1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/eventhandler.h> 32 #include <sys/sysproto.h> 33 #include <sys/filedesc.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/kthread.h> 37 #include <sys/fcntl.h> 38 #include <sys/file.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/unistd.h> 43 #include <sys/posix4.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/protosw.h> 48 #include <sys/sema.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/syscall.h> 52 #include <sys/sysent.h> 53 #include <sys/sysctl.h> 54 #include <sys/sx.h> 55 #include <sys/taskqueue.h> 56 #include <sys/vnode.h> 57 #include <sys/conf.h> 58 #include <sys/event.h> 59 #include <sys/mount.h> 60 61 #include <machine/atomic.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/vm_object.h> 68 #include <vm/uma.h> 69 #include <sys/aio.h> 70 71 #include "opt_vfs_aio.h" 72 73 /* 74 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 75 * overflow. (XXX will be removed soon.) 76 */ 77 static u_long jobrefid; 78 79 /* 80 * Counter for aio_fsync. 81 */ 82 static uint64_t jobseqno; 83 84 #define JOBST_NULL 0 85 #define JOBST_JOBQSOCK 1 86 #define JOBST_JOBQGLOBAL 2 87 #define JOBST_JOBRUNNING 3 88 #define JOBST_JOBFINISHED 4 89 #define JOBST_JOBQBUF 5 90 #define JOBST_JOBQSYNC 6 91 92 #ifndef MAX_AIO_PER_PROC 93 #define MAX_AIO_PER_PROC 32 94 #endif 95 96 #ifndef MAX_AIO_QUEUE_PER_PROC 97 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 98 #endif 99 100 #ifndef MAX_AIO_PROCS 101 #define MAX_AIO_PROCS 32 102 #endif 103 104 #ifndef MAX_AIO_QUEUE 105 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 106 #endif 107 108 #ifndef TARGET_AIO_PROCS 109 #define TARGET_AIO_PROCS 4 110 #endif 111 112 #ifndef MAX_BUF_AIO 113 #define MAX_BUF_AIO 16 114 #endif 115 116 #ifndef AIOD_TIMEOUT_DEFAULT 117 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 118 #endif 119 120 #ifndef AIOD_LIFETIME_DEFAULT 121 #define AIOD_LIFETIME_DEFAULT (30 * hz) 122 #endif 123 124 FEATURE(aio, "Asynchronous I/O"); 125 126 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 129 130 static int max_aio_procs = MAX_AIO_PROCS; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 132 CTLFLAG_RW, &max_aio_procs, 0, 133 "Maximum number of kernel threads to use for handling async IO "); 134 135 static int num_aio_procs = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 137 CTLFLAG_RD, &num_aio_procs, 0, 138 "Number of presently active kernel threads for async IO"); 139 140 /* 141 * The code will adjust the actual number of AIO processes towards this 142 * number when it gets a chance. 143 */ 144 static int target_aio_procs = TARGET_AIO_PROCS; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 146 0, "Preferred number of ready kernel threads for async IO"); 147 148 static int max_queue_count = MAX_AIO_QUEUE; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 150 "Maximum number of aio requests to queue, globally"); 151 152 static int num_queue_count = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 154 "Number of queued aio requests"); 155 156 static int num_buf_aio = 0; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 158 "Number of aio requests presently handled by the buf subsystem"); 159 160 /* Number of async I/O thread in the process of being started */ 161 /* XXX This should be local to aio_aqueue() */ 162 static int num_aio_resv_start = 0; 163 164 static int aiod_timeout; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 166 "Timeout value for synchronous aio operations"); 167 168 static int aiod_lifetime; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 170 "Maximum lifetime for idle aiod"); 171 172 static int unloadable = 0; 173 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 174 "Allow unload of aio (not recommended)"); 175 176 177 static int max_aio_per_proc = MAX_AIO_PER_PROC; 178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 179 0, "Maximum active aio requests per process (stored in the process)"); 180 181 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 182 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 183 &max_aio_queue_per_proc, 0, 184 "Maximum queued aio requests per process (stored in the process)"); 185 186 static int max_buf_aio = MAX_BUF_AIO; 187 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 188 "Maximum buf aio requests per process (stored in the process)"); 189 190 typedef struct oaiocb { 191 int aio_fildes; /* File descriptor */ 192 off_t aio_offset; /* File offset for I/O */ 193 volatile void *aio_buf; /* I/O buffer in process space */ 194 size_t aio_nbytes; /* Number of bytes for I/O */ 195 struct osigevent aio_sigevent; /* Signal to deliver */ 196 int aio_lio_opcode; /* LIO opcode */ 197 int aio_reqprio; /* Request priority -- ignored */ 198 struct __aiocb_private _aiocb_private; 199 } oaiocb_t; 200 201 /* 202 * Below is a key of locks used to protect each member of struct aiocblist 203 * aioliojob and kaioinfo and any backends. 204 * 205 * * - need not protected 206 * a - locked by kaioinfo lock 207 * b - locked by backend lock, the backend lock can be null in some cases, 208 * for example, BIO belongs to this type, in this case, proc lock is 209 * reused. 210 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 211 */ 212 213 /* 214 * Current, there is only two backends: BIO and generic file I/O. 215 * socket I/O is served by generic file I/O, this is not a good idea, since 216 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 217 * threads, if there is no thread to serve socket I/O, the socket I/O will be 218 * delayed too long or starved, we should create some threads dedicated to 219 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 220 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 221 * structure is not safe because there is race between userland and aio 222 * daemons. 223 */ 224 225 struct aiocblist { 226 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 227 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 228 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 229 int jobflags; /* (a) job flags */ 230 int jobstate; /* (b) job state */ 231 int inputcharge; /* (*) input blockes */ 232 int outputcharge; /* (*) output blockes */ 233 struct buf *bp; /* (*) private to BIO backend, 234 * buffer pointer 235 */ 236 struct proc *userproc; /* (*) user process */ 237 struct ucred *cred; /* (*) active credential when created */ 238 struct file *fd_file; /* (*) pointer to file structure */ 239 struct aioliojob *lio; /* (*) optional lio job */ 240 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 241 struct knlist klist; /* (a) list of knotes */ 242 struct aiocb uaiocb; /* (*) kernel I/O control block */ 243 ksiginfo_t ksi; /* (a) realtime signal info */ 244 struct task biotask; /* (*) private to BIO backend */ 245 uint64_t seqno; /* (*) job number */ 246 int pending; /* (a) number of pending I/O, aio_fsync only */ 247 }; 248 249 /* jobflags */ 250 #define AIOCBLIST_DONE 0x01 251 #define AIOCBLIST_BUFDONE 0x02 252 #define AIOCBLIST_RUNDOWN 0x04 253 #define AIOCBLIST_CHECKSYNC 0x08 254 255 /* 256 * AIO process info 257 */ 258 #define AIOP_FREE 0x1 /* proc on free queue */ 259 260 struct aiothreadlist { 261 int aiothreadflags; /* (c) AIO proc flags */ 262 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 263 struct thread *aiothread; /* (*) the AIO thread */ 264 }; 265 266 /* 267 * data-structure for lio signal management 268 */ 269 struct aioliojob { 270 int lioj_flags; /* (a) listio flags */ 271 int lioj_count; /* (a) listio flags */ 272 int lioj_finished_count; /* (a) listio flags */ 273 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 274 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 275 struct knlist klist; /* (a) list of knotes */ 276 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 277 }; 278 279 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 280 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 281 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 282 283 /* 284 * per process aio data structure 285 */ 286 struct kaioinfo { 287 struct mtx kaio_mtx; /* the lock to protect this struct */ 288 int kaio_flags; /* (a) per process kaio flags */ 289 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 290 int kaio_active_count; /* (c) number of currently used AIOs */ 291 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 292 int kaio_count; /* (a) size of AIO queue */ 293 int kaio_ballowed_count; /* (*) maximum number of buffers */ 294 int kaio_buffer_count; /* (a) number of physio buffers */ 295 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 296 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 297 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 298 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 299 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 300 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 301 * NOT USED YET. 302 */ 303 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 304 struct task kaio_task; /* (*) task to kick aio threads */ 305 }; 306 307 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 308 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 309 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 310 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 311 312 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 313 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 314 315 /* 316 * Operations used to interact with userland aio control blocks. 317 * Different ABIs provide their own operations. 