xref: /freebsd/sys/kern/vfs_aio.c (revision 922bee44e400321ac98b3b371cde3f0ff6137dd0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/cdefs.h>
24 __FBSDID("$FreeBSD$");
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/bio.h>
30 #include <sys/buf.h>
31 #include <sys/capsicum.h>
32 #include <sys/eventhandler.h>
33 #include <sys/sysproto.h>
34 #include <sys/filedesc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/kthread.h>
38 #include <sys/fcntl.h>
39 #include <sys/file.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/unistd.h>
44 #include <sys/posix4.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/protosw.h>
50 #include <sys/rwlock.h>
51 #include <sys/sema.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syscall.h>
55 #include <sys/sysent.h>
56 #include <sys/sysctl.h>
57 #include <sys/syslog.h>
58 #include <sys/sx.h>
59 #include <sys/taskqueue.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <sys/event.h>
63 #include <sys/mount.h>
64 #include <geom/geom.h>
65 
66 #include <machine/atomic.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_extern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_object.h>
74 #include <vm/uma.h>
75 #include <sys/aio.h>
76 
77 /*
78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
79  * overflow. (XXX will be removed soon.)
80  */
81 static u_long jobrefid;
82 
83 /*
84  * Counter for aio_fsync.
85  */
86 static uint64_t jobseqno;
87 
88 #ifndef MAX_AIO_PER_PROC
89 #define MAX_AIO_PER_PROC	32
90 #endif
91 
92 #ifndef MAX_AIO_QUEUE_PER_PROC
93 #define MAX_AIO_QUEUE_PER_PROC	256
94 #endif
95 
96 #ifndef MAX_AIO_QUEUE
97 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
98 #endif
99 
100 #ifndef MAX_BUF_AIO
101 #define MAX_BUF_AIO		16
102 #endif
103 
104 FEATURE(aio, "Asynchronous I/O");
105 SYSCTL_DECL(_p1003_1b);
106 
107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
109 
110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
111     "Async IO management");
112 
113 static int enable_aio_unsafe = 0;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
115     "Permit asynchronous IO on all file types, not just known-safe types");
116 
117 static unsigned int unsafe_warningcnt = 1;
118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
119     &unsafe_warningcnt, 0,
120     "Warnings that will be triggered upon failed IO requests on unsafe files");
121 
122 static int max_aio_procs = MAX_AIO_PROCS;
123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
124     "Maximum number of kernel processes to use for handling async IO ");
125 
126 static int num_aio_procs = 0;
127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
128     "Number of presently active kernel processes for async IO");
129 
130 /*
131  * The code will adjust the actual number of AIO processes towards this
132  * number when it gets a chance.
133  */
134 static int target_aio_procs = TARGET_AIO_PROCS;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
136     0,
137     "Preferred number of ready kernel processes for async IO");
138 
139 static int max_queue_count = MAX_AIO_QUEUE;
140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
141     "Maximum number of aio requests to queue, globally");
142 
143 static int num_queue_count = 0;
144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
145     "Number of queued aio requests");
146 
147 static int num_buf_aio = 0;
148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
149     "Number of aio requests presently handled by the buf subsystem");
150 
151 static int num_unmapped_aio = 0;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
153     0,
154     "Number of aio requests presently handled by unmapped I/O buffers");
155 
156 /* Number of async I/O processes in the process of being started */
157 /* XXX This should be local to aio_aqueue() */
158 static int num_aio_resv_start = 0;
159 
160 static int aiod_lifetime;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
162     "Maximum lifetime for idle aiod");
163 
164 static int max_aio_per_proc = MAX_AIO_PER_PROC;
165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
166     0,
167     "Maximum active aio requests per process");
168 
169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
171     &max_aio_queue_per_proc, 0,
172     "Maximum queued aio requests per process");
173 
174 static int max_buf_aio = MAX_BUF_AIO;
175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
176     "Maximum buf aio requests per process");
177 
178 /*
179  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
180  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
181  * vfs.aio.aio_listio_max.
182  */
183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
184     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
185     0, "Maximum aio requests for a single lio_listio call");
186 
187 #ifdef COMPAT_FREEBSD6
188 typedef struct oaiocb {
189 	int	aio_fildes;		/* File descriptor */
190 	off_t	aio_offset;		/* File offset for I/O */
191 	volatile void *aio_buf;         /* I/O buffer in process space */
192 	size_t	aio_nbytes;		/* Number of bytes for I/O */
193 	struct	osigevent aio_sigevent;	/* Signal to deliver */
194 	int	aio_lio_opcode;		/* LIO opcode */
195 	int	aio_reqprio;		/* Request priority -- ignored */
196 	struct	__aiocb_private	_aiocb_private;
197 } oaiocb_t;
198 #endif
199 
200 /*
201  * Below is a key of locks used to protect each member of struct kaiocb
202  * aioliojob and kaioinfo and any backends.
203  *
204  * * - need not protected
205  * a - locked by kaioinfo lock
206  * b - locked by backend lock, the backend lock can be null in some cases,
207  *     for example, BIO belongs to this type, in this case, proc lock is
208  *     reused.
209  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
210  */
211 
212 /*
213  * If the routine that services an AIO request blocks while running in an
214  * AIO kernel process it can starve other I/O requests.  BIO requests
215  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
216  * processes at all.  Socket I/O requests use a separate pool of
217  * kprocs and also force non-blocking I/O.  Other file I/O requests
218  * use the generic fo_read/fo_write operations which can block.  The
219  * fsync and mlock operations can also block while executing.  Ideally
220  * none of these requests would block while executing.
221  *
222  * Note that the service routines cannot toggle O_NONBLOCK in the file
223  * structure directly while handling a request due to races with
224  * userland threads.
225  */
226 
227 /* jobflags */
228 #define	KAIOCB_QUEUEING		0x01
229 #define	KAIOCB_CANCELLED	0x02
230 #define	KAIOCB_CANCELLING	0x04
231 #define	KAIOCB_CHECKSYNC	0x08
232 #define	KAIOCB_CLEARED		0x10
233 #define	KAIOCB_FINISHED		0x20
234 
235 /*
236  * AIO process info
237  */
238 #define AIOP_FREE	0x1			/* proc on free queue */
239 
240 struct aioproc {
241 	int	aioprocflags;			/* (c) AIO proc flags */
242 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
243 	struct	proc *aioproc;			/* (*) the AIO proc */
244 };
245 
246 /*
247  * data-structure for lio signal management
248  */
249 struct aioliojob {
250 	int	lioj_flags;			/* (a) listio flags */
251 	int	lioj_count;			/* (a) count of jobs */
252 	int	lioj_finished_count;		/* (a) count of finished jobs */
253 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
254 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
255 	struct	knlist klist;			/* (a) list of knotes */
256 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
257 };
258 
259 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
260 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
261 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
262 
263 /*
264  * per process aio data structure
265  */
266 struct kaioinfo {
267 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
268 	int	kaio_flags;		/* (a) per process kaio flags */
269 	int	kaio_active_count;	/* (c) number of currently used AIOs */
270 	int	kaio_count;		/* (a) size of AIO queue */
271 	int	kaio_buffer_count;	/* (a) number of bio buffers */
272 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
273 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
274 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
275 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
276 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
277 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
278 	struct	task kaio_task;		/* (*) task to kick aio processes */
279 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
280 };
281 
282 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
283 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
284 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
285 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
286 
287 #define KAIO_RUNDOWN	0x1	/* process is being run down */
288 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
289 
290 /*
291  * Operations used to interact with userland aio control blocks.
292  * Different ABIs provide their own operations.
293  */
294 struct aiocb_ops {
295 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
296 	long	(*fetch_status)(struct aiocb *ujob);
297 	long	(*fetch_error)(struct aiocb *ujob);
298 	int	(*store_status)(struct aiocb *ujob, long status);
299 	int	(*store_error)(struct aiocb *ujob, long error);
300 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
301 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
302 };
303 
304 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
305 static struct sema aio_newproc_sem;
306 static struct mtx aio_job_mtx;
307 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
308 static struct unrhdr *aiod_unr;
309 
310 static void	aio_biocleanup(struct bio *bp);
311 void		aio_init_aioinfo(struct proc *p);
312 static int	aio_onceonly(void);
313 static int	aio_free_entry(struct kaiocb *job);
314 static void	aio_process_rw(struct kaiocb *job);
315 static void	aio_process_sync(struct kaiocb *job);
316 static void	aio_process_mlock(struct kaiocb *job);
317 static void	aio_schedule_fsync(void *context, int pending);
318 static int	aio_newproc(int *);
319 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
320 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
321 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
322 static void	aio_biowakeup(struct bio *bp);
323 static void	aio_proc_rundown(void *arg, struct proc *p);
324 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
325 		    struct image_params *imgp);
326 static int	aio_qbio(struct proc *p, struct kaiocb *job);
327 static void	aio_daemon(void *param);
328 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
329 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
330 static int	aio_kick(struct proc *userp);
331 static void	aio_kick_nowait(struct proc *userp);
332 static void	aio_kick_helper(void *context, int pending);
333 static int	filt_aioattach(struct knote *kn);
334 static void	filt_aiodetach(struct knote *kn);
335 static int	filt_aio(struct knote *kn, long hint);
336 static int	filt_lioattach(struct knote *kn);
337 static void	filt_liodetach(struct knote *kn);
338 static int	filt_lio(struct knote *kn, long hint);
339 
340 /*
341  * Zones for:
342  * 	kaio	Per process async io info
343  *	aiop	async io process data
344  *	aiocb	async io jobs
345  *	aiolio	list io jobs
346  */
347 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
348 
349 /* kqueue filters for aio */
350 static struct filterops aio_filtops = {
351 	.f_isfd = 0,
352 	.f_attach = filt_aioattach,
353 	.f_detach = filt_aiodetach,
354 	.f_event = filt_aio,
355 };
356 static struct filterops lio_filtops = {
357 	.f_isfd = 0,
358 	.f_attach = filt_lioattach,
359 	.f_detach = filt_liodetach,
360 	.f_event = filt_lio
361 };
362 
363 static eventhandler_tag exit_tag, exec_tag;
364 
365 TASKQUEUE_DEFINE_THREAD(aiod_kick);
366 
367 /*
368  * Main operations function for use as a kernel module.
369  */
370 static int
371 aio_modload(struct module *module, int cmd, void *arg)
372 {
373 	int error = 0;
374 
375 	switch (cmd) {
376 	case MOD_LOAD:
377 		aio_onceonly();
378 		break;
379 	case MOD_SHUTDOWN:
380 		break;
381 	default:
382 		error = EOPNOTSUPP;
383 		break;
384 	}
385 	return (error);
386 }
387 
388 static moduledata_t aio_mod = {
389 	"aio",
390 	&aio_modload,
391 	NULL
392 };
393 
394 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
395 MODULE_VERSION(aio, 1);
396 
397 /*
398  * Startup initialization
399  */
400 static int
401 aio_onceonly(void)
402 {
403 
404 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
405 	    EVENTHANDLER_PRI_ANY);
406 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
407 	    NULL, EVENTHANDLER_PRI_ANY);
408 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
409 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
410 	TAILQ_INIT(&aio_freeproc);
411 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
412 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
413 	TAILQ_INIT(&aio_jobs);
414 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
415 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
416 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
417 	aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
418 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
419 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
420 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
421 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
422 	    NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
423 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
424 	jobrefid = 1;
425 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
426 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
427 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
428 
429 	return (0);
430 }
431 
432 /*
433  * Init the per-process aioinfo structure.  The aioinfo limits are set
434  * per-process for user limit (resource) management.
