1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) listio flags */ 252 int lioj_finished_count; /* (a) listio flags */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of bio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*aio_copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_biowakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qbio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_active_count = 0; 444 ki->kaio_count = 0; 445 ki->kaio_buffer_count = 0; 446 TAILQ_INIT(&ki->kaio_all); 447 TAILQ_INIT(&ki->kaio_done); 448 TAILQ_INIT(&ki->kaio_jobqueue); 449 TAILQ_INIT(&ki->kaio_liojoblist); 450 TAILQ_INIT(&ki->kaio_syncqueue); 451 TAILQ_INIT(&ki->kaio_syncready); 452 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 453 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 454 PROC_LOCK(p); 455 if (p->p_aioinfo == NULL) { 456 p->p_aioinfo = ki; 457 PROC_UNLOCK(p); 458 } else { 459 PROC_UNLOCK(p); 460 mtx_destroy(&ki->kaio_mtx); 461 uma_zfree(kaio_zone, ki); 462 } 463 464 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 465 aio_newproc(NULL); 466 } 467 468 static int 469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 470 { 471 struct thread *td; 472 int error; 473 474 error = sigev_findtd(p, sigev, &td); 475 if (error) 476 return (error); 477 if (!KSI_ONQ(ksi)) { 478 ksiginfo_set_sigev(ksi, sigev); 479 ksi->ksi_code = SI_ASYNCIO; 480 ksi->ksi_flags |= KSI_EXT | KSI_INS; 481 tdsendsignal(p, td, ksi->ksi_signo, ksi); 482 } 483 PROC_UNLOCK(p); 484 return (error); 485 } 486 487 /* 488 * Free a job entry. Wait for completion if it is currently active, but don't 489 * delay forever. If we delay, we return a flag that says that we have to 490 * restart the queue scan. 491 */ 492 static int 493 aio_free_entry(struct kaiocb *job) 494 { 495 struct kaioinfo *ki; 496 struct aioliojob *lj; 497 struct proc *p; 498 499 p = job->userproc; 500 MPASS(curproc == p); 501 ki = p->p_aioinfo; 502 MPASS(ki != NULL); 503 504 AIO_LOCK_ASSERT(ki, MA_OWNED); 505 MPASS(job->jobflags & KAIOCB_FINISHED); 506 507 atomic_subtract_int(&num_queue_count, 1); 508 509 ki->kaio_count--; 510 MPASS(ki->kaio_count >= 0); 511 512 TAILQ_REMOVE(&ki->kaio_done, job, plist); 513 TAILQ_REMOVE(&ki->kaio_all, job, allist); 514 515 lj = job->lio; 516 if (lj) { 517 lj->lioj_count--; 518 lj->lioj_finished_count--; 519 520 if (lj->lioj_count == 0) { 521 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 522 /* lio is going away, we need to destroy any knotes */ 523 knlist_delete(&lj->klist, curthread, 1); 524 PROC_LOCK(p); 525 sigqueue_take(&lj->lioj_ksi); 526 PROC_UNLOCK(p); 527 uma_zfree(aiolio_zone, lj); 528 } 529 } 530 531 /* job is going away, we need to destroy any knotes */ 532 knlist_delete(&job->klist, curthread, 1); 533 PROC_LOCK(p); 534 sigqueue_take(&job->ksi); 535 PROC_UNLOCK(p); 536 537 AIO_UNLOCK(ki); 538 539 /* 540 * The thread argument here is used to find the owning process 541 * and is also passed to fo_close() which may pass it to various 542 * places such as devsw close() routines. Because of that, we 543 * need a thread pointer from the process owning the job that is 544 * persistent and won't disappear out from under us or move to 545 * another process. 546 * 547 * Currently, all the callers of this function call it to remove 548 * a kaiocb from the current process' job list either via a 549 * syscall or due to the current process calling exit() or 550 * execve(). Thus, we know that p == curproc. We also know that 551 * curthread can't exit since we are curthread. 552 * 553 * Therefore, we use curthread as the thread to pass to 554 * knlist_delete(). This does mean that it is possible for the 555 * thread pointer at close time to differ from the thread pointer 556 * at open time, but this is already true of file descriptors in 557 * a multithreaded process. 558 */ 559 if (job->fd_file) 560 fdrop(job->fd_file, curthread); 561 crfree(job->cred); 562 uma_zfree(aiocb_zone, job); 563 AIO_LOCK(ki); 564 565 return (0); 566 } 567 568 static void 569 aio_proc_rundown_exec(void *arg, struct proc *p, 570 struct image_params *imgp __unused) 571 { 572 aio_proc_rundown(arg, p); 573 } 574 575 static int 576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 577 { 578 aio_cancel_fn_t *func; 579 int cancelled; 580 581 AIO_LOCK_ASSERT(ki, MA_OWNED); 582 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 583 return (0); 584 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 585 job->jobflags |= KAIOCB_CANCELLED; 586 587 func = job->cancel_fn; 588 589 /* 590 * If there is no cancel routine, just leave the job marked as 591 * cancelled. The job should be in active use by a caller who 592 * should complete it normally or when it fails to install a 593 * cancel routine. 594 */ 595 if (func == NULL) 596 return (0); 597 598 /* 599 * Set the CANCELLING flag so that aio_complete() will defer 600 * completions of this job. This prevents the job from being 601 * freed out from under the cancel callback. After the 602 * callback any deferred completion (whether from the callback 603 * or any other source) will be completed. 604 */ 605 job->jobflags |= KAIOCB_CANCELLING; 606 AIO_UNLOCK(ki); 607 func(job); 608 AIO_LOCK(ki); 609 job->jobflags &= ~KAIOCB_CANCELLING; 610 if (job->jobflags & KAIOCB_FINISHED) { 611 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 612 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 613 aio_bio_done_notify(p, job); 614 } else { 615 /* 616 * The cancel callback might have scheduled an 617 * operation to cancel this request, but it is 618 * only counted as cancelled if the request is 619 * cancelled when the callback returns. 620 */ 621 cancelled = 0; 622 } 623 return (cancelled); 624 } 625 626 /* 627 * Rundown the jobs for a given process. 628 */ 629 static void 630 aio_proc_rundown(void *arg, struct proc *p) 631 { 632 struct kaioinfo *ki; 633 struct aioliojob *lj; 634 struct kaiocb *job, *jobn; 635 636 KASSERT(curthread->td_proc == p, 637 ("%s: called on non-curproc", __func__)); 638 ki = p->p_aioinfo; 639 if (ki == NULL) 640 return; 641 642 AIO_LOCK(ki); 643 ki->kaio_flags |= KAIO_RUNDOWN; 644 645 restart: 646 647 /* 648 * Try to cancel all pending requests. This code simulates 649 * aio_cancel on all pending I/O requests. 650 */ 651 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 652 aio_cancel_job(p, ki, job); 653 } 654 655 /* Wait for all running I/O to be finished */ 656 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 657 ki->kaio_flags |= KAIO_WAKEUP; 658 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 659 goto restart; 660 } 661 662 /* Free all completed I/O requests. */ 663 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 664 aio_free_entry(job); 665 666 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 667 if (lj->lioj_count == 0) { 668 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 669 knlist_delete(&lj->klist, curthread, 1); 670 PROC_LOCK(p); 671 sigqueue_take(&lj->lioj_ksi); 672 PROC_UNLOCK(p); 673 uma_zfree(aiolio_zone, lj); 674 } else { 675 panic("LIO job not cleaned up: C:%d, FC:%d\n", 676 lj->lioj_count, lj->lioj_finished_count); 677 } 678 } 679 AIO_UNLOCK(ki); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 681 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 682 mtx_destroy(&ki->kaio_mtx); 683 uma_zfree(kaio_zone, ki); 684 p->p_aioinfo = NULL; 685 } 686 687 /* 688 * Select a job to run (called by an AIO daemon). 689 */ 690 static struct kaiocb * 691 aio_selectjob(struct aioproc *aiop) 692 { 693 struct kaiocb *job; 694 struct kaioinfo *ki; 695 struct proc *userp; 696 697 mtx_assert(&aio_job_mtx, MA_OWNED); 698 restart: 699 TAILQ_FOREACH(job, &aio_jobs, list) { 700 userp = job->userproc; 701 ki = userp->p_aioinfo; 702 703 if (ki->kaio_active_count < max_aio_per_proc) { 704 TAILQ_REMOVE(&aio_jobs, job, list); 705 if (!aio_clear_cancel_function(job)) 706 goto restart; 707 708 /* Account for currently active jobs. */ 709 ki->kaio_active_count++; 710 break; 711 } 712 } 713 return (job); 714 } 715 716 /* 717 * Move all data to a permanent storage device. This code 718 * simulates the fsync syscall. 