1 /* 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 * 16 * $FreeBSD$ 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/malloc.h> 26 #include <sys/bio.h> 27 #include <sys/buf.h> 28 #include <sys/sysproto.h> 29 #include <sys/filedesc.h> 30 #include <sys/kernel.h> 31 #include <sys/kthread.h> 32 #include <sys/fcntl.h> 33 #include <sys/file.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/unistd.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/signalvar.h> 40 #include <sys/protosw.h> 41 #include <sys/socketvar.h> 42 #include <sys/syscall.h> 43 #include <sys/sysent.h> 44 #include <sys/sysctl.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 #include <sys/conf.h> 48 #include <sys/event.h> 49 50 #include <posix4/posix4.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/uma.h> 56 #include <sys/aio.h> 57 58 #include <machine/limits.h> 59 60 #include "opt_vfs_aio.h" 61 62 /* 63 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 64 * overflow. 65 */ 66 static long jobrefid; 67 68 #define JOBST_NULL 0x0 69 #define JOBST_JOBQGLOBAL 0x2 70 #define JOBST_JOBRUNNING 0x3 71 #define JOBST_JOBFINISHED 0x4 72 #define JOBST_JOBQBUF 0x5 73 #define JOBST_JOBBFINISHED 0x6 74 75 #ifndef MAX_AIO_PER_PROC 76 #define MAX_AIO_PER_PROC 32 77 #endif 78 79 #ifndef MAX_AIO_QUEUE_PER_PROC 80 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 81 #endif 82 83 #ifndef MAX_AIO_PROCS 84 #define MAX_AIO_PROCS 32 85 #endif 86 87 #ifndef MAX_AIO_QUEUE 88 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 89 #endif 90 91 #ifndef TARGET_AIO_PROCS 92 #define TARGET_AIO_PROCS 4 93 #endif 94 95 #ifndef MAX_BUF_AIO 96 #define MAX_BUF_AIO 16 97 #endif 98 99 #ifndef AIOD_TIMEOUT_DEFAULT 100 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 101 #endif 102 103 #ifndef AIOD_LIFETIME_DEFAULT 104 #define AIOD_LIFETIME_DEFAULT (30 * hz) 105 #endif 106 107 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 108 109 static int max_aio_procs = MAX_AIO_PROCS; 110 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 111 CTLFLAG_RW, &max_aio_procs, 0, 112 "Maximum number of kernel threads to use for handling async IO "); 113 114 static int num_aio_procs = 0; 115 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 116 CTLFLAG_RD, &num_aio_procs, 0, 117 "Number of presently active kernel threads for async IO"); 118 119 /* 120 * The code will adjust the actual number of AIO processes towards this 121 * number when it gets a chance. 122 */ 123 static int target_aio_procs = TARGET_AIO_PROCS; 124 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 125 0, "Preferred number of ready kernel threads for async IO"); 126 127 static int max_queue_count = MAX_AIO_QUEUE; 128 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 129 "Maximum number of aio requests to queue, globally"); 130 131 static int num_queue_count = 0; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 133 "Number of queued aio requests"); 134 135 static int num_buf_aio = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 137 "Number of aio requests presently handled by the buf subsystem"); 138 139 /* Number of async I/O thread in the process of being started */ 140 /* XXX This should be local to _aio_aqueue() */ 141 static int num_aio_resv_start = 0; 142 143 static int aiod_timeout; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 145 "Timeout value for synchronous aio operations"); 146 147 static int aiod_lifetime; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 149 "Maximum lifetime for idle aiod"); 150 151 static int unloadable = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 153 "Allow unload of aio (not recommended)"); 154 155 156 static int max_aio_per_proc = MAX_AIO_PER_PROC; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 158 0, "Maximum active aio requests per process (stored in the process)"); 159 160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 162 &max_aio_queue_per_proc, 0, 163 "Maximum queued aio requests per process (stored in the process)"); 164 165 static int max_buf_aio = MAX_BUF_AIO; 166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 167 "Maximum buf aio requests per process (stored in the process)"); 168 169 struct aiocblist { 170 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 171 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 172 int jobflags; 173 int jobstate; 174 int inputcharge; 175 int outputcharge; 176 struct callout_handle timeouthandle; 177 struct buf *bp; /* Buffer pointer */ 178 struct proc *userproc; /* User process */ /* Not td! */ 179 struct ucred *cred; /* Active credential when created */ 180 struct file *fd_file; /* Pointer to file structure */ 181 struct aio_liojob *lio; /* Optional lio job */ 182 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 183 struct klist klist; /* list of knotes */ 184 struct aiocb uaiocb; /* Kernel I/O control block */ 185 }; 186 187 /* jobflags */ 188 #define AIOCBLIST_RUNDOWN 0x4 189 #define AIOCBLIST_DONE 0x10 190 191 /* 192 * AIO process info 193 */ 194 #define AIOP_FREE 0x1 /* proc on free queue */ 195 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ 196 197 struct aiothreadlist { 198 int aiothreadflags; /* AIO proc flags */ 199 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 200 struct thread *aiothread; /* The AIO thread */ 201 }; 202 203 /* 204 * data-structure for lio signal management 205 */ 206 struct aio_liojob { 207 int lioj_flags; 208 int lioj_buffer_count; 209 int lioj_buffer_finished_count; 210 int lioj_queue_count; 211 int lioj_queue_finished_count; 212 struct sigevent lioj_signal; /* signal on all I/O done */ 213 TAILQ_ENTRY(aio_liojob) lioj_list; 214 struct kaioinfo *lioj_ki; 215 }; 216 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 217 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 218 219 /* 220 * per process aio data structure 221 */ 222 struct kaioinfo { 223 int kaio_flags; /* per process kaio flags */ 224 int kaio_maxactive_count; /* maximum number of AIOs */ 225 int kaio_active_count; /* number of currently used AIOs */ 226 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 227 int kaio_queue_count; /* size of AIO queue */ 228 int kaio_ballowed_count; /* maximum number of buffers */ 229 int kaio_queue_finished_count; /* number of daemon jobs finished */ 230 int kaio_buffer_count; /* number of physio buffers */ 231 int kaio_buffer_finished_count; /* count of I/O done */ 232 struct proc *kaio_p; /* process that uses this kaio block */ 233 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 234 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 235 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 239 }; 240 241 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 242 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 243 244 static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ 245 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 246 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 247 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ 248 249 static void aio_init_aioinfo(struct proc *p); 250 static void aio_onceonly(void); 251 static int aio_free_entry(struct aiocblist *aiocbe); 252 static void aio_process(struct aiocblist *aiocbe); 253 static int aio_newproc(void); 254 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 255 static void aio_physwakeup(struct buf *bp); 256 static void aio_proc_rundown(struct proc *p); 257 static int aio_fphysio(struct aiocblist *aiocbe); 258 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 259 static void aio_daemon(void *uproc); 260 static void aio_swake_cb(struct socket *, struct sockbuf *); 261 static int aio_unload(void); 262 static void process_signal(void *aioj); 263 static int filt_aioattach(struct knote *kn); 264 static void filt_aiodetach(struct knote *kn); 265 static int filt_aio(struct knote *kn, long hint); 266 267 /* 268 * Zones for: 269 * kaio Per process async io info 270 * aiop async io thread data 271 * aiocb async io jobs 272 * aiol list io job pointer - internal to aio_suspend XXX 273 * aiolio list io jobs 274 */ 275 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 276 277 /* kqueue filters for aio */ 278 static struct filterops aio_filtops = 279 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 280 281 /* 282 * Main operations function for use as a kernel module. 