1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/eventhandler.h> 32 #include <sys/sysproto.h> 33 #include <sys/filedesc.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/kthread.h> 37 #include <sys/fcntl.h> 38 #include <sys/file.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/unistd.h> 43 #include <sys/posix4.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/protosw.h> 48 #include <sys/sema.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/syscall.h> 52 #include <sys/sysent.h> 53 #include <sys/sysctl.h> 54 #include <sys/sx.h> 55 #include <sys/taskqueue.h> 56 #include <sys/vnode.h> 57 #include <sys/conf.h> 58 #include <sys/event.h> 59 #include <sys/mount.h> 60 61 #include <machine/atomic.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/vm_object.h> 68 #include <vm/uma.h> 69 #include <sys/aio.h> 70 71 #include "opt_vfs_aio.h" 72 73 /* 74 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 75 * overflow. (XXX will be removed soon.) 76 */ 77 static u_long jobrefid; 78 79 /* 80 * Counter for aio_fsync. 81 */ 82 static uint64_t jobseqno; 83 84 #define JOBST_NULL 0 85 #define JOBST_JOBQSOCK 1 86 #define JOBST_JOBQGLOBAL 2 87 #define JOBST_JOBRUNNING 3 88 #define JOBST_JOBFINISHED 4 89 #define JOBST_JOBQBUF 5 90 #define JOBST_JOBQSYNC 6 91 92 #ifndef MAX_AIO_PER_PROC 93 #define MAX_AIO_PER_PROC 32 94 #endif 95 96 #ifndef MAX_AIO_QUEUE_PER_PROC 97 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 98 #endif 99 100 #ifndef MAX_AIO_PROCS 101 #define MAX_AIO_PROCS 32 102 #endif 103 104 #ifndef MAX_AIO_QUEUE 105 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 106 #endif 107 108 #ifndef TARGET_AIO_PROCS 109 #define TARGET_AIO_PROCS 4 110 #endif 111 112 #ifndef MAX_BUF_AIO 113 #define MAX_BUF_AIO 16 114 #endif 115 116 #ifndef AIOD_TIMEOUT_DEFAULT 117 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 118 #endif 119 120 #ifndef AIOD_LIFETIME_DEFAULT 121 #define AIOD_LIFETIME_DEFAULT (30 * hz) 122 #endif 123 124 FEATURE(aio, "Asynchronous I/O"); 125 126 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 129 130 static int max_aio_procs = MAX_AIO_PROCS; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 132 CTLFLAG_RW, &max_aio_procs, 0, 133 "Maximum number of kernel threads to use for handling async IO "); 134 135 static int num_aio_procs = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 137 CTLFLAG_RD, &num_aio_procs, 0, 138 "Number of presently active kernel threads for async IO"); 139 140 /* 141 * The code will adjust the actual number of AIO processes towards this 142 * number when it gets a chance. 143 */ 144 static int target_aio_procs = TARGET_AIO_PROCS; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 146 0, "Preferred number of ready kernel threads for async IO"); 147 148 static int max_queue_count = MAX_AIO_QUEUE; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 150 "Maximum number of aio requests to queue, globally"); 151 152 static int num_queue_count = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 154 "Number of queued aio requests"); 155 156 static int num_buf_aio = 0; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 158 "Number of aio requests presently handled by the buf subsystem"); 159 160 /* Number of async I/O thread in the process of being started */ 161 /* XXX This should be local to aio_aqueue() */ 162 static int num_aio_resv_start = 0; 163 164 static int aiod_timeout; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 166 "Timeout value for synchronous aio operations"); 167 168 static int aiod_lifetime; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 170 "Maximum lifetime for idle aiod"); 171 172 static int unloadable = 0; 173 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 174 "Allow unload of aio (not recommended)"); 175 176 177 static int max_aio_per_proc = MAX_AIO_PER_PROC; 178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 179 0, "Maximum active aio requests per process (stored in the process)"); 180 181 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 182 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 183 &max_aio_queue_per_proc, 0, 184 "Maximum queued aio requests per process (stored in the process)"); 185 186 static int max_buf_aio = MAX_BUF_AIO; 187 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 188 "Maximum buf aio requests per process (stored in the process)"); 189 190 typedef struct oaiocb { 191 int aio_fildes; /* File descriptor */ 192 off_t aio_offset; /* File offset for I/O */ 193 volatile void *aio_buf; /* I/O buffer in process space */ 194 size_t aio_nbytes; /* Number of bytes for I/O */ 195 struct osigevent aio_sigevent; /* Signal to deliver */ 196 int aio_lio_opcode; /* LIO opcode */ 197 int aio_reqprio; /* Request priority -- ignored */ 198 struct __aiocb_private _aiocb_private; 199 } oaiocb_t; 200 201 /* 202 * Below is a key of locks used to protect each member of struct aiocblist 203 * aioliojob and kaioinfo and any backends. 204 * 205 * * - need not protected 206 * a - locked by kaioinfo lock 207 * b - locked by backend lock, the backend lock can be null in some cases, 208 * for example, BIO belongs to this type, in this case, proc lock is 209 * reused. 210 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 211 */ 212 213 /* 214 * Current, there is only two backends: BIO and generic file I/O. 215 * socket I/O is served by generic file I/O, this is not a good idea, since 216 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 217 * threads, if there is no thread to serve socket I/O, the socket I/O will be 218 * delayed too long or starved, we should create some threads dedicated to 219 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 220 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 221 * structure is not safe because there is race between userland and aio 222 * daemons. 223 */ 224 225 struct aiocblist { 226 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 227 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 228 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 229 int jobflags; /* (a) job flags */ 230 int jobstate; /* (b) job state */ 231 int inputcharge; /* (*) input blockes */ 232 int outputcharge; /* (*) output blockes */ 233 struct buf *bp; /* (*) private to BIO backend, 234 * buffer pointer 235 */ 236 struct proc *userproc; /* (*) user process */ 237 struct ucred *cred; /* (*) active credential when created */ 238 struct file *fd_file; /* (*) pointer to file structure */ 239 struct aioliojob *lio; /* (*) optional lio job */ 240 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 241 struct knlist klist; /* (a) list of knotes */ 242 struct aiocb uaiocb; /* (*) kernel I/O control block */ 243 ksiginfo_t ksi; /* (a) realtime signal info */ 244 struct task biotask; /* (*) private to BIO backend */ 245 uint64_t seqno; /* (*) job number */ 246 int pending; /* (a) number of pending I/O, aio_fsync only */ 247 }; 248 249 /* jobflags */ 250 #define AIOCBLIST_DONE 0x01 251 #define AIOCBLIST_BUFDONE 0x02 252 #define AIOCBLIST_RUNDOWN 0x04 253 #define AIOCBLIST_CHECKSYNC 0x08 254 255 /* 256 * AIO process info 257 */ 258 #define AIOP_FREE 0x1 /* proc on free queue */ 259 260 struct aiothreadlist { 261 int aiothreadflags; /* (c) AIO proc flags */ 262 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 263 struct thread *aiothread; /* (*) the AIO thread */ 264 }; 265 266 /* 267 * data-structure for lio signal management 268 */ 269 struct aioliojob { 270 int lioj_flags; /* (a) listio flags */ 271 int lioj_count; /* (a) listio flags */ 272 int lioj_finished_count; /* (a) listio flags */ 273 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 274 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 275 struct knlist klist; /* (a) list of knotes */ 276 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 277 }; 278 279 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 280 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 281 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 282 283 /* 284 * per process aio data structure 285 */ 286 struct kaioinfo { 287 struct mtx kaio_mtx; /* the lock to protect this struct */ 288 int kaio_flags; /* (a) per process kaio flags */ 289 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 290 int kaio_active_count; /* (c) number of currently used AIOs */ 291 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 292 int kaio_count; /* (a) size of AIO queue */ 293 int kaio_ballowed_count; /* (*) maximum number of buffers */ 294 int kaio_buffer_count; /* (a) number of physio buffers */ 295 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 296 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 297 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 298 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 299 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 300 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 301 * NOT USED YET. 302 */ 303 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 304 struct task kaio_task; /* (*) task to kick aio threads */ 305 }; 306 307 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 308 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 309 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 310 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 311 312 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 313 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 314 315 /* 316 * Operations used to interact with userland aio control blocks. 317 * Different ABIs provide their own operations. 