719 */ 720 static int 721 aio_fsync_vnode(struct thread *td, struct vnode *vp) 722 { 723 struct mount *mp; 724 int error; 725 726 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 727 goto drop; 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 if (vp->v_object != NULL) { 730 VM_OBJECT_WLOCK(vp->v_object); 731 vm_object_page_clean(vp->v_object, 0, 0, 0); 732 VM_OBJECT_WUNLOCK(vp->v_object); 733 } 734 error = VOP_FSYNC(vp, MNT_WAIT, td); 735 736 VOP_UNLOCK(vp); 737 vn_finished_write(mp); 738 drop: 739 return (error); 740 } 741 742 /* 743 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 744 * does the I/O request for the non-bio version of the operations. The normal 745 * vn operations are used, and this code should work in all instances for every 746 * type of file, including pipes, sockets, fifos, and regular files. 747 * 748 * XXX I don't think it works well for socket, pipe, and fifo. 749 */ 750 static void 751 aio_process_rw(struct kaiocb *job) 752 { 753 struct ucred *td_savedcred; 754 struct thread *td; 755 struct aiocb *cb; 756 struct file *fp; 757 struct uio auio; 758 struct iovec aiov; 759 ssize_t cnt; 760 long msgsnd_st, msgsnd_end; 761 long msgrcv_st, msgrcv_end; 762 long oublock_st, oublock_end; 763 long inblock_st, inblock_end; 764 int error; 765 766 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 767 job->uaiocb.aio_lio_opcode == LIO_WRITE, 768 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 769 770 aio_switch_vmspace(job); 771 td = curthread; 772 td_savedcred = td->td_ucred; 773 td->td_ucred = job->cred; 774 cb = &job->uaiocb; 775 fp = job->fd_file; 776 777 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 778 aiov.iov_len = cb->aio_nbytes; 779 780 auio.uio_iov = &aiov; 781 auio.uio_iovcnt = 1; 782 auio.uio_offset = cb->aio_offset; 783 auio.uio_resid = cb->aio_nbytes; 784 cnt = cb->aio_nbytes; 785 auio.uio_segflg = UIO_USERSPACE; 786 auio.uio_td = td; 787 788 msgrcv_st = td->td_ru.ru_msgrcv; 789 msgsnd_st = td->td_ru.ru_msgsnd; 790 inblock_st = td->td_ru.ru_inblock; 791 oublock_st = td->td_ru.ru_oublock; 792 793 /* 794 * aio_aqueue() acquires a reference to the file that is 795 * released in aio_free_entry(). 796 */ 797 if (cb->aio_lio_opcode == LIO_READ) { 798 auio.uio_rw = UIO_READ; 799 if (auio.uio_resid == 0) 800 error = 0; 801 else 802 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 803 } else { 804 if (fp->f_type == DTYPE_VNODE) 805 bwillwrite(); 806 auio.uio_rw = UIO_WRITE; 807 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 808 } 809 msgrcv_end = td->td_ru.ru_msgrcv; 810 msgsnd_end = td->td_ru.ru_msgsnd; 811 inblock_end = td->td_ru.ru_inblock; 812 oublock_end = td->td_ru.ru_oublock; 813 814 job->msgrcv = msgrcv_end - msgrcv_st; 815 job->msgsnd = msgsnd_end - msgsnd_st; 816 job->inblock = inblock_end - inblock_st; 817 job->outblock = oublock_end - oublock_st; 818 819 if ((error) && (auio.uio_resid != cnt)) { 820 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 821 error = 0; 822 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 823 PROC_LOCK(job->userproc); 824 kern_psignal(job->userproc, SIGPIPE); 825 PROC_UNLOCK(job->userproc); 826 } 827 } 828 829 cnt -= auio.uio_resid; 830 td->td_ucred = td_savedcred; 831 if (error) 832 aio_complete(job, -1, error); 833 else 834 aio_complete(job, cnt, 0); 835 } 836 837 static void 838 aio_process_sync(struct kaiocb *job) 839 { 840 struct thread *td = curthread; 841 struct ucred *td_savedcred = td->td_ucred; 842 struct file *fp = job->fd_file; 843 int error = 0; 844 845 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 846 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 847 848 td->td_ucred = job->cred; 849 if (fp->f_vnode != NULL) 850 error = aio_fsync_vnode(td, fp->f_vnode); 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL 910 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 913 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 914 } 915 } 916 917 notification_done: 918 if (job->jobflags & KAIOCB_CHECKSYNC) { 919 schedule_fsync = false; 920 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 921 if (job->fd_file != sjob->fd_file || 922 job->seqno >= sjob->seqno) 923 continue; 924 if (--sjob->pending > 0) 925 continue; 926 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 927 if (!aio_clear_cancel_function_locked(sjob)) 928 continue; 929 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 930 schedule_fsync = true; 931 } 932 if (schedule_fsync) 933 taskqueue_enqueue(taskqueue_aiod_kick, 934 &ki->kaio_sync_task); 935 } 936 if (ki->kaio_flags & KAIO_WAKEUP) { 937 ki->kaio_flags &= ~KAIO_WAKEUP; 938 wakeup(&userp->p_aioinfo); 939 } 940 } 941 942 static void 943 aio_schedule_fsync(void *context, int pending) 944 { 945 struct kaioinfo *ki; 946 struct kaiocb *job; 947 948 ki = context; 949 AIO_LOCK(ki); 950 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 951 job = TAILQ_FIRST(&ki->kaio_syncready); 952 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 953 AIO_UNLOCK(ki); 954 aio_schedule(job, aio_process_sync); 955 AIO_LOCK(ki); 956 } 957 AIO_UNLOCK(ki); 958 } 959 960 bool 961 aio_cancel_cleared(struct kaiocb *job) 962 { 963 964 /* 965 * The caller should hold the same queue lock held when 966 * aio_clear_cancel_function() was called and set this flag 967 * ensuring this check sees an up-to-date value. However, 968 * there is no way to assert that. 969 */ 970 return ((job->jobflags & KAIOCB_CLEARED) != 0); 971 } 972 973 static bool 974 aio_clear_cancel_function_locked(struct kaiocb *job) 975 { 976 977 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 978 MPASS(job->cancel_fn != NULL); 979 if (job->jobflags & KAIOCB_CANCELLING) { 980 job->jobflags |= KAIOCB_CLEARED; 981 return (false); 982 } 983 job->cancel_fn = NULL; 984 return (true); 985 } 986 987 bool 988 aio_clear_cancel_function(struct kaiocb *job) 989 { 990 struct kaioinfo *ki; 991 bool ret; 992 993 ki = job->userproc->p_aioinfo; 994 AIO_LOCK(ki); 995 ret = aio_clear_cancel_function_locked(job); 996 AIO_UNLOCK(ki); 997 return (ret); 998 } 999 1000 static bool 1001 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1002 { 1003 1004 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1005 if (job->jobflags & KAIOCB_CANCELLED) 1006 return (false); 1007 job->cancel_fn = func; 1008 return (true); 1009 } 1010 1011 bool 1012 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1013 { 1014 struct kaioinfo *ki; 1015 bool ret; 1016 1017 ki = job->userproc->p_aioinfo; 1018 AIO_LOCK(ki); 1019 ret = aio_set_cancel_function_locked(job, func); 1020 AIO_UNLOCK(ki); 1021 return (ret); 1022 } 1023 1024 void 1025 aio_complete(struct kaiocb *job, long status, int error) 1026 { 1027 struct kaioinfo *ki; 1028 struct proc *userp; 1029 1030 job->uaiocb._aiocb_private.error = error; 1031 job->uaiocb._aiocb_private.status = status; 1032 1033 userp = job->userproc; 1034 ki = userp->p_aioinfo; 1035 1036 AIO_LOCK(ki); 1037 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1038 ("duplicate aio_complete")); 1039 job->jobflags |= KAIOCB_FINISHED; 1040 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1041 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1042 aio_bio_done_notify(userp, job); 1043 } 1044 AIO_UNLOCK(ki); 1045 } 1046 1047 void 1048 aio_cancel(struct kaiocb *job) 1049 { 1050 1051 aio_complete(job, -1, ECANCELED); 1052 } 1053 1054 void 1055 aio_switch_vmspace(struct kaiocb *job) 1056 { 1057 1058 vmspace_switch_aio(job->userproc->p_vmspace); 1059 } 1060 1061 /* 1062 * The AIO daemon, most of the actual work is done in aio_process_*, 1063 * but the setup (and address space mgmt) is done in this routine. 1064 */ 1065 static void 1066 aio_daemon(void *_id) 1067 { 1068 struct kaiocb *job; 1069 struct aioproc *aiop; 1070 struct kaioinfo *ki; 1071 struct proc *p; 1072 struct vmspace *myvm; 1073 struct thread *td = curthread; 1074 int id = (intptr_t)_id; 1075 1076 /* 1077 * Grab an extra reference on the daemon's vmspace so that it 1078 * doesn't get freed by jobs that switch to a different 1079 * vmspace. 1080 */ 1081 p = td->td_proc; 1082 myvm = vmspace_acquire_ref(p); 1083 1084 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1085 1086 /* 1087 * Allocate and ready the aio control info. There is one aiop structure 1088 * per daemon. 