1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/sema.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/syscall.h> 49 #include <sys/sysent.h> 50 #include <sys/sysctl.h> 51 #include <sys/sx.h> 52 #include <sys/taskqueue.h> 53 #include <sys/vnode.h> 54 #include <sys/conf.h> 55 #include <sys/event.h> 56 #include <sys/mount.h> 57 58 #include <machine/atomic.h> 59 60 #include <posix4/posix4.h> 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 126 CTLFLAG_RW, &max_aio_procs, 0, 127 "Maximum number of kernel threads to use for handling async IO "); 128 129 static int num_aio_procs = 0; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 131 CTLFLAG_RD, &num_aio_procs, 0, 132 "Number of presently active kernel threads for async IO"); 133 134 /* 135 * The code will adjust the actual number of AIO processes towards this 136 * number when it gets a chance. 137 */ 138 static int target_aio_procs = TARGET_AIO_PROCS; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 140 0, "Preferred number of ready kernel threads for async IO"); 141 142 static int max_queue_count = MAX_AIO_QUEUE; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 144 "Maximum number of aio requests to queue, globally"); 145 146 static int num_queue_count = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 148 "Number of queued aio requests"); 149 150 static int num_buf_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 152 "Number of aio requests presently handled by the buf subsystem"); 153 154 /* Number of async I/O thread in the process of being started */ 155 /* XXX This should be local to aio_aqueue() */ 156 static int num_aio_resv_start = 0; 157 158 static int aiod_timeout; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 160 "Timeout value for synchronous aio operations"); 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int unloadable = 0; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 168 "Allow unload of aio (not recommended)"); 169 170 171 static int max_aio_per_proc = MAX_AIO_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 173 0, "Maximum active aio requests per process (stored in the process)"); 174 175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 177 &max_aio_queue_per_proc, 0, 178 "Maximum queued aio requests per process (stored in the process)"); 179 180 static int max_buf_aio = MAX_BUF_AIO; 181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 182 "Maximum buf aio requests per process (stored in the process)"); 183 184 typedef struct oaiocb { 185 int aio_fildes; /* File descriptor */ 186 off_t aio_offset; /* File offset for I/O */ 187 volatile void *aio_buf; /* I/O buffer in process space */ 188 size_t aio_nbytes; /* Number of bytes for I/O */ 189 struct osigevent aio_sigevent; /* Signal to deliver */ 190 int aio_lio_opcode; /* LIO opcode */ 191 int aio_reqprio; /* Request priority -- ignored */ 192 struct __aiocb_private _aiocb_private; 193 } oaiocb_t; 194 195 /* 196 * Below is a key of locks used to protect each member of struct aiocblist 197 * aioliojob and kaioinfo and any backends. 198 * 199 * * - need not protected 200 * a - locked by kaioinfo lock 201 * b - locked by backend lock, the backend lock can be null in some cases, 202 * for example, BIO belongs to this type, in this case, proc lock is 203 * reused. 204 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 205 */ 206 207 /* 208 * Current, there is only two backends: BIO and generic file I/O. 209 * socket I/O is served by generic file I/O, this is not a good idea, since 210 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 211 * threads, if there is no thread to serve socket I/O, the socket I/O will be 212 * delayed too long or starved, we should create some threads dedicated to 213 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 214 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 215 * structure is not safe because there is race between userland and aio 216 * daemons. 217 */ 218 219 struct aiocblist { 220 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 221 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 222 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 223 int jobflags; /* (a) job flags */ 224 int jobstate; /* (b) job state */ 225 int inputcharge; /* (*) input blockes */ 226 int outputcharge; /* (*) output blockes */ 227 struct buf *bp; /* (*) private to BIO backend, 228 * buffer pointer 229 */ 230 struct proc *userproc; /* (*) user process */ 231 struct ucred *cred; /* (*) active credential when created */ 232 struct file *fd_file; /* (*) pointer to file structure */ 233 struct aioliojob *lio; /* (*) optional lio job */ 234 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 235 struct knlist klist; /* (a) list of knotes */ 236 struct aiocb uaiocb; /* (*) kernel I/O control block */ 237 ksiginfo_t ksi; /* (a) realtime signal info */ 238 struct task biotask; /* (*) private to BIO backend */ 239 uint64_t seqno; /* (*) job number */ 240 int pending; /* (a) number of pending I/O, aio_fsync only */ 241 }; 242 243 /* jobflags */ 244 #define AIOCBLIST_DONE 0x01 245 #define AIOCBLIST_BUFDONE 0x02 246 #define AIOCBLIST_RUNDOWN 0x04 247 #define AIOCBLIST_CHECKSYNC 0x08 248 249 /* 250 * AIO process info 251 */ 252 #define AIOP_FREE 0x1 /* proc on free queue */ 253 254 struct aiothreadlist { 255 int aiothreadflags; /* (c) AIO proc flags */ 256 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 257 struct thread *aiothread; /* (*) the AIO thread */ 258 }; 259 260 /* 261 * data-structure for lio signal management 262 */ 263 struct aioliojob { 264 int lioj_flags; /* (a) listio flags */ 265 int lioj_count; /* (a) listio flags */ 266 int lioj_finished_count; /* (a) listio flags */ 267 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 268 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 269 struct knlist klist; /* (a) list of knotes */ 270 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 271 }; 272 273 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 274 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 275 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 276 277 /* 278 * per process aio data structure 279 */ 280 struct kaioinfo { 281 struct mtx kaio_mtx; /* the lock to protect this struct */ 282 int kaio_flags; /* (a) per process kaio flags */ 283 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 284 int kaio_active_count; /* (c) number of currently used AIOs */ 285 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 286 int kaio_count; /* (a) size of AIO queue */ 287 int kaio_ballowed_count; /* (*) maximum number of buffers */ 288 int kaio_buffer_count; /* (a) number of physio buffers */ 289 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 290 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 291 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 292 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 293 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 294 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 295 * NOT USED YET. 296 */ 297 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 298 struct task kaio_task; /* (*) task to kick aio threads */ 299 }; 300 301 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 302 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 303 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 304 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 305 306 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 307 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 308 309 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 310 static struct sema aio_newproc_sem; 311 static struct mtx aio_job_mtx; 312 static struct mtx aio_sock_mtx; 313 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 314 static struct unrhdr *aiod_unr; 315 316 static void aio_init_aioinfo(struct proc *p); 317 static void aio_onceonly(void); 318 static int aio_free_entry(struct aiocblist *aiocbe); 319 static void aio_process(struct aiocblist *aiocbe); 320 static int aio_newproc(int *); 321 static int aio_aqueue(struct thread *td, struct aiocb *job, 322 struct aioliojob *lio, int type, int osigev); 323 static void aio_physwakeup(struct buf *bp); 324 static void aio_proc_rundown(void *arg, struct proc *p); 325 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 326 static void biohelper(void *, int); 327 static void aio_daemon(void *param); 328 static void aio_swake_cb(struct socket *, struct sockbuf *); 329 static int aio_unload(void); 330 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 331 #define DONE_BUF 1 332 #define DONE_QUEUE 2 333 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 334 static int aio_kick(struct proc *userp); 335 static void aio_kick_nowait(struct proc *userp); 336 static void aio_kick_helper(void *context, int pending); 337 static int filt_aioattach(struct knote *kn); 338 static void filt_aiodetach(struct knote *kn); 339 static int filt_aio(struct knote *kn, long hint); 340 static int filt_lioattach(struct knote *kn); 341 static void filt_liodetach(struct knote *kn); 342 static int filt_lio(struct knote *kn, long hint); 343 344 /* 345 * Zones for: 346 * kaio Per process async io info 347 * aiop async io thread data 348 * aiocb async io jobs 349 * aiol list io job pointer - internal to aio_suspend XXX 350 * aiolio list io jobs 351 */ 352 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 353 354 /* kqueue filters for aio */ 355 static struct filterops aio_filtops = 356 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 357 static struct filterops lio_filtops = 358 { 0, filt_lioattach, filt_liodetach, filt_lio }; 359 360 static eventhandler_tag exit_tag, exec_tag; 361 362 TASKQUEUE_DEFINE_THREAD(aiod_bio); 363 364 /* 365 * Main operations function for use as a kernel module. 366 */ 367 static int 368 aio_modload(struct module *module, int cmd, void *arg) 369 { 370 int error = 0; 371 372 switch (cmd) { 373 case MOD_LOAD: 374 aio_onceonly(); 375 break; 376 case MOD_UNLOAD: 377 error = aio_unload(); 378 break; 379 case MOD_SHUTDOWN: 380 break; 381 default: 382 error = EINVAL; 383 break; 384 } 385 return (error); 386 } 387 388 static moduledata_t aio_mod = { 389 "aio", 390 &aio_modload, 391 NULL 392 }; 393 394 SYSCALL_MODULE_HELPER(aio_cancel); 395 SYSCALL_MODULE_HELPER(aio_error); 396 SYSCALL_MODULE_HELPER(aio_fsync); 397 SYSCALL_MODULE_HELPER(aio_read); 398 SYSCALL_MODULE_HELPER(aio_return); 399 SYSCALL_MODULE_HELPER(aio_suspend); 400 SYSCALL_MODULE_HELPER(aio_waitcomplete); 401 SYSCALL_MODULE_HELPER(aio_write); 402 SYSCALL_MODULE_HELPER(lio_listio); 403 SYSCALL_MODULE_HELPER(oaio_read); 404 SYSCALL_MODULE_HELPER(oaio_write); 405 SYSCALL_MODULE_HELPER(olio_listio); 406 407 DECLARE_MODULE(aio, aio_mod, 408 SI_SUB_VFS, SI_ORDER_ANY); 409 MODULE_VERSION(aio, 1); 410 411 /* 412 * Startup initialization 413 */ 414 static void 415 aio_onceonly(void) 416 { 417 418 /* XXX: should probably just use so->callback */ 419 aio_swake = &aio_swake_cb; 420 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 421 EVENTHANDLER_PRI_ANY); 422 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 423 EVENTHANDLER_PRI_ANY); 424 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 425 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 426 TAILQ_INIT(&aio_freeproc); 427 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 428 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 429 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 430 TAILQ_INIT(&aio_jobs); 431 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 432 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 433 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 434 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 435 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 436 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 437 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 438 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 439 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 440 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 441 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 442 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 443 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 444 jobrefid = 1; 445 async_io_version = _POSIX_VERSION; 446 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 447 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 448 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 449 } 450 451 /* 452 * Callback for unload of AIO when used as a module. 453 */ 454 static int 455 aio_unload(void) 456 { 457 int error; 458 459 /* 460 * XXX: no unloads by default, it's too dangerous. 461 * perhaps we could do it if locked out callers and then 462 * did an aio_proc_rundown() on each process. 463 * 464 * jhb: aio_proc_rundown() needs to run on curproc though, 465 * so I don't think that would fly. 466 */ 467 if (!unloadable) 468 return (EOPNOTSUPP); 469 470 error = kqueue_del_filteropts(EVFILT_AIO); 471 if (error) 472 return error; 473 error = kqueue_del_filteropts(EVFILT_LIO); 474 if (error) 475 return error; 476 async_io_version = 0; 477 aio_swake = NULL; 478 taskqueue_free(taskqueue_aiod_bio); 479 delete_unrhdr(aiod_unr); 480 uma_zdestroy(kaio_zone); 481 uma_zdestroy(aiop_zone); 482 uma_zdestroy(aiocb_zone); 483 uma_zdestroy(aiol_zone); 484 uma_zdestroy(aiolio_zone); 485 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 486 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 487 mtx_destroy(&aio_job_mtx); 488 mtx_destroy(&aio_sock_mtx); 489 sema_destroy(&aio_newproc_sem); 490 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 491 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 492 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 493 return (0); 494 } 495 496 /* 497 * Init the per-process aioinfo structure. The aioinfo limits are set 498 * per-process for user limit (resource) management. 499 */ 500 static void 501 aio_init_aioinfo(struct proc *p) 502 { 503 struct kaioinfo *ki; 504 505 ki = uma_zalloc(kaio_zone, M_WAITOK); 506 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 507 ki->kaio_flags = 0; 508 ki->kaio_maxactive_count = max_aio_per_proc; 509 ki->kaio_active_count = 0; 510 ki->kaio_qallowed_count = max_aio_queue_per_proc; 511 ki->kaio_count = 0; 512 ki->kaio_ballowed_count = max_buf_aio; 513 ki->kaio_buffer_count = 0; 514 TAILQ_INIT(&ki->kaio_all); 515 TAILQ_INIT(&ki->kaio_done); 516 TAILQ_INIT(&ki->kaio_jobqueue); 517 TAILQ_INIT(&ki->kaio_bufqueue); 518 TAILQ_INIT(&ki->kaio_liojoblist); 519 TAILQ_INIT(&ki->kaio_sockqueue); 520 TAILQ_INIT(&ki->kaio_syncqueue); 521 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 522 PROC_LOCK(p); 523 if (p->p_aioinfo == NULL) { 524 p->p_aioinfo = ki; 525 PROC_UNLOCK(p); 526 } else { 527 PROC_UNLOCK(p); 528 mtx_destroy(&ki->kaio_mtx); 529 uma_zfree(kaio_zone, ki); 530 } 531 532 while (num_aio_procs < target_aio_procs) 533 aio_newproc(NULL); 534 } 535 536 static int 537 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 538 { 539 int ret = 0; 540 541 PROC_LOCK(p); 542 if (!KSI_ONQ(ksi)) { 543 ksi->ksi_code = SI_ASYNCIO; 544 ksi->ksi_flags |= KSI_EXT | KSI_INS; 545 ret = psignal_event(p, sigev, ksi); 546 } 547 PROC_UNLOCK(p); 548 return (ret); 549 } 550 551 /* 552 * Free a job entry. Wait for completion if it is currently active, but don't 553 * delay forever. If we delay, we return a flag that says that we have to 554 * restart the queue scan. 555 */ 556 static int 557 aio_free_entry(struct aiocblist *aiocbe) 558 { 559 struct kaioinfo *ki; 560 struct aioliojob *lj; 561 struct proc *p; 562 563 p = aiocbe->userproc; 564 MPASS(curproc == p); 565 ki = p->p_aioinfo; 566 MPASS(ki != NULL); 567 568 AIO_LOCK_ASSERT(ki, MA_OWNED); 569 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 570 571 atomic_subtract_int(&num_queue_count, 1); 572 573 ki->kaio_count--; 574 MPASS(ki->kaio_count >= 0); 575 576 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 577 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 578 579 lj = aiocbe->lio; 580 if (lj) { 581 lj->lioj_count--; 582 lj->lioj_finished_count--; 583 584 if (lj->lioj_count == 0) { 585 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 586 /* lio is going away, we need to destroy any knotes */ 587 knlist_delete(&lj->klist, curthread, 1); 588 PROC_LOCK(p); 589 sigqueue_take(&lj->lioj_ksi); 590 PROC_UNLOCK(p); 591 uma_zfree(aiolio_zone, lj); 592 } 593 } 594 595 /* aiocbe is going away, we need to destroy any knotes */ 596 knlist_delete(&aiocbe->klist, curthread, 1); 597 PROC_LOCK(p); 598 sigqueue_take(&aiocbe->ksi); 599 PROC_UNLOCK(p); 600 601 MPASS(aiocbe->bp == NULL); 602 aiocbe->jobstate = JOBST_NULL; 603 AIO_UNLOCK(ki); 604 605 /* 606 * The thread argument here is used to find the owning process 607 * and is also passed to fo_close() which may pass it to various 608 * places such as devsw close() routines. Because of that, we 609 * need a thread pointer from the process owning the job that is 610 * persistent and won't disappear out from under us or move to 611 * another process. 