318 */ 319 struct aiocb_ops { 320 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 321 long (*fetch_status)(struct aiocb *ujob); 322 long (*fetch_error)(struct aiocb *ujob); 323 int (*store_status)(struct aiocb *ujob, long status); 324 int (*store_error)(struct aiocb *ujob, long error); 325 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 326 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 327 }; 328 329 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 330 static struct sema aio_newproc_sem; 331 static struct mtx aio_job_mtx; 332 static struct mtx aio_sock_mtx; 333 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 334 static struct unrhdr *aiod_unr; 335 336 void aio_init_aioinfo(struct proc *p); 337 static void aio_onceonly(void); 338 static int aio_free_entry(struct aiocblist *aiocbe); 339 static void aio_process(struct aiocblist *aiocbe); 340 static int aio_newproc(int *); 341 int aio_aqueue(struct thread *td, struct aiocb *job, 342 struct aioliojob *lio, int type, struct aiocb_ops *ops); 343 static void aio_physwakeup(struct buf *bp); 344 static void aio_proc_rundown(void *arg, struct proc *p); 345 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 346 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 347 static void biohelper(void *, int); 348 static void aio_daemon(void *param); 349 static void aio_swake_cb(struct socket *, struct sockbuf *); 350 static int aio_unload(void); 351 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 352 #define DONE_BUF 1 353 #define DONE_QUEUE 2 354 static int aio_kick(struct proc *userp); 355 static void aio_kick_nowait(struct proc *userp); 356 static void aio_kick_helper(void *context, int pending); 357 static int filt_aioattach(struct knote *kn); 358 static void filt_aiodetach(struct knote *kn); 359 static int filt_aio(struct knote *kn, long hint); 360 static int filt_lioattach(struct knote *kn); 361 static void filt_liodetach(struct knote *kn); 362 static int filt_lio(struct knote *kn, long hint); 363 364 /* 365 * Zones for: 366 * kaio Per process async io info 367 * aiop async io thread data 368 * aiocb async io jobs 369 * aiol list io job pointer - internal to aio_suspend XXX 370 * aiolio list io jobs 371 */ 372 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 373 374 /* kqueue filters for aio */ 375 static struct filterops aio_filtops = 376 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 377 static struct filterops lio_filtops = 378 { 0, filt_lioattach, filt_liodetach, filt_lio }; 379 380 static eventhandler_tag exit_tag, exec_tag; 381 382 TASKQUEUE_DEFINE_THREAD(aiod_bio); 383 384 /* 385 * Main operations function for use as a kernel module. 386 */ 387 static int 388 aio_modload(struct module *module, int cmd, void *arg) 389 { 390 int error = 0; 391 392 switch (cmd) { 393 case MOD_LOAD: 394 aio_onceonly(); 395 break; 396 case MOD_UNLOAD: 397 error = aio_unload(); 398 break; 399 case MOD_SHUTDOWN: 400 break; 401 default: 402 error = EINVAL; 403 break; 404 } 405 return (error); 406 } 407 408 static moduledata_t aio_mod = { 409 "aio", 410 &aio_modload, 411 NULL 412 }; 413 414 SYSCALL_MODULE_HELPER(aio_cancel); 415 SYSCALL_MODULE_HELPER(aio_error); 416 SYSCALL_MODULE_HELPER(aio_fsync); 417 SYSCALL_MODULE_HELPER(aio_read); 418 SYSCALL_MODULE_HELPER(aio_return); 419 SYSCALL_MODULE_HELPER(aio_suspend); 420 SYSCALL_MODULE_HELPER(aio_waitcomplete); 421 SYSCALL_MODULE_HELPER(aio_write); 422 SYSCALL_MODULE_HELPER(lio_listio); 423 SYSCALL_MODULE_HELPER(oaio_read); 424 SYSCALL_MODULE_HELPER(oaio_write); 425 SYSCALL_MODULE_HELPER(olio_listio); 426 427 DECLARE_MODULE(aio, aio_mod, 428 SI_SUB_VFS, SI_ORDER_ANY); 429 MODULE_VERSION(aio, 1); 430 431 /* 432 * Startup initialization 433 */ 434 static void 435 aio_onceonly(void) 436 { 437 438 /* XXX: should probably just use so->callback */ 439 aio_swake = &aio_swake_cb; 440 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 441 EVENTHANDLER_PRI_ANY); 442 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 443 EVENTHANDLER_PRI_ANY); 444 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 445 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 446 TAILQ_INIT(&aio_freeproc); 447 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 448 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 449 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 450 TAILQ_INIT(&aio_jobs); 451 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 452 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 453 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 454 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 455 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 456 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 457 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 458 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 459 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 460 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 461 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 462 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 463 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 464 jobrefid = 1; 465 async_io_version = _POSIX_VERSION; 466 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 467 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 468 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 469 } 470 471 /* 472 * Callback for unload of AIO when used as a module. 473 */ 474 static int 475 aio_unload(void) 476 { 477 int error; 478 479 /* 480 * XXX: no unloads by default, it's too dangerous. 481 * perhaps we could do it if locked out callers and then 482 * did an aio_proc_rundown() on each process. 483 * 484 * jhb: aio_proc_rundown() needs to run on curproc though, 485 * so I don't think that would fly. 486 */ 487 if (!unloadable) 488 return (EOPNOTSUPP); 489 490 error = kqueue_del_filteropts(EVFILT_AIO); 491 if (error) 492 return error; 493 error = kqueue_del_filteropts(EVFILT_LIO); 494 if (error) 495 return error; 496 async_io_version = 0; 497 aio_swake = NULL; 498 taskqueue_free(taskqueue_aiod_bio); 499 delete_unrhdr(aiod_unr); 500 uma_zdestroy(kaio_zone); 501 uma_zdestroy(aiop_zone); 502 uma_zdestroy(aiocb_zone); 503 uma_zdestroy(aiol_zone); 504 uma_zdestroy(aiolio_zone); 505 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 506 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 507 mtx_destroy(&aio_job_mtx); 508 mtx_destroy(&aio_sock_mtx); 509 sema_destroy(&aio_newproc_sem); 510 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 511 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 512 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 513 return (0); 514 } 515 516 /* 517 * Init the per-process aioinfo structure. The aioinfo limits are set 518 * per-process for user limit (resource) management. 519 */ 520 void 521 aio_init_aioinfo(struct proc *p) 522 { 523 struct kaioinfo *ki; 524 525 ki = uma_zalloc(kaio_zone, M_WAITOK); 526 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 527 ki->kaio_flags = 0; 528 ki->kaio_maxactive_count = max_aio_per_proc; 529 ki->kaio_active_count = 0; 530 ki->kaio_qallowed_count = max_aio_queue_per_proc; 531 ki->kaio_count = 0; 532 ki->kaio_ballowed_count = max_buf_aio; 533 ki->kaio_buffer_count = 0; 534 TAILQ_INIT(&ki->kaio_all); 535 TAILQ_INIT(&ki->kaio_done); 536 TAILQ_INIT(&ki->kaio_jobqueue); 537 TAILQ_INIT(&ki->kaio_bufqueue); 538 TAILQ_INIT(&ki->kaio_liojoblist); 539 TAILQ_INIT(&ki->kaio_sockqueue); 540 TAILQ_INIT(&ki->kaio_syncqueue); 541 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 542 PROC_LOCK(p); 543 if (p->p_aioinfo == NULL) { 544 p->p_aioinfo = ki; 545 PROC_UNLOCK(p); 546 } else { 547 PROC_UNLOCK(p); 548 mtx_destroy(&ki->kaio_mtx); 549 uma_zfree(kaio_zone, ki); 550 } 551 552 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 553 aio_newproc(NULL); 554 } 555 556 static int 557 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 558 { 559 int ret = 0; 560 561 PROC_LOCK(p); 562 if (!KSI_ONQ(ksi)) { 563 ksi->ksi_code = SI_ASYNCIO; 564 ksi->ksi_flags |= KSI_EXT | KSI_INS; 565 ret = psignal_event(p, sigev, ksi); 566 } 567 PROC_UNLOCK(p); 568 return (ret); 569 } 570 571 /* 572 * Free a job entry. Wait for completion if it is currently active, but don't 573 * delay forever. If we delay, we return a flag that says that we have to 574 * restart the queue scan. 575 */ 576 static int 577 aio_free_entry(struct aiocblist *aiocbe) 578 { 579 struct kaioinfo *ki; 580 struct aioliojob *lj; 581 struct proc *p; 582 583 p = aiocbe->userproc; 584 MPASS(curproc == p); 585 ki = p->p_aioinfo; 586 MPASS(ki != NULL); 587 588 AIO_LOCK_ASSERT(ki, MA_OWNED); 589 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 590 591 atomic_subtract_int(&num_queue_count, 1); 592 593 ki->kaio_count--; 594 MPASS(ki->kaio_count >= 0); 595 596 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 597 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 598 599 lj = aiocbe->lio; 600 if (lj) { 601 lj->lioj_count--; 602 lj->lioj_finished_count--; 603 604 if (lj->lioj_count == 0) { 605 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 606 /* lio is going away, we need to destroy any knotes */ 607 knlist_delete(&lj->klist, curthread, 1); 608 PROC_LOCK(p); 609 sigqueue_take(&lj->lioj_ksi); 610 PROC_UNLOCK(p); 611 uma_zfree(aiolio_zone, lj); 612 } 613 } 614 615 /* aiocbe is going away, we need to destroy any knotes */ 616 knlist_delete(&aiocbe->klist, curthread, 1); 617 PROC_LOCK(p); 618 sigqueue_take(&aiocbe->ksi); 619 PROC_UNLOCK(p); 620 621 MPASS(aiocbe->bp == NULL); 622 aiocbe->jobstate = JOBST_NULL; 623 AIO_UNLOCK(ki); 624 625 /* 626 * The thread argument here is used to find the owning process 627 * and is also passed to fo_close() which may pass it to various 628 * places such as devsw close() routines. Because of that, we 629 * need a thread pointer from the process owning the job that is 630 * persistent and won't disappear out from under us or move to 631 * another process. 632 * 633 * Currently, all the callers of this function call it to remove 634 * an aiocblist from the current process' job list either via a 635 * syscall or due to the current process calling exit() or 636 * execve(). Thus, we know that p == curproc. We also know that 637 * curthread can't exit since we are curthread. 638 * 639 * Therefore, we use curthread as the thread to pass to 640 * knlist_delete(). This does mean that it is possible for the 641 * thread pointer at close time to differ from the thread pointer 642 * at open time, but this is already true of file descriptors in 643 * a multithreaded process. 644 */ 645 fdrop(aiocbe->fd_file, curthread); 646 crfree(aiocbe->cred); 647 uma_zfree(aiocb_zone, aiocbe); 648 AIO_LOCK(ki); 649 650 return (0); 651 } 652 653 static void 654 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 655 { 656 aio_proc_rundown(arg, p); 657 } 658 659 /* 660 * Rundown the jobs for a given process. 