1089 */ 1090 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1091 aiop->aioproc = p; 1092 aiop->aioprocflags = 0; 1093 1094 /* 1095 * Wakeup parent process. (Parent sleeps to keep from blasting away 1096 * and creating too many daemons.) 1097 */ 1098 sema_post(&aio_newproc_sem); 1099 1100 mtx_lock(&aio_job_mtx); 1101 for (;;) { 1102 /* 1103 * Take daemon off of free queue 1104 */ 1105 if (aiop->aioprocflags & AIOP_FREE) { 1106 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1107 aiop->aioprocflags &= ~AIOP_FREE; 1108 } 1109 1110 /* 1111 * Check for jobs. 1112 */ 1113 while ((job = aio_selectjob(aiop)) != NULL) { 1114 mtx_unlock(&aio_job_mtx); 1115 1116 ki = job->userproc->p_aioinfo; 1117 job->handle_fn(job); 1118 1119 mtx_lock(&aio_job_mtx); 1120 /* Decrement the active job count. */ 1121 ki->kaio_active_count--; 1122 } 1123 1124 /* 1125 * Disconnect from user address space. 1126 */ 1127 if (p->p_vmspace != myvm) { 1128 mtx_unlock(&aio_job_mtx); 1129 vmspace_switch_aio(myvm); 1130 mtx_lock(&aio_job_mtx); 1131 /* 1132 * We have to restart to avoid race, we only sleep if 1133 * no job can be selected. 1134 */ 1135 continue; 1136 } 1137 1138 mtx_assert(&aio_job_mtx, MA_OWNED); 1139 1140 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1141 aiop->aioprocflags |= AIOP_FREE; 1142 1143 /* 1144 * If daemon is inactive for a long time, allow it to exit, 1145 * thereby freeing resources. 1146 */ 1147 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1148 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1149 (aiop->aioprocflags & AIOP_FREE) && 1150 num_aio_procs > target_aio_procs) 1151 break; 1152 } 1153 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1154 num_aio_procs--; 1155 mtx_unlock(&aio_job_mtx); 1156 uma_zfree(aiop_zone, aiop); 1157 free_unr(aiod_unr, id); 1158 vmspace_free(myvm); 1159 1160 KASSERT(p->p_vmspace == myvm, 1161 ("AIOD: bad vmspace for exiting daemon")); 1162 KASSERT(myvm->vm_refcnt > 1, 1163 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1164 kproc_exit(0); 1165 } 1166 1167 /* 1168 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1169 * AIO daemon modifies its environment itself. 1170 */ 1171 static int 1172 aio_newproc(int *start) 1173 { 1174 int error; 1175 struct proc *p; 1176 int id; 1177 1178 id = alloc_unr(aiod_unr); 1179 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1180 RFNOWAIT, 0, "aiod%d", id); 1181 if (error == 0) { 1182 /* 1183 * Wait until daemon is started. 1184 */ 1185 sema_wait(&aio_newproc_sem); 1186 mtx_lock(&aio_job_mtx); 1187 num_aio_procs++; 1188 if (start != NULL) 1189 (*start)--; 1190 mtx_unlock(&aio_job_mtx); 1191 } else { 1192 free_unr(aiod_unr, id); 1193 } 1194 return (error); 1195 } 1196 1197 /* 1198 * Try the high-performance, low-overhead bio method for eligible 1199 * VCHR devices. This method doesn't use an aio helper thread, and 1200 * thus has very low overhead. 1201 * 1202 * Assumes that the caller, aio_aqueue(), has incremented the file 1203 * structure's reference count, preventing its deallocation for the 1204 * duration of this call. 1205 */ 1206 static int 1207 aio_qbio(struct proc *p, struct kaiocb *job) 1208 { 1209 struct aiocb *cb; 1210 struct file *fp; 1211 struct bio *bp; 1212 struct buf *pbuf; 1213 struct vnode *vp; 1214 struct cdevsw *csw; 1215 struct cdev *dev; 1216 struct kaioinfo *ki; 1217 int error, ref, poff; 1218 vm_prot_t prot; 1219 1220 cb = &job->uaiocb; 1221 fp = job->fd_file; 1222 1223 if (!(cb->aio_lio_opcode == LIO_WRITE || 1224 cb->aio_lio_opcode == LIO_READ)) 1225 return (-1); 1226 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1227 return (-1); 1228 1229 vp = fp->f_vnode; 1230 if (vp->v_type != VCHR) 1231 return (-1); 1232 if (vp->v_bufobj.bo_bsize == 0) 1233 return (-1); 1234 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1235 return (-1); 1236 1237 ref = 0; 1238 csw = devvn_refthread(vp, &dev, &ref); 1239 if (csw == NULL) 1240 return (ENXIO); 1241 1242 if ((csw->d_flags & D_DISK) == 0) { 1243 error = -1; 1244 goto unref; 1245 } 1246 if (cb->aio_nbytes > dev->si_iosize_max) { 1247 error = -1; 1248 goto unref; 1249 } 1250 1251 ki = p->p_aioinfo; 1252 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1253 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1254 if (cb->aio_nbytes > MAXPHYS) { 1255 error = -1; 1256 goto unref; 1257 } 1258 1259 pbuf = NULL; 1260 } else { 1261 if (cb->aio_nbytes > MAXPHYS - poff) { 1262 error = -1; 1263 goto unref; 1264 } 1265 if (ki->kaio_buffer_count >= max_buf_aio) { 1266 error = EAGAIN; 1267 goto unref; 1268 } 1269 1270 job->pbuf = pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1271 BUF_KERNPROC(pbuf); 1272 AIO_LOCK(ki); 1273 ki->kaio_buffer_count++; 1274 AIO_UNLOCK(ki); 1275 } 1276 job->bp = bp = g_alloc_bio(); 1277 1278 bp->bio_length = cb->aio_nbytes; 1279 bp->bio_bcount = cb->aio_nbytes; 1280 bp->bio_done = aio_biowakeup; 1281 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1282 bp->bio_offset = cb->aio_offset; 1283 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1284 bp->bio_dev = dev; 1285 bp->bio_caller1 = (void *)job; 1286 1287 prot = VM_PROT_READ; 1288 if (cb->aio_lio_opcode == LIO_READ) 1289 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1290 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1291 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1292 nitems(job->pages)); 1293 if (job->npages < 0) { 1294 error = EFAULT; 1295 goto doerror; 1296 } 1297 if (pbuf != NULL) { 1298 pmap_qenter((vm_offset_t)pbuf->b_data, 1299 job->pages, job->npages); 1300 bp->bio_data = pbuf->b_data + poff; 1301 atomic_add_int(&num_buf_aio, 1); 1302 } else { 1303 bp->bio_ma = job->pages; 1304 bp->bio_ma_n = job->npages; 1305 bp->bio_ma_offset = poff; 1306 bp->bio_data = unmapped_buf; 1307 bp->bio_flags |= BIO_UNMAPPED; 1308 atomic_add_int(&num_unmapped_aio, 1); 1309 } 1310 1311 /* Perform transfer. */ 1312 csw->d_strategy(bp); 1313 dev_relthread(dev, ref); 1314 return (0); 1315 1316 doerror: 1317 if (pbuf != NULL) { 1318 AIO_LOCK(ki); 1319 ki->kaio_buffer_count--; 1320 AIO_UNLOCK(ki); 1321 uma_zfree(pbuf_zone, pbuf); 1322 job->pbuf = NULL; 1323 } 1324 g_destroy_bio(bp); 1325 job->bp = NULL; 1326 unref: 1327 dev_relthread(dev, ref); 1328 return (error); 1329 } 1330 1331 #ifdef COMPAT_FREEBSD6 1332 static int 1333 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1334 { 1335 1336 /* 1337 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1338 * supported by AIO with the old sigevent structure. 1339 */ 1340 nsig->sigev_notify = osig->sigev_notify; 1341 switch (nsig->sigev_notify) { 1342 case SIGEV_NONE: 1343 break; 1344 case SIGEV_SIGNAL: 1345 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1346 break; 1347 case SIGEV_KEVENT: 1348 nsig->sigev_notify_kqueue = 1349 osig->__sigev_u.__sigev_notify_kqueue; 1350 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1351 break; 1352 default: 1353 return (EINVAL); 1354 } 1355 return (0); 1356 } 1357 1358 static int 1359 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1360 { 1361 struct oaiocb *ojob; 1362 int error; 1363 1364 bzero(kjob, sizeof(struct aiocb)); 1365 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1366 if (error) 1367 return (error); 1368 ojob = (struct oaiocb *)kjob; 1369 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1370 } 1371 #endif 1372 1373 static int 1374 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1375 { 1376 1377 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1378 } 1379 1380 static long 1381 aiocb_fetch_status(struct aiocb *ujob) 1382 { 1383 1384 return (fuword(&ujob->_aiocb_private.status)); 1385 } 1386 1387 static long 1388 aiocb_fetch_error(struct aiocb *ujob) 1389 { 1390 1391 return (fuword(&ujob->_aiocb_private.error)); 1392 } 1393 1394 static int 1395 aiocb_store_status(struct aiocb *ujob, long status) 1396 { 1397 1398 return (suword(&ujob->_aiocb_private.status, status)); 1399 } 1400 1401 static int 1402 aiocb_store_error(struct aiocb *ujob, long error) 1403 { 1404 1405 return (suword(&ujob->_aiocb_private.error, error)); 1406 } 1407 1408 static int 1409 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1410 { 1411 1412 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1413 } 1414 1415 static int 1416 