435  */
436 void
437 aio_init_aioinfo(struct proc *p)
438 {
439 	struct kaioinfo *ki;
440 
441 	ki = uma_zalloc(kaio_zone, M_WAITOK);
442 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
443 	ki->kaio_flags = 0;
444 	ki->kaio_active_count = 0;
445 	ki->kaio_count = 0;
446 	ki->kaio_buffer_count = 0;
447 	TAILQ_INIT(&ki->kaio_all);
448 	TAILQ_INIT(&ki->kaio_done);
449 	TAILQ_INIT(&ki->kaio_jobqueue);
450 	TAILQ_INIT(&ki->kaio_liojoblist);
451 	TAILQ_INIT(&ki->kaio_syncqueue);
452 	TAILQ_INIT(&ki->kaio_syncready);
453 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
454 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
455 	PROC_LOCK(p);
456 	if (p->p_aioinfo == NULL) {
457 		p->p_aioinfo = ki;
458 		PROC_UNLOCK(p);
459 	} else {
460 		PROC_UNLOCK(p);
461 		mtx_destroy(&ki->kaio_mtx);
462 		uma_zfree(kaio_zone, ki);
463 	}
464 
465 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
466 		aio_newproc(NULL);
467 }
468 
469 static int
470 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
471 {
472 	struct thread *td;
473 	int error;
474 
475 	error = sigev_findtd(p, sigev, &td);
476 	if (error)
477 		return (error);
478 	if (!KSI_ONQ(ksi)) {
479 		ksiginfo_set_sigev(ksi, sigev);
480 		ksi->ksi_code = SI_ASYNCIO;
481 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
482 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
483 	}
484 	PROC_UNLOCK(p);
485 	return (error);
486 }
487 
488 /*
489  * Free a job entry.  Wait for completion if it is currently active, but don't
490  * delay forever.  If we delay, we return a flag that says that we have to
491  * restart the queue scan.
492  */
493 static int
494 aio_free_entry(struct kaiocb *job)
495 {
496 	struct kaioinfo *ki;
497 	struct aioliojob *lj;
498 	struct proc *p;
499 
500 	p = job->userproc;
501 	MPASS(curproc == p);
502 	ki = p->p_aioinfo;
503 	MPASS(ki != NULL);
504 
505 	AIO_LOCK_ASSERT(ki, MA_OWNED);
506 	MPASS(job->jobflags & KAIOCB_FINISHED);
507 
508 	atomic_subtract_int(&num_queue_count, 1);
509 
510 	ki->kaio_count--;
511 	MPASS(ki->kaio_count >= 0);
512 
513 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
514 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
515 
516 	lj = job->lio;
517 	if (lj) {
518 		lj->lioj_count--;
519 		lj->lioj_finished_count--;
520 
521 		if (lj->lioj_count == 0) {
522 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
523 			/* lio is going away, we need to destroy any knotes */
524 			knlist_delete(&lj->klist, curthread, 1);
525 			PROC_LOCK(p);
526 			sigqueue_take(&lj->lioj_ksi);
527 			PROC_UNLOCK(p);
528 			uma_zfree(aiolio_zone, lj);
529 		}
530 	}
531 
532 	/* job is going away, we need to destroy any knotes */
533 	knlist_delete(&job->klist, curthread, 1);
534 	PROC_LOCK(p);
535 	sigqueue_take(&job->ksi);
536 	PROC_UNLOCK(p);
537 
538 	AIO_UNLOCK(ki);
539 
540 	/*
541 	 * The thread argument here is used to find the owning process
542 	 * and is also passed to fo_close() which may pass it to various
543 	 * places such as devsw close() routines.  Because of that, we
544 	 * need a thread pointer from the process owning the job that is
545 	 * persistent and won't disappear out from under us or move to
546 	 * another process.
547 	 *
548 	 * Currently, all the callers of this function call it to remove
549 	 * a kaiocb from the current process' job list either via a
550 	 * syscall or due to the current process calling exit() or
551 	 * execve().  Thus, we know that p == curproc.  We also know that
552 	 * curthread can't exit since we are curthread.
553 	 *
554 	 * Therefore, we use curthread as the thread to pass to
555 	 * knlist_delete().  This does mean that it is possible for the
556 	 * thread pointer at close time to differ from the thread pointer
557 	 * at open time, but this is already true of file descriptors in
558 	 * a multithreaded process.
559 	 */
560 	if (job->fd_file)
561 		fdrop(job->fd_file, curthread);
562 	crfree(job->cred);
563 	if (job->uiop != &job->uio)
564 		free(job->uiop, M_IOV);
565 	uma_zfree(aiocb_zone, job);
566 	AIO_LOCK(ki);
567 
568 	return (0);
569 }
570 
571 static void
572 aio_proc_rundown_exec(void *arg, struct proc *p,
573     struct image_params *imgp __unused)
574 {
575    	aio_proc_rundown(arg, p);
576 }
577 
578 static int
579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
580 {
581 	aio_cancel_fn_t *func;
582 	int cancelled;
583 
584 	AIO_LOCK_ASSERT(ki, MA_OWNED);
585 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
586 		return (0);
587 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
588 	job->jobflags |= KAIOCB_CANCELLED;
589 
590 	func = job->cancel_fn;
591 
592 	/*
593 	 * If there is no cancel routine, just leave the job marked as
594 	 * cancelled.  The job should be in active use by a caller who
595 	 * should complete it normally or when it fails to install a
596 	 * cancel routine.
597 	 */
598 	if (func == NULL)
599 		return (0);
600 
601 	/*
602 	 * Set the CANCELLING flag so that aio_complete() will defer
603 	 * completions of this job.  This prevents the job from being
604 	 * freed out from under the cancel callback.  After the
605 	 * callback any deferred completion (whether from the callback
606 	 * or any other source) will be completed.
607 	 */
608 	job->jobflags |= KAIOCB_CANCELLING;
609 	AIO_UNLOCK(ki);
610 	func(job);
611 	AIO_LOCK(ki);
612 	job->jobflags &= ~KAIOCB_CANCELLING;
613 	if (job->jobflags & KAIOCB_FINISHED) {
614 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
615 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
616 		aio_bio_done_notify(p, job);
617 	} else {
618 		/*
619 		 * The cancel callback might have scheduled an
620 		 * operation to cancel this request, but it is
621 		 * only counted as cancelled if the request is
622 		 * cancelled when the callback returns.
623 		 */
624 		cancelled = 0;
625 	}
626 	return (cancelled);
627 }
628 
629 /*
630  * Rundown the jobs for a given process.
631  */
632 static void
633 aio_proc_rundown(void *arg, struct proc *p)
634 {
635 	struct kaioinfo *ki;
636 	struct aioliojob *lj;
637 	struct kaiocb *job, *jobn;
638 
639 	KASSERT(curthread->td_proc == p,
640 	    ("%s: called on non-curproc", __func__));
641 	ki = p->p_aioinfo;
642 	if (ki == NULL)
643 		return;
644 
645 	AIO_LOCK(ki);
646 	ki->kaio_flags |= KAIO_RUNDOWN;
647 
648 restart:
649 
650 	/*
651 	 * Try to cancel all pending requests. This code simulates
652 	 * aio_cancel on all pending I/O requests.
653 	 */
654 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
655 		aio_cancel_job(p, ki, job);
656 	}
657 
658 	/* Wait for all running I/O to be finished */
659 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
660 		ki->kaio_flags |= KAIO_WAKEUP;
661 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
662 		goto restart;
663 	}
664 
665 	/* Free all completed I/O requests. */
666 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
667 		aio_free_entry(job);
668 
669 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
670 		if (lj->lioj_count == 0) {
671 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
672 			knlist_delete(&lj->klist, curthread, 1);
673 			PROC_LOCK(p);
674 			sigqueue_take(&lj->lioj_ksi);
675 			PROC_UNLOCK(p);
676 			uma_zfree(aiolio_zone, lj);
677 		} else {
678 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
679 			    lj->lioj_count, lj->lioj_finished_count);
680 		}
681 	}
682 	AIO_UNLOCK(ki);
683 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
684 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
685 	mtx_destroy(&ki->kaio_mtx);
686 	uma_zfree(kaio_zone, ki);
687 	p->p_aioinfo = NULL;
688 }
689 
690 /*
691  * Select a job to run (called by an AIO daemon).
692  */
693 static struct kaiocb *
694 aio_selectjob(struct aioproc *aiop)
695 {
696 	struct kaiocb *job;
697 	struct kaioinfo *ki;
698 	struct proc *userp;
699 
700 	mtx_assert(&aio_job_mtx, MA_OWNED);
701 restart:
702 	TAILQ_FOREACH(job, &aio_jobs, list) {
703 		userp = job->userproc;
704 		ki = userp->p_aioinfo;
705 
706 		if (ki->kaio_active_count < max_aio_per_proc) {
707 			TAILQ_REMOVE(&aio_jobs, job, list);
708 			if (!aio_clear_cancel_function(job))
709 				goto restart;
710 
711 			/* Account for currently active jobs. */
712 			ki->kaio_active_count++;
713 			break;
714 		}
715 	}
716 	return (job);
717 }
718 
719 /*
720  * Move all data to a permanent storage device.  This code
721  * simulates the fsync and fdatasync syscalls.
722  */
723 static int
724 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
725 {
726 	struct mount *mp;
727 	vm_object_t obj;
728 	int error;
729 
730 	for (;;) {
731 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
732 		if (error != 0)
733 			break;
734 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
735 		obj = vp->v_object;
736 		if (obj != NULL) {
737 			VM_OBJECT_WLOCK(obj);
738 			vm_object_page_clean(obj, 0, 0, 0);
739 			VM_OBJECT_WUNLOCK(obj);
740 		}
741 		if (op == LIO_DSYNC)
742 			error = VOP_FDATASYNC(vp, td);
743 		else
744 			error = VOP_FSYNC(vp, MNT_WAIT, td);
745 
746 		VOP_UNLOCK(vp);
747 		vn_finished_write(mp);
748 		break;
749 	}
750 	return (error);
751 }
752 
753 /*
754  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
755  * does the I/O request for the non-bio version of the operations.  The normal
756  * vn operations are used, and this code should work in all instances for every
757  * type of file, including pipes, sockets, fifos, and regular files.
758  *
759  * XXX I don't think it works well for socket, pipe, and fifo.
760  */
761 static void
762 aio_process_rw(struct kaiocb *job)
763 {
764 	struct ucred *td_savedcred;
765 	struct thread *td;
766 	struct aiocb *cb;
767 	struct file *fp;
768 	ssize_t cnt;
769 	long msgsnd_st, msgsnd_end;
770 	long msgrcv_st, msgrcv_end;
771 	long oublock_st, oublock_end;
772 	long inblock_st, inblock_end;
773 	int error, opcode;
774 
775 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
776 	    job->uaiocb.aio_lio_opcode == LIO_READV ||
777 	    job->uaiocb.aio_lio_opcode == LIO_WRITE ||
778 	    job->uaiocb.aio_lio_opcode == LIO_WRITEV,
779 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
780 
781 	aio_switch_vmspace(job);
782 	td = curthread;
783 	td_savedcred = td->td_ucred;
784 	td->td_ucred = job->cred;
785 	job->uiop->uio_td = td;
786 	cb = &job->uaiocb;
787 	fp = job->fd_file;
788 
789 	opcode = job->uaiocb.aio_lio_opcode;
790 	cnt = job->uiop->uio_resid;
791 
792 	msgrcv_st = td->td_ru.ru_msgrcv;
793 	msgsnd_st = td->td_ru.ru_msgsnd;
794 	inblock_st = td->td_ru.ru_inblock;
795 	oublock_st = td->td_ru.ru_oublock;
796 
797 	/*
798 	 * aio_aqueue() acquires a reference to the file that is
799 	 * released in aio_free_entry().