318 */ 319 struct aiocb_ops { 320 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 321 long (*fetch_status)(struct aiocb *ujob); 322 long (*fetch_error)(struct aiocb *ujob); 323 int (*store_status)(struct aiocb *ujob, long status); 324 int (*store_error)(struct aiocb *ujob, long error); 325 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 326 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 327 }; 328 329 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 330 static struct sema aio_newproc_sem; 331 static struct mtx aio_job_mtx; 332 static struct mtx aio_sock_mtx; 333 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 334 static struct unrhdr *aiod_unr; 335 336 void aio_init_aioinfo(struct proc *p); 337 static void aio_onceonly(void); 338 static int aio_free_entry(struct aiocblist *aiocbe); 339 static void aio_process(struct aiocblist *aiocbe); 340 static int aio_newproc(int *); 341 int aio_aqueue(struct thread *td, struct aiocb *job, 342 struct aioliojob *lio, int type, struct aiocb_ops *ops); 343 static void aio_physwakeup(struct buf *bp); 344 static void aio_proc_rundown(void *arg, struct proc *p); 345 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 346 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 347 static void biohelper(void *, int); 348 static void aio_daemon(void *param); 349 static void aio_swake_cb(struct socket *, struct sockbuf *); 350 static int aio_unload(void); 351 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 352 #define DONE_BUF 1 353 #define DONE_QUEUE 2 354 static int aio_kick(struct proc *userp); 355 static void aio_kick_nowait(struct proc *userp); 356 static void aio_kick_helper(void *context, int pending); 357 static int filt_aioattach(struct knote *kn); 358 static void filt_aiodetach(struct knote *kn); 359 static int filt_aio(struct knote *kn, long hint); 360 static int filt_lioattach(struct knote *kn); 361 static void filt_liodetach(struct knote *kn); 362 static int filt_lio(struct knote *kn, long hint); 363 364 /* 365 * Zones for: 366 * kaio Per process async io info 367 * aiop async io thread data 368 * aiocb async io jobs 369 * aiol list io job pointer - internal to aio_suspend XXX 370 * aiolio list io jobs 371 */ 372 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 373 374 /* kqueue filters for aio */ 375 static struct filterops aio_filtops = { 376 .f_isfd = 0, 377 .f_attach = filt_aioattach, 378 .f_detach = filt_aiodetach, 379 .f_event = filt_aio, 380 }; 381 static struct filterops lio_filtops = { 382 .f_isfd = 0, 383 .f_attach = filt_lioattach, 384 .f_detach = filt_liodetach, 385 .f_event = filt_lio 386 }; 387 388 static eventhandler_tag exit_tag, exec_tag; 389 390 TASKQUEUE_DEFINE_THREAD(aiod_bio); 391 392 /* 393 * Main operations function for use as a kernel module. 394 */ 395 static int 396 aio_modload(struct module *module, int cmd, void *arg) 397 { 398 int error = 0; 399 400 switch (cmd) { 401 case MOD_LOAD: 402 aio_onceonly(); 403 break; 404 case MOD_UNLOAD: 405 error = aio_unload(); 406 break; 407 case MOD_SHUTDOWN: 408 break; 409 default: 410 error = EINVAL; 411 break; 412 } 413 return (error); 414 } 415 416 static moduledata_t aio_mod = { 417 "aio", 418 &aio_modload, 419 NULL 420 }; 421 422 SYSCALL_MODULE_HELPER(aio_cancel); 423 SYSCALL_MODULE_HELPER(aio_error); 424 SYSCALL_MODULE_HELPER(aio_fsync); 425 SYSCALL_MODULE_HELPER(aio_read); 426 SYSCALL_MODULE_HELPER(aio_return); 427 SYSCALL_MODULE_HELPER(aio_suspend); 428 SYSCALL_MODULE_HELPER(aio_waitcomplete); 429 SYSCALL_MODULE_HELPER(aio_write); 430 SYSCALL_MODULE_HELPER(lio_listio); 431 SYSCALL_MODULE_HELPER(oaio_read); 432 SYSCALL_MODULE_HELPER(oaio_write); 433 SYSCALL_MODULE_HELPER(olio_listio); 434 435 DECLARE_MODULE(aio, aio_mod, 436 SI_SUB_VFS, SI_ORDER_ANY); 437 MODULE_VERSION(aio, 1); 438 439 /* 440 * Startup initialization 441 */ 442 static void 443 aio_onceonly(void) 444 { 445 446 /* XXX: should probably just use so->callback */ 447 aio_swake = &aio_swake_cb; 448 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 449 EVENTHANDLER_PRI_ANY); 450 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 451 EVENTHANDLER_PRI_ANY); 452 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 453 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 454 TAILQ_INIT(&aio_freeproc); 455 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 456 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 457 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 458 TAILQ_INIT(&aio_jobs); 459 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 460 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 461 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 462 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 463 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 464 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 465 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 466 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 467 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 468 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 469 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 470 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 471 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 472 jobrefid = 1; 473 async_io_version = _POSIX_VERSION; 474 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 475 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 476 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 477 } 478 479 /* 480 * Callback for unload of AIO when used as a module. 481 */ 482 static int 483 aio_unload(void) 484 { 485 int error; 486 487 /* 488 * XXX: no unloads by default, it's too dangerous. 489 * perhaps we could do it if locked out callers and then 490 * did an aio_proc_rundown() on each process. 491 * 492 * jhb: aio_proc_rundown() needs to run on curproc though, 493 * so I don't think that would fly. 494 */ 495 if (!unloadable) 496 return (EOPNOTSUPP); 497 498 error = kqueue_del_filteropts(EVFILT_AIO); 499 if (error) 500 return error; 501 error = kqueue_del_filteropts(EVFILT_LIO); 502 if (error) 503 return error; 504 async_io_version = 0; 505 aio_swake = NULL; 506 taskqueue_free(taskqueue_aiod_bio); 507 delete_unrhdr(aiod_unr); 508 uma_zdestroy(kaio_zone); 509 uma_zdestroy(aiop_zone); 510 uma_zdestroy(aiocb_zone); 511 uma_zdestroy(aiol_zone); 512 uma_zdestroy(aiolio_zone); 513 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 514 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 515 mtx_destroy(&aio_job_mtx); 516 mtx_destroy(&aio_sock_mtx); 517 sema_destroy(&aio_newproc_sem); 518 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 519 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 520 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 521 return (0); 522 } 523 524 /* 525 * Init the per-process aioinfo structure. The aioinfo limits are set 526 * per-process for user limit (resource) management. 527 */ 528 void 529 aio_init_aioinfo(struct proc *p) 530 { 531 struct kaioinfo *ki; 532 533 ki = uma_zalloc(kaio_zone, M_WAITOK); 534 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 535 ki->kaio_flags = 0; 536 ki->kaio_maxactive_count = max_aio_per_proc; 537 ki->kaio_active_count = 0; 538 ki->kaio_qallowed_count = max_aio_queue_per_proc; 539 ki->kaio_count = 0; 540 ki->kaio_ballowed_count = max_buf_aio; 541 ki->kaio_buffer_count = 0; 542 TAILQ_INIT(&ki->kaio_all); 543 TAILQ_INIT(&ki->kaio_done); 544 TAILQ_INIT(&ki->kaio_jobqueue); 545 TAILQ_INIT(&ki->kaio_bufqueue); 546 TAILQ_INIT(&ki->kaio_liojoblist); 547 TAILQ_INIT(&ki->kaio_sockqueue); 548 TAILQ_INIT(&ki->kaio_syncqueue); 549 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 550 PROC_LOCK(p); 551 if (p->p_aioinfo == NULL) { 552 p->p_aioinfo = ki; 553 PROC_UNLOCK(p); 554 } else { 555 PROC_UNLOCK(p); 556 mtx_destroy(&ki->kaio_mtx); 557 uma_zfree(kaio_zone, ki); 558 } 559 560 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 561 aio_newproc(NULL); 562 } 563 564 static int 565 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 566 { 567 int ret = 0; 568 569 PROC_LOCK(p); 570 if (!KSI_ONQ(ksi)) { 571 ksi->ksi_code = SI_ASYNCIO; 572 ksi->ksi_flags |= KSI_EXT | KSI_INS; 573 ret = psignal_event(p, sigev, ksi); 574 } 575 PROC_UNLOCK(p); 576 return (ret); 577 } 578 579 /* 580 * Free a job entry. Wait for completion if it is currently active, but don't 581 * delay forever. If we delay, we return a flag that says that we have to 582 * restart the queue scan. 583 */ 584 static int 585 aio_free_entry(struct aiocblist *aiocbe) 586 { 587 struct kaioinfo *ki; 588 struct aioliojob *lj; 589 struct proc *p; 590 591 p = aiocbe->userproc; 592 MPASS(curproc == p); 593 ki = p->p_aioinfo; 594 MPASS(ki != NULL); 595 596 AIO_LOCK_ASSERT(ki, MA_OWNED); 597 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 598 599 atomic_subtract_int(&num_queue_count, 1); 600 601 ki->kaio_count--; 602 MPASS(ki->kaio_count >= 0); 603 604 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 605 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 606 607 lj = aiocbe->lio; 608 if (lj) { 609 lj->lioj_count--; 610 lj->lioj_finished_count--; 611 612 if (lj->lioj_count == 0) { 613 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 614 /* lio is going away, we need to destroy any knotes */ 615 knlist_delete(&lj->klist, curthread, 1); 616 PROC_LOCK(p); 617 sigqueue_take(&lj->lioj_ksi); 618 PROC_UNLOCK(p); 619 uma_zfree(aiolio_zone, lj); 620 } 621 } 622 623 /* aiocbe is going away, we need to destroy any knotes */ 624 knlist_delete(&aiocbe->klist, curthread, 1); 625 PROC_LOCK(p); 626 sigqueue_take(&aiocbe->ksi); 627 PROC_UNLOCK(p); 628 629 MPASS(aiocbe->bp == NULL); 630 aiocbe->jobstate = JOBST_NULL; 631 AIO_UNLOCK(ki); 632 633 /* 634 * The thread argument here is used to find the owning process 635 * and is also passed to fo_close() which may pass it to various 636 * places such as devsw close() routines. Because of that, we 637 * need a thread pointer from the process owning the job that is 638 * persistent and won't disappear out from under us or move to 639 * another process. 640 * 641 * Currently, all the callers of this function call it to remove 642 * an aiocblist from the current process' job list either via a 643 * syscall or due to the current process calling exit() or 644 * execve(). Thus, we know that p == curproc. We also know that 645 * curthread can't exit since we are curthread. 646 * 647 * Therefore, we use curthread as the thread to pass to 648 * knlist_delete(). This does mean that it is possible for the 649 * thread pointer at close time to differ from the thread pointer 650 * at open time, but this is already true of file descriptors in 651 * a multithreaded process. 652 */ 653 fdrop(aiocbe->fd_file, curthread); 654 crfree(aiocbe->cred); 655 uma_zfree(aiocb_zone, aiocbe); 656 AIO_LOCK(ki); 657 658 return (0); 659 } 660 661 static void 662 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 663 { 664 aio_proc_rundown(arg, p); 665 } 666 667 /* 668 * Rundown the jobs for a given process. 