1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/eventhandler.h> 32 #include <sys/sysproto.h> 33 #include <sys/filedesc.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/kthread.h> 37 #include <sys/fcntl.h> 38 #include <sys/file.h> 39 #include <sys/limits.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/unistd.h> 43 #include <sys/posix4.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/protosw.h> 48 #include <sys/sema.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/syscall.h> 52 #include <sys/sysent.h> 53 #include <sys/sysctl.h> 54 #include <sys/sx.h> 55 #include <sys/taskqueue.h> 56 #include <sys/vnode.h> 57 #include <sys/conf.h> 58 #include <sys/event.h> 59 #include <sys/mount.h> 60 61 #include <machine/atomic.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/vm_object.h> 68 #include <vm/uma.h> 69 #include <sys/aio.h> 70 71 #include "opt_vfs_aio.h" 72 73 /* 74 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 75 * overflow. (XXX will be removed soon.) 76 */ 77 static u_long jobrefid; 78 79 /* 80 * Counter for aio_fsync. 81 */ 82 static uint64_t jobseqno; 83 84 #define JOBST_NULL 0 85 #define JOBST_JOBQSOCK 1 86 #define JOBST_JOBQGLOBAL 2 87 #define JOBST_JOBRUNNING 3 88 #define JOBST_JOBFINISHED 4 89 #define JOBST_JOBQBUF 5 90 #define JOBST_JOBQSYNC 6 91 92 #ifndef MAX_AIO_PER_PROC 93 #define MAX_AIO_PER_PROC 32 94 #endif 95 96 #ifndef MAX_AIO_QUEUE_PER_PROC 97 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 98 #endif 99 100 #ifndef MAX_AIO_PROCS 101 #define MAX_AIO_PROCS 32 102 #endif 103 104 #ifndef MAX_AIO_QUEUE 105 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 106 #endif 107 108 #ifndef TARGET_AIO_PROCS 109 #define TARGET_AIO_PROCS 4 110 #endif 111 112 #ifndef MAX_BUF_AIO 113 #define MAX_BUF_AIO 16 114 #endif 115 116 #ifndef AIOD_TIMEOUT_DEFAULT 117 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 118 #endif 119 120 #ifndef AIOD_LIFETIME_DEFAULT 121 #define AIOD_LIFETIME_DEFAULT (30 * hz) 122 #endif 123 124 FEATURE(aio, "Asynchronous I/O"); 125 126 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 129 130 static int max_aio_procs = MAX_AIO_PROCS; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 132 CTLFLAG_RW, &max_aio_procs, 0, 133 "Maximum number of kernel threads to use for handling async IO "); 134 135 static int num_aio_procs = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 137 CTLFLAG_RD, &num_aio_procs, 0, 138 "Number of presently active kernel threads for async IO"); 139 140 /* 141 * The code will adjust the actual number of AIO processes towards this 142 * number when it gets a chance. 143 */ 144 static int target_aio_procs = TARGET_AIO_PROCS; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 146 0, "Preferred number of ready kernel threads for async IO"); 147 148 static int max_queue_count = MAX_AIO_QUEUE; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 150 "Maximum number of aio requests to queue, globally"); 151 152 static int num_queue_count = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 154 "Number of queued aio requests"); 155 156 static int num_buf_aio = 0; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 158 "Number of aio requests presently handled by the buf subsystem"); 159 160 /* Number of async I/O thread in the process of being started */ 161 /* XXX This should be local to aio_aqueue() */ 162 static int num_aio_resv_start = 0; 163 164 static int aiod_timeout; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 166 "Timeout value for synchronous aio operations"); 167 168 static int aiod_lifetime; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 170 "Maximum lifetime for idle aiod"); 171 172 static int unloadable = 0; 173 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 174 "Allow unload of aio (not recommended)"); 175 176 177 static int max_aio_per_proc = MAX_AIO_PER_PROC; 178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 179 0, "Maximum active aio requests per process (stored in the process)"); 180 181 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 182 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 183 &max_aio_queue_per_proc, 0, 184 "Maximum queued aio requests per process (stored in the process)"); 185 186 static int max_buf_aio = MAX_BUF_AIO; 187 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 188 "Maximum buf aio requests per process (stored in the process)"); 189 190 typedef struct oaiocb { 191 int aio_fildes; /* File descriptor */ 192 off_t aio_offset; /* File offset for I/O */ 193 volatile void *aio_buf; /* I/O buffer in process space */ 194 size_t aio_nbytes; /* Number of bytes for I/O */ 195 struct osigevent aio_sigevent; /* Signal to deliver */ 196 int aio_lio_opcode; /* LIO opcode */ 197 int aio_reqprio; /* Request priority -- ignored */ 198 struct __aiocb_private _aiocb_private; 199 } oaiocb_t; 200 201 /* 202 * Below is a key of locks used to protect each member of struct aiocblist 203 * aioliojob and kaioinfo and any backends. 204 * 205 * * - need not protected 206 * a - locked by kaioinfo lock 207 * b - locked by backend lock, the backend lock can be null in some cases, 208 * for example, BIO belongs to this type, in this case, proc lock is 209 * reused. 210 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 211 */ 212 213 /* 214 * Current, there is only two backends: BIO and generic file I/O. 215 * socket I/O is served by generic file I/O, this is not a good idea, since 216 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 217 * threads, if there is no thread to serve socket I/O, the socket I/O will be 218 * delayed too long or starved, we should create some threads dedicated to 219 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 220 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 221 * structure is not safe because there is race between userland and aio 222 * daemons. 223 */ 224 225 struct aiocblist { 226 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 227 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 228 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 229 int jobflags; /* (a) job flags */ 230 int jobstate; /* (b) job state */ 231 int inputcharge; /* (*) input blockes */ 232 int outputcharge; /* (*) output blockes */ 233 struct buf *bp; /* (*) private to BIO backend, 234 * buffer pointer 235 */ 236 struct proc *userproc; /* (*) user process */ 237 struct ucred *cred; /* (*) active credential when created */ 238 struct file *fd_file; /* (*) pointer to file structure */ 239 struct aioliojob *lio; /* (*) optional lio job */ 240 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 241 struct knlist klist; /* (a) list of knotes */ 242 struct aiocb uaiocb; /* (*) kernel I/O control block */ 243 ksiginfo_t ksi; /* (a) realtime signal info */ 244 struct task biotask; /* (*) private to BIO backend */ 245 uint64_t seqno; /* (*) job number */ 246 int pending; /* (a) number of pending I/O, aio_fsync only */ 247 }; 248 249 /* jobflags */ 250 #define AIOCBLIST_DONE 0x01 251 #define AIOCBLIST_BUFDONE 0x02 252 #define AIOCBLIST_RUNDOWN 0x04 253 #define AIOCBLIST_CHECKSYNC 0x08 254 255 /* 256 * AIO process info 257 */ 258 #define AIOP_FREE 0x1 /* proc on free queue */ 259 260 struct aiothreadlist { 261 int aiothreadflags; /* (c) AIO proc flags */ 262 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 263 struct thread *aiothread; /* (*) the AIO thread */ 264 }; 265 266 /* 267 * data-structure for lio signal management 268 */ 269 struct aioliojob { 270 int lioj_flags; /* (a) listio flags */ 271 int lioj_count; /* (a) listio flags */ 272 int lioj_finished_count; /* (a) listio flags */ 273 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 274 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 275 struct knlist klist; /* (a) list of knotes */ 276 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 277 }; 278 279 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 280 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 281 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 282 283 /* 284 * per process aio data structure 285 */ 286 struct kaioinfo { 287 struct mtx kaio_mtx; /* the