283 */ 284 static int 285 aio_modload(struct module *module, int cmd, void *arg) 286 { 287 int error = 0; 288 289 switch (cmd) { 290 case MOD_LOAD: 291 aio_onceonly(); 292 break; 293 case MOD_UNLOAD: 294 error = aio_unload(); 295 break; 296 case MOD_SHUTDOWN: 297 break; 298 default: 299 error = EINVAL; 300 break; 301 } 302 return (error); 303 } 304 305 static moduledata_t aio_mod = { 306 "aio", 307 &aio_modload, 308 NULL 309 }; 310 311 SYSCALL_MODULE_HELPER(aio_return); 312 SYSCALL_MODULE_HELPER(aio_suspend); 313 SYSCALL_MODULE_HELPER(aio_cancel); 314 SYSCALL_MODULE_HELPER(aio_error); 315 SYSCALL_MODULE_HELPER(aio_read); 316 SYSCALL_MODULE_HELPER(aio_write); 317 SYSCALL_MODULE_HELPER(aio_waitcomplete); 318 SYSCALL_MODULE_HELPER(lio_listio); 319 320 DECLARE_MODULE(aio, aio_mod, 321 SI_SUB_VFS, SI_ORDER_ANY); 322 MODULE_VERSION(aio, 1); 323 324 /* 325 * Startup initialization 326 */ 327 static void 328 aio_onceonly(void) 329 { 330 331 /* XXX: should probably just use so->callback */ 332 aio_swake = &aio_swake_cb; 333 at_exit(aio_proc_rundown); 334 at_exec(aio_proc_rundown); 335 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 336 TAILQ_INIT(&aio_freeproc); 337 TAILQ_INIT(&aio_activeproc); 338 TAILQ_INIT(&aio_jobs); 339 TAILQ_INIT(&aio_bufjobs); 340 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 341 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 342 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 343 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 344 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 345 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 346 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 347 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 348 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 349 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 350 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 351 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 352 jobrefid = 1; 353 async_io_version = _POSIX_VERSION; 354 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 355 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 356 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 357 } 358 359 /* 360 * Callback for unload of AIO when used as a module. 361 */ 362 static int 363 aio_unload(void) 364 { 365 366 /* 367 * XXX: no unloads by default, it's too dangerous. 368 * perhaps we could do it if locked out callers and then 369 * did an aio_proc_rundown() on each process. 370 */ 371 if (!unloadable) 372 return (EOPNOTSUPP); 373 374 async_io_version = 0; 375 aio_swake = NULL; 376 rm_at_exit(aio_proc_rundown); 377 rm_at_exec(aio_proc_rundown); 378 kqueue_del_filteropts(EVFILT_AIO); 379 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 380 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 381 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 382 return (0); 383 } 384 385 /* 386 * Init the per-process aioinfo structure. The aioinfo limits are set 387 * per-process for user limit (resource) management. 388 */ 389 static void 390 aio_init_aioinfo(struct proc *p) 391 { 392 struct kaioinfo *ki; 393 394 if (p->p_aioinfo == NULL) { 395 ki = uma_zalloc(kaio_zone, M_WAITOK); 396 p->p_aioinfo = ki; 397 ki->kaio_flags = 0; 398 ki->kaio_maxactive_count = max_aio_per_proc; 399 ki->kaio_active_count = 0; 400 ki->kaio_qallowed_count = max_aio_queue_per_proc; 401 ki->kaio_queue_count = 0; 402 ki->kaio_ballowed_count = max_buf_aio; 403 ki->kaio_buffer_count = 0; 404 ki->kaio_buffer_finished_count = 0; 405 ki->kaio_p = p; 406 TAILQ_INIT(&ki->kaio_jobdone); 407 TAILQ_INIT(&ki->kaio_jobqueue); 408 TAILQ_INIT(&ki->kaio_bufdone); 409 TAILQ_INIT(&ki->kaio_bufqueue); 410 TAILQ_INIT(&ki->kaio_liojoblist); 411 TAILQ_INIT(&ki->kaio_sockqueue); 412 } 413 414 while (num_aio_procs < target_aio_procs) 415 aio_newproc(); 416 } 417 418 /* 419 * Free a job entry. Wait for completion if it is currently active, but don't 420 * delay forever. If we delay, we return a flag that says that we have to 421 * restart the queue scan. 422 */ 423 static int 424 aio_free_entry(struct aiocblist *aiocbe) 425 { 426 struct kaioinfo *ki; 427 struct aio_liojob *lj; 428 struct proc *p; 429 int error; 430 int s; 431 432 if (aiocbe->jobstate == JOBST_NULL) 433 panic("aio_free_entry: freeing already free job"); 434 435 p = aiocbe->userproc; 436 ki = p->p_aioinfo; 437 lj = aiocbe->lio; 438 if (ki == NULL) 439 panic("aio_free_entry: missing p->p_aioinfo"); 440 441 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 442 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 443 tsleep(aiocbe, PRIBIO, "jobwai", 0); 444 } 445 if (aiocbe->bp == NULL) { 446 if (ki->kaio_queue_count <= 0) 447 panic("aio_free_entry: process queue size <= 0"); 448 if (num_queue_count <= 0) 449 panic("aio_free_entry: system wide queue size <= 0"); 450 451 if (lj) { 452 lj->lioj_queue_count--; 453 if (aiocbe->jobflags & AIOCBLIST_DONE) 454 lj->lioj_queue_finished_count--; 455 } 456 ki->kaio_queue_count--; 457 if (aiocbe->jobflags & AIOCBLIST_DONE) 458 ki->kaio_queue_finished_count--; 459 num_queue_count--; 460 } else { 461 if (lj) { 462 lj->lioj_buffer_count--; 463 if (aiocbe->jobflags & AIOCBLIST_DONE) 464 lj->lioj_buffer_finished_count--; 465 } 466 if (aiocbe->jobflags & AIOCBLIST_DONE) 467 ki->kaio_buffer_finished_count--; 468 ki->kaio_buffer_count--; 469 num_buf_aio--; 470 } 471 472 /* aiocbe is going away, we need to destroy any knotes */ 473 /* XXXKSE Note the thread here is used to eventually find the 474 * owning process again, but it is also used to do a fo_close 475 * and that requires the thread. (but does it require the 476 * OWNING thread? (or maybe the running thread?) 477 * There is a semantic problem here... 478 */ 479 knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ 480 481 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 482 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 483 ki->kaio_flags &= ~KAIO_WAKEUP; 484 wakeup(p); 485 } 486 487 if (aiocbe->jobstate == JOBST_JOBQBUF) { 488 if ((error = aio_fphysio(aiocbe)) != 0) 489 return (error); 490 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 491 panic("aio_free_entry: invalid physio finish-up state"); 492 s = splbio(); 493 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 494 splx(s); 495 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 496 s = splnet(); 497 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 498 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 499 splx(s); 500 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 501 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 502 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 503 s = splbio(); 504 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 505 splx(s); 506 if (aiocbe->bp) { 507 vunmapbuf(aiocbe->bp); 508 relpbuf(aiocbe->bp, NULL); 509 aiocbe->bp = NULL; 510 } 511 } 512 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 513 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 514 uma_zfree(aiolio_zone, lj); 515 } 516 aiocbe->jobstate = JOBST_NULL; 517 untimeout(process_signal, aiocbe, aiocbe->timeouthandle); 518 fdrop(aiocbe->fd_file, curthread); 519 crfree(aiocbe->cred); 520 uma_zfree(aiocb_zone, aiocbe); 521 return (0); 522 } 523 524 /* 525 * Rundown the jobs for a given process. 