661 */ 662 static void 663 aio_proc_rundown(void *arg, struct proc *p) 664 { 665 struct kaioinfo *ki; 666 struct aioliojob *lj; 667 struct aiocblist *cbe, *cbn; 668 struct file *fp; 669 struct socket *so; 670 int remove; 671 672 KASSERT(curthread->td_proc == p, 673 ("%s: called on non-curproc", __func__)); 674 ki = p->p_aioinfo; 675 if (ki == NULL) 676 return; 677 678 AIO_LOCK(ki); 679 ki->kaio_flags |= KAIO_RUNDOWN; 680 681 restart: 682 683 /* 684 * Try to cancel all pending requests. This code simulates 685 * aio_cancel on all pending I/O requests. 686 */ 687 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 688 remove = 0; 689 mtx_lock(&aio_job_mtx); 690 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 691 TAILQ_REMOVE(&aio_jobs, cbe, list); 692 remove = 1; 693 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 694 fp = cbe->fd_file; 695 MPASS(fp->f_type == DTYPE_SOCKET); 696 so = fp->f_data; 697 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 698 remove = 1; 699 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 700 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 701 remove = 1; 702 } 703 mtx_unlock(&aio_job_mtx); 704 705 if (remove) { 706 cbe->jobstate = JOBST_JOBFINISHED; 707 cbe->uaiocb._aiocb_private.status = -1; 708 cbe->uaiocb._aiocb_private.error = ECANCELED; 709 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 710 aio_bio_done_notify(p, cbe, DONE_QUEUE); 711 } 712 } 713 714 /* Wait for all running I/O to be finished */ 715 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 716 TAILQ_FIRST(&ki->kaio_jobqueue)) { 717 ki->kaio_flags |= KAIO_WAKEUP; 718 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 719 goto restart; 720 } 721 722 /* Free all completed I/O requests. */ 723 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 724 aio_free_entry(cbe); 725 726 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 727 if (lj->lioj_count == 0) { 728 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 729 knlist_delete(&lj->klist, curthread, 1); 730 PROC_LOCK(p); 731 sigqueue_take(&lj->lioj_ksi); 732 PROC_UNLOCK(p); 733 uma_zfree(aiolio_zone, lj); 734 } else { 735 panic("LIO job not cleaned up: C:%d, FC:%d\n", 736 lj->lioj_count, lj->lioj_finished_count); 737 } 738 } 739 AIO_UNLOCK(ki); 740 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 741 mtx_destroy(&ki->kaio_mtx); 742 uma_zfree(kaio_zone, ki); 743 p->p_aioinfo = NULL; 744 } 745 746 /* 747 * Select a job to run (called by an AIO daemon). 748 */ 749 static struct aiocblist * 750 aio_selectjob(struct aiothreadlist *aiop) 751 { 752 struct aiocblist *aiocbe; 753 struct kaioinfo *ki; 754 struct proc *userp; 755 756 mtx_assert(&aio_job_mtx, MA_OWNED); 757 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 758 userp = aiocbe->userproc; 759 ki = userp->p_aioinfo; 760 761 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 762 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 763 /* Account for currently active jobs. */ 764 ki->kaio_active_count++; 765 aiocbe->jobstate = JOBST_JOBRUNNING; 766 break; 767 } 768 } 769 return (aiocbe); 770 } 771 772 /* 773 * Move all data to a permanent storage device, this code 774 * simulates fsync syscall. 775 */ 776 static int 777 aio_fsync_vnode(struct thread *td, struct vnode *vp) 778 { 779 struct mount *mp; 780 int vfslocked; 781 int error; 782 783 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 784 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 785 goto drop; 786 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 787 if (vp->v_object != NULL) { 788 VM_OBJECT_LOCK(vp->v_object); 789 vm_object_page_clean(vp->v_object, 0, 0, 0); 790 VM_OBJECT_UNLOCK(vp->v_object); 791 } 792 error = VOP_FSYNC(vp, MNT_WAIT, td); 793 794 VOP_UNLOCK(vp, 0); 795 vn_finished_write(mp); 796 drop: 797 VFS_UNLOCK_GIANT(vfslocked); 798 return (error); 799 } 800 801 /* 802 * The AIO processing activity. This is the code that does the I/O request for 803 * the non-physio version of the operations. The normal vn operations are used, 804 * and this code should work in all instances for every type of file, including 805 * pipes, sockets, fifos, and regular files. 806 * 807 * XXX I don't think it works well for socket, pipe, and fifo. 808 */ 809 static void 810 aio_process(struct aiocblist *aiocbe) 811 { 812 struct ucred *td_savedcred; 813 struct thread *td; 814 struct aiocb *cb; 815 struct file *fp; 816 struct socket *so; 817 struct uio auio; 818 struct iovec aiov; 819 int cnt; 820 int error; 821 int oublock_st, oublock_end; 822 int inblock_st, inblock_end; 823 824 td = curthread; 825 td_savedcred = td->td_ucred; 826 td->td_ucred = aiocbe->cred; 827 cb = &aiocbe->uaiocb; 828 fp = aiocbe->fd_file; 829 830 if (cb->aio_lio_opcode == LIO_SYNC) { 831 error = 0; 832 cnt = 0; 833 if (fp->f_vnode != NULL) 834 error = aio_fsync_vnode(td, fp->f_vnode); 835 cb->_aiocb_private.error = error; 836 cb->_aiocb_private.status = 0; 837 td->td_ucred = td_savedcred; 838 return; 839 } 840 841 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 842 aiov.iov_len = cb->aio_nbytes; 843 844 auio.uio_iov = &aiov; 845 auio.uio_iovcnt = 1; 846 auio.uio_offset = cb->aio_offset; 847 auio.uio_resid = cb->aio_nbytes; 848 cnt = cb->aio_nbytes; 849 auio.uio_segflg = UIO_USERSPACE; 850 auio.uio_td = td; 851 852 inblock_st = td->td_ru.ru_inblock; 853 oublock_st = td->td_ru.ru_oublock; 854 /* 855 * aio_aqueue() acquires a reference to the file that is 856 * released in aio_free_entry(). 857 */ 858 if (cb->aio_lio_opcode == LIO_READ) { 859 auio.uio_rw = UIO_READ; 860 if (auio.uio_resid == 0) 861 error = 0; 862 else 863 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 864 } else { 865 if (fp->f_type == DTYPE_VNODE) 866 bwillwrite(); 867 auio.uio_rw = UIO_WRITE; 868 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 869 } 870 inblock_end = td->td_ru.ru_inblock; 871 oublock_end = td->td_ru.ru_oublock; 872 873 aiocbe->inputcharge = inblock_end - inblock_st; 874 aiocbe->outputcharge = oublock_end - oublock_st; 875 876 if ((error) && (auio.uio_resid != cnt)) { 877 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 878 error = 0; 879 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 880 int sigpipe = 1; 881 if (fp->f_type == DTYPE_SOCKET) { 882 so = fp->f_data; 883 if (so->so_options & SO_NOSIGPIPE) 884 sigpipe = 0; 885 } 886 if (sigpipe) { 887 PROC_LOCK(aiocbe->userproc); 888 psignal(aiocbe->userproc, SIGPIPE); 889 PROC_UNLOCK(aiocbe->userproc); 890 } 891 } 892 } 893 894 cnt -= auio.uio_resid; 895 cb->_aiocb_private.error = error; 896 cb->_aiocb_private.status = cnt; 897 td->td_ucred = td_savedcred; 898 } 899 900 static void 901 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 902 { 903 struct aioliojob *lj; 904 struct kaioinfo *ki; 905 struct aiocblist *scb, *scbn; 906 int lj_done; 907 908 ki = userp->p_aioinfo; 909 AIO_LOCK_ASSERT(ki, MA_OWNED); 910 lj = aiocbe->lio; 911 lj_done = 0; 912 if (lj) { 913 lj->lioj_finished_count++; 914 if (lj->lioj_count == lj->lioj_finished_count) 915 lj_done = 1; 916 } 917 if (type == DONE_QUEUE) { 918 aiocbe->jobflags |= AIOCBLIST_DONE; 919 } else { 920 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 921 } 922 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 923 aiocbe->jobstate = JOBST_JOBFINISHED; 924 925 if (ki->kaio_flags & KAIO_RUNDOWN) 926 goto notification_done; 927 928 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 929 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 930 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 931 932 KNOTE_LOCKED(&aiocbe->klist, 1); 933 934 if (lj_done) { 935 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 936 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 937 KNOTE_LOCKED(&lj->klist, 1); 938 } 939 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 940 == LIOJ_SIGNAL 941 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 942 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 943 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 944 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 945 } 946 } 947 948 notification_done: 949 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 950 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 951 if (aiocbe->fd_file == scb->fd_file && 952 aiocbe->seqno < scb->seqno) { 953 if (--scb->pending == 0) { 954 mtx_lock(&aio_job_mtx); 955 scb->jobstate = JOBST_JOBQGLOBAL; 956 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 957 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 958 aio_kick_nowait(userp); 959 mtx_unlock(&aio_job_mtx); 960 } 961 } 962 } 963 } 964 if (ki->kaio_flags & KAIO_WAKEUP) { 965 ki->kaio_flags &= ~KAIO_WAKEUP; 966 wakeup(&userp->p_aioinfo); 967 } 968 } 969 970 /* 971 * The AIO daemon, most of the actual work is done in aio_process, 972 * but the setup (and address space mgmt) is done in this routine. 973 */ 974 static void 975 aio_daemon(void *_id) 976 { 977 struct aiocblist *aiocbe; 978 struct aiothreadlist *aiop; 979 struct kaioinfo *ki; 980 struct proc *curcp, *mycp, *userp; 981 struct vmspace *myvm, *tmpvm; 982 struct thread *td = curthread; 983 int id = (intptr_t)_id; 984 985 /* 986 * Local copies of curproc (cp) and vmspace (myvm) 987 */ 988 mycp = td->td_proc; 989 myvm = mycp->p_vmspace; 990 991 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 992 993 /* 994 * Allocate and ready the aio control info. There is one aiop structure 995 * per daemon. 996 */ 997 aiop = uma_zalloc(aiop_zone, M_WAITOK); 998 aiop->aiothread = td; 999 aiop->aiothreadflags = 0; 1000 1001 /* The daemon resides in its own pgrp. */ 1002 setsid(td, NULL); 1003 1004 /* 1005 * Wakeup parent process. (Parent sleeps to keep from blasting away 1006 * and creating too many daemons.) 1007 */ 1008 sema_post(&aio_newproc_sem); 1009 1010 mtx_lock(&aio_job_mtx); 1011 for (;;) { 1012 /* 1013 * curcp is the current daemon process context. 1014 * userp is the current user process context. 1015 */ 1016 curcp = mycp; 1017 1018 /* 1019 * Take daemon off of free queue 1020 */ 1021 if (aiop->aiothreadflags & AIOP_FREE) { 1022 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1023 aiop->aiothreadflags &= ~AIOP_FREE; 1024 } 1025 1026 /* 1027 * Check for jobs. 1028 */ 1029 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1030 mtx_unlock(&aio_job_mtx); 1031 userp = aiocbe->userproc; 1032 1033 /* 1034 * Connect to process address space for user program. 