lock to protect this struct */ 288 int kaio_flags; /* (a) per process kaio flags */ 289 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 290 int kaio_active_count; /* (c) number of currently used AIOs */ 291 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 292 int kaio_count; /* (a) size of AIO queue */ 293 int kaio_ballowed_count; /* (*) maximum number of buffers */ 294 int kaio_buffer_count; /* (a) number of physio buffers */ 295 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 296 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 297 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 298 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 299 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 300 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 301 * NOT USED YET. 302 */ 303 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 304 struct task kaio_task; /* (*) task to kick aio threads */ 305 }; 306 307 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 308 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 309 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 310 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 311 312 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 313 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 314 315 /* 316 * Operations used to interact with userland aio control blocks. 317 * Different ABIs provide their own operations. 318 */ 319 struct aiocb_ops { 320 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 321 long (*fetch_status)(struct aiocb *ujob); 322 long (*fetch_error)(struct aiocb *ujob); 323 int (*store_status)(struct aiocb *ujob, long status); 324 int (*store_error)(struct aiocb *ujob, long error); 325 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 326 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 327 }; 328 329 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 330 static struct sema aio_newproc_sem; 331 static struct mtx aio_job_mtx; 332 static struct mtx aio_sock_mtx; 333 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 334 static struct unrhdr *aiod_unr; 335 336 void aio_init_aioinfo(struct proc *p); 337 static int aio_onceonly(void); 338 static int aio_free_entry(struct aiocblist *aiocbe); 339 static void aio_process(struct aiocblist *aiocbe); 340 static int aio_newproc(int *); 341 int aio_aqueue(struct thread *td, struct aiocb *job, 342 struct aioliojob *lio, int type, struct aiocb_ops *ops); 343 static void aio_physwakeup(struct buf *bp); 344 static void aio_proc_rundown(void *arg, struct proc *p); 345 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 346 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 347 static void biohelper(void *, int); 348 static void aio_daemon(void *param); 349 static void aio_swake_cb(struct socket *, struct sockbuf *); 350 static int aio_unload(void); 351 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 352 #define DONE_BUF 1 353 #define DONE_QUEUE 2 354 static int aio_kick(struct proc *userp); 355 static void aio_kick_nowait(struct proc *userp); 356 static void aio_kick_helper(void *context, int pending); 357 static int filt_aioattach(struct knote *kn); 358 static void filt_aiodetach(struct knote *kn); 359 static int filt_aio(struct knote *kn, long hint); 360 static int filt_lioattach(struct knote *kn); 361 static void filt_liodetach(struct knote *kn); 362 static int filt_lio(struct knote *kn, long hint); 363 364 /* 365 * Zones for: 366 * kaio Per process async io info 367 * aiop async io thread data 368 * aiocb async io jobs 369 * aiol list io job pointer - internal to aio_suspend XXX 370 * aiolio list io jobs 371 */ 372 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 373 374 /* kqueue filters for aio */ 375 static struct filterops aio_filtops = { 376 .f_isfd = 0, 377 .f_attach = filt_aioattach, 378 .f_detach = filt_aiodetach, 379 .f_event = filt_aio, 380 }; 381 static struct filterops lio_filtops = { 382 .f_isfd = 0, 383 .f_attach = filt_lioattach, 384 .f_detach = filt_liodetach, 385 .f_event = filt_lio 386 }; 387 388 static eventhandler_tag exit_tag, exec_tag; 389 390 TASKQUEUE_DEFINE_THREAD(aiod_bio); 391 392 /* 393 * Main operations function for use as a kernel module. 394 */ 395 static int 396 aio_modload(struct module *module, int cmd, void *arg) 397 { 398 int error = 0; 399 400 switch (cmd) { 401 case MOD_LOAD: 402 aio_onceonly(); 403 break; 404 case MOD_UNLOAD: 405 error = aio_unload(); 406 break; 407 case MOD_SHUTDOWN: 408 break; 409 default: 410 error = EINVAL; 411 break; 412 } 413 return (error); 414 } 415 416 static moduledata_t aio_mod = { 417 "aio", 418 &aio_modload, 419 NULL 420 }; 421 422 static struct syscall_helper_data aio_syscalls[] = { 423 SYSCALL_INIT_HELPER(aio_cancel), 424 SYSCALL_INIT_HELPER(aio_error), 425 SYSCALL_INIT_HELPER(aio_fsync), 426 SYSCALL_INIT_HELPER(aio_read), 427 SYSCALL_INIT_HELPER(aio_return), 428 SYSCALL_INIT_HELPER(aio_suspend), 429 SYSCALL_INIT_HELPER(aio_waitcomplete), 430 SYSCALL_INIT_HELPER(aio_write), 431 SYSCALL_INIT_HELPER(lio_listio), 432 SYSCALL_INIT_HELPER(oaio_read), 433 SYSCALL_INIT_HELPER(oaio_write), 434 SYSCALL_INIT_HELPER(olio_listio), 435 SYSCALL_INIT_LAST 436 }; 437 438 #ifdef COMPAT_FREEBSD32 439 #include <sys/mount.h> 440 #include <sys/socket.h> 441 #include <compat/freebsd32/freebsd32.h> 442 #include <compat/freebsd32/freebsd32_proto.h> 443 #include <compat/freebsd32/freebsd32_signal.h> 444 #include <compat/freebsd32/freebsd32_syscall.h> 445 #include <compat/freebsd32/freebsd32_util.h> 446 447 static struct syscall_helper_data aio32_syscalls[] = { 448 SYSCALL32_INIT_HELPER(freebsd32_aio_return), 449 SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), 450 SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), 451 SYSCALL32_INIT_HELPER(freebsd32_aio_error), 452 SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), 453 SYSCALL32_INIT_HELPER(freebsd32_aio_read), 454 SYSCALL32_INIT_HELPER(freebsd32_aio_write), 455 SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), 456 SYSCALL32_INIT_HELPER(freebsd32_lio_listio), 457 SYSCALL32_INIT_HELPER(freebsd32_oaio_read), 458 SYSCALL32_INIT_HELPER(freebsd32_oaio_write), 459 SYSCALL32_INIT_HELPER(freebsd32_olio_listio), 460 SYSCALL_INIT_LAST 461 }; 462 #endif 463 464 DECLARE_MODULE(aio, aio_mod, 465 SI_SUB_VFS, SI_ORDER_ANY); 466 MODULE_VERSION(aio, 1); 467 468 /* 469 * Startup initialization 470 */ 471 static int 472 aio_onceonly(void) 473 { 474 int error; 475 476 /* XXX: should probably just use so->callback */ 477 aio_swake = &aio_swake_cb; 478 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 479 EVENTHANDLER_PRI_ANY); 480 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 481 EVENTHANDLER_PRI_ANY); 482 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 483 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 484 TAILQ_INIT(&aio_freeproc); 485 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 486 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 487 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 488 TAILQ_INIT(&aio_jobs); 489 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 490 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 491 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 492 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 493 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 494 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 495 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 496 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 497 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 498 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 499 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 500 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 501 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 502 jobrefid = 1; 503 async_io_version = _POSIX_VERSION; 504 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 505 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 506 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 507 508 error = syscall_helper_register(aio_syscalls); 509 if (error) 510 return (error); 511 #ifdef COMPAT_FREEBSD32 512 error = syscall32_helper_register(aio32_syscalls); 513 if (error) 514 return (error); 515 #endif 516 return (0); 517 } 518 519 /* 520 * Callback for unload of AIO when used as a module. 