800 	 */
801 	if (opcode == LIO_READ || opcode == LIO_READV) {
802 		if (job->uiop->uio_resid == 0)
803 			error = 0;
804 		else
805 			error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
806 			    td);
807 	} else {
808 		if (fp->f_type == DTYPE_VNODE)
809 			bwillwrite();
810 		error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
811 	}
812 	msgrcv_end = td->td_ru.ru_msgrcv;
813 	msgsnd_end = td->td_ru.ru_msgsnd;
814 	inblock_end = td->td_ru.ru_inblock;
815 	oublock_end = td->td_ru.ru_oublock;
816 
817 	job->msgrcv = msgrcv_end - msgrcv_st;
818 	job->msgsnd = msgsnd_end - msgsnd_st;
819 	job->inblock = inblock_end - inblock_st;
820 	job->outblock = oublock_end - oublock_st;
821 
822 	if (error != 0 && job->uiop->uio_resid != cnt) {
823 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
824 			error = 0;
825 		if (error == EPIPE && (opcode & LIO_WRITE)) {
826 			PROC_LOCK(job->userproc);
827 			kern_psignal(job->userproc, SIGPIPE);
828 			PROC_UNLOCK(job->userproc);
829 		}
830 	}
831 
832 	cnt -= job->uiop->uio_resid;
833 	td->td_ucred = td_savedcred;
834 	if (error)
835 		aio_complete(job, -1, error);
836 	else
837 		aio_complete(job, cnt, 0);
838 }
839 
840 static void
841 aio_process_sync(struct kaiocb *job)
842 {
843 	struct thread *td = curthread;
844 	struct ucred *td_savedcred = td->td_ucred;
845 	struct file *fp = job->fd_file;
846 	int error = 0;
847 
848 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
849 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
850 
851 	td->td_ucred = job->cred;
852 	if (fp->f_vnode != NULL) {
853 		error = aio_fsync_vnode(td, fp->f_vnode,
854 		    job->uaiocb.aio_lio_opcode);
855 	}
856 	td->td_ucred = td_savedcred;
857 	if (error)
858 		aio_complete(job, -1, error);
859 	else
860 		aio_complete(job, 0, 0);
861 }
862 
863 static void
864 aio_process_mlock(struct kaiocb *job)
865 {
866 	struct aiocb *cb = &job->uaiocb;
867 	int error;
868 
869 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
870 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
871 
872 	aio_switch_vmspace(job);
873 	error = kern_mlock(job->userproc, job->cred,
874 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
875 	aio_complete(job, error != 0 ? -1 : 0, error);
876 }
877 
878 static void
879 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
880 {
881 	struct aioliojob *lj;
882 	struct kaioinfo *ki;
883 	struct kaiocb *sjob, *sjobn;
884 	int lj_done;
885 	bool schedule_fsync;
886 
887 	ki = userp->p_aioinfo;
888 	AIO_LOCK_ASSERT(ki, MA_OWNED);
889 	lj = job->lio;
890 	lj_done = 0;
891 	if (lj) {
892 		lj->lioj_finished_count++;
893 		if (lj->lioj_count == lj->lioj_finished_count)
894 			lj_done = 1;
895 	}
896 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
897 	MPASS(job->jobflags & KAIOCB_FINISHED);
898 
899 	if (ki->kaio_flags & KAIO_RUNDOWN)
900 		goto notification_done;
901 
902 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
903 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
904 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
905 
906 	KNOTE_LOCKED(&job->klist, 1);
907 
908 	if (lj_done) {
909 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
910 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
911 			KNOTE_LOCKED(&lj->klist, 1);
912 		}
913 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
914 		    == LIOJ_SIGNAL &&
915 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
916 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
917 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
918 			    true);
919 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
920 		}
921 	}
922 
923 notification_done:
924 	if (job->jobflags & KAIOCB_CHECKSYNC) {
925 		schedule_fsync = false;
926 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
927 			if (job->fd_file != sjob->fd_file ||
928 			    job->seqno >= sjob->seqno)
929 				continue;
930 			if (--sjob->pending > 0)
931 				continue;
932 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
933 			if (!aio_clear_cancel_function_locked(sjob))
934 				continue;
935 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
936 			schedule_fsync = true;
937 		}
938 		if (schedule_fsync)
939 			taskqueue_enqueue(taskqueue_aiod_kick,
940 			    &ki->kaio_sync_task);
941 	}
942 	if (ki->kaio_flags & KAIO_WAKEUP) {
943 		ki->kaio_flags &= ~KAIO_WAKEUP;
944 		wakeup(&userp->p_aioinfo);
945 	}
946 }
947 
948 static void
949 aio_schedule_fsync(void *context, int pending)
950 {
951 	struct kaioinfo *ki;
952 	struct kaiocb *job;
953 
954 	ki = context;
955 	AIO_LOCK(ki);
956 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
957 		job = TAILQ_FIRST(&ki->kaio_syncready);
958 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
959 		AIO_UNLOCK(ki);
960 		aio_schedule(job, aio_process_sync);
961 		AIO_LOCK(ki);
962 	}
963 	AIO_UNLOCK(ki);
964 }
965 
966 bool
967 aio_cancel_cleared(struct kaiocb *job)
968 {
969 
970 	/*
971 	 * The caller should hold the same queue lock held when
972 	 * aio_clear_cancel_function() was called and set this flag
973 	 * ensuring this check sees an up-to-date value.  However,
974 	 * there is no way to assert that.
975 	 */
976 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
977 }
978 
979 static bool
980 aio_clear_cancel_function_locked(struct kaiocb *job)
981 {
982 
983 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
984 	MPASS(job->cancel_fn != NULL);
985 	if (job->jobflags & KAIOCB_CANCELLING) {
986 		job->jobflags |= KAIOCB_CLEARED;
987 		return (false);
988 	}
989 	job->cancel_fn = NULL;
990 	return (true);
991 }
992 
993 bool
994 aio_clear_cancel_function(struct kaiocb *job)
995 {
996 	struct kaioinfo *ki;
997 	bool ret;
998 
999 	ki = job->userproc->p_aioinfo;
1000 	AIO_LOCK(ki);
1001 	ret = aio_clear_cancel_function_locked(job);
1002 	AIO_UNLOCK(ki);
1003 	return (ret);
1004 }
1005 
1006 static bool
1007 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1008 {
1009 
1010 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1011 	if (job->jobflags & KAIOCB_CANCELLED)
1012 		return (false);
1013 	job->cancel_fn = func;
1014 	return (true);
1015 }
1016 
1017 bool
1018 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1019 {
1020 	struct kaioinfo *ki;
1021 	bool ret;
1022 
1023 	ki = job->userproc->p_aioinfo;
1024 	AIO_LOCK(ki);
1025 	ret = aio_set_cancel_function_locked(job, func);
1026 	AIO_UNLOCK(ki);
1027 	return (ret);
1028 }
1029 
1030 void
1031 aio_complete(struct kaiocb *job, long status, int error)
1032 {
1033 	struct kaioinfo *ki;
1034 	struct proc *userp;
1035 
1036 	job->uaiocb._aiocb_private.error = error;
1037 	job->uaiocb._aiocb_private.status = status;
1038 
1039 	userp = job->userproc;
1040 	ki = userp->p_aioinfo;
1041 
1042 	AIO_LOCK(ki);
1043 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1044 	    ("duplicate aio_complete"));
1045 	job->jobflags |= KAIOCB_FINISHED;
1046 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1047 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1048 		aio_bio_done_notify(userp, job);
1049 	}
1050 	AIO_UNLOCK(ki);
1051 }
1052 
1053 void
1054 aio_cancel(struct kaiocb *job)
1055 {
1056 
1057 	aio_complete(job, -1, ECANCELED);
1058 }
1059 
1060 void
1061 aio_switch_vmspace(struct kaiocb *job)
1062 {
1063 
1064 	vmspace_switch_aio(job->userproc->p_vmspace);
1065 }
1066 
1067 /*
1068  * The AIO daemon, most of the actual work is done in aio_process_*,
1069  * but the setup (and address space mgmt) is done in this routine.
1070  */
1071 static void
1072 aio_daemon(void *_id)
1073 {
1074 	struct kaiocb *job;
1075 	struct aioproc *aiop;
1076 	struct kaioinfo *ki;
1077 	struct proc *p;
1078 	struct vmspace *myvm;
1079 	struct thread *td = curthread;
1080 	int id = (intptr_t)_id;
1081 
1082 	/*
1083 	 * Grab an extra reference on the daemon's vmspace so that it
1084 	 * doesn't get freed by jobs that switch to a different
1085 	 * vmspace.
1086 	 */
1087 	p = td->td_proc;
1088 	myvm = vmspace_acquire_ref(p);
1089 
1090 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1091 
1092 	/*
1093 	 * Allocate and ready the aio control info.  There is one aiop structure
1094 	 * per daemon.
1095 	 */
1096 	aiop = uma_zalloc(aiop_zone, M_WAITOK);
1097 	aiop->aioproc = p;
1098 	aiop->aioprocflags = 0;
1099 
1100 	/*
1101 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1102 	 * and creating too many daemons.)
1103 	 */
1104 	sema_post(&aio_newproc_sem);
1105 
1106 	mtx_lock(&aio_job_mtx);
1107 	for (;;) {
1108 		/*
1109 		 * Take daemon off of free queue
1110 		 */
1111 		if (aiop->aioprocflags & AIOP_FREE) {
1112 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1113 			aiop->aioprocflags &= ~AIOP_FREE;
1114 		}
1115 
1116 		/*
1117 		 * Check for jobs.
1118 		 */
1119 		while ((job = aio_selectjob(aiop)) != NULL) {
1120 			mtx_unlock(&aio_job_mtx);
1121 
1122 			ki = job->userproc->p_aioinfo;
1123 			job->handle_fn(job);
1124 
1125 			mtx_lock(&aio_job_mtx);
1126 			/* Decrement the active job count. */
1127 			ki->kaio_active_count--;
1128 		}
1129 
1130 		/*
1131 		 * Disconnect from user address space.
1132 		 */
1133 		if (p->p_vmspace != myvm) {
1134 			mtx_unlock(&aio_job_mtx);
1135 			vmspace_switch_aio(myvm);
1136 			mtx_lock(&aio_job_mtx);
1137 			/*
1138 			 * We have to restart to avoid race, we only sleep if
1139 			 * no job can be selected.
1140 			 */
1141 			continue;
1142 		}
1143 
1144 		mtx_assert(&aio_job_mtx, MA_OWNED);
1145 
1146 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1147 		aiop->aioprocflags |= AIOP_FREE;
1148 
1149 		/*
1150 		 * If daemon is inactive for a long time, allow it to exit,
1151 		 * thereby freeing resources.
1152 		 */
1153 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1154 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1155 		    (aiop->aioprocflags & AIOP_FREE) &&
1156 		    num_aio_procs > target_aio_procs)
1157 			break;
1158 	}
1159 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1160 	num_aio_procs--;
1161 	mtx_unlock(&aio_job_mtx);
1162 	uma_zfree(aiop_zone, aiop);
1163 	free_unr(aiod_unr, id);
1164 	vmspace_free(myvm);
1165 
1166 	KASSERT(p->p_vmspace == myvm,
1167 	    ("AIOD: bad vmspace for exiting daemon"));
1168 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1169 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1170 	    refcount_load(&myvm->vm_refcnt)));
1171 	kproc_exit(0);
1172 }
1173 
1174 /*
1175  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1176  * AIO daemon modifies its environment itself.
1177  */
1178 static int
1179 aio_newproc(int *start)
1180 {
1181 	int error;
1182 	struct proc *p;
1183 	int id;
1184 
1185 	id = alloc_unr(aiod_unr);
1186 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1187 		RFNOWAIT, 0, "aiod%d", id);
1188 	if (error == 0) {
1189 		/*
1190 		 * Wait until daemon is started.
