xref: /freebsd/sys/kern/vfs_aio.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  */
16 
17 /*
18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
19  */
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 #include "opt_compat.h"
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capsicum.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/protosw.h>
49 #include <sys/rwlock.h>
50 #include <sys/sema.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syscall.h>
54 #include <sys/sysent.h>
55 #include <sys/sysctl.h>
56 #include <sys/sx.h>
57 #include <sys/taskqueue.h>
58 #include <sys/vnode.h>
59 #include <sys/conf.h>
60 #include <sys/event.h>
61 #include <sys/mount.h>
62 #include <geom/geom.h>
63 
64 #include <machine/atomic.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_extern.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_object.h>
72 #include <vm/uma.h>
73 #include <sys/aio.h>
74 
75 #include "opt_vfs_aio.h"
76 
77 /*
78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
79  * overflow. (XXX will be removed soon.)
80  */
81 static u_long jobrefid;
82 
83 /*
84  * Counter for aio_fsync.
85  */
86 static uint64_t jobseqno;
87 
88 #define JOBST_NULL		0
89 #define JOBST_JOBQSOCK		1
90 #define JOBST_JOBQGLOBAL	2
91 #define JOBST_JOBRUNNING	3
92 #define JOBST_JOBFINISHED	4
93 #define JOBST_JOBQBUF		5
94 #define JOBST_JOBQSYNC		6
95 
96 #ifndef MAX_AIO_PER_PROC
97 #define MAX_AIO_PER_PROC	32
98 #endif
99 
100 #ifndef MAX_AIO_QUEUE_PER_PROC
101 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
102 #endif
103 
104 #ifndef MAX_AIO_PROCS
105 #define MAX_AIO_PROCS		32
106 #endif
107 
108 #ifndef MAX_AIO_QUEUE
109 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
110 #endif
111 
112 #ifndef TARGET_AIO_PROCS
113 #define TARGET_AIO_PROCS	4
114 #endif
115 
116 #ifndef MAX_BUF_AIO
117 #define MAX_BUF_AIO		16
118 #endif
119 
120 #ifndef AIOD_TIMEOUT_DEFAULT
121 #define	AIOD_TIMEOUT_DEFAULT	(10 * hz)
122 #endif
123 
124 #ifndef AIOD_LIFETIME_DEFAULT
125 #define AIOD_LIFETIME_DEFAULT	(30 * hz)
126 #endif
127 
128 FEATURE(aio, "Asynchronous I/O");
129 
130 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
131 
132 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
133 
134 static int max_aio_procs = MAX_AIO_PROCS;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
136 	CTLFLAG_RW, &max_aio_procs, 0,
137 	"Maximum number of kernel threads to use for handling async IO ");
138 
139 static int num_aio_procs = 0;
140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
141 	CTLFLAG_RD, &num_aio_procs, 0,
142 	"Number of presently active kernel threads for async IO");
143 
144 /*
145  * The code will adjust the actual number of AIO processes towards this
146  * number when it gets a chance.
147  */
148 static int target_aio_procs = TARGET_AIO_PROCS;
149 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
150 	0, "Preferred number of ready kernel threads for async IO");
151 
152 static int max_queue_count = MAX_AIO_QUEUE;
153 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
154     "Maximum number of aio requests to queue, globally");
155 
156 static int num_queue_count = 0;
157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
158     "Number of queued aio requests");
159 
160 static int num_buf_aio = 0;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
162     "Number of aio requests presently handled by the buf subsystem");
163 
164 /* Number of async I/O thread in the process of being started */
165 /* XXX This should be local to aio_aqueue() */
166 static int num_aio_resv_start = 0;
167 
168 static int aiod_timeout;
169 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
170     "Timeout value for synchronous aio operations");
171 
172 static int aiod_lifetime;
173 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
174     "Maximum lifetime for idle aiod");
175 
176 static int unloadable = 0;
177 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
178     "Allow unload of aio (not recommended)");
179 
180 
181 static int max_aio_per_proc = MAX_AIO_PER_PROC;
182 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
183     0, "Maximum active aio requests per process (stored in the process)");
184 
185 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
186 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
187     &max_aio_queue_per_proc, 0,
188     "Maximum queued aio requests per process (stored in the process)");
189 
190 static int max_buf_aio = MAX_BUF_AIO;
191 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
192     "Maximum buf aio requests per process (stored in the process)");
193 
194 typedef struct oaiocb {
195 	int	aio_fildes;		/* File descriptor */
196 	off_t	aio_offset;		/* File offset for I/O */
197 	volatile void *aio_buf;         /* I/O buffer in process space */
198 	size_t	aio_nbytes;		/* Number of bytes for I/O */
199 	struct	osigevent aio_sigevent;	/* Signal to deliver */
200 	int	aio_lio_opcode;		/* LIO opcode */
201 	int	aio_reqprio;		/* Request priority -- ignored */
202 	struct	__aiocb_private	_aiocb_private;
203 } oaiocb_t;
204 
205 /*
206  * Below is a key of locks used to protect each member of struct aiocblist
207  * aioliojob and kaioinfo and any backends.
208  *
209  * * - need not protected
210  * a - locked by kaioinfo lock
211  * b - locked by backend lock, the backend lock can be null in some cases,
212  *     for example, BIO belongs to this type, in this case, proc lock is
213  *     reused.
214  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
215  */
216 
217 /*
218  * Current, there is only two backends: BIO and generic file I/O.
219  * socket I/O is served by generic file I/O, this is not a good idea, since
220  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
221  * threads, if there is no thread to serve socket I/O, the socket I/O will be
222  * delayed too long or starved, we should create some threads dedicated to
223  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
224  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
225  * structure is not safe because there is race between userland and aio
226  * daemons.
227  */
228 
229 struct aiocblist {
230 	TAILQ_ENTRY(aiocblist) list;	/* (b) internal list of for backend */
231 	TAILQ_ENTRY(aiocblist) plist;	/* (a) list of jobs for each backend */
232 	TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
233 	int	jobflags;		/* (a) job flags */
234 	int	jobstate;		/* (b) job state */
235 	int	inputcharge;		/* (*) input blockes */
236 	int	outputcharge;		/* (*) output blockes */
237 	struct	bio *bp;		/* (*) BIO backend BIO pointer */
238 	struct	buf *pbuf;		/* (*) BIO backend buffer pointer */
239 	struct	vm_page *pages[btoc(MAXPHYS)+1]; /* BIO backend pages */
240 	int	npages;			/* BIO backend number of pages */
241 	struct	proc *userproc;		/* (*) user process */
242 	struct  ucred *cred;		/* (*) active credential when created */
243 	struct	file *fd_file;		/* (*) pointer to file structure */
244 	struct	aioliojob *lio;		/* (*) optional lio job */
245 	struct	aiocb *uuaiocb;		/* (*) pointer in userspace of aiocb */
246 	struct	knlist klist;		/* (a) list of knotes */
247 	struct	aiocb uaiocb;		/* (*) kernel I/O control block */
248 	ksiginfo_t ksi;			/* (a) realtime signal info */
249 	uint64_t seqno;			/* (*) job number */
250 	int	pending;		/* (a) number of pending I/O, aio_fsync only */
251 };
252 
253 /* jobflags */
254 #define AIOCBLIST_DONE		0x01
255 #define AIOCBLIST_BUFDONE	0x02
256 #define AIOCBLIST_RUNDOWN	0x04
257 #define AIOCBLIST_CHECKSYNC	0x08
258 
259 /*
260  * AIO process info
261  */
262 #define AIOP_FREE	0x1			/* proc on free queue */
263 
264 struct aiothreadlist {
265 	int aiothreadflags;			/* (c) AIO proc flags */
266 	TAILQ_ENTRY(aiothreadlist) list;	/* (c) list of processes */
267 	struct thread *aiothread;		/* (*) the AIO thread */
268 };
269 
270 /*
271  * data-structure for lio signal management
272  */
273 struct aioliojob {
274 	int	lioj_flags;			/* (a) listio flags */
275 	int	lioj_count;			/* (a) listio flags */
276 	int	lioj_finished_count;		/* (a) listio flags */
277 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
278 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
279 	struct  knlist klist;			/* (a) list of knotes */
280 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
281 };
282 
283 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
284 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
285 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
286 
287 /*
288  * per process aio data structure
289  */
290 struct kaioinfo {
291 	struct mtx	kaio_mtx;	/* the lock to protect this struct */
292 	int	kaio_flags;		/* (a) per process kaio flags */
293 	int	kaio_maxactive_count;	/* (*) maximum number of AIOs */
294 	int	kaio_active_count;	/* (c) number of currently used AIOs */
295 	int	kaio_qallowed_count;	/* (*) maxiumu size of AIO queue */
296 	int	kaio_count;		/* (a) size of AIO queue */
297 	int	kaio_ballowed_count;	/* (*) maximum number of buffers */
298 	int	kaio_buffer_count;	/* (a) number of physio buffers */
299 	TAILQ_HEAD(,aiocblist) kaio_all;	/* (a) all AIOs in the process */
300 	TAILQ_HEAD(,aiocblist) kaio_done;	/* (a) done queue for process */
301 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
302 	TAILQ_HEAD(,aiocblist) kaio_jobqueue;	/* (a) job queue for process */
303 	TAILQ_HEAD(,aiocblist) kaio_bufqueue;	/* (a) buffer job queue for process */
304 	TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
305 						 *  NOT USED YET.
306 						 */
307 	TAILQ_HEAD(,aiocblist) kaio_syncqueue;	/* (a) queue for aio_fsync */
308 	struct	task	kaio_task;	/* (*) task to kick aio threads */
309 };
310 
311 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
312 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
313 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
314 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
315 
316 #define KAIO_RUNDOWN	0x1	/* process is being run down */
317 #define KAIO_WAKEUP	0x2	/* wakeup process when there is a significant event */
318 
319 /*
320  * Operations used to interact with userland aio control blocks.
321  * Different ABIs provide their own operations.
322  */
323 struct aiocb_ops {
324 	int	(*copyin)(struct aiocb *ujob, struct aiocb *kjob);
325 	long	(*fetch_status)(struct aiocb *ujob);
326 	long	(*fetch_error)(struct aiocb *ujob);
327 	int	(*store_status)(struct aiocb *ujob, long status);
328 	int	(*store_error)(struct aiocb *ujob, long error);
329 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
330 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
331 };
332 
333 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;		/* (c) Idle daemons */
334 static struct sema aio_newproc_sem;
335 static struct mtx aio_job_mtx;
336 static struct mtx aio_sock_mtx;
337 static TAILQ_HEAD(,aiocblist) aio_jobs;			/* (c) Async job list */
338 static struct unrhdr *aiod_unr;
339 
340 void		aio_init_aioinfo(struct proc *p);
341 static int	aio_onceonly(void);
342 static int	aio_free_entry(struct aiocblist *aiocbe);
343 static void	aio_process_rw(struct aiocblist *aiocbe);
344 static void	aio_process_sync(struct aiocblist *aiocbe);
345 static void	aio_process_mlock(struct aiocblist *aiocbe);
346 static int	aio_newproc(int *);
347 int		aio_aqueue(struct thread *td, struct aiocb *job,
348 			struct aioliojob *lio, int type, struct aiocb_ops *ops);
349 static void	aio_physwakeup(struct bio *bp);
350 static void	aio_proc_rundown(void *arg, struct proc *p);
351 static void	aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
352 static int	aio_qphysio(struct proc *p, struct aiocblist *iocb);
353 static void	aio_daemon(void *param);
354 static void	aio_swake_cb(struct socket *, struct sockbuf *);
355 static int	aio_unload(void);
356 static void	aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
357 #define DONE_BUF	1
358 #define DONE_QUEUE	2
359 static int	aio_kick(struct proc *userp);
360 static void	aio_kick_nowait(struct proc *userp);
361 static void	aio_kick_helper(void *context, int pending);
362 static int	filt_aioattach(struct knote *kn);
363 static void	filt_aiodetach(struct knote *kn);
364 static int	filt_aio(struct knote *kn, long hint);
365 static int	filt_lioattach(struct knote *kn);
366 static void	filt_liodetach(struct knote *kn);
367 static int	filt_lio(struct knote *kn, long hint);
368 
369 /*
370  * Zones for:
371  * 	kaio	Per process async io info
372  *	aiop	async io thread data
373  *	aiocb	async io jobs
374  *	aiol	list io job pointer - internal to aio_suspend XXX
375  *	aiolio	list io jobs
376  */
377 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
378 
379 /* kqueue filters for aio */
380 static struct filterops aio_filtops = {
381 	.f_isfd = 0,
382 	.f_attach = filt_aioattach,
383 	.f_detach = filt_aiodetach,
384 	.f_event = filt_aio,
385 };
386 static struct filterops lio_filtops = {
387 	.f_isfd = 0,
388 	.f_attach = filt_lioattach,
389 	.f_detach = filt_liodetach,
390 	.f_event = filt_lio
391 };
392 
393 static eventhandler_tag exit_tag, exec_tag;
394 
395 TASKQUEUE_DEFINE_THREAD(aiod_bio);
396 
397 /*
398  * Main operations function for use as a kernel module.