521 */ 522 static int 523 aio_unload(void) 524 { 525 int error; 526 527 /* 528 * XXX: no unloads by default, it's too dangerous. 529 * perhaps we could do it if locked out callers and then 530 * did an aio_proc_rundown() on each process. 531 * 532 * jhb: aio_proc_rundown() needs to run on curproc though, 533 * so I don't think that would fly. 534 */ 535 if (!unloadable) 536 return (EOPNOTSUPP); 537 538 #ifdef COMPAT_FREEBSD32 539 syscall32_helper_unregister(aio32_syscalls); 540 #endif 541 syscall_helper_unregister(aio_syscalls); 542 543 error = kqueue_del_filteropts(EVFILT_AIO); 544 if (error) 545 return error; 546 error = kqueue_del_filteropts(EVFILT_LIO); 547 if (error) 548 return error; 549 async_io_version = 0; 550 aio_swake = NULL; 551 taskqueue_free(taskqueue_aiod_bio); 552 delete_unrhdr(aiod_unr); 553 uma_zdestroy(kaio_zone); 554 uma_zdestroy(aiop_zone); 555 uma_zdestroy(aiocb_zone); 556 uma_zdestroy(aiol_zone); 557 uma_zdestroy(aiolio_zone); 558 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 559 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 560 mtx_destroy(&aio_job_mtx); 561 mtx_destroy(&aio_sock_mtx); 562 sema_destroy(&aio_newproc_sem); 563 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 564 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 565 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 566 return (0); 567 } 568 569 /* 570 * Init the per-process aioinfo structure. The aioinfo limits are set 571 * per-process for user limit (resource) management. 572 */ 573 void 574 aio_init_aioinfo(struct proc *p) 575 { 576 struct kaioinfo *ki; 577 578 ki = uma_zalloc(kaio_zone, M_WAITOK); 579 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 580 ki->kaio_flags = 0; 581 ki->kaio_maxactive_count = max_aio_per_proc; 582 ki->kaio_active_count = 0; 583 ki->kaio_qallowed_count = max_aio_queue_per_proc; 584 ki->kaio_count = 0; 585 ki->kaio_ballowed_count = max_buf_aio; 586 ki->kaio_buffer_count = 0; 587 TAILQ_INIT(&ki->kaio_all); 588 TAILQ_INIT(&ki->kaio_done); 589 TAILQ_INIT(&ki->kaio_jobqueue); 590 TAILQ_INIT(&ki->kaio_bufqueue); 591 TAILQ_INIT(&ki->kaio_liojoblist); 592 TAILQ_INIT(&ki->kaio_sockqueue); 593 TAILQ_INIT(&ki->kaio_syncqueue); 594 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 595 PROC_LOCK(p); 596 if (p->p_aioinfo == NULL) { 597 p->p_aioinfo = ki; 598 PROC_UNLOCK(p); 599 } else { 600 PROC_UNLOCK(p); 601 mtx_destroy(&ki->kaio_mtx); 602 uma_zfree(kaio_zone, ki); 603 } 604 605 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 606 aio_newproc(NULL); 607 } 608 609 static int 610 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 611 { 612 struct thread *td; 613 int error; 614 615 error = sigev_findtd(p, sigev, &td); 616 if (error) 617 return (error); 618 if (!KSI_ONQ(ksi)) { 619 ksiginfo_set_sigev(ksi, sigev); 620 ksi->ksi_code = SI_ASYNCIO; 621 ksi->ksi_flags |= KSI_EXT | KSI_INS; 622 tdsendsignal(p, td, ksi->ksi_signo, ksi); 623 } 624 PROC_UNLOCK(p); 625 return (error); 626 } 627 628 /* 629 * Free a job entry. Wait for completion if it is currently active, but don't 630 * delay forever. If we delay, we return a flag that says that we have to 631 * restart the queue scan. 632 */ 633 static int 634 aio_free_entry(struct aiocblist *aiocbe) 635 { 636 struct kaioinfo *ki; 637 struct aioliojob *lj; 638 struct proc *p; 639 640 p = aiocbe->userproc; 641 MPASS(curproc == p); 642 ki = p->p_aioinfo; 643 MPASS(ki != NULL); 644 645 AIO_LOCK_ASSERT(ki, MA_OWNED); 646 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 647 648 atomic_subtract_int(&num_queue_count, 1); 649 650 ki->kaio_count--; 651 MPASS(ki->kaio_count >= 0); 652 653 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 654 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 655 656 lj = aiocbe->lio; 657 if (lj) { 658 lj->lioj_count--; 659 lj->lioj_finished_count--; 660 661 if (lj->lioj_count == 0) { 662 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 663 /* lio is going away, we need to destroy any knotes */ 664 knlist_delete(&lj->klist, curthread, 1); 665 PROC_LOCK(p); 666 sigqueue_take(&lj->lioj_ksi); 667 PROC_UNLOCK(p); 668 uma_zfree(aiolio_zone, lj); 669 } 670 } 671 672 /* aiocbe is going away, we need to destroy any knotes */ 673 knlist_delete(&aiocbe->klist, curthread, 1); 674 PROC_LOCK(p); 675 sigqueue_take(&aiocbe->ksi); 676 PROC_UNLOCK(p); 677 678 MPASS(aiocbe->bp == NULL); 679 aiocbe->jobstate = JOBST_NULL; 680 AIO_UNLOCK(ki); 681 682 /* 683 * The thread argument here is used to find the owning process 684 * and is also passed to fo_close() which may pass it to various 685 * places such as devsw close() routines. Because of that, we 686 * need a thread pointer from the process owning the job that is 687 * persistent and won't disappear out from under us or move to 688 * another process. 689 * 690 * Currently, all the callers of this function call it to remove 691 * an aiocblist from the current process' job list either via a 692 * syscall or due to the current process calling exit() or 693 * execve(). Thus, we know that p == curproc. We also know that 694 * curthread can't exit since we are curthread. 695 * 696 * Therefore, we use curthread as the thread to pass to 697 * knlist_delete(). This does mean that it is possible for the 698 * thread pointer at close time to differ from the thread pointer 699 * at open time, but this is already true of file descriptors in 700 * a multithreaded process. 701 */ 702 fdrop(aiocbe->fd_file, curthread); 703 crfree(aiocbe->cred); 704 uma_zfree(aiocb_zone, aiocbe); 705 AIO_LOCK(ki); 706 707 return (0); 708 } 709 710 static void 711 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 712 { 713 aio_proc_rundown(arg, p); 714 } 715 716 /* 717 * Rundown the jobs for a given process. 718 */ 719 static void 720 aio_proc_rundown(void *arg, struct proc *p) 721 { 722 struct kaioinfo *ki; 723 struct aioliojob *lj; 724 struct aiocblist *cbe, *cbn; 725 struct file *fp; 726 struct socket *so; 727 int remove; 728 729 KASSERT(curthread->td_proc == p, 730 ("%s: called on non-curproc", __func__)); 731 ki = p->p_aioinfo; 732 if (ki == NULL) 733 return; 734 735 AIO_LOCK(ki); 736 ki->kaio_flags |= KAIO_RUNDOWN; 737 738 restart: 739 740 /* 741 * Try to cancel all pending requests. This code simulates 742 * aio_cancel on all pending I/O requests. 743 */ 744 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 745 remove = 0; 746 mtx_lock(&aio_job_mtx); 747 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 748 TAILQ_REMOVE(&aio_jobs, cbe, list); 749 remove = 1; 750 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 751 fp = cbe->fd_file; 752 MPASS(fp->f_type == DTYPE_SOCKET); 753 so = fp->f_data; 754 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 755 remove = 1; 756 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 757 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 758 remove = 1; 759 } 760 mtx_unlock(&aio_job_mtx); 761 762 if (remove) { 763 cbe->jobstate = JOBST_JOBFINISHED; 764 cbe->uaiocb._aiocb_private.status = -1; 765 cbe->uaiocb._aiocb_private.error = ECANCELED; 766 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 767 aio_bio_done_notify(p, cbe, DONE_QUEUE); 768 } 769 } 770 771 /* Wait for all running I/O to be finished */ 772 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 773 TAILQ_FIRST(&ki->kaio_jobqueue)) { 774 ki->kaio_flags |= KAIO_WAKEUP; 775 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 776 goto restart; 777 } 778 779 /* Free all completed I/O requests. */ 780 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 781 aio_free_entry(cbe); 782 783 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 784 if (lj->lioj_count == 0) { 785 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 786 knlist_delete(&lj->klist, curthread, 1); 787 PROC_LOCK(p); 788 sigqueue_take(&lj->lioj_ksi); 789 PROC_UNLOCK(p); 790 uma_zfree(aiolio_zone, lj); 791 } else { 792 panic("LIO job not cleaned up: C:%d, FC:%d\n", 793 lj->lioj_count, lj->lioj_finished_count); 794 } 795 } 796 AIO_UNLOCK(ki); 797 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 798 mtx_destroy(&ki->kaio_mtx); 799 uma_zfree(kaio_zone, ki); 800 p->p_aioinfo = NULL; 801 } 802 803 /* 804 * Select a job to run (called by an AIO daemon). 