struct aioliojob *lj; 2552 2553 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2554 2555 /* 2556 * The aioliojob pointer must be validated before using it, so 2557 * registration is restricted to the kernel; the user cannot 2558 * set EV_FLAG1. 2559 */ 2560 if ((kn->kn_flags & EV_FLAG1) == 0) 2561 return (EPERM); 2562 kn->kn_ptr.p_lio = lj; 2563 kn->kn_flags &= ~EV_FLAG1; 2564 2565 knlist_add(&lj->klist, kn, 0); 2566 2567 return (0); 2568 } 2569 2570 /* kqueue detach function */ 2571 static void 2572 filt_liodetach(struct knote *kn) 2573 { 2574 struct knlist *knl; 2575 2576 knl = &kn->kn_ptr.p_lio->klist; 2577 knl->kl_lock(knl->kl_lockarg); 2578 if (!knlist_empty(knl)) 2579 knlist_remove(knl, kn, 1); 2580 knl->kl_unlock(knl->kl_lockarg); 2581 } 2582 2583 /* kqueue filter function */ 2584 /*ARGSUSED*/ 2585 static int 2586 filt_lio(struct knote *kn, long hint) 2587 { 2588 struct aioliojob * lj = kn->kn_ptr.p_lio; 2589 2590 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2591 } 2592 2593 #ifdef COMPAT_FREEBSD32 2594 #include <sys/mount.h> 2595 #include <sys/socket.h> 2596 #include <compat/freebsd32/freebsd32.h> 2597 #include <compat/freebsd32/freebsd32_proto.h> 2598 #include <compat/freebsd32/freebsd32_signal.h> 2599 #include <compat/freebsd32/freebsd32_syscall.h> 2600 #include <compat/freebsd32/freebsd32_util.h> 2601 2602 struct __aiocb_private32 { 2603 int32_t status; 2604 int32_t error; 2605 uint32_t kernelinfo; 2606 }; 2607 2608 #ifdef COMPAT_FREEBSD6 2609 typedef struct oaiocb32 { 2610 int aio_fildes; /* File descriptor */ 2611 uint64_t aio_offset __packed; /* File offset for I/O */ 2612 uint32_t aio_buf; /* I/O buffer in process space */ 2613 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2614 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2615 int aio_lio_opcode; /* LIO opcode */ 2616 int aio_reqprio; /* Request priority -- ignored */ 2617 struct __aiocb_private32 _aiocb_private; 2618 } oaiocb32_t; 2619 #endif 2620 2621 typedef struct aiocb32 { 2622 int32_t aio_fildes; /* File descriptor */ 2623 uint64_t aio_offset __packed; /* File offset for I/O */ 2624 uint32_t aio_buf; /* I/O buffer in process space */ 2625 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2626 int __spare__[2]; 2627 uint32_t __spare2__; 2628 int aio_lio_opcode; /* LIO opcode */ 2629 int aio_reqprio; /* Request priority -- ignored */ 2630 struct __aiocb_private32 _aiocb_private; 2631 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2632 } aiocb32_t; 2633 2634 #ifdef COMPAT_FREEBSD6 2635 static int 2636 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2637 { 2638 2639 /* 2640 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2641 * supported by AIO with the old sigevent structure. 2642 */ 2643 CP(*osig, *nsig, sigev_notify); 2644 switch (nsig->sigev_notify) { 2645 case SIGEV_NONE: 2646 break; 2647 case SIGEV_SIGNAL: 2648 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2649 break; 2650 case SIGEV_KEVENT: 2651 nsig->sigev_notify_kqueue = 2652 osig->__sigev_u.__sigev_notify_kqueue; 2653 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2654 break; 2655 default: 2656 return (EINVAL); 2657 } 2658 return (0); 2659 } 2660 2661 static int 2662 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2663 { 2664 struct oaiocb32 job32; 2665 int error; 2666 2667 bzero(kjob, sizeof(struct aiocb)); 2668 error = copyin(ujob, &job32, sizeof(job32)); 2669 if (error) 2670 return (error); 2671 2672 CP(job32, *kjob, aio_fildes); 2673 CP(job32, *kjob, aio_offset); 2674 PTRIN_CP(job32, *kjob, aio_buf); 2675 CP(job32, *kjob, aio_nbytes); 2676 CP(job32, *kjob, aio_lio_opcode); 2677 CP(job32, *kjob, aio_reqprio); 2678 CP(job32, *kjob, _aiocb_private.status); 2679 CP(job32, *kjob, _aiocb_private.error); 2680 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2681 return (convert_old_sigevent32(&job32.aio_sigevent, 2682 &kjob->aio_sigevent)); 2683 } 2684 #endif 2685 2686 static int 2687 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2688 { 2689 struct aiocb32 job32; 2690 int error; 2691 2692 