399  */
400 static int
401 aio_modload(struct module *module, int cmd, void *arg)
402 {
403 	int error = 0;
404 
405 	switch (cmd) {
406 	case MOD_LOAD:
407 		aio_onceonly();
408 		break;
409 	case MOD_UNLOAD:
410 		error = aio_unload();
411 		break;
412 	case MOD_SHUTDOWN:
413 		break;
414 	default:
415 		error = EINVAL;
416 		break;
417 	}
418 	return (error);
419 }
420 
421 static moduledata_t aio_mod = {
422 	"aio",
423 	&aio_modload,
424 	NULL
425 };
426 
427 static struct syscall_helper_data aio_syscalls[] = {
428 	SYSCALL_INIT_HELPER(aio_cancel),
429 	SYSCALL_INIT_HELPER(aio_error),
430 	SYSCALL_INIT_HELPER(aio_fsync),
431 	SYSCALL_INIT_HELPER(aio_mlock),
432 	SYSCALL_INIT_HELPER(aio_read),
433 	SYSCALL_INIT_HELPER(aio_return),
434 	SYSCALL_INIT_HELPER(aio_suspend),
435 	SYSCALL_INIT_HELPER(aio_waitcomplete),
436 	SYSCALL_INIT_HELPER(aio_write),
437 	SYSCALL_INIT_HELPER(lio_listio),
438 	SYSCALL_INIT_HELPER(oaio_read),
439 	SYSCALL_INIT_HELPER(oaio_write),
440 	SYSCALL_INIT_HELPER(olio_listio),
441 	SYSCALL_INIT_LAST
442 };
443 
444 #ifdef COMPAT_FREEBSD32
445 #include <sys/mount.h>
446 #include <sys/socket.h>
447 #include <compat/freebsd32/freebsd32.h>
448 #include <compat/freebsd32/freebsd32_proto.h>
449 #include <compat/freebsd32/freebsd32_signal.h>
450 #include <compat/freebsd32/freebsd32_syscall.h>
451 #include <compat/freebsd32/freebsd32_util.h>
452 
453 static struct syscall_helper_data aio32_syscalls[] = {
454 	SYSCALL32_INIT_HELPER(freebsd32_aio_return),
455 	SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
456 	SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
457 	SYSCALL32_INIT_HELPER(freebsd32_aio_error),
458 	SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
459 	SYSCALL32_INIT_HELPER(freebsd32_aio_mlock),
460 	SYSCALL32_INIT_HELPER(freebsd32_aio_read),
461 	SYSCALL32_INIT_HELPER(freebsd32_aio_write),
462 	SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
463 	SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
464 	SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
465 	SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
466 	SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
467 	SYSCALL_INIT_LAST
468 };
469 #endif
470 
471 DECLARE_MODULE(aio, aio_mod,
472 	SI_SUB_VFS, SI_ORDER_ANY);
473 MODULE_VERSION(aio, 1);
474 
475 /*
476  * Startup initialization
477  */
478 static int
479 aio_onceonly(void)
480 {
481 	int error;
482 
483 	/* XXX: should probably just use so->callback */
484 	aio_swake = &aio_swake_cb;
485 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
486 	    EVENTHANDLER_PRI_ANY);
487 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
488 	    EVENTHANDLER_PRI_ANY);
489 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
490 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
491 	TAILQ_INIT(&aio_freeproc);
492 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
493 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
494 	mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
495 	TAILQ_INIT(&aio_jobs);
496 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
497 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
498 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
499 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
500 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
501 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
502 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
503 	aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
504 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
505 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
506 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
507 	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
508 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
509 	jobrefid = 1;
510 	async_io_version = _POSIX_VERSION;
511 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
512 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
513 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
514 
515 	error = syscall_helper_register(aio_syscalls, SY_THR_STATIC_KLD);
516 	if (error)
517 		return (error);
518 #ifdef COMPAT_FREEBSD32
519 	error = syscall32_helper_register(aio32_syscalls, SY_THR_STATIC_KLD);
520 	if (error)
521 		return (error);
522 #endif
523 	return (0);
524 }
525 
526 /*
527  * Callback for unload of AIO when used as a module.
528  */
529 static int
530 aio_unload(void)
531 {
532 	int error;
533 
534 	/*
535 	 * XXX: no unloads by default, it's too dangerous.
536 	 * perhaps we could do it if locked out callers and then
537 	 * did an aio_proc_rundown() on each process.
538 	 *
539 	 * jhb: aio_proc_rundown() needs to run on curproc though,
540 	 * so I don't think that would fly.
541 	 */
542 	if (!unloadable)
543 		return (EOPNOTSUPP);
544 
545 #ifdef COMPAT_FREEBSD32
546 	syscall32_helper_unregister(aio32_syscalls);
547 #endif
548 	syscall_helper_unregister(aio_syscalls);
549 
550 	error = kqueue_del_filteropts(EVFILT_AIO);
551 	if (error)
552 		return error;
553 	error = kqueue_del_filteropts(EVFILT_LIO);
554 	if (error)
555 		return error;
556 	async_io_version = 0;
557 	aio_swake = NULL;
558 	taskqueue_free(taskqueue_aiod_bio);
559 	delete_unrhdr(aiod_unr);
560 	uma_zdestroy(kaio_zone);
561 	uma_zdestroy(aiop_zone);
562 	uma_zdestroy(aiocb_zone);
563 	uma_zdestroy(aiol_zone);
564 	uma_zdestroy(aiolio_zone);
565 	EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
566 	EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
567 	mtx_destroy(&aio_job_mtx);
568 	mtx_destroy(&aio_sock_mtx);
569 	sema_destroy(&aio_newproc_sem);
570 	p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
571 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
572 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
573 	return (0);
574 }
575 
576 /*
577  * Init the per-process aioinfo structure.  The aioinfo limits are set
578  * per-process for user limit (resource) management.
579  */
580 void
581 aio_init_aioinfo(struct proc *p)
582 {
583 	struct kaioinfo *ki;
584 
585 	ki = uma_zalloc(kaio_zone, M_WAITOK);
586 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
587 	ki->kaio_flags = 0;
588 	ki->kaio_maxactive_count = max_aio_per_proc;
589 	ki->kaio_active_count = 0;
590 	ki->kaio_qallowed_count = max_aio_queue_per_proc;
591 	ki->kaio_count = 0;
592 	ki->kaio_ballowed_count = max_buf_aio;
593 	ki->kaio_buffer_count = 0;
594 	TAILQ_INIT(&ki->kaio_all);
595 	TAILQ_INIT(&ki->kaio_done);
596 	TAILQ_INIT(&ki->kaio_jobqueue);
597 	TAILQ_INIT(&ki->kaio_bufqueue);
598 	TAILQ_INIT(&ki->kaio_liojoblist);
599 	TAILQ_INIT(&ki->kaio_sockqueue);
600 	TAILQ_INIT(&ki->kaio_syncqueue);
601 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
602 	PROC_LOCK(p);
603 	if (p->p_aioinfo == NULL) {
604 		p->p_aioinfo = ki;
605 		PROC_UNLOCK(p);
606 	} else {
607 		PROC_UNLOCK(p);
608 		mtx_destroy(&ki->kaio_mtx);
609 		uma_zfree(kaio_zone, ki);
610 	}
611 
612 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
613 		aio_newproc(NULL);
614 }
615 
616 static int
617 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
618 {
619 	struct thread *td;
620 	int error;
621 
622 	error = sigev_findtd(p, sigev, &td);
623 	if (error)
624 		return (error);
625 	if (!KSI_ONQ(ksi)) {
626 		ksiginfo_set_sigev(ksi, sigev);
627 		ksi->ksi_code = SI_ASYNCIO;
628 		ksi->ksi_flags |= KSI_EXT | KSI_INS;
629 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
630 	}
631 	PROC_UNLOCK(p);
632 	return (error);
633 }
634 
635 /*
636  * Free a job entry.  Wait for completion if it is currently active, but don't
637  * delay forever.  If we delay, we return a flag that says that we have to
638  * restart the queue scan.
639  */
640 static int
641 aio_free_entry(struct aiocblist *aiocbe)
642 {
643 	struct kaioinfo *ki;
644 	struct aioliojob *lj;
645 	struct proc *p;
646 
647 	p = aiocbe->userproc;
648 	MPASS(curproc == p);
649 	ki = p->p_aioinfo;
650 	MPASS(ki != NULL);
651 
652 	AIO_LOCK_ASSERT(ki, MA_OWNED);
653 	MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
654 
655 	atomic_subtract_int(&num_queue_count, 1);
656 
657 	ki->kaio_count--;
658 	MPASS(ki->kaio_count >= 0);
659 
660 	TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
661 	TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
662 
663 	lj = aiocbe->lio;
664 	if (lj) {
665 		lj->lioj_count--;
666 		lj->lioj_finished_count--;
667 
668 		if (lj->lioj_count == 0) {
669 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
670 			/* lio is going away, we need to destroy any knotes */
671 			knlist_delete(&lj->klist, curthread, 1);
672 			PROC_LOCK(p);
673 			sigqueue_take(&lj->lioj_ksi);
674 			PROC_UNLOCK(p);
675 			uma_zfree(aiolio_zone, lj);
676 		}
677 	}
678 
679 	/* aiocbe is going away, we need to destroy any knotes */
680 	knlist_delete(&aiocbe->klist, curthread, 1);
681 	PROC_LOCK(p);
682 	sigqueue_take(&aiocbe->ksi);
683 	PROC_UNLOCK(p);
684 
685 	MPASS(aiocbe->bp == NULL);
686 	aiocbe->jobstate = JOBST_NULL;
687 	AIO_UNLOCK(ki);
688 
689 	/*
690 	 * The thread argument here is used to find the owning process
691 	 * and is also passed to fo_close() which may pass it to various
692 	 * places such as devsw close() routines.  Because of that, we
693 	 * need a thread pointer from the process owning the job that is
694 	 * persistent and won't disappear out from under us or move to
695 	 * another process.
696 	 *
697 	 * Currently, all the callers of this function call it to remove
698 	 * an aiocblist from the current process' job list either via a
699 	 * syscall or due to the current process calling exit() or
700 	 * execve().  Thus, we know that p == curproc.  We also know that
701 	 * curthread can't exit since we are curthread.
702 	 *
703 	 * Therefore, we use curthread as the thread to pass to
704 	 * knlist_delete().  This does mean that it is possible for the
705 	 * thread pointer at close time to differ from the thread pointer
706 	 * at open time, but this is already true of file descriptors in
707 	 * a multithreaded process.
708 	 */
709 	if (aiocbe->fd_file)
710 		fdrop(aiocbe->fd_file, curthread);
711 	crfree(aiocbe->cred);
712 	uma_zfree(aiocb_zone, aiocbe);
713 	AIO_LOCK(ki);
714 
715 	return (0);
716 }
717 
718 static void
719 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
720 {
721    	aio_proc_rundown(arg, p);
722 }
723 
724 /*
725  * Rundown the jobs for a given process.
