1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysctl.h> 56 #include <sys/syslog.h> 57 #include <sys/sx.h> 58 #include <sys/taskqueue.h> 59 #include <sys/vnode.h> 60 #include <sys/conf.h> 61 #include <sys/event.h> 62 #include <sys/mount.h> 63 #include <geom/geom.h> 64 65 #include <machine/atomic.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_page.h> 69 #include <vm/vm_extern.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_object.h> 73 #include <vm/uma.h> 74 #include <sys/aio.h> 75 76 /* 77 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 78 * overflow. (XXX will be removed soon.) 79 */ 80 static u_long jobrefid; 81 82 /* 83 * Counter for aio_fsync. 84 */ 85 static uint64_t jobseqno; 86 87 #ifndef MAX_AIO_PER_PROC 88 #define MAX_AIO_PER_PROC 32 89 #endif 90 91 #ifndef MAX_AIO_QUEUE_PER_PROC 92 #define MAX_AIO_QUEUE_PER_PROC 256 93 #endif 94 95 #ifndef MAX_AIO_QUEUE 96 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 97 #endif 98 99 #ifndef MAX_BUF_AIO 100 #define MAX_BUF_AIO 16 101 #endif 102 103 FEATURE(aio, "Asynchronous I/O"); 104 SYSCTL_DECL(_p1003_1b); 105 106 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 107 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O"); 108 109 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 110 "Async IO management"); 111 112 static int enable_aio_unsafe = 0; 113 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 114 "Permit asynchronous IO on all file types, not just known-safe types"); 115 116 static unsigned int unsafe_warningcnt = 1; 117 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 118 &unsafe_warningcnt, 0, 119 "Warnings that will be triggered upon failed IO requests on unsafe files"); 120 121 static int max_aio_procs = MAX_AIO_PROCS; 122 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 123 "Maximum number of kernel processes to use for handling async IO "); 124 125 static int num_aio_procs = 0; 126 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 127 "Number of presently active kernel processes for async IO"); 128 129 /* 130 * The code will adjust the actual number of AIO processes towards this 131 * number when it gets a chance. 132 */ 133 static int target_aio_procs = TARGET_AIO_PROCS; 134 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 135 0, 136 "Preferred number of ready kernel processes for async IO"); 137 138 static int max_queue_count = MAX_AIO_QUEUE; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 140 "Maximum number of aio requests to queue, globally"); 141 142 static int num_queue_count = 0; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 144 "Number of queued aio requests"); 145 146 static int num_buf_aio = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 148 "Number of aio requests presently handled by the buf subsystem"); 149 150 static int num_unmapped_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 152 0, 153 "Number of aio requests presently handled by unmapped I/O buffers"); 154 155 /* Number of async I/O processes in the process of being started */ 156 /* XXX This should be local to aio_aqueue() */ 157 static int num_aio_resv_start = 0; 158 159 static int aiod_lifetime; 160 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 161 "Maximum lifetime for idle aiod"); 162 163 static int max_aio_per_proc = MAX_AIO_PER_PROC; 164 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 165 0, 166 "Maximum active aio requests per process"); 167 168 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 170 &max_aio_queue_per_proc, 0, 171 "Maximum queued aio requests per process"); 172 173 static int max_buf_aio = MAX_BUF_AIO; 174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 175 "Maximum buf aio requests per process"); 176 177 /* 178 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 179 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 180 * vfs.aio.aio_listio_max. 181 */ 182 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 183 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 184 0, "Maximum aio requests for a single lio_listio call"); 185 186 #ifdef COMPAT_FREEBSD6 187 typedef struct oaiocb { 188 int aio_fildes; /* File descriptor */ 189 off_t aio_offset; /* File offset for I/O */ 190 volatile void *aio_buf; /* I/O buffer in process space */ 191 size_t aio_nbytes; /* Number of bytes for I/O */ 192 struct osigevent aio_sigevent; /* Signal to deliver */ 193 int aio_lio_opcode; /* LIO opcode */ 194 int aio_reqprio; /* Request priority -- ignored */ 195 struct __aiocb_private _aiocb_private; 196 } oaiocb_t; 197 #endif 198 199 /* 200 * Below is a key of locks used to protect each member of struct kaiocb 201 * aioliojob and kaioinfo and any backends. 202 * 203 * * - need not protected 204 * a - locked by kaioinfo lock 205 * b - locked by backend lock, the backend lock can be null in some cases, 206 * for example, BIO belongs to this type, in this case, proc lock is 207 * reused. 208 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 209 */ 210 211 /* 212 * If the routine that services an AIO request blocks while running in an 213 * AIO kernel process it can starve other I/O requests. BIO requests 214 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 215 * processes at all. Socket I/O requests use a separate pool of 216 * kprocs and also force non-blocking I/O. Other file I/O requests 217 * use the generic fo_read/fo_write operations which can block. The 218 * fsync and mlock operations can also block while executing. Ideally 219 * none of these requests would block while executing. 220 * 221 * Note that the service routines cannot toggle O_NONBLOCK in the file 222 * structure directly while handling a request due to races with 223 * userland threads. 224 */ 225 226 /* jobflags */ 227 #define KAIOCB_QUEUEING 0x01 228 #define KAIOCB_CANCELLED 0x02 229 #define KAIOCB_CANCELLING 0x04 230 #define KAIOCB_CHECKSYNC 0x08 231 #define KAIOCB_CLEARED 0x10 232 #define KAIOCB_FINISHED 0x20 233 234 /* 235 * AIO process info 236 */ 237 #define AIOP_FREE 0x1 /* proc on free queue */ 238 239 struct aioproc { 240 int aioprocflags; /* (c) AIO proc flags */ 241 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 242 struct proc *aioproc; /* (*) the AIO proc */ 243 }; 244 245 /* 246 * data-structure for lio signal management 247 */ 248 struct aioliojob { 249 int lioj_flags; /* (a) listio flags */ 250 int lioj_count; /* (a) count of jobs */ 251 int lioj_finished_count; /* (a) count of finished jobs */ 252 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 253 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 254 struct knlist klist; /* (a) list of knotes */ 255 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 256 }; 257 258 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 259 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 260 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 261 262 /* 263 * per process aio data structure 264 */ 265 struct kaioinfo { 266 struct mtx kaio_mtx; /* the lock to protect this struct */ 267 int kaio_flags; /* (a) per process kaio flags */ 268 int kaio_active_count; /* (c) number of currently used AIOs */ 269 int kaio_count; /* (a) size of AIO queue */ 270 int kaio_buffer_count; /* (a) number of bio buffers */ 271 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 272 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 273 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 274 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 275 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 276 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 277 struct task kaio_task; /* (*) task to kick aio processes */ 278 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 279 }; 280 281 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 282 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 283 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 284 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 285 286 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 287 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 288 289 /* 290 * Operations used to interact with userland aio control blocks. 291 * Different ABIs provide their own operations. 292 */ 293 struct aiocb_ops { 294 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 295 long (*fetch_status)(struct aiocb *ujob); 296 long (*fetch_error)(struct aiocb *ujob); 297 int (*store_status)(struct aiocb *ujob, long status); 298 int (*store_error)(struct aiocb *ujob, long error); 299 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 300 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 301 }; 302 303 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 304 static struct sema aio_newproc_sem; 305 static struct mtx aio_job_mtx; 306 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 307 static struct unrhdr *aiod_unr; 308 309 static void aio_biocleanup(struct bio *bp); 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_biowakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qbio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiocb async io jobs 343 * aiolio list io jobs 344 */ 345 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone; 346 347 /* kqueue filters for aio */ 348 static struct filterops aio_filtops = { 349 .f_isfd = 0, 350 .f_attach = filt_aioattach, 351 .f_detach = filt_aiodetach, 352 .f_event = filt_aio, 353 }; 354 static struct filterops lio_filtops = { 355 .f_isfd = 0, 356 .f_attach = filt_lioattach, 357 .f_detach = filt_liodetach, 358 .f_event = filt_lio 359 }; 360 361 static eventhandler_tag exit_tag, exec_tag; 362 363 TASKQUEUE_DEFINE_THREAD(aiod_kick); 364 365 /* 366 * Main operations function for use as a kernel module. 