669 */ 670 static void 671 aio_proc_rundown(void *arg, struct proc *p) 672 { 673 struct kaioinfo *ki; 674 struct aioliojob *lj; 675 struct aiocblist *cbe, *cbn; 676 struct file *fp; 677 struct socket *so; 678 int remove; 679 680 KASSERT(curthread->td_proc == p, 681 ("%s: called on non-curproc", __func__)); 682 ki = p->p_aioinfo; 683 if (ki == NULL) 684 return; 685 686 AIO_LOCK(ki); 687 ki->kaio_flags |= KAIO_RUNDOWN; 688 689 restart: 690 691 /* 692 * Try to cancel all pending requests. This code simulates 693 * aio_cancel on all pending I/O requests. 694 */ 695 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 696 remove = 0; 697 mtx_lock(&aio_job_mtx); 698 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 699 TAILQ_REMOVE(&aio_jobs, cbe, list); 700 remove = 1; 701 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 702 fp = cbe->fd_file; 703 MPASS(fp->f_type == DTYPE_SOCKET); 704 so = fp->f_data; 705 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 706 remove = 1; 707 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 708 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 709 remove = 1; 710 } 711 mtx_unlock(&aio_job_mtx); 712 713 if (remove) { 714 cbe->jobstate = JOBST_JOBFINISHED; 715 cbe->uaiocb._aiocb_private.status = -1; 716 cbe->uaiocb._aiocb_private.error = ECANCELED; 717 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 718 aio_bio_done_notify(p, cbe, DONE_QUEUE); 719 } 720 } 721 722 /* Wait for all running I/O to be finished */ 723 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 724 TAILQ_FIRST(&ki->kaio_jobqueue)) { 725 ki->kaio_flags |= KAIO_WAKEUP; 726 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 727 goto restart; 728 } 729 730 /* Free all completed I/O requests. */ 731 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 732 aio_free_entry(cbe); 733 734 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 735 if (lj->lioj_count == 0) { 736 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 737 knlist_delete(&lj->klist, curthread, 1); 738 PROC_LOCK(p); 739 sigqueue_take(&lj->lioj_ksi); 740 PROC_UNLOCK(p); 741 uma_zfree(aiolio_zone, lj); 742 } else { 743 panic("LIO job not cleaned up: C:%d, FC:%d\n", 744 lj->lioj_count, lj->lioj_finished_count); 745 } 746 } 747 AIO_UNLOCK(ki); 748 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 749 mtx_destroy(&ki->kaio_mtx); 750 uma_zfree(kaio_zone, ki); 751 p->p_aioinfo = NULL; 752 } 753 754 /* 755 * Select a job to run (called by an AIO daemon). 756 */ 757 static struct aiocblist * 758 aio_selectjob(struct aiothreadlist *aiop) 759 { 760 struct aiocblist *aiocbe; 761 struct kaioinfo *ki; 762 struct proc *userp; 763 764 mtx_assert(&aio_job_mtx, MA_OWNED); 765 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 766 userp = aiocbe->userproc; 767 ki = userp->p_aioinfo; 768 769 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 770 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 771 /* Account for currently active jobs. */ 772 ki->kaio_active_count++; 773 aiocbe->jobstate = JOBST_JOBRUNNING; 774 break; 775 } 776 } 777 return (aiocbe); 778 } 779 780 /* 781 * Move all data to a permanent storage device, this code 782 * simulates fsync syscall. 783 */ 784 static int 785 aio_fsync_vnode(struct thread *td, struct vnode *vp) 786 { 787 struct mount *mp; 788 int vfslocked; 789 int error; 790 791 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 792 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 793 goto drop; 794 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 795 if (vp->v_object != NULL) { 796 VM_OBJECT_LOCK(vp->v_object); 797 vm_object_page_clean(vp->v_object, 0, 0, 0); 798 VM_OBJECT_UNLOCK(vp->v_object); 799 } 800 error = VOP_FSYNC(vp, MNT_WAIT, td); 801 802 VOP_UNLOCK(vp, 0); 803 vn_finished_write(mp); 804 drop: 805 VFS_UNLOCK_GIANT(vfslocked); 806 return (error); 807 } 808 809 /* 810 * The AIO processing activity. This is the code that does the I/O request for 811 * the non-physio version of the operations. The normal vn operations are used, 812 * and this code should work in all instances for every type of file, including 813 * pipes, sockets, fifos, and regular files. 814 * 815 * XXX I don't think it works well for socket, pipe, and fifo. 816 */ 817 static void 818 aio_process(struct aiocblist *aiocbe) 819 { 820 struct ucred *td_savedcred; 821 struct thread *td; 822 struct aiocb *cb; 823 struct file *fp; 824 struct socket *so; 825 struct uio auio; 826 struct iovec aiov; 827 int cnt; 828 int error; 829 int oublock_st, oublock_end; 830 int inblock_st, inblock_end; 831 832 td = curthread; 833 td_savedcred = td->td_ucred; 834 td->td_ucred = aiocbe->cred; 835 cb = &aiocbe->uaiocb; 836 fp = aiocbe->fd_file; 837 838 if (cb->aio_lio_opcode == LIO_SYNC) { 839 error = 0; 840 cnt = 0; 841 if (fp->f_vnode != NULL) 842 error = aio_fsync_vnode(td, fp->f_vnode); 843 cb->_aiocb_private.error = error; 844 cb->_aiocb_private.status = 0; 845 td->td_ucred = td_savedcred; 846 return; 847 } 848 849 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 850 aiov.iov_len = cb->aio_nbytes; 851 852 auio.uio_iov = &aiov; 853 auio.uio_iovcnt = 1; 854 auio.uio_offset = cb->aio_offset; 855 auio.uio_resid = cb->aio_nbytes; 856 cnt = cb->aio_nbytes; 857 auio.uio_segflg = UIO_USERSPACE; 858 auio.uio_td = td; 859 860 inblock_st = td->td_ru.ru_inblock; 861 oublock_st = td->td_ru.ru_oublock; 862 /* 863 * aio_aqueue() acquires a reference to the file that is 864 * released in aio_free_entry(). 865 */ 866 if (cb->aio_lio_opcode == LIO_READ) { 867 auio.uio_rw = UIO_READ; 868 if (auio.uio_resid == 0) 869 error = 0; 870 else 871 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 872 } else { 873 if (fp->f_type == DTYPE_VNODE) 874 bwillwrite(); 875 auio.uio_rw = UIO_WRITE; 876 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 877 } 878 inblock_end = td->td_ru.ru_inblock; 879 oublock_end = td->td_ru.ru_oublock; 880 881 aiocbe->inputcharge = inblock_end - inblock_st; 882 aiocbe->outputcharge = oublock_end - oublock_st; 883 884 if ((error) && (auio.uio_resid != cnt)) { 885 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 886 error = 0; 887 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 888 int sigpipe = 1; 889 if (fp->f_type == DTYPE_SOCKET) { 890 so = fp->f_data; 891 if (so->so_options & SO_NOSIGPIPE) 892 sigpipe = 0; 893 } 894 if (sigpipe) { 895 PROC_LOCK(aiocbe->userproc); 896 psignal(aiocbe->userproc, SIGPIPE); 897 PROC_UNLOCK(aiocbe->userproc); 898 } 899 } 900 } 901 902 cnt -= auio.uio_resid; 903 cb->_aiocb_private.error = error; 904 cb->_aiocb_private.status = cnt; 905 td->td_ucred = td_savedcred; 906 } 907 908 static void 909 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 910 { 911 struct aioliojob *lj; 912 struct kaioinfo *ki; 913 struct aiocblist *scb, *scbn; 914 int lj_done; 915 916 ki = userp->p_aioinfo; 917 AIO_LOCK_ASSERT(ki, MA_OWNED); 918 lj = aiocbe->lio; 919 lj_done = 0; 920 if (lj) { 921 lj->lioj_finished_count++; 922 if (lj->lioj_count == lj->lioj_finished_count) 923 lj_done = 1; 924 } 925 if (type == DONE_QUEUE) { 926 aiocbe->jobflags |= AIOCBLIST_DONE; 927 } else { 928 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 929 } 930 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 931 aiocbe->jobstate = JOBST_JOBFINISHED; 932 933 if (ki->kaio_flags & KAIO_RUNDOWN) 934 goto notification_done; 935 936 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 937 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 938 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 939 940 KNOTE_LOCKED(&aiocbe->klist, 1); 941 942 if (lj_done) { 943 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 944 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 945 KNOTE_LOCKED(&lj->klist, 1); 946 } 947 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 948 == LIOJ_SIGNAL 949 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 950 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 951 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 952 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 953 } 954 } 955 956 notification_done: 957 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 958 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 959 if (aiocbe->fd_file == scb->fd_file && 960 aiocbe->seqno < scb->seqno) { 961 if (--scb->pending == 0) { 962 mtx_lock(&aio_job_mtx); 963 scb->jobstate = JOBST_JOBQGLOBAL; 964 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 965 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 966 aio_kick_nowait(userp); 967 mtx_unlock(&aio_job_mtx); 968 } 969 } 970 } 971 } 972 if (ki->kaio_flags & KAIO_WAKEUP) { 973 ki->kaio_flags &= ~KAIO_WAKEUP; 974 wakeup(&userp->p_aioinfo); 975 } 976 } 977 978 /* 979 * The AIO daemon, most of the actual work is done in aio_process, 980 * but the setup (and address space mgmt) is done in this routine. 981 */ 982 static void 983 aio_daemon(void *_id) 984 { 985 struct aiocblist *aiocbe; 986 struct aiothreadlist *aiop; 987 struct kaioinfo *ki; 988 struct proc *curcp, *mycp, *userp; 989 struct vmspace *myvm, *tmpvm; 990 struct thread *td = curthread; 991 int id = (intptr_t)_id; 992 993 /* 994 * Local copies of curproc (cp) and vmspace (myvm) 995 */ 996 mycp = td->td_proc; 997 myvm = mycp->p_vmspace; 998 999 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 1000 1001 /* 1002 * Allocate and ready the aio control info. There is one aiop structure 1003 * per daemon. 1004 */ 1005 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1006 aiop->aiothread = td; 1007 aiop->aiothreadflags = 0; 1008 1009 /* The daemon resides in its own pgrp. */ 1010 setsid(td, NULL); 1011 1012 /* 1013 * Wakeup parent process. (Parent sleeps to keep from blasting away 1014 * and creating too many daemons.) 1015 */ 1016 sema_post(&aio_newproc_sem); 1017 1018 mtx_lock(&aio_job_mtx); 1019 for (;;) { 1020 /* 1021 * curcp is the current daemon process context. 1022 * userp is the current user process context. 1023 */ 1024 curcp = mycp; 1025 1026 /* 1027 * Take daemon off of free queue 1028 */ 1029 if (aiop->aiothreadflags & AIOP_FREE) { 1030 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1031 aiop->aiothreadflags &= ~AIOP_FREE; 1032 } 1033 1034 /* 1035 * Check for jobs. 1036 */ 1037 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1038 mtx_unlock(&aio_job_mtx); 1039 userp = aiocbe->userproc; 1040 1041 /* 1042 * Connect to process address space for user program. 