526 */ 527 static void 528 aio_proc_rundown(struct proc *p) 529 { 530 int s; 531 struct kaioinfo *ki; 532 struct aio_liojob *lj, *ljn; 533 struct aiocblist *aiocbe, *aiocbn; 534 struct file *fp; 535 struct socket *so; 536 537 ki = p->p_aioinfo; 538 if (ki == NULL) 539 return; 540 541 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 542 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 543 ki->kaio_buffer_finished_count)) { 544 ki->kaio_flags |= KAIO_RUNDOWN; 545 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 546 break; 547 } 548 549 /* 550 * Move any aio ops that are waiting on socket I/O to the normal job 551 * queues so they are cleaned up with any others. 552 */ 553 s = splnet(); 554 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 555 aiocbn) { 556 aiocbn = TAILQ_NEXT(aiocbe, plist); 557 fp = aiocbe->fd_file; 558 if (fp != NULL) { 559 so = fp->f_data; 560 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 561 if (TAILQ_EMPTY(&so->so_aiojobq)) { 562 so->so_snd.sb_flags &= ~SB_AIO; 563 so->so_rcv.sb_flags &= ~SB_AIO; 564 } 565 } 566 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 567 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 568 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 569 } 570 splx(s); 571 572 restart1: 573 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 574 aiocbn = TAILQ_NEXT(aiocbe, plist); 575 if (aio_free_entry(aiocbe)) 576 goto restart1; 577 } 578 579 restart2: 580 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 581 aiocbn) { 582 aiocbn = TAILQ_NEXT(aiocbe, plist); 583 if (aio_free_entry(aiocbe)) 584 goto restart2; 585 } 586 587 /* 588 * Note the use of lots of splbio here, trying to avoid splbio for long chains 589 * of I/O. Probably unnecessary. 590 */ 591 restart3: 592 s = splbio(); 593 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 594 ki->kaio_flags |= KAIO_WAKEUP; 595 tsleep(p, PRIBIO, "aioprn", 0); 596 splx(s); 597 goto restart3; 598 } 599 splx(s); 600 601 restart4: 602 s = splbio(); 603 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 604 aiocbn = TAILQ_NEXT(aiocbe, plist); 605 if (aio_free_entry(aiocbe)) { 606 splx(s); 607 goto restart4; 608 } 609 } 610 splx(s); 611 612 /* 613 * If we've slept, jobs might have moved from one queue to another. 614 * Retry rundown if we didn't manage to empty the queues. 615 */ 616 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 617 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 618 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 619 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 620 goto restart1; 621 622 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 623 ljn = TAILQ_NEXT(lj, lioj_list); 624 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 625 0)) { 626 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 627 uma_zfree(aiolio_zone, lj); 628 } else { 629 #ifdef DIAGNOSTIC 630 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 631 "QF:%d\n", lj->lioj_buffer_count, 632 lj->lioj_buffer_finished_count, 633 lj->lioj_queue_count, 634 lj->lioj_queue_finished_count); 635 #endif 636 } 637 } 638 639 uma_zfree(kaio_zone, ki); 640 p->p_aioinfo = NULL; 641 } 642 643 /* 644 * Select a job to run (called by an AIO daemon). 645 */ 646 static struct aiocblist * 647 aio_selectjob(struct aiothreadlist *aiop) 648 { 649 int s; 650 struct aiocblist *aiocbe; 651 struct kaioinfo *ki; 652 struct proc *userp; 653 654 s = splnet(); 655 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 656 TAILQ_NEXT(aiocbe, list)) { 657 userp = aiocbe->userproc; 658 ki = userp->p_aioinfo; 659 660 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 661 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 662 splx(s); 663 return (aiocbe); 664 } 665 } 666 splx(s); 667 668 return (NULL); 669 } 670 671 /* 672 * The AIO processing activity. This is the code that does the I/O request for 673 * the non-physio version of the operations. The normal vn operations are used, 674 * and this code should work in all instances for every type of file, including 675 * pipes, sockets, fifos, and regular files. 676 */ 677 static void 678 aio_process(struct aiocblist *aiocbe) 679 { 680 struct ucred *td_savedcred; 681 struct thread *td; 682 struct proc *mycp; 683 struct aiocb *cb; 684 struct file *fp; 685 struct uio auio; 686 struct iovec aiov; 687 int cnt; 688 int error; 689 int oublock_st, oublock_end; 690 int inblock_st, inblock_end; 691 692 td = curthread; 693 td_savedcred = td->td_ucred; 694 td->td_ucred = aiocbe->cred; 695 mycp = td->td_proc; 696 cb = &aiocbe->uaiocb; 697 fp = aiocbe->fd_file; 698 699 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 700 aiov.iov_len = cb->aio_nbytes; 701 702 auio.uio_iov = &aiov; 703 auio.uio_iovcnt = 1; 704 auio.uio_offset = cb->aio_offset; 705 auio.uio_resid = cb->aio_nbytes; 706 cnt = cb->aio_nbytes; 707 auio.uio_segflg = UIO_USERSPACE; 708 auio.uio_td = td; 709 710 inblock_st = mycp->p_stats->p_ru.ru_inblock; 711 oublock_st = mycp->p_stats->p_ru.ru_oublock; 712 /* 713 * _aio_aqueue() acquires a reference to the file that is 714 * released in aio_free_entry(). 715 */ 716 if (cb->aio_lio_opcode == LIO_READ) { 717 auio.uio_rw = UIO_READ; 718 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 719 } else { 720 auio.uio_rw = UIO_WRITE; 721 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 722 } 723 inblock_end = mycp->p_stats->p_ru.ru_inblock; 724 oublock_end = mycp->p_stats->p_ru.ru_oublock; 725 726 aiocbe->inputcharge = inblock_end - inblock_st; 727 aiocbe->outputcharge = oublock_end - oublock_st; 728 729 if ((error) && (auio.uio_resid != cnt)) { 730 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 731 error = 0; 732 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 733 PROC_LOCK(aiocbe->userproc); 734 psignal(aiocbe->userproc, SIGPIPE); 735 PROC_UNLOCK(aiocbe->userproc); 736 } 737 } 738 739 cnt -= auio.uio_resid; 740 cb->_aiocb_private.error = error; 741 cb->_aiocb_private.status = cnt; 742 td->td_ucred = td_savedcred; 743 } 744 745 /* 746 * The AIO daemon, most of the actual work is done in aio_process, 747 * but the setup (and address space mgmt) is done in this routine. 748 */ 749 static void 750 aio_daemon(void *uproc) 751 { 752 int s; 753 struct aio_liojob *lj; 754 struct aiocb *cb; 755 struct aiocblist *aiocbe; 756 struct aiothreadlist *aiop; 757 struct kaioinfo *ki; 758 struct proc *curcp, *mycp, *userp; 759 struct vmspace *myvm, *tmpvm; 760 struct thread *td = curthread; 761 struct pgrp *newpgrp; 762 struct session *newsess; 763 764 mtx_lock(&Giant); 765 /* 766 * Local copies of curproc (cp) and vmspace (myvm) 767 */ 768 mycp = td->td_proc; 769 myvm = mycp->p_vmspace; 770 771 if (mycp->p_textvp) { 772 vrele(mycp->p_textvp); 773 mycp->p_textvp = NULL; 774 } 775 776 /* 777 * Allocate and ready the aio control info. There is one aiop structure 778 * per daemon. 779 */ 780 aiop = uma_zalloc(aiop_zone, M_WAITOK); 781 aiop->aiothread = td; 782 aiop->aiothreadflags |= AIOP_FREE; 783 784 s = splnet(); 785 786 /* 787 * Place thread (lightweight process) onto the AIO free thread list. 788 */ 789 if (TAILQ_EMPTY(&aio_freeproc)) 790 wakeup(&aio_freeproc); 791 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 792 793 splx(s); 794 795 /* 796 * Get rid of our current filedescriptors. AIOD's don't need any 797 * filedescriptors, except as temporarily inherited from the client. 798 */ 799 fdfree(td); 800 801 mtx_unlock(&Giant); 802 /* The daemon resides in its own pgrp. */ 803 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 804 M_WAITOK | M_ZERO); 805 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 806 M_WAITOK | M_ZERO); 807 808 sx_xlock(&proctree_lock); 809 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 810 sx_xunlock(&proctree_lock); 811 mtx_lock(&Giant); 812 813 /* Mark special process type. */ 814 mycp->p_flag |= P_SYSTEM; 815 816 /* 817 * Wakeup parent process. (Parent sleeps to keep from blasting away 818 * and creating too many daemons.) 