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1417 { 1418 1419 return (suword(ujobp, (long)ujob)); 1420 } 1421 1422 static struct aiocb_ops aiocb_ops = { 1423 .aio_copyin = aiocb_copyin, 1424 .fetch_status = aiocb_fetch_status, 1425 .fetch_error = aiocb_fetch_error, 1426 .store_status = aiocb_store_status, 1427 .store_error = aiocb_store_error, 1428 .store_kernelinfo = aiocb_store_kernelinfo, 1429 .store_aiocb = aiocb_store_aiocb, 1430 }; 1431 1432 #ifdef COMPAT_FREEBSD6 1433 static struct aiocb_ops aiocb_ops_osigevent = { 1434 .aio_copyin = aiocb_copyin_old_sigevent, 1435 .fetch_status = aiocb_fetch_status, 1436 .fetch_error = aiocb_fetch_error, 1437 .store_status = aiocb_store_status, 1438 .store_error = aiocb_store_error, 1439 .store_kernelinfo = aiocb_store_kernelinfo, 1440 .store_aiocb = aiocb_store_aiocb, 1441 }; 1442 #endif 1443 1444 /* 1445 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1446 * technique is done in this code. 1447 */ 1448 int 1449 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1450 int type, struct aiocb_ops *ops) 1451 { 1452 struct proc *p = td->td_proc; 1453 struct file *fp; 1454 struct kaiocb *job; 1455 struct kaioinfo *ki; 1456 struct kevent kev; 1457 int opcode; 1458 int error; 1459 int fd, kqfd; 1460 int jid; 1461 u_short evflags; 1462 1463 if (p->p_aioinfo == NULL) 1464 aio_init_aioinfo(p); 1465 1466 ki = p->p_aioinfo; 1467 1468 ops->store_status(ujob, -1); 1469 ops->store_error(ujob, 0); 1470 ops->store_kernelinfo(ujob, -1); 1471 1472 if (num_queue_count >= max_queue_count || 1473 ki->kaio_count >= max_aio_queue_per_proc) { 1474 ops->store_error(ujob, EAGAIN); 1475 return (EAGAIN); 1476 } 1477 1478 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1479 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1480 1481 error = ops->aio_copyin(ujob, &job->uaiocb); 1482 if (error) { 1483 ops->store_error(ujob, error); 1484 uma_zfree(aiocb_zone, job); 1485 return (error); 1486 } 1487 1488 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1489 uma_zfree(aiocb_zone, job); 1490 return (EINVAL); 1491 } 1492 1493 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1494 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1495 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1496 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1497 ops->store_error(ujob, EINVAL); 1498 uma_zfree(aiocb_zone, job); 1499 return (EINVAL); 1500 } 1501 1502 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1503 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1504 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1505 uma_zfree(aiocb_zone, job); 1506 return (EINVAL); 1507 } 1508 1509 ksiginfo_init(&job->ksi); 1510 1511 /* Save userspace address of the job info. */ 1512 job->ujob = ujob; 1513 1514 /* Get the opcode. */ 1515 if (type != LIO_NOP) 1516 job->uaiocb.aio_lio_opcode = type; 1517 opcode = job->uaiocb.aio_lio_opcode; 1518 1519 /* 1520 * Validate the opcode and fetch the file object for the specified 1521 * file descriptor. 1522 * 1523 * XXXRW: Moved the opcode validation up here so that we don't 1524 * retrieve a file descriptor without knowing what the capabiltity 1525 * should be. 1526 */ 1527 fd = job->uaiocb.aio_fildes; 1528 switch (opcode) { 1529 case LIO_WRITE: 1530 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1531 break; 1532 case LIO_READ: 1533 error = fget_read(td, fd, &cap_pread_rights, &fp); 1534 break; 1535 case LIO_SYNC: 1536 error = fget(td, fd, &cap_fsync_rights, &fp); 1537 break; 1538 case LIO_MLOCK: 1539 fp = NULL; 1540 break; 1541 case LIO_NOP: 1542 error = fget(td, fd, &cap_no_rights, &fp); 1543 break; 1544 default: 1545 error = EINVAL; 1546 } 1547 if (error) { 1548 uma_zfree(aiocb_zone, job); 1549 ops->store_error(ujob, error); 1550 return (error); 1551 } 1552 1553 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1554 error = EINVAL; 1555 goto aqueue_fail; 1556 } 1557 1558 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1559 job->uaiocb.aio_offset < 0 && 1560 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1561 error = EINVAL; 1562 goto aqueue_fail; 1563 } 1564 1565 job->fd_file = fp; 1566 1567 mtx_lock(&aio_job_mtx); 1568 jid = jobrefid++; 1569 job->seqno = jobseqno++; 1570 mtx_unlock(&aio_job_mtx); 1571 error = ops->store_kernelinfo(ujob, jid); 1572 if (error) { 1573 error = EINVAL; 1574 goto aqueue_fail; 1575 } 1576 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1577 1578 if (opcode == LIO_NOP) { 1579 fdrop(fp, td); 1580 uma_zfree(aiocb_zone, job); 1581 return (0); 1582 } 1583 1584 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1585 goto no_kqueue; 1586 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1587 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1588 error = EINVAL; 1589 goto aqueue_fail; 1590 } 1591 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1592 memset(&kev, 0, sizeof(kev)); 1593 kev.ident = (uintptr_t)job->ujob; 1594 kev.filter = EVFILT_AIO; 1595 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1596 kev.data = (intptr_t)job; 1597 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1598 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1599 if (error) 1600 goto aqueue_fail; 1601 1602 no_kqueue: 1603 1604 ops->store_error(ujob, EINPROGRESS); 1605 job->uaiocb._aiocb_private.error = EINPROGRESS; 1606 job->userproc = p; 1607 job->cred = crhold(td->td_ucred); 1608 job->jobflags = KAIOCB_QUEUEING; 1609 job->lio = lj; 1610 1611 if (opcode == LIO_MLOCK) { 1612 aio_schedule(job, aio_process_mlock); 1613 error = 0; 1614 } else if (fp->f_ops->fo_aio_queue == NULL) 1615 error = aio_queue_file(fp, job); 1616 else 1617 error = fo_aio_queue(fp, job); 1618 if (error) 1619 goto aqueue_fail; 1620 1621 AIO_LOCK(ki); 1622 job->jobflags &= ~KAIOCB_QUEUEING; 1623 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1624 ki->kaio_count++; 1625 if (lj) 1626 lj->lioj_count++; 1627 atomic_add_int(&num_queue_count, 1); 1628 if (job->jobflags & KAIOCB_FINISHED) { 1629 /* 1630 * The queue callback completed the request synchronously. 1631 * The bulk of the completion is deferred in that case 1632 * until this point. 1633 */ 1634 aio_bio_done_notify(p, job); 1635 } else 1636 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1637 AIO_UNLOCK(ki); 1638 return (0); 1639 1640 aqueue_fail: 1641 knlist_delete(&job->klist, curthread, 0); 1642 if (fp) 1643 fdrop(fp, td); 1644 uma_zfree(aiocb_zone, job); 1645 ops->store_error(ujob, error); 1646 return (error); 1647 } 1648 1649 static void 1650 aio_cancel_daemon_job(struct kaiocb *job) 1651 { 1652 1653 mtx_lock(&aio_job_mtx); 1654 if (!aio_cancel_cleared(job)) 1655 TAILQ_REMOVE(&aio_jobs, job, list); 1656 mtx_unlock(&aio_job_mtx); 1657 aio_cancel(job); 1658 } 1659 1660 void 1661 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1662 { 1663 1664 mtx_lock(&aio_job_mtx); 1665 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1666 mtx_unlock(&aio_job_mtx); 1667 aio_cancel(job); 1668 return; 1669 } 1670 job->handle_fn = func; 1671 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1672 aio_kick_nowait(job->userproc); 1673 mtx_unlock(&aio_job_mtx); 1674 } 1675 1676 static void 1677 aio_cancel_sync(struct kaiocb *job) 1678 { 1679 struct kaioinfo *ki; 1680 1681 ki = job->userproc->p_aioinfo; 1682 AIO_LOCK(ki); 1683 if (!aio_cancel_cleared(job)) 1684 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1685 AIO_UNLOCK(ki); 1686 aio_cancel(job); 1687 } 1688 1689 int 1690 aio_queue_file(struct file *fp, struct kaiocb *job) 1691 { 1692 struct kaioinfo *ki; 1693 struct kaiocb *job2; 1694 struct vnode *vp; 1695 struct mount *mp; 1696 int error; 1697 bool safe; 1698 1699 ki = job->userproc->p_aioinfo; 1700 error = aio_qbio(job->userproc, job); 1701 if (error >= 0) 1702 return (error); 1703 safe = false; 1704 if (fp->f_type == DTYPE_VNODE) { 1705 vp = fp->f_vnode; 1706 if (vp->v_type == VREG || vp->v_type == VDIR) { 1707 mp = fp->f_vnode->v_mount; 1708 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1709 safe = true; 1710 } 1711 } 1712 if (!