367 */ 368 static int 369 aio_modload(struct module *module, int cmd, void *arg) 370 { 371 int error = 0; 372 373 switch (cmd) { 374 case MOD_LOAD: 375 aio_onceonly(); 376 break; 377 case MOD_SHUTDOWN: 378 break; 379 default: 380 error = EOPNOTSUPP; 381 break; 382 } 383 return (error); 384 } 385 386 static moduledata_t aio_mod = { 387 "aio", 388 &aio_modload, 389 NULL 390 }; 391 392 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 393 MODULE_VERSION(aio, 1); 394 395 /* 396 * Startup initialization 397 */ 398 static int 399 aio_onceonly(void) 400 { 401 402 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 403 EVENTHANDLER_PRI_ANY); 404 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 405 NULL, EVENTHANDLER_PRI_ANY); 406 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 407 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 408 TAILQ_INIT(&aio_freeproc); 409 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 410 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 411 TAILQ_INIT(&aio_jobs); 412 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 413 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 414 NULL, NULL, UMA_ALIGN_PTR, 0); 415 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 416 NULL, NULL, UMA_ALIGN_PTR, 0); 417 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 418 NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 419 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 420 jobrefid = 1; 421 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 422 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 423 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 424 425 return (0); 426 } 427 428 /* 429 * Init the per-process aioinfo structure. The aioinfo limits are set 430 * per-process for user limit (resource) management. 431 */ 432 void 433 aio_init_aioinfo(struct proc *p) 434 { 435 struct kaioinfo *ki; 436 437 ki = uma_zalloc(kaio_zone, M_WAITOK); 438 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 439 ki->kaio_flags = 0; 440 ki->kaio_active_count = 0; 441 ki->kaio_count = 0; 442 ki->kaio_buffer_count = 0; 443 TAILQ_INIT(&ki->kaio_all); 444 TAILQ_INIT(&ki->kaio_done); 445 TAILQ_INIT(&ki->kaio_jobqueue); 446 TAILQ_INIT(&ki->kaio_liojoblist); 447 TAILQ_INIT(&ki->kaio_syncqueue); 448 TAILQ_INIT(&ki->kaio_syncready); 449 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 450 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 451 PROC_LOCK(p); 452 if (p->p_aioinfo == NULL) { 453 p->p_aioinfo = ki; 454 PROC_UNLOCK(p); 455 } else { 456 PROC_UNLOCK(p); 457 mtx_destroy(&ki->kaio_mtx); 458 uma_zfree(kaio_zone, ki); 459 } 460 461 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 462 aio_newproc(NULL); 463 } 464 465 static int 466 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 467 { 468 struct thread *td; 469 int error; 470 471 error = sigev_findtd(p, sigev, &td); 472 if (error) 473 return (error); 474 if (!KSI_ONQ(ksi)) { 475 ksiginfo_set_sigev(ksi, sigev); 476 ksi->ksi_code = SI_ASYNCIO; 477 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 478 tdsendsignal(p, td, ksi->ksi_signo, ksi); 479 } 480 PROC_UNLOCK(p); 481 return (error); 482 } 483 484 /* 485 * Free a job entry. Wait for completion if it is currently active, but don't 486 * delay forever. If we delay, we return a flag that says that we have to 487 * restart the queue scan. 488 */ 489 static int 490 aio_free_entry(struct kaiocb *job) 491 { 492 struct kaioinfo *ki; 493 struct aioliojob *lj; 494 struct proc *p; 495 496 p = job->userproc; 497 MPASS(curproc == p); 498 ki = p->p_aioinfo; 499 MPASS(ki != NULL); 500 501 AIO_LOCK_ASSERT(ki, MA_OWNED); 502 MPASS(job->jobflags & KAIOCB_FINISHED); 503 504 atomic_subtract_int(&num_queue_count, 1); 505 506 ki->kaio_count--; 507 MPASS(ki->kaio_count >= 0); 508 509 TAILQ_REMOVE(&ki->kaio_done, job, plist); 510 TAILQ_REMOVE(&ki->kaio_all, job, allist); 511 512 lj = job->lio; 513 if (lj) { 514 lj->lioj_count--; 515 lj->lioj_finished_count--; 516 517 if (lj->lioj_count == 0) { 518 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 519 /* lio is going away, we need to destroy any knotes */ 520 knlist_delete(&lj->klist, curthread, 1); 521 PROC_LOCK(p); 522 sigqueue_take(&lj->lioj_ksi); 523 PROC_UNLOCK(p); 524 uma_zfree(aiolio_zone, lj); 525 } 526 } 527 528 /* job is going away, we need to destroy any knotes */ 529 knlist_delete(&job->klist, curthread, 1); 530 PROC_LOCK(p); 531 sigqueue_take(&job->ksi); 532 PROC_UNLOCK(p); 533 534 AIO_UNLOCK(ki); 535 536 /* 537 * The thread argument here is used to find the owning process 538 * and is also passed to fo_close() which may pass it to various 539 * places such as devsw close() routines. Because of that, we 540 * need a thread pointer from the process owning the job that is 541 * persistent and won't disappear out from under us or move to 542 * another process. 543 * 544 * Currently, all the callers of this function call it to remove 545 * a kaiocb from the current process' job list either via a 546 * syscall or due to the current process calling exit() or 547 * execve(). Thus, we know that p == curproc. We also know that 548 * curthread can't exit since we are curthread. 549 * 550 * Therefore, we use curthread as the thread to pass to 551 * knlist_delete(). This does mean that it is possible for the 552 * thread pointer at close time to differ from the thread pointer 553 * at open time, but this is already true of file descriptors in 554 * a multithreaded process. 555 */ 556 if (job->fd_file) 557 fdrop(job->fd_file, curthread); 558 crfree(job->cred); 559 if (job->uiop != &job->uio) 560 free(job->uiop, M_IOV); 561 uma_zfree(aiocb_zone, job); 562 AIO_LOCK(ki); 563 564 return (0); 565 } 566 567 static void 568 aio_proc_rundown_exec(void *arg, struct proc *p, 569 struct image_params *imgp __unused) 570 { 571 aio_proc_rundown(arg, p); 572 } 573 574 static int 575 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 576 { 577 aio_cancel_fn_t *func; 578 int cancelled; 579 580 AIO_LOCK_ASSERT(ki, MA_OWNED); 581 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 582 return (0); 583 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 584 job->jobflags |= KAIOCB_CANCELLED; 585 586 func = job->cancel_fn; 587 588 /* 589 * If there is no cancel routine, just leave the job marked as 590 * cancelled. The job should be in active use by a caller who 591 * should complete it normally or when it fails to install a 592 * cancel routine. 593 */ 594 if (func == NULL) 595 return (0); 596 597 /* 598 * Set the CANCELLING flag so that aio_complete() will defer 599 * completions of this job. This prevents the job from being 600 * freed out from under the cancel callback. After the 601 * callback any deferred completion (whether from the callback 602 * or any other source) will be completed. 603 */ 604 job->jobflags |= KAIOCB_CANCELLING; 605 AIO_UNLOCK(ki); 606 func(job); 607 AIO_LOCK(ki); 608 job->jobflags &= ~KAIOCB_CANCELLING; 609 if (job->jobflags & KAIOCB_FINISHED) { 610 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 611 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 612 aio_bio_done_notify(p, job); 613 } else { 614 /* 615 * The cancel callback might have scheduled an 616 * operation to cancel this request, but it is 617 * only counted as cancelled if the request is 618 * cancelled when the callback returns. 619 */ 620 cancelled = 0; 621 } 622 return (cancelled); 623 } 624 625 /* 626 * Rundown the jobs for a given process. 627 */ 628 static void 629 aio_proc_rundown(void *arg, struct proc *p) 630 { 631 struct kaioinfo *ki; 632 struct aioliojob *lj; 633 struct kaiocb *job, *jobn; 634 635 KASSERT(curthread->td_proc == p, 636 ("%s: called on non-curproc", __func__)); 637 ki = p->p_aioinfo; 638 if (ki == NULL) 639 return; 640 641 AIO_LOCK(ki); 642 ki->kaio_flags |= KAIO_RUNDOWN; 643 644 restart: 645 646 /* 647 * Try to cancel all pending requests. This code simulates 648 * aio_cancel on all pending I/O requests. 649 */ 650 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 651 aio_cancel_job(p, ki, job); 652 } 653 654 /* Wait for all running I/O to be finished */ 655 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 656 ki->kaio_flags |= KAIO_WAKEUP; 657 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 658 goto restart; 659 } 660 661 /* Free all completed I/O requests. */ 662 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 663 aio_free_entry(job); 664 665 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 666 if (lj->lioj_count == 0) { 667 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 668 knlist_delete(&lj->klist, curthread, 1); 669 PROC_LOCK(p); 670 sigqueue_take(&lj->lioj_ksi); 671 PROC_UNLOCK(p); 672 uma_zfree(aiolio_zone, lj); 673 } else { 674 panic("LIO job not cleaned up: C:%d, FC:%d\n", 675 lj->lioj_count, lj->lioj_finished_count); 676 } 677 } 678 AIO_UNLOCK(ki); 679 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 681 mtx_destroy(&ki->kaio_mtx); 682 uma_zfree(kaio_zone, ki); 683 p->p_aioinfo = NULL; 684 } 685 686 /* 687 * Select a job to run (called by an AIO daemon). 688 */ 689 static struct kaiocb * 690 aio_selectjob(struct aioproc *aiop) 691 { 692 struct kaiocb *job; 693 struct kaioinfo *ki; 694 struct proc *userp; 695 696 mtx_assert(&aio_job_mtx, MA_OWNED); 697 restart: 698 TAILQ_FOREACH(job, &aio_jobs, list) { 699 userp = job->userproc; 700 ki = userp->p_aioinfo; 701 702 if (ki->kaio_active_count < max_aio_per_proc) { 703 TAILQ_REMOVE(&aio_jobs, job, list); 704 if (!aio_clear_cancel_function(job)) 705 goto restart; 706 707 /* Account for currently active jobs. */ 708 ki->kaio_active_count++; 709 break; 710 } 711 } 712 return (job); 713 } 714 715 /* 716 * Move all data to a permanent storage device. This code 717 * simulates the fsync and fdatasync syscalls. 718 */ 719 static int 720 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 721 { 722 struct mount *mp; 723 vm_object_t obj; 724 int error; 725 726 for (;;) { 727 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 728 if (error != 0) 729 break; 730 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 731 obj = vp->v_object; 732 if (obj != NULL) { 733 VM_OBJECT_WLOCK(obj); 734 vm_object_page_clean(obj, 0, 0, 0); 735 VM_OBJECT_WUNLOCK(obj); 736 } 737 if (op == LIO_DSYNC) 738 error = VOP_FDATASYNC(vp, td); 739 else 740 error = VOP_FSYNC(vp, MNT_WAIT, td); 741 742 VOP_UNLOCK(vp); 743 vn_finished_write(mp); 744 if (error != ERELOOKUP) 745 break; 746 } 747 return (error); 748 } 749 750 /* 751 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 752 * does the I/O request for the non-bio version of the operations. The normal 753 * vn operations are used, and this code should work in all instances for every 754 * type of file, including pipes, sockets, fifos, and regular files. 