819 */ 820 wakeup(mycp); 821 822 for (;;) { 823 /* 824 * curcp is the current daemon process context. 825 * userp is the current user process context. 826 */ 827 curcp = mycp; 828 829 /* 830 * Take daemon off of free queue 831 */ 832 if (aiop->aiothreadflags & AIOP_FREE) { 833 s = splnet(); 834 TAILQ_REMOVE(&aio_freeproc, aiop, list); 835 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 836 aiop->aiothreadflags &= ~AIOP_FREE; 837 splx(s); 838 } 839 aiop->aiothreadflags &= ~AIOP_SCHED; 840 841 /* 842 * Check for jobs. 843 */ 844 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 845 cb = &aiocbe->uaiocb; 846 userp = aiocbe->userproc; 847 848 aiocbe->jobstate = JOBST_JOBRUNNING; 849 850 /* 851 * Connect to process address space for user program. 852 */ 853 if (userp != curcp) { 854 /* 855 * Save the current address space that we are 856 * connected to. 857 */ 858 tmpvm = mycp->p_vmspace; 859 860 /* 861 * Point to the new user address space, and 862 * refer to it. 863 */ 864 mycp->p_vmspace = userp->p_vmspace; 865 mycp->p_vmspace->vm_refcnt++; 866 867 /* Activate the new mapping. */ 868 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 869 870 /* 871 * If the old address space wasn't the daemons 872 * own address space, then we need to remove the 873 * daemon's reference from the other process 874 * that it was acting on behalf of. 875 */ 876 if (tmpvm != myvm) { 877 vmspace_free(tmpvm); 878 } 879 curcp = userp; 880 } 881 882 ki = userp->p_aioinfo; 883 lj = aiocbe->lio; 884 885 /* Account for currently active jobs. */ 886 ki->kaio_active_count++; 887 888 /* Do the I/O function. */ 889 aio_process(aiocbe); 890 891 /* Decrement the active job count. */ 892 ki->kaio_active_count--; 893 894 /* 895 * Increment the completion count for wakeup/signal 896 * comparisons. 897 */ 898 aiocbe->jobflags |= AIOCBLIST_DONE; 899 ki->kaio_queue_finished_count++; 900 if (lj) 901 lj->lioj_queue_finished_count++; 902 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 903 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 904 ki->kaio_flags &= ~KAIO_WAKEUP; 905 wakeup(userp); 906 } 907 908 s = splbio(); 909 if (lj && (lj->lioj_flags & 910 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 911 if ((lj->lioj_queue_finished_count == 912 lj->lioj_queue_count) && 913 (lj->lioj_buffer_finished_count == 914 lj->lioj_buffer_count)) { 915 PROC_LOCK(userp); 916 psignal(userp, 917 lj->lioj_signal.sigev_signo); 918 PROC_UNLOCK(userp); 919 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 920 } 921 } 922 splx(s); 923 924 aiocbe->jobstate = JOBST_JOBFINISHED; 925 926 s = splnet(); 927 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 928 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 929 splx(s); 930 KNOTE(&aiocbe->klist, 0); 931 932 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 933 wakeup(aiocbe); 934 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 935 } 936 937 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 938 PROC_LOCK(userp); 939 psignal(userp, cb->aio_sigevent.sigev_signo); 940 PROC_UNLOCK(userp); 941 } 942 } 943 944 /* 945 * Disconnect from user address space. 946 */ 947 if (curcp != mycp) { 948 /* Get the user address space to disconnect from. */ 949 tmpvm = mycp->p_vmspace; 950 951 /* Get original address space for daemon. */ 952 mycp->p_vmspace = myvm; 953 954 /* Activate the daemon's address space. */ 955 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 956 #ifdef DIAGNOSTIC 957 if (tmpvm == myvm) { 958 printf("AIOD: vmspace problem -- %d\n", 959 mycp->p_pid); 960 } 961 #endif 962 /* Remove our vmspace reference. */ 963 vmspace_free(tmpvm); 964 965 curcp = mycp; 966 } 967 968 /* 969 * If we are the first to be put onto the free queue, wakeup 970 * anyone waiting for a daemon. 971 */ 972 s = splnet(); 973 TAILQ_REMOVE(&aio_activeproc, aiop, list); 974 if (TAILQ_EMPTY(&aio_freeproc)) 975 wakeup(&aio_freeproc); 976 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 977 aiop->aiothreadflags |= AIOP_FREE; 978 splx(s); 979 980 /* 981 * If daemon is inactive for a long time, allow it to exit, 982 * thereby freeing resources. 983 */ 984 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && 985 tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { 986 s = splnet(); 987 if (TAILQ_EMPTY(&aio_jobs)) { 988 if ((aiop->aiothreadflags & AIOP_FREE) && 989 (num_aio_procs > target_aio_procs)) { 990 TAILQ_REMOVE(&aio_freeproc, aiop, list); 991 splx(s); 992 uma_zfree(aiop_zone, aiop); 993 num_aio_procs--; 994 #ifdef DIAGNOSTIC 995 if (mycp->p_vmspace->vm_refcnt <= 1) { 996 printf("AIOD: bad vm refcnt for" 997 " exiting daemon: %d\n", 998 mycp->p_vmspace->vm_refcnt); 999 } 1000 #endif 1001 kthread_exit(0); 1002 } 1003 } 1004 splx(s); 1005 } 1006 } 1007 } 1008 1009 /* 1010 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1011 * AIO daemon modifies its environment itself. 1012 */ 1013 static int 1014 aio_newproc(void) 1015 { 1016 int error; 1017 struct proc *p; 1018 1019 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1020 num_aio_procs); 1021 if (error) 1022 return (error); 1023 1024 /* 1025 * Wait until daemon is started, but continue on just in case to 1026 * handle error conditions. 1027 */ 1028 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1029 1030 num_aio_procs++; 1031 1032 return (error); 1033 } 1034 1035 /* 1036 * Try the high-performance, low-overhead physio method for eligible 1037 * VCHR devices. This method doesn't use an aio helper thread, and 1038 * thus has very low overhead. 1039 * 1040 * Assumes that the caller, _aio_aqueue(), has incremented the file 1041 * structure's reference count, preventing its deallocation for the 1042 * duration of this call. 1043 */ 1044 static int 1045 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1046 { 1047 int error; 1048 struct aiocb *cb; 1049 struct file *fp; 1050 struct buf *bp; 1051 struct vnode *vp; 1052 struct kaioinfo *ki; 1053 struct aio_liojob *lj; 1054 int s; 1055 int notify; 1056 1057 cb = &aiocbe->uaiocb; 1058 fp = aiocbe->fd_file; 1059 1060 if (fp->f_type != DTYPE_VNODE) 1061 return (-1); 1062 1063 vp = fp->f_data; 1064 1065 /* 1066 * If its not a disk, we don't want to return a positive error. 1067 * It causes the aio code to not fall through to try the thread 1068 * way when you're talking to a regular file. 1069 */ 1070 if (!vn_isdisk(vp, &error)) { 1071 if (error == ENOTBLK) 1072 return (-1); 1073 else 1074 return (error); 1075 } 1076 1077 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) 1078 return (-1); 1079 1080 if (cb->aio_nbytes > 1081 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1082 return (-1); 1083 1084 ki = p->p_aioinfo; 1085 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1086 return (-1); 1087 1088 ki->kaio_buffer_count++; 1089 1090 lj = aiocbe->lio; 1091 if (lj) 1092 lj->lioj_buffer_count++; 1093 1094 /* Create and build a buffer header for a transfer. */ 1095 bp = (struct buf *)getpbuf(NULL); 1096 BUF_KERNPROC(bp); 1097 1098 /* 1099 * Get a copy of the kva from the physical buffer. 1100 */ 1101 bp->b_caller1 = p; 1102 bp->b_dev = vp->v_rdev; 1103 error = bp->b_error = 0; 1104 1105 bp->b_bcount = cb->aio_nbytes; 1106 bp->b_bufsize = cb->aio_nbytes; 1107 bp->b_flags = B_PHYS; 1108 bp->b_iodone = aio_physwakeup; 1109 bp->b_saveaddr = bp->b_data; 1110 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1111 bp->b_blkno = btodb(cb->aio_offset); 1112 1113 if (cb->aio_lio_opcode == LIO_WRITE) { 1114 bp->b_iocmd = BIO_WRITE; 1115 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) { 1116 error = EFAULT; 1117 goto doerror; 1118 } 1119 } else { 1120 bp->b_iocmd = BIO_READ; 1121 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) { 1122 error = EFAULT; 1123 goto doerror; 1124 } 1125 } 1126 1127 /* Bring buffer into kernel space. */ 1128 vmapbuf(bp); 1129 1130 s = splbio(); 1131 aiocbe->bp = bp; 1132 bp->b_spc = (void *)aiocbe; 1133 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); 1134 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1135 aiocbe->jobstate = JOBST_JOBQBUF; 1136 cb->_aiocb_private.status = cb->aio_nbytes; 1137 num_buf_aio++; 1138 bp->b_error = 0; 1139 1140 splx(s); 1141 1142 /* Perform transfer. */ 1143 DEV_STRATEGY(bp); 1144 1145 notify = 0; 1146 s = splbio(); 1147 1148 /* 1149 * If we had an error invoking the request, or an error in processing 1150 * the request before we have returned, we process it as an error in 1151 * transfer. Note that such an I/O error is not indicated immediately, 1152 * but is returned using the aio_error mechanism. In this case, 1153 * aio_suspend will return immediately. 