612 * 613 * Currently, all the callers of this function call it to remove 614 * an aiocblist from the current process' job list either via a 615 * syscall or due to the current process calling exit() or 616 * execve(). Thus, we know that p == curproc. We also know that 617 * curthread can't exit since we are curthread. 618 * 619 * Therefore, we use curthread as the thread to pass to 620 * knlist_delete(). This does mean that it is possible for the 621 * thread pointer at close time to differ from the thread pointer 622 * at open time, but this is already true of file descriptors in 623 * a multithreaded process. 624 */ 625 fdrop(aiocbe->fd_file, curthread); 626 crfree(aiocbe->cred); 627 uma_zfree(aiocb_zone, aiocbe); 628 AIO_LOCK(ki); 629 630 return (0); 631 } 632 633 /* 634 * Rundown the jobs for a given process. 635 */ 636 static void 637 aio_proc_rundown(void *arg, struct proc *p) 638 { 639 struct kaioinfo *ki; 640 struct aioliojob *lj; 641 struct aiocblist *cbe, *cbn; 642 struct file *fp; 643 struct socket *so; 644 int remove; 645 646 KASSERT(curthread->td_proc == p, 647 ("%s: called on non-curproc", __func__)); 648 ki = p->p_aioinfo; 649 if (ki == NULL) 650 return; 651 652 AIO_LOCK(ki); 653 ki->kaio_flags |= KAIO_RUNDOWN; 654 655 restart: 656 657 /* 658 * Try to cancel all pending requests. This code simulates 659 * aio_cancel on all pending I/O requests. 660 */ 661 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 662 remove = 0; 663 mtx_lock(&aio_job_mtx); 664 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 665 TAILQ_REMOVE(&aio_jobs, cbe, list); 666 remove = 1; 667 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 668 fp = cbe->fd_file; 669 MPASS(fp->f_type == DTYPE_SOCKET); 670 so = fp->f_data; 671 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 672 remove = 1; 673 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 674 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 675 remove = 1; 676 } 677 mtx_unlock(&aio_job_mtx); 678 679 if (remove) { 680 cbe->jobstate = JOBST_JOBFINISHED; 681 cbe->uaiocb._aiocb_private.status = -1; 682 cbe->uaiocb._aiocb_private.error = ECANCELED; 683 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 684 aio_bio_done_notify(p, cbe, DONE_QUEUE); 685 } 686 } 687 688 /* Wait for all running I/O to be finished */ 689 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 690 TAILQ_FIRST(&ki->kaio_jobqueue)) { 691 ki->kaio_flags |= KAIO_WAKEUP; 692 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 693 goto restart; 694 } 695 696 /* Free all completed I/O requests. */ 697 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 698 aio_free_entry(cbe); 699 700 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 701 if (lj->lioj_count == 0) { 702 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 703 knlist_delete(&lj->klist, curthread, 1); 704 PROC_LOCK(p); 705 sigqueue_take(&lj->lioj_ksi); 706 PROC_UNLOCK(p); 707 uma_zfree(aiolio_zone, lj); 708 } else { 709 panic("LIO job not cleaned up: C:%d, FC:%d\n", 710 lj->lioj_count, lj->lioj_finished_count); 711 } 712 } 713 AIO_UNLOCK(ki); 714 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 715 uma_zfree(kaio_zone, ki); 716 p->p_aioinfo = NULL; 717 } 718 719 /* 720 * Select a job to run (called by an AIO daemon). 721 */ 722 static struct aiocblist * 723 aio_selectjob(struct aiothreadlist *aiop) 724 { 725 struct aiocblist *aiocbe; 726 struct kaioinfo *ki; 727 struct proc *userp; 728 729 mtx_assert(&aio_job_mtx, MA_OWNED); 730 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 731 userp = aiocbe->userproc; 732 ki = userp->p_aioinfo; 733 734 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 735 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 736 /* Account for currently active jobs. */ 737 ki->kaio_active_count++; 738 aiocbe->jobstate = JOBST_JOBRUNNING; 739 break; 740 } 741 } 742 return (aiocbe); 743 } 744 745 /* 746 * Move all data to a permanent storage device, this code 747 * simulates fsync syscall. 748 */ 749 static int 750 aio_fsync_vnode(struct thread *td, struct vnode *vp) 751 { 752 struct mount *mp; 753 int vfslocked; 754 int error; 755 756 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 757 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 758 goto drop; 759 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 760 if (vp->v_object != NULL) { 761 VM_OBJECT_LOCK(vp->v_object); 762 vm_object_page_clean(vp->v_object, 0, 0, 0); 763 VM_OBJECT_UNLOCK(vp->v_object); 764 } 765 error = VOP_FSYNC(vp, MNT_WAIT, td); 766 767 VOP_UNLOCK(vp, 0, td); 768 vn_finished_write(mp); 769 drop: 770 VFS_UNLOCK_GIANT(vfslocked); 771 return (error); 772 } 773 774 /* 775 * The AIO processing activity. This is the code that does the I/O request for 776 * the non-physio version of the operations. The normal vn operations are used, 777 * and this code should work in all instances for every type of file, including 778 * pipes, sockets, fifos, and regular files. 779 * 780 * XXX I don't think it works well for socket, pipe, and fifo. 781 */ 782 static void 783 aio_process(struct aiocblist *aiocbe) 784 { 785 struct ucred *td_savedcred; 786 struct thread *td; 787 struct proc *mycp; 788 struct aiocb *cb; 789 struct file *fp; 790 struct socket *so; 791 struct uio auio; 792 struct iovec aiov; 793 int cnt; 794 int error; 795 int oublock_st, oublock_end; 796 int inblock_st, inblock_end; 797 798 td = curthread; 799 td_savedcred = td->td_ucred; 800 td->td_ucred = aiocbe->cred; 801 mycp = td->td_proc; 802 cb = &aiocbe->uaiocb; 803 fp = aiocbe->fd_file; 804 805 if (cb->aio_lio_opcode == LIO_SYNC) { 806 error = 0; 807 cnt = 0; 808 if (fp->f_vnode != NULL) 809 error = aio_fsync_vnode(td, fp->f_vnode); 810 cb->_aiocb_private.error = error; 811 cb->_aiocb_private.status = 0; 812 td->td_ucred = td_savedcred; 813 return; 814 } 815 816 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 817 aiov.iov_len = cb->aio_nbytes; 818 819 auio.uio_iov = &aiov; 820 auio.uio_iovcnt = 1; 821 auio.uio_offset = cb->aio_offset; 822 auio.uio_resid = cb->aio_nbytes; 823 cnt = cb->aio_nbytes; 824 auio.uio_segflg = UIO_USERSPACE; 825 auio.uio_td = td; 826 827 inblock_st = mycp->p_stats->p_ru.ru_inblock; 828 oublock_st = mycp->p_stats->p_ru.ru_oublock; 829 /* 830 * aio_aqueue() acquires a reference to the file that is 831 * released in aio_free_entry(). 