1035 */ 1036 if (userp != curcp) { 1037 /* 1038 * Save the current address space that we are 1039 * connected to. 1040 */ 1041 tmpvm = mycp->p_vmspace; 1042 1043 /* 1044 * Point to the new user address space, and 1045 * refer to it. 1046 */ 1047 mycp->p_vmspace = userp->p_vmspace; 1048 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1049 1050 /* Activate the new mapping. */ 1051 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1052 1053 /* 1054 * If the old address space wasn't the daemons 1055 * own address space, then we need to remove the 1056 * daemon's reference from the other process 1057 * that it was acting on behalf of. 1058 */ 1059 if (tmpvm != myvm) { 1060 vmspace_free(tmpvm); 1061 } 1062 curcp = userp; 1063 } 1064 1065 ki = userp->p_aioinfo; 1066 1067 /* Do the I/O function. */ 1068 aio_process(aiocbe); 1069 1070 mtx_lock(&aio_job_mtx); 1071 /* Decrement the active job count. */ 1072 ki->kaio_active_count--; 1073 mtx_unlock(&aio_job_mtx); 1074 1075 AIO_LOCK(ki); 1076 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1077 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1078 AIO_UNLOCK(ki); 1079 1080 mtx_lock(&aio_job_mtx); 1081 } 1082 1083 /* 1084 * Disconnect from user address space. 1085 */ 1086 if (curcp != mycp) { 1087 1088 mtx_unlock(&aio_job_mtx); 1089 1090 /* Get the user address space to disconnect from. */ 1091 tmpvm = mycp->p_vmspace; 1092 1093 /* Get original address space for daemon. */ 1094 mycp->p_vmspace = myvm; 1095 1096 /* Activate the daemon's address space. */ 1097 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1098 #ifdef DIAGNOSTIC 1099 if (tmpvm == myvm) { 1100 printf("AIOD: vmspace problem -- %d\n", 1101 mycp->p_pid); 1102 } 1103 #endif 1104 /* Remove our vmspace reference. */ 1105 vmspace_free(tmpvm); 1106 1107 curcp = mycp; 1108 1109 mtx_lock(&aio_job_mtx); 1110 /* 1111 * We have to restart to avoid race, we only sleep if 1112 * no job can be selected, that should be 1113 * curcp == mycp. 1114 */ 1115 continue; 1116 } 1117 1118 mtx_assert(&aio_job_mtx, MA_OWNED); 1119 1120 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1121 aiop->aiothreadflags |= AIOP_FREE; 1122 1123 /* 1124 * If daemon is inactive for a long time, allow it to exit, 1125 * thereby freeing resources. 1126 */ 1127 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1128 aiod_lifetime)) { 1129 if (TAILQ_EMPTY(&aio_jobs)) { 1130 if ((aiop->aiothreadflags & AIOP_FREE) && 1131 (num_aio_procs > target_aio_procs)) { 1132 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1133 num_aio_procs--; 1134 mtx_unlock(&aio_job_mtx); 1135 uma_zfree(aiop_zone, aiop); 1136 free_unr(aiod_unr, id); 1137 #ifdef DIAGNOSTIC 1138 if (mycp->p_vmspace->vm_refcnt <= 1) { 1139 printf("AIOD: bad vm refcnt for" 1140 " exiting daemon: %d\n", 1141 mycp->p_vmspace->vm_refcnt); 1142 } 1143 #endif 1144 kproc_exit(0); 1145 } 1146 } 1147 } 1148 } 1149 mtx_unlock(&aio_job_mtx); 1150 panic("shouldn't be here\n"); 1151 } 1152 1153 /* 1154 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1155 * AIO daemon modifies its environment itself. 1156 */ 1157 static int 1158 aio_newproc(int *start) 1159 { 1160 int error; 1161 struct proc *p; 1162 int id; 1163 1164 id = alloc_unr(aiod_unr); 1165 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1166 RFNOWAIT, 0, "aiod%d", id); 1167 if (error == 0) { 1168 /* 1169 * Wait until daemon is started. 1170 */ 1171 sema_wait(&aio_newproc_sem); 1172 mtx_lock(&aio_job_mtx); 1173 num_aio_procs++; 1174 if (start != NULL) 1175 (*start)--; 1176 mtx_unlock(&aio_job_mtx); 1177 } else { 1178 free_unr(aiod_unr, id); 1179 } 1180 return (error); 1181 } 1182 1183 /* 1184 * Try the high-performance, low-overhead physio method for eligible 1185 * VCHR devices. This method doesn't use an aio helper thread, and 1186 * thus has very low overhead. 1187 * 1188 * Assumes that the caller, aio_aqueue(), has incremented the file 1189 * structure's reference count, preventing its deallocation for the 1190 * duration of this call. 1191 */ 1192 static int 1193 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1194 { 1195 struct aiocb *cb; 1196 struct file *fp; 1197 struct buf *bp; 1198 struct vnode *vp; 1199 struct kaioinfo *ki; 1200 struct aioliojob *lj; 1201 int error; 1202 1203 cb = &aiocbe->uaiocb; 1204 fp = aiocbe->fd_file; 1205 1206 if (fp->f_type != DTYPE_VNODE) 1207 return (-1); 1208 1209 vp = fp->f_vnode; 1210 1211 /* 1212 * If its not a disk, we don't want to return a positive error. 1213 * It causes the aio code to not fall through to try the thread 1214 * way when you're talking to a regular file. 1215 */ 1216 if (!vn_isdisk(vp, &error)) { 1217 if (error == ENOTBLK) 1218 return (-1); 1219 else 1220 return (error); 1221 } 1222 1223 if (vp->v_bufobj.bo_bsize == 0) 1224 return (-1); 1225 1226 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1227 return (-1); 1228 1229 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1230 return (-1); 1231 1232 if (cb->aio_nbytes > 1233 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1234 return (-1); 1235 1236 ki = p->p_aioinfo; 1237 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1238 return (-1); 1239 1240 /* Create and build a buffer header for a transfer. */ 1241 bp = (struct buf *)getpbuf(NULL); 1242 BUF_KERNPROC(bp); 1243 1244 AIO_LOCK(ki); 1245 ki->kaio_count++; 1246 ki->kaio_buffer_count++; 1247 lj = aiocbe->lio; 1248 if (lj) 1249 lj->lioj_count++; 1250 AIO_UNLOCK(ki); 1251 1252 /* 1253 * Get a copy of the kva from the physical buffer. 1254 */ 1255 error = 0; 1256 1257 bp->b_bcount = cb->aio_nbytes; 1258 bp->b_bufsize = cb->aio_nbytes; 1259 bp->b_iodone = aio_physwakeup; 1260 bp->b_saveaddr = bp->b_data; 1261 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1262 bp->b_offset = cb->aio_offset; 1263 bp->b_iooffset = cb->aio_offset; 1264 bp->b_blkno = btodb(cb->aio_offset); 1265 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1266 1267 /* 1268 * Bring buffer into kernel space. 1269 */ 1270 if (vmapbuf(bp) < 0) { 1271 error = EFAULT; 1272 goto doerror; 1273 } 1274 1275 AIO_LOCK(ki); 1276 aiocbe->bp = bp; 1277 bp->b_caller1 = (void *)aiocbe; 1278 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1279 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1280 aiocbe->jobstate = JOBST_JOBQBUF; 1281 cb->_aiocb_private.status = cb->aio_nbytes; 1282 AIO_UNLOCK(ki); 1283 1284 atomic_add_int(&num_queue_count, 1); 1285 atomic_add_int(&num_buf_aio, 1); 1286 1287 bp->b_error = 0; 1288 1289 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1290 1291 /* Perform transfer. */ 1292 dev_strategy(vp->v_rdev, bp); 1293 return (0); 1294 1295 doerror: 1296 AIO_LOCK(ki); 1297 ki->kaio_count--; 1298 ki->kaio_buffer_count--; 1299 if (lj) 1300 lj->lioj_count--; 1301 aiocbe->bp = NULL; 1302 AIO_UNLOCK(ki); 1303 relpbuf(bp, NULL); 1304 return (error); 1305 } 1306 1307 /* 1308 * Wake up aio requests that may be serviceable now. 1309 */ 1310 static void 1311 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1312 { 1313 struct aiocblist *cb, *cbn; 1314 int opcode; 1315 1316 if (sb == &so->so_snd) 1317 opcode = LIO_WRITE; 1318 else 1319 opcode = LIO_READ; 1320 1321 SOCKBUF_LOCK(sb); 1322 sb->sb_flags &= ~SB_AIO; 1323 mtx_lock(&aio_job_mtx); 1324 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1325 if (opcode == cb->uaiocb.aio_lio_opcode) { 1326 if (cb->jobstate != JOBST_JOBQSOCK) 1327 panic("invalid queue value"); 1328 /* XXX 1329 * We don't have actual sockets backend yet, 1330 * so we simply move the requests to the generic 1331 * file I/O backend. 1332 */ 1333 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1334 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1335 aio_kick_nowait(cb->userproc); 1336 } 1337 } 1338 mtx_unlock(&aio_job_mtx); 1339 SOCKBUF_UNLOCK(sb); 1340 } 1341 1342 static int 1343 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1344 { 1345 1346 /* 1347 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1348 * supported by AIO with the old sigevent structure. 1349 */ 1350 nsig->sigev_notify = osig->sigev_notify; 1351 switch (nsig->sigev_notify) { 1352 case SIGEV_NONE: 1353 break; 1354 case SIGEV_SIGNAL: 1355 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1356 break; 1357 case SIGEV_KEVENT: 1358 nsig->sigev_notify_kqueue = 1359 osig->__sigev_u.__sigev_notify_kqueue; 1360 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1361 break; 1362 default: 1363 return (EINVAL); 1364 } 1365 return (0); 1366 } 1367 1368 static int 1369 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1370 { 1371 struct oaiocb *ojob; 1372 int error; 1373 1374 bzero(kjob, sizeof(struct aiocb)); 1375 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1376 if (error) 1377 return (error); 1378 ojob = (struct oaiocb *)kjob; 1379 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1380 } 1381 1382 static int 1383 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1384 { 1385 1386 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1387 } 1388 1389 static long 1390 aiocb_fetch_status(struct aiocb *ujob) 1391 { 1392 1393 return (fuword(&ujob->_aiocb_private.status)); 1394 } 1395 1396 static long 1397 aiocb_fetch_error(struct aiocb *ujob) 1398 { 1399 1400 return (fuword(&ujob->_aiocb_private.error)); 1401 } 1402 1403 static int 1404 aiocb_store_status(struct aiocb *ujob, long status) 1405 { 1406 1407 return (suword(&ujob->_aiocb_private.status, status)); 1408 } 1409 1410 static int 1411 aiocb_store_error(struct aiocb *ujob, long error) 1412 { 1413 1414 return (suword(&ujob->_aiocb_private.error, error)); 1415 } 1416 1417 static int 1418 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1419 { 1420 1421 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1422 } 1423 1424 static int 1425 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1426 { 1427 1428 return (suword(ujobp, (long)ujob)); 1429 } 1430 1431 static struct aiocb_ops aiocb_ops = { 1432 .copyin = aiocb_copyin, 1433 .fetch_status = aiocb_fetch_status, 1434 .fetch_error = aiocb_fetch_error, 1435 .store_status = aiocb_store_status, 1436 .store_error = aiocb_store_error, 1437 .store_kernelinfo = aiocb_store_kernelinfo, 1438 .store_aiocb = aiocb_store_aiocb, 1439 }; 1440 1441 static