1154 */ 1155 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1156 struct aiocb *job = aiocbe->uuaiocb; 1157 1158 aiocbe->uaiocb._aiocb_private.status = 0; 1159 suword(&job->_aiocb_private.status, 0); 1160 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1161 suword(&job->_aiocb_private.error, bp->b_error); 1162 1163 ki->kaio_buffer_finished_count++; 1164 1165 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1166 aiocbe->jobstate = JOBST_JOBBFINISHED; 1167 aiocbe->jobflags |= AIOCBLIST_DONE; 1168 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 1169 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1170 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1171 notify = 1; 1172 } 1173 } 1174 splx(s); 1175 if (notify) 1176 KNOTE(&aiocbe->klist, 0); 1177 return (0); 1178 1179 doerror: 1180 ki->kaio_buffer_count--; 1181 if (lj) 1182 lj->lioj_buffer_count--; 1183 aiocbe->bp = NULL; 1184 relpbuf(bp, NULL); 1185 return (error); 1186 } 1187 1188 /* 1189 * This waits/tests physio completion. 1190 */ 1191 static int 1192 aio_fphysio(struct aiocblist *iocb) 1193 { 1194 int s; 1195 struct buf *bp; 1196 int error; 1197 1198 bp = iocb->bp; 1199 1200 s = splbio(); 1201 while ((bp->b_flags & B_DONE) == 0) { 1202 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1203 if ((bp->b_flags & B_DONE) == 0) { 1204 splx(s); 1205 return (EINPROGRESS); 1206 } else 1207 break; 1208 } 1209 } 1210 splx(s); 1211 1212 /* Release mapping into kernel space. */ 1213 vunmapbuf(bp); 1214 iocb->bp = 0; 1215 1216 error = 0; 1217 1218 /* Check for an error. */ 1219 if (bp->b_ioflags & BIO_ERROR) 1220 error = bp->b_error; 1221 1222 relpbuf(bp, NULL); 1223 return (error); 1224 } 1225 1226 /* 1227 * Wake up aio requests that may be serviceable now. 1228 */ 1229 static void 1230 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1231 { 1232 struct aiocblist *cb,*cbn; 1233 struct proc *p; 1234 struct kaioinfo *ki = NULL; 1235 int opcode, wakecount = 0; 1236 struct aiothreadlist *aiop; 1237 1238 if (sb == &so->so_snd) { 1239 opcode = LIO_WRITE; 1240 so->so_snd.sb_flags &= ~SB_AIO; 1241 } else { 1242 opcode = LIO_READ; 1243 so->so_rcv.sb_flags &= ~SB_AIO; 1244 } 1245 1246 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1247 cbn = TAILQ_NEXT(cb, list); 1248 if (opcode == cb->uaiocb.aio_lio_opcode) { 1249 p = cb->userproc; 1250 ki = p->p_aioinfo; 1251 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1252 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1253 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1254 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1255 wakecount++; 1256 if (cb->jobstate != JOBST_JOBQGLOBAL) 1257 panic("invalid queue value"); 1258 } 1259 } 1260 1261 while (wakecount--) { 1262 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1263 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1264 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1265 aiop->aiothreadflags &= ~AIOP_FREE; 1266 wakeup(aiop->aiothread); 1267 } 1268 } 1269 } 1270 1271 /* 1272 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1273 * technique is done in this code. 1274 */ 1275 static int 1276 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1277 { 1278 struct proc *p = td->td_proc; 1279 struct filedesc *fdp; 1280 struct file *fp; 1281 unsigned int fd; 1282 struct socket *so; 1283 int s; 1284 int error; 1285 int opcode, user_opcode; 1286 struct aiocblist *aiocbe; 1287 struct aiothreadlist *aiop; 1288 struct kaioinfo *ki; 1289 struct kevent kev; 1290 struct kqueue *kq; 1291 struct file *kq_fp; 1292 1293 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1294 aiocbe->inputcharge = 0; 1295 aiocbe->outputcharge = 0; 1296 callout_handle_init(&aiocbe->timeouthandle); 1297 SLIST_INIT(&aiocbe->klist); 1298 1299 suword(&job->_aiocb_private.status, -1); 1300 suword(&job->_aiocb_private.error, 0); 1301 suword(&job->_aiocb_private.kernelinfo, -1); 1302 1303 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1304 if (error) { 1305 suword(&job->_aiocb_private.error, error); 1306 uma_zfree(aiocb_zone, aiocbe); 1307 return (error); 1308 } 1309 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1310 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1311 uma_zfree(aiocb_zone, aiocbe); 1312 return (EINVAL); 1313 } 1314 1315 /* Save userspace address of the job info. */ 1316 aiocbe->uuaiocb = job; 1317 1318 /* Get the opcode. */ 1319 user_opcode = aiocbe->uaiocb.aio_lio_opcode; 1320 if (type != LIO_NOP) 1321 aiocbe->uaiocb.aio_lio_opcode = type; 1322 opcode = aiocbe->uaiocb.aio_lio_opcode; 1323 1324 /* Get the fd info for process. */ 1325 fdp = p->p_fd; 1326 1327 /* 1328 * Range check file descriptor. 1329 */ 1330 FILEDESC_LOCK(fdp); 1331 fd = aiocbe->uaiocb.aio_fildes; 1332 if (fd >= fdp->fd_nfiles) { 1333 FILEDESC_UNLOCK(fdp); 1334 uma_zfree(aiocb_zone, aiocbe); 1335 if (type == 0) 1336 suword(&job->_aiocb_private.error, EBADF); 1337 return (EBADF); 1338 } 1339 1340 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1341 if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 1342 0))) { 1343 FILEDESC_UNLOCK(fdp); 1344 uma_zfree(aiocb_zone, aiocbe); 1345 if (type == 0) 1346 suword(&job->_aiocb_private.error, EBADF); 1347 return (EBADF); 1348 } 1349 fhold(fp); 1350 FILEDESC_UNLOCK(fdp); 1351 1352 if (aiocbe->uaiocb.aio_offset == -1LL) { 1353 error = EINVAL; 1354 goto aqueue_fail; 1355 } 1356 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1357 if (error) { 1358 error = EINVAL; 1359 goto aqueue_fail; 1360 } 1361 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1362 if (jobrefid == LONG_MAX) 1363 jobrefid = 1; 1364 else 1365 jobrefid++; 1366 1367 if (opcode == LIO_NOP) { 1368 fdrop(fp, td); 1369 uma_zfree(aiocb_zone, aiocbe); 1370 if (type == 0) { 1371 suword(&job->_aiocb_private.error, 0); 1372 suword(&job->_aiocb_private.status, 0); 1373 suword(&job->_aiocb_private.kernelinfo, 0); 1374 } 1375 return (0); 1376 } 1377 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1378 if (type == 0) 1379 suword(&job->_aiocb_private.status, 0); 1380 error = EINVAL; 1381 goto aqueue_fail; 1382 } 1383 1384 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1385 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1386 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1387 } 1388 else { 1389 /* 1390 * This method for requesting kevent-based notification won't 1391 * work on the alpha, since we're passing in a pointer 1392 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- 1393 * based method instead. 