832 */ 833 if (cb->aio_lio_opcode == LIO_READ) { 834 auio.uio_rw = UIO_READ; 835 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 836 } else { 837 if (fp->f_type == DTYPE_VNODE) 838 bwillwrite(); 839 auio.uio_rw = UIO_WRITE; 840 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 841 } 842 inblock_end = mycp->p_stats->p_ru.ru_inblock; 843 oublock_end = mycp->p_stats->p_ru.ru_oublock; 844 845 aiocbe->inputcharge = inblock_end - inblock_st; 846 aiocbe->outputcharge = oublock_end - oublock_st; 847 848 if ((error) && (auio.uio_resid != cnt)) { 849 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 850 error = 0; 851 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 852 int sigpipe = 1; 853 if (fp->f_type == DTYPE_SOCKET) { 854 so = fp->f_data; 855 if (so->so_options & SO_NOSIGPIPE) 856 sigpipe = 0; 857 } 858 if (sigpipe) { 859 PROC_LOCK(aiocbe->userproc); 860 psignal(aiocbe->userproc, SIGPIPE); 861 PROC_UNLOCK(aiocbe->userproc); 862 } 863 } 864 } 865 866 cnt -= auio.uio_resid; 867 cb->_aiocb_private.error = error; 868 cb->_aiocb_private.status = cnt; 869 td->td_ucred = td_savedcred; 870 } 871 872 static void 873 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 874 { 875 struct aioliojob *lj; 876 struct kaioinfo *ki; 877 struct aiocblist *scb, *scbn; 878 int lj_done; 879 880 ki = userp->p_aioinfo; 881 AIO_LOCK_ASSERT(ki, MA_OWNED); 882 lj = aiocbe->lio; 883 lj_done = 0; 884 if (lj) { 885 lj->lioj_finished_count++; 886 if (lj->lioj_count == lj->lioj_finished_count) 887 lj_done = 1; 888 } 889 if (type == DONE_QUEUE) { 890 aiocbe->jobflags |= AIOCBLIST_DONE; 891 } else { 892 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 893 } 894 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 895 aiocbe->jobstate = JOBST_JOBFINISHED; 896 897 if (ki->kaio_flags & KAIO_RUNDOWN) 898 goto notification_done; 899 900 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 901 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 902 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 903 904 KNOTE_LOCKED(&aiocbe->klist, 1); 905 906 if (lj_done) { 907 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 908 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 909 KNOTE_LOCKED(&lj->klist, 1); 910 } 911 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 912 == LIOJ_SIGNAL 913 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 914 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 915 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 916 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 917 } 918 } 919 920 notification_done: 921 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 922 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 923 if (aiocbe->fd_file == scb->fd_file && 924 aiocbe->seqno < scb->seqno) { 925 if (--scb->pending == 0) { 926 mtx_lock(&aio_job_mtx); 927 scb->jobstate = JOBST_JOBQGLOBAL; 928 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 929 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 930 aio_kick_nowait(userp); 931 mtx_unlock(&aio_job_mtx); 932 } 933 } 934 } 935 } 936 if (ki->kaio_flags & KAIO_WAKEUP) { 937 ki->kaio_flags &= ~KAIO_WAKEUP; 938 wakeup(&userp->p_aioinfo); 939 } 940 } 941 942 /* 943 * The AIO daemon, most of the actual work is done in aio_process, 944 * but the setup (and address space mgmt) is done in this routine. 945 */ 946 static void 947 aio_daemon(void *_id) 948 { 949 struct aiocblist *aiocbe; 950 struct aiothreadlist *aiop; 951 struct kaioinfo *ki; 952 struct proc *curcp, *mycp, *userp; 953 struct vmspace *myvm, *tmpvm; 954 struct thread *td = curthread; 955 int id = (intptr_t)_id; 956 957 /* 958 * Local copies of curproc (cp) and vmspace (myvm) 959 */ 960 mycp = td->td_proc; 961 myvm = mycp->p_vmspace; 962 963 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 964 965 /* 966 * Allocate and ready the aio control info. There is one aiop structure 967 * per daemon. 968 */ 969 aiop = uma_zalloc(aiop_zone, M_WAITOK); 970 aiop->aiothread = td; 971 aiop->aiothreadflags = 0; 972 973 /* 974 * Get rid of our current filedescriptors. AIOD's don't need any 975 * filedescriptors, except as temporarily inherited from the client. 976 */ 977 fdfree(td); 978 979 /* The daemon resides in its own pgrp. */ 980 setsid(td, NULL); 981 982 /* 983 * Wakeup parent process. (Parent sleeps to keep from blasting away 984 * and creating too many daemons.) 985 */ 986 sema_post(&aio_newproc_sem); 987 988 mtx_lock(&aio_job_mtx); 989 for (;;) { 990 /* 991 * curcp is the current daemon process context. 992 * userp is the current user process context. 993 */ 994 curcp = mycp; 995 996 /* 997 * Take daemon off of free queue 998 */ 999 if (aiop->aiothreadflags & AIOP_FREE) { 1000 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1001 aiop->aiothreadflags &= ~AIOP_FREE; 1002 } 1003 1004 /* 1005 * Check for jobs. 1006 */ 1007 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1008 mtx_unlock(&aio_job_mtx); 1009 userp = aiocbe->userproc; 1010 1011 /* 1012 * Connect to process address space for user program. 1013 */ 1014 if (userp != curcp) { 1015 /* 1016 * Save the current address space that we are 1017 * connected to. 1018 */ 1019 tmpvm = mycp->p_vmspace; 1020 1021 /* 1022 * Point to the new user address space, and 1023 * refer to it. 1024 */ 1025 mycp->p_vmspace = userp->p_vmspace; 1026 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1027 1028 /* Activate the new mapping. */ 1029 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1030 1031 /* 1032 * If the old address space wasn't the daemons 1033 * own address space, then we need to remove the 1034 * daemon's reference from the other process 1035 * that it was acting on behalf of. 1036 */ 1037 if (tmpvm != myvm) { 1038 vmspace_free(tmpvm); 1039 } 1040 curcp = userp; 1041 } 1042 1043 ki = userp->p_aioinfo; 1044 1045 /* Do the I/O function. */ 1046 aio_process(aiocbe); 1047 1048 mtx_lock(&aio_job_mtx); 1049 /* Decrement the active job count. */ 1050 ki->kaio_active_count--; 1051 mtx_unlock(&aio_job_mtx); 1052 1053 AIO_LOCK(ki); 1054 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1055 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1056 AIO_UNLOCK(ki); 1057 1058 mtx_lock(&aio_job_mtx); 1059 } 1060 1061 /* 1062 * Disconnect from user address space. 1063 */ 1064 if (curcp != mycp) { 1065 1066 mtx_unlock(&aio_job_mtx); 1067 1068 /* Get the user address space to disconnect from. */ 1069 tmpvm = mycp->p_vmspace; 1070 1071 /* Get original address space for daemon. */ 1072 mycp->p_vmspace = myvm; 1073 1074 /* Activate the daemon's address space. */ 1075 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1076 #ifdef DIAGNOSTIC 1077 if (tmpvm == myvm) { 1078 printf("AIOD: vmspace problem -- %d\n", 1079 mycp->p_pid); 1080 } 1081 #endif 1082 /* Remove our vmspace reference. */ 1083 vmspace_free(tmpvm); 1084 1085 curcp = mycp; 1086 1087 mtx_lock(&aio_job_mtx); 1088 /* 1089 * We have to restart to avoid race, we only sleep if 1090 * no job can be selected, that should be 1091 * curcp == mycp. 1092 */ 1093 continue; 1094 } 1095 1096 mtx_assert(&aio_job_mtx, MA_OWNED); 1097 1098 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1099 aiop->aiothreadflags |= AIOP_FREE; 1100 1101 /* 1102 * If daemon is inactive for a long time, allow it to exit, 1103 * thereby freeing resources. 1104 */ 1105 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1106 aiod_lifetime)) { 1107 if (TAILQ_EMPTY(&aio_jobs)) { 1108 if ((aiop->aiothreadflags & AIOP_FREE) && 1109 (num_aio_procs > target_aio_procs)) { 1110 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1111 num_aio_procs--; 1112 mtx_unlock(&aio_job_mtx); 1113 uma_zfree(aiop_zone, aiop); 1114 free_unr(aiod_unr, id); 1115 #ifdef DIAGNOSTIC 1116 if (mycp->p_vmspace->vm_refcnt <= 1) { 1117 printf("AIOD: bad vm refcnt for" 1118 " exiting daemon: %d\n", 1119 mycp->p_vmspace->vm_refcnt); 1120 } 1121 #endif 1122 kthread_exit(0); 1123 } 1124 } 1125 } 1126 } 1127 mtx_unlock(&aio_job_mtx); 1128 panic("shouldn't be here\n"); 1129 } 1130 1131 /* 1132 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1133 * AIO daemon modifies its environment itself. 1134 */ 1135 static int 1136 aio_newproc(int *start) 1137 { 1138 int error; 1139 struct proc *p; 1140 int id; 1141 1142 id = alloc_unr(aiod_unr); 1143 error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p, 1144 RFNOWAIT, 0, "aiod%d", id); 1145 if (error == 0) { 1146 /* 1147 * Wait until daemon is started. 