726  */
727 static void
728 aio_proc_rundown(void *arg, struct proc *p)
729 {
730 	struct kaioinfo *ki;
731 	struct aioliojob *lj;
732 	struct aiocblist *cbe, *cbn;
733 	struct file *fp;
734 	struct socket *so;
735 	int remove;
736 
737 	KASSERT(curthread->td_proc == p,
738 	    ("%s: called on non-curproc", __func__));
739 	ki = p->p_aioinfo;
740 	if (ki == NULL)
741 		return;
742 
743 	AIO_LOCK(ki);
744 	ki->kaio_flags |= KAIO_RUNDOWN;
745 
746 restart:
747 
748 	/*
749 	 * Try to cancel all pending requests. This code simulates
750 	 * aio_cancel on all pending I/O requests.
751 	 */
752 	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
753 		remove = 0;
754 		mtx_lock(&aio_job_mtx);
755 		if (cbe->jobstate == JOBST_JOBQGLOBAL) {
756 			TAILQ_REMOVE(&aio_jobs, cbe, list);
757 			remove = 1;
758 		} else if (cbe->jobstate == JOBST_JOBQSOCK) {
759 			fp = cbe->fd_file;
760 			MPASS(fp->f_type == DTYPE_SOCKET);
761 			so = fp->f_data;
762 			TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
763 			remove = 1;
764 		} else if (cbe->jobstate == JOBST_JOBQSYNC) {
765 			TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
766 			remove = 1;
767 		}
768 		mtx_unlock(&aio_job_mtx);
769 
770 		if (remove) {
771 			cbe->jobstate = JOBST_JOBFINISHED;
772 			cbe->uaiocb._aiocb_private.status = -1;
773 			cbe->uaiocb._aiocb_private.error = ECANCELED;
774 			TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
775 			aio_bio_done_notify(p, cbe, DONE_QUEUE);
776 		}
777 	}
778 
779 	/* Wait for all running I/O to be finished */
780 	if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
781 	    TAILQ_FIRST(&ki->kaio_jobqueue)) {
782 		ki->kaio_flags |= KAIO_WAKEUP;
783 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
784 		goto restart;
785 	}
786 
787 	/* Free all completed I/O requests. */
788 	while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
789 		aio_free_entry(cbe);
790 
791 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
792 		if (lj->lioj_count == 0) {
793 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
794 			knlist_delete(&lj->klist, curthread, 1);
795 			PROC_LOCK(p);
796 			sigqueue_take(&lj->lioj_ksi);
797 			PROC_UNLOCK(p);
798 			uma_zfree(aiolio_zone, lj);
799 		} else {
800 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
801 			    lj->lioj_count, lj->lioj_finished_count);
802 		}
803 	}
804 	AIO_UNLOCK(ki);
805 	taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
806 	mtx_destroy(&ki->kaio_mtx);
807 	uma_zfree(kaio_zone, ki);
808 	p->p_aioinfo = NULL;
809 }
810 
811 /*
812  * Select a job to run (called by an AIO daemon).
813  */
814 static struct aiocblist *
815 aio_selectjob(struct aiothreadlist *aiop)
816 {
817 	struct aiocblist *aiocbe;
818 	struct kaioinfo *ki;
819 	struct proc *userp;
820 
821 	mtx_assert(&aio_job_mtx, MA_OWNED);
822 	TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
823 		userp = aiocbe->userproc;
824 		ki = userp->p_aioinfo;
825 
826 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
827 			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
828 			/* Account for currently active jobs. */
829 			ki->kaio_active_count++;
830 			aiocbe->jobstate = JOBST_JOBRUNNING;
831 			break;
832 		}
833 	}
834 	return (aiocbe);
835 }
836 
837 /*
838  *  Move all data to a permanent storage device, this code
839  *  simulates fsync syscall.
840  */
841 static int
842 aio_fsync_vnode(struct thread *td, struct vnode *vp)
843 {
844 	struct mount *mp;
845 	int error;
846 
847 	if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
848 		goto drop;
849 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
850 	if (vp->v_object != NULL) {
851 		VM_OBJECT_WLOCK(vp->v_object);
852 		vm_object_page_clean(vp->v_object, 0, 0, 0);
853 		VM_OBJECT_WUNLOCK(vp->v_object);
854 	}
855 	error = VOP_FSYNC(vp, MNT_WAIT, td);
856 
857 	VOP_UNLOCK(vp, 0);
858 	vn_finished_write(mp);
859 drop:
860 	return (error);
861 }
862 
863 /*
864  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
865  * does the I/O request for the non-physio version of the operations.  The
866  * normal vn operations are used, and this code should work in all instances
867  * for every type of file, including pipes, sockets, fifos, and regular files.
868  *
869  * XXX I don't think it works well for socket, pipe, and fifo.
870  */
871 static void
872 aio_process_rw(struct aiocblist *aiocbe)
873 {
874 	struct ucred *td_savedcred;
875 	struct thread *td;
876 	struct aiocb *cb;
877 	struct file *fp;
878 	struct socket *so;
879 	struct uio auio;
880 	struct iovec aiov;
881 	int cnt;
882 	int error;
883 	int oublock_st, oublock_end;
884 	int inblock_st, inblock_end;
885 
886 	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_READ ||
887 	    aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE,
888 	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
889 
890 	td = curthread;
891 	td_savedcred = td->td_ucred;
892 	td->td_ucred = aiocbe->cred;
893 	cb = &aiocbe->uaiocb;
894 	fp = aiocbe->fd_file;
895 
896 	aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
897 	aiov.iov_len = cb->aio_nbytes;
898 
899 	auio.uio_iov = &aiov;
900 	auio.uio_iovcnt = 1;
901 	auio.uio_offset = cb->aio_offset;
902 	auio.uio_resid = cb->aio_nbytes;
903 	cnt = cb->aio_nbytes;
904 	auio.uio_segflg = UIO_USERSPACE;
905 	auio.uio_td = td;
906 
907 	inblock_st = td->td_ru.ru_inblock;
908 	oublock_st = td->td_ru.ru_oublock;
909 	/*
910 	 * aio_aqueue() acquires a reference to the file that is
911 	 * released in aio_free_entry().
912 	 */
913 	if (cb->aio_lio_opcode == LIO_READ) {
914 		auio.uio_rw = UIO_READ;
915 		if (auio.uio_resid == 0)
916 			error = 0;
917 		else
918 			error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
919 	} else {
920 		if (fp->f_type == DTYPE_VNODE)
921 			bwillwrite();
922 		auio.uio_rw = UIO_WRITE;
923 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
924 	}
925 	inblock_end = td->td_ru.ru_inblock;
926 	oublock_end = td->td_ru.ru_oublock;
927 
928 	aiocbe->inputcharge = inblock_end - inblock_st;
929 	aiocbe->outputcharge = oublock_end - oublock_st;
930 
931 	if ((error) && (auio.uio_resid != cnt)) {
932 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
933 			error = 0;
934 		if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
935 			int sigpipe = 1;
936 			if (fp->f_type == DTYPE_SOCKET) {
937 				so = fp->f_data;
938 				if (so->so_options & SO_NOSIGPIPE)
939 					sigpipe = 0;
940 			}
941 			if (sigpipe) {
942 				PROC_LOCK(aiocbe->userproc);
943 				kern_psignal(aiocbe->userproc, SIGPIPE);
944 				PROC_UNLOCK(aiocbe->userproc);
945 			}
946 		}
947 	}
948 
949 	cnt -= auio.uio_resid;
950 	cb->_aiocb_private.error = error;
951 	cb->_aiocb_private.status = cnt;
952 	td->td_ucred = td_savedcred;
953 }
954 
955 static void
956 aio_process_sync(struct aiocblist *aiocbe)
957 {
958 	struct thread *td = curthread;
959 	struct ucred *td_savedcred = td->td_ucred;
960 	struct aiocb *cb = &aiocbe->uaiocb;
961 	struct file *fp = aiocbe->fd_file;
962 	int error = 0;
963 
964 	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_SYNC,
965 	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
966 
967 	td->td_ucred = aiocbe->cred;
968 	if (fp->f_vnode != NULL)
969 		error = aio_fsync_vnode(td, fp->f_vnode);
970 	cb->_aiocb_private.error = error;
971 	cb->_aiocb_private.status = 0;
972 	td->td_ucred = td_savedcred;
973 }
974 
975 static void
976 aio_process_mlock(struct aiocblist *aiocbe)
977 {
978 	struct aiocb *cb = &aiocbe->uaiocb;
979 	int error;
980 
981 	KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_MLOCK,
982 	    ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
983 
984 	error = vm_mlock(aiocbe->userproc, aiocbe->cred,
985 	    __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes);
986 	cb->_aiocb_private.error = error;
987 	cb->_aiocb_private.status = 0;
988 }
989 
990 static void
991 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
992 {
993 	struct aioliojob *lj;
994 	struct kaioinfo *ki;
995 	struct aiocblist *scb, *scbn;
996 	int lj_done;
997 
998 	ki = userp->p_aioinfo;
999 	AIO_LOCK_ASSERT(ki, MA_OWNED);
1000 	lj = aiocbe->lio;
1001 	lj_done = 0;
1002 	if (lj) {
1003 		lj->lioj_finished_count++;
1004 		if (lj->lioj_count == lj->lioj_finished_count)
1005 			lj_done = 1;
1006 	}
1007 	if (type == DONE_QUEUE) {
1008 		aiocbe->jobflags |= AIOCBLIST_DONE;
1009 	} else {
1010 		aiocbe->jobflags |= AIOCBLIST_BUFDONE;
1011 	}
1012 	TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
1013 	aiocbe->jobstate = JOBST_JOBFINISHED;
1014 
1015 	if (ki->kaio_flags & KAIO_RUNDOWN)
1016 		goto notification_done;
1017 
1018 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1019 	    aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
1020 		aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
1021 
1022 	KNOTE_LOCKED(&aiocbe->klist, 1);
1023 
1024 	if (lj_done) {
1025 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
1026 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
1027 			KNOTE_LOCKED(&lj->klist, 1);
1028 		}
1029 		if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
1030 		    == LIOJ_SIGNAL
1031 		    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
1032 		        lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
1033 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
1034 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1035 		}
1036 	}
1037 
1038 notification_done:
1039 	if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
1040 		TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
1041 			if (aiocbe->fd_file == scb->fd_file &&
1042 			    aiocbe->seqno < scb->seqno) {
1043 				if (--scb->pending == 0) {
1044 					mtx_lock(&aio_job_mtx);
1045 					scb->jobstate = JOBST_JOBQGLOBAL;
1046 					TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
1047 					TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
1048 					aio_kick_nowait(userp);
1049 					mtx_unlock(&aio_job_mtx);
1050 				}
1051 			}
1052 		}
1053 	}
1054 	if (ki->kaio_flags & KAIO_WAKEUP) {
1055 		ki->kaio_flags &= ~KAIO_WAKEUP;
1056 		wakeup(&userp->p_aioinfo);
1057 	}
1058 }
1059 
1060 /*
1061  * The AIO daemon, most of the actual work is done in aio_process_*,
1062  * but the setup (and address space mgmt) is done in this routine.
1063  */
1064 static void
1065 aio_daemon(void *_id)
1066 {
1067 	struct aiocblist *aiocbe;
1068 	struct aiothreadlist *aiop;
1069 	struct kaioinfo *ki;
1070 	struct proc *curcp, *mycp, *userp;
1071 	struct vmspace *myvm, *tmpvm;
1072 	struct thread *td = curthread;
1073 	int id = (intptr_t)_id;
1074 
1075 	/*
1076 	 * Local copies of curproc (cp) and vmspace (myvm)
1077 	 */
1078 	mycp = td->td_proc;
1079 	myvm = mycp->p_vmspace;
1080 
1081 	KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
1082 
1083 	/*
1084 	 * Allocate and ready the aio control info.  There is one aiop structure
1085 	 * per daemon.
1086 	 */
1087 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1088 	aiop->aiothread = td;
1089 	aiop->aiothreadflags = 0;
1090 
1091 	/* The daemon resides in its own pgrp. */
1092 	sys_setsid(td, NULL);
1093 
1094 	/*
1095 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1096 	 * and creating too many daemons.)
1097 	 */
1098 	sema_post(&aio_newproc_sem);
1099 
1100 	mtx_lock(&aio_job_mtx);
1101 	for (;;) {
1102 		/*
1103 		 * curcp is the current daemon process context.
1104 		 * userp is the current user process context.