805 */ 806 static struct aiocblist * 807 aio_selectjob(struct aiothreadlist *aiop) 808 { 809 struct aiocblist *aiocbe; 810 struct kaioinfo *ki; 811 struct proc *userp; 812 813 mtx_assert(&aio_job_mtx, MA_OWNED); 814 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 815 userp = aiocbe->userproc; 816 ki = userp->p_aioinfo; 817 818 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 819 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 820 /* Account for currently active jobs. */ 821 ki->kaio_active_count++; 822 aiocbe->jobstate = JOBST_JOBRUNNING; 823 break; 824 } 825 } 826 return (aiocbe); 827 } 828 829 /* 830 * Move all data to a permanent storage device, this code 831 * simulates fsync syscall. 832 */ 833 static int 834 aio_fsync_vnode(struct thread *td, struct vnode *vp) 835 { 836 struct mount *mp; 837 int vfslocked; 838 int error; 839 840 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 841 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 842 goto drop; 843 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 844 if (vp->v_object != NULL) { 845 VM_OBJECT_LOCK(vp->v_object); 846 vm_object_page_clean(vp->v_object, 0, 0, 0); 847 VM_OBJECT_UNLOCK(vp->v_object); 848 } 849 error = VOP_FSYNC(vp, MNT_WAIT, td); 850 851 VOP_UNLOCK(vp, 0); 852 vn_finished_write(mp); 853 drop: 854 VFS_UNLOCK_GIANT(vfslocked); 855 return (error); 856 } 857 858 /* 859 * The AIO processing activity. This is the code that does the I/O request for 860 * the non-physio version of the operations. The normal vn operations are used, 861 * and this code should work in all instances for every type of file, including 862 * pipes, sockets, fifos, and regular files. 863 * 864 * XXX I don't think it works well for socket, pipe, and fifo. 865 */ 866 static void 867 aio_process(struct aiocblist *aiocbe) 868 { 869 struct ucred *td_savedcred; 870 struct thread *td; 871 struct aiocb *cb; 872 struct file *fp; 873 struct socket *so; 874 struct uio auio; 875 struct iovec aiov; 876 int cnt; 877 int error; 878 int oublock_st, oublock_end; 879 int inblock_st, inblock_end; 880 881 td = curthread; 882 td_savedcred = td->td_ucred; 883 td->td_ucred = aiocbe->cred; 884 cb = &aiocbe->uaiocb; 885 fp = aiocbe->fd_file; 886 887 if (cb->aio_lio_opcode == LIO_SYNC) { 888 error = 0; 889 cnt = 0; 890 if (fp->f_vnode != NULL) 891 error = aio_fsync_vnode(td, fp->f_vnode); 892 cb->_aiocb_private.error = error; 893 cb->_aiocb_private.status = 0; 894 td->td_ucred = td_savedcred; 895 return; 896 } 897 898 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 899 aiov.iov_len = cb->aio_nbytes; 900 901 auio.uio_iov = &aiov; 902 auio.uio_iovcnt = 1; 903 auio.uio_offset = cb->aio_offset; 904 auio.uio_resid = cb->aio_nbytes; 905 cnt = cb->aio_nbytes; 906 auio.uio_segflg = UIO_USERSPACE; 907 auio.uio_td = td; 908 909 inblock_st = td->td_ru.ru_inblock; 910 oublock_st = td->td_ru.ru_oublock; 911 /* 912 * aio_aqueue() acquires a reference to the file that is 913 * released in aio_free_entry(). 914 */ 915 if (cb->aio_lio_opcode == LIO_READ) { 916 auio.uio_rw = UIO_READ; 917 if (auio.uio_resid == 0) 918 error = 0; 919 else 920 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 921 } else { 922 if (fp->f_type == DTYPE_VNODE) 923 bwillwrite(); 924 auio.uio_rw = UIO_WRITE; 925 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 926 } 927 inblock_end = td->td_ru.ru_inblock; 928 oublock_end = td->td_ru.ru_oublock; 929 930 aiocbe->inputcharge = inblock_end - inblock_st; 931 aiocbe->outputcharge = oublock_end - oublock_st; 932 933 if ((error) && (auio.uio_resid != cnt)) { 934 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 935 error = 0; 936 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 937 int sigpipe = 1; 938 if (fp->f_type == DTYPE_SOCKET) { 939 so = fp->f_data; 940 if (so->so_options & SO_NOSIGPIPE) 941 sigpipe = 0; 942 } 943 if (sigpipe) { 944 PROC_LOCK(aiocbe->userproc); 945 psignal(aiocbe->userproc, SIGPIPE); 946 PROC_UNLOCK(aiocbe->userproc); 947 } 948 } 949 } 950 951 cnt -= auio.uio_resid; 952 cb->_aiocb_private.error = error; 953 cb->_aiocb_private.status = cnt; 954 td->td_ucred = td_savedcred; 955 } 956 957 static void 958 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 959 { 960 struct aioliojob *lj; 961 struct kaioinfo *ki; 962 struct aiocblist *scb, *scbn; 963 int lj_done; 964 965 ki = userp->p_aioinfo; 966 AIO_LOCK_ASSERT(ki, MA_OWNED); 967 lj = aiocbe->lio; 968 lj_done = 0; 969 if (lj) { 970 lj->lioj_finished_count++; 971 if (lj->lioj_count == lj->lioj_finished_count) 972 lj_done = 1; 973 } 974 if (type == DONE_QUEUE) { 975 aiocbe->jobflags |= AIOCBLIST_DONE; 976 } else { 977 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 978 } 979 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 980 aiocbe->jobstate = JOBST_JOBFINISHED; 981 982 if (ki->kaio_flags & KAIO_RUNDOWN) 983 goto notification_done; 984 985 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 986 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 987 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 988 989 KNOTE_LOCKED(&aiocbe->klist, 1); 990 991 if (lj_done) { 992 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 993 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 994 KNOTE_LOCKED(&lj->klist, 1); 995 } 996 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 997 == LIOJ_SIGNAL 998 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 999 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 1000 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 1001 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 1002 } 1003 } 1004 1005 notification_done: 1006 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 1007 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 1008 if (aiocbe->fd_file == scb->fd_file && 1009 aiocbe->seqno < scb->seqno) { 1010 if (--scb->pending == 0) { 1011 mtx_lock(&aio_job_mtx); 1012 scb->jobstate = JOBST_JOBQGLOBAL; 1013 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 1014 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 1015 aio_kick_nowait(userp); 1016 mtx_unlock(&aio_job_mtx); 1017 } 1018 } 1019 } 1020 } 1021 if (ki->kaio_flags & KAIO_WAKEUP) { 1022 ki->kaio_flags &= ~KAIO_WAKEUP; 1023 wakeup(&userp->p_aioinfo); 1024 } 1025 } 1026 1027 /* 1028 * The AIO daemon, most of the actual work is done in aio_process, 1029 * but the setup (and address space mgmt) is done in this routine. 1030 */ 1031 static void 1032 aio_daemon(void *_id) 1033 { 1034 struct aiocblist *aiocbe; 1035 struct aiothreadlist *aiop; 1036 struct kaioinfo *ki; 1037 struct proc *curcp, *mycp, *userp; 1038 struct vmspace *myvm, *tmpvm; 1039 struct thread *td = curthread; 1040 int id = (intptr_t)_id; 1041 1042 /* 1043 * Local copies of curproc (cp) and vmspace (myvm) 1044 */ 1045 mycp = td->td_proc; 1046 myvm = mycp->p_vmspace; 1047 1048 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 1049 1050 /* 1051 * Allocate and ready the aio control info. There is one aiop structure 1052 * per daemon. 1053 */ 1054 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1055 aiop->aiothread = td; 1056 aiop->aiothreadflags = 0; 1057 1058 /* The daemon resides in its own pgrp. */ 1059 setsid(td, NULL); 1060 1061 /* 1062 * Wakeup parent process. (Parent sleeps to keep from blasting away 1063 * and creating too many daemons.) 1064 */ 1065 sema_post(&aio_newproc_sem); 1066 1067 mtx_lock(&aio_job_mtx); 1068 for (;;) { 1069 /* 1070 * curcp is the current daemon process context. 1071 * userp is the current user process context. 1072 */ 1073 curcp = mycp; 1074 1075 /* 1076 * Take daemon off of free queue 1077 */ 1078 if (aiop->aiothreadflags & AIOP_FREE) { 1079 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1080 aiop->aiothreadflags &= ~AIOP_FREE; 1081 } 1082 1083 /* 1084 * Check for jobs. 1085 */ 1086 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1087 mtx_unlock(&aio_job_mtx); 1088 userp = aiocbe->userproc; 1089 1090 /* 1091 * Connect to process address space for user program. 