755 * 756 * XXX I don't think it works well for socket, pipe, and fifo. 757 */ 758 static void 759 aio_process_rw(struct kaiocb *job) 760 { 761 struct ucred *td_savedcred; 762 struct thread *td; 763 struct file *fp; 764 ssize_t cnt; 765 long msgsnd_st, msgsnd_end; 766 long msgrcv_st, msgrcv_end; 767 long oublock_st, oublock_end; 768 long inblock_st, inblock_end; 769 int error, opcode; 770 771 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 772 job->uaiocb.aio_lio_opcode == LIO_READV || 773 job->uaiocb.aio_lio_opcode == LIO_WRITE || 774 job->uaiocb.aio_lio_opcode == LIO_WRITEV, 775 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 776 777 aio_switch_vmspace(job); 778 td = curthread; 779 td_savedcred = td->td_ucred; 780 td->td_ucred = job->cred; 781 job->uiop->uio_td = td; 782 fp = job->fd_file; 783 784 opcode = job->uaiocb.aio_lio_opcode; 785 cnt = job->uiop->uio_resid; 786 787 msgrcv_st = td->td_ru.ru_msgrcv; 788 msgsnd_st = td->td_ru.ru_msgsnd; 789 inblock_st = td->td_ru.ru_inblock; 790 oublock_st = td->td_ru.ru_oublock; 791 792 /* 793 * aio_aqueue() acquires a reference to the file that is 794 * released in aio_free_entry(). 795 */ 796 if (opcode == LIO_READ || opcode == LIO_READV) { 797 if (job->uiop->uio_resid == 0) 798 error = 0; 799 else 800 error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET, 801 td); 802 } else { 803 if (fp->f_type == DTYPE_VNODE) 804 bwillwrite(); 805 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); 806 } 807 msgrcv_end = td->td_ru.ru_msgrcv; 808 msgsnd_end = td->td_ru.ru_msgsnd; 809 inblock_end = td->td_ru.ru_inblock; 810 oublock_end = td->td_ru.ru_oublock; 811 812 job->msgrcv = msgrcv_end - msgrcv_st; 813 job->msgsnd = msgsnd_end - msgsnd_st; 814 job->inblock = inblock_end - inblock_st; 815 job->outblock = oublock_end - oublock_st; 816 817 if (error != 0 && job->uiop->uio_resid != cnt) { 818 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 819 error = 0; 820 if (error == EPIPE && (opcode & LIO_WRITE)) { 821 PROC_LOCK(job->userproc); 822 kern_psignal(job->userproc, SIGPIPE); 823 PROC_UNLOCK(job->userproc); 824 } 825 } 826 827 cnt -= job->uiop->uio_resid; 828 td->td_ucred = td_savedcred; 829 if (error) 830 aio_complete(job, -1, error); 831 else 832 aio_complete(job, cnt, 0); 833 } 834 835 static void 836 aio_process_sync(struct kaiocb *job) 837 { 838 struct thread *td = curthread; 839 struct ucred *td_savedcred = td->td_ucred; 840 struct file *fp = job->fd_file; 841 int error = 0; 842 843 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 844 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 845 846 td->td_ucred = job->cred; 847 if (fp->f_vnode != NULL) { 848 error = aio_fsync_vnode(td, fp->f_vnode, 849 job->uaiocb.aio_lio_opcode); 850 } 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL && 910 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 913 true); 914 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 915 } 916 } 917 918 notification_done: 919 if (job->jobflags & KAIOCB_CHECKSYNC) { 920 schedule_fsync = false; 921 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 922 if (job->fd_file != sjob->fd_file || 923 job->seqno >= sjob->seqno) 924 continue; 925 if (--sjob->pending > 0) 926 continue; 927 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 928 if (!aio_clear_cancel_function_locked(sjob)) 929 continue; 930 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 931 schedule_fsync = true; 932 } 933 if (schedule_fsync) 934 taskqueue_enqueue(taskqueue_aiod_kick, 935 &ki->kaio_sync_task); 936 } 937 if (ki->kaio_flags & KAIO_WAKEUP) { 938 ki->kaio_flags &= ~KAIO_WAKEUP; 939 wakeup(&userp->p_aioinfo); 940 } 941 } 942 943 static void 944 aio_schedule_fsync(void *context, int pending) 945 { 946 struct kaioinfo *ki; 947 struct kaiocb *job; 948 949 ki = context; 950 AIO_LOCK(ki); 951 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 952 job = TAILQ_FIRST(&ki->kaio_syncready); 953 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 954 AIO_UNLOCK(ki); 955 aio_schedule(job, aio_process_sync); 956 AIO_LOCK(ki); 957 } 958 AIO_UNLOCK(ki); 959 } 960 961 bool 962 aio_cancel_cleared(struct kaiocb *job) 963 { 964 965 /* 966 * The caller should hold the same queue lock held when 967 * aio_clear_cancel_function() was called and set this flag 968 * ensuring this check sees an up-to-date value. However, 969 * there is no way to assert that. 970 */ 971 return ((job->jobflags & KAIOCB_CLEARED) != 0); 972 } 973 974 static bool 975 aio_clear_cancel_function_locked(struct kaiocb *job) 976 { 977 978 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 979 MPASS(job->cancel_fn != NULL); 980 if (job->jobflags & KAIOCB_CANCELLING) { 981 job->jobflags |= KAIOCB_CLEARED; 982 return (false); 983 } 984 job->cancel_fn = NULL; 985 return (true); 986 } 987 988 bool 989 aio_clear_cancel_function(struct kaiocb *job) 990 { 991 struct kaioinfo *ki; 992 bool ret; 993 994 ki = job->userproc->p_aioinfo; 995 AIO_LOCK(ki); 996 ret = aio_clear_cancel_function_locked(job); 997 AIO_UNLOCK(ki); 998 return (ret); 999 } 1000 1001 static bool 1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1003 { 1004 1005 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1006 if (job->jobflags & KAIOCB_CANCELLED) 1007 return (false); 1008 job->cancel_fn = func; 1009 return (true); 1010 } 1011 1012 bool 1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1014 { 1015 struct kaioinfo *ki; 1016 bool ret; 1017 1018 ki = job->userproc->p_aioinfo; 1019 AIO_LOCK(ki); 1020 ret = aio_set_cancel_function_locked(job, func); 1021 AIO_UNLOCK(ki); 1022 return (ret); 1023 } 1024 1025 void 1026 aio_complete(struct kaiocb *job, long status, int error) 1027 { 1028 struct kaioinfo *ki; 1029 struct proc *userp; 1030 1031 job->uaiocb._aiocb_private.error = error; 1032 job->uaiocb._aiocb_private.status = status; 1033 1034 userp = job->userproc; 1035 ki = userp->p_aioinfo; 1036 1037 AIO_LOCK(ki); 1038 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1039 ("duplicate aio_complete")); 1040 job->jobflags |= KAIOCB_FINISHED; 1041 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1042 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1043 aio_bio_done_notify(userp, job); 1044 } 1045 AIO_UNLOCK(ki); 1046 } 1047 1048 void 1049 aio_cancel(struct kaiocb *job) 1050 { 1051 1052 aio_complete(job, -1, ECANCELED); 1053 } 1054 1055 void 1056 aio_switch_vmspace(struct kaiocb *job) 1057 { 1058 1059 vmspace_switch_aio(job->userproc->p_vmspace); 1060 } 1061 1062 /* 1063 * The AIO daemon, most of the actual work is done in aio_process_*, 1064 * but the setup (and address space mgmt) is done in this routine. 1065 */ 1066 static void 1067 aio_daemon(void *_id) 1068 { 1069 struct kaiocb *job; 1070 struct aioproc *aiop; 1071 struct kaioinfo *ki; 1072 struct proc *p; 1073 struct vmspace *myvm; 1074 struct thread *td = curthread; 1075 int id = (intptr_t)_id; 1076 1077 /* 1078 * Grab an extra reference on the daemon's vmspace so that it 1079 * doesn't get freed by jobs that switch to a different 1080 * vmspace. 1081 */ 1082 p = td->td_proc; 1083 myvm = vmspace_acquire_ref(p); 1084 1085 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1086 1087 /* 1088 * Allocate and ready the aio control info. There is one aiop structure 1089 * per daemon. 1090 */ 1091 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK); 1092 aiop->aioproc = p; 1093 aiop->aioprocflags = 0; 1094 1095 /* 1096 * Wakeup parent process. (Parent sleeps to keep from blasting away 1097 * and creating too many daemons.) 1098 */ 1099 sema_post(&aio_newproc_sem); 1100 1101 mtx_lock(&aio_job_mtx); 1102 for (;;) { 1103 /* 1104 * Take daemon off of free queue 1105 */ 1106 if (aiop->aioprocflags & AIOP_FREE) { 1107 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1108 aiop->aioprocflags &= ~AIOP_FREE; 1109 } 1110 1111 /* 1112 * Check for jobs. 1113 */ 1114 while ((job = aio_selectjob(aiop)) != NULL) { 1115 mtx_unlock(&aio_job_mtx); 1116 1117 ki = job->userproc->p_aioinfo; 1118 job->handle_fn(job); 1119 1120 mtx_lock(&aio_job_mtx); 1121 /* Decrement the active job count. */ 1122 ki->kaio_active_count--; 1123 } 1124 1125 /* 1126 * Disconnect from user address space. 1127 */ 1128 if (p->p_vmspace != myvm) { 1129 mtx_unlock(&aio_job_mtx); 1130 vmspace_switch_aio(myvm); 1131 mtx_lock(&aio_job_mtx); 1132 /* 1133 * We have to restart to avoid race, we only sleep if 1134 * no job can be selected. 1135 */ 1136 continue; 1137 } 1138 1139 mtx_assert(&aio_job_mtx, MA_OWNED); 1140 1141 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1142 aiop->aioprocflags |= AIOP_FREE; 1143 1144 /* 1145 * If daemon is inactive for a long time, allow it to exit, 1146 * thereby freeing resources. 1147 */ 1148 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1149 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1150 (aiop->aioprocflags & AIOP_FREE) && 1151 num_aio_procs > target_aio_procs) 1152 break; 1153 } 1154 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1155 num_aio_procs--; 1156 mtx_unlock(&aio_job_mtx); 1157 free(aiop, M_AIO); 1158 free_unr(aiod_unr, id); 1159 vmspace_free(myvm); 1160 1161 KASSERT(p->p_vmspace == myvm, 1162 ("AIOD: bad vmspace for exiting daemon")); 1163 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1164 ("AIOD: bad vm refcnt for exiting daemon: %d", 1165 refcount_load(&myvm->vm_refcnt))); 1166 kproc_exit(0); 1167 } 1168 1169 /* 1170 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1171 * AIO daemon modifies its environment itself. 1172 */ 1173 static int 1174 aio_newproc(int *start) 1175 { 1176 int error; 1177 struct proc *p; 1178 int id; 1179 1180 id = alloc_unr(aiod_unr); 1181 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1182 RFNOWAIT, 0, "aiod%d", id); 1183 if (error == 0) { 1184 /* 1185 * Wait until daemon is started. 1186 */ 1187 sema_wait(&aio_newproc_sem); 1188 mtx_lock(&aio_job_mtx); 1189 num_aio_procs++; 1190 if (start != NULL) 1191 (*start)--; 1192 mtx_unlock(&aio_job_mtx); 1193 } else { 1194 free_unr(aiod_unr, id); 1195 } 1196 return (error); 1197 } 1198 1199 /* 1200 * Try the high-performance, low-overhead bio method for eligible 1201 * VCHR devices. This method doesn't use an aio helper thread, and 1202 * thus has very low overhead. 