1105 		 */
1106 		curcp = mycp;
1107 
1108 		/*
1109 		 * Take daemon off of free queue
1110 		 */
1111 		if (aiop->aiothreadflags & AIOP_FREE) {
1112 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1113 			aiop->aiothreadflags &= ~AIOP_FREE;
1114 		}
1115 
1116 		/*
1117 		 * Check for jobs.
1118 		 */
1119 		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
1120 			mtx_unlock(&aio_job_mtx);
1121 			userp = aiocbe->userproc;
1122 
1123 			/*
1124 			 * Connect to process address space for user program.
1125 			 */
1126 			if (userp != curcp) {
1127 				/*
1128 				 * Save the current address space that we are
1129 				 * connected to.
1130 				 */
1131 				tmpvm = mycp->p_vmspace;
1132 
1133 				/*
1134 				 * Point to the new user address space, and
1135 				 * refer to it.
1136 				 */
1137 				mycp->p_vmspace = userp->p_vmspace;
1138 				atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
1139 
1140 				/* Activate the new mapping. */
1141 				pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1142 
1143 				/*
1144 				 * If the old address space wasn't the daemons
1145 				 * own address space, then we need to remove the
1146 				 * daemon's reference from the other process
1147 				 * that it was acting on behalf of.
1148 				 */
1149 				if (tmpvm != myvm) {
1150 					vmspace_free(tmpvm);
1151 				}
1152 				curcp = userp;
1153 			}
1154 
1155 			ki = userp->p_aioinfo;
1156 
1157 			/* Do the I/O function. */
1158 			switch(aiocbe->uaiocb.aio_lio_opcode) {
1159 			case LIO_READ:
1160 			case LIO_WRITE:
1161 				aio_process_rw(aiocbe);
1162 				break;
1163 			case LIO_SYNC:
1164 				aio_process_sync(aiocbe);
1165 				break;
1166 			case LIO_MLOCK:
1167 				aio_process_mlock(aiocbe);
1168 				break;
1169 			}
1170 
1171 			mtx_lock(&aio_job_mtx);
1172 			/* Decrement the active job count. */
1173 			ki->kaio_active_count--;
1174 			mtx_unlock(&aio_job_mtx);
1175 
1176 			AIO_LOCK(ki);
1177 			TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
1178 			aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
1179 			AIO_UNLOCK(ki);
1180 
1181 			mtx_lock(&aio_job_mtx);
1182 		}
1183 
1184 		/*
1185 		 * Disconnect from user address space.
1186 		 */
1187 		if (curcp != mycp) {
1188 
1189 			mtx_unlock(&aio_job_mtx);
1190 
1191 			/* Get the user address space to disconnect from. */
1192 			tmpvm = mycp->p_vmspace;
1193 
1194 			/* Get original address space for daemon. */
1195 			mycp->p_vmspace = myvm;
1196 
1197 			/* Activate the daemon's address space. */
1198 			pmap_activate(FIRST_THREAD_IN_PROC(mycp));
1199 #ifdef DIAGNOSTIC
1200 			if (tmpvm == myvm) {
1201 				printf("AIOD: vmspace problem -- %d\n",
1202 				    mycp->p_pid);
1203 			}
1204 #endif
1205 			/* Remove our vmspace reference. */
1206 			vmspace_free(tmpvm);
1207 
1208 			curcp = mycp;
1209 
1210 			mtx_lock(&aio_job_mtx);
1211 			/*
1212 			 * We have to restart to avoid race, we only sleep if
1213 			 * no job can be selected, that should be
1214 			 * curcp == mycp.
1215 			 */
1216 			continue;
1217 		}
1218 
1219 		mtx_assert(&aio_job_mtx, MA_OWNED);
1220 
1221 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1222 		aiop->aiothreadflags |= AIOP_FREE;
1223 
1224 		/*
1225 		 * If daemon is inactive for a long time, allow it to exit,
1226 		 * thereby freeing resources.
1227 		 */
1228 		if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
1229 		    aiod_lifetime)) {
1230 			if (TAILQ_EMPTY(&aio_jobs)) {
1231 				if ((aiop->aiothreadflags & AIOP_FREE) &&
1232 				    (num_aio_procs > target_aio_procs)) {
1233 					TAILQ_REMOVE(&aio_freeproc, aiop, list);
1234 					num_aio_procs--;
1235 					mtx_unlock(&aio_job_mtx);
1236 					uma_zfree(aiop_zone, aiop);
1237 					free_unr(aiod_unr, id);
1238 #ifdef DIAGNOSTIC
1239 					if (mycp->p_vmspace->vm_refcnt <= 1) {
1240 						printf("AIOD: bad vm refcnt for"
1241 						    " exiting daemon: %d\n",
1242 						    mycp->p_vmspace->vm_refcnt);
1243 					}
1244 #endif
1245 					kproc_exit(0);
1246 				}
1247 			}
1248 		}
1249 	}
1250 	mtx_unlock(&aio_job_mtx);
1251 	panic("shouldn't be here\n");
1252 }
1253 
1254 /*
1255  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1256  * AIO daemon modifies its environment itself.
1257  */
1258 static int
1259 aio_newproc(int *start)
1260 {
1261 	int error;
1262 	struct proc *p;
1263 	int id;
1264 
1265 	id = alloc_unr(aiod_unr);
1266 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1267 		RFNOWAIT, 0, "aiod%d", id);
1268 	if (error == 0) {
1269 		/*
1270 		 * Wait until daemon is started.
1271 		 */
1272 		sema_wait(&aio_newproc_sem);
1273 		mtx_lock(&aio_job_mtx);
1274 		num_aio_procs++;
1275 		if (start != NULL)
1276 			(*start)--;
1277 		mtx_unlock(&aio_job_mtx);
1278 	} else {
1279 		free_unr(aiod_unr, id);
1280 	}
1281 	return (error);
1282 }
1283 
1284 /*
1285  * Try the high-performance, low-overhead physio method for eligible
1286  * VCHR devices.  This method doesn't use an aio helper thread, and
1287  * thus has very low overhead.
1288  *
1289  * Assumes that the caller, aio_aqueue(), has incremented the file
1290  * structure's reference count, preventing its deallocation for the
1291  * duration of this call.
1292  */
1293 static int
1294 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
1295 {
1296 	struct aiocb *cb;
1297 	struct file *fp;
1298 	struct bio *bp;
1299 	struct buf *pbuf;
1300 	struct vnode *vp;
1301 	struct cdevsw *csw;
1302 	struct cdev *dev;
1303 	struct kaioinfo *ki;
1304 	struct aioliojob *lj;
1305 	int error, ref, unmap, poff;
1306 	vm_prot_t prot;
1307 
1308 	cb = &aiocbe->uaiocb;
1309 	fp = aiocbe->fd_file;
1310 
1311 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1312 		return (-1);
1313 
1314 	vp = fp->f_vnode;
1315 	if (vp->v_type != VCHR)
1316 		return (-1);
1317 	if (vp->v_bufobj.bo_bsize == 0)
1318 		return (-1);
1319 	if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
1320 		return (-1);
1321 
1322 	ref = 0;
1323 	csw = devvn_refthread(vp, &dev, &ref);
1324 	if (csw == NULL)
1325 		return (ENXIO);
1326 
1327 	if ((csw->d_flags & D_DISK) == 0) {
1328 		error = -1;
1329 		goto unref;
1330 	}
1331 	if (cb->aio_nbytes > dev->si_iosize_max) {
1332 		error = -1;
1333 		goto unref;
1334 	}
1335 
1336 	ki = p->p_aioinfo;
1337 	poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
1338 	unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed);
1339 	if (unmap) {
1340 		if (cb->aio_nbytes > MAXPHYS) {
1341 			error = -1;
1342 			goto unref;
1343 		}
1344 	} else {
1345 		if (cb->aio_nbytes > MAXPHYS - poff) {
1346 			error = -1;
1347 			goto unref;
1348 		}
1349 		if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
1350 			error = -1;
1351 			goto unref;
1352 		}
1353 	}
1354 	aiocbe->bp = bp = g_alloc_bio();
1355 	if (!unmap) {
1356 		aiocbe->pbuf = pbuf = (struct buf *)getpbuf(NULL);
1357 		BUF_KERNPROC(pbuf);
1358 	}
1359 
1360 	AIO_LOCK(ki);
1361 	ki->kaio_count++;
1362 	if (!unmap)
1363 		ki->kaio_buffer_count++;
1364 	lj = aiocbe->lio;
1365 	if (lj)
1366 		lj->lioj_count++;
1367 	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
1368 	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1369 	aiocbe->jobstate = JOBST_JOBQBUF;
1370 	cb->_aiocb_private.status = cb->aio_nbytes;
1371 	AIO_UNLOCK(ki);
1372 
1373 	bp->bio_length = cb->aio_nbytes;
1374 	bp->bio_bcount = cb->aio_nbytes;
1375 	bp->bio_done = aio_physwakeup;
1376 	bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
1377 	bp->bio_offset = cb->aio_offset;
1378 	bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
1379 	bp->bio_dev = dev;
1380 	bp->bio_caller1 = (void *)aiocbe;
1381 
1382 	prot = VM_PROT_READ;
1383 	if (cb->aio_lio_opcode == LIO_READ)
1384 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1385 	if ((aiocbe->npages = vm_fault_quick_hold_pages(
1386 	    &curproc->p_vmspace->vm_map,
1387 	    (vm_offset_t)bp->bio_data, bp->bio_length, prot, aiocbe->pages,
1388 	    sizeof(aiocbe->pages)/sizeof(aiocbe->pages[0]))) < 0) {
1389 		error = EFAULT;
1390 		goto doerror;
1391 	}
1392 	if (!unmap) {
1393 		pmap_qenter((vm_offset_t)pbuf->b_data,
1394 		    aiocbe->pages, aiocbe->npages);
1395 		bp->bio_data = pbuf->b_data + poff;
1396 	} else {
1397 		bp->bio_ma = aiocbe->pages;
1398 		bp->bio_ma_n = aiocbe->npages;
1399 		bp->bio_ma_offset = poff;
1400 		bp->bio_data = unmapped_buf;
1401 		bp->bio_flags |= BIO_UNMAPPED;
1402 	}
1403 
1404 	atomic_add_int(&num_queue_count, 1);
1405 	if (!unmap)
1406 		atomic_add_int(&num_buf_aio, 1);
1407 
1408 	/* Perform transfer. */
1409 	csw->d_strategy(bp);
1410 	dev_relthread(dev, ref);
1411 	return (0);
1412 
1413 doerror:
1414 	AIO_LOCK(ki);
1415 	aiocbe->jobstate = JOBST_NULL;
1416 	TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1417 	TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
1418 	ki->kaio_count--;
1419 	if (!unmap)
1420 		ki->kaio_buffer_count--;
1421 	if (lj)
1422 		lj->lioj_count--;
1423 	AIO_UNLOCK(ki);
1424 	if (pbuf) {
1425 		relpbuf(pbuf, NULL);
1426 		aiocbe->pbuf = NULL;
1427 	}
1428 	g_destroy_bio(bp);
1429 	aiocbe->bp = NULL;
1430 unref:
1431 	dev_relthread(dev, ref);
1432 	return (error);
1433 }
1434 
1435 /*
1436  * Wake up aio requests that may be serviceable now.
1437  */
1438 static void
1439 aio_swake_cb(struct socket *so, struct sockbuf *sb)
1440 {
1441 	struct aiocblist *cb, *cbn;
1442 	int opcode;
1443 
1444 	SOCKBUF_LOCK_ASSERT(sb);
1445 	if (sb == &so->so_snd)
1446 		opcode = LIO_WRITE;
1447 	else
1448 		opcode = LIO_READ;
1449 
1450 	sb->sb_flags &= ~SB_AIO;
1451 	mtx_lock(&aio_job_mtx);
1452 	TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
1453 		if (opcode == cb->uaiocb.aio_lio_opcode) {
1454 			if (cb->jobstate != JOBST_JOBQSOCK)
1455 				panic("invalid queue value");
1456 			/* XXX
1457 			 * We don't have actual sockets backend yet,
1458 			 * so we simply move the requests to the generic
1459 			 * file I/O backend.