1394 */ 1395 if (user_opcode == LIO_NOP || user_opcode == LIO_READ || 1396 user_opcode == LIO_WRITE) 1397 goto no_kqueue; 1398 1399 error = copyin((struct kevent *)(uintptr_t)user_opcode, 1400 &kev, sizeof(kev)); 1401 if (error) 1402 goto aqueue_fail; 1403 } 1404 if ((u_int)kev.ident >= fdp->fd_nfiles || 1405 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1406 (kq_fp->f_type != DTYPE_KQUEUE)) { 1407 error = EBADF; 1408 goto aqueue_fail; 1409 } 1410 kq = kq_fp->f_data; 1411 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1412 kev.filter = EVFILT_AIO; 1413 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1414 kev.data = (intptr_t)aiocbe; 1415 error = kqueue_register(kq, &kev, td); 1416 aqueue_fail: 1417 if (error) { 1418 fdrop(fp, td); 1419 uma_zfree(aiocb_zone, aiocbe); 1420 if (type == 0) 1421 suword(&job->_aiocb_private.error, error); 1422 goto done; 1423 } 1424 no_kqueue: 1425 1426 suword(&job->_aiocb_private.error, EINPROGRESS); 1427 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1428 aiocbe->userproc = p; 1429 aiocbe->cred = crhold(td->td_ucred); 1430 aiocbe->jobflags = 0; 1431 aiocbe->lio = lj; 1432 ki = p->p_aioinfo; 1433 1434 if (fp->f_type == DTYPE_SOCKET) { 1435 /* 1436 * Alternate queueing for socket ops: Reach down into the 1437 * descriptor to get the socket data. Then check to see if the 1438 * socket is ready to be read or written (based on the requested 1439 * operation). 1440 * 1441 * If it is not ready for io, then queue the aiocbe on the 1442 * socket, and set the flags so we get a call when sbnotify() 1443 * happens. 1444 */ 1445 so = fp->f_data; 1446 s = splnet(); 1447 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1448 LIO_WRITE) && (!sowriteable(so)))) { 1449 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1450 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1451 if (opcode == LIO_READ) 1452 so->so_rcv.sb_flags |= SB_AIO; 1453 else 1454 so->so_snd.sb_flags |= SB_AIO; 1455 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1456 ki->kaio_queue_count++; 1457 num_queue_count++; 1458 splx(s); 1459 error = 0; 1460 goto done; 1461 } 1462 splx(s); 1463 } 1464 1465 if ((error = aio_qphysio(p, aiocbe)) == 0) 1466 goto done; 1467 if (error > 0) { 1468 suword(&job->_aiocb_private.status, 0); 1469 aiocbe->uaiocb._aiocb_private.error = error; 1470 suword(&job->_aiocb_private.error, error); 1471 goto done; 1472 } 1473 1474 /* No buffer for daemon I/O. */ 1475 aiocbe->bp = NULL; 1476 1477 ki->kaio_queue_count++; 1478 if (lj) 1479 lj->lioj_queue_count++; 1480 s = splnet(); 1481 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1482 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1483 splx(s); 1484 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1485 1486 num_queue_count++; 1487 error = 0; 1488 1489 /* 1490 * If we don't have a free AIO process, and we are below our quota, then 1491 * start one. Otherwise, depend on the subsequent I/O completions to 1492 * pick-up this job. If we don't sucessfully create the new process 1493 * (thread) due to resource issues, we return an error for now (EAGAIN), 1494 * which is likely not the correct thing to do. 1495 */ 1496 s = splnet(); 1497 retryproc: 1498 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1499 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1500 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1501 aiop->aiothreadflags &= ~AIOP_FREE; 1502 wakeup(aiop->aiothread); 1503 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1504 ((ki->kaio_active_count + num_aio_resv_start) < 1505 ki->kaio_maxactive_count)) { 1506 num_aio_resv_start++; 1507 if ((error = aio_newproc()) == 0) { 1508 num_aio_resv_start--; 1509 goto retryproc; 1510 } 1511 num_aio_resv_start--; 1512 } 1513 splx(s); 1514 done: 1515 return (error); 1516 } 1517 1518 /* 1519 * This routine queues an AIO request, checking for quotas. 1520 */ 1521 static int 1522 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1523 { 1524 struct proc *p = td->td_proc; 1525 struct kaioinfo *ki; 1526 1527 if (p->p_aioinfo == NULL) 1528 aio_init_aioinfo(p); 1529 1530 if (num_queue_count >= max_queue_count) 1531 return (EAGAIN); 1532 1533 ki = p->p_aioinfo; 1534 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1535 return (EAGAIN); 1536 1537 return _aio_aqueue(td, job, NULL, type); 1538 } 1539 1540 /* 1541 * Support the aio_return system call, as a side-effect, kernel resources are 1542 * released. 1543 */ 1544 int 1545 aio_return(struct thread *td, struct aio_return_args *uap) 1546 { 1547 struct proc *p = td->td_proc; 1548 int s; 1549 long jobref; 1550 struct aiocblist *cb, *ncb; 1551 struct aiocb *ujob; 1552 struct kaioinfo *ki; 1553 1554 ujob = uap->aiocbp; 1555 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1556 if (jobref == -1 || jobref == 0) 1557 return (EINVAL); 1558 1559 ki = p->p_aioinfo; 1560 if (ki == NULL) 1561 return (EINVAL); 1562 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1563 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1564 jobref) { 1565 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1566 p->p_stats->p_ru.ru_oublock += 1567 cb->outputcharge; 1568 cb->outputcharge = 0; 1569 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1570 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1571 cb->inputcharge = 0; 1572 } 1573 goto done; 1574 } 1575 } 1576 s = splbio(); 1577 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1578 ncb = TAILQ_NEXT(cb, plist); 1579 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1580 == jobref) { 1581 break; 1582 } 1583 } 1584 splx(s); 1585 done: 1586 if (cb != NULL) { 1587 if (ujob == cb->uuaiocb) { 1588 td->td_retval[0] = 1589 cb->uaiocb._aiocb_private.status; 1590 } else 1591 td->td_retval[0] = EFAULT; 1592 aio_free_entry(cb); 1593 return (0); 1594 } 1595 return (EINVAL); 1596 } 1597 1598 /* 1599 * Allow a process to wakeup when any of the I/O requests are completed. 1600 */ 1601 int 1602 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1603 { 1604 struct proc *p = td->td_proc; 1605 struct timeval atv; 1606 struct timespec ts; 1607 struct aiocb *const *cbptr, *cbp; 1608 struct kaioinfo *ki; 1609 struct aiocblist *cb; 1610 int i; 1611 int njoblist; 1612 int error, s, timo; 1613 long *ijoblist; 1614 struct aiocb **ujoblist; 1615 1616 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1617 return (EINVAL); 1618 1619 timo = 0; 1620 if (uap->timeout) { 1621 /* Get timespec struct. */ 1622 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1623 return (error); 1624 1625 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1626 return (EINVAL); 1627 1628 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1629 if (itimerfix(&atv)) 1630 return (EINVAL); 1631 timo = tvtohz(&atv); 1632 } 1633 1634 ki = p->p_aioinfo; 1635 if (ki == NULL) 1636 return (EAGAIN); 1637 1638 njoblist = 0; 1639 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1640 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1641 cbptr = uap->aiocbp; 1642 1643 for (i = 0; i < uap->nent; i++) { 1644 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1645 if (cbp == 0) 1646 continue; 1647 ujoblist[njoblist] = cbp; 1648 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1649 njoblist++; 1650 } 1651 1652 if (njoblist == 0) { 1653 uma_zfree(aiol_zone, ijoblist); 1654 uma_zfree(aiol_zone, ujoblist); 1655 return (0); 1656 } 1657 1658 error = 0; 1659 for (;;) { 1660 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1661 for (i = 0; i < njoblist; i++) { 1662 if (((intptr_t) 1663 cb->uaiocb._aiocb_private.kernelinfo) == 1664 ijoblist[i]) { 1665 if (ujoblist[i] != cb->uuaiocb) 1666 error = EINVAL; 1667 uma_zfree(aiol_zone, ijoblist); 1668 uma_zfree(aiol_zone, ujoblist); 1669 return (error); 1670 } 1671 } 1672 } 1673 1674 s = splbio(); 1675 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1676 TAILQ_NEXT(cb, plist)) { 1677 for (i = 0; i < njoblist; i++) { 1678 if (((intptr_t) 1679 cb->uaiocb._aiocb_private.kernelinfo) == 1680 ijoblist[i]) { 1681 splx(s); 1682 if (ujoblist[i] != cb->uuaiocb) 1683 error = EINVAL; 1684 uma_zfree(aiol_zone, ijoblist); 1685 uma_zfree(aiol_zone, ujoblist); 1686 return (error); 1687 } 1688 } 1689 } 1690 1691 ki->kaio_flags |= KAIO_WAKEUP; 1692 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); 1693 splx(s); 1694 1695 if (error == ERESTART || error == EINTR) { 1696 uma_zfree(aiol_zone, ijoblist); 1697 uma_zfree(aiol_zone, ujoblist); 1698 return (EINTR); 1699 } else if (error == EWOULDBLOCK) { 1700 uma_zfree(aiol_zone, ijoblist); 1701 uma_zfree(aiol_zone, ujoblist); 1702 return (EAGAIN); 1703 } 1704 } 1705 1706 /* NOTREACHED */ 1707 return (EINVAL); 1708 } 1709 1710 /* 1711 * aio_cancel cancels any non-physio aio operations not currently in 1712 * progress. 