1148 */ 1149 sema_wait(&aio_newproc_sem); 1150 mtx_lock(&aio_job_mtx); 1151 num_aio_procs++; 1152 if (start != NULL) 1153 (*start)--; 1154 mtx_unlock(&aio_job_mtx); 1155 } else { 1156 free_unr(aiod_unr, id); 1157 } 1158 return (error); 1159 } 1160 1161 /* 1162 * Try the high-performance, low-overhead physio method for eligible 1163 * VCHR devices. This method doesn't use an aio helper thread, and 1164 * thus has very low overhead. 1165 * 1166 * Assumes that the caller, aio_aqueue(), has incremented the file 1167 * structure's reference count, preventing its deallocation for the 1168 * duration of this call. 1169 */ 1170 static int 1171 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1172 { 1173 struct aiocb *cb; 1174 struct file *fp; 1175 struct buf *bp; 1176 struct vnode *vp; 1177 struct kaioinfo *ki; 1178 struct aioliojob *lj; 1179 int error; 1180 1181 cb = &aiocbe->uaiocb; 1182 fp = aiocbe->fd_file; 1183 1184 if (fp->f_type != DTYPE_VNODE) 1185 return (-1); 1186 1187 vp = fp->f_vnode; 1188 1189 /* 1190 * If its not a disk, we don't want to return a positive error. 1191 * It causes the aio code to not fall through to try the thread 1192 * way when you're talking to a regular file. 1193 */ 1194 if (!vn_isdisk(vp, &error)) { 1195 if (error == ENOTBLK) 1196 return (-1); 1197 else 1198 return (error); 1199 } 1200 1201 if (vp->v_bufobj.bo_bsize == 0) 1202 return (-1); 1203 1204 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1205 return (-1); 1206 1207 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1208 return (-1); 1209 1210 if (cb->aio_nbytes > 1211 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1212 return (-1); 1213 1214 ki = p->p_aioinfo; 1215 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1216 return (-1); 1217 1218 /* Create and build a buffer header for a transfer. */ 1219 bp = (struct buf *)getpbuf(NULL); 1220 BUF_KERNPROC(bp); 1221 1222 AIO_LOCK(ki); 1223 ki->kaio_count++; 1224 ki->kaio_buffer_count++; 1225 lj = aiocbe->lio; 1226 if (lj) 1227 lj->lioj_count++; 1228 AIO_UNLOCK(ki); 1229 1230 /* 1231 * Get a copy of the kva from the physical buffer. 1232 */ 1233 error = 0; 1234 1235 bp->b_bcount = cb->aio_nbytes; 1236 bp->b_bufsize = cb->aio_nbytes; 1237 bp->b_iodone = aio_physwakeup; 1238 bp->b_saveaddr = bp->b_data; 1239 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1240 bp->b_offset = cb->aio_offset; 1241 bp->b_iooffset = cb->aio_offset; 1242 bp->b_blkno = btodb(cb->aio_offset); 1243 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1244 1245 /* 1246 * Bring buffer into kernel space. 1247 */ 1248 if (vmapbuf(bp) < 0) { 1249 error = EFAULT; 1250 goto doerror; 1251 } 1252 1253 AIO_LOCK(ki); 1254 aiocbe->bp = bp; 1255 bp->b_caller1 = (void *)aiocbe; 1256 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1257 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1258 aiocbe->jobstate = JOBST_JOBQBUF; 1259 cb->_aiocb_private.status = cb->aio_nbytes; 1260 AIO_UNLOCK(ki); 1261 1262 atomic_add_int(&num_queue_count, 1); 1263 atomic_add_int(&num_buf_aio, 1); 1264 1265 bp->b_error = 0; 1266 1267 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1268 1269 /* Perform transfer. */ 1270 dev_strategy(vp->v_rdev, bp); 1271 return (0); 1272 1273 doerror: 1274 AIO_LOCK(ki); 1275 ki->kaio_count--; 1276 ki->kaio_buffer_count--; 1277 if (lj) 1278 lj->lioj_count--; 1279 aiocbe->bp = NULL; 1280 AIO_UNLOCK(ki); 1281 relpbuf(bp, NULL); 1282 return (error); 1283 } 1284 1285 /* 1286 * Wake up aio requests that may be serviceable now. 1287 */ 1288 static void 1289 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1290 { 1291 struct aiocblist *cb, *cbn; 1292 int opcode; 1293 1294 if (sb == &so->so_snd) 1295 opcode = LIO_WRITE; 1296 else 1297 opcode = LIO_READ; 1298 1299 SOCKBUF_LOCK(sb); 1300 sb->sb_flags &= ~SB_AIO; 1301 mtx_lock(&aio_job_mtx); 1302 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1303 if (opcode == cb->uaiocb.aio_lio_opcode) { 1304 if (cb->jobstate != JOBST_JOBQSOCK) 1305 panic("invalid queue value"); 1306 /* XXX 1307 * We don't have actual sockets backend yet, 1308 * so we simply move the requests to the generic 1309 * file I/O backend. 1310 */ 1311 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1312 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1313 aio_kick_nowait(cb->userproc); 1314 } 1315 } 1316 mtx_unlock(&aio_job_mtx); 1317 SOCKBUF_UNLOCK(sb); 1318 } 1319 1320 /* 1321 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1322 * technique is done in this code. 1323 */ 1324 static int 1325 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1326 int type, int oldsigev) 1327 { 1328 struct proc *p = td->td_proc; 1329 struct file *fp; 1330 struct socket *so; 1331 struct aiocblist *aiocbe, *cb; 1332 struct kaioinfo *ki; 1333 struct kevent kev; 1334 struct kqueue *kq; 1335 struct file *kq_fp; 1336 struct sockbuf *sb; 1337 int opcode; 1338 int error; 1339 int fd; 1340 int jid; 1341 1342 if (p->p_aioinfo == NULL) 1343 aio_init_aioinfo(p); 1344 1345 ki = p->p_aioinfo; 1346 1347 suword(&job->_aiocb_private.status, -1); 1348 suword(&job->_aiocb_private.error, 0); 1349 suword(&job->_aiocb_private.kernelinfo, -1); 1350 1351 if (num_queue_count >= max_queue_count || 1352 ki->kaio_count >= ki->kaio_qallowed_count) { 1353 suword(&job->_aiocb_private.error, EAGAIN); 1354 return (EAGAIN); 1355 } 1356 1357 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1358 aiocbe->inputcharge = 0; 1359 aiocbe->outputcharge = 0; 1360 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1361 1362 if (oldsigev) { 1363 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1364 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1365 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1366 sizeof(struct osigevent)); 1367 } else { 1368 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1369 } 1370 if (error) { 1371 suword(&job->_aiocb_private.error, error); 1372 uma_zfree(aiocb_zone, aiocbe); 1373 return (error); 1374 } 1375 1376 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1377 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1378 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1379 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1380 suword(&job->_aiocb_private.error, EINVAL); 1381 uma_zfree(aiocb_zone, aiocbe); 1382 return (EINVAL); 1383 } 1384 1385 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1386 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1387 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1388 uma_zfree(aiocb_zone, aiocbe); 1389 return (EINVAL); 1390 } 1391 1392 ksiginfo_init(&aiocbe->ksi); 1393 1394 /* Save userspace address of the job info. */ 1395 aiocbe->uuaiocb = job; 1396 1397 /* Get the opcode. */ 1398 if (type != LIO_NOP) 1399 aiocbe->uaiocb.aio_lio_opcode = type; 1400 opcode = aiocbe->uaiocb.aio_lio_opcode; 1401 1402 /* Fetch the file object for the specified file descriptor. */ 1403 fd = aiocbe->uaiocb.aio_fildes; 1404 switch (opcode) { 1405 case LIO_WRITE: 1406 error = fget_write(td, fd, &fp); 1407 break; 1408 case LIO_READ: 1409 error = fget_read(td, fd, &fp); 1410 break; 1411 default: 1412 error = fget(td, fd, &fp); 1413 } 1414 if (error) { 1415 uma_zfree(aiocb_zone, aiocbe); 1416 suword(&job->_aiocb_private.error, error); 1417 return (error); 1418 } 1419 1420 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1421 error = EINVAL; 1422 goto aqueue_fail; 1423 } 1424 1425 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1426 error = EINVAL; 1427 goto aqueue_fail; 1428 } 1429 1430 aiocbe->fd_file = fp; 1431 1432 mtx_lock(&aio_job_mtx); 1433 jid = jobrefid++; 1434 aiocbe->seqno = jobseqno++; 1435 mtx_unlock(&aio_job_mtx); 1436 error = suword(&job->_aiocb_private.kernelinfo, jid); 1437 if (error) { 1438 error = EINVAL; 1439 goto aqueue_fail; 1440 } 1441 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1442 1443 if (opcode == LIO_NOP) { 1444 fdrop(fp, td); 1445 uma_zfree(aiocb_zone, aiocbe); 1446 return (0); 1447 } 1448 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1449 (opcode != LIO_SYNC)) { 1450 error = EINVAL; 1451 goto aqueue_fail; 1452 } 1453 1454 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) 1455 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1456 else 