1043 */ 1044 if (userp != curcp) { 1045 /* 1046 * Save the current address space that we are 1047 * connected to. 1048 */ 1049 tmpvm = mycp->p_vmspace; 1050 1051 /* 1052 * Point to the new user address space, and 1053 * refer to it. 1054 */ 1055 mycp->p_vmspace = userp->p_vmspace; 1056 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1057 1058 /* Activate the new mapping. */ 1059 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1060 1061 /* 1062 * If the old address space wasn't the daemons 1063 * own address space, then we need to remove the 1064 * daemon's reference from the other process 1065 * that it was acting on behalf of. 1066 */ 1067 if (tmpvm != myvm) { 1068 vmspace_free(tmpvm); 1069 } 1070 curcp = userp; 1071 } 1072 1073 ki = userp->p_aioinfo; 1074 1075 /* Do the I/O function. */ 1076 aio_process(aiocbe); 1077 1078 mtx_lock(&aio_job_mtx); 1079 /* Decrement the active job count. */ 1080 ki->kaio_active_count--; 1081 mtx_unlock(&aio_job_mtx); 1082 1083 AIO_LOCK(ki); 1084 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1085 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1086 AIO_UNLOCK(ki); 1087 1088 mtx_lock(&aio_job_mtx); 1089 } 1090 1091 /* 1092 * Disconnect from user address space. 1093 */ 1094 if (curcp != mycp) { 1095 1096 mtx_unlock(&aio_job_mtx); 1097 1098 /* Get the user address space to disconnect from. */ 1099 tmpvm = mycp->p_vmspace; 1100 1101 /* Get original address space for daemon. */ 1102 mycp->p_vmspace = myvm; 1103 1104 /* Activate the daemon's address space. */ 1105 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1106 #ifdef DIAGNOSTIC 1107 if (tmpvm == myvm) { 1108 printf("AIOD: vmspace problem -- %d\n", 1109 mycp->p_pid); 1110 } 1111 #endif 1112 /* Remove our vmspace reference. */ 1113 vmspace_free(tmpvm); 1114 1115 curcp = mycp; 1116 1117 mtx_lock(&aio_job_mtx); 1118 /* 1119 * We have to restart to avoid race, we only sleep if 1120 * no job can be selected, that should be 1121 * curcp == mycp. 1122 */ 1123 continue; 1124 } 1125 1126 mtx_assert(&aio_job_mtx, MA_OWNED); 1127 1128 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1129 aiop->aiothreadflags |= AIOP_FREE; 1130 1131 /* 1132 * If daemon is inactive for a long time, allow it to exit, 1133 * thereby freeing resources. 1134 */ 1135 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1136 aiod_lifetime)) { 1137 if (TAILQ_EMPTY(&aio_jobs)) { 1138 if ((aiop->aiothreadflags & AIOP_FREE) && 1139 (num_aio_procs > target_aio_procs)) { 1140 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1141 num_aio_procs--; 1142 mtx_unlock(&aio_job_mtx); 1143 uma_zfree(aiop_zone, aiop); 1144 free_unr(aiod_unr, id); 1145 #ifdef DIAGNOSTIC 1146 if (mycp->p_vmspace->vm_refcnt <= 1) { 1147 printf("AIOD: bad vm refcnt for" 1148 " exiting daemon: %d\n", 1149 mycp->p_vmspace->vm_refcnt); 1150 } 1151 #endif 1152 kproc_exit(0); 1153 } 1154 } 1155 } 1156 } 1157 mtx_unlock(&aio_job_mtx); 1158 panic("shouldn't be here\n"); 1159 } 1160 1161 /* 1162 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1163 * AIO daemon modifies its environment itself. 1164 */ 1165 static int 1166 aio_newproc(int *start) 1167 { 1168 int error; 1169 struct proc *p; 1170 int id; 1171 1172 id = alloc_unr(aiod_unr); 1173 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1174 RFNOWAIT, 0, "aiod%d", id); 1175 if (error == 0) { 1176 /* 1177 * Wait until daemon is started. 1178 */ 1179 sema_wait(&aio_newproc_sem); 1180 mtx_lock(&aio_job_mtx); 1181 num_aio_procs++; 1182 if (start != NULL) 1183 (*start)--; 1184 mtx_unlock(&aio_job_mtx); 1185 } else { 1186 free_unr(aiod_unr, id); 1187 } 1188 return (error); 1189 } 1190 1191 /* 1192 * Try the high-performance, low-overhead physio method for eligible 1193 * VCHR devices. This method doesn't use an aio helper thread, and 1194 * thus has very low overhead. 1195 * 1196 * Assumes that the caller, aio_aqueue(), has incremented the file 1197 * structure's reference count, preventing its deallocation for the 1198 * duration of this call. 1199 */ 1200 static int 1201 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1202 { 1203 struct aiocb *cb; 1204 struct file *fp; 1205 struct buf *bp; 1206 struct vnode *vp; 1207 struct kaioinfo *ki; 1208 struct aioliojob *lj; 1209 int error; 1210 1211 cb = &aiocbe->uaiocb; 1212 fp = aiocbe->fd_file; 1213 1214 if (fp->f_type != DTYPE_VNODE) 1215 return (-1); 1216 1217 vp = fp->f_vnode; 1218 1219 /* 1220 * If its not a disk, we don't want to return a positive error. 1221 * It causes the aio code to not fall through to try the thread 1222 * way when you're talking to a regular file. 1223 */ 1224 if (!vn_isdisk(vp, &error)) { 1225 if (error == ENOTBLK) 1226 return (-1); 1227 else 1228 return (error); 1229 } 1230 1231 if (vp->v_bufobj.bo_bsize == 0) 1232 return (-1); 1233 1234 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1235 return (-1); 1236 1237 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1238 return (-1); 1239 1240 if (cb->aio_nbytes > 1241 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1242 return (-1); 1243 1244 ki = p->p_aioinfo; 1245 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1246 return (-1); 1247 1248 /* Create and build a buffer header for a transfer. */ 1249 bp = (struct buf *)getpbuf(NULL); 1250 BUF_KERNPROC(bp); 1251 1252 AIO_LOCK(ki); 1253 ki->kaio_count++; 1254 ki->kaio_buffer_count++; 1255 lj = aiocbe->lio; 1256 if (lj) 1257 lj->lioj_count++; 1258 AIO_UNLOCK(ki); 1259 1260 /* 1261 * Get a copy of the kva from the physical buffer. 1262 */ 1263 error = 0; 1264 1265 bp->b_bcount = cb->aio_nbytes; 1266 bp->b_bufsize = cb->aio_nbytes; 1267 bp->b_iodone = aio_physwakeup; 1268 bp->b_saveaddr = bp->b_data; 1269 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1270 bp->b_offset = cb->aio_offset; 1271 bp->b_iooffset = cb->aio_offset; 1272 bp->b_blkno = btodb(cb->aio_offset); 1273 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1274 1275 /* 1276 * Bring buffer into kernel space. 1277 */ 1278 if (vmapbuf(bp) < 0) { 1279 error = EFAULT; 1280 goto doerror; 1281 } 1282 1283 AIO_LOCK(ki); 1284 aiocbe->bp = bp; 1285 bp->b_caller1 = (void *)aiocbe; 1286 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1287 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1288 aiocbe->jobstate = JOBST_JOBQBUF; 1289 cb->_aiocb_private.status = cb->aio_nbytes; 1290 AIO_UNLOCK(ki); 1291 1292 atomic_add_int(&num_queue_count, 1); 1293 atomic_add_int(&num_buf_aio, 1); 1294 1295 bp->b_error = 0; 1296 1297 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1298 1299 /* Perform transfer. */ 1300 dev_strategy(vp->v_rdev, bp); 1301 return (0); 1302 1303 doerror: 1304 AIO_LOCK(ki); 1305 ki->kaio_count--; 1306 ki->kaio_buffer_count--; 1307 if (lj) 1308 lj->lioj_count--; 1309 aiocbe->bp = NULL; 1310 AIO_UNLOCK(ki); 1311 relpbuf(bp, NULL); 1312 return (error); 1313 } 1314 1315 /* 1316 * Wake up aio requests that may be serviceable now. 1317 */ 1318 static void 1319 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1320 { 1321 struct aiocblist *cb, *cbn; 1322 int opcode; 1323 1324 SOCKBUF_LOCK_ASSERT(sb); 1325 if (sb == &so->so_snd) 1326 opcode = LIO_WRITE; 1327 else 1328 opcode = LIO_READ; 1329 1330 sb->sb_flags &= ~SB_AIO; 1331 mtx_lock(&aio_job_mtx); 1332 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1333 if (opcode == cb->uaiocb.aio_lio_opcode) { 1334 if (cb->jobstate != JOBST_JOBQSOCK) 1335 panic("invalid queue value"); 1336 /* XXX 1337 * We don't have actual sockets backend yet, 1338 * so we simply move the requests to the generic 1339 * file I/O backend. 1340 */ 1341 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1342 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1343 aio_kick_nowait(cb->userproc); 1344 } 1345 } 1346 mtx_unlock(&aio_job_mtx); 1347 } 1348 1349 static int 1350 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1351 { 1352 1353 /* 1354 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1355 * supported by AIO with the old sigevent structure. 1356 */ 1357 nsig->sigev_notify = osig->sigev_notify; 1358 switch (nsig->sigev_notify) { 1359 case SIGEV_NONE: 1360 break; 1361 case SIGEV_SIGNAL: 1362 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1363 break; 1364 case SIGEV_KEVENT: 1365 nsig->sigev_notify_kqueue = 1366 osig->__sigev_u.__sigev_notify_kqueue; 1367 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1368 break; 1369 default: 1370 return (EINVAL); 1371 } 1372 return (0); 1373 } 1374 1375 static int 1376 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1377 { 1378 struct oaiocb *ojob; 1379 int error; 1380 1381 bzero(kjob, sizeof(struct aiocb)); 1382 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1383 if (error) 1384 return (error); 1385 ojob = (struct oaiocb *)kjob; 1386 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1387 } 1388 1389 static int 1390 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1391 { 1392 1393 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1394 } 1395 1396 static long 1397 aiocb_fetch_status(struct aiocb *ujob) 1398 { 1399 1400 return (fuword(&ujob->_aiocb_private.status)); 1401 } 1402 1403 static long 1404 aiocb_fetch_error(struct aiocb *ujob) 1405 { 1406 1407 return (fuword(&ujob->_aiocb_private.error)); 1408 } 1409 1410 static int 1411 aiocb_store_status(struct aiocb *ujob, long status) 1412 { 1413 1414 return (suword(&ujob->_aiocb_private.status, status)); 1415 } 1416 1417 static int 1418 aiocb_store_error(struct aiocb *ujob, long error) 1419 { 1420 1421 return (suword(&ujob->_aiocb_private.error, error)); 1422 } 1423 1424 static int 1425 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1426 { 1427 1428 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1429 } 1430 1431 static int 1432 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1433 { 1434 1435 return (suword(ujobp, (long)ujob)); 1436 } 1437 1438 static struct aiocb_ops aiocb_ops = { 1439 .copyin = aiocb_copyin, 1440 .fetch_status = aiocb_fetch_status, 1441 .fetch_error = aiocb_fetch_error, 1442 .store_status = aiocb_store_status, 1443 .store_error = aiocb_store_error, 1444 .store_kernelinfo = aiocb_store_kernelinfo, 1445 .store_aiocb = aiocb_store_aiocb, 1446 }; 1447 1448 static struct aiocb_ops aiocb_ops_osigevent = { 1449 .copyin = aiocb_copyin_old_sigevent, 1450 .fetch_status = aiocb_fetch_status, 1451 .fetch_error = aiocb_fetch_error, 1452 .store_status = aiocb_store_status, 1453 .store_error = aiocb_store_error, 1454 .store_kernelinfo = aiocb_store_kernelinfo, 1455 .store_aiocb = aiocb_store_aiocb, 1456 }; 1457 1458 /* 1459 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1460 * technique is done in this code. 1461 */ 1462 int 1463 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1464 int type, struct aiocb_ops *ops) 1465 { 1466 struct proc *p = td->td_proc; 1467 struct file *fp; 1468 struct socket *so; 1469 struct aiocblist *aiocbe, *cb; 1470 struct kaioinfo *ki; 1471 struct kevent kev; 1472 struct sockbuf *sb; 1473 int opcode; 1474 int error; 1475 int fd, kqfd; 1476 int jid; 1477 1478 if (p->p_aioinfo == NULL) 1479 aio_init_aioinfo(p); 1480 1481 ki = p->p_aioinfo; 1482 1483 ops->store_status(job, -1); 1484 ops->store_error(job, 0); 1485 ops->store_kernelinfo(job, -1); 1486 1487 if (num_queue_count >= max_queue_count || 1488 ki->kaio_count >= ki->kaio_qallowed_count) { 1489 ops->store_error(job, EAGAIN); 1490 return (EAGAIN); 1491 } 1492 1493 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1494 aiocbe->inputcharge = 0; 1495 aiocbe->outputcharge = 0; 1496 knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki)); 1497 1498 error = ops->copyin(job, &aiocbe->uaiocb); 1499 if (error) { 1500 ops->store_error(job, error); 1501 uma_zfree(aiocb_zone, aiocbe); 1502 return (error); 1503 } 1504 1505 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1506 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1507 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1508 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1509 ops->store_error(job, EINVAL); 1510 uma_zfree(aiocb_zone, aiocbe); 1511 return (EINVAL); 1512 } 1513 1514 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1515 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1516 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1517 uma_zfree(aiocb_zone, aiocbe); 1518 return (EINVAL); 1519 } 1520 1521 ksiginfo_init(&aiocbe->ksi); 1522 1523 /* Save userspace address of the job info. */ 1524 aiocbe->uuaiocb = job; 1525 1526 /* Get the opcode. */ 1527 if (type != LIO_NOP) 1528 aiocbe->uaiocb.aio_lio_opcode = type; 1529 opcode = aiocbe->uaiocb.aio_lio_opcode; 1530 1531 /* Fetch the file object for the specified file descriptor. */ 1532 fd = aiocbe->uaiocb.aio_fildes; 1533 switch (opcode) { 1534 case LIO_WRITE: 1535 error = fget_write(td, fd, &fp); 1536 break; 1537 case LIO_READ: 1538 error = fget_read(td, fd, &fp); 1539 break; 1540 default: 1541 error = fget(td, fd, &fp); 1542 } 1543 if (error) { 1544 uma_zfree(aiocb_zone, aiocbe); 1545 ops->store_error(job, error); 1546 return (error); 1547 } 1548 1549 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1550 error = EINVAL; 1551 goto aqueue_fail; 1552 } 1553 1554 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1555 error = EINVAL; 1556 goto aqueue_fail; 1557 } 1558 1559 aiocbe->fd_file = fp; 1560 1561 mtx_lock(&aio_job_mtx); 1562 jid = jobrefid++; 1563 aiocbe->seqno = jobseqno++; 1564 mtx_unlock(&aio_job_mtx); 1565 error = ops->store_kernelinfo(job, jid); 1566 if (error) { 1567 error = EINVAL; 1568 goto aqueue_fail; 1569 } 1570 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1571 1572 if (opcode == LIO_NOP) { 1573 fdrop(fp, td); 1574 uma_zfree(aiocb_zone, aiocbe); 1575 return (0); 1576 } 1577 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1578 (opcode != LIO_SYNC)) { 1579 error = EINVAL; 1580 goto aqueue_fail; 1581 } 1582 1583 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1584 goto no_kqueue; 1585 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1586 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1587 kev.filter = EVFILT_AIO; 1588 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1589 kev.data = (intptr_t)aiocbe; 1590 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1591 error = kqfd_register(kqfd, &kev, td, 1); 1592 aqueue_fail: 1593 if (error) { 1594 fdrop(fp, td); 1595 uma_zfree(aiocb_zone, aiocbe); 1596 ops->store_error(job, error); 1597 goto done; 1598 } 1599 no_kqueue: 1600 1601 ops->store_error(job, EINPROGRESS); 1602 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1603 aiocbe->userproc = p; 1604 aiocbe->cred = crhold(td->td_ucred); 1605 aiocbe->jobflags = 0; 1606 aiocbe->lio = lj; 1607 1608 if (opcode == LIO_SYNC) 1609 goto queueit; 1610 1611 if (fp->f_type == DTYPE_SOCKET) { 1612 /* 1613 * Alternate queueing for socket ops: Reach down into the 1614 * descriptor to get the socket data. Then check to see if the 1615 * socket is ready to be read or written (based on the requested 1616 * operation). 1617 * 1618 * If it is not ready for io, then queue the aiocbe on the 1619 * socket, and set the flags so we get a call when sbnotify() 1620 * happens. 1621 * 1622 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1623 * and unlock the snd sockbuf for no reason. 1624 */ 1625 so = fp->f_data; 1626 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1627 SOCKBUF_LOCK(sb); 1628 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1629 LIO_WRITE) && (!sowriteable(so)))) { 1630 sb->sb_flags |= SB_AIO; 1631 1632 mtx_lock(&aio_job_mtx); 1633 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1634 mtx_unlock(&aio_job_mtx); 1635 1636 AIO_LOCK(ki); 1637 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1638 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1639 aiocbe->jobstate = JOBST_JOBQSOCK; 1640 ki->kaio_count++; 1641 if (lj) 1642 lj->lioj_count++; 1643 AIO_UNLOCK(ki); 1644 SOCKBUF_UNLOCK(sb); 1645 atomic_add_int(&num_queue_count, 1); 1646 error = 0; 1647 goto done; 1648 } 1649 SOCKBUF_UNLOCK(sb); 1650 } 1651 1652 if ((error = aio_qphysio(p, aiocbe)) == 0) 1653 goto done; 1654 #if 0 1655 if (error > 0) { 1656 aiocbe->uaiocb._aiocb_private.error = error; 1657 ops->store_error(job, error); 1658 goto done; 1659 } 1660 #endif 1661 queueit: 1662 /* No buffer for daemon I/O. */ 1663 aiocbe->bp = NULL; 1664 atomic_add_int(&num_queue_count, 1); 1665 1666 AIO_LOCK(ki); 1667 ki->kaio_count++; 1668 if (lj) 1669 lj->lioj_count++; 1670 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1671 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1672 if (opcode == LIO_SYNC) { 1673 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1674 if (cb->fd_file == aiocbe->fd_file && 1675 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1676 cb->seqno < aiocbe->seqno) { 1677 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1678 aiocbe->pending++; 1679 } 1680 } 1681 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1682 if (cb->fd_file == aiocbe->fd_file && 1683 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1684 cb->seqno < aiocbe->seqno) { 1685 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1686 aiocbe->pending++; 1687 } 1688 } 1689 if (aiocbe->pending != 0) { 1690 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1691 aiocbe->jobstate = JOBST_JOBQSYNC; 1692 AIO_UNLOCK(ki); 1693 goto done; 1694 } 1695 } 1696 mtx_lock(&aio_job_mtx); 1697 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1698 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1699 aio_kick_nowait(p); 1700 mtx_unlock(&aio_job_mtx); 1701 AIO_UNLOCK(ki); 1702 error = 0; 1703 done: 1704 return (error); 1705 } 1706 1707 static void 1708 aio_kick_nowait(struct proc *userp) 1709 { 1710 struct kaioinfo *ki = userp->p_aioinfo; 1711 struct aiothreadlist *aiop; 1712 1713 mtx_assert(&aio_job_mtx, MA_OWNED); 1714 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1715 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1716 aiop->aiothreadflags &= ~AIOP_FREE; 1717 wakeup(aiop->aiothread); 1718 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1719 ((ki->kaio_active_count + num_aio_resv_start) < 1720 ki->kaio_maxactive_count)) { 1721 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1722 } 1723 } 1724 1725 static int 1726 aio_kick(struct proc *userp) 1727 { 1728 struct kaioinfo *ki = userp->p_aioinfo; 1729 struct aiothreadlist *aiop; 1730 int error, ret = 0; 1731 1732 mtx_assert(&aio_job_mtx, MA_OWNED); 1733 retryproc: 1734 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1735 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1736 aiop->aiothreadflags &= ~AIOP_FREE; 1737 wakeup(aiop->aiothread); 1738 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1739 ((ki->kaio_active_count + num_aio_resv_start) < 1740 ki->kaio_maxactive_count)) { 1741 num_aio_resv_start++; 1742 mtx_unlock(&aio_job_mtx); 1743 error = aio_newproc(&num_aio_resv_start); 1744 mtx_lock(&aio_job_mtx); 1745 if (error) { 1746 num_aio_resv_start--; 1747 goto retryproc; 1748 } 1749 } else { 1750 ret = -1; 1751 } 1752 return (ret); 1753 } 1754 1755 static void 1756 aio_kick_helper(void *context, int pending) 1757 { 1758 struct proc *userp = context; 1759 1760 mtx_lock(&aio_job_mtx); 1761 while (--pending >= 0) { 1762 if (aio_kick(userp)) 1763 break; 1764 } 1765 mtx_unlock(&aio_job_mtx); 1766 } 1767 1768 /* 1769 * Support the aio_return system call, as a side-effect, kernel resources are 1770 * released. 1771 */ 1772 static int 1773 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) 1774 { 1775 struct proc *p = td->td_proc; 1776 struct aiocblist *cb; 1777 struct kaioinfo *ki; 1778 int status, error; 1779 1780 ki = p->p_aioinfo; 1781 if (ki == NULL) 1782 return (EINVAL); 1783 AIO_LOCK(ki); 1784 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1785 if (cb->uuaiocb == uaiocb) 1786 break; 1787 } 1788 if (cb != NULL) { 1789 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1790 status = cb->uaiocb._aiocb_private.status; 1791 error = cb->uaiocb._aiocb_private.error; 1792 td->td_retval[0] = status; 1793 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1794 td->td_ru.ru_oublock += cb->outputcharge; 1795 cb->outputcharge = 0; 1796 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1797 td->td_ru.ru_inblock += cb->inputcharge; 1798 cb->inputcharge = 0; 1799 } 1800 aio_free_entry(cb); 1801 AIO_UNLOCK(ki); 1802 ops->store_error(uaiocb, error); 1803 ops->store_status(uaiocb, status); 1804 } else { 1805 error = EINVAL; 1806 AIO_UNLOCK(ki); 1807 } 1808 return (error); 1809 } 1810 1811 int 1812 aio_return(struct thread *td, struct aio_return_args *uap) 1813 { 1814 1815 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1816 } 1817 1818 /* 1819 * Allow a process to wakeup when any of the I/O requests are completed. 