1713 */ 1714 int 1715 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1716 { 1717 struct proc *p = td->td_proc; 1718 struct kaioinfo *ki; 1719 struct aiocblist *cbe, *cbn; 1720 struct file *fp; 1721 struct filedesc *fdp; 1722 struct socket *so; 1723 struct proc *po; 1724 int s,error; 1725 int cancelled=0; 1726 int notcancelled=0; 1727 struct vnode *vp; 1728 1729 fdp = p->p_fd; 1730 if ((u_int)uap->fd >= fdp->fd_nfiles || 1731 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1732 return (EBADF); 1733 1734 if (fp->f_type == DTYPE_VNODE) { 1735 vp = fp->f_data; 1736 1737 if (vn_isdisk(vp,&error)) { 1738 td->td_retval[0] = AIO_NOTCANCELED; 1739 return (0); 1740 } 1741 } else if (fp->f_type == DTYPE_SOCKET) { 1742 so = fp->f_data; 1743 1744 s = splnet(); 1745 1746 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1747 cbn = TAILQ_NEXT(cbe, list); 1748 if ((uap->aiocbp == NULL) || 1749 (uap->aiocbp == cbe->uuaiocb) ) { 1750 po = cbe->userproc; 1751 ki = po->p_aioinfo; 1752 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1753 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1754 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1755 if (ki->kaio_flags & KAIO_WAKEUP) { 1756 wakeup(po); 1757 } 1758 cbe->jobstate = JOBST_JOBFINISHED; 1759 cbe->uaiocb._aiocb_private.status=-1; 1760 cbe->uaiocb._aiocb_private.error=ECANCELED; 1761 cancelled++; 1762 /* XXX cancelled, knote? */ 1763 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1764 SIGEV_SIGNAL) { 1765 PROC_LOCK(cbe->userproc); 1766 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1767 PROC_UNLOCK(cbe->userproc); 1768 } 1769 if (uap->aiocbp) 1770 break; 1771 } 1772 } 1773 splx(s); 1774 1775 if ((cancelled) && (uap->aiocbp)) { 1776 td->td_retval[0] = AIO_CANCELED; 1777 return (0); 1778 } 1779 } 1780 ki=p->p_aioinfo; 1781 if (ki == NULL) 1782 goto done; 1783 s = splnet(); 1784 1785 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1786 cbn = TAILQ_NEXT(cbe, plist); 1787 1788 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1789 ((uap->aiocbp == NULL ) || 1790 (uap->aiocbp == cbe->uuaiocb))) { 1791 1792 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1793 TAILQ_REMOVE(&aio_jobs, cbe, list); 1794 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1795 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1796 plist); 1797 cancelled++; 1798 ki->kaio_queue_finished_count++; 1799 cbe->jobstate = JOBST_JOBFINISHED; 1800 cbe->uaiocb._aiocb_private.status = -1; 1801 cbe->uaiocb._aiocb_private.error = ECANCELED; 1802 /* XXX cancelled, knote? */ 1803 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1804 SIGEV_SIGNAL) { 1805 PROC_LOCK(cbe->userproc); 1806 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1807 PROC_UNLOCK(cbe->userproc); 1808 } 1809 } else { 1810 notcancelled++; 1811 } 1812 } 1813 } 1814 splx(s); 1815 done: 1816 if (notcancelled) { 1817 td->td_retval[0] = AIO_NOTCANCELED; 1818 return (0); 1819 } 1820 if (cancelled) { 1821 td->td_retval[0] = AIO_CANCELED; 1822 return (0); 1823 } 1824 td->td_retval[0] = AIO_ALLDONE; 1825 1826 return (0); 1827 } 1828 1829 /* 1830 * aio_error is implemented in the kernel level for compatibility purposes only. 1831 * For a user mode async implementation, it would be best to do it in a userland 1832 * subroutine. 1833 */ 1834 int 1835 aio_error(struct thread *td, struct aio_error_args *uap) 1836 { 1837 struct proc *p = td->td_proc; 1838 int s; 1839 struct aiocblist *cb; 1840 struct kaioinfo *ki; 1841 long jobref; 1842 1843 ki = p->p_aioinfo; 1844 if (ki == NULL) 1845 return (EINVAL); 1846 1847 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1848 if ((jobref == -1) || (jobref == 0)) 1849 return (EINVAL); 1850 1851 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1852 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1853 jobref) { 1854 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1855 return (0); 1856 } 1857 } 1858 1859 s = splnet(); 1860 1861 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1862 plist)) { 1863 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1864 jobref) { 1865 td->td_retval[0] = EINPROGRESS; 1866 splx(s); 1867 return (0); 1868 } 1869 } 1870 1871 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1872 plist)) { 1873 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1874 jobref) { 1875 td->td_retval[0] = EINPROGRESS; 1876 splx(s); 1877 return (0); 1878 } 1879 } 1880 splx(s); 1881 1882 s = splbio(); 1883 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1884 plist)) { 1885 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1886 jobref) { 1887 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1888 splx(s); 1889 return (0); 1890 } 1891 } 1892 1893 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1894 plist)) { 1895 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1896 jobref) { 1897 td->td_retval[0] = EINPROGRESS; 1898 splx(s); 1899 return (0); 1900 } 1901 } 1902 splx(s); 1903 1904 #if (0) 1905 /* 1906 * Hack for lio. 1907 */ 1908 status = fuword(&uap->aiocbp->_aiocb_private.status); 1909 if (status == -1) 1910 return fuword(&uap->aiocbp->_aiocb_private.error); 1911 #endif 1912 return (EINVAL); 1913 } 1914 1915 /* syscall - asynchronous read from a file (REALTIME) */ 1916 int 1917 aio_read(struct thread *td, struct aio_read_args *uap) 1918 { 1919 1920 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1921 } 1922 1923 /* syscall - asynchronous write to a file (REALTIME) */ 1924 int 1925 aio_write(struct thread *td, struct aio_write_args *uap) 1926 { 1927 1928 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1929 } 1930 1931 /* syscall - list directed I/O (REALTIME) */ 1932 int 1933 lio_listio(struct thread *td, struct lio_listio_args *uap) 1934 { 1935 struct proc *p = td->td_proc; 1936 int nent, nentqueued; 1937 struct aiocb *iocb, * const *cbptr; 1938 struct aiocblist *cb; 1939 struct kaioinfo *ki; 1940 struct aio_liojob *lj; 1941 int error, runningcode; 1942 int nerror; 1943 int i; 1944 int s; 1945 1946 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1947 return (EINVAL); 1948 1949 nent = uap->nent; 1950 if (nent < 0 || nent > AIO_LISTIO_MAX) 1951 return (EINVAL); 1952 1953 if (p->p_aioinfo == NULL) 1954 aio_init_aioinfo(p); 1955 1956 if ((nent + num_queue_count) > max_queue_count) 1957 return (EAGAIN); 1958 1959 ki = p->p_aioinfo; 1960 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1961 return (EAGAIN); 1962 1963 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1964 if (!lj) 1965 return (EAGAIN); 1966 1967 lj->lioj_flags = 0; 1968 lj->lioj_buffer_count = 0; 1969 lj->lioj_buffer_finished_count = 0; 1970 lj->lioj_queue_count = 0; 1971 lj->lioj_queue_finished_count = 0; 1972 lj->lioj_ki = ki; 1973 1974 /* 1975 * Setup signal. 1976 */ 1977 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1978 error = copyin(uap->sig, &lj->lioj_signal, 1979 sizeof(lj->lioj_signal)); 1980 if (error) { 1981 uma_zfree(aiolio_zone, lj); 1982 return (error); 1983 } 1984 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1985 uma_zfree(aiolio_zone, lj); 1986 return (EINVAL); 1987 } 1988 lj->lioj_flags |= LIOJ_SIGNAL; 1989 } 1990 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1991 /* 1992 * Get pointers to the list of I/O requests. 1993 */ 1994 nerror = 0; 1995 nentqueued = 0; 1996 cbptr = uap->acb_list; 1997 for (i = 0; i < uap->nent; i++) { 1998 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1999 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2000 error = _aio_aqueue(td, iocb, lj, 0); 2001 if (error == 0) 2002 nentqueued++; 2003 else 2004 nerror++; 2005 } 2006 } 2007 2008 /* 2009 * If we haven't queued any, then just return error. 