(safe || enable_aio_unsafe)) { 1713 counted_warning(&unsafe_warningcnt, 1714 "is attempting to use unsafe AIO requests"); 1715 return (EOPNOTSUPP); 1716 } 1717 1718 switch (job->uaiocb.aio_lio_opcode) { 1719 case LIO_READ: 1720 case LIO_WRITE: 1721 aio_schedule(job, aio_process_rw); 1722 error = 0; 1723 break; 1724 case LIO_SYNC: 1725 AIO_LOCK(ki); 1726 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1727 if (job2->fd_file == job->fd_file && 1728 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1729 job2->seqno < job->seqno) { 1730 job2->jobflags |= KAIOCB_CHECKSYNC; 1731 job->pending++; 1732 } 1733 } 1734 if (job->pending != 0) { 1735 if (!aio_set_cancel_function_locked(job, 1736 aio_cancel_sync)) { 1737 AIO_UNLOCK(ki); 1738 aio_cancel(job); 1739 return (0); 1740 } 1741 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1742 AIO_UNLOCK(ki); 1743 return (0); 1744 } 1745 AIO_UNLOCK(ki); 1746 aio_schedule(job, aio_process_sync); 1747 error = 0; 1748 break; 1749 default: 1750 error = EINVAL; 1751 } 1752 return (error); 1753 } 1754 1755 static void 1756 aio_kick_nowait(struct proc *userp) 1757 { 1758 struct kaioinfo *ki = userp->p_aioinfo; 1759 struct aioproc *aiop; 1760 1761 mtx_assert(&aio_job_mtx, MA_OWNED); 1762 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1763 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1764 aiop->aioprocflags &= ~AIOP_FREE; 1765 wakeup(aiop->aioproc); 1766 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1767 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1768 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1769 } 1770 } 1771 1772 static int 1773 aio_kick(struct proc *userp) 1774 { 1775 struct kaioinfo *ki = userp->p_aioinfo; 1776 struct aioproc *aiop; 1777 int error, ret = 0; 1778 1779 mtx_assert(&aio_job_mtx, MA_OWNED); 1780 retryproc: 1781 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1782 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1783 aiop->aioprocflags &= ~AIOP_FREE; 1784 wakeup(aiop->aioproc); 1785 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1786 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1787 num_aio_resv_start++; 1788 mtx_unlock(&aio_job_mtx); 1789 error = aio_newproc(&num_aio_resv_start); 1790 mtx_lock(&aio_job_mtx); 1791 if (error) { 1792 num_aio_resv_start--; 1793 goto retryproc; 1794 } 1795 } else { 1796 ret = -1; 1797 } 1798 return (ret); 1799 } 1800 1801 static void 1802 aio_kick_helper(void *context, int pending) 1803 { 1804 struct proc *userp = context; 1805 1806 mtx_lock(&aio_job_mtx); 1807 while (--pending >= 0) { 1808 if (aio_kick(userp)) 1809 break; 1810 } 1811 mtx_unlock(&aio_job_mtx); 1812 } 1813 1814 /* 1815 * Support the aio_return system call, as a side-effect, kernel resources are 1816 * released. 1817 */ 1818 static int 1819 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1820 { 1821 struct proc *p = td->td_proc; 1822 struct kaiocb *job; 1823 struct kaioinfo *ki; 1824 long status, error; 1825 1826 ki = p->p_aioinfo; 1827 if (ki == NULL) 1828 return (EINVAL); 1829 AIO_LOCK(ki); 1830 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1831 if (job->ujob == ujob) 1832 break; 1833 } 1834 if (job != NULL) { 1835 MPASS(job->jobflags & KAIOCB_FINISHED); 1836 status = job->uaiocb._aiocb_private.status; 1837 error = job->uaiocb._aiocb_private.error; 1838 td->td_retval[0] = status; 1839 td->td_ru.ru_oublock += job->outblock; 1840 td->td_ru.ru_inblock += job->inblock; 1841 td->td_ru.ru_msgsnd += job->msgsnd; 1842 td->td_ru.ru_msgrcv += job->msgrcv; 1843 aio_free_entry(job); 1844 AIO_UNLOCK(ki); 1845 ops->store_error(ujob, error); 1846 ops->store_status(ujob, status); 1847 } else { 1848 error = EINVAL; 1849 AIO_UNLOCK(ki); 1850 } 1851 return (error); 1852 } 1853 1854 int 1855 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1856 { 1857 1858 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1859 } 1860 1861 /* 1862 * Allow a process to wakeup when any of the I/O requests are completed. 1863 */ 1864 static int 1865 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1866 struct timespec *ts) 1867 { 1868 struct proc *p = td->td_proc; 1869 struct timeval atv; 1870 struct kaioinfo *ki; 1871 struct kaiocb *firstjob, *job; 1872 int error, i, timo; 1873 1874 timo = 0; 1875 if (ts) { 1876 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1877 return (EINVAL); 1878 1879 TIMESPEC_TO_TIMEVAL(&atv, ts); 1880 if (itimerfix(&atv)) 1881 return (EINVAL); 1882 timo = tvtohz(&atv); 1883 } 1884 1885 ki = p->p_aioinfo; 1886 if (ki == NULL) 1887 return (EAGAIN); 1888 1889 if (njoblist == 0) 1890 return (0); 1891 1892 AIO_LOCK(ki); 1893 for (;;) { 1894 firstjob = NULL; 1895 error = 0; 1896 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1897 for (i = 0; i < njoblist; i++) { 1898 if (job->ujob == ujoblist[i]) { 1899 if (firstjob == NULL) 1900 firstjob = job; 1901 if (job->jobflags & KAIOCB_FINISHED) 1902 goto RETURN; 1903 } 1904 } 1905 } 1906 /* All tasks were finished. */ 1907 if (firstjob == NULL) 1908 break; 1909 1910 ki->kaio_flags |= KAIO_WAKEUP; 1911 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1912 "aiospn", timo); 1913 if (error == ERESTART) 1914 error = EINTR; 1915 if (error) 1916 break; 1917 } 1918 RETURN: 1919 AIO_UNLOCK(ki); 1920 return (error); 1921 } 1922 1923 int 1924 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1925 { 1926 struct timespec ts, *tsp; 1927 struct aiocb **ujoblist; 1928 int error; 1929 1930 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1931 return (EINVAL); 1932 1933 if (uap->timeout) { 1934 /* Get timespec struct. */ 1935 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1936 return (error); 1937 tsp = &ts; 1938 } else 1939 tsp = NULL; 1940 1941 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1942 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1943 if (error == 0) 1944 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1945 free(ujoblist, M_AIOS); 1946 return (error); 1947 } 1948 1949 /* 1950 * aio_cancel cancels any non-bio aio operations not currently in progress. 1951 */ 1952 int 1953 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1954 { 1955 struct proc *p = td->td_proc; 1956 struct kaioinfo *ki; 1957 struct kaiocb *job, *jobn; 1958 struct file *fp; 1959 int error; 1960 int cancelled = 0; 1961 int notcancelled = 0; 1962 struct vnode *vp; 1963 1964 /* Lookup file object. */ 1965 error = fget(td, uap->fd, &cap_no_rights, &fp); 1966 if (error) 1967 return (error); 1968 1969 ki = p->p_aioinfo; 1970 if (ki == NULL) 1971 goto done; 1972 1973 if (fp->f_type == DTYPE_VNODE) { 1974 vp = fp->f_vnode; 1975 if (vn_isdisk(vp, &error)) { 1976 fdrop(fp, td); 1977 td->td_retval[0] = AIO_NOTCANCELED; 1978 return (0); 1979 } 1980 } 1981 1982 AIO_LOCK(ki); 1983 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1984 if ((uap->fd == job->uaiocb.aio_fildes) && 1985 ((uap->aiocbp == NULL) || 1986 (uap->aiocbp == job->ujob))) { 1987 if (aio_cancel_job(p, ki, job)) { 1988 cancelled++; 1989 } else { 1990 notcancelled++; 1991 } 1992 if (uap->aiocbp != NULL) 1993 break; 1994 } 1995 } 1996 AIO_UNLOCK(ki); 1997 1998 done: 1999 fdrop(fp, td); 2000 2001 if (uap->aiocbp != NULL) { 2002 if (cancelled) { 2003 td->td_retval[0] = AIO_CANCELED; 2004 return (0); 2005 } 2006 } 2007 2008 if (notcancelled) { 2009 td->td_retval[0] = AIO_NOTCANCELED; 2010 return (0); 2011 } 2012 2013 if (cancelled) { 2014 td->td_retval[0] = AIO_CANCELED; 2015 return (0); 2016 } 2017 2018 td->td_retval[0] = AIO_ALLDONE; 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * aio_error is implemented in the kernel level for compatibility purposes 2025 * only. For a user mode async implementation, it would be best to do it in 2026 * a userland subroutine. 2027 */ 2028 static int 2029 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2030 { 2031 struct proc *p = td->td_proc; 2032 struct kaiocb *job; 2033 struct kaioinfo *ki; 2034 int status; 2035 2036 ki = p->p_aioinfo; 2037 if (ki == NULL) { 2038 td->td_retval[0] = EINVAL; 2039 return (0); 2040 } 2041 2042 AIO_LOCK(ki); 2043 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2044 if (job->ujob == ujob) { 2045 if (job->jobflags & KAIOCB_FINISHED) 2046 td->td_retval[0] = 2047 job->uaiocb._aiocb_private.error; 2048 else 2049 td->td_retval[0] = EINPROGRESS; 2050 AIO_UNLOCK(ki); 2051 return (0); 2052 } 2053 } 2054 AIO_UNLOCK(ki); 2055 2056 /* 2057 * Hack for failure of aio_aqueue. 