1457 goto no_kqueue; 1458 error = fget(td, (u_int)kev.ident, &kq_fp); 1459 if (error) 1460 goto aqueue_fail; 1461 if (kq_fp->f_type != DTYPE_KQUEUE) { 1462 fdrop(kq_fp, td); 1463 error = EBADF; 1464 goto aqueue_fail; 1465 } 1466 kq = kq_fp->f_data; 1467 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1468 kev.filter = EVFILT_AIO; 1469 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1470 kev.data = (intptr_t)aiocbe; 1471 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1472 error = kqueue_register(kq, &kev, td, 1); 1473 fdrop(kq_fp, td); 1474 aqueue_fail: 1475 if (error) { 1476 fdrop(fp, td); 1477 uma_zfree(aiocb_zone, aiocbe); 1478 suword(&job->_aiocb_private.error, error); 1479 goto done; 1480 } 1481 no_kqueue: 1482 1483 suword(&job->_aiocb_private.error, EINPROGRESS); 1484 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1485 aiocbe->userproc = p; 1486 aiocbe->cred = crhold(td->td_ucred); 1487 aiocbe->jobflags = 0; 1488 aiocbe->lio = lj; 1489 1490 if (opcode == LIO_SYNC) 1491 goto queueit; 1492 1493 if (fp->f_type == DTYPE_SOCKET) { 1494 /* 1495 * Alternate queueing for socket ops: Reach down into the 1496 * descriptor to get the socket data. Then check to see if the 1497 * socket is ready to be read or written (based on the requested 1498 * operation). 1499 * 1500 * If it is not ready for io, then queue the aiocbe on the 1501 * socket, and set the flags so we get a call when sbnotify() 1502 * happens. 1503 * 1504 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1505 * and unlock the snd sockbuf for no reason. 1506 */ 1507 so = fp->f_data; 1508 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1509 SOCKBUF_LOCK(sb); 1510 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1511 LIO_WRITE) && (!sowriteable(so)))) { 1512 sb->sb_flags |= SB_AIO; 1513 1514 mtx_lock(&aio_job_mtx); 1515 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1516 mtx_unlock(&aio_job_mtx); 1517 1518 AIO_LOCK(ki); 1519 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1520 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1521 aiocbe->jobstate = JOBST_JOBQSOCK; 1522 ki->kaio_count++; 1523 if (lj) 1524 lj->lioj_count++; 1525 AIO_UNLOCK(ki); 1526 SOCKBUF_UNLOCK(sb); 1527 atomic_add_int(&num_queue_count, 1); 1528 error = 0; 1529 goto done; 1530 } 1531 SOCKBUF_UNLOCK(sb); 1532 } 1533 1534 if ((error = aio_qphysio(p, aiocbe)) == 0) 1535 goto done; 1536 #if 0 1537 if (error > 0) { 1538 aiocbe->uaiocb._aiocb_private.error = error; 1539 suword(&job->_aiocb_private.error, error); 1540 goto done; 1541 } 1542 #endif 1543 queueit: 1544 /* No buffer for daemon I/O. */ 1545 aiocbe->bp = NULL; 1546 atomic_add_int(&num_queue_count, 1); 1547 1548 AIO_LOCK(ki); 1549 ki->kaio_count++; 1550 if (lj) 1551 lj->lioj_count++; 1552 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1553 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1554 if (opcode == LIO_SYNC) { 1555 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1556 if (cb->fd_file == aiocbe->fd_file && 1557 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1558 cb->seqno < aiocbe->seqno) { 1559 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1560 aiocbe->pending++; 1561 } 1562 } 1563 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1564 if (cb->fd_file == aiocbe->fd_file && 1565 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1566 cb->seqno < aiocbe->seqno) { 1567 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1568 aiocbe->pending++; 1569 } 1570 } 1571 if (aiocbe->pending != 0) { 1572 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1573 aiocbe->jobstate = JOBST_JOBQSYNC; 1574 AIO_UNLOCK(ki); 1575 goto done; 1576 } 1577 } 1578 mtx_lock(&aio_job_mtx); 1579 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1580 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1581 aio_kick_nowait(p); 1582 mtx_unlock(&aio_job_mtx); 1583 AIO_UNLOCK(ki); 1584 error = 0; 1585 done: 1586 return (error); 1587 } 1588 1589 static void 1590 aio_kick_nowait(struct proc *userp) 1591 { 1592 struct kaioinfo *ki = userp->p_aioinfo; 1593 struct aiothreadlist *aiop; 1594 1595 mtx_assert(&aio_job_mtx, MA_OWNED); 1596 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1597 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1598 aiop->aiothreadflags &= ~AIOP_FREE; 1599 wakeup(aiop->aiothread); 1600 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1601 ((ki->kaio_active_count + num_aio_resv_start) < 1602 ki->kaio_maxactive_count)) { 1603 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1604 } 1605 } 1606 1607 static int 1608 aio_kick(struct proc *userp) 1609 { 1610 struct kaioinfo *ki = userp->p_aioinfo; 1611 struct aiothreadlist *aiop; 1612 int error, ret = 0; 1613 1614 mtx_assert(&aio_job_mtx, MA_OWNED); 1615 retryproc: 1616 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1617 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1618 aiop->aiothreadflags &= ~AIOP_FREE; 1619 wakeup(aiop->aiothread); 1620 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1621 ((ki->kaio_active_count + num_aio_resv_start) < 1622 ki->kaio_maxactive_count)) { 1623 num_aio_resv_start++; 1624 mtx_unlock(&aio_job_mtx); 1625 error = aio_newproc(&num_aio_resv_start); 1626 mtx_lock(&aio_job_mtx); 1627 if (error) { 1628 num_aio_resv_start--; 1629 goto retryproc; 1630 } 1631 } else { 1632 ret = -1; 1633 } 1634 return (ret); 1635 } 1636 1637 static void 1638 aio_kick_helper(void *context, int pending) 1639 { 1640 struct proc *userp = context; 1641 1642 mtx_lock(&aio_job_mtx); 1643 while (--pending >= 0) { 1644 if (aio_kick(userp)) 1645 break; 1646 } 1647 mtx_unlock(&aio_job_mtx); 1648 } 1649 1650 /* 1651 * Support the aio_return system call, as a side-effect, kernel resources are 1652 * released. 1653 */ 1654 int 1655 aio_return(struct thread *td, struct aio_return_args *uap) 1656 { 1657 struct proc *p = td->td_proc; 1658 struct aiocblist *cb; 1659 struct aiocb *uaiocb; 1660 struct kaioinfo *ki; 1661 int status, error; 1662 1663 ki = p->p_aioinfo; 1664 if (ki == NULL) 1665 return (EINVAL); 1666 uaiocb = uap->aiocbp; 1667 AIO_LOCK(ki); 1668 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1669 if (cb->uuaiocb == uaiocb) 1670 break; 1671 } 1672 if (cb != NULL) { 1673 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1674 status = cb->uaiocb._aiocb_private.status; 1675 error = cb->uaiocb._aiocb_private.error; 1676 td->td_retval[0] = status; 1677 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1678 p->p_stats->p_ru.ru_oublock += 1679 cb->outputcharge; 1680 cb->outputcharge = 0; 1681 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1682 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1683 cb->inputcharge = 0; 1684 } 1685 aio_free_entry(cb); 1686 AIO_UNLOCK(ki); 1687 suword(&uaiocb->_aiocb_private.error, error); 1688 suword(&uaiocb->_aiocb_private.status, status); 1689 } else { 1690 error = EINVAL; 1691 AIO_UNLOCK(ki); 1692 } 1693 return (error); 1694 } 1695 1696 /* 1697 * Allow a process to wakeup when any of the I/O requests are completed. 