1191 		 */
1192 		sema_wait(&aio_newproc_sem);
1193 		mtx_lock(&aio_job_mtx);
1194 		num_aio_procs++;
1195 		if (start != NULL)
1196 			(*start)--;
1197 		mtx_unlock(&aio_job_mtx);
1198 	} else {
1199 		free_unr(aiod_unr, id);
1200 	}
1201 	return (error);
1202 }
1203 
1204 /*
1205  * Try the high-performance, low-overhead bio method for eligible
1206  * VCHR devices.  This method doesn't use an aio helper thread, and
1207  * thus has very low overhead.
1208  *
1209  * Assumes that the caller, aio_aqueue(), has incremented the file
1210  * structure's reference count, preventing its deallocation for the
1211  * duration of this call.
1212  */
1213 static int
1214 aio_qbio(struct proc *p, struct kaiocb *job)
1215 {
1216 	struct aiocb *cb;
1217 	struct file *fp;
1218 	struct buf *pbuf;
1219 	struct vnode *vp;
1220 	struct cdevsw *csw;
1221 	struct cdev *dev;
1222 	struct kaioinfo *ki;
1223 	struct bio **bios = NULL;
1224 	off_t offset;
1225 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1226 	vm_prot_t prot;
1227 	bool use_unmapped;
1228 
1229 	cb = &job->uaiocb;
1230 	fp = job->fd_file;
1231 	opcode = cb->aio_lio_opcode;
1232 
1233 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1234 	    opcode == LIO_READ || opcode == LIO_READV))
1235 		return (-1);
1236 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1237 		return (-1);
1238 
1239 	vp = fp->f_vnode;
1240 	if (vp->v_type != VCHR)
1241 		return (-1);
1242 	if (vp->v_bufobj.bo_bsize == 0)
1243 		return (-1);
1244 
1245 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1246 	iovcnt = job->uiop->uio_iovcnt;
1247 	if (iovcnt > max_buf_aio)
1248 		return (-1);
1249 	for (i = 0; i < iovcnt; i++) {
1250 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1251 			return (-1);
1252 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1253 			error = -1;
1254 			return (-1);
1255 		}
1256 	}
1257 	offset = cb->aio_offset;
1258 
1259 	ref = 0;
1260 	csw = devvn_refthread(vp, &dev, &ref);
1261 	if (csw == NULL)
1262 		return (ENXIO);
1263 
1264 	if ((csw->d_flags & D_DISK) == 0) {
1265 		error = -1;
1266 		goto unref;
1267 	}
1268 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1269 		error = -1;
1270 		goto unref;
1271 	}
1272 
1273 	ki = p->p_aioinfo;
1274 	job->error = 0;
1275 
1276 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1277 	if (!use_unmapped) {
1278 		AIO_LOCK(ki);
1279 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1280 			AIO_UNLOCK(ki);
1281 			error = EAGAIN;
1282 			goto unref;
1283 		}
1284 		ki->kaio_buffer_count += iovcnt;
1285 		AIO_UNLOCK(ki);
1286 	}
1287 
1288 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1289 	atomic_store_int(&job->nbio, iovcnt);
1290 	for (i = 0; i < iovcnt; i++) {
1291 		struct vm_page** pages;
1292 		struct bio *bp;
1293 		void *buf;
1294 		size_t nbytes;
1295 		int npages;
1296 
1297 		buf = job->uiop->uio_iov[i].iov_base;
1298 		nbytes = job->uiop->uio_iov[i].iov_len;
1299 
1300 		bios[i] = g_alloc_bio();
1301 		bp = bios[i];
1302 
1303 		poff = (vm_offset_t)buf & PAGE_MASK;
1304 		if (use_unmapped) {
1305 			pbuf = NULL;
1306 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1307 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1308 		} else {
1309 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1310 			BUF_KERNPROC(pbuf);
1311 			pages = pbuf->b_pages;
1312 		}
1313 
1314 		bp->bio_length = nbytes;
1315 		bp->bio_bcount = nbytes;
1316 		bp->bio_done = aio_biowakeup;
1317 		bp->bio_offset = offset;
1318 		bp->bio_cmd = bio_cmd;
1319 		bp->bio_dev = dev;
1320 		bp->bio_caller1 = job;
1321 		bp->bio_caller2 = pbuf;
1322 
1323 		prot = VM_PROT_READ;
1324 		if (opcode == LIO_READ || opcode == LIO_READV)
1325 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1326 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1327 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1328 		    atop(maxphys) + 1);
1329 		if (npages < 0) {
1330 			if (pbuf != NULL)
1331 				uma_zfree(pbuf_zone, pbuf);
1332 			else
1333 				free(pages, M_TEMP);
1334 			error = EFAULT;
1335 			g_destroy_bio(bp);
1336 			i--;
1337 			goto destroy_bios;
1338 		}
1339 		if (pbuf != NULL) {
1340 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1341 			bp->bio_data = pbuf->b_data + poff;
1342 			pbuf->b_npages = npages;
1343 			atomic_add_int(&num_buf_aio, 1);
1344 		} else {
1345 			bp->bio_ma = pages;
1346 			bp->bio_ma_n = npages;
1347 			bp->bio_ma_offset = poff;
1348 			bp->bio_data = unmapped_buf;
1349 			bp->bio_flags |= BIO_UNMAPPED;
1350 			atomic_add_int(&num_unmapped_aio, 1);
1351 		}
1352 
1353 		offset += nbytes;
1354 	}
1355 
1356 	/* Perform transfer. */
1357 	for (i = 0; i < iovcnt; i++)
1358 		csw->d_strategy(bios[i]);
1359 	free(bios, M_TEMP);
1360 
1361 	dev_relthread(dev, ref);
1362 	return (0);
1363 
1364 destroy_bios:
1365 	for (; i >= 0; i--)
1366 		aio_biocleanup(bios[i]);
1367 	free(bios, M_TEMP);
1368 unref:
1369 	dev_relthread(dev, ref);
1370 	return (error);
1371 }
1372 
1373 #ifdef COMPAT_FREEBSD6
1374 static int
1375 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1376 {
1377 
1378 	/*
1379 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1380 	 * supported by AIO with the old sigevent structure.
1381 	 */
1382 	nsig->sigev_notify = osig->sigev_notify;
1383 	switch (nsig->sigev_notify) {
1384 	case SIGEV_NONE:
1385 		break;
1386 	case SIGEV_SIGNAL:
1387 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1388 		break;
1389 	case SIGEV_KEVENT:
1390 		nsig->sigev_notify_kqueue =
1391 		    osig->__sigev_u.__sigev_notify_kqueue;
1392 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1393 		break;
1394 	default:
1395 		return (EINVAL);
1396 	}
1397 	return (0);
1398 }
1399 
1400 static int
1401 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1402     int type __unused)
1403 {
1404 	struct oaiocb *ojob;
1405 	struct aiocb *kcb = &kjob->uaiocb;
1406 	int error;
1407 
1408 	bzero(kcb, sizeof(struct aiocb));
1409 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1410 	if (error)
1411 		return (error);
1412 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1413 	ojob = (struct oaiocb *)kcb;
1414 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1415 }
1416 #endif
1417 
1418 static int
1419 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1420 {
1421 	struct aiocb *kcb = &kjob->uaiocb;
1422 	int error;
1423 
1424 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1425 	if (error)
1426 		return (error);
1427 	if (type == LIO_NOP)
1428 		type = kcb->aio_lio_opcode;
1429 	if (type & LIO_VECTORED) {
1430 		/* malloc a uio and copy in the iovec */
1431 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1432 		    kcb->aio_iovcnt, &kjob->uiop);
1433 	}
1434 
1435 	return (error);
1436 }
1437 
1438 static long
1439 aiocb_fetch_status(struct aiocb *ujob)
1440 {
1441 
1442 	return (fuword(&ujob->_aiocb_private.status));
1443 }
1444 
1445 static long
1446 aiocb_fetch_error(struct aiocb *ujob)
1447 {
1448 
1449 	return (fuword(&ujob->_aiocb_private.error));
1450 }
1451 
1452 static int
1453 aiocb_store_status(struct aiocb *ujob, long status)
1454 {
1455 
1456 	return (suword(&ujob->_aiocb_private.status, status));
1457 }
1458 
1459 static int
1460 aiocb_store_error(struct aiocb *ujob, long error)
1461 {
1462 
1463 	return (suword(&ujob->_aiocb_private.error, error));
1464 }
1465 
1466 static int
1467 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1468 {
1469 
1470 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1471 }
1472 
1473 static int
1474 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1475 {
1476 
1477 	return (suword(ujobp, (long)ujob));
1478 }
1479 
1480 static struct aiocb_ops aiocb_ops = {
1481 	.aio_copyin = aiocb_copyin,
1482 	.fetch_status = aiocb_fetch_status,
1483 	.fetch_error = aiocb_fetch_error,
1484 	.store_status = aiocb_store_status,
1485 	.store_error = aiocb_store_error,
1486 	.store_kernelinfo = aiocb_store_kernelinfo,
1487 	.store_aiocb = aiocb_store_aiocb,
1488 };
1489 
1490 #ifdef COMPAT_FREEBSD6
1491 static struct aiocb_ops aiocb_ops_osigevent = {
1492 	.aio_copyin = aiocb_copyin_old_sigevent,
1493 	.fetch_status = aiocb_fetch_status,
1494 	.fetch_error = aiocb_fetch_error,
1495 	.store_status = aiocb_store_status,
1496 	.store_error = aiocb_store_error,
1497 	.store_kernelinfo = aiocb_store_kernelinfo,
1498 	.store_aiocb = aiocb_store_aiocb,
1499 };
1500 #endif
1501 
1502 /*
1503  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1504  * technique is done in this code.
1505  */
1506 int
1507 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1508     int type, struct aiocb_ops *ops)
1509 {
1510 	struct proc *p = td->td_proc;
1511 	struct file *fp = NULL;
1512 	struct kaiocb *job;
1513 	struct kaioinfo *ki;
1514 	struct kevent kev;
1515 	int opcode;
1516 	int error;
1517 	int fd, kqfd;
1518 	int jid;
1519 	u_short evflags;
1520 
1521 	if (p->p_aioinfo == NULL)
1522 		aio_init_aioinfo(p);
1523 
1524 	ki = p->p_aioinfo;
1525 
1526 	ops->store_status(ujob, -1);
1527 	ops->store_error(ujob, 0);
1528 	ops->store_kernelinfo(ujob, -1);
1529 
1530 	if (num_queue_count >= max_queue_count ||
1531 	    ki->kaio_count >= max_aio_queue_per_proc) {
1532 		error = EAGAIN;
1533 		goto err1;
1534 	}
1535 
1536 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1537 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1538 
1539 	error = ops->aio_copyin(ujob, job, type);
1540 	if (error)
1541 		goto err2;
1542 
1543 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1544 		error = EINVAL;
1545 		goto err2;
1546 	}
1547 
1548 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1549 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1550 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1551 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1552 		error = EINVAL;
1553 		goto err2;
1554 	}
1555 
1556 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1557 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1558 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1559 		error = EINVAL;
1560 		goto err2;
1561 	}
1562 
1563 	/* Get the opcode. */
1564 	if (type == LIO_NOP) {
1565 		switch (job->uaiocb.aio_lio_opcode) {
1566 		case LIO_WRITE:
1567 		case LIO_WRITEV:
1568 		case LIO_NOP:
1569 		case LIO_READ:
1570 		case LIO_READV:
1571 			opcode = job->uaiocb.aio_lio_opcode;
1572 			break;
1573 		default:
1574 			error = EINVAL;
1575 			goto err2;
1576 		}
1577 	} else
1578 		opcode = job->uaiocb.aio_lio_opcode = type;
1579 
1580 	ksiginfo_init(&job->ksi);
1581 
1582 	/* Save userspace address of the job info. */
1583 	job->ujob = ujob;
1584 
1585 	/*
1586 	 * Validate the opcode and fetch the file object for the specified
1587 	 * file descriptor.