1203 * 1204 * Assumes that the caller, aio_aqueue(), has incremented the file 1205 * structure's reference count, preventing its deallocation for the 1206 * duration of this call. 1207 */ 1208 static int 1209 aio_qbio(struct proc *p, struct kaiocb *job) 1210 { 1211 struct aiocb *cb; 1212 struct file *fp; 1213 struct buf *pbuf; 1214 struct vnode *vp; 1215 struct cdevsw *csw; 1216 struct cdev *dev; 1217 struct kaioinfo *ki; 1218 struct bio **bios = NULL; 1219 off_t offset; 1220 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1221 vm_prot_t prot; 1222 bool use_unmapped; 1223 1224 cb = &job->uaiocb; 1225 fp = job->fd_file; 1226 opcode = cb->aio_lio_opcode; 1227 1228 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1229 opcode == LIO_READ || opcode == LIO_READV)) 1230 return (-1); 1231 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1232 return (-1); 1233 1234 vp = fp->f_vnode; 1235 if (vp->v_type != VCHR) 1236 return (-1); 1237 if (vp->v_bufobj.bo_bsize == 0) 1238 return (-1); 1239 1240 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1241 iovcnt = job->uiop->uio_iovcnt; 1242 if (iovcnt > max_buf_aio) 1243 return (-1); 1244 for (i = 0; i < iovcnt; i++) { 1245 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1246 return (-1); 1247 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1248 error = -1; 1249 return (-1); 1250 } 1251 } 1252 offset = cb->aio_offset; 1253 1254 ref = 0; 1255 csw = devvn_refthread(vp, &dev, &ref); 1256 if (csw == NULL) 1257 return (ENXIO); 1258 1259 if ((csw->d_flags & D_DISK) == 0) { 1260 error = -1; 1261 goto unref; 1262 } 1263 if (job->uiop->uio_resid > dev->si_iosize_max) { 1264 error = -1; 1265 goto unref; 1266 } 1267 1268 ki = p->p_aioinfo; 1269 job->error = 0; 1270 1271 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1272 if (!use_unmapped) { 1273 AIO_LOCK(ki); 1274 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1275 AIO_UNLOCK(ki); 1276 error = EAGAIN; 1277 goto unref; 1278 } 1279 ki->kaio_buffer_count += iovcnt; 1280 AIO_UNLOCK(ki); 1281 } 1282 1283 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1284 atomic_store_int(&job->nbio, iovcnt); 1285 for (i = 0; i < iovcnt; i++) { 1286 struct vm_page** pages; 1287 struct bio *bp; 1288 void *buf; 1289 size_t nbytes; 1290 int npages; 1291 1292 buf = job->uiop->uio_iov[i].iov_base; 1293 nbytes = job->uiop->uio_iov[i].iov_len; 1294 1295 bios[i] = g_alloc_bio(); 1296 bp = bios[i]; 1297 1298 poff = (vm_offset_t)buf & PAGE_MASK; 1299 if (use_unmapped) { 1300 pbuf = NULL; 1301 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1302 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1303 } else { 1304 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1305 BUF_KERNPROC(pbuf); 1306 pages = pbuf->b_pages; 1307 } 1308 1309 bp->bio_length = nbytes; 1310 bp->bio_bcount = nbytes; 1311 bp->bio_done = aio_biowakeup; 1312 bp->bio_offset = offset; 1313 bp->bio_cmd = bio_cmd; 1314 bp->bio_dev = dev; 1315 bp->bio_caller1 = job; 1316 bp->bio_caller2 = pbuf; 1317 1318 prot = VM_PROT_READ; 1319 if (opcode == LIO_READ || opcode == LIO_READV) 1320 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1321 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1322 (vm_offset_t)buf, bp->bio_length, prot, pages, 1323 atop(maxphys) + 1); 1324 if (npages < 0) { 1325 if (pbuf != NULL) 1326 uma_zfree(pbuf_zone, pbuf); 1327 else 1328 free(pages, M_TEMP); 1329 error = EFAULT; 1330 g_destroy_bio(bp); 1331 i--; 1332 goto destroy_bios; 1333 } 1334 if (pbuf != NULL) { 1335 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1336 bp->bio_data = pbuf->b_data + poff; 1337 pbuf->b_npages = npages; 1338 atomic_add_int(&num_buf_aio, 1); 1339 } else { 1340 bp->bio_ma = pages; 1341 bp->bio_ma_n = npages; 1342 bp->bio_ma_offset = poff; 1343 bp->bio_data = unmapped_buf; 1344 bp->bio_flags |= BIO_UNMAPPED; 1345 atomic_add_int(&num_unmapped_aio, 1); 1346 } 1347 1348 offset += nbytes; 1349 } 1350 1351 /* Perform transfer. */ 1352 for (i = 0; i < iovcnt; i++) 1353 csw->d_strategy(bios[i]); 1354 free(bios, M_TEMP); 1355 1356 dev_relthread(dev, ref); 1357 return (0); 1358 1359 destroy_bios: 1360 for (; i >= 0; i--) 1361 aio_biocleanup(bios[i]); 1362 free(bios, M_TEMP); 1363 unref: 1364 dev_relthread(dev, ref); 1365 return (error); 1366 } 1367 1368 #ifdef COMPAT_FREEBSD6 1369 static int 1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1371 { 1372 1373 /* 1374 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1375 * supported by AIO with the old sigevent structure. 1376 */ 1377 nsig->sigev_notify = osig->sigev_notify; 1378 switch (nsig->sigev_notify) { 1379 case SIGEV_NONE: 1380 break; 1381 case SIGEV_SIGNAL: 1382 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1383 break; 1384 case SIGEV_KEVENT: 1385 nsig->sigev_notify_kqueue = 1386 osig->__sigev_u.__sigev_notify_kqueue; 1387 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1388 break; 1389 default: 1390 return (EINVAL); 1391 } 1392 return (0); 1393 } 1394 1395 static int 1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1397 int type __unused) 1398 { 1399 struct oaiocb *ojob; 1400 struct aiocb *kcb = &kjob->uaiocb; 1401 int error; 1402 1403 bzero(kcb, sizeof(struct aiocb)); 1404 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1405 if (error) 1406 return (error); 1407 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1408 ojob = (struct oaiocb *)kcb; 1409 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1410 } 1411 #endif 1412 1413 static int 1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1415 { 1416 struct aiocb *kcb = &kjob->uaiocb; 1417 int error; 1418 1419 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1420 if (error) 1421 return (error); 1422 if (type == LIO_NOP) 1423 type = kcb->aio_lio_opcode; 1424 if (type & LIO_VECTORED) { 1425 /* malloc a uio and copy in the iovec */ 1426 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1427 kcb->aio_iovcnt, &kjob->uiop); 1428 } 1429 1430 return (error); 1431 } 1432 1433 static long 1434 aiocb_fetch_status(struct aiocb *ujob) 1435 { 1436 1437 return (fuword(&ujob->_aiocb_private.status)); 1438 } 1439 1440 static long 1441 aiocb_fetch_error(struct aiocb *ujob) 1442 { 1443 1444 return (fuword(&ujob->_aiocb_private.error)); 1445 } 1446 1447 static int 1448 aiocb_store_status(struct aiocb *ujob, long status) 1449 { 1450 1451 return (suword(&ujob->_aiocb_private.status, status)); 1452 } 1453 1454 static int 1455 aiocb_store_error(struct aiocb *ujob, long error) 1456 { 1457 1458 return (suword(&ujob->_aiocb_private.error, error)); 1459 } 1460 1461 static int 1462 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1463 { 1464 1465 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1466 } 1467 1468 static int 1469 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1470 { 1471 1472 return (suword(ujobp, (long)ujob)); 1473 } 1474 1475 static struct aiocb_ops aiocb_ops = { 1476 .aio_copyin = aiocb_copyin, 1477 .fetch_status = aiocb_fetch_status, 1478 .fetch_error = aiocb_fetch_error, 1479 .store_status = aiocb_store_status, 1480 .store_error = aiocb_store_error, 1481 .store_kernelinfo = aiocb_store_kernelinfo, 1482 .store_aiocb = aiocb_store_aiocb, 1483 }; 1484 1485 #ifdef COMPAT_FREEBSD6 1486 static struct aiocb_ops aiocb_ops_osigevent = { 1487 .aio_copyin = aiocb_copyin_old_sigevent, 1488 .fetch_status = aiocb_fetch_status, 1489 .fetch_error = aiocb_fetch_error, 1490 .store_status = aiocb_store_status, 1491 .store_error = aiocb_store_error, 1492 .store_kernelinfo = aiocb_store_kernelinfo, 1493 .store_aiocb = aiocb_store_aiocb, 1494 }; 1495 #endif 1496 1497 /* 1498 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1499 * technique is done in this code. 1500 */ 1501 int 1502 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1503 int type, struct aiocb_ops *ops) 1504 { 1505 struct proc *p = td->td_proc; 1506 struct file *fp = NULL; 1507 struct kaiocb *job; 1508 struct kaioinfo *ki; 1509 struct kevent kev; 1510 int opcode; 1511 int error; 1512 int fd, kqfd; 1513 int jid; 1514 u_short evflags; 1515 1516 if (p->p_aioinfo == NULL) 1517 aio_init_aioinfo(p); 1518 1519 ki = p->p_aioinfo; 1520 1521 ops->store_status(ujob, -1); 1522 ops->store_error(ujob, 0); 1523 ops->store_kernelinfo(ujob, -1); 1524 1525 if (num_queue_count >= max_queue_count || 1526 ki->kaio_count >= max_aio_queue_per_proc) { 1527 error = EAGAIN; 1528 goto err1; 1529 } 1530 1531 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1532 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1533 1534 error = ops->aio_copyin(ujob, job, type); 1535 if (error) 1536 goto err2; 1537 1538 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1539 error = EINVAL; 1540 goto err2; 1541 } 1542 1543 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1544 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1545 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1546 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1547 error = EINVAL; 1548 goto err2; 1549 } 1550 1551 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1552 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1553 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1554 error = EINVAL; 1555 goto err2; 1556 } 1557 1558 /* Get the opcode. */ 1559 if (type == LIO_NOP) { 1560 switch (job->uaiocb.aio_lio_opcode) { 1561 case LIO_WRITE: 1562 case LIO_WRITEV: 1563 case LIO_NOP: 1564 case LIO_READ: 1565 case LIO_READV: 1566 opcode = job->uaiocb.aio_lio_opcode; 1567 break; 1568 default: 1569 error = EINVAL; 1570 goto err2; 1571 } 1572 } else 1573 opcode = job->uaiocb.aio_lio_opcode = type; 1574 1575 ksiginfo_init(&job->ksi); 1576 1577 /* Save userspace address of the job info. */ 1578 job->ujob = ujob; 1579 1580 /* 1581 * Validate the opcode and fetch the file object for the specified 1582 * file descriptor. 