1698 */ 1699 int 1700 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1701 { 1702 struct proc *p = td->td_proc; 1703 struct timeval atv; 1704 struct timespec ts; 1705 struct aiocb *const *cbptr, *cbp; 1706 struct kaioinfo *ki; 1707 struct aiocblist *cb, *cbfirst; 1708 struct aiocb **ujoblist; 1709 int njoblist; 1710 int error; 1711 int timo; 1712 int i; 1713 1714 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1715 return (EINVAL); 1716 1717 timo = 0; 1718 if (uap->timeout) { 1719 /* Get timespec struct. */ 1720 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1721 return (error); 1722 1723 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1724 return (EINVAL); 1725 1726 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1727 if (itimerfix(&atv)) 1728 return (EINVAL); 1729 timo = tvtohz(&atv); 1730 } 1731 1732 ki = p->p_aioinfo; 1733 if (ki == NULL) 1734 return (EAGAIN); 1735 1736 njoblist = 0; 1737 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1738 cbptr = uap->aiocbp; 1739 1740 for (i = 0; i < uap->nent; i++) { 1741 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1742 if (cbp == 0) 1743 continue; 1744 ujoblist[njoblist] = cbp; 1745 njoblist++; 1746 } 1747 1748 if (njoblist == 0) { 1749 uma_zfree(aiol_zone, ujoblist); 1750 return (0); 1751 } 1752 1753 AIO_LOCK(ki); 1754 for (;;) { 1755 cbfirst = NULL; 1756 error = 0; 1757 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1758 for (i = 0; i < njoblist; i++) { 1759 if (cb->uuaiocb == ujoblist[i]) { 1760 if (cbfirst == NULL) 1761 cbfirst = cb; 1762 if (cb->jobstate == JOBST_JOBFINISHED) 1763 goto RETURN; 1764 } 1765 } 1766 } 1767 /* All tasks were finished. */ 1768 if (cbfirst == NULL) 1769 break; 1770 1771 ki->kaio_flags |= KAIO_WAKEUP; 1772 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1773 "aiospn", timo); 1774 if (error == ERESTART) 1775 error = EINTR; 1776 if (error) 1777 break; 1778 } 1779 RETURN: 1780 AIO_UNLOCK(ki); 1781 uma_zfree(aiol_zone, ujoblist); 1782 return (error); 1783 } 1784 1785 /* 1786 * aio_cancel cancels any non-physio aio operations not currently in 1787 * progress. 1788 */ 1789 int 1790 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1791 { 1792 struct proc *p = td->td_proc; 1793 struct kaioinfo *ki; 1794 struct aiocblist *cbe, *cbn; 1795 struct file *fp; 1796 struct socket *so; 1797 int error; 1798 int remove; 1799 int cancelled = 0; 1800 int notcancelled = 0; 1801 struct vnode *vp; 1802 1803 /* Lookup file object. */ 1804 error = fget(td, uap->fd, &fp); 1805 if (error) 1806 return (error); 1807 1808 ki = p->p_aioinfo; 1809 if (ki == NULL) 1810 goto done; 1811 1812 if (fp->f_type == DTYPE_VNODE) { 1813 vp = fp->f_vnode; 1814 if (vn_isdisk(vp, &error)) { 1815 fdrop(fp, td); 1816 td->td_retval[0] = AIO_NOTCANCELED; 1817 return (0); 1818 } 1819 } 1820 1821 AIO_LOCK(ki); 1822 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1823 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1824 ((uap->aiocbp == NULL) || 1825 (uap->aiocbp == cbe->uuaiocb))) { 1826 remove = 0; 1827 1828 mtx_lock(&aio_job_mtx); 1829 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1830 TAILQ_REMOVE(&aio_jobs, cbe, list); 1831 remove = 1; 1832 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1833 MPASS(fp->f_type == DTYPE_SOCKET); 1834 so = fp->f_data; 1835 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1836 remove = 1; 1837 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1838 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1839 remove = 1; 1840 } 1841 mtx_unlock(&aio_job_mtx); 1842 1843 if (remove) { 1844 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1845 cbe->uaiocb._aiocb_private.status = -1; 1846 cbe->uaiocb._aiocb_private.error = ECANCELED; 1847 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1848 cancelled++; 1849 } else { 1850 notcancelled++; 1851 } 1852 if (uap->aiocbp != NULL) 1853 break; 1854 } 1855 } 1856 AIO_UNLOCK(ki); 1857 1858 done: 1859 fdrop(fp, td); 1860 1861 if (uap->aiocbp != NULL) { 1862 if (cancelled) { 1863 td->td_retval[0] = AIO_CANCELED; 1864 return (0); 1865 } 1866 } 1867 1868 if (notcancelled) { 1869 td->td_retval[0] = AIO_NOTCANCELED; 1870 return (0); 1871 } 1872 1873 if (cancelled) { 1874 td->td_retval[0] = AIO_CANCELED; 1875 return (0); 1876 } 1877 1878 td->td_retval[0] = AIO_ALLDONE; 1879 1880 return (0); 1881 } 1882 1883 /* 1884 * aio_error is implemented in the kernel level for compatibility purposes only. 1885 * For a user mode async implementation, it would be best to do it in a userland 1886 * subroutine. 1887 */ 1888 int 1889 aio_error(struct thread *td, struct aio_error_args *uap) 1890 { 1891 struct proc *p = td->td_proc; 1892 struct aiocblist *cb; 1893 struct kaioinfo *ki; 1894 int status; 1895 1896 ki = p->p_aioinfo; 1897 if (ki == NULL) { 1898 td->td_retval[0] = EINVAL; 1899 return (0); 1900 } 1901 1902 AIO_LOCK(ki); 1903 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1904 if (cb->uuaiocb == uap->aiocbp) { 1905 if (cb->jobstate == JOBST_JOBFINISHED) 1906 td->td_retval[0] = 1907 cb->uaiocb._aiocb_private.error; 1908 else 1909 td->td_retval[0] = EINPROGRESS; 1910 AIO_UNLOCK(ki); 1911 return (0); 1912 } 1913 } 1914 AIO_UNLOCK(ki); 1915 1916 /* 1917 * Hack for failure of aio_aqueue. 1918 */ 1919 status = fuword(&uap->aiocbp->_aiocb_private.status); 1920 if (status == -1) { 1921 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1922 return (0); 1923 } 1924 1925 td->td_retval[0] = EINVAL; 1926 return (0); 1927 } 1928 1929 /* syscall - asynchronous read from a file (REALTIME) */ 1930 int 1931 oaio_read(struct thread *td, struct oaio_read_args *uap) 1932 { 1933 1934 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1935 } 1936 1937 int 1938 aio_read(struct thread *td, struct aio_read_args *uap) 1939 { 1940 1941 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1942 } 1943 1944 /* syscall - asynchronous write to a file (REALTIME) */ 1945 int 1946 oaio_write(struct thread *td, struct oaio_write_args *uap) 1947 { 1948 1949 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1950 } 1951 1952 int 1953 aio_write(struct thread *td, struct aio_write_args *uap) 1954 { 1955 1956 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1957 } 1958 1959 /* syscall - list directed I/O (REALTIME) */ 1960 int 1961 olio_listio(struct thread *td, struct olio_listio_args *uap) 1962 { 1963 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1964 } 1965 1966 /* syscall - list directed I/O (REALTIME) */ 1967 int 1968 lio_listio(struct thread *td, struct lio_listio_args *uap) 1969 { 1970 return do_lio_listio(td, uap, 0); 1971 } 1972 1973 static int 1974 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1975 { 1976 struct proc *p = td->td_proc; 1977 struct aiocb *iocb, * const *cbptr; 1978 struct kaioinfo *ki; 1979 struct aioliojob *lj; 1980 struct kevent kev; 1981 struct kqueue * kq; 1982 struct file *kq_fp; 1983 int nent; 1984 int error; 1985 int nerror; 1986 int i; 1987 1988 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1989 return (EINVAL); 1990 1991 nent = uap->nent; 1992 if (nent < 0 || nent > AIO_LISTIO_MAX) 1993 return (EINVAL); 1994 1995 if (p->p_aioinfo == NULL) 1996 aio_init_aioinfo(p); 1997 1998 ki = p->p_aioinfo; 1999 2000 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2001 lj->lioj_flags = 0; 2002 lj->lioj_count = 0; 2003 lj->lioj_finished_count = 0; 2004 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 2005 ksiginfo_init(&lj->lioj_ksi); 2006 2007 /* 2008 * Setup signal. 2009 */ 2010 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2011 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 2012 error = copyin(uap->sig, &lj->lioj_signal, 2013 oldsigev ? sizeof(struct osigevent) : 2014 sizeof(struct sigevent)); 2015 if (error) { 2016 uma_zfree(aiolio_zone, lj); 2017 return (error); 2018 } 2019 2020 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2021 /* Assume only new style KEVENT */ 2022 error = fget(td, lj->lioj_signal.sigev_notify_kqueue, 2023 &kq_fp); 2024 if (error) { 2025 uma_zfree(aiolio_zone, lj); 2026 return (error); 2027 } 2028 if (kq_fp->f_type != DTYPE_KQUEUE) { 2029 fdrop(kq_fp, td); 2030 uma_zfree(aiolio_zone, lj); 2031 return (EBADF); 2032 } 2033 kq = (struct kqueue *)kq_fp->f_data; 2034 kev.filter = EVFILT_LIO; 2035 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2036 kev.ident = (uintptr_t)uap->acb_list; /* something unique */ 2037 kev.data = (intptr_t)lj; 2038 /* pass user defined sigval data */ 2039 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2040 error = kqueue_register(kq, &kev, td, 1); 2041 fdrop(kq_fp, td); 2042 if (error) { 2043 uma_zfree(aiolio_zone, lj); 2044 return (error); 2045 } 2046 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2047 ; 2048 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2049 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2050 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2051 uma_zfree(aiolio_zone, lj); 2052 return EINVAL; 2053 } 2054 lj->lioj_flags |= LIOJ_SIGNAL; 2055 } else { 2056 uma_zfree(aiolio_zone, lj); 2057 return EINVAL; 2058 } 2059 } 2060 2061 AIO_LOCK(ki); 2062 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2063 /* 2064 * Add extra aiocb count to avoid the lio to be freed 2065 * by other threads doing aio_waitcomplete or aio_return, 2066 * and prevent event from being sent until we have queued 2067 * all tasks. 