2058 */ 2059 status = ops->fetch_status(ujob); 2060 if (status == -1) { 2061 td->td_retval[0] = ops->fetch_error(ujob); 2062 return (0); 2063 } 2064 2065 td->td_retval[0] = EINVAL; 2066 return (0); 2067 } 2068 2069 int 2070 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2071 { 2072 2073 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2074 } 2075 2076 /* syscall - asynchronous read from a file (REALTIME) */ 2077 #ifdef COMPAT_FREEBSD6 2078 int 2079 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2080 { 2081 2082 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2083 &aiocb_ops_osigevent)); 2084 } 2085 #endif 2086 2087 int 2088 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2089 { 2090 2091 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2092 } 2093 2094 /* syscall - asynchronous write to a file (REALTIME) */ 2095 #ifdef COMPAT_FREEBSD6 2096 int 2097 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2098 { 2099 2100 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2101 &aiocb_ops_osigevent)); 2102 } 2103 #endif 2104 2105 int 2106 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2107 { 2108 2109 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2110 } 2111 2112 int 2113 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2114 { 2115 2116 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2117 } 2118 2119 static int 2120 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2121 struct aiocb **acb_list, int nent, struct sigevent *sig, 2122 struct aiocb_ops *ops) 2123 { 2124 struct proc *p = td->td_proc; 2125 struct aiocb *job; 2126 struct kaioinfo *ki; 2127 struct aioliojob *lj; 2128 struct kevent kev; 2129 int error; 2130 int nagain, nerror; 2131 int i; 2132 2133 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2134 return (EINVAL); 2135 2136 if (nent < 0 || nent > max_aio_queue_per_proc) 2137 return (EINVAL); 2138 2139 if (p->p_aioinfo == NULL) 2140 aio_init_aioinfo(p); 2141 2142 ki = p->p_aioinfo; 2143 2144 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2145 lj->lioj_flags = 0; 2146 lj->lioj_count = 0; 2147 lj->lioj_finished_count = 0; 2148 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2149 ksiginfo_init(&lj->lioj_ksi); 2150 2151 /* 2152 * Setup signal. 2153 */ 2154 if (sig && (mode == LIO_NOWAIT)) { 2155 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2156 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2157 /* Assume only new style KEVENT */ 2158 memset(&kev, 0, sizeof(kev)); 2159 kev.filter = EVFILT_LIO; 2160 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2161 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2162 kev.data = (intptr_t)lj; 2163 /* pass user defined sigval data */ 2164 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2165 error = kqfd_register( 2166 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2167 M_WAITOK); 2168 if (error) { 2169 uma_zfree(aiolio_zone, lj); 2170 return (error); 2171 } 2172 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2173 ; 2174 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2175 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2176 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2177 uma_zfree(aiolio_zone, lj); 2178 return EINVAL; 2179 } 2180 lj->lioj_flags |= LIOJ_SIGNAL; 2181 } else { 2182 uma_zfree(aiolio_zone, lj); 2183 return EINVAL; 2184 } 2185 } 2186 2187 AIO_LOCK(ki); 2188 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2189 /* 2190 * Add extra aiocb count to avoid the lio to be freed 2191 * by other threads doing aio_waitcomplete or aio_return, 2192 * and prevent event from being sent until we have queued 2193 * all tasks. 2194 */ 2195 lj->lioj_count = 1; 2196 AIO_UNLOCK(ki); 2197 2198 /* 2199 * Get pointers to the list of I/O requests. 2200 */ 2201 nagain = 0; 2202 nerror = 0; 2203 for (i = 0; i < nent; i++) { 2204 job = acb_list[i]; 2205 if (job != NULL) { 2206 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2207 if (error == EAGAIN) 2208 nagain++; 2209 else if (error != 0) 2210 nerror++; 2211 } 2212 } 2213 2214 error = 0; 2215 AIO_LOCK(ki); 2216 if (mode == LIO_WAIT) { 2217 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2218 ki->kaio_flags |= KAIO_WAKEUP; 2219 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2220 PRIBIO | PCATCH, "aiospn", 0); 2221 if (error == ERESTART) 2222 error = EINTR; 2223 if (error) 2224 break; 2225 } 2226 } else { 2227 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2228 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2229 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2230 KNOTE_LOCKED(&lj->klist, 1); 2231 } 2232 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2233 == LIOJ_SIGNAL 2234 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2235 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2236 aio_sendsig(p, &lj->lioj_signal, 2237 &lj->lioj_ksi); 2238 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2239 } 2240 } 2241 } 2242 lj->lioj_count--; 2243 if (lj->lioj_count == 0) { 2244 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2245 knlist_delete(&lj->klist, curthread, 1); 2246 PROC_LOCK(p); 2247 sigqueue_take(&lj->lioj_ksi); 2248 PROC_UNLOCK(p); 2249 AIO_UNLOCK(ki); 2250 uma_zfree(aiolio_zone, lj); 2251 } else 2252 AIO_UNLOCK(ki); 2253 2254 if (nerror) 2255 return (EIO); 2256 else if (nagain) 2257 return (EAGAIN); 2258 else 2259 return (error); 2260 } 2261 2262 /* syscall - list directed I/O (REALTIME) */ 2263 #ifdef COMPAT_FREEBSD6 2264 int 2265 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2266 { 2267 struct aiocb **acb_list; 2268 struct sigevent *sigp, sig; 2269 struct osigevent osig; 2270 int error, nent; 2271 2272 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2273 return (EINVAL); 2274 2275 nent = uap->nent; 2276 if (nent < 0 || nent > max_aio_queue_per_proc) 2277 return (EINVAL); 2278 2279 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2280 error = copyin(uap->sig, &osig, sizeof(osig)); 2281 if (error) 2282 return (error); 2283 error = convert_old_sigevent(&osig, &sig); 2284 if (error) 2285 return (error); 2286 sigp = &sig; 2287 } else 2288 sigp = NULL; 2289 2290 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2291 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2292 if (error == 0) 2293 error = kern_lio_listio(td, uap->mode, 2294 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2295 &aiocb_ops_osigevent); 2296 free(acb_list, M_LIO); 2297 return (error); 2298 } 2299 #endif 2300 2301 /* syscall - list directed I/O (REALTIME) */ 2302 int 2303 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2304 { 2305 struct aiocb **acb_list; 2306 struct sigevent *sigp, sig; 2307 int error, nent; 2308 2309 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2310 return (EINVAL); 2311 2312 nent = uap->nent; 2313 if (nent < 0 || nent > max_aio_queue_per_proc) 2314 return (EINVAL); 2315 2316 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2317 error = copyin(uap->sig, &sig, sizeof(sig)); 2318 if (error) 2319 return (error); 2320 sigp = &sig; 2321 } else 2322 sigp = NULL; 2323 2324 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2325 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2326 if (error == 0) 2327 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2328 nent, sigp, &aiocb_ops); 2329 free(acb_list, M_LIO); 2330 return (error); 2331 } 2332 2333 static void 2334 aio_biowakeup(struct bio *bp) 2335 { 2336 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2337 struct proc *userp; 2338 struct kaioinfo *ki; 2339 size_t nbytes; 2340 int error, nblks; 2341 2342 /* Release mapping into kernel space. */ 2343 userp = job->userproc; 2344 ki = userp->p_aioinfo; 2345 if (job->pbuf) { 2346 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2347 uma_zfree(pbuf_zone, job->pbuf); 2348 job->pbuf = NULL; 2349 atomic_subtract_int(&num_buf_aio, 1); 2350 AIO_LOCK(ki); 2351 ki->kaio_buffer_count--; 2352 AIO_UNLOCK(ki); 2353 } else 2354 atomic_subtract_int(&num_unmapped_aio, 1); 2355 vm_page_unhold_pages(job->pages, job->npages); 2356 2357 bp = job->bp; 2358 job->bp = NULL; 2359 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2360 error = 0; 2361 if (bp->bio_flags & BIO_ERROR) 2362 error = bp->bio_error; 