1092 */ 1093 if (userp != curcp) { 1094 /* 1095 * Save the current address space that we are 1096 * connected to. 1097 */ 1098 tmpvm = mycp->p_vmspace; 1099 1100 /* 1101 * Point to the new user address space, and 1102 * refer to it. 1103 */ 1104 mycp->p_vmspace = userp->p_vmspace; 1105 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1106 1107 /* Activate the new mapping. */ 1108 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1109 1110 /* 1111 * If the old address space wasn't the daemons 1112 * own address space, then we need to remove the 1113 * daemon's reference from the other process 1114 * that it was acting on behalf of. 1115 */ 1116 if (tmpvm != myvm) { 1117 vmspace_free(tmpvm); 1118 } 1119 curcp = userp; 1120 } 1121 1122 ki = userp->p_aioinfo; 1123 1124 /* Do the I/O function. */ 1125 aio_process(aiocbe); 1126 1127 mtx_lock(&aio_job_mtx); 1128 /* Decrement the active job count. */ 1129 ki->kaio_active_count--; 1130 mtx_unlock(&aio_job_mtx); 1131 1132 AIO_LOCK(ki); 1133 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1134 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1135 AIO_UNLOCK(ki); 1136 1137 mtx_lock(&aio_job_mtx); 1138 } 1139 1140 /* 1141 * Disconnect from user address space. 1142 */ 1143 if (curcp != mycp) { 1144 1145 mtx_unlock(&aio_job_mtx); 1146 1147 /* Get the user address space to disconnect from. */ 1148 tmpvm = mycp->p_vmspace; 1149 1150 /* Get original address space for daemon. */ 1151 mycp->p_vmspace = myvm; 1152 1153 /* Activate the daemon's address space. */ 1154 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1155 #ifdef DIAGNOSTIC 1156 if (tmpvm == myvm) { 1157 printf("AIOD: vmspace problem -- %d\n", 1158 mycp->p_pid); 1159 } 1160 #endif 1161 /* Remove our vmspace reference. */ 1162 vmspace_free(tmpvm); 1163 1164 curcp = mycp; 1165 1166 mtx_lock(&aio_job_mtx); 1167 /* 1168 * We have to restart to avoid race, we only sleep if 1169 * no job can be selected, that should be 1170 * curcp == mycp. 1171 */ 1172 continue; 1173 } 1174 1175 mtx_assert(&aio_job_mtx, MA_OWNED); 1176 1177 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1178 aiop->aiothreadflags |= AIOP_FREE; 1179 1180 /* 1181 * If daemon is inactive for a long time, allow it to exit, 1182 * thereby freeing resources. 1183 */ 1184 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1185 aiod_lifetime)) { 1186 if (TAILQ_EMPTY(&aio_jobs)) { 1187 if ((aiop->aiothreadflags & AIOP_FREE) && 1188 (num_aio_procs > target_aio_procs)) { 1189 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1190 num_aio_procs--; 1191 mtx_unlock(&aio_job_mtx); 1192 uma_zfree(aiop_zone, aiop); 1193 free_unr(aiod_unr, id); 1194 #ifdef DIAGNOSTIC 1195 if (mycp->p_vmspace->vm_refcnt <= 1) { 1196 printf("AIOD: bad vm refcnt for" 1197 " exiting daemon: %d\n", 1198 mycp->p_vmspace->vm_refcnt); 1199 } 1200 #endif 1201 kproc_exit(0); 1202 } 1203 } 1204 } 1205 } 1206 mtx_unlock(&aio_job_mtx); 1207 panic("shouldn't be here\n"); 1208 } 1209 1210 /* 1211 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1212 * AIO daemon modifies its environment itself. 1213 */ 1214 static int 1215 aio_newproc(int *start) 1216 { 1217 int error; 1218 struct proc *p; 1219 int id; 1220 1221 id = alloc_unr(aiod_unr); 1222 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1223 RFNOWAIT, 0, "aiod%d", id); 1224 if (error == 0) { 1225 /* 1226 * Wait until daemon is started. 1227 */ 1228 sema_wait(&aio_newproc_sem); 1229 mtx_lock(&aio_job_mtx); 1230 num_aio_procs++; 1231 if (start != NULL) 1232 (*start)--; 1233 mtx_unlock(&aio_job_mtx); 1234 } else { 1235 free_unr(aiod_unr, id); 1236 } 1237 return (error); 1238 } 1239 1240 /* 1241 * Try the high-performance, low-overhead physio method for eligible 1242 * VCHR devices. This method doesn't use an aio helper thread, and 1243 * thus has very low overhead. 1244 * 1245 * Assumes that the caller, aio_aqueue(), has incremented the file 1246 * structure's reference count, preventing its deallocation for the 1247 * duration of this call. 1248 */ 1249 static int 1250 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1251 { 1252 struct aiocb *cb; 1253 struct file *fp; 1254 struct buf *bp; 1255 struct vnode *vp; 1256 struct kaioinfo *ki; 1257 struct aioliojob *lj; 1258 int error; 1259 1260 cb = &aiocbe->uaiocb; 1261 fp = aiocbe->fd_file; 1262 1263 if (fp->f_type != DTYPE_VNODE) 1264 return (-1); 1265 1266 vp = fp->f_vnode; 1267 1268 /* 1269 * If its not a disk, we don't want to return a positive error. 1270 * It causes the aio code to not fall through to try the thread 1271 * way when you're talking to a regular file. 1272 */ 1273 if (!vn_isdisk(vp, &error)) { 1274 if (error == ENOTBLK) 1275 return (-1); 1276 else 1277 return (error); 1278 } 1279 1280 if (vp->v_bufobj.bo_bsize == 0) 1281 return (-1); 1282 1283 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1284 return (-1); 1285 1286 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1287 return (-1); 1288 1289 if (cb->aio_nbytes > 1290 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1291 return (-1); 1292 1293 ki = p->p_aioinfo; 1294 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1295 return (-1); 1296 1297 /* Create and build a buffer header for a transfer. */ 1298 bp = (struct buf *)getpbuf(NULL); 1299 BUF_KERNPROC(bp); 1300 1301 AIO_LOCK(ki); 1302 ki->kaio_count++; 1303 ki->kaio_buffer_count++; 1304 lj = aiocbe->lio; 1305 if (lj) 1306 lj->lioj_count++; 1307 AIO_UNLOCK(ki); 1308 1309 /* 1310 * Get a copy of the kva from the physical buffer. 1311 */ 1312 error = 0; 1313 1314 bp->b_bcount = cb->aio_nbytes; 1315 bp->b_bufsize = cb->aio_nbytes; 1316 bp->b_iodone = aio_physwakeup; 1317 bp->b_saveaddr = bp->b_data; 1318 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1319 bp->b_offset = cb->aio_offset; 1320 bp->b_iooffset = cb->aio_offset; 1321 bp->b_blkno = btodb(cb->aio_offset); 1322 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1323 1324 /* 1325 * Bring buffer into kernel space. 1326 */ 1327 if (vmapbuf(bp) < 0) { 1328 error = EFAULT; 1329 goto doerror; 1330 } 1331 1332 AIO_LOCK(ki); 1333 aiocbe->bp = bp; 1334 bp->b_caller1 = (void *)aiocbe; 1335 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1336 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1337 aiocbe->jobstate = JOBST_JOBQBUF; 1338 cb->_aiocb_private.status = cb->aio_nbytes; 1339 AIO_UNLOCK(ki); 1340 1341 atomic_add_int(&num_queue_count, 1); 1342 atomic_add_int(&num_buf_aio, 1); 1343 1344 bp->b_error = 0; 1345 1346 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1347 1348 /* Perform transfer. */ 1349 dev_strategy(vp->v_rdev, bp); 1350 return (0); 1351 1352 doerror: 1353 AIO_LOCK(ki); 1354 ki->kaio_count--; 1355 ki->kaio_buffer_count--; 1356 if (lj) 1357 lj->lioj_count--; 1358 aiocbe->bp = NULL; 1359 AIO_UNLOCK(ki); 1360 relpbuf(bp, NULL); 1361 return (error); 1362 } 1363 1364 /* 1365 * Wake up aio requests that may be serviceable now. 1366 */ 1367 static void 1368 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1369 { 1370 struct aiocblist *cb, *cbn; 1371 int opcode; 1372 1373 SOCKBUF_LOCK_ASSERT(sb); 1374 if (sb == &so->so_snd) 1375 opcode = LIO_WRITE; 1376 else 1377 opcode = LIO_READ; 1378 1379 sb->sb_flags &= ~SB_AIO; 1380 mtx_lock(&aio_job_mtx); 1381 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1382 if (opcode == cb->uaiocb.aio_lio_opcode) { 1383 if (cb->jobstate != JOBST_JOBQSOCK) 1384 panic("invalid queue value"); 1385 /* XXX 1386 * We don't have actual sockets backend yet, 1387 * so we simply move the requests to the generic 1388 * file I/O backend. 1389 */ 1390 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1391 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1392 aio_kick_nowait(cb->userproc); 1393 } 1394 } 1395 mtx_unlock(&aio_job_mtx); 1396 } 1397 1398 static int 1399 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1400 { 1401 1402 /* 1403 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1404 * supported by AIO with the old sigevent structure. 