error = copyin(ujob, &job32, sizeof(job32)); 2693 if (error) 2694 return (error); 2695 CP(job32, *kjob, aio_fildes); 2696 CP(job32, *kjob, aio_offset); 2697 PTRIN_CP(job32, *kjob, aio_buf); 2698 CP(job32, *kjob, aio_nbytes); 2699 CP(job32, *kjob, aio_lio_opcode); 2700 CP(job32, *kjob, aio_reqprio); 2701 CP(job32, *kjob, _aiocb_private.status); 2702 CP(job32, *kjob, _aiocb_private.error); 2703 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2704 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2705 } 2706 2707 static long 2708 aiocb32_fetch_status(struct aiocb *ujob) 2709 { 2710 struct aiocb32 *ujob32; 2711 2712 ujob32 = (struct aiocb32 *)ujob; 2713 return (fuword32(&ujob32->_aiocb_private.status)); 2714 } 2715 2716 static long 2717 aiocb32_fetch_error(struct aiocb *ujob) 2718 { 2719 struct aiocb32 *ujob32; 2720 2721 ujob32 = (struct aiocb32 *)ujob; 2722 return (fuword32(&ujob32->_aiocb_private.error)); 2723 } 2724 2725 static int 2726 aiocb32_store_status(struct aiocb *ujob, long status) 2727 { 2728 struct aiocb32 *ujob32; 2729 2730 ujob32 = (struct aiocb32 *)ujob; 2731 return (suword32(&ujob32->_aiocb_private.status, status)); 2732 } 2733 2734 static int 2735 aiocb32_store_error(struct aiocb *ujob, long error) 2736 { 2737 struct aiocb32 *ujob32; 2738 2739 ujob32 = (struct aiocb32 *)ujob; 2740 return (suword32(&ujob32->_aiocb_private.error, error)); 2741 } 2742 2743 static int 2744 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2745 { 2746 struct aiocb32 *ujob32; 2747 2748 ujob32 = (struct aiocb32 *)ujob; 2749 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2750 } 2751 2752 static int 2753 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2754 { 2755 2756 return (suword32(ujobp, (long)ujob)); 2757 } 2758 2759 static struct aiocb_ops aiocb32_ops = { 2760 .copyin = aiocb32_copyin, 2761 .fetch_status = aiocb32_fetch_status, 2762 .fetch_error = aiocb32_fetch_error, 2763 .store_status = aiocb32_store_status, 2764 .store_error = aiocb32_store_error, 2765 .store_kernelinfo = aiocb32_store_kernelinfo, 2766 .store_aiocb = aiocb32_store_aiocb, 2767 }; 2768 2769 #ifdef COMPAT_FREEBSD6 2770 static struct aiocb_ops aiocb32_ops_osigevent = { 2771 .copyin = aiocb32_copyin_old_sigevent, 2772 .fetch_status = aiocb32_fetch_status, 2773 .fetch_error = aiocb32_fetch_error, 2774 .store_status = aiocb32_store_status, 2775 .store_error = aiocb32_store_error, 2776 .store_kernelinfo = aiocb32_store_kernelinfo, 2777 .store_aiocb = aiocb32_store_aiocb, 2778 }; 2779 #endif 2780 2781 int 2782 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2783 { 2784 2785 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2786 } 2787 2788 int 2789 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2790 { 2791 struct timespec32 ts32; 2792 struct timespec ts, *tsp; 2793 struct aiocb **ujoblist; 2794 uint32_t *ujoblist32; 2795 int error, i; 2796 2797 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2798 return (EINVAL); 2799 2800 if (uap->timeout) { 2801 /* Get timespec struct. */ 2802 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2803 return (error); 2804 CP(ts32, ts, tv_sec); 2805 CP(ts32, ts, tv_nsec); 2806 tsp = &ts; 2807 } else 2808 tsp = NULL; 2809 2810 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2811 ujoblist32 = (uint32_t *)ujoblist; 2812 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2813 sizeof(ujoblist32[0])); 2814 if (error == 0) { 2815 for (i = uap->nent - 1; i >= 0; i--) 2816 ujoblist[i] = PTRIN(ujoblist32[i]); 2817 2818 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2819 } 2820 free(ujoblist, M_AIOS); 2821 return (error); 2822 } 2823 2824 int 2825 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2826 { 2827 2828 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2829 } 2830 2831 #ifdef COMPAT_FREEBSD6 2832 int 2833 freebsd6_freebsd32_aio_read(struct thread *td, 2834 struct freebsd6_freebsd32_aio_read_args *uap) 2835 { 2836 2837 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2838 &aiocb32_ops_osigevent)); 2839 } 2840 #endif 2841 2842 int 2843 