1583 * 1584 * XXXRW: Moved the opcode validation up here so that we don't 1585 * retrieve a file descriptor without knowing what the capabiltity 1586 * should be. 1587 */ 1588 fd = job->uaiocb.aio_fildes; 1589 switch (opcode) { 1590 case LIO_WRITE: 1591 case LIO_WRITEV: 1592 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1593 break; 1594 case LIO_READ: 1595 case LIO_READV: 1596 error = fget_read(td, fd, &cap_pread_rights, &fp); 1597 break; 1598 case LIO_SYNC: 1599 case LIO_DSYNC: 1600 error = fget(td, fd, &cap_fsync_rights, &fp); 1601 break; 1602 case LIO_MLOCK: 1603 break; 1604 case LIO_NOP: 1605 error = fget(td, fd, &cap_no_rights, &fp); 1606 break; 1607 default: 1608 error = EINVAL; 1609 } 1610 if (error) 1611 goto err3; 1612 1613 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1614 error = EINVAL; 1615 goto err3; 1616 } 1617 1618 if ((opcode == LIO_READ || opcode == LIO_READV || 1619 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1620 job->uaiocb.aio_offset < 0 && 1621 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1622 error = EINVAL; 1623 goto err3; 1624 } 1625 1626 if (fp != NULL && fp->f_ops == &path_fileops) { 1627 error = EBADF; 1628 goto err3; 1629 } 1630 1631 job->fd_file = fp; 1632 1633 mtx_lock(&aio_job_mtx); 1634 jid = jobrefid++; 1635 job->seqno = jobseqno++; 1636 mtx_unlock(&aio_job_mtx); 1637 error = ops->store_kernelinfo(ujob, jid); 1638 if (error) { 1639 error = EINVAL; 1640 goto err3; 1641 } 1642 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1643 1644 if (opcode == LIO_NOP) { 1645 fdrop(fp, td); 1646 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1647 uma_zfree(aiocb_zone, job); 1648 return (0); 1649 } 1650 1651 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1652 goto no_kqueue; 1653 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1654 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1655 error = EINVAL; 1656 goto err3; 1657 } 1658 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1659 memset(&kev, 0, sizeof(kev)); 1660 kev.ident = (uintptr_t)job->ujob; 1661 kev.filter = EVFILT_AIO; 1662 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1663 kev.data = (intptr_t)job; 1664 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1665 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1666 if (error) 1667 goto err3; 1668 1669 no_kqueue: 1670 1671 ops->store_error(ujob, EINPROGRESS); 1672 job->uaiocb._aiocb_private.error = EINPROGRESS; 1673 job->userproc = p; 1674 job->cred = crhold(td->td_ucred); 1675 job->jobflags = KAIOCB_QUEUEING; 1676 job->lio = lj; 1677 1678 if (opcode & LIO_VECTORED) { 1679 /* Use the uio copied in by aio_copyin */ 1680 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1681 } else { 1682 /* Setup the inline uio */ 1683 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1684 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1685 job->uio.uio_iov = job->iov; 1686 job->uio.uio_iovcnt = 1; 1687 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1688 job->uio.uio_segflg = UIO_USERSPACE; 1689 job->uiop = &job->uio; 1690 } 1691 switch (opcode & (LIO_READ | LIO_WRITE)) { 1692 case LIO_READ: 1693 job->uiop->uio_rw = UIO_READ; 1694 break; 1695 case LIO_WRITE: 1696 job->uiop->uio_rw = UIO_WRITE; 1697 break; 1698 } 1699 job->uiop->uio_offset = job->uaiocb.aio_offset; 1700 job->uiop->uio_td = td; 1701 1702 if (opcode == LIO_MLOCK) { 1703 aio_schedule(job, aio_process_mlock); 1704 error = 0; 1705 } else if (fp->f_ops->fo_aio_queue == NULL) 1706 error = aio_queue_file(fp, job); 1707 else 1708 error = fo_aio_queue(fp, job); 1709 if (error) 1710 goto err4; 1711 1712 AIO_LOCK(ki); 1713 job->jobflags &= ~KAIOCB_QUEUEING; 1714 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1715 ki->kaio_count++; 1716 if (lj) 1717 lj->lioj_count++; 1718 atomic_add_int(&num_queue_count, 1); 1719 if (job->jobflags & KAIOCB_FINISHED) { 1720 /* 1721 * The queue callback completed the request synchronously. 1722 * The bulk of the completion is deferred in that case 1723 * until this point. 1724 */ 1725 aio_bio_done_notify(p, job); 1726 } else 1727 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1728 AIO_UNLOCK(ki); 1729 return (0); 1730 1731 err4: 1732 crfree(job->cred); 1733 err3: 1734 if (fp) 1735 fdrop(fp, td); 1736 knlist_delete(&job->klist, curthread, 0); 1737 err2: 1738 if (job->uiop != &job->uio) 1739 free(job->uiop, M_IOV); 1740 uma_zfree(aiocb_zone, job); 1741 err1: 1742 ops->store_error(ujob, error); 1743 return (error); 1744 } 1745 1746 static void 1747 aio_cancel_daemon_job(struct kaiocb *job) 1748 { 1749 1750 mtx_lock(&aio_job_mtx); 1751 if (!aio_cancel_cleared(job)) 1752 TAILQ_REMOVE(&aio_jobs, job, list); 1753 mtx_unlock(&aio_job_mtx); 1754 aio_cancel(job); 1755 } 1756 1757 void 1758 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1759 { 1760 1761 mtx_lock(&aio_job_mtx); 1762 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1763 mtx_unlock(&aio_job_mtx); 1764 aio_cancel(job); 1765 return; 1766 } 1767 job->handle_fn = func; 1768 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1769 aio_kick_nowait(job->userproc); 1770 mtx_unlock(&aio_job_mtx); 1771 } 1772 1773 static void 1774 aio_cancel_sync(struct kaiocb *job) 1775 { 1776 struct kaioinfo *ki; 1777 1778 ki = job->userproc->p_aioinfo; 1779 AIO_LOCK(ki); 1780 if (!aio_cancel_cleared(job)) 1781 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1782 AIO_UNLOCK(ki); 1783 aio_cancel(job); 1784 } 1785 1786 int 1787 aio_queue_file(struct file *fp, struct kaiocb *job) 1788 { 1789 struct kaioinfo *ki; 1790 struct kaiocb *job2; 1791 struct vnode *vp; 1792 struct mount *mp; 1793 int error; 1794 bool safe; 1795 1796 ki = job->userproc->p_aioinfo; 1797 error = aio_qbio(job->userproc, job); 1798 if (error >= 0) 1799 return (error); 1800 safe = false; 1801 if (fp->f_type == DTYPE_VNODE) { 1802 vp = fp->f_vnode; 1803 if (vp->v_type == VREG || vp->v_type == VDIR) { 1804 mp = fp->f_vnode->v_mount; 1805 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1806 safe = true; 1807 } 1808 } 1809 if (!(safe || enable_aio_unsafe)) { 1810 counted_warning(&unsafe_warningcnt, 1811 "is attempting to use unsafe AIO requests"); 1812 return (EOPNOTSUPP); 1813 } 1814 1815 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1816 aio_schedule(job, aio_process_rw); 1817 error = 0; 1818 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1819 AIO_LOCK(ki); 1820 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1821 if (job2->fd_file == job->fd_file && 1822 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1823 job2->seqno < job->seqno) { 1824 job2->jobflags |= KAIOCB_CHECKSYNC; 1825 job->pending++; 1826 } 1827 } 1828 if (job->pending != 0) { 1829 if (!aio_set_cancel_function_locked(job, 1830 aio_cancel_sync)) { 1831 AIO_UNLOCK(ki); 1832 aio_cancel(job); 1833 return (0); 1834 } 1835 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1836 AIO_UNLOCK(ki); 1837 return (0); 1838 } 1839 AIO_UNLOCK(ki); 1840 aio_schedule(job, aio_process_sync); 1841 error = 0; 1842 } else { 1843 error = EINVAL; 1844 } 1845 return (error); 1846 } 1847 1848 static void 1849 aio_kick_nowait(struct proc *userp) 1850 { 1851 struct kaioinfo *ki = userp->p_aioinfo; 1852 struct aioproc *aiop; 1853 1854 mtx_assert(&aio_job_mtx, MA_OWNED); 1855 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1856 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1857 aiop->aioprocflags &= ~AIOP_FREE; 1858 wakeup(aiop->aioproc); 1859 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1860 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1861 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1862 } 1863 } 1864 1865 static int 1866 aio_kick(struct proc *userp) 1867 { 1868 struct kaioinfo *ki = userp->p_aioinfo; 1869 struct aioproc *aiop; 1870 int error, ret = 0; 1871 1872 mtx_assert(&aio_job_mtx, MA_OWNED); 1873 retryproc: 1874 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1875 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1876 aiop->aioprocflags &= ~AIOP_FREE; 1877 wakeup(aiop->aioproc); 1878 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1879 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1880 num_aio_resv_start++; 1881 mtx_unlock(&aio_job_mtx); 1882 error = aio_newproc(&num_aio_resv_start); 1883 mtx_lock(&aio_job_mtx); 1884 if (error) { 1885 num_aio_resv_start--; 1886 goto retryproc; 1887 } 1888 } else { 1889 ret = -1; 1890 } 1891 return (ret); 1892 } 1893 1894 static void 1895 aio_kick_helper(void *context, int pending) 1896 { 1897 struct proc *userp = context; 1898 1899 mtx_lock(&aio_job_mtx); 1900 while (--pending >= 0) { 1901 if (aio_kick(userp)) 1902 break; 1903 } 1904 mtx_unlock(&aio_job_mtx); 1905 } 1906 1907 /* 1908 * Support the aio_return system call, as a side-effect, kernel resources are 1909 * released. 1910 */ 1911 static int 1912 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1913 { 1914 struct proc *p = td->td_proc; 1915 struct kaiocb *job; 1916 struct kaioinfo *ki; 1917 long status, error; 1918 1919 ki = p->p_aioinfo; 1920 if (ki == NULL) 1921 return (EINVAL); 1922 AIO_LOCK(ki); 1923 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1924 if (job->ujob == ujob) 1925 break; 1926 } 1927 if (job != NULL) { 1928 MPASS(job->jobflags & KAIOCB_FINISHED); 1929 status = job->uaiocb._aiocb_private.status; 1930 error = job->uaiocb._aiocb_private.error; 1931 td->td_retval[0] = status; 1932 td->td_ru.ru_oublock += job->outblock; 1933 td->td_ru.ru_inblock += job->inblock; 1934 td->td_ru.ru_msgsnd += job->msgsnd; 1935 td->td_ru.ru_msgrcv += job->msgrcv; 1936 aio_free_entry(job); 1937 AIO_UNLOCK(ki); 1938 ops->store_error(ujob, error); 1939 ops->store_status(ujob, status); 1940 } else { 1941 error = EINVAL; 1942 AIO_UNLOCK(ki); 1943 } 1944 return (error); 1945 } 1946 1947 int 1948 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1949 { 1950 1951 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1952 } 1953 1954 /* 1955 * Allow a process to wakeup when any of the I/O requests are completed. 