1405 */ 1406 nsig->sigev_notify = osig->sigev_notify; 1407 switch (nsig->sigev_notify) { 1408 case SIGEV_NONE: 1409 break; 1410 case SIGEV_SIGNAL: 1411 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1412 break; 1413 case SIGEV_KEVENT: 1414 nsig->sigev_notify_kqueue = 1415 osig->__sigev_u.__sigev_notify_kqueue; 1416 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1417 break; 1418 default: 1419 return (EINVAL); 1420 } 1421 return (0); 1422 } 1423 1424 static int 1425 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1426 { 1427 struct oaiocb *ojob; 1428 int error; 1429 1430 bzero(kjob, sizeof(struct aiocb)); 1431 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1432 if (error) 1433 return (error); 1434 ojob = (struct oaiocb *)kjob; 1435 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1436 } 1437 1438 static int 1439 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1440 { 1441 1442 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1443 } 1444 1445 static long 1446 aiocb_fetch_status(struct aiocb *ujob) 1447 { 1448 1449 return (fuword(&ujob->_aiocb_private.status)); 1450 } 1451 1452 static long 1453 aiocb_fetch_error(struct aiocb *ujob) 1454 { 1455 1456 return (fuword(&ujob->_aiocb_private.error)); 1457 } 1458 1459 static int 1460 aiocb_store_status(struct aiocb *ujob, long status) 1461 { 1462 1463 return (suword(&ujob->_aiocb_private.status, status)); 1464 } 1465 1466 static int 1467 aiocb_store_error(struct aiocb *ujob, long error) 1468 { 1469 1470 return (suword(&ujob->_aiocb_private.error, error)); 1471 } 1472 1473 static int 1474 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1475 { 1476 1477 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1478 } 1479 1480 static int 1481 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1482 { 1483 1484 return (suword(ujobp, (long)ujob)); 1485 } 1486 1487 static struct aiocb_ops aiocb_ops = { 1488 .copyin = aiocb_copyin, 1489 .fetch_status = aiocb_fetch_status, 1490 .fetch_error = aiocb_fetch_error, 1491 .store_status = aiocb_store_status, 1492 .store_error = aiocb_store_error, 1493 .store_kernelinfo = aiocb_store_kernelinfo, 1494 .store_aiocb = aiocb_store_aiocb, 1495 }; 1496 1497 static struct aiocb_ops aiocb_ops_osigevent = { 1498 .copyin = aiocb_copyin_old_sigevent, 1499 .fetch_status = aiocb_fetch_status, 1500 .fetch_error = aiocb_fetch_error, 1501 .store_status = aiocb_store_status, 1502 .store_error = aiocb_store_error, 1503 .store_kernelinfo = aiocb_store_kernelinfo, 1504 .store_aiocb = aiocb_store_aiocb, 1505 }; 1506 1507 /* 1508 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1509 * technique is done in this code. 1510 */ 1511 int 1512 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1513 int type, struct aiocb_ops *ops) 1514 { 1515 struct proc *p = td->td_proc; 1516 struct file *fp; 1517 struct socket *so; 1518 struct aiocblist *aiocbe, *cb; 1519 struct kaioinfo *ki; 1520 struct kevent kev; 1521 struct sockbuf *sb; 1522 int opcode; 1523 int error; 1524 int fd, kqfd; 1525 int jid; 1526 1527 if (p->p_aioinfo == NULL) 1528 aio_init_aioinfo(p); 1529 1530 ki = p->p_aioinfo; 1531 1532 ops->store_status(job, -1); 1533 ops->store_error(job, 0); 1534 ops->store_kernelinfo(job, -1); 1535 1536 if (num_queue_count >= max_queue_count || 1537 ki->kaio_count >= ki->kaio_qallowed_count) { 1538 ops->store_error(job, EAGAIN); 1539 return (EAGAIN); 1540 } 1541 1542 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1543 aiocbe->inputcharge = 0; 1544 aiocbe->outputcharge = 0; 1545 knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki)); 1546 1547 error = ops->copyin(job, &aiocbe->uaiocb); 1548 if (error) { 1549 ops->store_error(job, error); 1550 uma_zfree(aiocb_zone, aiocbe); 1551 return (error); 1552 } 1553 1554 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1555 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1556 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1557 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1558 ops->store_error(job, EINVAL); 1559 uma_zfree(aiocb_zone, aiocbe); 1560 return (EINVAL); 1561 } 1562 1563 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1564 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1565 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1566 uma_zfree(aiocb_zone, aiocbe); 1567 return (EINVAL); 1568 } 1569 1570 ksiginfo_init(&aiocbe->ksi); 1571 1572 /* Save userspace address of the job info. */ 1573 aiocbe->uuaiocb = job; 1574 1575 /* Get the opcode. */ 1576 if (type != LIO_NOP) 1577 aiocbe->uaiocb.aio_lio_opcode = type; 1578 opcode = aiocbe->uaiocb.aio_lio_opcode; 1579 1580 /* Fetch the file object for the specified file descriptor. */ 1581 fd = aiocbe->uaiocb.aio_fildes; 1582 switch (opcode) { 1583 case LIO_WRITE: 1584 error = fget_write(td, fd, &fp); 1585 break; 1586 case LIO_READ: 1587 error = fget_read(td, fd, &fp); 1588 break; 1589 default: 1590 error = fget(td, fd, &fp); 1591 } 1592 if (error) { 1593 uma_zfree(aiocb_zone, aiocbe); 1594 ops->store_error(job, error); 1595 return (error); 1596 } 1597 1598 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1599 error = EINVAL; 1600 goto aqueue_fail; 1601 } 1602 1603 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1604 error = EINVAL; 1605 goto aqueue_fail; 1606 } 1607 1608 aiocbe->fd_file = fp; 1609 1610 mtx_lock(&aio_job_mtx); 1611 jid = jobrefid++; 1612 aiocbe->seqno = jobseqno++; 1613 mtx_unlock(&aio_job_mtx); 1614 error = ops->store_kernelinfo(job, jid); 1615 if (error) { 1616 error = EINVAL; 1617 goto aqueue_fail; 1618 } 1619 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1620 1621 if (opcode == LIO_NOP) { 1622 fdrop(fp, td); 1623 uma_zfree(aiocb_zone, aiocbe); 1624 return (0); 1625 } 1626 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1627 (opcode != LIO_SYNC)) { 1628 error = EINVAL; 1629 goto aqueue_fail; 1630 } 1631 1632 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1633 goto no_kqueue; 1634 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1635 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1636 kev.filter = EVFILT_AIO; 1637 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1638 kev.data = (intptr_t)aiocbe; 1639 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1640 error = kqfd_register(kqfd, &kev, td, 1); 1641 aqueue_fail: 1642 if (error) { 1643 fdrop(fp, td); 1644 uma_zfree(aiocb_zone, aiocbe); 1645 ops->store_error(job, error); 1646 goto done; 1647 } 1648 no_kqueue: 1649 1650 ops->store_error(job, EINPROGRESS); 1651 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1652 aiocbe->userproc = p; 1653 aiocbe->cred = crhold(td->td_ucred); 1654 aiocbe->jobflags = 0; 1655 aiocbe->lio = lj; 1656 1657 if (opcode == LIO_SYNC) 1658 goto queueit; 1659 1660 if (fp->f_type == DTYPE_SOCKET) { 1661 /* 1662 * Alternate queueing for socket ops: Reach down into the 1663 * descriptor to get the socket data. Then check to see if the 1664 * socket is ready to be read or written (based on the requested 1665 * operation). 1666 * 1667 * If it is not ready for io, then queue the aiocbe on the 1668 * socket, and set the flags so we get a call when sbnotify() 1669 * happens. 1670 * 1671 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1672 * and unlock the snd sockbuf for no reason. 