1820 */ 1821 static int 1822 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1823 struct timespec *ts) 1824 { 1825 struct proc *p = td->td_proc; 1826 struct timeval atv; 1827 struct kaioinfo *ki; 1828 struct aiocblist *cb, *cbfirst; 1829 int error, i, timo; 1830 1831 timo = 0; 1832 if (ts) { 1833 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1834 return (EINVAL); 1835 1836 TIMESPEC_TO_TIMEVAL(&atv, ts); 1837 if (itimerfix(&atv)) 1838 return (EINVAL); 1839 timo = tvtohz(&atv); 1840 } 1841 1842 ki = p->p_aioinfo; 1843 if (ki == NULL) 1844 return (EAGAIN); 1845 1846 if (njoblist == 0) 1847 return (0); 1848 1849 AIO_LOCK(ki); 1850 for (;;) { 1851 cbfirst = NULL; 1852 error = 0; 1853 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1854 for (i = 0; i < njoblist; i++) { 1855 if (cb->uuaiocb == ujoblist[i]) { 1856 if (cbfirst == NULL) 1857 cbfirst = cb; 1858 if (cb->jobstate == JOBST_JOBFINISHED) 1859 goto RETURN; 1860 } 1861 } 1862 } 1863 /* All tasks were finished. */ 1864 if (cbfirst == NULL) 1865 break; 1866 1867 ki->kaio_flags |= KAIO_WAKEUP; 1868 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1869 "aiospn", timo); 1870 if (error == ERESTART) 1871 error = EINTR; 1872 if (error) 1873 break; 1874 } 1875 RETURN: 1876 AIO_UNLOCK(ki); 1877 return (error); 1878 } 1879 1880 int 1881 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1882 { 1883 struct timespec ts, *tsp; 1884 struct aiocb **ujoblist; 1885 int error; 1886 1887 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1888 return (EINVAL); 1889 1890 if (uap->timeout) { 1891 /* Get timespec struct. */ 1892 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1893 return (error); 1894 tsp = &ts; 1895 } else 1896 tsp = NULL; 1897 1898 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1899 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1900 if (error == 0) 1901 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1902 uma_zfree(aiol_zone, ujoblist); 1903 return (error); 1904 } 1905 1906 /* 1907 * aio_cancel cancels any non-physio aio operations not currently in 1908 * progress. 1909 */ 1910 int 1911 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1912 { 1913 struct proc *p = td->td_proc; 1914 struct kaioinfo *ki; 1915 struct aiocblist *cbe, *cbn; 1916 struct file *fp; 1917 struct socket *so; 1918 int error; 1919 int remove; 1920 int cancelled = 0; 1921 int notcancelled = 0; 1922 struct vnode *vp; 1923 1924 /* Lookup file object. */ 1925 error = fget(td, uap->fd, &fp); 1926 if (error) 1927 return (error); 1928 1929 ki = p->p_aioinfo; 1930 if (ki == NULL) 1931 goto done; 1932 1933 if (fp->f_type == DTYPE_VNODE) { 1934 vp = fp->f_vnode; 1935 if (vn_isdisk(vp, &error)) { 1936 fdrop(fp, td); 1937 td->td_retval[0] = AIO_NOTCANCELED; 1938 return (0); 1939 } 1940 } 1941 1942 AIO_LOCK(ki); 1943 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1944 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1945 ((uap->aiocbp == NULL) || 1946 (uap->aiocbp == cbe->uuaiocb))) { 1947 remove = 0; 1948 1949 mtx_lock(&aio_job_mtx); 1950 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1951 TAILQ_REMOVE(&aio_jobs, cbe, list); 1952 remove = 1; 1953 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1954 MPASS(fp->f_type == DTYPE_SOCKET); 1955 so = fp->f_data; 1956 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1957 remove = 1; 1958 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1959 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1960 remove = 1; 1961 } 1962 mtx_unlock(&aio_job_mtx); 1963 1964 if (remove) { 1965 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1966 cbe->uaiocb._aiocb_private.status = -1; 1967 cbe->uaiocb._aiocb_private.error = ECANCELED; 1968 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1969 cancelled++; 1970 } else { 1971 notcancelled++; 1972 } 1973 if (uap->aiocbp != NULL) 1974 break; 1975 } 1976 } 1977 AIO_UNLOCK(ki); 1978 1979 done: 1980 fdrop(fp, td); 1981 1982 if (uap->aiocbp != NULL) { 1983 if (cancelled) { 1984 td->td_retval[0] = AIO_CANCELED; 1985 return (0); 1986 } 1987 } 1988 1989 if (notcancelled) { 1990 td->td_retval[0] = AIO_NOTCANCELED; 1991 return (0); 1992 } 1993 1994 if (cancelled) { 1995 td->td_retval[0] = AIO_CANCELED; 1996 return (0); 1997 } 1998 1999 td->td_retval[0] = AIO_ALLDONE; 2000 2001 return (0); 2002 } 2003 2004 /* 2005 * aio_error is implemented in the kernel level for compatibility purposes 2006 * only. For a user mode async implementation, it would be best to do it in 2007 * a userland subroutine. 2008 */ 2009 static int 2010 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) 2011 { 2012 struct proc *p = td->td_proc; 2013 struct aiocblist *cb; 2014 struct kaioinfo *ki; 2015 int status; 2016 2017 ki = p->p_aioinfo; 2018 if (ki == NULL) { 2019 td->td_retval[0] = EINVAL; 2020 return (0); 2021 } 2022 2023 AIO_LOCK(ki); 2024 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 2025 if (cb->uuaiocb == aiocbp) { 2026 if (cb->jobstate == JOBST_JOBFINISHED) 2027 td->td_retval[0] = 2028 cb->uaiocb._aiocb_private.error; 2029 else 2030 td->td_retval[0] = EINPROGRESS; 2031 AIO_UNLOCK(ki); 2032 return (0); 2033 } 2034 } 2035 AIO_UNLOCK(ki); 2036 2037 /* 2038 * Hack for failure of aio_aqueue. 2039 */ 2040 status = ops->fetch_status(aiocbp); 2041 if (status == -1) { 2042 td->td_retval[0] = ops->fetch_error(aiocbp); 2043 return (0); 2044 } 2045 2046 td->td_retval[0] = EINVAL; 2047 return (0); 2048 } 2049 2050 int 2051 aio_error(struct thread *td, struct aio_error_args *uap) 2052 { 2053 2054 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2055 } 2056 2057 /* syscall - asynchronous read from a file (REALTIME) */ 2058 int 2059 oaio_read(struct thread *td, struct oaio_read_args *uap) 2060 { 2061 2062 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2063 &aiocb_ops_osigevent)); 2064 } 2065 2066 int 2067 aio_read(struct thread *td, struct aio_read_args *uap) 2068 { 2069 2070 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2071 } 2072 2073 /* syscall - asynchronous write to a file (REALTIME) */ 2074 int 2075 oaio_write(struct thread *td, struct oaio_write_args *uap) 2076 { 2077 2078 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2079 &aiocb_ops_osigevent)); 2080 } 2081 2082 int 2083 aio_write(struct thread *td, struct aio_write_args *uap) 2084 { 2085 2086 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2087 } 2088 2089 static int 2090 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2091 struct aiocb **acb_list, int nent, struct sigevent *sig, 2092 struct aiocb_ops *ops) 2093 { 2094 struct proc *p = td->td_proc; 2095 struct aiocb *iocb; 2096 struct kaioinfo *ki; 2097 struct aioliojob *lj; 2098 struct kevent kev; 2099 int error; 2100 int nerror; 2101 int i; 2102 2103 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2104 return (EINVAL); 2105 2106 if (nent < 0 || nent > AIO_LISTIO_MAX) 2107 return (EINVAL); 2108 2109 if (p->p_aioinfo == NULL) 2110 aio_init_aioinfo(p); 2111 2112 ki = p->p_aioinfo; 2113 2114 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2115 lj->lioj_flags = 0; 2116 lj->lioj_count = 0; 2117 lj->lioj_finished_count = 0; 2118 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2119 ksiginfo_init(&lj->lioj_ksi); 2120 2121 /* 2122 * Setup signal. 2123 */ 2124 if (sig && (mode == LIO_NOWAIT)) { 2125 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2126 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2127 /* Assume only new style KEVENT */ 2128 kev.filter = EVFILT_LIO; 2129 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2130 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2131 kev.data = (intptr_t)lj; 2132 /* pass user defined sigval data */ 2133 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2134 error = kqfd_register( 2135 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2136 if (error) { 2137 uma_zfree(aiolio_zone, lj); 2138 return (error); 2139 } 2140 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2141 ; 2142 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2143 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2144 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2145 uma_zfree(aiolio_zone, lj); 2146 return EINVAL; 2147 } 2148 lj->lioj_flags |= LIOJ_SIGNAL; 2149 } else { 2150 uma_zfree(aiolio_zone, lj); 2151 return EINVAL; 2152 } 2153 } 2154 2155 AIO_LOCK(ki); 2156 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2157 /* 2158 * Add extra aiocb count to avoid the lio to be freed 2159 * by other threads doing aio_waitcomplete or aio_return, 2160 * and prevent event from being sent until we have queued 2161 * all tasks. 2162 */ 2163 lj->lioj_count = 1; 2164 AIO_UNLOCK(ki); 2165 2166 /* 2167 * Get pointers to the list of I/O requests. 