2363 nblks = btodb(nbytes); 2364 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2365 job->outblock += nblks; 2366 else 2367 job->inblock += nblks; 2368 2369 if (error) 2370 aio_complete(job, -1, error); 2371 else 2372 aio_complete(job, nbytes, 0); 2373 2374 g_destroy_bio(bp); 2375 } 2376 2377 /* syscall - wait for the next completion of an aio request */ 2378 static int 2379 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2380 struct timespec *ts, struct aiocb_ops *ops) 2381 { 2382 struct proc *p = td->td_proc; 2383 struct timeval atv; 2384 struct kaioinfo *ki; 2385 struct kaiocb *job; 2386 struct aiocb *ujob; 2387 long error, status; 2388 int timo; 2389 2390 ops->store_aiocb(ujobp, NULL); 2391 2392 if (ts == NULL) { 2393 timo = 0; 2394 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2395 timo = -1; 2396 } else { 2397 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2398 return (EINVAL); 2399 2400 TIMESPEC_TO_TIMEVAL(&atv, ts); 2401 if (itimerfix(&atv)) 2402 return (EINVAL); 2403 timo = tvtohz(&atv); 2404 } 2405 2406 if (p->p_aioinfo == NULL) 2407 aio_init_aioinfo(p); 2408 ki = p->p_aioinfo; 2409 2410 error = 0; 2411 job = NULL; 2412 AIO_LOCK(ki); 2413 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2414 if (timo == -1) { 2415 error = EWOULDBLOCK; 2416 break; 2417 } 2418 ki->kaio_flags |= KAIO_WAKEUP; 2419 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2420 "aiowc", timo); 2421 if (timo && error == ERESTART) 2422 error = EINTR; 2423 if (error) 2424 break; 2425 } 2426 2427 if (job != NULL) { 2428 MPASS(job->jobflags & KAIOCB_FINISHED); 2429 ujob = job->ujob; 2430 status = job->uaiocb._aiocb_private.status; 2431 error = job->uaiocb._aiocb_private.error; 2432 td->td_retval[0] = status; 2433 td->td_ru.ru_oublock += job->outblock; 2434 td->td_ru.ru_inblock += job->inblock; 2435 td->td_ru.ru_msgsnd += job->msgsnd; 2436 td->td_ru.ru_msgrcv += job->msgrcv; 2437 aio_free_entry(job); 2438 AIO_UNLOCK(ki); 2439 ops->store_aiocb(ujobp, ujob); 2440 ops->store_error(ujob, error); 2441 ops->store_status(ujob, status); 2442 } else 2443 AIO_UNLOCK(ki); 2444 2445 return (error); 2446 } 2447 2448 int 2449 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2450 { 2451 struct timespec ts, *tsp; 2452 int error; 2453 2454 if (uap->timeout) { 2455 /* Get timespec struct. */ 2456 error = copyin(uap->timeout, &ts, sizeof(ts)); 2457 if (error) 2458 return (error); 2459 tsp = &ts; 2460 } else 2461 tsp = NULL; 2462 2463 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2464 } 2465 2466 static int 2467 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2468 struct aiocb_ops *ops) 2469 { 2470 2471 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2472 return (EINVAL); 2473 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2474 } 2475 2476 int 2477 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2478 { 2479 2480 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2481 } 2482 2483 /* kqueue attach function */ 2484 static int 2485 filt_aioattach(struct knote *kn) 2486 { 2487 struct kaiocb *job; 2488 2489 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2490 2491 /* 2492 * The job pointer must be validated before using it, so 2493 * registration is restricted to the kernel; the user cannot 2494 * set EV_FLAG1. 2495 */ 2496 if ((kn->kn_flags & EV_FLAG1) == 0) 2497 return (EPERM); 2498 kn->kn_ptr.p_aio = job; 2499 kn->kn_flags &= ~EV_FLAG1; 2500 2501 knlist_add(&job->klist, kn, 0); 2502 2503 return (0); 2504 } 2505 2506 /* kqueue detach function */ 2507 static void 2508 filt_aiodetach(struct knote *kn) 2509 { 2510 struct knlist *knl; 2511 2512 knl = &kn->kn_ptr.p_aio->klist; 2513 knl->kl_lock(knl->kl_lockarg); 2514 if (!knlist_empty(knl)) 2515 knlist_remove(knl, kn, 1); 2516 knl->kl_unlock(knl->kl_lockarg); 2517 } 2518 2519 /* kqueue filter function */ 2520 /*ARGSUSED*/ 2521 static int 2522 filt_aio(struct knote *kn, long hint) 2523 { 2524 struct kaiocb *job = kn->kn_ptr.p_aio; 2525 2526 kn->kn_data = job->uaiocb._aiocb_private.error; 2527 if (!(job->jobflags & KAIOCB_FINISHED)) 2528 return (0); 2529 kn->kn_flags |= EV_EOF; 2530 return (1); 2531 } 2532 2533 /* kqueue attach function */ 2534 static int 2535 filt_lioattach(struct knote *kn) 2536 { 2537 struct aioliojob *lj; 2538 2539 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2540 2541 /* 2542 * The aioliojob pointer must be validated before using it, so 2543 * registration is restricted to the kernel; the user cannot 2544 * set EV_FLAG1. 2545 */ 2546 if ((kn->kn_flags & EV_FLAG1) == 0) 2547 return (EPERM); 2548 kn->kn_ptr.p_lio = lj; 2549 kn->kn_flags &= ~EV_FLAG1; 2550 2551 knlist_add(&lj->klist, kn, 0); 2552 2553 return (0); 2554 } 2555 2556 /* kqueue detach function */ 2557 static void 2558 filt_liodetach(struct knote *kn) 2559 { 2560 struct knlist *knl; 2561 2562 knl = &kn->kn_ptr.p_lio->klist; 2563 knl->kl_lock(knl->kl_lockarg); 2564 if (!knlist_empty(knl)) 2565 knlist_remove(knl, kn, 1); 2566 knl->kl_unlock(knl->kl_lockarg); 2567 } 2568 2569 /* kqueue filter function */ 2570 /*ARGSUSED*/ 2571 static int 2572 filt_lio(struct knote *kn, long hint) 2573 { 2574 struct aioliojob * lj = kn->kn_ptr.p_lio; 2575 2576 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2577 } 2578 2579 #ifdef COMPAT_FREEBSD32 2580 #include <sys/mount.h> 2581 #include <sys/socket.h> 2582 #include <compat/freebsd32/freebsd32.h> 2583 #include <compat/freebsd32/freebsd32_proto.h> 2584 #include <compat/freebsd32/freebsd32_signal.h> 2585 #include <compat/freebsd32/freebsd32_syscall.h> 2586 #include <compat/freebsd32/freebsd32_util.h> 2587 2588 struct __aiocb_private32 { 2589 int32_t status; 2590 int32_t error; 2591 uint32_t kernelinfo; 2592 }; 2593 2594 #ifdef COMPAT_FREEBSD6 2595 typedef struct oaiocb32 { 2596 int aio_fildes; /* File descriptor */ 2597 uint64_t aio_offset __packed; /* File offset for I/O */ 2598 uint32_t aio_buf; /* I/O buffer in process space */ 2599 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2600 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2601 int aio_lio_opcode; /* LIO opcode */ 2602 int aio_reqprio; /* Request priority -- ignored */ 2603 struct __aiocb_private32 _aiocb_private; 2604 } oaiocb32_t; 2605 #endif 2606 2607 typedef struct aiocb32 { 2608 int32_t aio_fildes; /* File descriptor */ 2609 uint64_t aio_offset __packed; /* File offset for I/O */ 2610 uint32_t aio_buf; /* I/O buffer in process space */ 2611 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2612 int __spare__[2]; 2613 uint32_t __spare2__; 2614 int aio_lio_opcode; /* LIO opcode */ 2615 int aio_reqprio; /* Request priority -- ignored */ 2616 struct __aiocb_private32 _aiocb_private; 2617 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2618 } aiocb32_t; 2619 2620 #ifdef COMPAT_FREEBSD6 2621 static int 2622 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2623 { 2624 2625 /* 2626 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2627 * supported by AIO with the old sigevent structure. 2628 */ 2629 CP(*osig, *nsig, sigev_notify); 2630 switch (nsig->sigev_notify) { 2631 case SIGEV_NONE: 2632 break; 2633 case SIGEV_SIGNAL: 2634 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2635 break; 2636 case SIGEV_KEVENT: 2637 nsig->sigev_notify_kqueue = 2638 osig->__sigev_u.