struct aiocb_ops aiocb_ops_osigevent = { 1442 .copyin = aiocb_copyin_old_sigevent, 1443 .fetch_status = aiocb_fetch_status, 1444 .fetch_error = aiocb_fetch_error, 1445 .store_status = aiocb_store_status, 1446 .store_error = aiocb_store_error, 1447 .store_kernelinfo = aiocb_store_kernelinfo, 1448 .store_aiocb = aiocb_store_aiocb, 1449 }; 1450 1451 /* 1452 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1453 * technique is done in this code. 1454 */ 1455 int 1456 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1457 int type, struct aiocb_ops *ops) 1458 { 1459 struct proc *p = td->td_proc; 1460 struct file *fp; 1461 struct socket *so; 1462 struct aiocblist *aiocbe, *cb; 1463 struct kaioinfo *ki; 1464 struct kevent kev; 1465 struct sockbuf *sb; 1466 int opcode; 1467 int error; 1468 int fd, kqfd; 1469 int jid; 1470 1471 if (p->p_aioinfo == NULL) 1472 aio_init_aioinfo(p); 1473 1474 ki = p->p_aioinfo; 1475 1476 ops->store_status(job, -1); 1477 ops->store_error(job, 0); 1478 ops->store_kernelinfo(job, -1); 1479 1480 if (num_queue_count >= max_queue_count || 1481 ki->kaio_count >= ki->kaio_qallowed_count) { 1482 ops->store_error(job, EAGAIN); 1483 return (EAGAIN); 1484 } 1485 1486 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1487 aiocbe->inputcharge = 0; 1488 aiocbe->outputcharge = 0; 1489 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1490 1491 error = ops->copyin(job, &aiocbe->uaiocb); 1492 if (error) { 1493 ops->store_error(job, error); 1494 uma_zfree(aiocb_zone, aiocbe); 1495 return (error); 1496 } 1497 1498 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1499 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1500 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1501 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1502 ops->store_error(job, EINVAL); 1503 uma_zfree(aiocb_zone, aiocbe); 1504 return (EINVAL); 1505 } 1506 1507 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1508 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1509 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1510 uma_zfree(aiocb_zone, aiocbe); 1511 return (EINVAL); 1512 } 1513 1514 ksiginfo_init(&aiocbe->ksi); 1515 1516 /* Save userspace address of the job info. */ 1517 aiocbe->uuaiocb = job; 1518 1519 /* Get the opcode. */ 1520 if (type != LIO_NOP) 1521 aiocbe->uaiocb.aio_lio_opcode = type; 1522 opcode = aiocbe->uaiocb.aio_lio_opcode; 1523 1524 /* Fetch the file object for the specified file descriptor. */ 1525 fd = aiocbe->uaiocb.aio_fildes; 1526 switch (opcode) { 1527 case LIO_WRITE: 1528 error = fget_write(td, fd, &fp); 1529 break; 1530 case LIO_READ: 1531 error = fget_read(td, fd, &fp); 1532 break; 1533 default: 1534 error = fget(td, fd, &fp); 1535 } 1536 if (error) { 1537 uma_zfree(aiocb_zone, aiocbe); 1538 ops->store_error(job, error); 1539 return (error); 1540 } 1541 1542 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1543 error = EINVAL; 1544 goto aqueue_fail; 1545 } 1546 1547 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1548 error = EINVAL; 1549 goto aqueue_fail; 1550 } 1551 1552 aiocbe->fd_file = fp; 1553 1554 mtx_lock(&aio_job_mtx); 1555 jid = jobrefid++; 1556 aiocbe->seqno = jobseqno++; 1557 mtx_unlock(&aio_job_mtx); 1558 error = ops->store_kernelinfo(job, jid); 1559 if (error) { 1560 error = EINVAL; 1561 goto aqueue_fail; 1562 } 1563 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1564 1565 if (opcode == LIO_NOP) { 1566 fdrop(fp, td); 1567 uma_zfree(aiocb_zone, aiocbe); 1568 return (0); 1569 } 1570 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1571 (opcode != LIO_SYNC)) { 1572 error = EINVAL; 1573 goto aqueue_fail; 1574 } 1575 1576 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1577 goto no_kqueue; 1578 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1579 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1580 kev.filter = EVFILT_AIO; 1581 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1582 kev.data = (intptr_t)aiocbe; 1583 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1584 error = kqfd_register(kqfd, &kev, td, 1); 1585 aqueue_fail: 1586 if (error) { 1587 fdrop(fp, td); 1588 uma_zfree(aiocb_zone, aiocbe); 1589 ops->store_error(job, error); 1590 goto done; 1591 } 1592 no_kqueue: 1593 1594 ops->store_error(job, EINPROGRESS); 1595 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1596 aiocbe->userproc = p; 1597 aiocbe->cred = crhold(td->td_ucred); 1598 aiocbe->jobflags = 0; 1599 aiocbe->lio = lj; 1600 1601 if (opcode == LIO_SYNC) 1602 goto queueit; 1603 1604 if (fp->f_type == DTYPE_SOCKET) { 1605 /* 1606 * Alternate queueing for socket ops: Reach down into the 1607 * descriptor to get the socket data. Then check to see if the 1608 * socket is ready to be read or written (based on the requested 1609 * operation). 1610 * 1611 * If it is not ready for io, then queue the aiocbe on the 1612 * socket, and set the flags so we get a call when sbnotify() 1613 * happens. 1614 * 1615 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1616 * and unlock the snd sockbuf for no reason. 1617 */ 1618 so = fp->f_data; 1619 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1620 SOCKBUF_LOCK(sb); 1621 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1622 LIO_WRITE) && (!sowriteable(so)))) { 1623 sb->sb_flags |= SB_AIO; 1624 1625 mtx_lock(&aio_job_mtx); 1626 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1627 mtx_unlock(&aio_job_mtx); 1628 1629 AIO_LOCK(ki); 1630 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1631 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1632 aiocbe->jobstate = JOBST_JOBQSOCK; 1633 ki->kaio_count++; 1634 if (lj) 1635 lj->lioj_count++; 1636 AIO_UNLOCK(ki); 1637 SOCKBUF_UNLOCK(sb); 1638 atomic_add_int(&num_queue_count, 1); 1639 error = 0; 1640 goto done; 1641 } 1642 SOCKBUF_UNLOCK(sb); 1643 } 1644 1645 if ((error = aio_qphysio(p, aiocbe)) == 0) 1646 goto done; 1647 #if 0 1648 if (error > 0) { 1649 aiocbe->uaiocb._aiocb_private.error = error; 1650 ops->store_error(job, error); 1651 goto done; 1652 } 1653 #endif 1654 queueit: 1655 /* No buffer for daemon I/O. */ 1656 aiocbe->bp = NULL; 1657 atomic_add_int(&num_queue_count, 1); 1658 1659 AIO_LOCK(ki); 1660 ki->kaio_count++; 1661 if (lj) 1662 lj->lioj_count++; 1663 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1664 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1665 if (opcode == LIO_SYNC) { 1666 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1667 if (cb->fd_file == aiocbe->fd_file && 1668 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1669 cb->seqno < aiocbe->seqno) { 1670 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1671 aiocbe->pending++; 1672 } 1673 } 1674 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1675 if (cb->fd_file == aiocbe->fd_file && 1676 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1677 cb->seqno < aiocbe->seqno) { 1678 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1679 aiocbe->pending++; 1680 } 1681 } 1682 if (aiocbe->pending != 0) { 1683 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1684 aiocbe->jobstate = JOBST_JOBQSYNC; 1685 AIO_UNLOCK(ki); 1686 goto done; 1687 } 1688 } 1689 mtx_lock(&aio_job_mtx); 1690 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1691 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1692 aio_kick_nowait(p); 1693 mtx_unlock(&aio_job_mtx); 1694 AIO_UNLOCK(ki); 1695 error = 0; 1696 done: 1697 return (error); 1698 } 1699 1700 static void 1701 aio_kick_nowait(struct proc *userp) 1702 { 1703 struct kaioinfo *ki = userp->p_aioinfo; 1704 struct aiothreadlist *aiop; 1705 1706 mtx_assert(&aio_job_mtx, MA_OWNED); 1707 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1708 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1709 aiop->aiothreadflags &= ~AIOP_FREE; 1710 wakeup(aiop->aiothread); 1711 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1712 ((ki->kaio_active_count + num_aio_resv_start) < 1713 ki->kaio_maxactive_count)) { 1714 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1715 } 1716 } 1717 1718 static int 1719 aio_kick(struct proc *userp) 1720 { 1721 struct kaioinfo *ki = userp->p_aioinfo; 1722 struct aiothreadlist *aiop; 1723 int error, ret = 0; 1724 1725 mtx_assert(&aio_job_mtx, MA_OWNED); 1726 retryproc: 1727 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1728 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1729 aiop->aiothreadflags &= ~AIOP_FREE; 1730 wakeup(aiop->aiothread); 1731 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1732 ((ki->kaio_active_count + num_aio_resv_start) < 1733 ki->kaio_maxactive_count)) { 1734 num_aio_resv_start++; 1735 mtx_unlock(&aio_job_mtx); 1736 error = aio_newproc(&num_aio_resv_start); 1737 mtx_lock(&aio_job_mtx); 1738 if (error) { 1739 num_aio_resv_start--; 1740 goto retryproc; 1741 } 1742 } else { 1743 ret = -1; 1744 } 1745 return (ret); 1746 } 1747 1748 static void 1749 aio_kick_helper(void *context, int pending) 1750 { 1751 struct proc *userp = context; 1752 1753 mtx_lock(&aio_job_mtx); 1754 while (--pending >= 0) { 1755 if (aio_kick(userp)) 1756 break; 1757 } 1758 mtx_unlock(&aio_job_mtx); 1759 } 1760 1761 /* 1762 * Support the aio_return system call, as a side-effect, kernel resources are 1763 * released. 1764 */ 1765 static int 1766 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) 1767 { 1768 struct proc *p = td->td_proc; 1769 struct aiocblist *cb; 1770 struct kaioinfo *ki; 1771 int status, error; 1772 1773 ki = p->p_aioinfo; 1774 if (ki == NULL) 1775 return (EINVAL); 1776 AIO_LOCK(ki); 1777 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1778 if (cb->uuaiocb == uaiocb) 1779 break; 1780 } 1781 if (cb != NULL) { 1782 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1783 status = cb->uaiocb._aiocb_private.status; 1784 error = cb->uaiocb._aiocb_private.error; 1785 td->td_retval[0] = status; 1786 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1787 td->td_ru.ru_oublock += cb->outputcharge; 1788 cb->outputcharge = 0; 1789 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1790 td->td_ru.ru_inblock += cb->inputcharge; 1791 cb->inputcharge = 0; 1792 } 1793 aio_free_entry(cb); 1794 AIO_UNLOCK(ki); 1795 ops->store_error(uaiocb, error); 1796 ops->store_status(uaiocb, status); 1797 } else { 1798 error = EINVAL; 1799 AIO_UNLOCK(ki); 1800 } 1801 return (error); 1802 } 1803 1804 int 1805 aio_return(struct thread *td, struct aio_return_args *uap) 1806 { 1807 1808 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1809 } 1810 1811 /* 1812 * Allow a process to wakeup when any of the I/O requests are completed. 