2168 */ 2169 nerror = 0; 2170 for (i = 0; i < nent; i++) { 2171 iocb = acb_list[i]; 2172 if (iocb != NULL) { 2173 error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); 2174 if (error != 0) 2175 nerror++; 2176 } 2177 } 2178 2179 error = 0; 2180 AIO_LOCK(ki); 2181 if (mode == LIO_WAIT) { 2182 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2183 ki->kaio_flags |= KAIO_WAKEUP; 2184 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2185 PRIBIO | PCATCH, "aiospn", 0); 2186 if (error == ERESTART) 2187 error = EINTR; 2188 if (error) 2189 break; 2190 } 2191 } else { 2192 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2193 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2194 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2195 KNOTE_LOCKED(&lj->klist, 1); 2196 } 2197 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2198 == LIOJ_SIGNAL 2199 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2200 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2201 aio_sendsig(p, &lj->lioj_signal, 2202 &lj->lioj_ksi); 2203 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2204 } 2205 } 2206 } 2207 lj->lioj_count--; 2208 if (lj->lioj_count == 0) { 2209 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2210 knlist_delete(&lj->klist, curthread, 1); 2211 PROC_LOCK(p); 2212 sigqueue_take(&lj->lioj_ksi); 2213 PROC_UNLOCK(p); 2214 AIO_UNLOCK(ki); 2215 uma_zfree(aiolio_zone, lj); 2216 } else 2217 AIO_UNLOCK(ki); 2218 2219 if (nerror) 2220 return (EIO); 2221 return (error); 2222 } 2223 2224 /* syscall - list directed I/O (REALTIME) */ 2225 int 2226 olio_listio(struct thread *td, struct olio_listio_args *uap) 2227 { 2228 struct aiocb **acb_list; 2229 struct sigevent *sigp, sig; 2230 struct osigevent osig; 2231 int error, nent; 2232 2233 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2234 return (EINVAL); 2235 2236 nent = uap->nent; 2237 if (nent < 0 || nent > AIO_LISTIO_MAX) 2238 return (EINVAL); 2239 2240 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2241 error = copyin(uap->sig, &osig, sizeof(osig)); 2242 if (error) 2243 return (error); 2244 error = convert_old_sigevent(&osig, &sig); 2245 if (error) 2246 return (error); 2247 sigp = &sig; 2248 } else 2249 sigp = NULL; 2250 2251 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2252 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2253 if (error == 0) 2254 error = kern_lio_listio(td, uap->mode, 2255 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2256 &aiocb_ops_osigevent); 2257 free(acb_list, M_LIO); 2258 return (error); 2259 } 2260 2261 /* syscall - list directed I/O (REALTIME) */ 2262 int 2263 lio_listio(struct thread *td, struct lio_listio_args *uap) 2264 { 2265 struct aiocb **acb_list; 2266 struct sigevent *sigp, sig; 2267 int error, nent; 2268 2269 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2270 return (EINVAL); 2271 2272 nent = uap->nent; 2273 if (nent < 0 || nent > AIO_LISTIO_MAX) 2274 return (EINVAL); 2275 2276 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2277 error = copyin(uap->sig, &sig, sizeof(sig)); 2278 if (error) 2279 return (error); 2280 sigp = &sig; 2281 } else 2282 sigp = NULL; 2283 2284 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2285 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2286 if (error == 0) 2287 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2288 nent, sigp, &aiocb_ops); 2289 free(acb_list, M_LIO); 2290 return (error); 2291 } 2292 2293 /* 2294 * Called from interrupt thread for physio, we should return as fast 2295 * as possible, so we schedule a biohelper task. 2296 */ 2297 static void 2298 aio_physwakeup(struct buf *bp) 2299 { 2300 struct aiocblist *aiocbe; 2301 2302 aiocbe = (struct aiocblist *)bp->b_caller1; 2303 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2304 } 2305 2306 /* 2307 * Task routine to perform heavy tasks, process wakeup, and signals. 2308 */ 2309 static void 2310 biohelper(void *context, int pending) 2311 { 2312 struct aiocblist *aiocbe = context; 2313 struct buf *bp; 2314 struct proc *userp; 2315 struct kaioinfo *ki; 2316 int nblks; 2317 2318 bp = aiocbe->bp; 2319 userp = aiocbe->userproc; 2320 ki = userp->p_aioinfo; 2321 AIO_LOCK(ki); 2322 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2323 aiocbe->uaiocb._aiocb_private.error = 0; 2324 if (bp->b_ioflags & BIO_ERROR) 2325 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2326 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2327 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2328 aiocbe->outputcharge += nblks; 2329 else 2330 aiocbe->inputcharge += nblks; 2331 aiocbe->bp = NULL; 2332 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2333 ki->kaio_buffer_count--; 2334 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2335 AIO_UNLOCK(ki); 2336 2337 /* Release mapping into kernel space. */ 2338 vunmapbuf(bp); 2339 relpbuf(bp, NULL); 2340 atomic_subtract_int(&num_buf_aio, 1); 2341 } 2342 2343 /* syscall - wait for the next completion of an aio request */ 2344 static int 2345 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, 2346 struct timespec *ts, struct aiocb_ops *ops) 2347 { 2348 struct proc *p = td->td_proc; 2349 struct timeval atv; 2350 struct kaioinfo *ki; 2351 struct aiocblist *cb; 2352 struct aiocb *uuaiocb; 2353 int error, status, timo; 2354 2355 ops->store_aiocb(aiocbp, NULL); 2356 2357 timo = 0; 2358 if (ts) { 2359 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2360 return (EINVAL); 2361 2362 TIMESPEC_TO_TIMEVAL(&atv, ts); 2363 if (itimerfix(&atv)) 2364 return (EINVAL); 2365 timo = tvtohz(&atv); 2366 } 2367 2368 if (p->p_aioinfo == NULL) 2369 aio_init_aioinfo(p); 2370 ki = p->p_aioinfo; 2371 2372 error = 0; 2373 cb = NULL; 2374 AIO_LOCK(ki); 2375 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2376 ki->kaio_flags |= KAIO_WAKEUP; 2377 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2378 "aiowc", timo); 2379 if (timo && error == ERESTART) 2380 error = EINTR; 2381 if (error) 2382 break; 2383 } 2384 2385 if (cb != NULL) { 2386 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2387 uuaiocb = cb->uuaiocb; 2388 status = cb->uaiocb._aiocb_private.status; 2389 error = cb->uaiocb._aiocb_private.error; 2390 td->td_retval[0] = status; 2391 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2392 td->td_ru.ru_oublock += cb->outputcharge; 2393 cb->outputcharge = 0; 2394 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2395 td->td_ru.ru_inblock += cb->inputcharge; 2396 cb->inputcharge = 0; 2397 } 2398 aio_free_entry(cb); 2399 AIO_UNLOCK(ki); 2400 ops->store_aiocb(aiocbp, uuaiocb); 2401 ops->store_error(uuaiocb, error); 2402 ops->store_status(uuaiocb, status); 2403 } else 2404 AIO_UNLOCK(ki); 2405 2406 return (error); 2407 } 2408 2409 int 2410 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2411 { 2412 struct timespec ts, *tsp; 2413 int error; 2414 2415 if (uap->timeout) { 2416 /* Get timespec struct. */ 2417 error = copyin(uap->timeout, &ts, sizeof(ts)); 2418 if (error) 2419 return (error); 2420 tsp = &ts; 2421 } else 2422 tsp = NULL; 2423 2424 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2425 } 2426 2427 static int 2428 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, 2429 struct aiocb_ops *ops) 2430 { 2431 struct proc *p = td->td_proc; 2432 struct kaioinfo *ki; 2433 2434 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2435 return (EINVAL); 2436 ki = p->p_aioinfo; 2437 if (ki == NULL) 2438 aio_init_aioinfo(p); 2439 return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); 2440 } 2441 2442 int 2443 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2444 { 2445 2446 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2447 } 2448 2449 /* kqueue attach function */ 2450 static int 2451 filt_aioattach(struct knote *kn) 2452 { 2453 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2454 2455 /* 2456 * The aiocbe pointer must be validated before using it, so 2457 * registration is restricted to the kernel; the user cannot 2458 * set EV_FLAG1. 2459 */ 2460 if ((kn->kn_flags & EV_FLAG1) == 0) 2461 return (EPERM); 2462 kn->kn_ptr.p_aio = aiocbe; 2463 kn->kn_flags &= ~EV_FLAG1; 2464 2465 knlist_add(&aiocbe->klist, kn, 0); 2466 2467 return (0); 2468 } 2469 2470 /* kqueue detach function */ 2471 static void 2472 filt_aiodetach(struct knote *kn) 2473 { 2474 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2475 2476 if (!knlist_empty(&aiocbe->klist)) 2477 knlist_remove(&aiocbe->klist, kn, 0); 2478 } 2479 2480 /* kqueue filter function */ 2481 /*ARGSUSED*/ 2482 static int 2483 filt_aio(struct knote *kn, long hint) 2484 { 2485 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2486 2487 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2488 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2489 return (0); 2490 kn->kn_flags |= EV_EOF; 2491 return (1); 2492 } 2493 2494 /* kqueue attach function */ 2495 static int 2496 filt_lioattach(struct knote *kn) 2497 { 2498 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2499 2500 /* 2501 * The aioliojob pointer must be validated before using it, so 2502 * registration is restricted to the kernel; the user cannot 2503 * set EV_FLAG1. 2504 */ 2505 if ((kn->kn_flags & EV_FLAG1) == 0) 2506 return (EPERM); 2507 kn->kn_ptr.p_lio = lj; 2508 kn->kn_flags &= ~EV_FLAG1; 2509 2510 knlist_add(&lj->klist, kn, 0); 2511 2512 return (0); 2513 } 2514 2515 /* kqueue detach function */ 2516 static void 2517 filt_liodetach(struct knote *kn) 2518 { 2519 struct aioliojob * lj = kn->kn_ptr.p_lio; 2520 2521 if (!knlist_empty(&lj->klist)) 2522 knlist_remove(&lj->klist, kn, 0); 2523 } 2524 2525 /* kqueue filter function */ 2526 /*ARGSUSED*/ 2527 static int 2528 filt_lio(struct knote *kn, long hint) 2529 { 2530 struct aioliojob * lj = kn->kn_ptr.p_lio; 2531 2532 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2533 } 2534 2535 #ifdef COMPAT_IA32 2536 #include <sys/mount.h> 2537 #include <sys/socket.h> 2538 #include <compat/freebsd32/freebsd32.h> 2539 #include <compat/freebsd32/freebsd32_proto.h> 2540 #include <compat/freebsd32/freebsd32_signal.h> 2541 #include <compat/freebsd32/freebsd32_syscall.h> 2542 #include <compat/freebsd32/freebsd32_util.h> 2543 2544 struct __aiocb_private32 { 2545 int32_t status; 2546 int32_t error; 2547 uint32_t kernelinfo; 2548 }; 2549 2550 typedef struct oaiocb32 { 2551 int aio_fildes; /* File descriptor */ 2552 uint64_t aio_offset __packed; /* File offset for I/O */ 2553 uint32_t aio_buf; /* I/O buffer in process space */ 2554 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2555 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2556 int aio_lio_opcode; /* LIO opcode */ 2557 int aio_reqprio; /* Request priority -- ignored */ 2558 struct __aiocb_private32 _aiocb_private; 2559 } oaiocb32_t; 2560 2561 typedef struct aiocb32 { 2562 int32_t aio_fildes; /* File descriptor */ 2563 uint64_t aio_offset __packed; /* File offset for I/O */ 2564 uint32_t aio_buf; /* I/O buffer in process space */ 2565 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2566 int __spare__[2]; 2567 uint32_t __spare2__; 2568 int aio_lio_opcode; /* LIO opcode */ 2569 int aio_reqprio; /* Request priority -- ignored */ 2570 struct __aiocb_private32 _aiocb_private; 2571 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2572 } aiocb32_t; 2573 2574 static int 2575 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2576 { 2577 2578 /* 2579 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2580 * supported by AIO with the old sigevent structure. 