1588 	 *
1589 	 * XXXRW: Moved the opcode validation up here so that we don't
1590 	 * retrieve a file descriptor without knowing what the capabiltity
1591 	 * should be.
1592 	 */
1593 	fd = job->uaiocb.aio_fildes;
1594 	switch (opcode) {
1595 	case LIO_WRITE:
1596 	case LIO_WRITEV:
1597 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1598 		break;
1599 	case LIO_READ:
1600 	case LIO_READV:
1601 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1602 		break;
1603 	case LIO_SYNC:
1604 	case LIO_DSYNC:
1605 		error = fget(td, fd, &cap_fsync_rights, &fp);
1606 		break;
1607 	case LIO_MLOCK:
1608 		break;
1609 	case LIO_NOP:
1610 		error = fget(td, fd, &cap_no_rights, &fp);
1611 		break;
1612 	default:
1613 		error = EINVAL;
1614 	}
1615 	if (error)
1616 		goto err3;
1617 
1618 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1619 		error = EINVAL;
1620 		goto err3;
1621 	}
1622 
1623 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1624 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1625 	    job->uaiocb.aio_offset < 0 &&
1626 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1627 		error = EINVAL;
1628 		goto err3;
1629 	}
1630 
1631 	if (fp != NULL && fp->f_ops == &path_fileops) {
1632 		error = EBADF;
1633 		goto err3;
1634 	}
1635 
1636 	job->fd_file = fp;
1637 
1638 	mtx_lock(&aio_job_mtx);
1639 	jid = jobrefid++;
1640 	job->seqno = jobseqno++;
1641 	mtx_unlock(&aio_job_mtx);
1642 	error = ops->store_kernelinfo(ujob, jid);
1643 	if (error) {
1644 		error = EINVAL;
1645 		goto err3;
1646 	}
1647 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1648 
1649 	if (opcode == LIO_NOP) {
1650 		fdrop(fp, td);
1651 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1652 		uma_zfree(aiocb_zone, job);
1653 		return (0);
1654 	}
1655 
1656 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1657 		goto no_kqueue;
1658 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1659 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1660 		error = EINVAL;
1661 		goto err3;
1662 	}
1663 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1664 	memset(&kev, 0, sizeof(kev));
1665 	kev.ident = (uintptr_t)job->ujob;
1666 	kev.filter = EVFILT_AIO;
1667 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1668 	kev.data = (intptr_t)job;
1669 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1670 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1671 	if (error)
1672 		goto err3;
1673 
1674 no_kqueue:
1675 
1676 	ops->store_error(ujob, EINPROGRESS);
1677 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1678 	job->userproc = p;
1679 	job->cred = crhold(td->td_ucred);
1680 	job->jobflags = KAIOCB_QUEUEING;
1681 	job->lio = lj;
1682 
1683 	if (opcode & LIO_VECTORED) {
1684 		/* Use the uio copied in by aio_copyin */
1685 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1686 	} else {
1687 		/* Setup the inline uio */
1688 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1689 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1690 		job->uio.uio_iov = job->iov;
1691 		job->uio.uio_iovcnt = 1;
1692 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1693 		job->uio.uio_segflg = UIO_USERSPACE;
1694 		job->uiop = &job->uio;
1695 	}
1696 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1697 	case LIO_READ:
1698 		job->uiop->uio_rw = UIO_READ;
1699 		break;
1700 	case LIO_WRITE:
1701 		job->uiop->uio_rw = UIO_WRITE;
1702 		break;
1703 	}
1704 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1705 	job->uiop->uio_td = td;
1706 
1707 	if (opcode == LIO_MLOCK) {
1708 		aio_schedule(job, aio_process_mlock);
1709 		error = 0;
1710 	} else if (fp->f_ops->fo_aio_queue == NULL)
1711 		error = aio_queue_file(fp, job);
1712 	else
1713 		error = fo_aio_queue(fp, job);
1714 	if (error)
1715 		goto err3;
1716 
1717 	AIO_LOCK(ki);
1718 	job->jobflags &= ~KAIOCB_QUEUEING;
1719 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1720 	ki->kaio_count++;
1721 	if (lj)
1722 		lj->lioj_count++;
1723 	atomic_add_int(&num_queue_count, 1);
1724 	if (job->jobflags & KAIOCB_FINISHED) {
1725 		/*
1726 		 * The queue callback completed the request synchronously.
1727 		 * The bulk of the completion is deferred in that case
1728 		 * until this point.
1729 		 */
1730 		aio_bio_done_notify(p, job);
1731 	} else
1732 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1733 	AIO_UNLOCK(ki);
1734 	return (0);
1735 
1736 err3:
1737 	if (fp)
1738 		fdrop(fp, td);
1739 	knlist_delete(&job->klist, curthread, 0);
1740 err2:
1741 	if (job->uiop != &job->uio)
1742 		free(job->uiop, M_IOV);
1743 	uma_zfree(aiocb_zone, job);
1744 err1:
1745 	ops->store_error(ujob, error);
1746 	return (error);
1747 }
1748 
1749 static void
1750 aio_cancel_daemon_job(struct kaiocb *job)
1751 {
1752 
1753 	mtx_lock(&aio_job_mtx);
1754 	if (!aio_cancel_cleared(job))
1755 		TAILQ_REMOVE(&aio_jobs, job, list);
1756 	mtx_unlock(&aio_job_mtx);
1757 	aio_cancel(job);
1758 }
1759 
1760 void
1761 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1762 {
1763 
1764 	mtx_lock(&aio_job_mtx);
1765 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1766 		mtx_unlock(&aio_job_mtx);
1767 		aio_cancel(job);
1768 		return;
1769 	}
1770 	job->handle_fn = func;
1771 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1772 	aio_kick_nowait(job->userproc);
1773 	mtx_unlock(&aio_job_mtx);
1774 }
1775 
1776 static void
1777 aio_cancel_sync(struct kaiocb *job)
1778 {
1779 	struct kaioinfo *ki;
1780 
1781 	ki = job->userproc->p_aioinfo;
1782 	AIO_LOCK(ki);
1783 	if (!aio_cancel_cleared(job))
1784 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1785 	AIO_UNLOCK(ki);
1786 	aio_cancel(job);
1787 }
1788 
1789 int
1790 aio_queue_file(struct file *fp, struct kaiocb *job)
1791 {
1792 	struct kaioinfo *ki;
1793 	struct kaiocb *job2;
1794 	struct vnode *vp;
1795 	struct mount *mp;
1796 	int error;
1797 	bool safe;
1798 
1799 	ki = job->userproc->p_aioinfo;
1800 	error = aio_qbio(job->userproc, job);
1801 	if (error >= 0)
1802 		return (error);
1803 	safe = false;
1804 	if (fp->f_type == DTYPE_VNODE) {
1805 		vp = fp->f_vnode;
1806 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1807 			mp = fp->f_vnode->v_mount;
1808 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1809 				safe = true;
1810 		}
1811 	}
1812 	if (!(safe || enable_aio_unsafe)) {
1813 		counted_warning(&unsafe_warningcnt,
1814 		    "is attempting to use unsafe AIO requests");
1815 		return (EOPNOTSUPP);
1816 	}
1817 
1818 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1819 		aio_schedule(job, aio_process_rw);
1820 		error = 0;
1821 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1822 		AIO_LOCK(ki);
1823 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1824 			if (job2->fd_file == job->fd_file &&
1825 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1826 			    job2->seqno < job->seqno) {
1827 				job2->jobflags |= KAIOCB_CHECKSYNC;
1828 				job->pending++;
1829 			}
1830 		}
1831 		if (job->pending != 0) {
1832 			if (!aio_set_cancel_function_locked(job,
1833 				aio_cancel_sync)) {
1834 				AIO_UNLOCK(ki);
1835 				aio_cancel(job);
1836 				return (0);
1837 			}
1838 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1839 			AIO_UNLOCK(ki);
1840 			return (0);
1841 		}
1842 		AIO_UNLOCK(ki);
1843 		aio_schedule(job, aio_process_sync);
1844 		error = 0;
1845 	} else {
1846 		error = EINVAL;
1847 	}
1848 	return (error);
1849 }
1850 
1851 static void
1852 aio_kick_nowait(struct proc *userp)
1853 {
1854 	struct kaioinfo *ki = userp->p_aioinfo;
1855 	struct aioproc *aiop;
1856 
1857 	mtx_assert(&aio_job_mtx, MA_OWNED);
1858 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1859 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1860 		aiop->aioprocflags &= ~AIOP_FREE;
1861 		wakeup(aiop->aioproc);
1862 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1863 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1864 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1865 	}
1866 }
1867 
1868 static int
1869 aio_kick(struct proc *userp)
1870 {
1871 	struct kaioinfo *ki = userp->p_aioinfo;
1872 	struct aioproc *aiop;
1873 	int error, ret = 0;
1874 
1875 	mtx_assert(&aio_job_mtx, MA_OWNED);
1876 retryproc:
1877 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1878 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1879 		aiop->aioprocflags &= ~AIOP_FREE;
1880 		wakeup(aiop->aioproc);
1881 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1882 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1883 		num_aio_resv_start++;
1884 		mtx_unlock(&aio_job_mtx);
1885 		error = aio_newproc(&num_aio_resv_start);
1886 		mtx_lock(&aio_job_mtx);
1887 		if (error) {
1888 			num_aio_resv_start--;
1889 			goto retryproc;
1890 		}
1891 	} else {
1892 		ret = -1;
1893 	}
1894 	return (ret);
1895 }
1896 
1897 static void
1898 aio_kick_helper(void *context, int pending)
1899 {
1900 	struct proc *userp = context;
1901 
1902 	mtx_lock(&aio_job_mtx);
1903 	while (--pending >= 0) {
1904 		if (aio_kick(userp))
1905 			break;
1906 	}
1907 	mtx_unlock(&aio_job_mtx);
1908 }
1909 
1910 /*
1911  * Support the aio_return system call, as a side-effect, kernel resources are
1912  * released.
1913  */
1914 static int
1915 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1916 {
1917 	struct proc *p = td->td_proc;
1918 	struct kaiocb *job;
1919 	struct kaioinfo *ki;
1920 	long status, error;
1921 
1922 	ki = p->p_aioinfo;
1923 	if (ki == NULL)
1924 		return (EINVAL);
1925 	AIO_LOCK(ki);
1926 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1927 		if (job->ujob == ujob)
1928 			break;
1929 	}
1930 	if (job != NULL) {
1931 		MPASS(job->jobflags & KAIOCB_FINISHED);
1932 		status = job->uaiocb._aiocb_private.status;
1933 		error = job->uaiocb._aiocb_private.error;
1934 		td->td_retval[0] = status;
1935 		td->td_ru.ru_oublock += job->outblock;
1936 		td->td_ru.ru_inblock += job->inblock;
1937 		td->td_ru.ru_msgsnd += job->msgsnd;
1938 		td->td_ru.ru_msgrcv += job->msgrcv;
1939 		aio_free_entry(job);
1940 		AIO_UNLOCK(ki);
1941 		ops->store_error(ujob, error);
1942 		ops->store_status(ujob, status);
1943 	} else {
1944 		error = EINVAL;
1945 		AIO_UNLOCK(ki);
1946 	}
1947 	return (error);
1948 }
1949 
1950 int
1951 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1952 {
1953 
1954 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1955 }
1956 
1957 /*
1958  * Allow a process to wakeup when any of the I/O requests are completed.