1460 			 */
1461 			TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1462 			TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1463 			aio_kick_nowait(cb->userproc);
1464 		}
1465 	}
1466 	mtx_unlock(&aio_job_mtx);
1467 }
1468 
1469 static int
1470 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1471 {
1472 
1473 	/*
1474 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1475 	 * supported by AIO with the old sigevent structure.
1476 	 */
1477 	nsig->sigev_notify = osig->sigev_notify;
1478 	switch (nsig->sigev_notify) {
1479 	case SIGEV_NONE:
1480 		break;
1481 	case SIGEV_SIGNAL:
1482 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1483 		break;
1484 	case SIGEV_KEVENT:
1485 		nsig->sigev_notify_kqueue =
1486 		    osig->__sigev_u.__sigev_notify_kqueue;
1487 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1488 		break;
1489 	default:
1490 		return (EINVAL);
1491 	}
1492 	return (0);
1493 }
1494 
1495 static int
1496 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
1497 {
1498 	struct oaiocb *ojob;
1499 	int error;
1500 
1501 	bzero(kjob, sizeof(struct aiocb));
1502 	error = copyin(ujob, kjob, sizeof(struct oaiocb));
1503 	if (error)
1504 		return (error);
1505 	ojob = (struct oaiocb *)kjob;
1506 	return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
1507 }
1508 
1509 static int
1510 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
1511 {
1512 
1513 	return (copyin(ujob, kjob, sizeof(struct aiocb)));
1514 }
1515 
1516 static long
1517 aiocb_fetch_status(struct aiocb *ujob)
1518 {
1519 
1520 	return (fuword(&ujob->_aiocb_private.status));
1521 }
1522 
1523 static long
1524 aiocb_fetch_error(struct aiocb *ujob)
1525 {
1526 
1527 	return (fuword(&ujob->_aiocb_private.error));
1528 }
1529 
1530 static int
1531 aiocb_store_status(struct aiocb *ujob, long status)
1532 {
1533 
1534 	return (suword(&ujob->_aiocb_private.status, status));
1535 }
1536 
1537 static int
1538 aiocb_store_error(struct aiocb *ujob, long error)
1539 {
1540 
1541 	return (suword(&ujob->_aiocb_private.error, error));
1542 }
1543 
1544 static int
1545 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1546 {
1547 
1548 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1549 }
1550 
1551 static int
1552 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1553 {
1554 
1555 	return (suword(ujobp, (long)ujob));
1556 }
1557 
1558 static struct aiocb_ops aiocb_ops = {
1559 	.copyin = aiocb_copyin,
1560 	.fetch_status = aiocb_fetch_status,
1561 	.fetch_error = aiocb_fetch_error,
1562 	.store_status = aiocb_store_status,
1563 	.store_error = aiocb_store_error,
1564 	.store_kernelinfo = aiocb_store_kernelinfo,
1565 	.store_aiocb = aiocb_store_aiocb,
1566 };
1567 
1568 static struct aiocb_ops aiocb_ops_osigevent = {
1569 	.copyin = aiocb_copyin_old_sigevent,
1570 	.fetch_status = aiocb_fetch_status,
1571 	.fetch_error = aiocb_fetch_error,
1572 	.store_status = aiocb_store_status,
1573 	.store_error = aiocb_store_error,
1574 	.store_kernelinfo = aiocb_store_kernelinfo,
1575 	.store_aiocb = aiocb_store_aiocb,
1576 };
1577 
1578 /*
1579  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
1580  * technique is done in this code.
1581  */
1582 int
1583 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
1584 	int type, struct aiocb_ops *ops)
1585 {
1586 	struct proc *p = td->td_proc;
1587 	cap_rights_t rights;
1588 	struct file *fp;
1589 	struct socket *so;
1590 	struct aiocblist *aiocbe, *cb;
1591 	struct kaioinfo *ki;
1592 	struct kevent kev;
1593 	struct sockbuf *sb;
1594 	int opcode;
1595 	int error;
1596 	int fd, kqfd;
1597 	int jid;
1598 	u_short evflags;
1599 
1600 	if (p->p_aioinfo == NULL)
1601 		aio_init_aioinfo(p);
1602 
1603 	ki = p->p_aioinfo;
1604 
1605 	ops->store_status(job, -1);
1606 	ops->store_error(job, 0);
1607 	ops->store_kernelinfo(job, -1);
1608 
1609 	if (num_queue_count >= max_queue_count ||
1610 	    ki->kaio_count >= ki->kaio_qallowed_count) {
1611 		ops->store_error(job, EAGAIN);
1612 		return (EAGAIN);
1613 	}
1614 
1615 	aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1616 	knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
1617 
1618 	error = ops->copyin(job, &aiocbe->uaiocb);
1619 	if (error) {
1620 		ops->store_error(job, error);
1621 		uma_zfree(aiocb_zone, aiocbe);
1622 		return (error);
1623 	}
1624 
1625 	/* XXX: aio_nbytes is later casted to signed types. */
1626 	if (aiocbe->uaiocb.aio_nbytes > INT_MAX) {
1627 		uma_zfree(aiocb_zone, aiocbe);
1628 		return (EINVAL);
1629 	}
1630 
1631 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1632 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1633 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1634 	    aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1635 		ops->store_error(job, EINVAL);
1636 		uma_zfree(aiocb_zone, aiocbe);
1637 		return (EINVAL);
1638 	}
1639 
1640 	if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1641 	     aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1642 		!_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1643 		uma_zfree(aiocb_zone, aiocbe);
1644 		return (EINVAL);
1645 	}
1646 
1647 	ksiginfo_init(&aiocbe->ksi);
1648 
1649 	/* Save userspace address of the job info. */
1650 	aiocbe->uuaiocb = job;
1651 
1652 	/* Get the opcode. */
1653 	if (type != LIO_NOP)
1654 		aiocbe->uaiocb.aio_lio_opcode = type;
1655 	opcode = aiocbe->uaiocb.aio_lio_opcode;
1656 
1657 	/*
1658 	 * Validate the opcode and fetch the file object for the specified
1659 	 * file descriptor.
1660 	 *
1661 	 * XXXRW: Moved the opcode validation up here so that we don't
1662 	 * retrieve a file descriptor without knowing what the capabiltity
1663 	 * should be.
1664 	 */
1665 	fd = aiocbe->uaiocb.aio_fildes;
1666 	switch (opcode) {
1667 	case LIO_WRITE:
1668 		error = fget_write(td, fd,
1669 		    cap_rights_init(&rights, CAP_PWRITE), &fp);
1670 		break;
1671 	case LIO_READ:
1672 		error = fget_read(td, fd,
1673 		    cap_rights_init(&rights, CAP_PREAD), &fp);
1674 		break;
1675 	case LIO_SYNC:
1676 		error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
1677 		break;
1678 	case LIO_MLOCK:
1679 		fp = NULL;
1680 		break;
1681 	case LIO_NOP:
1682 		error = fget(td, fd, cap_rights_init(&rights), &fp);
1683 		break;
1684 	default:
1685 		error = EINVAL;
1686 	}
1687 	if (error) {
1688 		uma_zfree(aiocb_zone, aiocbe);
1689 		ops->store_error(job, error);
1690 		return (error);
1691 	}
1692 
1693 	if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
1694 		error = EINVAL;
1695 		goto aqueue_fail;
1696 	}
1697 
1698 	if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
1699 		error = EINVAL;
1700 		goto aqueue_fail;
1701 	}
1702 
1703 	aiocbe->fd_file = fp;
1704 
1705 	mtx_lock(&aio_job_mtx);
1706 	jid = jobrefid++;
1707 	aiocbe->seqno = jobseqno++;
1708 	mtx_unlock(&aio_job_mtx);
1709 	error = ops->store_kernelinfo(job, jid);
1710 	if (error) {
1711 		error = EINVAL;
1712 		goto aqueue_fail;
1713 	}
1714 	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1715 
1716 	if (opcode == LIO_NOP) {
1717 		fdrop(fp, td);
1718 		uma_zfree(aiocb_zone, aiocbe);
1719 		return (0);
1720 	}
1721 
1722 	if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1723 		goto no_kqueue;
1724 	evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1725 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1726 		error = EINVAL;
1727 		goto aqueue_fail;
1728 	}
1729 	kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1730 	kev.ident = (uintptr_t)aiocbe->uuaiocb;
1731 	kev.filter = EVFILT_AIO;
1732 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1733 	kev.data = (intptr_t)aiocbe;
1734 	kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1735 	error = kqfd_register(kqfd, &kev, td, 1);
1736 aqueue_fail:
1737 	if (error) {
1738 		if (fp)
1739 			fdrop(fp, td);
1740 		uma_zfree(aiocb_zone, aiocbe);
1741 		ops->store_error(job, error);
1742 		goto done;
1743 	}
1744 no_kqueue:
1745 
1746 	ops->store_error(job, EINPROGRESS);
1747 	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1748 	aiocbe->userproc = p;
1749 	aiocbe->cred = crhold(td->td_ucred);
1750 	aiocbe->jobflags = 0;
1751 	aiocbe->lio = lj;
1752 
1753 	if (opcode == LIO_SYNC)
1754 		goto queueit;
1755 
1756 	if (fp && fp->f_type == DTYPE_SOCKET) {
1757 		/*
1758 		 * Alternate queueing for socket ops: Reach down into the
1759 		 * descriptor to get the socket data.  Then check to see if the
1760 		 * socket is ready to be read or written (based on the requested
1761 		 * operation).
1762 		 *
1763 		 * If it is not ready for io, then queue the aiocbe on the
1764 		 * socket, and set the flags so we get a call when sbnotify()
1765 		 * happens.
1766 		 *
1767 		 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
1768 		 * and unlock the snd sockbuf for no reason.
1769 		 */
1770 		so = fp->f_data;
1771 		sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
1772 		SOCKBUF_LOCK(sb);
1773 		if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1774 		    LIO_WRITE) && (!sowriteable(so)))) {
1775 			sb->sb_flags |= SB_AIO;
1776 
1777 			mtx_lock(&aio_job_mtx);
1778 			TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1779 			mtx_unlock(&aio_job_mtx);
1780 
1781 			AIO_LOCK(ki);
1782 			TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1783 			TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1784 			aiocbe->jobstate = JOBST_JOBQSOCK;
1785 			ki->kaio_count++;
1786 			if (lj)
1787 				lj->lioj_count++;
1788 			AIO_UNLOCK(ki);
1789 			SOCKBUF_UNLOCK(sb);
1790 			atomic_add_int(&num_queue_count, 1);
1791 			error = 0;
1792 			goto done;
1793 		}
1794 		SOCKBUF_UNLOCK(sb);
1795 	}
1796 
1797 	if ((error = aio_qphysio(p, aiocbe)) == 0)
1798 		goto done;
1799 #if 0
1800 	if (error > 0) {
1801 		aiocbe->uaiocb._aiocb_private.error = error;
1802 		ops->store_error(job, error);
1803 		goto done;
1804 	}
1805 #endif
1806 queueit:
1807 	atomic_add_int(&num_queue_count, 1);
1808 
1809 	AIO_LOCK(ki);
1810 	ki->kaio_count++;
1811 	if (lj)
1812 		lj->lioj_count++;
1813 	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1814 	TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
1815 	if (opcode == LIO_SYNC) {
1816 		TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
1817 			if (cb->fd_file == aiocbe->fd_file &&
1818 			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1819 			    cb->seqno < aiocbe->seqno) {
1820 				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1821 				aiocbe->pending++;
1822 			}
1823 		}
1824 		TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
1825 			if (cb->fd_file == aiocbe->fd_file &&
1826 			    cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
1827 			    cb->seqno < aiocbe->seqno) {
1828 				cb->jobflags |= AIOCBLIST_CHECKSYNC;
1829 				aiocbe->pending++;
1830 			}
1831 		}
1832 		if (aiocbe->pending != 0) {
1833 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
1834 			aiocbe->jobstate = JOBST_JOBQSYNC;
1835 			AIO_UNLOCK(ki);
1836 			goto done;
1837 		}
1838 	}
1839 	mtx_lock(&aio_job_mtx);
1840 	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1841 	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1842 	aio_kick_nowait(p);
1843 	mtx_unlock(&aio_job_mtx);
1844 	AIO_UNLOCK(ki);
1845 	error = 0;
1846 done:
1847 	return (error);
1848 }
1849 
1850 static void
1851 aio_kick_nowait(struct proc *userp)
1852 {
1853 	struct kaioinfo *ki = userp->p_aioinfo;
1854 	struct aiothreadlist *aiop;
1855 
1856 	mtx_assert(&aio_job_mtx, MA_OWNED);
1857 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1858 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1859 		aiop->aiothreadflags &= ~AIOP_FREE;
1860 		wakeup(aiop->aiothread);
1861 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1862 	    ((ki->kaio_active_count + num_aio_resv_start) <
1863 	    ki->kaio_maxactive_count)) {
1864 		taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
1865 	}
1866 }
1867 
1868 static int
1869 aio_kick(struct proc *userp)
1870 {
1871 	struct kaioinfo *ki = userp->p_aioinfo;
1872 	struct aiothreadlist *aiop;
1873 	int error, ret = 0;
1874 
1875 	mtx_assert(&aio_job_mtx, MA_OWNED);
1876 retryproc:
1877 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1878 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1879 		aiop->aiothreadflags &= ~AIOP_FREE;
1880 		wakeup(aiop->aiothread);
1881 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1882 	    ((ki->kaio_active_count + num_aio_resv_start) <
1883 	    ki->kaio_maxactive_count)) {
1884 		num_aio_resv_start++;
1885 		mtx_unlock(&aio_job_mtx);
1886 		error = aio_newproc(&num_aio_resv_start);
1887 		mtx_lock(&aio_job_mtx);
1888 		if (error) {
1889 			num_aio_resv_start--;
1890 			goto retryproc;
1891 		}
1892 	} else {
1893 		ret = -1;
1894 	}
1895 	return (ret);
1896 }
1897 
1898 static void
1899 aio_kick_helper(void *context, int pending)
1900 {
1901 	struct proc *userp = context;
1902 
1903 	mtx_lock(&aio_job_mtx);
1904 	while (--pending >= 0) {
1905 		if (aio_kick(userp))
1906 			break;
1907 	}
1908 	mtx_unlock(&aio_job_mtx);
1909 }
1910 
1911 /*
1912  * Support the aio_return system call, as a side-effect, kernel resources are
1913  * released.