2581 */ 2582 CP(*osig, *nsig, sigev_notify); 2583 switch (nsig->sigev_notify) { 2584 case SIGEV_NONE: 2585 break; 2586 case SIGEV_SIGNAL: 2587 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2588 break; 2589 case SIGEV_KEVENT: 2590 nsig->sigev_notify_kqueue = 2591 osig->__sigev_u.__sigev_notify_kqueue; 2592 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2593 break; 2594 default: 2595 return (EINVAL); 2596 } 2597 return (0); 2598 } 2599 2600 static int 2601 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2602 { 2603 struct oaiocb32 job32; 2604 int error; 2605 2606 bzero(kjob, sizeof(struct aiocb)); 2607 error = copyin(ujob, &job32, sizeof(job32)); 2608 if (error) 2609 return (error); 2610 2611 CP(job32, *kjob, aio_fildes); 2612 CP(job32, *kjob, aio_offset); 2613 PTRIN_CP(job32, *kjob, aio_buf); 2614 CP(job32, *kjob, aio_nbytes); 2615 CP(job32, *kjob, aio_lio_opcode); 2616 CP(job32, *kjob, aio_reqprio); 2617 CP(job32, *kjob, _aiocb_private.status); 2618 CP(job32, *kjob, _aiocb_private.error); 2619 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2620 return (convert_old_sigevent32(&job32.aio_sigevent, 2621 &kjob->aio_sigevent)); 2622 } 2623 2624 static int 2625 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 2626 { 2627 2628 CP(*sig32, *sig, sigev_notify); 2629 switch (sig->sigev_notify) { 2630 case SIGEV_NONE: 2631 break; 2632 case SIGEV_THREAD_ID: 2633 CP(*sig32, *sig, sigev_notify_thread_id); 2634 /* FALLTHROUGH */ 2635 case SIGEV_SIGNAL: 2636 CP(*sig32, *sig, sigev_signo); 2637 break; 2638 case SIGEV_KEVENT: 2639 CP(*sig32, *sig, sigev_notify_kqueue); 2640 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2641 break; 2642 default: 2643 return (EINVAL); 2644 } 2645 return (0); 2646 } 2647 2648 static int 2649 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2650 { 2651 struct aiocb32 job32; 2652 int error; 2653 2654 error = copyin(ujob, &job32, sizeof(job32)); 2655 if (error) 2656 return (error); 2657 CP(job32, *kjob, aio_fildes); 2658 CP(job32, *kjob, aio_offset); 2659 PTRIN_CP(job32, *kjob, aio_buf); 2660 CP(job32, *kjob, aio_nbytes); 2661 CP(job32, *kjob, aio_lio_opcode); 2662 CP(job32, *kjob, aio_reqprio); 2663 CP(job32, *kjob, _aiocb_private.status); 2664 CP(job32, *kjob, _aiocb_private.error); 2665 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2666 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2667 } 2668 2669 static long 2670 aiocb32_fetch_status(struct aiocb *ujob) 2671 { 2672 struct aiocb32 *ujob32; 2673 2674 ujob32 = (struct aiocb32 *)ujob; 2675 return (fuword32(&ujob32->_aiocb_private.status)); 2676 } 2677 2678 static long 2679 aiocb32_fetch_error(struct aiocb *ujob) 2680 { 2681 struct aiocb32 *ujob32; 2682 2683 ujob32 = (struct aiocb32 *)ujob; 2684 return (fuword32(&ujob32->_aiocb_private.error)); 2685 } 2686 2687 static int 2688 aiocb32_store_status(struct aiocb *ujob, long status) 2689 { 2690 struct aiocb32 *ujob32; 2691 2692 ujob32 = (struct aiocb32 *)ujob; 2693 return (suword32(&ujob32->_aiocb_private.status, status)); 2694 } 2695 2696 static int 2697 aiocb32_store_error(struct aiocb *ujob, long error) 2698 { 2699 struct aiocb32 *ujob32; 2700 2701 ujob32 = (struct aiocb32 *)ujob; 2702 return (suword32(&ujob32->_aiocb_private.error, error)); 2703 } 2704 2705 static int 2706 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2707 { 2708 struct aiocb32 *ujob32; 2709 2710 ujob32 = (struct aiocb32 *)ujob; 2711 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2712 } 2713 2714 static int 2715 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2716 { 2717 2718 return (suword32(ujobp, (long)ujob)); 2719 } 2720 2721 static struct aiocb_ops aiocb32_ops = { 2722 .copyin = aiocb32_copyin, 2723 .fetch_status = aiocb32_fetch_status, 2724 .fetch_error = aiocb32_fetch_error, 2725 .store_status = aiocb32_store_status, 2726 .store_error = aiocb32_store_error, 2727 .store_kernelinfo = aiocb32_store_kernelinfo, 2728 .store_aiocb = aiocb32_store_aiocb, 2729 }; 2730 2731 static struct aiocb_ops aiocb32_ops_osigevent = { 2732 .copyin = aiocb32_copyin_old_sigevent, 2733 .fetch_status = aiocb32_fetch_status, 2734 .fetch_error = aiocb32_fetch_error, 2735 .store_status = aiocb32_store_status, 2736 .store_error = aiocb32_store_error, 2737 .store_kernelinfo = aiocb32_store_kernelinfo, 2738 .store_aiocb = aiocb32_store_aiocb, 2739 }; 2740 2741 int 2742 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2743 { 2744 2745 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2746 } 2747 2748 int 2749 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2750 { 2751 struct timespec32 ts32; 2752 struct timespec ts, *tsp; 2753 struct aiocb **ujoblist; 2754 uint32_t *ujoblist32; 2755 int error, i; 2756 2757 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2758 return (EINVAL); 2759 2760 if (uap->timeout) { 2761 /* Get timespec struct. */ 2762 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2763 return (error); 2764 CP(ts32, ts, tv_sec); 2765 CP(ts32, ts, tv_nsec); 2766 tsp = &ts; 2767 } else 2768 tsp = NULL; 2769 2770 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2771 ujoblist32 = (uint32_t *)ujoblist; 2772 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2773 sizeof(ujoblist32[0])); 2774 if (error == 0) { 2775 for (i = uap->nent; i > 0; i--) 2776 ujoblist[i] = PTRIN(ujoblist32[i]); 2777 2778 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2779 } 2780 uma_zfree(aiol_zone, ujoblist); 2781 return (error); 2782 } 2783 2784 int 2785 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2786 { 2787 2788 return (aio_cancel(td, (struct aio_cancel_args *)uap)); 2789 } 2790 2791 int 2792 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2793 { 2794 2795 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2796 } 2797 2798 int 2799 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2800 { 2801 2802 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2803 &aiocb32_ops_osigevent)); 2804 } 2805 2806 int 2807 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2808 { 2809 2810 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2811 &aiocb32_ops)); 2812 } 2813 2814 int 2815 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2816 { 2817 2818 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2819 &aiocb32_ops_osigevent)); 2820 } 2821 2822 int 2823 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2824 { 2825 2826 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2827 &aiocb32_ops)); 2828 } 2829 2830 int 2831 freebsd32_aio_waitcomplete(struct thread *td, 2832 struct freebsd32_aio_waitcomplete_args *uap) 2833 { 2834 struct timespec32 ts32; 2835 struct timespec ts, *tsp; 2836 int error; 2837 2838 if (uap->timeout) { 2839 /* Get timespec struct. */ 2840 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2841 if (error) 2842 return (error); 2843 CP(ts32, ts, tv_sec); 2844 CP(ts32, ts, tv_nsec); 2845 tsp = &ts; 2846 } else 2847 tsp = NULL; 2848 2849 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2850 &aiocb32_ops)); 2851 } 2852 2853 int 2854 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2855 { 2856 2857 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2858 &aiocb32_ops)); 2859 } 2860 2861 int 2862 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2863 { 2864 struct aiocb **acb_list; 2865 struct sigevent *sigp, sig; 2866 struct osigevent32 osig; 2867 uint32_t *acb_list32; 2868 int error, i, nent; 2869 2870 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2871 return (EINVAL); 2872 2873 nent = uap->nent; 2874 if (nent < 0 || nent > AIO_LISTIO_MAX) 2875 return (EINVAL); 2876 2877 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2878 error = copyin(uap->sig, &osig, sizeof(osig)); 2879 if (error) 2880 return (error); 2881 error = convert_old_sigevent32(&osig, &sig); 2882 if (error) 2883 return (error); 2884 sigp = &sig; 2885 } else 2886 sigp = NULL; 2887 2888 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2889 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2890 if (error) { 2891 free(acb_list32, M_LIO); 2892 return (error); 2893 } 2894 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2895 for (i = 0; i < nent; i++) 2896 acb_list[i] = PTRIN(acb_list32[i]); 2897 free(acb_list32, M_LIO); 2898 2899 error = kern_lio_listio(td, uap->mode, 2900 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2901 &aiocb32_ops_osigevent); 2902 free(acb_list, M_LIO); 2903 return (error); 2904 } 2905 2906 int 2907 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2908 { 2909 struct aiocb **acb_list; 2910 struct sigevent *sigp, sig; 2911 struct sigevent32 sig32; 2912 uint32_t *acb_list32; 2913 int error, i, nent; 2914 2915 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2916 return (EINVAL); 2917 2918 nent = uap->nent; 2919 if (nent < 0 || nent > AIO_LISTIO_MAX) 2920 return (EINVAL); 2921 2922 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2923 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2924 if (error) 2925 return (error); 2926 error = convert_sigevent32(&sig32, &sig); 2927 if (error) 2928 return (error); 2929 sigp = &sig; 2930 } else 2931 sigp = NULL; 2932 2933 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2934 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2935 if (error) { 2936 free(acb_list32, M_LIO); 2937 return (error); 2938 } 2939 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2940 for (i = 0; i < nent; i++) 2941 acb_list[i] = PTRIN(acb_list32[i]); 2942 free(acb_list32, M_LIO); 2943 2944 error = kern_lio_listio(td, uap->mode, 2945 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2946 &aiocb32_ops); 2947 free(acb_list, M_LIO); 2948 return (error); 2949 } 2950 2951 SYSCALL32_MODULE_HELPER(freebsd32_aio_return); 2952 SYSCALL32_MODULE_HELPER(freebsd32_aio_suspend); 2953 SYSCALL32_MODULE_HELPER(freebsd32_aio_cancel); 2954 SYSCALL32_MODULE_HELPER(freebsd32_aio_error); 2955 SYSCALL32_MODULE_HELPER(freebsd32_aio_fsync); 2956 SYSCALL32_MODULE_HELPER(freebsd32_aio_read); 2957 SYSCALL32_MODULE_HELPER(freebsd32_aio_write); 2958 SYSCALL32_MODULE_HELPER(freebsd32_aio_waitcomplete); 2959 SYSCALL32_MODULE_HELPER(freebsd32_lio_listio); 2960 SYSCALL32_MODULE_HELPER(freebsd32_oaio_read); 2961 SYSCALL32_MODULE_HELPER(freebsd32_oaio_write); 2962 SYSCALL32_MODULE_HELPER(freebsd32_olio_listio); 2963 #endif 2964