1813 */ 1814 static int 1815 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1816 struct timespec *ts) 1817 { 1818 struct proc *p = td->td_proc; 1819 struct timeval atv; 1820 struct kaioinfo *ki; 1821 struct aiocblist *cb, *cbfirst; 1822 int error, i, timo; 1823 1824 timo = 0; 1825 if (ts) { 1826 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1827 return (EINVAL); 1828 1829 TIMESPEC_TO_TIMEVAL(&atv, ts); 1830 if (itimerfix(&atv)) 1831 return (EINVAL); 1832 timo = tvtohz(&atv); 1833 } 1834 1835 ki = p->p_aioinfo; 1836 if (ki == NULL) 1837 return (EAGAIN); 1838 1839 if (njoblist == 0) 1840 return (0); 1841 1842 AIO_LOCK(ki); 1843 for (;;) { 1844 cbfirst = NULL; 1845 error = 0; 1846 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1847 for (i = 0; i < njoblist; i++) { 1848 if (cb->uuaiocb == ujoblist[i]) { 1849 if (cbfirst == NULL) 1850 cbfirst = cb; 1851 if (cb->jobstate == JOBST_JOBFINISHED) 1852 goto RETURN; 1853 } 1854 } 1855 } 1856 /* All tasks were finished. */ 1857 if (cbfirst == NULL) 1858 break; 1859 1860 ki->kaio_flags |= KAIO_WAKEUP; 1861 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1862 "aiospn", timo); 1863 if (error == ERESTART) 1864 error = EINTR; 1865 if (error) 1866 break; 1867 } 1868 RETURN: 1869 AIO_UNLOCK(ki); 1870 return (error); 1871 } 1872 1873 int 1874 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1875 { 1876 struct timespec ts, *tsp; 1877 struct aiocb **ujoblist; 1878 int error; 1879 1880 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1881 return (EINVAL); 1882 1883 if (uap->timeout) { 1884 /* Get timespec struct. */ 1885 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1886 return (error); 1887 tsp = &ts; 1888 } else 1889 tsp = NULL; 1890 1891 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1892 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1893 if (error == 0) 1894 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1895 uma_zfree(aiol_zone, ujoblist); 1896 return (error); 1897 } 1898 1899 /* 1900 * aio_cancel cancels any non-physio aio operations not currently in 1901 * progress. 1902 */ 1903 int 1904 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1905 { 1906 struct proc *p = td->td_proc; 1907 struct kaioinfo *ki; 1908 struct aiocblist *cbe, *cbn; 1909 struct file *fp; 1910 struct socket *so; 1911 int error; 1912 int remove; 1913 int cancelled = 0; 1914 int notcancelled = 0; 1915 struct vnode *vp; 1916 1917 /* Lookup file object. */ 1918 error = fget(td, uap->fd, &fp); 1919 if (error) 1920 return (error); 1921 1922 ki = p->p_aioinfo; 1923 if (ki == NULL) 1924 goto done; 1925 1926 if (fp->f_type == DTYPE_VNODE) { 1927 vp = fp->f_vnode; 1928 if (vn_isdisk(vp, &error)) { 1929 fdrop(fp, td); 1930 td->td_retval[0] = AIO_NOTCANCELED; 1931 return (0); 1932 } 1933 } 1934 1935 AIO_LOCK(ki); 1936 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1937 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1938 ((uap->aiocbp == NULL) || 1939 (uap->aiocbp == cbe->uuaiocb))) { 1940 remove = 0; 1941 1942 mtx_lock(&aio_job_mtx); 1943 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1944 TAILQ_REMOVE(&aio_jobs, cbe, list); 1945 remove = 1; 1946 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1947 MPASS(fp->f_type == DTYPE_SOCKET); 1948 so = fp->f_data; 1949 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1950 remove = 1; 1951 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1952 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1953 remove = 1; 1954 } 1955 mtx_unlock(&aio_job_mtx); 1956 1957 if (remove) { 1958 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1959 cbe->uaiocb._aiocb_private.status = -1; 1960 cbe->uaiocb._aiocb_private.error = ECANCELED; 1961 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1962 cancelled++; 1963 } else { 1964 notcancelled++; 1965 } 1966 if (uap->aiocbp != NULL) 1967 break; 1968 } 1969 } 1970 AIO_UNLOCK(ki); 1971 1972 done: 1973 fdrop(fp, td); 1974 1975 if (uap->aiocbp != NULL) { 1976 if (cancelled) { 1977 td->td_retval[0] = AIO_CANCELED; 1978 return (0); 1979 } 1980 } 1981 1982 if (notcancelled) { 1983 td->td_retval[0] = AIO_NOTCANCELED; 1984 return (0); 1985 } 1986 1987 if (cancelled) { 1988 td->td_retval[0] = AIO_CANCELED; 1989 return (0); 1990 } 1991 1992 td->td_retval[0] = AIO_ALLDONE; 1993 1994 return (0); 1995 } 1996 1997 /* 1998 * aio_error is implemented in the kernel level for compatibility purposes 1999 * only. For a user mode async implementation, it would be best to do it in 2000 * a userland subroutine. 2001 */ 2002 static int 2003 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) 2004 { 2005 struct proc *p = td->td_proc; 2006 struct aiocblist *cb; 2007 struct kaioinfo *ki; 2008 int status; 2009 2010 ki = p->p_aioinfo; 2011 if (ki == NULL) { 2012 td->td_retval[0] = EINVAL; 2013 return (0); 2014 } 2015 2016 AIO_LOCK(ki); 2017 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 2018 if (cb->uuaiocb == aiocbp) { 2019 if (cb->jobstate == JOBST_JOBFINISHED) 2020 td->td_retval[0] = 2021 cb->uaiocb._aiocb_private.error; 2022 else 2023 td->td_retval[0] = EINPROGRESS; 2024 AIO_UNLOCK(ki); 2025 return (0); 2026 } 2027 } 2028 AIO_UNLOCK(ki); 2029 2030 /* 2031 * Hack for failure of aio_aqueue. 2032 */ 2033 status = ops->fetch_status(aiocbp); 2034 if (status == -1) { 2035 td->td_retval[0] = ops->fetch_error(aiocbp); 2036 return (0); 2037 } 2038 2039 td->td_retval[0] = EINVAL; 2040 return (0); 2041 } 2042 2043 int 2044 aio_error(struct thread *td, struct aio_error_args *uap) 2045 { 2046 2047 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2048 } 2049 2050 /* syscall - asynchronous read from a file (REALTIME) */ 2051 int 2052 oaio_read(struct thread *td, struct oaio_read_args *uap) 2053 { 2054 2055 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2056 &aiocb_ops_osigevent)); 2057 } 2058 2059 int 2060 aio_read(struct thread *td, struct aio_read_args *uap) 2061 { 2062 2063 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2064 } 2065 2066 /* syscall - asynchronous write to a file (REALTIME) */ 2067 int 2068 oaio_write(struct thread *td, struct oaio_write_args *uap) 2069 { 2070 2071 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2072 &aiocb_ops_osigevent)); 2073 } 2074 2075 int 2076 aio_write(struct thread *td, struct aio_write_args *uap) 2077 { 2078 2079 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2080 } 2081 2082 static int 2083 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2084 struct aiocb **acb_list, int nent, struct sigevent *sig, 2085 struct aiocb_ops *ops) 2086 { 2087 struct proc *p = td->td_proc; 2088 struct aiocb *iocb; 2089 struct kaioinfo *ki; 2090 struct aioliojob *lj; 2091 struct kevent kev; 2092 int error; 2093 int nerror; 2094 int i; 2095 2096 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2097 return (EINVAL); 2098 2099 if (nent < 0 || nent > AIO_LISTIO_MAX) 2100 return (EINVAL); 2101 2102 if (p->p_aioinfo == NULL) 2103 aio_init_aioinfo(p); 2104 2105 ki = p->p_aioinfo; 2106 2107 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2108 lj->lioj_flags = 0; 2109 lj->lioj_count = 0; 2110 lj->lioj_finished_count = 0; 2111 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 2112 ksiginfo_init(&lj->lioj_ksi); 2113 2114 /* 2115 * Setup signal. 2116 */ 2117 if (sig && (mode == LIO_NOWAIT)) { 2118 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2119 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2120 /* Assume only new style KEVENT */ 2121 kev.filter = EVFILT_LIO; 2122 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2123 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2124 kev.data = (intptr_t)lj; 2125 /* pass user defined sigval data */ 2126 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2127 error = kqfd_register( 2128 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2129 if (error) { 2130 uma_zfree(aiolio_zone, lj); 2131 return (error); 2132 } 2133 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2134 ; 2135 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2136 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2137 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2138 uma_zfree(aiolio_zone, lj); 2139 return EINVAL; 2140 } 2141 lj->lioj_flags |= LIOJ_SIGNAL; 2142 } else { 2143 uma_zfree(aiolio_zone, lj); 2144 return EINVAL; 2145 } 2146 } 2147 2148 AIO_LOCK(ki); 2149 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2150 /* 2151 * Add extra aiocb count to avoid the lio to be freed 2152 * by other threads doing aio_waitcomplete or aio_return, 2153 * and prevent event from being sent until we have queued 2154 * all tasks. 2155 */ 2156 lj->lioj_count = 1; 2157 AIO_UNLOCK(ki); 2158 2159 /* 2160 * Get pointers to the list of I/O requests. 