1914  */
1915 static int
1916 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
1917 {
1918 	struct proc *p = td->td_proc;
1919 	struct aiocblist *cb;
1920 	struct kaioinfo *ki;
1921 	int status, error;
1922 
1923 	ki = p->p_aioinfo;
1924 	if (ki == NULL)
1925 		return (EINVAL);
1926 	AIO_LOCK(ki);
1927 	TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
1928 		if (cb->uuaiocb == uaiocb)
1929 			break;
1930 	}
1931 	if (cb != NULL) {
1932 		MPASS(cb->jobstate == JOBST_JOBFINISHED);
1933 		status = cb->uaiocb._aiocb_private.status;
1934 		error = cb->uaiocb._aiocb_private.error;
1935 		td->td_retval[0] = status;
1936 		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1937 			td->td_ru.ru_oublock += cb->outputcharge;
1938 			cb->outputcharge = 0;
1939 		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1940 			td->td_ru.ru_inblock += cb->inputcharge;
1941 			cb->inputcharge = 0;
1942 		}
1943 		aio_free_entry(cb);
1944 		AIO_UNLOCK(ki);
1945 		ops->store_error(uaiocb, error);
1946 		ops->store_status(uaiocb, status);
1947 	} else {
1948 		error = EINVAL;
1949 		AIO_UNLOCK(ki);
1950 	}
1951 	return (error);
1952 }
1953 
1954 int
1955 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1956 {
1957 
1958 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1959 }
1960 
1961 /*
1962  * Allow a process to wakeup when any of the I/O requests are completed.
1963  */
1964 static int
1965 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1966     struct timespec *ts)
1967 {
1968 	struct proc *p = td->td_proc;
1969 	struct timeval atv;
1970 	struct kaioinfo *ki;
1971 	struct aiocblist *cb, *cbfirst;
1972 	int error, i, timo;
1973 
1974 	timo = 0;
1975 	if (ts) {
1976 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1977 			return (EINVAL);
1978 
1979 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1980 		if (itimerfix(&atv))
1981 			return (EINVAL);
1982 		timo = tvtohz(&atv);
1983 	}
1984 
1985 	ki = p->p_aioinfo;
1986 	if (ki == NULL)
1987 		return (EAGAIN);
1988 
1989 	if (njoblist == 0)
1990 		return (0);
1991 
1992 	AIO_LOCK(ki);
1993 	for (;;) {
1994 		cbfirst = NULL;
1995 		error = 0;
1996 		TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
1997 			for (i = 0; i < njoblist; i++) {
1998 				if (cb->uuaiocb == ujoblist[i]) {
1999 					if (cbfirst == NULL)
2000 						cbfirst = cb;
2001 					if (cb->jobstate == JOBST_JOBFINISHED)
2002 						goto RETURN;
2003 				}
2004 			}
2005 		}
2006 		/* All tasks were finished. */
2007 		if (cbfirst == NULL)
2008 			break;
2009 
2010 		ki->kaio_flags |= KAIO_WAKEUP;
2011 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2012 		    "aiospn", timo);
2013 		if (error == ERESTART)
2014 			error = EINTR;
2015 		if (error)
2016 			break;
2017 	}
2018 RETURN:
2019 	AIO_UNLOCK(ki);
2020 	return (error);
2021 }
2022 
2023 int
2024 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2025 {
2026 	struct timespec ts, *tsp;
2027 	struct aiocb **ujoblist;
2028 	int error;
2029 
2030 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2031 		return (EINVAL);
2032 
2033 	if (uap->timeout) {
2034 		/* Get timespec struct. */
2035 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2036 			return (error);
2037 		tsp = &ts;
2038 	} else
2039 		tsp = NULL;
2040 
2041 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2042 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2043 	if (error == 0)
2044 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2045 	uma_zfree(aiol_zone, ujoblist);
2046 	return (error);
2047 }
2048 
2049 /*
2050  * aio_cancel cancels any non-physio aio operations not currently in
2051  * progress.
2052  */
2053 int
2054 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2055 {
2056 	struct proc *p = td->td_proc;
2057 	struct kaioinfo *ki;
2058 	struct aiocblist *cbe, *cbn;
2059 	struct file *fp;
2060 	struct socket *so;
2061 	cap_rights_t rights;
2062 	int error;
2063 	int remove;
2064 	int cancelled = 0;
2065 	int notcancelled = 0;
2066 	struct vnode *vp;
2067 
2068 	/* Lookup file object. */
2069 	error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
2070 	if (error)
2071 		return (error);
2072 
2073 	ki = p->p_aioinfo;
2074 	if (ki == NULL)
2075 		goto done;
2076 
2077 	if (fp->f_type == DTYPE_VNODE) {
2078 		vp = fp->f_vnode;
2079 		if (vn_isdisk(vp, &error)) {
2080 			fdrop(fp, td);
2081 			td->td_retval[0] = AIO_NOTCANCELED;
2082 			return (0);
2083 		}
2084 	}
2085 
2086 	AIO_LOCK(ki);
2087 	TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
2088 		if ((uap->fd == cbe->uaiocb.aio_fildes) &&
2089 		    ((uap->aiocbp == NULL) ||
2090 		     (uap->aiocbp == cbe->uuaiocb))) {
2091 			remove = 0;
2092 
2093 			mtx_lock(&aio_job_mtx);
2094 			if (cbe->jobstate == JOBST_JOBQGLOBAL) {
2095 				TAILQ_REMOVE(&aio_jobs, cbe, list);
2096 				remove = 1;
2097 			} else if (cbe->jobstate == JOBST_JOBQSOCK) {
2098 				MPASS(fp->f_type == DTYPE_SOCKET);
2099 				so = fp->f_data;
2100 				TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
2101 				remove = 1;
2102 			} else if (cbe->jobstate == JOBST_JOBQSYNC) {
2103 				TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
2104 				remove = 1;
2105 			}
2106 			mtx_unlock(&aio_job_mtx);
2107 
2108 			if (remove) {
2109 				TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
2110 				cbe->uaiocb._aiocb_private.status = -1;
2111 				cbe->uaiocb._aiocb_private.error = ECANCELED;
2112 				aio_bio_done_notify(p, cbe, DONE_QUEUE);
2113 				cancelled++;
2114 			} else {
2115 				notcancelled++;
2116 			}
2117 			if (uap->aiocbp != NULL)
2118 				break;
2119 		}
2120 	}
2121 	AIO_UNLOCK(ki);
2122 
2123 done:
2124 	fdrop(fp, td);
2125 
2126 	if (uap->aiocbp != NULL) {
2127 		if (cancelled) {
2128 			td->td_retval[0] = AIO_CANCELED;
2129 			return (0);
2130 		}
2131 	}
2132 
2133 	if (notcancelled) {
2134 		td->td_retval[0] = AIO_NOTCANCELED;
2135 		return (0);
2136 	}
2137 
2138 	if (cancelled) {
2139 		td->td_retval[0] = AIO_CANCELED;
2140 		return (0);
2141 	}
2142 
2143 	td->td_retval[0] = AIO_ALLDONE;
2144 
2145 	return (0);
2146 }
2147 
2148 /*
2149  * aio_error is implemented in the kernel level for compatibility purposes
2150  * only.  For a user mode async implementation, it would be best to do it in
2151  * a userland subroutine.
2152  */
2153 static int
2154 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
2155 {
2156 	struct proc *p = td->td_proc;
2157 	struct aiocblist *cb;
2158 	struct kaioinfo *ki;
2159 	int status;
2160 
2161 	ki = p->p_aioinfo;
2162 	if (ki == NULL) {
2163 		td->td_retval[0] = EINVAL;
2164 		return (0);
2165 	}
2166 
2167 	AIO_LOCK(ki);
2168 	TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
2169 		if (cb->uuaiocb == aiocbp) {
2170 			if (cb->jobstate == JOBST_JOBFINISHED)
2171 				td->td_retval[0] =
2172 					cb->uaiocb._aiocb_private.error;
2173 			else
2174 				td->td_retval[0] = EINPROGRESS;
2175 			AIO_UNLOCK(ki);
2176 			return (0);
2177 		}
2178 	}
2179 	AIO_UNLOCK(ki);
2180 
2181 	/*
2182 	 * Hack for failure of aio_aqueue.
2183 	 */
2184 	status = ops->fetch_status(aiocbp);
2185 	if (status == -1) {
2186 		td->td_retval[0] = ops->fetch_error(aiocbp);
2187 		return (0);
2188 	}
2189 
2190 	td->td_retval[0] = EINVAL;
2191 	return (0);
2192 }
2193 
2194 int
2195 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2196 {
2197 
2198 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2199 }
2200 
2201 /* syscall - asynchronous read from a file (REALTIME) */
2202 int
2203 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
2204 {
2205 
2206 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2207 	    &aiocb_ops_osigevent));
2208 }
2209 
2210 int
2211 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2212 {
2213 
2214 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2215 }
2216 
2217 /* syscall - asynchronous write to a file (REALTIME) */
2218 int
2219 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
2220 {
2221 
2222 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2223 	    &aiocb_ops_osigevent));
2224 }
2225 
2226 int
2227 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2228 {
2229 
2230 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2231 }
2232 
2233 int
2234 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2235 {
2236 
2237 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2238 }
2239 
2240 static int
2241 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2242     struct aiocb **acb_list, int nent, struct sigevent *sig,
2243     struct aiocb_ops *ops)
2244 {
2245 	struct proc *p = td->td_proc;
2246 	struct aiocb *iocb;
2247 	struct kaioinfo *ki;
2248 	struct aioliojob *lj;
2249 	struct kevent kev;
2250 	int error;
2251 	int nerror;
2252 	int i;
2253 
2254 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2255 		return (EINVAL);
2256 
2257 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2258 		return (EINVAL);
2259 
2260 	if (p->p_aioinfo == NULL)
2261 		aio_init_aioinfo(p);
2262 
2263 	ki = p->p_aioinfo;
2264 
2265 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2266 	lj->lioj_flags = 0;
2267 	lj->lioj_count = 0;
2268 	lj->lioj_finished_count = 0;
2269 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2270 	ksiginfo_init(&lj->lioj_ksi);
2271 
2272 	/*
2273 	 * Setup signal.