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2844 { 2845 2846 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2847 &aiocb32_ops)); 2848 } 2849 2850 #ifdef COMPAT_FREEBSD6 2851 int 2852 freebsd6_freebsd32_aio_write(struct thread *td, 2853 struct freebsd6_freebsd32_aio_write_args *uap) 2854 { 2855 2856 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2857 &aiocb32_ops_osigevent)); 2858 } 2859 #endif 2860 2861 int 2862 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2863 { 2864 2865 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2866 &aiocb32_ops)); 2867 } 2868 2869 int 2870 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2871 { 2872 2873 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2874 &aiocb32_ops)); 2875 } 2876 2877 int 2878 freebsd32_aio_waitcomplete(struct thread *td, 2879 struct freebsd32_aio_waitcomplete_args *uap) 2880 { 2881 struct timespec32 ts32; 2882 struct timespec ts, *tsp; 2883 int error; 2884 2885 if (uap->timeout) { 2886 /* Get timespec struct. */ 2887 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2888 if (error) 2889 return (error); 2890 CP(ts32, ts, tv_sec); 2891 CP(ts32, ts, tv_nsec); 2892 tsp = &ts; 2893 } else 2894 tsp = NULL; 2895 2896 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2897 &aiocb32_ops)); 2898 } 2899 2900 int 2901 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2902 { 2903 2904 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2905 &aiocb32_ops)); 2906 } 2907 2908 #ifdef COMPAT_FREEBSD6 2909 int 2910 freebsd6_freebsd32_lio_listio(struct thread *td, 2911 struct freebsd6_freebsd32_lio_listio_args *uap) 2912 { 2913 struct aiocb **acb_list; 2914 struct sigevent *sigp, sig; 2915 struct osigevent32 osig; 2916 uint32_t *acb_list32; 2917 int error, i, nent; 2918 2919 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2920 return (EINVAL); 2921 2922 nent = uap->nent; 2923 if (nent < 0 || nent > max_aio_queue_per_proc) 2924 return (EINVAL); 2925 2926 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2927 error = copyin(uap->sig, &osig, sizeof(osig)); 2928 if (error) 2929 return (error); 2930 error = convert_old_sigevent32(&osig, &sig); 2931 if (error) 2932 return (error); 2933 sigp = &sig; 2934 } else 2935 sigp = NULL; 2936 2937 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2938 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2939 if (error) { 2940 free(acb_list32, M_LIO); 2941 return (error); 2942 } 2943 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2944 for (i = 0; i < nent; i++) 2945 acb_list[i] = PTRIN(acb_list32[i]); 2946 free(acb_list32, M_LIO); 2947 2948 error = kern_lio_listio(td, uap->mode, 2949 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2950 &aiocb32_ops_osigevent); 2951 free(acb_list, M_LIO); 2952 return (error); 2953 } 2954 #endif 2955 2956 int 2957 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2958 { 2959 struct aiocb **acb_list; 2960 struct sigevent *sigp, sig; 2961 struct sigevent32 sig32; 2962 uint32_t *acb_list32; 2963 int error, i, nent; 2964 2965 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2966 return (EINVAL); 2967 2968 nent = uap->nent; 2969 if (nent < 0 || nent > max_aio_queue_per_proc) 2970 return (EINVAL); 2971 2972 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2973 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2974 if (error) 2975 return (error); 2976 error = convert_sigevent32(&sig32, &sig); 2977 if (error) 2978 return (error); 2979 sigp = &sig; 2980 } else 2981 sigp = NULL; 2982 2983 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2984 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2985 if (error) { 2986 free(acb_list32, M_LIO); 2987 return (error); 2988 } 2989 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2990 for (i = 0; i < nent; i++) 2991 acb_list[i] = PTRIN(acb_list32[i]); 2992 free(acb_list32, M_LIO); 2993 2994 error = kern_lio_listio(td, uap->mode, 2995 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2996 &aiocb32_ops); 2997 free(acb_list, M_LIO); 2998 return (error); 2999 } 3000 3001 #endif 3002