2161 */ 2162 nerror = 0; 2163 for (i = 0; i < nent; i++) { 2164 iocb = acb_list[i]; 2165 if (iocb != NULL) { 2166 error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); 2167 if (error != 0) 2168 nerror++; 2169 } 2170 } 2171 2172 error = 0; 2173 AIO_LOCK(ki); 2174 if (mode == LIO_WAIT) { 2175 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2176 ki->kaio_flags |= KAIO_WAKEUP; 2177 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2178 PRIBIO | PCATCH, "aiospn", 0); 2179 if (error == ERESTART) 2180 error = EINTR; 2181 if (error) 2182 break; 2183 } 2184 } else { 2185 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2186 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2187 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2188 KNOTE_LOCKED(&lj->klist, 1); 2189 } 2190 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2191 == LIOJ_SIGNAL 2192 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2193 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2194 aio_sendsig(p, &lj->lioj_signal, 2195 &lj->lioj_ksi); 2196 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2197 } 2198 } 2199 } 2200 lj->lioj_count--; 2201 if (lj->lioj_count == 0) { 2202 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2203 knlist_delete(&lj->klist, curthread, 1); 2204 PROC_LOCK(p); 2205 sigqueue_take(&lj->lioj_ksi); 2206 PROC_UNLOCK(p); 2207 AIO_UNLOCK(ki); 2208 uma_zfree(aiolio_zone, lj); 2209 } else 2210 AIO_UNLOCK(ki); 2211 2212 if (nerror) 2213 return (EIO); 2214 return (error); 2215 } 2216 2217 /* syscall - list directed I/O (REALTIME) */ 2218 int 2219 olio_listio(struct thread *td, struct olio_listio_args *uap) 2220 { 2221 struct aiocb **acb_list; 2222 struct sigevent *sigp, sig; 2223 struct osigevent osig; 2224 int error, nent; 2225 2226 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2227 return (EINVAL); 2228 2229 nent = uap->nent; 2230 if (nent < 0 || nent > AIO_LISTIO_MAX) 2231 return (EINVAL); 2232 2233 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2234 error = copyin(uap->sig, &osig, sizeof(osig)); 2235 if (error) 2236 return (error); 2237 error = convert_old_sigevent(&osig, &sig); 2238 if (error) 2239 return (error); 2240 sigp = &sig; 2241 } else 2242 sigp = NULL; 2243 2244 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2245 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2246 if (error == 0) 2247 error = kern_lio_listio(td, uap->mode, 2248 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2249 &aiocb_ops_osigevent); 2250 free(acb_list, M_LIO); 2251 return (error); 2252 } 2253 2254 /* syscall - list directed I/O (REALTIME) */ 2255 int 2256 lio_listio(struct thread *td, struct lio_listio_args *uap) 2257 { 2258 struct aiocb **acb_list; 2259 struct sigevent *sigp, sig; 2260 int error, nent; 2261 2262 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2263 return (EINVAL); 2264 2265 nent = uap->nent; 2266 if (nent < 0 || nent > AIO_LISTIO_MAX) 2267 return (EINVAL); 2268 2269 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2270 error = copyin(uap->sig, &sig, sizeof(sig)); 2271 if (error) 2272 return (error); 2273 sigp = &sig; 2274 } else 2275 sigp = NULL; 2276 2277 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2278 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2279 if (error == 0) 2280 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2281 nent, sigp, &aiocb_ops); 2282 free(acb_list, M_LIO); 2283 return (error); 2284 } 2285 2286 /* 2287 * Called from interrupt thread for physio, we should return as fast 2288 * as possible, so we schedule a biohelper task. 2289 */ 2290 static void 2291 aio_physwakeup(struct buf *bp) 2292 { 2293 struct aiocblist *aiocbe; 2294 2295 aiocbe = (struct aiocblist *)bp->b_caller1; 2296 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2297 } 2298 2299 /* 2300 * Task routine to perform heavy tasks, process wakeup, and signals. 2301 */ 2302 static void 2303 biohelper(void *context, int pending) 2304 { 2305 struct aiocblist *aiocbe = context; 2306 struct buf *bp; 2307 struct proc *userp; 2308 struct kaioinfo *ki; 2309 int nblks; 2310 2311 bp = aiocbe->bp; 2312 userp = aiocbe->userproc; 2313 ki = userp->p_aioinfo; 2314 AIO_LOCK(ki); 2315 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2316 aiocbe->uaiocb._aiocb_private.error = 0; 2317 if (bp->b_ioflags & BIO_ERROR) 2318 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2319 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2320 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2321 aiocbe->outputcharge += nblks; 2322 else 2323 aiocbe->inputcharge += nblks; 2324 aiocbe->bp = NULL; 2325 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2326 ki->kaio_buffer_count--; 2327 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2328 AIO_UNLOCK(ki); 2329 2330 /* Release mapping into kernel space. */ 2331 vunmapbuf(bp); 2332 relpbuf(bp, NULL); 2333 atomic_subtract_int(&num_buf_aio, 1); 2334 } 2335 2336 /* syscall - wait for the next completion of an aio request */ 2337 static int 2338 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, 2339 struct timespec *ts, struct aiocb_ops *ops) 2340 { 2341 struct proc *p = td->td_proc; 2342 struct timeval atv; 2343 struct kaioinfo *ki; 2344 struct aiocblist *cb; 2345 struct aiocb *uuaiocb; 2346 int error, status, timo; 2347 2348 ops->store_aiocb(aiocbp, NULL); 2349 2350 timo = 0; 2351 if (ts) { 2352 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2353 return (EINVAL); 2354 2355 TIMESPEC_TO_TIMEVAL(&atv, ts); 2356 if (itimerfix(&atv)) 2357 return (EINVAL); 2358 timo = tvtohz(&atv); 2359 } 2360 2361 if (p->p_aioinfo == NULL) 2362 aio_init_aioinfo(p); 2363 ki = p->p_aioinfo; 2364 2365 error = 0; 2366 cb = NULL; 2367 AIO_LOCK(ki); 2368 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2369 ki->kaio_flags |= KAIO_WAKEUP; 2370 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2371 "aiowc", timo); 2372 if (timo && error == ERESTART) 2373 error = EINTR; 2374 if (error) 2375 break; 2376 } 2377 2378 if (cb != NULL) { 2379 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2380 uuaiocb = cb->uuaiocb; 2381 status = cb->uaiocb._aiocb_private.status; 2382 error = cb->uaiocb._aiocb_private.error; 2383 td->td_retval[0] = status; 2384 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2385 td->td_ru.ru_oublock += cb->outputcharge; 2386 cb->outputcharge = 0; 2387 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2388 td->td_ru.ru_inblock += cb->inputcharge; 2389 cb->inputcharge = 0; 2390 } 2391 aio_free_entry(cb); 2392 AIO_UNLOCK(ki); 2393 ops->store_aiocb(aiocbp, uuaiocb); 2394 ops->store_error(uuaiocb, error); 2395 ops->store_status(uuaiocb, status); 2396 } else 2397 AIO_UNLOCK(ki); 2398 2399 return (error); 2400 } 2401 2402 int 2403 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2404 { 2405 struct timespec ts, *tsp; 2406 int error; 2407 2408 if (uap->timeout) { 2409 /* Get timespec struct. */ 2410 error = copyin(uap->timeout, &ts, sizeof(ts)); 2411 if (error) 2412 return (error); 2413 tsp = &ts; 2414 } else 2415 tsp = NULL; 2416 2417 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2418 } 2419 2420 static int 2421 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, 2422 struct aiocb_ops *ops) 2423 { 2424 struct proc *p = td->td_proc; 2425 struct kaioinfo *ki; 2426 2427 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2428 return (EINVAL); 2429 ki = p->p_aioinfo; 2430 if (ki == NULL) 2431 aio_init_aioinfo(p); 2432 return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); 2433 } 2434 2435 int 2436 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2437 { 2438 2439 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2440 } 2441 2442 /* kqueue attach function */ 2443 static int 2444 filt_aioattach(struct knote *kn) 2445 { 2446 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2447 2448 /* 2449 * The aiocbe pointer must be validated before using it, so 2450 * registration is restricted to the kernel; the user cannot 2451 * set EV_FLAG1. 2452 */ 2453 if ((kn->kn_flags & EV_FLAG1) == 0) 2454 return (EPERM); 2455 kn->kn_ptr.p_aio = aiocbe; 2456 kn->kn_flags &= ~EV_FLAG1; 2457 2458 knlist_add(&aiocbe->klist, kn, 0); 2459 2460 return (0); 2461 } 2462 2463 /* kqueue detach function */ 2464 static void 2465 filt_aiodetach(struct knote *kn) 2466 { 2467 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2468 2469 if (!knlist_empty(&aiocbe->klist)) 2470 knlist_remove(&aiocbe->klist, kn, 0); 2471 } 2472 2473 /* kqueue filter function */ 2474 /*ARGSUSED*/ 2475 static int 2476 filt_aio(struct knote *kn, long hint) 2477 { 2478 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2479 2480 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2481 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2482 return (0); 2483 kn->kn_flags |= EV_EOF; 2484 return (1); 2485 } 2486 2487 /* kqueue attach function */ 2488 static int 2489 filt_lioattach(struct knote *kn) 2490 { 2491 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2492 2493 /* 2494 * The aioliojob pointer must be validated before using it, so 2495 * registration is restricted to the kernel; the user cannot 2496 * set EV_FLAG1. 2497 */ 2498 if ((kn->kn_flags & EV_FLAG1) == 0) 2499 return (EPERM); 2500 kn->kn_ptr.p_lio = lj; 2501 kn->kn_flags &= ~EV_FLAG1; 2502 2503 knlist_add(&lj->klist, kn, 0); 2504 2505 return (0); 2506 } 2507 2508 /* kqueue detach function */ 2509 static void 2510 filt_liodetach(struct knote *kn) 2511 { 2512 struct aioliojob * lj = kn->kn_ptr.p_lio; 2513 2514 if (!knlist_empty(&lj->klist)) 2515 knlist_remove(&lj->klist, kn, 0); 2516 } 2517 2518 /* kqueue filter function */ 2519 /*ARGSUSED*/ 2520 static int 2521 filt_lio(struct knote *kn, long hint) 2522 { 2523 struct aioliojob * lj = kn->kn_ptr.p_lio; 2524 2525 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2526 } 2527 2528 #ifdef COMPAT_IA32 2529 #include <sys/mount.h> 2530 #include <sys/socket.h> 2531 #include <compat/freebsd32/freebsd32.h> 2532 #include <compat/freebsd32/freebsd32_proto.h> 2533 #include <compat/freebsd32/freebsd32_signal.h> 2534 #include <compat/freebsd32/freebsd32_syscall.h> 2535 #include <compat/freebsd32/freebsd32_util.h> 2536 2537 struct __aiocb_private32 { 2538 int32_t status; 2539 int32_t error; 2540 uint32_t kernelinfo; 2541 }; 2542 2543 typedef struct oaiocb32 { 2544 int aio_fildes; /* File descriptor */ 2545 uint64_t aio_offset __packed; /* File offset for I/O */ 2546 uint32_t aio_buf; /* I/O buffer in process space */ 2547 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2548 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2549 int aio_lio_opcode; /* LIO opcode */ 2550 int aio_reqprio; /* Request priority -- ignored */ 2551 struct __aiocb_private32 _aiocb_private; 2552 } oaiocb32_t; 2553 2554 typedef struct aiocb32 { 2555 int32_t aio_fildes; /* File descriptor */ 2556 uint64_t aio_offset __packed; /* File offset for I/O */ 2557 uint32_t aio_buf; /* I/O buffer in process space */ 2558 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2559 int __spare__[2]; 2560 uint32_t __spare2__; 2561 int aio_lio_opcode; /* LIO opcode */ 2562 int aio_reqprio; /* Request priority -- ignored */ 2563 struct __aiocb_private32 _aiocb_private; 2564 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2565 } aiocb32_t; 2566 2567 static int 2568 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2569 { 2570 2571 /* 2572 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2573 * supported by AIO with the old sigevent structure. 