2274 	 */
2275 	if (sig && (mode == LIO_NOWAIT)) {
2276 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2277 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2278 			/* Assume only new style KEVENT */
2279 			kev.filter = EVFILT_LIO;
2280 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2281 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2282 			kev.data = (intptr_t)lj;
2283 			/* pass user defined sigval data */
2284 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2285 			error = kqfd_register(
2286 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
2287 			if (error) {
2288 				uma_zfree(aiolio_zone, lj);
2289 				return (error);
2290 			}
2291 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2292 			;
2293 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2294 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2295 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2296 					uma_zfree(aiolio_zone, lj);
2297 					return EINVAL;
2298 				}
2299 				lj->lioj_flags |= LIOJ_SIGNAL;
2300 		} else {
2301 			uma_zfree(aiolio_zone, lj);
2302 			return EINVAL;
2303 		}
2304 	}
2305 
2306 	AIO_LOCK(ki);
2307 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2308 	/*
2309 	 * Add extra aiocb count to avoid the lio to be freed
2310 	 * by other threads doing aio_waitcomplete or aio_return,
2311 	 * and prevent event from being sent until we have queued
2312 	 * all tasks.
2313 	 */
2314 	lj->lioj_count = 1;
2315 	AIO_UNLOCK(ki);
2316 
2317 	/*
2318 	 * Get pointers to the list of I/O requests.
2319 	 */
2320 	nerror = 0;
2321 	for (i = 0; i < nent; i++) {
2322 		iocb = acb_list[i];
2323 		if (iocb != NULL) {
2324 			error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
2325 			if (error != 0)
2326 				nerror++;
2327 		}
2328 	}
2329 
2330 	error = 0;
2331 	AIO_LOCK(ki);
2332 	if (mode == LIO_WAIT) {
2333 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2334 			ki->kaio_flags |= KAIO_WAKEUP;
2335 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2336 			    PRIBIO | PCATCH, "aiospn", 0);
2337 			if (error == ERESTART)
2338 				error = EINTR;
2339 			if (error)
2340 				break;
2341 		}
2342 	} else {
2343 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2344 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2345 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2346 				KNOTE_LOCKED(&lj->klist, 1);
2347 			}
2348 			if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
2349 			    == LIOJ_SIGNAL
2350 			    && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2351 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2352 				aio_sendsig(p, &lj->lioj_signal,
2353 					    &lj->lioj_ksi);
2354 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2355 			}
2356 		}
2357 	}
2358 	lj->lioj_count--;
2359 	if (lj->lioj_count == 0) {
2360 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2361 		knlist_delete(&lj->klist, curthread, 1);
2362 		PROC_LOCK(p);
2363 		sigqueue_take(&lj->lioj_ksi);
2364 		PROC_UNLOCK(p);
2365 		AIO_UNLOCK(ki);
2366 		uma_zfree(aiolio_zone, lj);
2367 	} else
2368 		AIO_UNLOCK(ki);
2369 
2370 	if (nerror)
2371 		return (EIO);
2372 	return (error);
2373 }
2374 
2375 /* syscall - list directed I/O (REALTIME) */
2376 int
2377 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
2378 {
2379 	struct aiocb **acb_list;
2380 	struct sigevent *sigp, sig;
2381 	struct osigevent osig;
2382 	int error, nent;
2383 
2384 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2385 		return (EINVAL);
2386 
2387 	nent = uap->nent;
2388 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2389 		return (EINVAL);
2390 
2391 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2392 		error = copyin(uap->sig, &osig, sizeof(osig));
2393 		if (error)
2394 			return (error);
2395 		error = convert_old_sigevent(&osig, &sig);
2396 		if (error)
2397 			return (error);
2398 		sigp = &sig;
2399 	} else
2400 		sigp = NULL;
2401 
2402 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2403 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2404 	if (error == 0)
2405 		error = kern_lio_listio(td, uap->mode,
2406 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2407 		    &aiocb_ops_osigevent);
2408 	free(acb_list, M_LIO);
2409 	return (error);
2410 }
2411 
2412 /* syscall - list directed I/O (REALTIME) */
2413 int
2414 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2415 {
2416 	struct aiocb **acb_list;
2417 	struct sigevent *sigp, sig;
2418 	int error, nent;
2419 
2420 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2421 		return (EINVAL);
2422 
2423 	nent = uap->nent;
2424 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2425 		return (EINVAL);
2426 
2427 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2428 		error = copyin(uap->sig, &sig, sizeof(sig));
2429 		if (error)
2430 			return (error);
2431 		sigp = &sig;
2432 	} else
2433 		sigp = NULL;
2434 
2435 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2436 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2437 	if (error == 0)
2438 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2439 		    nent, sigp, &aiocb_ops);
2440 	free(acb_list, M_LIO);
2441 	return (error);
2442 }
2443 
2444 static void
2445 aio_physwakeup(struct bio *bp)
2446 {
2447 	struct aiocblist *aiocbe = (struct aiocblist *)bp->bio_caller1;
2448 	struct proc *userp;
2449 	struct kaioinfo *ki;
2450 	int nblks;
2451 
2452 	/* Release mapping into kernel space. */
2453 	if (aiocbe->pbuf) {
2454 		pmap_qremove((vm_offset_t)aiocbe->pbuf->b_data, aiocbe->npages);
2455 		relpbuf(aiocbe->pbuf, NULL);
2456 		aiocbe->pbuf = NULL;
2457 		atomic_subtract_int(&num_buf_aio, 1);
2458 	}
2459 	vm_page_unhold_pages(aiocbe->pages, aiocbe->npages);
2460 
2461 	bp = aiocbe->bp;
2462 	aiocbe->bp = NULL;
2463 	userp = aiocbe->userproc;
2464 	ki = userp->p_aioinfo;
2465 	AIO_LOCK(ki);
2466 	aiocbe->uaiocb._aiocb_private.status -= bp->bio_resid;
2467 	aiocbe->uaiocb._aiocb_private.error = 0;
2468 	if (bp->bio_flags & BIO_ERROR)
2469 		aiocbe->uaiocb._aiocb_private.error = bp->bio_error;
2470 	nblks = btodb(aiocbe->uaiocb.aio_nbytes);
2471 	if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
2472 		aiocbe->outputcharge += nblks;
2473 	else
2474 		aiocbe->inputcharge += nblks;
2475 	TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
2476 	ki->kaio_buffer_count--;
2477 	aio_bio_done_notify(userp, aiocbe, DONE_BUF);
2478 	AIO_UNLOCK(ki);
2479 
2480 	g_destroy_bio(bp);
2481 }
2482 
2483 /* syscall - wait for the next completion of an aio request */
2484 static int
2485 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
2486     struct timespec *ts, struct aiocb_ops *ops)
2487 {
2488 	struct proc *p = td->td_proc;
2489 	struct timeval atv;
2490 	struct kaioinfo *ki;
2491 	struct aiocblist *cb;
2492 	struct aiocb *uuaiocb;
2493 	int error, status, timo;
2494 
2495 	ops->store_aiocb(aiocbp, NULL);
2496 
2497 	timo = 0;
2498 	if (ts) {
2499 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2500 			return (EINVAL);
2501 
2502 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2503 		if (itimerfix(&atv))
2504 			return (EINVAL);
2505 		timo = tvtohz(&atv);
2506 	}
2507 
2508 	if (p->p_aioinfo == NULL)
2509 		aio_init_aioinfo(p);
2510 	ki = p->p_aioinfo;
2511 
2512 	error = 0;
2513 	cb = NULL;
2514 	AIO_LOCK(ki);
2515 	while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2516 		ki->kaio_flags |= KAIO_WAKEUP;
2517 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2518 		    "aiowc", timo);
2519 		if (timo && error == ERESTART)
2520 			error = EINTR;
2521 		if (error)
2522 			break;
2523 	}
2524 
2525 	if (cb != NULL) {
2526 		MPASS(cb->jobstate == JOBST_JOBFINISHED);
2527 		uuaiocb = cb->uuaiocb;
2528 		status = cb->uaiocb._aiocb_private.status;
2529 		error = cb->uaiocb._aiocb_private.error;
2530 		td->td_retval[0] = status;
2531 		if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2532 			td->td_ru.ru_oublock += cb->outputcharge;
2533 			cb->outputcharge = 0;
2534 		} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2535 			td->td_ru.ru_inblock += cb->inputcharge;
2536 			cb->inputcharge = 0;
2537 		}
2538 		aio_free_entry(cb);
2539 		AIO_UNLOCK(ki);
2540 		ops->store_aiocb(aiocbp, uuaiocb);
2541 		ops->store_error(uuaiocb, error);
2542 		ops->store_status(uuaiocb, status);
2543 	} else
2544 		AIO_UNLOCK(ki);
2545 
2546 	return (error);
2547 }
2548 
2549 int
2550 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2551 {
2552 	struct timespec ts, *tsp;
2553 	int error;
2554 
2555 	if (uap->timeout) {
2556 		/* Get timespec struct. */
2557 		error = copyin(uap->timeout, &ts, sizeof(ts));
2558 		if (error)
2559 			return (error);
2560 		tsp = &ts;
2561 	} else
2562 		tsp = NULL;
2563 
2564 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2565 }
2566 
2567 static int
2568 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
2569     struct aiocb_ops *ops)
2570 {
2571 	struct proc *p = td->td_proc;
2572 	struct kaioinfo *ki;
2573 
2574 	if (op != O_SYNC) /* XXX lack of O_DSYNC */
2575 		return (EINVAL);
2576 	ki = p->p_aioinfo;
2577 	if (ki == NULL)
2578 		aio_init_aioinfo(p);
2579 	return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
2580 }
2581 
2582 int
2583 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2584 {
2585 
2586 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2587 }
2588 
2589 /* kqueue attach function */
2590 static int
2591 filt_aioattach(struct knote *kn)
2592 {
2593 	struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2594 
2595 	/*
2596 	 * The aiocbe pointer must be validated before using it, so
2597 	 * registration is restricted to the kernel; the user cannot
2598 	 * set EV_FLAG1.
2599 	 */
2600 	if ((kn->kn_flags & EV_FLAG1) == 0)
2601 		return (EPERM);
2602 	kn->kn_ptr.p_aio = aiocbe;
2603 	kn->kn_flags &= ~EV_FLAG1;
2604 
2605 	knlist_add(&aiocbe->klist, kn, 0);
2606 
2607 	return (0);
2608 }
2609 
2610 /* kqueue detach function */
2611 static void
2612 filt_aiodetach(struct knote *kn)
2613 {
2614 	struct knlist *knl;
2615 
2616 	knl = &kn->kn_ptr.p_aio->klist;
2617 	knl->kl_lock(knl->kl_lockarg);
2618 	if (!knlist_empty(knl))
2619 		knlist_remove(knl, kn, 1);
2620 	knl->kl_unlock(knl->kl_lockarg);
2621 }
2622 
2623 /* kqueue filter function */
2624 /*ARGSUSED*/
2625 static int
2626 filt_aio(struct knote *kn, long hint)
2627 {
2628 	struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
2629 
2630 	kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2631 	if (aiocbe->jobstate != JOBST_JOBFINISHED)
2632 		return (0);
2633 	kn->kn_flags |= EV_EOF;
2634 	return (1);
2635 }
2636 
2637 /* kqueue attach function */
2638 static int
2639 filt_lioattach(struct knote *kn)
2640 {
2641 	struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
2642 
2643 	/*
2644 	 * The aioliojob pointer must be validated before using it, so
2645 	 * registration is restricted to the kernel; the user cannot
2646 	 * set EV_FLAG1.