2010 */ 2011 if (nentqueued == 0) 2012 return (0); 2013 2014 /* 2015 * Calculate the appropriate error return. 2016 */ 2017 runningcode = 0; 2018 if (nerror) 2019 runningcode = EIO; 2020 2021 if (uap->mode == LIO_WAIT) { 2022 int command, found, jobref; 2023 2024 for (;;) { 2025 found = 0; 2026 for (i = 0; i < uap->nent; i++) { 2027 /* 2028 * Fetch address of the control buf pointer in 2029 * user space. 2030 */ 2031 iocb = (struct aiocb *) 2032 (intptr_t)fuword(&cbptr[i]); 2033 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2034 == 0)) 2035 continue; 2036 2037 /* 2038 * Fetch the associated command from user space. 2039 */ 2040 command = fuword(&iocb->aio_lio_opcode); 2041 if (command == LIO_NOP) { 2042 found++; 2043 continue; 2044 } 2045 2046 jobref = 2047 fuword(&iocb->_aiocb_private.kernelinfo); 2048 2049 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2050 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2051 == jobref) { 2052 if (cb->uaiocb.aio_lio_opcode 2053 == LIO_WRITE) { 2054 p->p_stats->p_ru.ru_oublock 2055 += 2056 cb->outputcharge; 2057 cb->outputcharge = 0; 2058 } else if (cb->uaiocb.aio_lio_opcode 2059 == LIO_READ) { 2060 p->p_stats->p_ru.ru_inblock 2061 += cb->inputcharge; 2062 cb->inputcharge = 0; 2063 } 2064 found++; 2065 break; 2066 } 2067 } 2068 2069 s = splbio(); 2070 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2071 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2072 == jobref) { 2073 found++; 2074 break; 2075 } 2076 } 2077 splx(s); 2078 } 2079 2080 /* 2081 * If all I/Os have been disposed of, then we can 2082 * return. 2083 */ 2084 if (found == nentqueued) 2085 return (runningcode); 2086 2087 ki->kaio_flags |= KAIO_WAKEUP; 2088 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2089 2090 if (error == EINTR) 2091 return (EINTR); 2092 else if (error == EWOULDBLOCK) 2093 return (EAGAIN); 2094 } 2095 } 2096 2097 return (runningcode); 2098 } 2099 2100 /* 2101 * This is a weird hack so that we can post a signal. It is safe to do so from 2102 * a timeout routine, but *not* from an interrupt routine. 2103 */ 2104 static void 2105 process_signal(void *aioj) 2106 { 2107 struct aiocblist *aiocbe = aioj; 2108 struct aio_liojob *lj = aiocbe->lio; 2109 struct aiocb *cb = &aiocbe->uaiocb; 2110 2111 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && 2112 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { 2113 PROC_LOCK(lj->lioj_ki->kaio_p); 2114 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); 2115 PROC_UNLOCK(lj->lioj_ki->kaio_p); 2116 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2117 } 2118 2119 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2120 PROC_LOCK(aiocbe->userproc); 2121 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); 2122 PROC_UNLOCK(aiocbe->userproc); 2123 } 2124 } 2125 2126 /* 2127 * Interrupt handler for physio, performs the necessary process wakeups, and 2128 * signals. 2129 */ 2130 static void 2131 aio_physwakeup(struct buf *bp) 2132 { 2133 struct aiocblist *aiocbe; 2134 struct proc *p; 2135 struct kaioinfo *ki; 2136 struct aio_liojob *lj; 2137 2138 wakeup(bp); 2139 2140 aiocbe = (struct aiocblist *)bp->b_spc; 2141 if (aiocbe) { 2142 p = bp->b_caller1; 2143 2144 aiocbe->jobstate = JOBST_JOBBFINISHED; 2145 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2146 aiocbe->uaiocb._aiocb_private.error = 0; 2147 aiocbe->jobflags |= AIOCBLIST_DONE; 2148 2149 if (bp->b_ioflags & BIO_ERROR) 2150 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2151 2152 lj = aiocbe->lio; 2153 if (lj) { 2154 lj->lioj_buffer_finished_count++; 2155 2156 /* 2157 * wakeup/signal if all of the interrupt jobs are done. 2158 */ 2159 if (lj->lioj_buffer_finished_count == 2160 lj->lioj_buffer_count) { 2161 /* 2162 * Post a signal if it is called for. 2163 */ 2164 if ((lj->lioj_flags & 2165 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2166 LIOJ_SIGNAL) { 2167 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2168 aiocbe->timeouthandle = 2169 timeout(process_signal, 2170 aiocbe, 0); 2171 } 2172 } 2173 } 2174 2175 ki = p->p_aioinfo; 2176 if (ki) { 2177 ki->kaio_buffer_finished_count++; 2178 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 2179 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2180 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2181 2182 KNOTE(&aiocbe->klist, 0); 2183 /* Do the wakeup. */ 2184 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2185 ki->kaio_flags &= ~KAIO_WAKEUP; 2186 wakeup(p); 2187 } 2188 } 2189 2190 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) 2191 aiocbe->timeouthandle = 2192 timeout(process_signal, aiocbe, 0); 2193 } 2194 } 2195 2196 /* syscall - wait for the next completion of an aio request */ 2197 int 2198 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2199 { 2200 struct proc *p = td->td_proc; 2201 struct timeval atv; 2202 struct timespec ts; 2203 struct kaioinfo *ki; 2204 struct aiocblist *cb = NULL; 2205 int error, s, timo; 2206 2207 suword(uap->aiocbp, (int)NULL); 2208 2209 timo = 0; 2210 if (uap->timeout) { 2211 /* Get timespec struct. */ 2212 error = copyin(uap->timeout, &ts, sizeof(ts)); 2213 if (error) 2214 return (error); 2215 2216 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2217 return (EINVAL); 2218 2219 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2220 if (itimerfix(&atv)) 2221 return (EINVAL); 2222 timo = tvtohz(&atv); 2223 } 2224 2225 ki = p->p_aioinfo; 2226 if (ki == NULL) 2227 return (EAGAIN); 2228 2229 for (;;) { 2230 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2231 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2232 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2233 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2234 p->p_stats->p_ru.ru_oublock += 2235 cb->outputcharge; 2236 cb->outputcharge = 0; 2237 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2238 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2239 cb->inputcharge = 0; 2240 } 2241 aio_free_entry(cb); 2242 return (cb->uaiocb._aiocb_private.error); 2243 } 2244 2245 s = splbio(); 2246 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2247 splx(s); 2248 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2249 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2250 aio_free_entry(cb); 2251 return (cb->uaiocb._aiocb_private.error); 2252 } 2253 2254 ki->kaio_flags |= KAIO_WAKEUP; 2255 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); 2256 splx(s); 2257 2258 if (error == ERESTART) 2259 return (EINTR); 2260 else if (error < 0) 2261 return (error); 2262 else if (error == EINTR) 2263 return (EINTR); 2264 else if (error == EWOULDBLOCK) 2265 return (EAGAIN); 2266 } 2267 } 2268 2269 /* kqueue attach function */ 2270 static int 2271 filt_aioattach(struct knote *kn) 2272 { 2273 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2274 2275 /* 2276 * The aiocbe pointer must be validated before using it, so 2277 * registration is restricted to the kernel; the user cannot 2278 * set EV_FLAG1. 2279 */ 2280 if ((kn->kn_flags & EV_FLAG1) == 0) 2281 return (EPERM); 2282 kn->kn_flags &= ~EV_FLAG1; 2283 2284 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); 2285 2286 return (0); 2287 } 2288 2289 /* kqueue detach function */ 2290 static void 2291 filt_aiodetach(struct knote *kn) 2292 { 2293 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2294 2295 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); 2296 } 2297 2298 /* kqueue filter function */ 2299 /*ARGSUSED*/ 2300 static int 2301 filt_aio(struct knote *kn, long hint) 2302 { 2303 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2304 2305 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2306 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2307 aiocbe->jobstate != JOBST_JOBBFINISHED) 2308 return (0); 2309 kn->kn_flags |= EV_EOF; 2310 return (1); 2311 } 2312