1673 */ 1674 so = fp->f_data; 1675 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1676 SOCKBUF_LOCK(sb); 1677 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1678 LIO_WRITE) && (!sowriteable(so)))) { 1679 sb->sb_flags |= SB_AIO; 1680 1681 mtx_lock(&aio_job_mtx); 1682 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1683 mtx_unlock(&aio_job_mtx); 1684 1685 AIO_LOCK(ki); 1686 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1687 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1688 aiocbe->jobstate = JOBST_JOBQSOCK; 1689 ki->kaio_count++; 1690 if (lj) 1691 lj->lioj_count++; 1692 AIO_UNLOCK(ki); 1693 SOCKBUF_UNLOCK(sb); 1694 atomic_add_int(&num_queue_count, 1); 1695 error = 0; 1696 goto done; 1697 } 1698 SOCKBUF_UNLOCK(sb); 1699 } 1700 1701 if ((error = aio_qphysio(p, aiocbe)) == 0) 1702 goto done; 1703 #if 0 1704 if (error > 0) { 1705 aiocbe->uaiocb._aiocb_private.error = error; 1706 ops->store_error(job, error); 1707 goto done; 1708 } 1709 #endif 1710 queueit: 1711 /* No buffer for daemon I/O. */ 1712 aiocbe->bp = NULL; 1713 atomic_add_int(&num_queue_count, 1); 1714 1715 AIO_LOCK(ki); 1716 ki->kaio_count++; 1717 if (lj) 1718 lj->lioj_count++; 1719 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1720 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1721 if (opcode == LIO_SYNC) { 1722 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1723 if (cb->fd_file == aiocbe->fd_file && 1724 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1725 cb->seqno < aiocbe->seqno) { 1726 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1727 aiocbe->pending++; 1728 } 1729 } 1730 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1731 if (cb->fd_file == aiocbe->fd_file && 1732 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1733 cb->seqno < aiocbe->seqno) { 1734 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1735 aiocbe->pending++; 1736 } 1737 } 1738 if (aiocbe->pending != 0) { 1739 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1740 aiocbe->jobstate = JOBST_JOBQSYNC; 1741 AIO_UNLOCK(ki); 1742 goto done; 1743 } 1744 } 1745 mtx_lock(&aio_job_mtx); 1746 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1747 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1748 aio_kick_nowait(p); 1749 mtx_unlock(&aio_job_mtx); 1750 AIO_UNLOCK(ki); 1751 error = 0; 1752 done: 1753 return (error); 1754 } 1755 1756 static void 1757 aio_kick_nowait(struct proc *userp) 1758 { 1759 struct kaioinfo *ki = userp->p_aioinfo; 1760 struct aiothreadlist *aiop; 1761 1762 mtx_assert(&aio_job_mtx, MA_OWNED); 1763 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1764 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1765 aiop->aiothreadflags &= ~AIOP_FREE; 1766 wakeup(aiop->aiothread); 1767 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1768 ((ki->kaio_active_count + num_aio_resv_start) < 1769 ki->kaio_maxactive_count)) { 1770 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1771 } 1772 } 1773 1774 static int 1775 aio_kick(struct proc *userp) 1776 { 1777 struct kaioinfo *ki = userp->p_aioinfo; 1778 struct aiothreadlist *aiop; 1779 int error, ret = 0; 1780 1781 mtx_assert(&aio_job_mtx, MA_OWNED); 1782 retryproc: 1783 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1784 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1785 aiop->aiothreadflags &= ~AIOP_FREE; 1786 wakeup(aiop->aiothread); 1787 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1788 ((ki->kaio_active_count + num_aio_resv_start) < 1789 ki->kaio_maxactive_count)) { 1790 num_aio_resv_start++; 1791 mtx_unlock(&aio_job_mtx); 1792 error = aio_newproc(&num_aio_resv_start); 1793 mtx_lock(&aio_job_mtx); 1794 if (error) { 1795 num_aio_resv_start--; 1796 goto retryproc; 1797 } 1798 } else { 1799 ret = -1; 1800 } 1801 return (ret); 1802 } 1803 1804 static void 1805 aio_kick_helper(void *context, int pending) 1806 { 1807 struct proc *userp = context; 1808 1809 mtx_lock(&aio_job_mtx); 1810 while (--pending >= 0) { 1811 if (aio_kick(userp)) 1812 break; 1813 } 1814 mtx_unlock(&aio_job_mtx); 1815 } 1816 1817 /* 1818 * Support the aio_return system call, as a side-effect, kernel resources are 1819 * released. 1820 */ 1821 static int 1822 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) 1823 { 1824 struct proc *p = td->td_proc; 1825 struct aiocblist *cb; 1826 struct kaioinfo *ki; 1827 int status, error; 1828 1829 ki = p->p_aioinfo; 1830 if (ki == NULL) 1831 return (EINVAL); 1832 AIO_LOCK(ki); 1833 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1834 if (cb->uuaiocb == uaiocb) 1835 break; 1836 } 1837 if (cb != NULL) { 1838 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1839 status = cb->uaiocb._aiocb_private.status; 1840 error = cb->uaiocb._aiocb_private.error; 1841 td->td_retval[0] = status; 1842 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1843 td->td_ru.ru_oublock += cb->outputcharge; 1844 cb->outputcharge = 0; 1845 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1846 td->td_ru.ru_inblock += cb->inputcharge; 1847 cb->inputcharge = 0; 1848 } 1849 aio_free_entry(cb); 1850 AIO_UNLOCK(ki); 1851 ops->store_error(uaiocb, error); 1852 ops->store_status(uaiocb, status); 1853 } else { 1854 error = EINVAL; 1855 AIO_UNLOCK(ki); 1856 } 1857 return (error); 1858 } 1859 1860 int 1861 aio_return(struct thread *td, struct aio_return_args *uap) 1862 { 1863 1864 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1865 } 1866 1867 /* 1868 * Allow a process to wakeup when any of the I/O requests are completed. 1869 */ 1870 static int 1871 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1872 struct timespec *ts) 1873 { 1874 struct proc *p = td->td_proc; 1875 struct timeval atv; 1876 struct kaioinfo *ki; 1877 struct aiocblist *cb, *cbfirst; 1878 int error, i, timo; 1879 1880 timo = 0; 1881 if (ts) { 1882 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1883 return (EINVAL); 1884 1885 TIMESPEC_TO_TIMEVAL(&atv, ts); 1886 if (itimerfix(&atv)) 1887 return (EINVAL); 1888 timo = tvtohz(&atv); 1889 } 1890 1891 ki = p->p_aioinfo; 1892 if (ki == NULL) 1893 return (EAGAIN); 1894 1895 if (njoblist == 0) 1896 return (0); 1897 1898 AIO_LOCK(ki); 1899 for (;;) { 1900 cbfirst = NULL; 1901 error = 0; 1902 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1903 for (i = 0; i < njoblist; i++) { 1904 if (cb->uuaiocb == ujoblist[i]) { 1905 if (cbfirst == NULL) 1906 cbfirst = cb; 1907 if (cb->jobstate == JOBST_JOBFINISHED) 1908 goto RETURN; 1909 } 1910 } 1911 } 1912 /* All tasks were finished. */ 1913 if (cbfirst == NULL) 1914 break; 1915 1916 ki->kaio_flags |= KAIO_WAKEUP; 1917 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1918 "aiospn", timo); 1919 if (error == ERESTART) 1920 error = EINTR; 1921 if (error) 1922 break; 1923 } 1924 RETURN: 1925 AIO_UNLOCK(ki); 1926 return (error); 1927 } 1928 1929 int 1930 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1931 { 1932 struct timespec ts, *tsp; 1933 struct aiocb **ujoblist; 1934 int error; 1935 1936 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1937 return (EINVAL); 1938 1939 if (uap->timeout) { 1940 /* Get timespec struct. */ 1941 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1942 return (error); 1943 tsp = &ts; 1944 } else 1945 tsp = NULL; 1946 1947 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1948 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1949 if (error == 0) 1950 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1951 uma_zfree(aiol_zone, ujoblist); 1952 return (error); 1953 } 1954 1955 /* 1956 * aio_cancel cancels any non-physio aio operations not currently in 1957 * progress. 1958 */ 1959 int 1960 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1961 { 1962 struct proc *p = td->td_proc; 1963 struct kaioinfo *ki; 1964 struct aiocblist *cbe, *cbn; 1965 struct file *fp; 1966 struct socket *so; 1967 int error; 1968 int remove; 1969 int cancelled = 0; 1970 int notcancelled = 0; 1971 struct vnode *vp; 1972 1973 /* Lookup file object. */ 1974 error = fget(td, uap->fd, &fp); 1975 if (error) 1976 return (error); 1977 1978 ki = p->p_aioinfo; 1979 if (ki == NULL) 1980 goto done; 1981 1982 if (fp->f_type == DTYPE_VNODE) { 1983 vp = fp->f_vnode; 1984 if (vn_isdisk(vp, &error)) { 1985 fdrop(fp, td); 1986 td->td_retval[0] = AIO_NOTCANCELED; 1987 return (0); 1988 } 1989 } 1990 1991 AIO_LOCK(ki); 1992 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1993 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1994 ((uap->aiocbp == NULL) || 1995 (uap->aiocbp == cbe->uuaiocb))) { 1996 remove = 0; 1997 1998 mtx_lock(&aio_job_mtx); 1999 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 2000 TAILQ_REMOVE(&aio_jobs, cbe, list); 2001 remove = 1; 2002 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 2003 MPASS(fp->f_type == DTYPE_SOCKET); 2004 so = fp->f_data; 2005 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 2006 remove = 1; 2007 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 2008 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 2009 remove = 1; 2010 } 2011 mtx_unlock(&aio_job_mtx); 2012 2013 if (remove) { 2014 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 2015 cbe->uaiocb._aiocb_private.status = -1; 2016 cbe->uaiocb._aiocb_private.error = ECANCELED; 2017 aio_bio_done_notify(p, cbe, DONE_QUEUE); 2018 cancelled++; 2019 } else { 2020 notcancelled++; 2021 } 2022 if (uap->aiocbp != NULL) 2023 break; 2024 } 2025 } 2026 AIO_UNLOCK(ki); 2027 2028 done: 2029 fdrop(fp, td); 2030 2031 if (uap->aiocbp != NULL) { 2032 if (cancelled) { 2033 td->td_retval[0] = AIO_CANCELED; 2034 return (0); 2035 } 2036 } 2037 2038 if (notcancelled) { 2039 td->td_retval[0] = AIO_NOTCANCELED; 2040 return (0); 2041 } 2042 2043 if (cancelled) { 2044 td->td_retval[0] = AIO_CANCELED; 2045 return (0); 2046 } 2047 2048 td->td_retval[0] = AIO_ALLDONE; 2049 2050 return (0); 2051 } 2052 2053 /* 2054 * aio_error is implemented in the kernel level for compatibility purposes 2055 * only. For a user mode async implementation, it would be best to do it in 2056 * a userland subroutine. 