1956 */ 1957 static int 1958 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1959 struct timespec *ts) 1960 { 1961 struct proc *p = td->td_proc; 1962 struct timeval atv; 1963 struct kaioinfo *ki; 1964 struct kaiocb *firstjob, *job; 1965 int error, i, timo; 1966 1967 timo = 0; 1968 if (ts) { 1969 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1970 return (EINVAL); 1971 1972 TIMESPEC_TO_TIMEVAL(&atv, ts); 1973 if (itimerfix(&atv)) 1974 return (EINVAL); 1975 timo = tvtohz(&atv); 1976 } 1977 1978 ki = p->p_aioinfo; 1979 if (ki == NULL) 1980 return (EAGAIN); 1981 1982 if (njoblist == 0) 1983 return (0); 1984 1985 AIO_LOCK(ki); 1986 for (;;) { 1987 firstjob = NULL; 1988 error = 0; 1989 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1990 for (i = 0; i < njoblist; i++) { 1991 if (job->ujob == ujoblist[i]) { 1992 if (firstjob == NULL) 1993 firstjob = job; 1994 if (job->jobflags & KAIOCB_FINISHED) 1995 goto RETURN; 1996 } 1997 } 1998 } 1999 /* All tasks were finished. */ 2000 if (firstjob == NULL) 2001 break; 2002 2003 ki->kaio_flags |= KAIO_WAKEUP; 2004 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2005 "aiospn", timo); 2006 if (error == ERESTART) 2007 error = EINTR; 2008 if (error) 2009 break; 2010 } 2011 RETURN: 2012 AIO_UNLOCK(ki); 2013 return (error); 2014 } 2015 2016 int 2017 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2018 { 2019 struct timespec ts, *tsp; 2020 struct aiocb **ujoblist; 2021 int error; 2022 2023 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2024 return (EINVAL); 2025 2026 if (uap->timeout) { 2027 /* Get timespec struct. */ 2028 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2029 return (error); 2030 tsp = &ts; 2031 } else 2032 tsp = NULL; 2033 2034 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2035 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2036 if (error == 0) 2037 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2038 free(ujoblist, M_AIO); 2039 return (error); 2040 } 2041 2042 /* 2043 * aio_cancel cancels any non-bio aio operations not currently in progress. 2044 */ 2045 int 2046 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2047 { 2048 struct proc *p = td->td_proc; 2049 struct kaioinfo *ki; 2050 struct kaiocb *job, *jobn; 2051 struct file *fp; 2052 int error; 2053 int cancelled = 0; 2054 int notcancelled = 0; 2055 struct vnode *vp; 2056 2057 /* Lookup file object. */ 2058 error = fget(td, uap->fd, &cap_no_rights, &fp); 2059 if (error) 2060 return (error); 2061 2062 ki = p->p_aioinfo; 2063 if (ki == NULL) 2064 goto done; 2065 2066 if (fp->f_type == DTYPE_VNODE) { 2067 vp = fp->f_vnode; 2068 if (vn_isdisk(vp)) { 2069 fdrop(fp, td); 2070 td->td_retval[0] = AIO_NOTCANCELED; 2071 return (0); 2072 } 2073 } 2074 2075 AIO_LOCK(ki); 2076 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2077 if ((uap->fd == job->uaiocb.aio_fildes) && 2078 ((uap->aiocbp == NULL) || 2079 (uap->aiocbp == job->ujob))) { 2080 if (aio_cancel_job(p, ki, job)) { 2081 cancelled++; 2082 } else { 2083 notcancelled++; 2084 } 2085 if (uap->aiocbp != NULL) 2086 break; 2087 } 2088 } 2089 AIO_UNLOCK(ki); 2090 2091 done: 2092 fdrop(fp, td); 2093 2094 if (uap->aiocbp != NULL) { 2095 if (cancelled) { 2096 td->td_retval[0] = AIO_CANCELED; 2097 return (0); 2098 } 2099 } 2100 2101 if (notcancelled) { 2102 td->td_retval[0] = AIO_NOTCANCELED; 2103 return (0); 2104 } 2105 2106 if (cancelled) { 2107 td->td_retval[0] = AIO_CANCELED; 2108 return (0); 2109 } 2110 2111 td->td_retval[0] = AIO_ALLDONE; 2112 2113 return (0); 2114 } 2115 2116 /* 2117 * aio_error is implemented in the kernel level for compatibility purposes 2118 * only. For a user mode async implementation, it would be best to do it in 2119 * a userland subroutine. 2120 */ 2121 static int 2122 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2123 { 2124 struct proc *p = td->td_proc; 2125 struct kaiocb *job; 2126 struct kaioinfo *ki; 2127 int status; 2128 2129 ki = p->p_aioinfo; 2130 if (ki == NULL) { 2131 td->td_retval[0] = EINVAL; 2132 return (0); 2133 } 2134 2135 AIO_LOCK(ki); 2136 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2137 if (job->ujob == ujob) { 2138 if (job->jobflags & KAIOCB_FINISHED) 2139 td->td_retval[0] = 2140 job->uaiocb._aiocb_private.error; 2141 else 2142 td->td_retval[0] = EINPROGRESS; 2143 AIO_UNLOCK(ki); 2144 return (0); 2145 } 2146 } 2147 AIO_UNLOCK(ki); 2148 2149 /* 2150 * Hack for failure of aio_aqueue. 2151 */ 2152 status = ops->fetch_status(ujob); 2153 if (status == -1) { 2154 td->td_retval[0] = ops->fetch_error(ujob); 2155 return (0); 2156 } 2157 2158 td->td_retval[0] = EINVAL; 2159 return (0); 2160 } 2161 2162 int 2163 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2164 { 2165 2166 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2167 } 2168 2169 /* syscall - asynchronous read from a file (REALTIME) */ 2170 #ifdef COMPAT_FREEBSD6 2171 int 2172 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2173 { 2174 2175 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2176 &aiocb_ops_osigevent)); 2177 } 2178 #endif 2179 2180 int 2181 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2182 { 2183 2184 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2185 } 2186 2187 int 2188 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2189 { 2190 2191 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2192 } 2193 2194 /* syscall - asynchronous write to a file (REALTIME) */ 2195 #ifdef COMPAT_FREEBSD6 2196 int 2197 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2198 { 2199 2200 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2201 &aiocb_ops_osigevent)); 2202 } 2203 #endif 2204 2205 int 2206 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2207 { 2208 2209 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2210 } 2211 2212 int 2213 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2214 { 2215 2216 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2217 } 2218 2219 int 2220 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2221 { 2222 2223 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2224 } 2225 2226 static int 2227 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2228 struct aiocb **acb_list, int nent, struct sigevent *sig, 2229 struct aiocb_ops *ops) 2230 { 2231 struct proc *p = td->td_proc; 2232 struct aiocb *job; 2233 struct kaioinfo *ki; 2234 struct aioliojob *lj; 2235 struct kevent kev; 2236 int error; 2237 int nagain, nerror; 2238 int i; 2239 2240 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2241 return (EINVAL); 2242 2243 if (nent < 0 || nent > max_aio_queue_per_proc) 2244 return (EINVAL); 2245 2246 if (p->p_aioinfo == NULL) 2247 aio_init_aioinfo(p); 2248 2249 ki = p->p_aioinfo; 2250 2251 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2252 lj->lioj_flags = 0; 2253 lj->lioj_count = 0; 2254 lj->lioj_finished_count = 0; 2255 lj->lioj_signal.sigev_notify = SIGEV_NONE; 2256 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2257 ksiginfo_init(&lj->lioj_ksi); 2258 2259 /* 2260 * Setup signal. 2261 */ 2262 if (sig && (mode == LIO_NOWAIT)) { 2263 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2264 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2265 /* Assume only new style KEVENT */ 2266 memset(&kev, 0, sizeof(kev)); 2267 kev.filter = EVFILT_LIO; 2268 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2269 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2270 kev.data = (intptr_t)lj; 2271 /* pass user defined sigval data */ 2272 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2273 error = kqfd_register( 2274 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2275 M_WAITOK); 2276 if (error) { 2277 uma_zfree(aiolio_zone, lj); 2278 return (error); 2279 } 2280 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2281 ; 2282 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2283 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2284 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2285 uma_zfree(aiolio_zone, lj); 2286 return EINVAL; 2287 } 2288 lj->lioj_flags |= LIOJ_SIGNAL; 2289 } else { 2290 uma_zfree(aiolio_zone, lj); 2291 return EINVAL; 2292 } 2293 } 2294 2295 AIO_LOCK(ki); 2296 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2297 /* 2298 * Add extra aiocb count to avoid the lio to be freed 2299 * by other threads doing aio_waitcomplete or aio_return, 2300 * and prevent event from being sent until we have queued 2301 * all tasks. 2302 */ 2303 lj->lioj_count = 1; 2304 AIO_UNLOCK(ki); 2305 2306 /* 2307 * Get pointers to the list of I/O requests. 2308 */ 2309 nagain = 0; 2310 nerror = 0; 2311 for (i = 0; i < nent; i++) { 2312 job = acb_list[i]; 2313 if (job != NULL) { 2314 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2315 if (error == EAGAIN) 2316 nagain++; 2317 else if (error != 0) 2318 nerror++; 2319 } 2320 } 2321 2322 error = 0; 2323 AIO_LOCK(ki); 2324 if (mode == LIO_WAIT) { 2325 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2326 ki->kaio_flags |= KAIO_WAKEUP; 2327 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2328 PRIBIO | PCATCH, "aiospn", 0); 2329 if (error == ERESTART) 2330 error = EINTR; 2331 if (error) 2332 break; 2333 } 2334 } else { 2335 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2336 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2337 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2338 KNOTE_LOCKED(&lj->klist, 1); 2339 } 2340 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2341 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2342 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2343 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2344 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2345 lj->lioj_count != 1); 2346 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2347 } 2348 } 2349 } 2350 lj->lioj_count--; 2351 if (lj->lioj_count == 0) { 2352 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2353 knlist_delete(&lj->klist, curthread, 1); 2354 PROC_LOCK(p); 2355 sigqueue_take(&lj->lioj_ksi); 2356 PROC_UNLOCK(p); 2357 AIO_UNLOCK(ki); 2358 uma_zfree(aiolio_zone, lj); 2359 } else 2360 AIO_UNLOCK(ki); 2361 2362 if (nerror) 2363 return (EIO); 2364 else if (nagain) 2365 return (EAGAIN); 2366 else 2367 return (error); 2368 } 2369 2370 /* syscall - list directed I/O (REALTIME) */ 2371 #ifdef COMPAT_FREEBSD6 2372 int 2373 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2374 { 2375 struct aiocb **acb_list; 2376 struct sigevent *sigp, sig; 2377 struct osigevent osig; 2378 int error, nent; 2379 2380 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2381 return (EINVAL); 2382 2383 nent = uap->nent; 2384 if (nent < 0 || nent > max_aio_queue_per_proc) 2385 return (EINVAL); 2386 2387 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2388 error = copyin(uap->sig, &osig, sizeof(osig)); 2389 if (error) 2390 return (error); 2391 error = convert_old_sigevent(&osig, &sig); 