1959  */
1960 static int
1961 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1962     struct timespec *ts)
1963 {
1964 	struct proc *p = td->td_proc;
1965 	struct timeval atv;
1966 	struct kaioinfo *ki;
1967 	struct kaiocb *firstjob, *job;
1968 	int error, i, timo;
1969 
1970 	timo = 0;
1971 	if (ts) {
1972 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1973 			return (EINVAL);
1974 
1975 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1976 		if (itimerfix(&atv))
1977 			return (EINVAL);
1978 		timo = tvtohz(&atv);
1979 	}
1980 
1981 	ki = p->p_aioinfo;
1982 	if (ki == NULL)
1983 		return (EAGAIN);
1984 
1985 	if (njoblist == 0)
1986 		return (0);
1987 
1988 	AIO_LOCK(ki);
1989 	for (;;) {
1990 		firstjob = NULL;
1991 		error = 0;
1992 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1993 			for (i = 0; i < njoblist; i++) {
1994 				if (job->ujob == ujoblist[i]) {
1995 					if (firstjob == NULL)
1996 						firstjob = job;
1997 					if (job->jobflags & KAIOCB_FINISHED)
1998 						goto RETURN;
1999 				}
2000 			}
2001 		}
2002 		/* All tasks were finished. */
2003 		if (firstjob == NULL)
2004 			break;
2005 
2006 		ki->kaio_flags |= KAIO_WAKEUP;
2007 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2008 		    "aiospn", timo);
2009 		if (error == ERESTART)
2010 			error = EINTR;
2011 		if (error)
2012 			break;
2013 	}
2014 RETURN:
2015 	AIO_UNLOCK(ki);
2016 	return (error);
2017 }
2018 
2019 int
2020 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2021 {
2022 	struct timespec ts, *tsp;
2023 	struct aiocb **ujoblist;
2024 	int error;
2025 
2026 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2027 		return (EINVAL);
2028 
2029 	if (uap->timeout) {
2030 		/* Get timespec struct. */
2031 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2032 			return (error);
2033 		tsp = &ts;
2034 	} else
2035 		tsp = NULL;
2036 
2037 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
2038 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2039 	if (error == 0)
2040 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2041 	free(ujoblist, M_AIOS);
2042 	return (error);
2043 }
2044 
2045 /*
2046  * aio_cancel cancels any non-bio aio operations not currently in progress.
2047  */
2048 int
2049 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2050 {
2051 	struct proc *p = td->td_proc;
2052 	struct kaioinfo *ki;
2053 	struct kaiocb *job, *jobn;
2054 	struct file *fp;
2055 	int error;
2056 	int cancelled = 0;
2057 	int notcancelled = 0;
2058 	struct vnode *vp;
2059 
2060 	/* Lookup file object. */
2061 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2062 	if (error)
2063 		return (error);
2064 
2065 	ki = p->p_aioinfo;
2066 	if (ki == NULL)
2067 		goto done;
2068 
2069 	if (fp->f_type == DTYPE_VNODE) {
2070 		vp = fp->f_vnode;
2071 		if (vn_isdisk(vp)) {
2072 			fdrop(fp, td);
2073 			td->td_retval[0] = AIO_NOTCANCELED;
2074 			return (0);
2075 		}
2076 	}
2077 
2078 	AIO_LOCK(ki);
2079 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2080 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2081 		    ((uap->aiocbp == NULL) ||
2082 		     (uap->aiocbp == job->ujob))) {
2083 			if (aio_cancel_job(p, ki, job)) {
2084 				cancelled++;
2085 			} else {
2086 				notcancelled++;
2087 			}
2088 			if (uap->aiocbp != NULL)
2089 				break;
2090 		}
2091 	}
2092 	AIO_UNLOCK(ki);
2093 
2094 done:
2095 	fdrop(fp, td);
2096 
2097 	if (uap->aiocbp != NULL) {
2098 		if (cancelled) {
2099 			td->td_retval[0] = AIO_CANCELED;
2100 			return (0);
2101 		}
2102 	}
2103 
2104 	if (notcancelled) {
2105 		td->td_retval[0] = AIO_NOTCANCELED;
2106 		return (0);
2107 	}
2108 
2109 	if (cancelled) {
2110 		td->td_retval[0] = AIO_CANCELED;
2111 		return (0);
2112 	}
2113 
2114 	td->td_retval[0] = AIO_ALLDONE;
2115 
2116 	return (0);
2117 }
2118 
2119 /*
2120  * aio_error is implemented in the kernel level for compatibility purposes
2121  * only.  For a user mode async implementation, it would be best to do it in
2122  * a userland subroutine.
2123  */
2124 static int
2125 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2126 {
2127 	struct proc *p = td->td_proc;
2128 	struct kaiocb *job;
2129 	struct kaioinfo *ki;
2130 	int status;
2131 
2132 	ki = p->p_aioinfo;
2133 	if (ki == NULL) {
2134 		td->td_retval[0] = EINVAL;
2135 		return (0);
2136 	}
2137 
2138 	AIO_LOCK(ki);
2139 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2140 		if (job->ujob == ujob) {
2141 			if (job->jobflags & KAIOCB_FINISHED)
2142 				td->td_retval[0] =
2143 					job->uaiocb._aiocb_private.error;
2144 			else
2145 				td->td_retval[0] = EINPROGRESS;
2146 			AIO_UNLOCK(ki);
2147 			return (0);
2148 		}
2149 	}
2150 	AIO_UNLOCK(ki);
2151 
2152 	/*
2153 	 * Hack for failure of aio_aqueue.
2154 	 */
2155 	status = ops->fetch_status(ujob);
2156 	if (status == -1) {
2157 		td->td_retval[0] = ops->fetch_error(ujob);
2158 		return (0);
2159 	}
2160 
2161 	td->td_retval[0] = EINVAL;
2162 	return (0);
2163 }
2164 
2165 int
2166 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2167 {
2168 
2169 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2170 }
2171 
2172 /* syscall - asynchronous read from a file (REALTIME) */
2173 #ifdef COMPAT_FREEBSD6
2174 int
2175 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2176 {
2177 
2178 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2179 	    &aiocb_ops_osigevent));
2180 }
2181 #endif
2182 
2183 int
2184 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2185 {
2186 
2187 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2188 }
2189 
2190 int
2191 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2192 {
2193 
2194 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2195 }
2196 
2197 /* syscall - asynchronous write to a file (REALTIME) */
2198 #ifdef COMPAT_FREEBSD6
2199 int
2200 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2201 {
2202 
2203 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2204 	    &aiocb_ops_osigevent));
2205 }
2206 #endif
2207 
2208 int
2209 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2210 {
2211 
2212 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2213 }
2214 
2215 int
2216 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2217 {
2218 
2219 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2220 }
2221 
2222 int
2223 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2224 {
2225 
2226 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2227 }
2228 
2229 static int
2230 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2231     struct aiocb **acb_list, int nent, struct sigevent *sig,
2232     struct aiocb_ops *ops)
2233 {
2234 	struct proc *p = td->td_proc;
2235 	struct aiocb *job;
2236 	struct kaioinfo *ki;
2237 	struct aioliojob *lj;
2238 	struct kevent kev;
2239 	int error;
2240 	int nagain, nerror;
2241 	int i;
2242 
2243 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2244 		return (EINVAL);
2245 
2246 	if (nent < 0 || nent > max_aio_queue_per_proc)
2247 		return (EINVAL);
2248 
2249 	if (p->p_aioinfo == NULL)
2250 		aio_init_aioinfo(p);
2251 
2252 	ki = p->p_aioinfo;
2253 
2254 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2255 	lj->lioj_flags = 0;
2256 	lj->lioj_count = 0;
2257 	lj->lioj_finished_count = 0;
2258 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2259 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2260 	ksiginfo_init(&lj->lioj_ksi);
2261 
2262 	/*
2263 	 * Setup signal.
2264 	 */
2265 	if (sig && (mode == LIO_NOWAIT)) {
2266 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2267 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2268 			/* Assume only new style KEVENT */
2269 			memset(&kev, 0, sizeof(kev));
2270 			kev.filter = EVFILT_LIO;
2271 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2272 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2273 			kev.data = (intptr_t)lj;
2274 			/* pass user defined sigval data */
2275 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2276 			error = kqfd_register(
2277 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2278 			    M_WAITOK);
2279 			if (error) {
2280 				uma_zfree(aiolio_zone, lj);
2281 				return (error);
2282 			}
2283 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2284 			;
2285 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2286 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2287 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2288 					uma_zfree(aiolio_zone, lj);
2289 					return EINVAL;
2290 				}
2291 				lj->lioj_flags |= LIOJ_SIGNAL;
2292 		} else {
2293 			uma_zfree(aiolio_zone, lj);
2294 			return EINVAL;
2295 		}
2296 	}
2297 
2298 	AIO_LOCK(ki);
2299 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2300 	/*
2301 	 * Add extra aiocb count to avoid the lio to be freed
2302 	 * by other threads doing aio_waitcomplete or aio_return,
2303 	 * and prevent event from being sent until we have queued
2304 	 * all tasks.
2305 	 */
2306 	lj->lioj_count = 1;
2307 	AIO_UNLOCK(ki);
2308 
2309 	/*
2310 	 * Get pointers to the list of I/O requests.