__sigev_notify_kqueue; 2639 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2640 break; 2641 default: 2642 return (EINVAL); 2643 } 2644 return (0); 2645 } 2646 2647 static int 2648 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2649 { 2650 struct oaiocb32 job32; 2651 int error; 2652 2653 bzero(kjob, sizeof(struct aiocb)); 2654 error = copyin(ujob, &job32, sizeof(job32)); 2655 if (error) 2656 return (error); 2657 2658 CP(job32, *kjob, aio_fildes); 2659 CP(job32, *kjob, aio_offset); 2660 PTRIN_CP(job32, *kjob, aio_buf); 2661 CP(job32, *kjob, aio_nbytes); 2662 CP(job32, *kjob, aio_lio_opcode); 2663 CP(job32, *kjob, aio_reqprio); 2664 CP(job32, *kjob, _aiocb_private.status); 2665 CP(job32, *kjob, _aiocb_private.error); 2666 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2667 return (convert_old_sigevent32(&job32.aio_sigevent, 2668 &kjob->aio_sigevent)); 2669 } 2670 #endif 2671 2672 static int 2673 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2674 { 2675 struct aiocb32 job32; 2676 int error; 2677 2678 error = copyin(ujob, &job32, sizeof(job32)); 2679 if (error) 2680 return (error); 2681 CP(job32, *kjob, aio_fildes); 2682 CP(job32, *kjob, aio_offset); 2683 PTRIN_CP(job32, *kjob, aio_buf); 2684 CP(job32, *kjob, aio_nbytes); 2685 CP(job32, *kjob, aio_lio_opcode); 2686 CP(job32, *kjob, aio_reqprio); 2687 CP(job32, *kjob, _aiocb_private.status); 2688 CP(job32, *kjob, _aiocb_private.error); 2689 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2690 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2691 } 2692 2693 static long 2694 aiocb32_fetch_status(struct aiocb *ujob) 2695 { 2696 struct aiocb32 *ujob32; 2697 2698 ujob32 = (struct aiocb32 *)ujob; 2699 return (fuword32(&ujob32->_aiocb_private.status)); 2700 } 2701 2702 static long 2703 aiocb32_fetch_error(struct aiocb *ujob) 2704 { 2705 struct aiocb32 *ujob32; 2706 2707 ujob32 = (struct aiocb32 *)ujob; 2708 return (fuword32(&ujob32->_aiocb_private.error)); 2709 } 2710 2711 static int 2712 aiocb32_store_status(struct aiocb *ujob, long status) 2713 { 2714 struct aiocb32 *ujob32; 2715 2716 ujob32 = (struct aiocb32 *)ujob; 2717 return (suword32(&ujob32->_aiocb_private.status, status)); 2718 } 2719 2720 static int 2721 aiocb32_store_error(struct aiocb *ujob, long error) 2722 { 2723 struct aiocb32 *ujob32; 2724 2725 ujob32 = (struct aiocb32 *)ujob; 2726 return (suword32(&ujob32->_aiocb_private.error, error)); 2727 } 2728 2729 static int 2730 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2731 { 2732 struct aiocb32 *ujob32; 2733 2734 ujob32 = (struct aiocb32 *)ujob; 2735 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2736 } 2737 2738 static int 2739 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2740 { 2741 2742 return (suword32(ujobp, (long)ujob)); 2743 } 2744 2745 static struct aiocb_ops aiocb32_ops = { 2746 .aio_copyin = aiocb32_copyin, 2747 .fetch_status = aiocb32_fetch_status, 2748 .fetch_error = aiocb32_fetch_error, 2749 .store_status = aiocb32_store_status, 2750 .store_error = aiocb32_store_error, 2751 .store_kernelinfo = aiocb32_store_kernelinfo, 2752 .store_aiocb = aiocb32_store_aiocb, 2753 }; 2754 2755 #ifdef COMPAT_FREEBSD6 2756 static struct aiocb_ops aiocb32_ops_osigevent = { 2757 .aio_copyin = aiocb32_copyin_old_sigevent, 2758 .fetch_status = aiocb32_fetch_status, 2759 .fetch_error = aiocb32_fetch_error, 2760 .store_status = aiocb32_store_status, 2761 .store_error = aiocb32_store_error, 2762 .store_kernelinfo = aiocb32_store_kernelinfo, 2763 .store_aiocb = aiocb32_store_aiocb, 2764 }; 2765 #endif 2766 2767 int 2768 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2769 { 2770 2771 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2772 } 2773 2774 int 2775 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2776 { 2777 struct timespec32 ts32; 2778 struct timespec ts, *tsp; 2779 struct aiocb **ujoblist; 2780 uint32_t *ujoblist32; 2781 int error, i; 2782 2783 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2784 return (EINVAL); 2785 2786 if (uap->timeout) { 2787 /* Get timespec struct. */ 2788 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2789 return (error); 2790 CP(ts32, ts, tv_sec); 2791 CP(ts32, ts, tv_nsec); 2792 tsp = &ts; 2793 } else 2794 tsp = NULL; 2795 2796 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2797 ujoblist32 = (uint32_t *)ujoblist; 2798 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2799 sizeof(ujoblist32[0])); 2800 if (error == 0) { 2801 for (i = uap->nent - 1; i >= 0; i--) 2802 ujoblist[i] = PTRIN(ujoblist32[i]); 2803 2804 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2805 } 2806 free(ujoblist, M_AIOS); 2807 return (error); 2808 } 2809 2810 int 2811 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2812 { 2813 2814 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2815 } 2816 2817 #ifdef COMPAT_FREEBSD6 2818 int 2819 freebsd6_freebsd32_aio_read(struct thread *td, 2820 struct freebsd6_freebsd32_aio_read_args *uap) 2821 { 2822 2823 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2824 &aiocb32_ops_osigevent)); 2825 } 2826 #endif 2827 2828 int 2829 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2830 { 2831 2832 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2833 &aiocb32_ops)); 2834 } 2835 2836 #ifdef COMPAT_FREEBSD6 2837 int 2838 freebsd6_freebsd32_aio_write(struct thread *td, 2839 struct freebsd6_freebsd32_aio_write_args *uap) 2840 { 2841 2842 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2843 &aiocb32_ops_osigevent)); 2844 } 2845 #endif 2846 2847 int 2848 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2849 { 2850 2851 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2852 &aiocb32_ops)); 2853 } 2854 2855 int 2856 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2857 { 2858 2859 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2860 &aiocb32_ops)); 2861 } 2862 2863 int 2864 freebsd32_aio_waitcomplete(struct thread *td, 2865 struct freebsd32_aio_waitcomplete_args *uap) 2866 { 2867 struct timespec32 ts32; 2868 struct timespec ts, *tsp; 2869 int error; 2870 2871 if (uap->timeout) { 2872 /* Get timespec struct. */ 2873 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2874 if (error) 2875 return (error); 2876 CP(ts32, ts, tv_sec); 2877 CP(ts32, ts, tv_nsec); 2878 tsp = &ts; 2879 } else 2880 tsp = NULL; 2881 2882 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2883 &aiocb32_ops)); 2884 } 2885 2886 int 2887 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2888 { 2889 2890 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2891 &aiocb32_ops)); 2892 } 2893 2894 #ifdef COMPAT_FREEBSD6 2895 int 2896 freebsd6_freebsd32_lio_listio(struct thread *td, 2897 struct freebsd6_freebsd32_lio_listio_args *uap) 2898 { 2899 struct aiocb **acb_list; 2900 struct sigevent *sigp, sig; 2901 struct osigevent32 osig; 2902 uint32_t *acb_list32; 2903 int error, i, nent; 2904 2905 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2906 return (EINVAL); 2907 2908 nent = uap->nent; 2909 if (nent < 0 || nent > max_aio_queue_per_proc) 2910 return (EINVAL); 2911 2912 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2913 error = copyin(uap->sig, &osig, sizeof(osig)); 2914 if (error) 2915 return (error); 2916 error = convert_old_sigevent32(&osig, &sig); 2917 if (error) 2918 return (error); 2919 sigp = &sig; 2920 } else 2921 sigp = NULL; 2922 2923 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2924 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2925 if (error) { 2926 free(acb_list32, M_LIO); 2927 return (error); 2928 } 2929 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2930 for (i = 0; i < nent; i++) 2931 acb_list[i] = PTRIN(acb_list32[i]); 2932 free(acb_list32, M_LIO); 2933 2934 error = kern_lio_listio(td, uap->mode, 2935 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2936 &aiocb32_ops_osigevent); 2937 free(acb_list, M_LIO); 2938 return (error); 2939 } 2940 #endif 2941 2942 int 2943 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2944 { 2945 struct aiocb **acb_list; 2946 struct sigevent *sigp, sig; 2947 struct sigevent32 sig32; 2948 uint32_t *acb_list32; 2949 int error, i, nent; 2950 2951 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2952 return (EINVAL); 2953 2954 nent = uap->nent; 2955 if (nent < 0 || nent > max_aio_queue_per_proc) 2956 return (EINVAL); 2957 2958 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2959 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2960 if (error) 2961 return (error); 2962 error = convert_sigevent32(&sig32, &sig); 2963 if (error) 2964 return (error); 2965 sigp = &sig; 2966 } else 2967 sigp = NULL; 2968 2969 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2970 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2971 if (error) { 2972 free(acb_list32, M_LIO); 2973 return (error); 2974 } 2975 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2976 for (i = 0; i < nent; i++) 2977 acb_list[i] = PTRIN(acb_list32[i]); 2978 free(acb_list32, M_LIO); 2979 2980 error = kern_lio_listio(td, uap->mode, 2981 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2982 &aiocb32_ops); 2983 free(acb_list, M_LIO); 2984 return (error); 2985 } 2986 2987 #endif 2988