2574 */ 2575 CP(*osig, *nsig, sigev_notify); 2576 switch (nsig->sigev_notify) { 2577 case SIGEV_NONE: 2578 break; 2579 case SIGEV_SIGNAL: 2580 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2581 break; 2582 case SIGEV_KEVENT: 2583 nsig->sigev_notify_kqueue = 2584 osig->__sigev_u.__sigev_notify_kqueue; 2585 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2586 break; 2587 default: 2588 return (EINVAL); 2589 } 2590 return (0); 2591 } 2592 2593 static int 2594 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2595 { 2596 struct oaiocb32 job32; 2597 int error; 2598 2599 bzero(kjob, sizeof(struct aiocb)); 2600 error = copyin(ujob, &job32, sizeof(job32)); 2601 if (error) 2602 return (error); 2603 2604 CP(job32, *kjob, aio_fildes); 2605 CP(job32, *kjob, aio_offset); 2606 PTRIN_CP(job32, *kjob, aio_buf); 2607 CP(job32, *kjob, aio_nbytes); 2608 CP(job32, *kjob, aio_lio_opcode); 2609 CP(job32, *kjob, aio_reqprio); 2610 CP(job32, *kjob, _aiocb_private.status); 2611 CP(job32, *kjob, _aiocb_private.error); 2612 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2613 return (convert_old_sigevent32(&job32.aio_sigevent, 2614 &kjob->aio_sigevent)); 2615 } 2616 2617 static int 2618 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 2619 { 2620 2621 CP(*sig32, *sig, sigev_notify); 2622 switch (sig->sigev_notify) { 2623 case SIGEV_NONE: 2624 break; 2625 case SIGEV_THREAD_ID: 2626 CP(*sig32, *sig, sigev_notify_thread_id); 2627 /* FALLTHROUGH */ 2628 case SIGEV_SIGNAL: 2629 CP(*sig32, *sig, sigev_signo); 2630 break; 2631 case SIGEV_KEVENT: 2632 CP(*sig32, *sig, sigev_notify_kqueue); 2633 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2634 break; 2635 default: 2636 return (EINVAL); 2637 } 2638 return (0); 2639 } 2640 2641 static int 2642 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2643 { 2644 struct aiocb32 job32; 2645 int error; 2646 2647 error = copyin(ujob, &job32, sizeof(job32)); 2648 if (error) 2649 return (error); 2650 CP(job32, *kjob, aio_fildes); 2651 CP(job32, *kjob, aio_offset); 2652 PTRIN_CP(job32, *kjob, aio_buf); 2653 CP(job32, *kjob, aio_nbytes); 2654 CP(job32, *kjob, aio_lio_opcode); 2655 CP(job32, *kjob, aio_reqprio); 2656 CP(job32, *kjob, _aiocb_private.status); 2657 CP(job32, *kjob, _aiocb_private.error); 2658 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2659 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2660 } 2661 2662 static long 2663 aiocb32_fetch_status(struct aiocb *ujob) 2664 { 2665 struct aiocb32 *ujob32; 2666 2667 ujob32 = (struct aiocb32 *)ujob; 2668 return (fuword32(&ujob32->_aiocb_private.status)); 2669 } 2670 2671 static long 2672 aiocb32_fetch_error(struct aiocb *ujob) 2673 { 2674 struct aiocb32 *ujob32; 2675 2676 ujob32 = (struct aiocb32 *)ujob; 2677 return (fuword32(&ujob32->_aiocb_private.error)); 2678 } 2679 2680 static int 2681 aiocb32_store_status(struct aiocb *ujob, long status) 2682 { 2683 struct aiocb32 *ujob32; 2684 2685 ujob32 = (struct aiocb32 *)ujob; 2686 return (suword32(&ujob32->_aiocb_private.status, status)); 2687 } 2688 2689 static int 2690 aiocb32_store_error(struct aiocb *ujob, long error) 2691 { 2692 struct aiocb32 *ujob32; 2693 2694 ujob32 = (struct aiocb32 *)ujob; 2695 return (suword32(&ujob32->_aiocb_private.error, error)); 2696 } 2697 2698 static int 2699 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2700 { 2701 struct aiocb32 *ujob32; 2702 2703 ujob32 = (struct aiocb32 *)ujob; 2704 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2705 } 2706 2707 static int 2708 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2709 { 2710 2711 return (suword32(ujobp, (long)ujob)); 2712 } 2713 2714 static struct aiocb_ops aiocb32_ops = { 2715 .copyin = aiocb32_copyin, 2716 .fetch_status = aiocb32_fetch_status, 2717 .fetch_error = aiocb32_fetch_error, 2718 .store_status = aiocb32_store_status, 2719 .store_error = aiocb32_store_error, 2720 .store_kernelinfo = aiocb32_store_kernelinfo, 2721 .store_aiocb = aiocb32_store_aiocb, 2722 }; 2723 2724 static struct aiocb_ops aiocb32_ops_osigevent = { 2725 .copyin = aiocb32_copyin_old_sigevent, 2726 .fetch_status = aiocb32_fetch_status, 2727 .fetch_error = aiocb32_fetch_error, 2728 .store_status = aiocb32_store_status, 2729 .store_error = aiocb32_store_error, 2730 .store_kernelinfo = aiocb32_store_kernelinfo, 2731 .store_aiocb = aiocb32_store_aiocb, 2732 }; 2733 2734 int 2735 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2736 { 2737 2738 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2739 } 2740 2741 int 2742 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2743 { 2744 struct timespec32 ts32; 2745 struct timespec ts, *tsp; 2746 struct aiocb **ujoblist; 2747 uint32_t *ujoblist32; 2748 int error, i; 2749 2750 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2751 return (EINVAL); 2752 2753 if (uap->timeout) { 2754 /* Get timespec struct. */ 2755 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2756 return (error); 2757 CP(ts32, ts, tv_sec); 2758 CP(ts32, ts, tv_nsec); 2759 tsp = &ts; 2760 } else 2761 tsp = NULL; 2762 2763 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2764 ujoblist32 = (uint32_t *)ujoblist; 2765 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2766 sizeof(ujoblist32[0])); 2767 if (error == 0) { 2768 for (i = uap->nent; i > 0; i--) 2769 ujoblist[i] = PTRIN(ujoblist32[i]); 2770 2771 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2772 } 2773 uma_zfree(aiol_zone, ujoblist); 2774 return (error); 2775 } 2776 2777 int 2778 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2779 { 2780 2781 return (aio_cancel(td, (struct aio_cancel_args *)uap)); 2782 } 2783 2784 int 2785 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2786 { 2787 2788 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2789 } 2790 2791 int 2792 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2793 { 2794 2795 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2796 &aiocb32_ops_osigevent)); 2797 } 2798 2799 int 2800 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2801 { 2802 2803 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2804 &aiocb32_ops)); 2805 } 2806 2807 int 2808 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2809 { 2810 2811 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2812 &aiocb32_ops_osigevent)); 2813 } 2814 2815 int 2816 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2817 { 2818 2819 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2820 &aiocb32_ops)); 2821 } 2822 2823 int 2824 freebsd32_aio_waitcomplete(struct thread *td, 2825 struct freebsd32_aio_waitcomplete_args *uap) 2826 { 2827 struct timespec32 ts32; 2828 struct timespec ts, *tsp; 2829 int error; 2830 2831 if (uap->timeout) { 2832 /* Get timespec struct. */ 2833 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2834 if (error) 2835 return (error); 2836 CP(ts32, ts, tv_sec); 2837 CP(ts32, ts, tv_nsec); 2838 tsp = &ts; 2839 } else 2840 tsp = NULL; 2841 2842 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2843 &aiocb32_ops)); 2844 } 2845 2846 int 2847 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2848 { 2849 2850 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2851 &aiocb32_ops)); 2852 } 2853 2854 int 2855 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2856 { 2857 struct aiocb **acb_list; 2858 struct sigevent *sigp, sig; 2859 struct osigevent32 osig; 2860 uint32_t *acb_list32; 2861 int error, i, nent; 2862 2863 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2864 return (EINVAL); 2865 2866 nent = uap->nent; 2867 if (nent < 0 || nent > AIO_LISTIO_MAX) 2868 return (EINVAL); 2869 2870 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2871 error = copyin(uap->sig, &osig, sizeof(osig)); 2872 if (error) 2873 return (error); 2874 error = convert_old_sigevent32(&osig, &sig); 2875 if (error) 2876 return (error); 2877 sigp = &sig; 2878 } else 2879 sigp = NULL; 2880 2881 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2882 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2883 if (error) { 2884 free(acb_list32, M_LIO); 2885 return (error); 2886 } 2887 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2888 for (i = 0; i < nent; i++) 2889 acb_list[i] = PTRIN(acb_list32[i]); 2890 free(acb_list32, M_LIO); 2891 2892 error = kern_lio_listio(td, uap->mode, 2893 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2894 &aiocb32_ops_osigevent); 2895 free(acb_list, M_LIO); 2896 return (error); 2897 } 2898 2899 int 2900 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2901 { 2902 struct aiocb **acb_list; 2903 struct sigevent *sigp, sig; 2904 struct sigevent32 sig32; 2905 uint32_t *acb_list32; 2906 int error, i, nent; 2907 2908 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2909 return (EINVAL); 2910 2911 nent = uap->nent; 2912 if (nent < 0 || nent > AIO_LISTIO_MAX) 2913 return (EINVAL); 2914 2915 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2916 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2917 if (error) 2918 return (error); 2919 error = convert_sigevent32(&sig32, &sig); 2920 if (error) 2921 return (error); 2922 sigp = &sig; 2923 } else 2924 sigp = NULL; 2925 2926 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2927 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2928 if (error) { 2929 free(acb_list32, M_LIO); 2930 return (error); 2931 } 2932 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2933 for (i = 0; i < nent; i++) 2934 acb_list[i] = PTRIN(acb_list32[i]); 2935 free(acb_list32, M_LIO); 2936 2937 error = kern_lio_listio(td, uap->mode, 2938 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2939 &aiocb32_ops); 2940 free(acb_list, M_LIO); 2941 return (error); 2942 } 2943 2944 SYSCALL32_MODULE_HELPER(freebsd32_aio_return); 2945 SYSCALL32_MODULE_HELPER(freebsd32_aio_suspend); 2946 SYSCALL32_MODULE_HELPER(freebsd32_aio_cancel); 2947 SYSCALL32_MODULE_HELPER(freebsd32_aio_error); 2948 SYSCALL32_MODULE_HELPER(freebsd32_aio_fsync); 2949 SYSCALL32_MODULE_HELPER(freebsd32_aio_read); 2950 SYSCALL32_MODULE_HELPER(freebsd32_aio_write); 2951 SYSCALL32_MODULE_HELPER(freebsd32_aio_waitcomplete); 2952 SYSCALL32_MODULE_HELPER(freebsd32_lio_listio); 2953 SYSCALL32_MODULE_HELPER(freebsd32_oaio_read); 2954 SYSCALL32_MODULE_HELPER(freebsd32_oaio_write); 2955 SYSCALL32_MODULE_HELPER(freebsd32_olio_listio); 2956 #endif 2957