2311 	 */
2312 	nagain = 0;
2313 	nerror = 0;
2314 	for (i = 0; i < nent; i++) {
2315 		job = acb_list[i];
2316 		if (job != NULL) {
2317 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2318 			if (error == EAGAIN)
2319 				nagain++;
2320 			else if (error != 0)
2321 				nerror++;
2322 		}
2323 	}
2324 
2325 	error = 0;
2326 	AIO_LOCK(ki);
2327 	if (mode == LIO_WAIT) {
2328 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2329 			ki->kaio_flags |= KAIO_WAKEUP;
2330 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2331 			    PRIBIO | PCATCH, "aiospn", 0);
2332 			if (error == ERESTART)
2333 				error = EINTR;
2334 			if (error)
2335 				break;
2336 		}
2337 	} else {
2338 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2339 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2340 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2341 				KNOTE_LOCKED(&lj->klist, 1);
2342 			}
2343 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2344 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2345 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2346 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2347 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2348 				    lj->lioj_count != 1);
2349 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2350 			}
2351 		}
2352 	}
2353 	lj->lioj_count--;
2354 	if (lj->lioj_count == 0) {
2355 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2356 		knlist_delete(&lj->klist, curthread, 1);
2357 		PROC_LOCK(p);
2358 		sigqueue_take(&lj->lioj_ksi);
2359 		PROC_UNLOCK(p);
2360 		AIO_UNLOCK(ki);
2361 		uma_zfree(aiolio_zone, lj);
2362 	} else
2363 		AIO_UNLOCK(ki);
2364 
2365 	if (nerror)
2366 		return (EIO);
2367 	else if (nagain)
2368 		return (EAGAIN);
2369 	else
2370 		return (error);
2371 }
2372 
2373 /* syscall - list directed I/O (REALTIME) */
2374 #ifdef COMPAT_FREEBSD6
2375 int
2376 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2377 {
2378 	struct aiocb **acb_list;
2379 	struct sigevent *sigp, sig;
2380 	struct osigevent osig;
2381 	int error, nent;
2382 
2383 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2384 		return (EINVAL);
2385 
2386 	nent = uap->nent;
2387 	if (nent < 0 || nent > max_aio_queue_per_proc)
2388 		return (EINVAL);
2389 
2390 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2391 		error = copyin(uap->sig, &osig, sizeof(osig));
2392 		if (error)
2393 			return (error);
2394 		error = convert_old_sigevent(&osig, &sig);
2395 		if (error)
2396 			return (error);
2397 		sigp = &sig;
2398 	} else
2399 		sigp = NULL;
2400 
2401 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2402 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2403 	if (error == 0)
2404 		error = kern_lio_listio(td, uap->mode,
2405 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2406 		    &aiocb_ops_osigevent);
2407 	free(acb_list, M_LIO);
2408 	return (error);
2409 }
2410 #endif
2411 
2412 /* syscall - list directed I/O (REALTIME) */
2413 int
2414 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2415 {
2416 	struct aiocb **acb_list;
2417 	struct sigevent *sigp, sig;
2418 	int error, nent;
2419 
2420 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2421 		return (EINVAL);
2422 
2423 	nent = uap->nent;
2424 	if (nent < 0 || nent > max_aio_queue_per_proc)
2425 		return (EINVAL);
2426 
2427 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2428 		error = copyin(uap->sig, &sig, sizeof(sig));
2429 		if (error)
2430 			return (error);
2431 		sigp = &sig;
2432 	} else
2433 		sigp = NULL;
2434 
2435 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2436 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2437 	if (error == 0)
2438 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2439 		    nent, sigp, &aiocb_ops);
2440 	free(acb_list, M_LIO);
2441 	return (error);
2442 }
2443 
2444 static void
2445 aio_biocleanup(struct bio *bp)
2446 {
2447 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2448 	struct kaioinfo *ki;
2449 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2450 
2451 	/* Release mapping into kernel space. */
2452 	if (pbuf != NULL) {
2453 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2454 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2455 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2456 		uma_zfree(pbuf_zone, pbuf);
2457 		atomic_subtract_int(&num_buf_aio, 1);
2458 		ki = job->userproc->p_aioinfo;
2459 		AIO_LOCK(ki);
2460 		ki->kaio_buffer_count--;
2461 		AIO_UNLOCK(ki);
2462 	} else {
2463 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2464 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2465 		free(bp->bio_ma, M_TEMP);
2466 		atomic_subtract_int(&num_unmapped_aio, 1);
2467 	}
2468 	g_destroy_bio(bp);
2469 }
2470 
2471 static void
2472 aio_biowakeup(struct bio *bp)
2473 {
2474 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2475 	size_t nbytes;
2476 	long bcount = bp->bio_bcount;
2477 	long resid = bp->bio_resid;
2478 	int error, opcode, nblks;
2479 	int bio_error = bp->bio_error;
2480 	uint16_t flags = bp->bio_flags;
2481 
2482 	opcode = job->uaiocb.aio_lio_opcode;
2483 
2484 	aio_biocleanup(bp);
2485 
2486 	nbytes =bcount - resid;
2487 	atomic_add_acq_long(&job->nbytes, nbytes);
2488 	nblks = btodb(nbytes);
2489 	error = 0;
2490 	/*
2491 	 * If multiple bios experienced an error, the job will reflect the
2492 	 * error of whichever failed bio completed last.
2493 	 */
2494 	if (flags & BIO_ERROR)
2495 		atomic_set_int(&job->error, bio_error);
2496 	if (opcode & LIO_WRITE)
2497 		atomic_add_int(&job->outblock, nblks);
2498 	else
2499 		atomic_add_int(&job->inblock, nblks);
2500 	atomic_subtract_int(&job->nbio, 1);
2501 
2502 
2503 	if (atomic_load_int(&job->nbio) == 0) {
2504 		if (atomic_load_int(&job->error))
2505 			aio_complete(job, -1, job->error);
2506 		else
2507 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2508 	}
2509 }
2510 
2511 /* syscall - wait for the next completion of an aio request */
2512 static int
2513 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2514     struct timespec *ts, struct aiocb_ops *ops)
2515 {
2516 	struct proc *p = td->td_proc;
2517 	struct timeval atv;
2518 	struct kaioinfo *ki;
2519 	struct kaiocb *job;
2520 	struct aiocb *ujob;
2521 	long error, status;
2522 	int timo;
2523 
2524 	ops->store_aiocb(ujobp, NULL);
2525 
2526 	if (ts == NULL) {
2527 		timo = 0;
2528 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2529 		timo = -1;
2530 	} else {
2531 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2532 			return (EINVAL);
2533 
2534 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2535 		if (itimerfix(&atv))
2536 			return (EINVAL);
2537 		timo = tvtohz(&atv);
2538 	}
2539 
2540 	if (p->p_aioinfo == NULL)
2541 		aio_init_aioinfo(p);
2542 	ki = p->p_aioinfo;
2543 
2544 	error = 0;
2545 	job = NULL;
2546 	AIO_LOCK(ki);
2547 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2548 		if (timo == -1) {
2549 			error = EWOULDBLOCK;
2550 			break;
2551 		}
2552 		ki->kaio_flags |= KAIO_WAKEUP;
2553 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2554 		    "aiowc", timo);
2555 		if (timo && error == ERESTART)
2556 			error = EINTR;
2557 		if (error)
2558 			break;
2559 	}
2560 
2561 	if (job != NULL) {
2562 		MPASS(job->jobflags & KAIOCB_FINISHED);
2563 		ujob = job->ujob;
2564 		status = job->uaiocb._aiocb_private.status;
2565 		error = job->uaiocb._aiocb_private.error;
2566 		td->td_retval[0] = status;
2567 		td->td_ru.ru_oublock += job->outblock;
2568 		td->td_ru.ru_inblock += job->inblock;
2569 		td->td_ru.ru_msgsnd += job->msgsnd;
2570 		td->td_ru.ru_msgrcv += job->msgrcv;
2571 		aio_free_entry(job);
2572 		AIO_UNLOCK(ki);
2573 		ops->store_aiocb(ujobp, ujob);
2574 		ops->store_error(ujob, error);
2575 		ops->store_status(ujob, status);
2576 	} else
2577 		AIO_UNLOCK(ki);
2578 
2579 	return (error);
2580 }
2581 
2582 int
2583 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2584 {
2585 	struct timespec ts, *tsp;
2586 	int error;
2587 
2588 	if (uap->timeout) {
2589 		/* Get timespec struct. */
2590 		error = copyin(uap->timeout, &ts, sizeof(ts));
2591 		if (error)
2592 			return (error);
2593 		tsp = &ts;
2594 	} else
2595 		tsp = NULL;
2596 
2597 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2598 }
2599 
2600 static int
2601 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2602     struct aiocb_ops *ops)
2603 {
2604 	int listop;
2605 
2606 	switch (op) {
2607 	case O_SYNC:
2608 		listop = LIO_SYNC;
2609 		break;
2610 	case O_DSYNC:
2611 		listop = LIO_DSYNC;
2612 		break;
2613 	default:
2614 		return (EINVAL);
2615 	}
2616 
2617 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2618 }
2619 
2620 int
2621 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2622 {
2623 
2624 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2625 }
2626 
2627 /* kqueue attach function */
2628 static int
2629 filt_aioattach(struct knote *kn)
2630 {
2631 	struct kaiocb *job;
2632 
2633 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2634 
2635 	/*
2636 	 * The job pointer must be validated before using it, so
2637 	 * registration is restricted to the kernel; the user cannot
2638 	 * set EV_FLAG1.
2639 	 */
2640 	if ((kn->kn_flags & EV_FLAG1) == 0)
2641 		return (EPERM);
2642 	kn->kn_ptr.p_aio = job;
2643 	kn->kn_flags &= ~EV_FLAG1;
2644 
2645 	knlist_add(&job->klist, kn, 0);
2646 
2647 	return (0);
2648 }
2649 
2650 /* kqueue detach function */
2651 static void
2652 filt_aiodetach(struct knote *kn)
2653 {
2654 	struct knlist *knl;
2655 
2656 	knl = &kn->kn_ptr.p_aio->klist;
2657 	knl->kl_lock(knl->kl_lockarg);
2658 	if (!knlist_empty(knl))
2659 		knlist_remove(knl, kn, 1);
2660 	knl->kl_unlock(knl->kl_lockarg);
2661 }
2662 
2663 /* kqueue filter function */
2664 /*ARGSUSED*/
2665 static int
2666 filt_aio(struct knote *kn, long hint)
2667 {
2668 	struct kaiocb *job = kn->kn_ptr.p_aio;
2669 
2670 	kn->kn_data = job->uaiocb._aiocb_private.error;
2671 	if (!(job->jobflags & KAIOCB_FINISHED))
2672 		return (0);
2673 	kn->kn_flags |= EV_EOF;
2674 	return (1);
2675 }
2676 
2677 /* kqueue attach function */
2678 static int
2679 filt_lioattach(struct knote *kn)
2680 {
2681 	struct aioliojob *lj;
2682 
2683 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2684 
2685 	/*
2686 	 * The aioliojob pointer must be validated before using it, so
2687 	 * registration is restricted to the kernel; the user cannot
2688 	 * set EV_FLAG1.
2689 	 */
2690 	if ((kn->kn_flags & EV_FLAG1) == 0)
2691 		return (EPERM);
2692 	kn->kn_ptr.p_lio = lj;
2693 	kn->kn_flags &= ~EV_FLAG1;
2694 
2695 	knlist_add(&lj->klist, kn, 0);
2696 
2697 	return (0);
2698 }
2699 
2700 /* kqueue detach function */
2701 static void
2702 filt_liodetach(struct knote *kn)
2703 {
2704 	struct knlist *knl;
2705 
2706 	knl = &kn->kn_ptr.p_lio->klist;
2707 	knl->kl_lock(knl->kl_lockarg);
2708 	if (!knlist_empty(knl))
2709 		knlist_remove(knl, kn, 1);
2710 	knl->kl_unlock(knl->kl_lockarg);
2711 }
2712 
2713 /* kqueue filter function */
2714 /*ARGSUSED*/
2715 static int
2716 filt_lio(struct knote *kn, long hint)
2717 {
2718 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2719 
2720 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2721 }
2722 
2723 #ifdef COMPAT_FREEBSD32
2724 #include <sys/mount.h>
2725 #include <sys/socket.h>
2726 #include <compat/freebsd32/freebsd32.h>
2727 #include <compat/freebsd32/freebsd32_proto.h>
2728 #include <compat/freebsd32/freebsd32_signal.h>
2729 #include <compat/freebsd32/freebsd32_syscall.h>
2730 #include <compat/freebsd32/freebsd32_util.h>
2731 
2732 struct __aiocb_private32 {
2733 	int32_t	status;
2734 	int32_t	error;
2735 	uint32_t kernelinfo;
2736 };
2737 
2738 #ifdef COMPAT_FREEBSD6
2739 typedef struct oaiocb32 {
2740 	int	aio_fildes;		/* File descriptor */
2741 	uint64_t aio_offset __packed;	/* File offset for I/O */
2742 	uint32_t aio_buf;		/* I/O buffer in process space */
2743 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2744 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2745 	int	aio_lio_opcode;		/* LIO opcode */
2746 	int	aio_reqprio;		/* Request priority -- ignored */
2747 	struct	__aiocb_private32 _aiocb_private;
2748 } oaiocb32_t;
2749 #endif
2750 
2751 typedef struct aiocb32 {
2752 	int32_t	aio_fildes;		/* File descriptor */
2753 	uint64_t aio_offset __packed;	/* File offset for I/O */
2754 	uint32_t aio_buf;	/* I/O buffer in process space */
2755 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2756 	int	__spare__[2];
2757 	uint32_t __spare2__;
2758 	int	aio_lio_opcode;		/* LIO opcode */
2759 	int	aio_reqprio;		/* Request priority -- ignored */
2760 	struct	__aiocb_private32 _aiocb_private;
2761 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2762 } aiocb32_t;
2763 
2764 #ifdef COMPAT_FREEBSD6
2765 static int
2766 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2767 {
2768 
2769 	/*
2770 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2771 	 * supported by AIO with the old sigevent structure.