2068 */ 2069 lj->lioj_count = 1; 2070 AIO_UNLOCK(ki); 2071 2072 /* 2073 * Get pointers to the list of I/O requests. 2074 */ 2075 nerror = 0; 2076 cbptr = uap->acb_list; 2077 for (i = 0; i < uap->nent; i++) { 2078 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2079 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2080 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2081 if (error != 0) 2082 nerror++; 2083 } 2084 } 2085 2086 error = 0; 2087 AIO_LOCK(ki); 2088 if (uap->mode == LIO_WAIT) { 2089 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2090 ki->kaio_flags |= KAIO_WAKEUP; 2091 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2092 PRIBIO | PCATCH, "aiospn", 0); 2093 if (error == ERESTART) 2094 error = EINTR; 2095 if (error) 2096 break; 2097 } 2098 } else { 2099 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2100 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2101 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2102 KNOTE_LOCKED(&lj->klist, 1); 2103 } 2104 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2105 == LIOJ_SIGNAL 2106 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2107 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2108 aio_sendsig(p, &lj->lioj_signal, 2109 &lj->lioj_ksi); 2110 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2111 } 2112 } 2113 } 2114 lj->lioj_count--; 2115 if (lj->lioj_count == 0) { 2116 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2117 knlist_delete(&lj->klist, curthread, 1); 2118 PROC_LOCK(p); 2119 sigqueue_take(&lj->lioj_ksi); 2120 PROC_UNLOCK(p); 2121 AIO_UNLOCK(ki); 2122 uma_zfree(aiolio_zone, lj); 2123 } else 2124 AIO_UNLOCK(ki); 2125 2126 if (nerror) 2127 return (EIO); 2128 return (error); 2129 } 2130 2131 /* 2132 * Called from interrupt thread for physio, we should return as fast 2133 * as possible, so we schedule a biohelper task. 2134 */ 2135 static void 2136 aio_physwakeup(struct buf *bp) 2137 { 2138 struct aiocblist *aiocbe; 2139 2140 aiocbe = (struct aiocblist *)bp->b_caller1; 2141 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2142 } 2143 2144 /* 2145 * Task routine to perform heavy tasks, process wakeup, and signals. 2146 */ 2147 static void 2148 biohelper(void *context, int pending) 2149 { 2150 struct aiocblist *aiocbe = context; 2151 struct buf *bp; 2152 struct proc *userp; 2153 struct kaioinfo *ki; 2154 int nblks; 2155 2156 bp = aiocbe->bp; 2157 userp = aiocbe->userproc; 2158 ki = userp->p_aioinfo; 2159 AIO_LOCK(ki); 2160 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2161 aiocbe->uaiocb._aiocb_private.error = 0; 2162 if (bp->b_ioflags & BIO_ERROR) 2163 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2164 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2165 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2166 aiocbe->outputcharge += nblks; 2167 else 2168 aiocbe->inputcharge += nblks; 2169 aiocbe->bp = NULL; 2170 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2171 ki->kaio_buffer_count--; 2172 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2173 AIO_UNLOCK(ki); 2174 2175 /* Release mapping into kernel space. */ 2176 vunmapbuf(bp); 2177 relpbuf(bp, NULL); 2178 atomic_subtract_int(&num_buf_aio, 1); 2179 } 2180 2181 /* syscall - wait for the next completion of an aio request */ 2182 int 2183 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2184 { 2185 struct proc *p = td->td_proc; 2186 struct timeval atv; 2187 struct timespec ts; 2188 struct kaioinfo *ki; 2189 struct aiocblist *cb; 2190 struct aiocb *uuaiocb; 2191 int error, status, timo; 2192 2193 suword(uap->aiocbp, (long)NULL); 2194 2195 timo = 0; 2196 if (uap->timeout) { 2197 /* Get timespec struct. */ 2198 error = copyin(uap->timeout, &ts, sizeof(ts)); 2199 if (error) 2200 return (error); 2201 2202 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2203 return (EINVAL); 2204 2205 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2206 if (itimerfix(&atv)) 2207 return (EINVAL); 2208 timo = tvtohz(&atv); 2209 } 2210 2211 if (p->p_aioinfo == NULL) 2212 aio_init_aioinfo(p); 2213 ki = p->p_aioinfo; 2214 2215 error = 0; 2216 cb = NULL; 2217 AIO_LOCK(ki); 2218 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2219 ki->kaio_flags |= KAIO_WAKEUP; 2220 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2221 "aiowc", timo); 2222 if (timo && error == ERESTART) 2223 error = EINTR; 2224 if (error) 2225 break; 2226 } 2227 2228 if (cb != NULL) { 2229 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2230 uuaiocb = cb->uuaiocb; 2231 status = cb->uaiocb._aiocb_private.status; 2232 error = cb->uaiocb._aiocb_private.error; 2233 td->td_retval[0] = status; 2234 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2235 p->p_stats->p_ru.ru_oublock += cb->outputcharge; 2236 cb->outputcharge = 0; 2237 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2238 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2239 cb->inputcharge = 0; 2240 } 2241 aio_free_entry(cb); 2242 AIO_UNLOCK(ki); 2243 suword(uap->aiocbp, (long)uuaiocb); 2244 suword(&uuaiocb->_aiocb_private.error, error); 2245 suword(&uuaiocb->_aiocb_private.status, status); 2246 } else 2247 AIO_UNLOCK(ki); 2248 2249 return (error); 2250 } 2251 2252 int 2253 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2254 { 2255 struct proc *p = td->td_proc; 2256 struct kaioinfo *ki; 2257 2258 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2259 return (EINVAL); 2260 ki = p->p_aioinfo; 2261 if (ki == NULL) 2262 aio_init_aioinfo(p); 2263 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2264 } 2265 2266 /* kqueue attach function */ 2267 static int 2268 filt_aioattach(struct knote *kn) 2269 { 2270 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2271 2272 /* 2273 * The aiocbe pointer must be validated before using it, so 2274 * registration is restricted to the kernel; the user cannot 2275 * set EV_FLAG1. 2276 */ 2277 if ((kn->kn_flags & EV_FLAG1) == 0) 2278 return (EPERM); 2279 kn->kn_flags &= ~EV_FLAG1; 2280 2281 knlist_add(&aiocbe->klist, kn, 0); 2282 2283 return (0); 2284 } 2285 2286 /* kqueue detach function */ 2287 static void 2288 filt_aiodetach(struct knote *kn) 2289 { 2290 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2291 2292 if (!knlist_empty(&aiocbe->klist)) 2293 knlist_remove(&aiocbe->klist, kn, 0); 2294 } 2295 2296 /* kqueue filter function */ 2297 /*ARGSUSED*/ 2298 static int 2299 filt_aio(struct knote *kn, long hint) 2300 { 2301 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2302 2303 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2304 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2305 return (0); 2306 kn->kn_flags |= EV_EOF; 2307 return (1); 2308 } 2309 2310 /* kqueue attach function */ 2311 static int 2312 filt_lioattach(struct knote *kn) 2313 { 2314 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2315 2316 /* 2317 * The aioliojob pointer must be validated before using it, so 2318 * registration is restricted to the kernel; the user cannot 2319 * set EV_FLAG1. 2320 */ 2321 if ((kn->kn_flags & EV_FLAG1) == 0) 2322 return (EPERM); 2323 kn->kn_flags &= ~EV_FLAG1; 2324 2325 knlist_add(&lj->klist, kn, 0); 2326 2327 return (0); 2328 } 2329 2330 /* kqueue detach function */ 2331 static void 2332 filt_liodetach(struct knote *kn) 2333 { 2334 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2335 2336 if (!knlist_empty(&lj->klist)) 2337 knlist_remove(&lj->klist, kn, 0); 2338 } 2339 2340 /* kqueue filter function */ 2341 /*ARGSUSED*/ 2342 static int 2343 filt_lio(struct knote *kn, long hint) 2344 { 2345 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2346 2347 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2348 } 2349