2392 if (error) 2393 return (error); 2394 sigp = &sig; 2395 } else 2396 sigp = NULL; 2397 2398 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2399 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2400 if (error == 0) 2401 error = kern_lio_listio(td, uap->mode, 2402 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2403 &aiocb_ops_osigevent); 2404 free(acb_list, M_LIO); 2405 return (error); 2406 } 2407 #endif 2408 2409 /* syscall - list directed I/O (REALTIME) */ 2410 int 2411 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2412 { 2413 struct aiocb **acb_list; 2414 struct sigevent *sigp, sig; 2415 int error, nent; 2416 2417 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2418 return (EINVAL); 2419 2420 nent = uap->nent; 2421 if (nent < 0 || nent > max_aio_queue_per_proc) 2422 return (EINVAL); 2423 2424 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2425 error = copyin(uap->sig, &sig, sizeof(sig)); 2426 if (error) 2427 return (error); 2428 sigp = &sig; 2429 } else 2430 sigp = NULL; 2431 2432 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2433 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2434 if (error == 0) 2435 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2436 nent, sigp, &aiocb_ops); 2437 free(acb_list, M_LIO); 2438 return (error); 2439 } 2440 2441 static void 2442 aio_biocleanup(struct bio *bp) 2443 { 2444 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2445 struct kaioinfo *ki; 2446 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2447 2448 /* Release mapping into kernel space. */ 2449 if (pbuf != NULL) { 2450 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2451 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2452 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2453 uma_zfree(pbuf_zone, pbuf); 2454 atomic_subtract_int(&num_buf_aio, 1); 2455 ki = job->userproc->p_aioinfo; 2456 AIO_LOCK(ki); 2457 ki->kaio_buffer_count--; 2458 AIO_UNLOCK(ki); 2459 } else { 2460 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2461 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2462 free(bp->bio_ma, M_TEMP); 2463 atomic_subtract_int(&num_unmapped_aio, 1); 2464 } 2465 g_destroy_bio(bp); 2466 } 2467 2468 static void 2469 aio_biowakeup(struct bio *bp) 2470 { 2471 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2472 size_t nbytes; 2473 long bcount = bp->bio_bcount; 2474 long resid = bp->bio_resid; 2475 int opcode, nblks; 2476 int bio_error = bp->bio_error; 2477 uint16_t flags = bp->bio_flags; 2478 2479 opcode = job->uaiocb.aio_lio_opcode; 2480 2481 aio_biocleanup(bp); 2482 2483 nbytes =bcount - resid; 2484 atomic_add_acq_long(&job->nbytes, nbytes); 2485 nblks = btodb(nbytes); 2486 /* 2487 * If multiple bios experienced an error, the job will reflect the 2488 * error of whichever failed bio completed last. 2489 */ 2490 if (flags & BIO_ERROR) 2491 atomic_set_int(&job->error, bio_error); 2492 if (opcode & LIO_WRITE) 2493 atomic_add_int(&job->outblock, nblks); 2494 else 2495 atomic_add_int(&job->inblock, nblks); 2496 atomic_subtract_int(&job->nbio, 1); 2497 2498 2499 if (atomic_load_int(&job->nbio) == 0) { 2500 if (atomic_load_int(&job->error)) 2501 aio_complete(job, -1, job->error); 2502 else 2503 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2504 } 2505 } 2506 2507 /* syscall - wait for the next completion of an aio request */ 2508 static int 2509 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2510 struct timespec *ts, struct aiocb_ops *ops) 2511 { 2512 struct proc *p = td->td_proc; 2513 struct timeval atv; 2514 struct kaioinfo *ki; 2515 struct kaiocb *job; 2516 struct aiocb *ujob; 2517 long error, status; 2518 int timo; 2519 2520 ops->store_aiocb(ujobp, NULL); 2521 2522 if (ts == NULL) { 2523 timo = 0; 2524 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2525 timo = -1; 2526 } else { 2527 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2528 return (EINVAL); 2529 2530 TIMESPEC_TO_TIMEVAL(&atv, ts); 2531 if (itimerfix(&atv)) 2532 return (EINVAL); 2533 timo = tvtohz(&atv); 2534 } 2535 2536 if (p->p_aioinfo == NULL) 2537 aio_init_aioinfo(p); 2538 ki = p->p_aioinfo; 2539 2540 error = 0; 2541 job = NULL; 2542 AIO_LOCK(ki); 2543 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2544 if (timo == -1) { 2545 error = EWOULDBLOCK; 2546 break; 2547 } 2548 ki->kaio_flags |= KAIO_WAKEUP; 2549 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2550 "aiowc", timo); 2551 if (timo && error == ERESTART) 2552 error = EINTR; 2553 if (error) 2554 break; 2555 } 2556 2557 if (job != NULL) { 2558 MPASS(job->jobflags & KAIOCB_FINISHED); 2559 ujob = job->ujob; 2560 status = job->uaiocb._aiocb_private.status; 2561 error = job->uaiocb._aiocb_private.error; 2562 td->td_retval[0] = status; 2563 td->td_ru.ru_oublock += job->outblock; 2564 td->td_ru.ru_inblock += job->inblock; 2565 td->td_ru.ru_msgsnd += job->msgsnd; 2566 td->td_ru.ru_msgrcv += job->msgrcv; 2567 aio_free_entry(job); 2568 AIO_UNLOCK(ki); 2569 ops->store_aiocb(ujobp, ujob); 2570 ops->store_error(ujob, error); 2571 ops->store_status(ujob, status); 2572 } else 2573 AIO_UNLOCK(ki); 2574 2575 return (error); 2576 } 2577 2578 int 2579 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2580 { 2581 struct timespec ts, *tsp; 2582 int error; 2583 2584 if (uap->timeout) { 2585 /* Get timespec struct. */ 2586 error = copyin(uap->timeout, &ts, sizeof(ts)); 2587 if (error) 2588 return (error); 2589 tsp = &ts; 2590 } else 2591 tsp = NULL; 2592 2593 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2594 } 2595 2596 static int 2597 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2598 struct aiocb_ops *ops) 2599 { 2600 int listop; 2601 2602 switch (op) { 2603 case O_SYNC: 2604 listop = LIO_SYNC; 2605 break; 2606 case O_DSYNC: 2607 listop = LIO_DSYNC; 2608 break; 2609 default: 2610 return (EINVAL); 2611 } 2612 2613 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2614 } 2615 2616 int 2617 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2618 { 2619 2620 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2621 } 2622 2623 /* kqueue attach function */ 2624 static int 2625 filt_aioattach(struct knote *kn) 2626 { 2627 struct kaiocb *job; 2628 2629 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2630 2631 /* 2632 * The job pointer must be validated before using it, so 2633 * registration is restricted to the kernel; the user cannot 2634 * set EV_FLAG1. 2635 */ 2636 if ((kn->kn_flags & EV_FLAG1) == 0) 2637 return (EPERM); 2638 kn->kn_ptr.p_aio = job; 2639 kn->kn_flags &= ~EV_FLAG1; 2640 2641 knlist_add(&job->klist, kn, 0); 2642 2643 return (0); 2644 } 2645 2646 /* kqueue detach function */ 2647 static void 2648 filt_aiodetach(struct knote *kn) 2649 { 2650 struct knlist *knl; 2651 2652 knl = &kn->kn_ptr.p_aio->klist; 2653 knl->kl_lock(knl->kl_lockarg); 2654 if (!knlist_empty(knl)) 2655 knlist_remove(knl, kn, 1); 2656 knl->kl_unlock(knl->kl_lockarg); 2657 } 2658 2659 /* kqueue filter function */ 2660 /*ARGSUSED*/ 2661 static int 2662 filt_aio(struct knote *kn, long hint) 2663 { 2664 struct kaiocb *job = kn->kn_ptr.p_aio; 2665 2666 kn->kn_data = job->uaiocb._aiocb_private.error; 2667 if (!(job->jobflags & KAIOCB_FINISHED)) 2668 return (0); 2669 kn->kn_flags |= EV_EOF; 2670 return (1); 2671 } 2672 2673 /* kqueue attach function */ 2674 static int 2675 filt_lioattach(struct knote *kn) 2676 { 2677 struct aioliojob *lj; 2678 2679 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2680 2681 /* 2682 * The aioliojob pointer must be validated before using it, so 2683 * registration is restricted to the kernel; the user cannot 2684 * set EV_FLAG1. 2685 */ 2686 if ((kn->kn_flags & EV_FLAG1) == 0) 2687 return (EPERM); 2688 kn->kn_ptr.p_lio = lj; 2689 kn->kn_flags &= ~EV_FLAG1; 2690 2691 knlist_add(&lj->klist, kn, 0); 2692 2693 return (0); 2694 } 2695 2696 /* kqueue detach function */ 2697 static void 2698 filt_liodetach(struct knote *kn) 2699 { 2700 struct knlist *knl; 2701 2702 knl = &kn->kn_ptr.p_lio->klist; 2703 knl->kl_lock(knl->kl_lockarg); 2704 if (!knlist_empty(knl)) 2705 knlist_remove(knl, kn, 1); 2706 knl->kl_unlock(knl->kl_lockarg); 2707 } 2708 2709 /* kqueue filter function */ 2710 /*ARGSUSED*/ 2711 static int 2712 filt_lio(struct knote *kn, long hint) 2713 { 2714 struct aioliojob * lj = kn->kn_ptr.p_lio; 2715 2716 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2717 } 2718 2719 #ifdef COMPAT_FREEBSD32 2720 #include <sys/mount.h> 2721 #include <sys/socket.h> 2722 #include <sys/sysent.h> 2723 #include <compat/freebsd32/freebsd32.h> 2724 #include <compat/freebsd32/freebsd32_proto.h> 2725 #include <compat/freebsd32/freebsd32_signal.h> 2726 #include <compat/freebsd32/freebsd32_syscall.h> 2727 #include <compat/freebsd32/freebsd32_util.h> 2728 2729 struct __aiocb_private32 { 2730 int32_t status; 2731 int32_t error; 2732 uint32_t kernelinfo; 2733 }; 2734 2735 #ifdef COMPAT_FREEBSD6 2736 typedef struct oaiocb32 { 2737 int aio_fildes; /* File descriptor */ 2738 uint64_t aio_offset __packed; /* File offset for I/O */ 2739 uint32_t aio_buf; /* I/O buffer in process space */ 2740 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2741 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2742 int aio_lio_opcode; /* LIO opcode */ 2743 int aio_reqprio; /* Request priority -- ignored */ 2744 struct __aiocb_private32 _aiocb_private; 2745 } oaiocb32_t; 2746 #endif 2747 2748 typedef struct aiocb32 { 2749 int32_t aio_fildes; /* File descriptor */ 2750 uint64_t aio_offset __packed; /* File offset for I/O */ 2751 uint32_t aio_buf; /* I/O buffer in process space */ 2752 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2753 int __spare__[2]; 2754 uint32_t __spare2__; 2755 int aio_lio_opcode; /* LIO opcode */ 2756 int aio_reqprio; /* Request priority -- ignored */ 2757 struct __aiocb_private32 _aiocb_private; 2758 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2759 } aiocb32_t; 2760 2761 #ifdef COMPAT_FREEBSD6 2762 static int 2763 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2764 { 2765 2766 /* 2767 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2768 * supported by AIO with the old sigevent structure. 