2772 	 */
2773 	CP(*osig, *nsig, sigev_notify);
2774 	switch (nsig->sigev_notify) {
2775 	case SIGEV_NONE:
2776 		break;
2777 	case SIGEV_SIGNAL:
2778 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2779 		break;
2780 	case SIGEV_KEVENT:
2781 		nsig->sigev_notify_kqueue =
2782 		    osig->__sigev_u.__sigev_notify_kqueue;
2783 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2784 		break;
2785 	default:
2786 		return (EINVAL);
2787 	}
2788 	return (0);
2789 }
2790 
2791 static int
2792 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2793     int type __unused)
2794 {
2795 	struct oaiocb32 job32;
2796 	struct aiocb *kcb = &kjob->uaiocb;
2797 	int error;
2798 
2799 	bzero(kcb, sizeof(struct aiocb));
2800 	error = copyin(ujob, &job32, sizeof(job32));
2801 	if (error)
2802 		return (error);
2803 
2804 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2805 
2806 	CP(job32, *kcb, aio_fildes);
2807 	CP(job32, *kcb, aio_offset);
2808 	PTRIN_CP(job32, *kcb, aio_buf);
2809 	CP(job32, *kcb, aio_nbytes);
2810 	CP(job32, *kcb, aio_lio_opcode);
2811 	CP(job32, *kcb, aio_reqprio);
2812 	CP(job32, *kcb, _aiocb_private.status);
2813 	CP(job32, *kcb, _aiocb_private.error);
2814 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2815 	return (convert_old_sigevent32(&job32.aio_sigevent,
2816 	    &kcb->aio_sigevent));
2817 }
2818 #endif
2819 
2820 static int
2821 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2822 {
2823 	struct aiocb32 job32;
2824 	struct aiocb *kcb = &kjob->uaiocb;
2825 	struct iovec32 *iov32;
2826 	int error;
2827 
2828 	error = copyin(ujob, &job32, sizeof(job32));
2829 	if (error)
2830 		return (error);
2831 	CP(job32, *kcb, aio_fildes);
2832 	CP(job32, *kcb, aio_offset);
2833 	CP(job32, *kcb, aio_lio_opcode);
2834 	if (type == LIO_NOP)
2835 		type = kcb->aio_lio_opcode;
2836 	if (type & LIO_VECTORED) {
2837 		iov32 = PTRIN(job32.aio_iov);
2838 		CP(job32, *kcb, aio_iovcnt);
2839 		/* malloc a uio and copy in the iovec */
2840 		error = freebsd32_copyinuio(iov32,
2841 		    kcb->aio_iovcnt, &kjob->uiop);
2842 		if (error)
2843 			return (error);
2844 	} else {
2845 		PTRIN_CP(job32, *kcb, aio_buf);
2846 		CP(job32, *kcb, aio_nbytes);
2847 	}
2848 	CP(job32, *kcb, aio_reqprio);
2849 	CP(job32, *kcb, _aiocb_private.status);
2850 	CP(job32, *kcb, _aiocb_private.error);
2851 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2852 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2853 
2854 	return (error);
2855 }
2856 
2857 static long
2858 aiocb32_fetch_status(struct aiocb *ujob)
2859 {
2860 	struct aiocb32 *ujob32;
2861 
2862 	ujob32 = (struct aiocb32 *)ujob;
2863 	return (fuword32(&ujob32->_aiocb_private.status));
2864 }
2865 
2866 static long
2867 aiocb32_fetch_error(struct aiocb *ujob)
2868 {
2869 	struct aiocb32 *ujob32;
2870 
2871 	ujob32 = (struct aiocb32 *)ujob;
2872 	return (fuword32(&ujob32->_aiocb_private.error));
2873 }
2874 
2875 static int
2876 aiocb32_store_status(struct aiocb *ujob, long status)
2877 {
2878 	struct aiocb32 *ujob32;
2879 
2880 	ujob32 = (struct aiocb32 *)ujob;
2881 	return (suword32(&ujob32->_aiocb_private.status, status));
2882 }
2883 
2884 static int
2885 aiocb32_store_error(struct aiocb *ujob, long error)
2886 {
2887 	struct aiocb32 *ujob32;
2888 
2889 	ujob32 = (struct aiocb32 *)ujob;
2890 	return (suword32(&ujob32->_aiocb_private.error, error));
2891 }
2892 
2893 static int
2894 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2895 {
2896 	struct aiocb32 *ujob32;
2897 
2898 	ujob32 = (struct aiocb32 *)ujob;
2899 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2900 }
2901 
2902 static int
2903 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2904 {
2905 
2906 	return (suword32(ujobp, (long)ujob));
2907 }
2908 
2909 static struct aiocb_ops aiocb32_ops = {
2910 	.aio_copyin = aiocb32_copyin,
2911 	.fetch_status = aiocb32_fetch_status,
2912 	.fetch_error = aiocb32_fetch_error,
2913 	.store_status = aiocb32_store_status,
2914 	.store_error = aiocb32_store_error,
2915 	.store_kernelinfo = aiocb32_store_kernelinfo,
2916 	.store_aiocb = aiocb32_store_aiocb,
2917 };
2918 
2919 #ifdef COMPAT_FREEBSD6
2920 static struct aiocb_ops aiocb32_ops_osigevent = {
2921 	.aio_copyin = aiocb32_copyin_old_sigevent,
2922 	.fetch_status = aiocb32_fetch_status,
2923 	.fetch_error = aiocb32_fetch_error,
2924 	.store_status = aiocb32_store_status,
2925 	.store_error = aiocb32_store_error,
2926 	.store_kernelinfo = aiocb32_store_kernelinfo,
2927 	.store_aiocb = aiocb32_store_aiocb,
2928 };
2929 #endif
2930 
2931 int
2932 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2933 {
2934 
2935 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2936 }
2937 
2938 int
2939 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2940 {
2941 	struct timespec32 ts32;
2942 	struct timespec ts, *tsp;
2943 	struct aiocb **ujoblist;
2944 	uint32_t *ujoblist32;
2945 	int error, i;
2946 
2947 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2948 		return (EINVAL);
2949 
2950 	if (uap->timeout) {
2951 		/* Get timespec struct. */
2952 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2953 			return (error);
2954 		CP(ts32, ts, tv_sec);
2955 		CP(ts32, ts, tv_nsec);
2956 		tsp = &ts;
2957 	} else
2958 		tsp = NULL;
2959 
2960 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
2961 	ujoblist32 = (uint32_t *)ujoblist;
2962 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2963 	    sizeof(ujoblist32[0]));
2964 	if (error == 0) {
2965 		for (i = uap->nent - 1; i >= 0; i--)
2966 			ujoblist[i] = PTRIN(ujoblist32[i]);
2967 
2968 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2969 	}
2970 	free(ujoblist, M_AIOS);
2971 	return (error);
2972 }
2973 
2974 int
2975 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2976 {
2977 
2978 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2979 }
2980 
2981 #ifdef COMPAT_FREEBSD6
2982 int
2983 freebsd6_freebsd32_aio_read(struct thread *td,
2984     struct freebsd6_freebsd32_aio_read_args *uap)
2985 {
2986 
2987 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2988 	    &aiocb32_ops_osigevent));
2989 }
2990 #endif
2991 
2992 int
2993 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2994 {
2995 
2996 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2997 	    &aiocb32_ops));
2998 }
2999 
3000 int
3001 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
3002 {
3003 
3004 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
3005 	    &aiocb32_ops));
3006 }
3007 
3008 #ifdef COMPAT_FREEBSD6
3009 int
3010 freebsd6_freebsd32_aio_write(struct thread *td,
3011     struct freebsd6_freebsd32_aio_write_args *uap)
3012 {
3013 
3014 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3015 	    &aiocb32_ops_osigevent));
3016 }
3017 #endif
3018 
3019 int
3020 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
3021 {
3022 
3023 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3024 	    &aiocb32_ops));
3025 }
3026 
3027 int
3028 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3029 {
3030 
3031 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3032 	    &aiocb32_ops));
3033 }
3034 
3035 int
3036 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3037 {
3038 
3039 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3040 	    &aiocb32_ops));
3041 }
3042 
3043 int
3044 freebsd32_aio_waitcomplete(struct thread *td,
3045     struct freebsd32_aio_waitcomplete_args *uap)
3046 {
3047 	struct timespec32 ts32;
3048 	struct timespec ts, *tsp;
3049 	int error;
3050 
3051 	if (uap->timeout) {
3052 		/* Get timespec struct. */
3053 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3054 		if (error)
3055 			return (error);
3056 		CP(ts32, ts, tv_sec);
3057 		CP(ts32, ts, tv_nsec);
3058 		tsp = &ts;
3059 	} else
3060 		tsp = NULL;
3061 
3062 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3063 	    &aiocb32_ops));
3064 }
3065 
3066 int
3067 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3068 {
3069 
3070 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3071 	    &aiocb32_ops));
3072 }
3073 
3074 #ifdef COMPAT_FREEBSD6
3075 int
3076 freebsd6_freebsd32_lio_listio(struct thread *td,
3077     struct freebsd6_freebsd32_lio_listio_args *uap)
3078 {
3079 	struct aiocb **acb_list;
3080 	struct sigevent *sigp, sig;
3081 	struct osigevent32 osig;
3082 	uint32_t *acb_list32;
3083 	int error, i, nent;
3084 
3085 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3086 		return (EINVAL);
3087 
3088 	nent = uap->nent;
3089 	if (nent < 0 || nent > max_aio_queue_per_proc)
3090 		return (EINVAL);
3091 
3092 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3093 		error = copyin(uap->sig, &osig, sizeof(osig));
3094 		if (error)
3095 			return (error);
3096 		error = convert_old_sigevent32(&osig, &sig);
3097 		if (error)
3098 			return (error);
3099 		sigp = &sig;
3100 	} else
3101 		sigp = NULL;
3102 
3103 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3104 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3105 	if (error) {
3106 		free(acb_list32, M_LIO);
3107 		return (error);
3108 	}
3109 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3110 	for (i = 0; i < nent; i++)
3111 		acb_list[i] = PTRIN(acb_list32[i]);
3112 	free(acb_list32, M_LIO);
3113 
3114 	error = kern_lio_listio(td, uap->mode,
3115 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3116 	    &aiocb32_ops_osigevent);
3117 	free(acb_list, M_LIO);
3118 	return (error);
3119 }
3120 #endif
3121 
3122 int
3123 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3124 {
3125 	struct aiocb **acb_list;
3126 	struct sigevent *sigp, sig;
3127 	struct sigevent32 sig32;
3128 	uint32_t *acb_list32;
3129 	int error, i, nent;
3130 
3131 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3132 		return (EINVAL);
3133 
3134 	nent = uap->nent;
3135 	if (nent < 0 || nent > max_aio_queue_per_proc)
3136 		return (EINVAL);
3137 
3138 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3139 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3140 		if (error)
3141 			return (error);
3142 		error = convert_sigevent32(&sig32, &sig);
3143 		if (error)
3144 			return (error);
3145 		sigp = &sig;
3146 	} else
3147 		sigp = NULL;
3148 
3149 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3150 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3151 	if (error) {
3152 		free(acb_list32, M_LIO);
3153 		return (error);
3154 	}
3155 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3156 	for (i = 0; i < nent; i++)
3157 		acb_list[i] = PTRIN(acb_list32[i]);
3158 	free(acb_list32, M_LIO);
3159 
3160 	error = kern_lio_listio(td, uap->mode,
3161 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3162 	    &aiocb32_ops);
3163 	free(acb_list, M_LIO);
3164 	return (error);
3165 }
3166 
3167 #endif
3168