2647 	 */
2648 	if ((kn->kn_flags & EV_FLAG1) == 0)
2649 		return (EPERM);
2650 	kn->kn_ptr.p_lio = lj;
2651 	kn->kn_flags &= ~EV_FLAG1;
2652 
2653 	knlist_add(&lj->klist, kn, 0);
2654 
2655 	return (0);
2656 }
2657 
2658 /* kqueue detach function */
2659 static void
2660 filt_liodetach(struct knote *kn)
2661 {
2662 	struct knlist *knl;
2663 
2664 	knl = &kn->kn_ptr.p_lio->klist;
2665 	knl->kl_lock(knl->kl_lockarg);
2666 	if (!knlist_empty(knl))
2667 		knlist_remove(knl, kn, 1);
2668 	knl->kl_unlock(knl->kl_lockarg);
2669 }
2670 
2671 /* kqueue filter function */
2672 /*ARGSUSED*/
2673 static int
2674 filt_lio(struct knote *kn, long hint)
2675 {
2676 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2677 
2678 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2679 }
2680 
2681 #ifdef COMPAT_FREEBSD32
2682 
2683 struct __aiocb_private32 {
2684 	int32_t	status;
2685 	int32_t	error;
2686 	uint32_t kernelinfo;
2687 };
2688 
2689 typedef struct oaiocb32 {
2690 	int	aio_fildes;		/* File descriptor */
2691 	uint64_t aio_offset __packed;	/* File offset for I/O */
2692 	uint32_t aio_buf;		/* I/O buffer in process space */
2693 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2694 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2695 	int	aio_lio_opcode;		/* LIO opcode */
2696 	int	aio_reqprio;		/* Request priority -- ignored */
2697 	struct	__aiocb_private32 _aiocb_private;
2698 } oaiocb32_t;
2699 
2700 typedef struct aiocb32 {
2701 	int32_t	aio_fildes;		/* File descriptor */
2702 	uint64_t aio_offset __packed;	/* File offset for I/O */
2703 	uint32_t aio_buf;		/* I/O buffer in process space */
2704 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2705 	int	__spare__[2];
2706 	uint32_t __spare2__;
2707 	int	aio_lio_opcode;		/* LIO opcode */
2708 	int	aio_reqprio;		/* Request priority -- ignored */
2709 	struct __aiocb_private32 _aiocb_private;
2710 	struct sigevent32 aio_sigevent;	/* Signal to deliver */
2711 } aiocb32_t;
2712 
2713 static int
2714 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2715 {
2716 
2717 	/*
2718 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2719 	 * supported by AIO with the old sigevent structure.
2720 	 */
2721 	CP(*osig, *nsig, sigev_notify);
2722 	switch (nsig->sigev_notify) {
2723 	case SIGEV_NONE:
2724 		break;
2725 	case SIGEV_SIGNAL:
2726 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2727 		break;
2728 	case SIGEV_KEVENT:
2729 		nsig->sigev_notify_kqueue =
2730 		    osig->__sigev_u.__sigev_notify_kqueue;
2731 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2732 		break;
2733 	default:
2734 		return (EINVAL);
2735 	}
2736 	return (0);
2737 }
2738 
2739 static int
2740 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
2741 {
2742 	struct oaiocb32 job32;
2743 	int error;
2744 
2745 	bzero(kjob, sizeof(struct aiocb));
2746 	error = copyin(ujob, &job32, sizeof(job32));
2747 	if (error)
2748 		return (error);
2749 
2750 	CP(job32, *kjob, aio_fildes);
2751 	CP(job32, *kjob, aio_offset);
2752 	PTRIN_CP(job32, *kjob, aio_buf);
2753 	CP(job32, *kjob, aio_nbytes);
2754 	CP(job32, *kjob, aio_lio_opcode);
2755 	CP(job32, *kjob, aio_reqprio);
2756 	CP(job32, *kjob, _aiocb_private.status);
2757 	CP(job32, *kjob, _aiocb_private.error);
2758 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2759 	return (convert_old_sigevent32(&job32.aio_sigevent,
2760 	    &kjob->aio_sigevent));
2761 }
2762 
2763 static int
2764 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
2765 {
2766 	struct aiocb32 job32;
2767 	int error;
2768 
2769 	error = copyin(ujob, &job32, sizeof(job32));
2770 	if (error)
2771 		return (error);
2772 	CP(job32, *kjob, aio_fildes);
2773 	CP(job32, *kjob, aio_offset);
2774 	PTRIN_CP(job32, *kjob, aio_buf);
2775 	CP(job32, *kjob, aio_nbytes);
2776 	CP(job32, *kjob, aio_lio_opcode);
2777 	CP(job32, *kjob, aio_reqprio);
2778 	CP(job32, *kjob, _aiocb_private.status);
2779 	CP(job32, *kjob, _aiocb_private.error);
2780 	PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
2781 	return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
2782 }
2783 
2784 static long
2785 aiocb32_fetch_status(struct aiocb *ujob)
2786 {
2787 	struct aiocb32 *ujob32;
2788 
2789 	ujob32 = (struct aiocb32 *)ujob;
2790 	return (fuword32(&ujob32->_aiocb_private.status));
2791 }
2792 
2793 static long
2794 aiocb32_fetch_error(struct aiocb *ujob)
2795 {
2796 	struct aiocb32 *ujob32;
2797 
2798 	ujob32 = (struct aiocb32 *)ujob;
2799 	return (fuword32(&ujob32->_aiocb_private.error));
2800 }
2801 
2802 static int
2803 aiocb32_store_status(struct aiocb *ujob, long status)
2804 {
2805 	struct aiocb32 *ujob32;
2806 
2807 	ujob32 = (struct aiocb32 *)ujob;
2808 	return (suword32(&ujob32->_aiocb_private.status, status));
2809 }
2810 
2811 static int
2812 aiocb32_store_error(struct aiocb *ujob, long error)
2813 {
2814 	struct aiocb32 *ujob32;
2815 
2816 	ujob32 = (struct aiocb32 *)ujob;
2817 	return (suword32(&ujob32->_aiocb_private.error, error));
2818 }
2819 
2820 static int
2821 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2822 {
2823 	struct aiocb32 *ujob32;
2824 
2825 	ujob32 = (struct aiocb32 *)ujob;
2826 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2827 }
2828 
2829 static int
2830 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2831 {
2832 
2833 	return (suword32(ujobp, (long)ujob));
2834 }
2835 
2836 static struct aiocb_ops aiocb32_ops = {
2837 	.copyin = aiocb32_copyin,
2838 	.fetch_status = aiocb32_fetch_status,
2839 	.fetch_error = aiocb32_fetch_error,
2840 	.store_status = aiocb32_store_status,
2841 	.store_error = aiocb32_store_error,
2842 	.store_kernelinfo = aiocb32_store_kernelinfo,
2843 	.store_aiocb = aiocb32_store_aiocb,
2844 };
2845 
2846 static struct aiocb_ops aiocb32_ops_osigevent = {
2847 	.copyin = aiocb32_copyin_old_sigevent,
2848 	.fetch_status = aiocb32_fetch_status,
2849 	.fetch_error = aiocb32_fetch_error,
2850 	.store_status = aiocb32_store_status,
2851 	.store_error = aiocb32_store_error,
2852 	.store_kernelinfo = aiocb32_store_kernelinfo,
2853 	.store_aiocb = aiocb32_store_aiocb,
2854 };
2855 
2856 int
2857 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2858 {
2859 
2860 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2861 }
2862 
2863 int
2864 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2865 {
2866 	struct timespec32 ts32;
2867 	struct timespec ts, *tsp;
2868 	struct aiocb **ujoblist;
2869 	uint32_t *ujoblist32;
2870 	int error, i;
2871 
2872 	if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
2873 		return (EINVAL);
2874 
2875 	if (uap->timeout) {
2876 		/* Get timespec struct. */
2877 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2878 			return (error);
2879 		CP(ts32, ts, tv_sec);
2880 		CP(ts32, ts, tv_nsec);
2881 		tsp = &ts;
2882 	} else
2883 		tsp = NULL;
2884 
2885 	ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
2886 	ujoblist32 = (uint32_t *)ujoblist;
2887 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2888 	    sizeof(ujoblist32[0]));
2889 	if (error == 0) {
2890 		for (i = uap->nent; i > 0; i--)
2891 			ujoblist[i] = PTRIN(ujoblist32[i]);
2892 
2893 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2894 	}
2895 	uma_zfree(aiol_zone, ujoblist);
2896 	return (error);
2897 }
2898 
2899 int
2900 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
2901 {
2902 
2903 	return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
2904 }
2905 
2906 int
2907 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2908 {
2909 
2910 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2911 }
2912 
2913 int
2914 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
2915 {
2916 
2917 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2918 	    &aiocb32_ops_osigevent));
2919 }
2920 
2921 int
2922 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2923 {
2924 
2925 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2926 	    &aiocb32_ops));
2927 }
2928 
2929 int
2930 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
2931 {
2932 
2933 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2934 	    &aiocb32_ops_osigevent));
2935 }
2936 
2937 int
2938 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2939 {
2940 
2941 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2942 	    &aiocb32_ops));
2943 }
2944 
2945 int
2946 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2947 {
2948 
2949 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2950 	    &aiocb32_ops));
2951 }
2952 
2953 int
2954 freebsd32_aio_waitcomplete(struct thread *td,
2955     struct freebsd32_aio_waitcomplete_args *uap)
2956 {
2957 	struct timespec32 ts32;
2958 	struct timespec ts, *tsp;
2959 	int error;
2960 
2961 	if (uap->timeout) {
2962 		/* Get timespec struct. */
2963 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
2964 		if (error)
2965 			return (error);
2966 		CP(ts32, ts, tv_sec);
2967 		CP(ts32, ts, tv_nsec);
2968 		tsp = &ts;
2969 	} else
2970 		tsp = NULL;
2971 
2972 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
2973 	    &aiocb32_ops));
2974 }
2975 
2976 int
2977 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
2978 {
2979 
2980 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
2981 	    &aiocb32_ops));
2982 }
2983 
2984 int
2985 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
2986 {
2987 	struct aiocb **acb_list;
2988 	struct sigevent *sigp, sig;
2989 	struct osigevent32 osig;
2990 	uint32_t *acb_list32;
2991 	int error, i, nent;
2992 
2993 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2994 		return (EINVAL);
2995 
2996 	nent = uap->nent;
2997 	if (nent < 0 || nent > AIO_LISTIO_MAX)
2998 		return (EINVAL);
2999 
3000 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3001 		error = copyin(uap->sig, &osig, sizeof(osig));
3002 		if (error)
3003 			return (error);
3004 		error = convert_old_sigevent32(&osig, &sig);
3005 		if (error)
3006 			return (error);
3007 		sigp = &sig;
3008 	} else
3009 		sigp = NULL;
3010 
3011 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3012 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3013 	if (error) {
3014 		free(acb_list32, M_LIO);
3015 		return (error);
3016 	}
3017 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3018 	for (i = 0; i < nent; i++)
3019 		acb_list[i] = PTRIN(acb_list32[i]);
3020 	free(acb_list32, M_LIO);
3021 
3022 	error = kern_lio_listio(td, uap->mode,
3023 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3024 	    &aiocb32_ops_osigevent);
3025 	free(acb_list, M_LIO);
3026 	return (error);
3027 }
3028 
3029 int
3030 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3031 {
3032 	struct aiocb **acb_list;
3033 	struct sigevent *sigp, sig;
3034 	struct sigevent32 sig32;
3035 	uint32_t *acb_list32;
3036 	int error, i, nent;
3037 
3038 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3039 		return (EINVAL);
3040 
3041 	nent = uap->nent;
3042 	if (nent < 0 || nent > AIO_LISTIO_MAX)
3043 		return (EINVAL);
3044 
3045 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3046 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3047 		if (error)
3048 			return (error);
3049 		error = convert_sigevent32(&sig32, &sig);
3050 		if (error)
3051 			return (error);
3052 		sigp = &sig;
3053 	} else
3054 		sigp = NULL;
3055 
3056 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3057 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3058 	if (error) {
3059 		free(acb_list32, M_LIO);
3060 		return (error);
3061 	}
3062 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3063 	for (i = 0; i < nent; i++)
3064 		acb_list[i] = PTRIN(acb_list32[i]);
3065 	free(acb_list32, M_LIO);
3066 
3067 	error = kern_lio_listio(td, uap->mode,
3068 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3069 	    &aiocb32_ops);
3070 	free(acb_list, M_LIO);
3071 	return (error);
3072 }
3073 
3074 #endif
3075