2769 */ 2770 CP(*osig, *nsig, sigev_notify); 2771 switch (nsig->sigev_notify) { 2772 case SIGEV_NONE: 2773 break; 2774 case SIGEV_SIGNAL: 2775 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2776 break; 2777 case SIGEV_KEVENT: 2778 nsig->sigev_notify_kqueue = 2779 osig->__sigev_u.__sigev_notify_kqueue; 2780 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2781 break; 2782 default: 2783 return (EINVAL); 2784 } 2785 return (0); 2786 } 2787 2788 static int 2789 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2790 int type __unused) 2791 { 2792 struct oaiocb32 job32; 2793 struct aiocb *kcb = &kjob->uaiocb; 2794 int error; 2795 2796 bzero(kcb, sizeof(struct aiocb)); 2797 error = copyin(ujob, &job32, sizeof(job32)); 2798 if (error) 2799 return (error); 2800 2801 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2802 2803 CP(job32, *kcb, aio_fildes); 2804 CP(job32, *kcb, aio_offset); 2805 PTRIN_CP(job32, *kcb, aio_buf); 2806 CP(job32, *kcb, aio_nbytes); 2807 CP(job32, *kcb, aio_lio_opcode); 2808 CP(job32, *kcb, aio_reqprio); 2809 CP(job32, *kcb, _aiocb_private.status); 2810 CP(job32, *kcb, _aiocb_private.error); 2811 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2812 return (convert_old_sigevent32(&job32.aio_sigevent, 2813 &kcb->aio_sigevent)); 2814 } 2815 #endif 2816 2817 static int 2818 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2819 { 2820 struct aiocb32 job32; 2821 struct aiocb *kcb = &kjob->uaiocb; 2822 struct iovec32 *iov32; 2823 int error; 2824 2825 error = copyin(ujob, &job32, sizeof(job32)); 2826 if (error) 2827 return (error); 2828 CP(job32, *kcb, aio_fildes); 2829 CP(job32, *kcb, aio_offset); 2830 CP(job32, *kcb, aio_lio_opcode); 2831 if (type == LIO_NOP) 2832 type = kcb->aio_lio_opcode; 2833 if (type & LIO_VECTORED) { 2834 iov32 = PTRIN(job32.aio_iov); 2835 CP(job32, *kcb, aio_iovcnt); 2836 /* malloc a uio and copy in the iovec */ 2837 error = freebsd32_copyinuio(iov32, 2838 kcb->aio_iovcnt, &kjob->uiop); 2839 if (error) 2840 return (error); 2841 } else { 2842 PTRIN_CP(job32, *kcb, aio_buf); 2843 CP(job32, *kcb, aio_nbytes); 2844 } 2845 CP(job32, *kcb, aio_reqprio); 2846 CP(job32, *kcb, _aiocb_private.status); 2847 CP(job32, *kcb, _aiocb_private.error); 2848 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2849 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2850 2851 return (error); 2852 } 2853 2854 static long 2855 aiocb32_fetch_status(struct aiocb *ujob) 2856 { 2857 struct aiocb32 *ujob32; 2858 2859 ujob32 = (struct aiocb32 *)ujob; 2860 return (fuword32(&ujob32->_aiocb_private.status)); 2861 } 2862 2863 static long 2864 aiocb32_fetch_error(struct aiocb *ujob) 2865 { 2866 struct aiocb32 *ujob32; 2867 2868 ujob32 = (struct aiocb32 *)ujob; 2869 return (fuword32(&ujob32->_aiocb_private.error)); 2870 } 2871 2872 static int 2873 aiocb32_store_status(struct aiocb *ujob, long status) 2874 { 2875 struct aiocb32 *ujob32; 2876 2877 ujob32 = (struct aiocb32 *)ujob; 2878 return (suword32(&ujob32->_aiocb_private.status, status)); 2879 } 2880 2881 static int 2882 aiocb32_store_error(struct aiocb *ujob, long error) 2883 { 2884 struct aiocb32 *ujob32; 2885 2886 ujob32 = (struct aiocb32 *)ujob; 2887 return (suword32(&ujob32->_aiocb_private.error, error)); 2888 } 2889 2890 static int 2891 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2892 { 2893 struct aiocb32 *ujob32; 2894 2895 ujob32 = (struct aiocb32 *)ujob; 2896 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2897 } 2898 2899 static int 2900 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2901 { 2902 2903 return (suword32(ujobp, (long)ujob)); 2904 } 2905 2906 static struct aiocb_ops aiocb32_ops = { 2907 .aio_copyin = aiocb32_copyin, 2908 .fetch_status = aiocb32_fetch_status, 2909 .fetch_error = aiocb32_fetch_error, 2910 .store_status = aiocb32_store_status, 2911 .store_error = aiocb32_store_error, 2912 .store_kernelinfo = aiocb32_store_kernelinfo, 2913 .store_aiocb = aiocb32_store_aiocb, 2914 }; 2915 2916 #ifdef COMPAT_FREEBSD6 2917 static struct aiocb_ops aiocb32_ops_osigevent = { 2918 .aio_copyin = aiocb32_copyin_old_sigevent, 2919 .fetch_status = aiocb32_fetch_status, 2920 .fetch_error = aiocb32_fetch_error, 2921 .store_status = aiocb32_store_status, 2922 .store_error = aiocb32_store_error, 2923 .store_kernelinfo = aiocb32_store_kernelinfo, 2924 .store_aiocb = aiocb32_store_aiocb, 2925 }; 2926 #endif 2927 2928 int 2929 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2930 { 2931 2932 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2933 } 2934 2935 int 2936 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2937 { 2938 struct timespec32 ts32; 2939 struct timespec ts, *tsp; 2940 struct aiocb **ujoblist; 2941 uint32_t *ujoblist32; 2942 int error, i; 2943 2944 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2945 return (EINVAL); 2946 2947 if (uap->timeout) { 2948 /* Get timespec struct. */ 2949 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2950 return (error); 2951 CP(ts32, ts, tv_sec); 2952 CP(ts32, ts, tv_nsec); 2953 tsp = &ts; 2954 } else 2955 tsp = NULL; 2956 2957 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2958 ujoblist32 = (uint32_t *)ujoblist; 2959 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2960 sizeof(ujoblist32[0])); 2961 if (error == 0) { 2962 for (i = uap->nent - 1; i >= 0; i--) 2963 ujoblist[i] = PTRIN(ujoblist32[i]); 2964 2965 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2966 } 2967 free(ujoblist, M_AIO); 2968 return (error); 2969 } 2970 2971 int 2972 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2973 { 2974 2975 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2976 } 2977 2978 #ifdef COMPAT_FREEBSD6 2979 int 2980 freebsd6_freebsd32_aio_read(struct thread *td, 2981 struct freebsd6_freebsd32_aio_read_args *uap) 2982 { 2983 2984 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2985 &aiocb32_ops_osigevent)); 2986 } 2987 #endif 2988 2989 int 2990 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2991 { 2992 2993 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2994 &aiocb32_ops)); 2995 } 2996 2997 int 2998 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 2999 { 3000 3001 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 3002 &aiocb32_ops)); 3003 } 3004 3005 #ifdef COMPAT_FREEBSD6 3006 int 3007 freebsd6_freebsd32_aio_write(struct thread *td, 3008 struct freebsd6_freebsd32_aio_write_args *uap) 3009 { 3010 3011 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3012 &aiocb32_ops_osigevent)); 3013 } 3014 #endif 3015 3016 int 3017 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3018 { 3019 3020 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3021 &aiocb32_ops)); 3022 } 3023 3024 int 3025 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3026 { 3027 3028 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3029 &aiocb32_ops)); 3030 } 3031 3032 int 3033 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3034 { 3035 3036 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3037 &aiocb32_ops)); 3038 } 3039 3040 int 3041 freebsd32_aio_waitcomplete(struct thread *td, 3042 struct freebsd32_aio_waitcomplete_args *uap) 3043 { 3044 struct timespec32 ts32; 3045 struct timespec ts, *tsp; 3046 int error; 3047 3048 if (uap->timeout) { 3049 /* Get timespec struct. */ 3050 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3051 if (error) 3052 return (error); 3053 CP(ts32, ts, tv_sec); 3054 CP(ts32, ts, tv_nsec); 3055 tsp = &ts; 3056 } else 3057 tsp = NULL; 3058 3059 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3060 &aiocb32_ops)); 3061 } 3062 3063 int 3064 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3065 { 3066 3067 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3068 &aiocb32_ops)); 3069 } 3070 3071 #ifdef COMPAT_FREEBSD6 3072 int 3073 freebsd6_freebsd32_lio_listio(struct thread *td, 3074 struct freebsd6_freebsd32_lio_listio_args *uap) 3075 { 3076 struct aiocb **acb_list; 3077 struct sigevent *sigp, sig; 3078 struct osigevent32 osig; 3079 uint32_t *acb_list32; 3080 int error, i, nent; 3081 3082 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3083 return (EINVAL); 3084 3085 nent = uap->nent; 3086 if (nent < 0 || nent > max_aio_queue_per_proc) 3087 return (EINVAL); 3088 3089 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3090 error = copyin(uap->sig, &osig, sizeof(osig)); 3091 if (error) 3092 return (error); 3093 error = convert_old_sigevent32(&osig, &sig); 3094 if (error) 3095 return (error); 3096 sigp = &sig; 3097 } else 3098 sigp = NULL; 3099 3100 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3101 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3102 if (error) { 3103 free(acb_list32, M_LIO); 3104 return (error); 3105 } 3106 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3107 for (i = 0; i < nent; i++) 3108 acb_list[i] = PTRIN(acb_list32[i]); 3109 free(acb_list32, M_LIO); 3110 3111 error = kern_lio_listio(td, uap->mode, 3112 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3113 &aiocb32_ops_osigevent); 3114 free(acb_list, M_LIO); 3115 return (error); 3116 } 3117 #endif 3118 3119 int 3120 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3121 { 3122 struct aiocb **acb_list; 3123 struct sigevent *sigp, sig; 3124 struct sigevent32 sig32; 3125 uint32_t *acb_list32; 3126 int error, i, nent; 3127 3128 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3129 return (EINVAL); 3130 3131 nent = uap->nent; 3132 if (nent < 0 || nent > max_aio_queue_per_proc) 3133 return (EINVAL); 3134 3135 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3136 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3137 if (error) 3138 return (error); 3139 error = convert_sigevent32(&sig32, &sig); 3140 if (error) 3141 return (error); 3142 sigp = &sig; 3143 } else 3144 sigp = NULL; 3145 3146 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3147 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3148 if (error) { 3149 free(acb_list32, M_LIO); 3150 return (error); 3151 } 3152 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3153 for (i = 0; i < nent; i++) 3154 acb_list[i] = PTRIN(acb_list32[i]); 3155 free(acb_list32, M_LIO); 3156 3157 error = kern_lio_listio(td, uap->mode, 3158 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3159 &aiocb32_ops); 3160 free(acb_list, M_LIO); 3161 return (error); 3162 } 3163 3164 #endif 3165