2057 */ 2058 static int 2059 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) 2060 { 2061 struct proc *p = td->td_proc; 2062 struct aiocblist *cb; 2063 struct kaioinfo *ki; 2064 int status; 2065 2066 ki = p->p_aioinfo; 2067 if (ki == NULL) { 2068 td->td_retval[0] = EINVAL; 2069 return (0); 2070 } 2071 2072 AIO_LOCK(ki); 2073 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 2074 if (cb->uuaiocb == aiocbp) { 2075 if (cb->jobstate == JOBST_JOBFINISHED) 2076 td->td_retval[0] = 2077 cb->uaiocb._aiocb_private.error; 2078 else 2079 td->td_retval[0] = EINPROGRESS; 2080 AIO_UNLOCK(ki); 2081 return (0); 2082 } 2083 } 2084 AIO_UNLOCK(ki); 2085 2086 /* 2087 * Hack for failure of aio_aqueue. 2088 */ 2089 status = ops->fetch_status(aiocbp); 2090 if (status == -1) { 2091 td->td_retval[0] = ops->fetch_error(aiocbp); 2092 return (0); 2093 } 2094 2095 td->td_retval[0] = EINVAL; 2096 return (0); 2097 } 2098 2099 int 2100 aio_error(struct thread *td, struct aio_error_args *uap) 2101 { 2102 2103 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2104 } 2105 2106 /* syscall - asynchronous read from a file (REALTIME) */ 2107 int 2108 oaio_read(struct thread *td, struct oaio_read_args *uap) 2109 { 2110 2111 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2112 &aiocb_ops_osigevent)); 2113 } 2114 2115 int 2116 aio_read(struct thread *td, struct aio_read_args *uap) 2117 { 2118 2119 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2120 } 2121 2122 /* syscall - asynchronous write to a file (REALTIME) */ 2123 int 2124 oaio_write(struct thread *td, struct oaio_write_args *uap) 2125 { 2126 2127 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2128 &aiocb_ops_osigevent)); 2129 } 2130 2131 int 2132 aio_write(struct thread *td, struct aio_write_args *uap) 2133 { 2134 2135 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2136 } 2137 2138 static int 2139 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2140 struct aiocb **acb_list, int nent, struct sigevent *sig, 2141 struct aiocb_ops *ops) 2142 { 2143 struct proc *p = td->td_proc; 2144 struct aiocb *iocb; 2145 struct kaioinfo *ki; 2146 struct aioliojob *lj; 2147 struct kevent kev; 2148 int error; 2149 int nerror; 2150 int i; 2151 2152 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2153 return (EINVAL); 2154 2155 if (nent < 0 || nent > AIO_LISTIO_MAX) 2156 return (EINVAL); 2157 2158 if (p->p_aioinfo == NULL) 2159 aio_init_aioinfo(p); 2160 2161 ki = p->p_aioinfo; 2162 2163 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2164 lj->lioj_flags = 0; 2165 lj->lioj_count = 0; 2166 lj->lioj_finished_count = 0; 2167 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2168 ksiginfo_init(&lj->lioj_ksi); 2169 2170 /* 2171 * Setup signal. 2172 */ 2173 if (sig && (mode == LIO_NOWAIT)) { 2174 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2175 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2176 /* Assume only new style KEVENT */ 2177 kev.filter = EVFILT_LIO; 2178 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2179 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2180 kev.data = (intptr_t)lj; 2181 /* pass user defined sigval data */ 2182 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2183 error = kqfd_register( 2184 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2185 if (error) { 2186 uma_zfree(aiolio_zone, lj); 2187 return (error); 2188 } 2189 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2190 ; 2191 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2192 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2193 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2194 uma_zfree(aiolio_zone, lj); 2195 return EINVAL; 2196 } 2197 lj->lioj_flags |= LIOJ_SIGNAL; 2198 } else { 2199 uma_zfree(aiolio_zone, lj); 2200 return EINVAL; 2201 } 2202 } 2203 2204 AIO_LOCK(ki); 2205 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2206 /* 2207 * Add extra aiocb count to avoid the lio to be freed 2208 * by other threads doing aio_waitcomplete or aio_return, 2209 * and prevent event from being sent until we have queued 2210 * all tasks. 2211 */ 2212 lj->lioj_count = 1; 2213 AIO_UNLOCK(ki); 2214 2215 /* 2216 * Get pointers to the list of I/O requests. 2217 */ 2218 nerror = 0; 2219 for (i = 0; i < nent; i++) { 2220 iocb = acb_list[i]; 2221 if (iocb != NULL) { 2222 error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); 2223 if (error != 0) 2224 nerror++; 2225 } 2226 } 2227 2228 error = 0; 2229 AIO_LOCK(ki); 2230 if (mode == LIO_WAIT) { 2231 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2232 ki->kaio_flags |= KAIO_WAKEUP; 2233 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2234 PRIBIO | PCATCH, "aiospn", 0); 2235 if (error == ERESTART) 2236 error = EINTR; 2237 if (error) 2238 break; 2239 } 2240 } else { 2241 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2242 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2243 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2244 KNOTE_LOCKED(&lj->klist, 1); 2245 } 2246 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2247 == LIOJ_SIGNAL 2248 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2249 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2250 aio_sendsig(p, &lj->lioj_signal, 2251 &lj->lioj_ksi); 2252 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2253 } 2254 } 2255 } 2256 lj->lioj_count--; 2257 if (lj->lioj_count == 0) { 2258 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2259 knlist_delete(&lj->klist, curthread, 1); 2260 PROC_LOCK(p); 2261 sigqueue_take(&lj->lioj_ksi); 2262 PROC_UNLOCK(p); 2263 AIO_UNLOCK(ki); 2264 uma_zfree(aiolio_zone, lj); 2265 } else 2266 AIO_UNLOCK(ki); 2267 2268 if (nerror) 2269 return (EIO); 2270 return (error); 2271 } 2272 2273 /* syscall - list directed I/O (REALTIME) */ 2274 int 2275 olio_listio(struct thread *td, struct olio_listio_args *uap) 2276 { 2277 struct aiocb **acb_list; 2278 struct sigevent *sigp, sig; 2279 struct osigevent osig; 2280 int error, nent; 2281 2282 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2283 return (EINVAL); 2284 2285 nent = uap->nent; 2286 if (nent < 0 || nent > AIO_LISTIO_MAX) 2287 return (EINVAL); 2288 2289 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2290 error = copyin(uap->sig, &osig, sizeof(osig)); 2291 if (error) 2292 return (error); 2293 error = convert_old_sigevent(&osig, &sig); 2294 if (error) 2295 return (error); 2296 sigp = &sig; 2297 } else 2298 sigp = NULL; 2299 2300 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2301 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2302 if (error == 0) 2303 error = kern_lio_listio(td, uap->mode, 2304 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2305 &aiocb_ops_osigevent); 2306 free(acb_list, M_LIO); 2307 return (error); 2308 } 2309 2310 /* syscall - list directed I/O (REALTIME) */ 2311 int 2312 lio_listio(struct thread *td, struct lio_listio_args *uap) 2313 { 2314 struct aiocb **acb_list; 2315 struct sigevent *sigp, sig; 2316 int error, nent; 2317 2318 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2319 return (EINVAL); 2320 2321 nent = uap->nent; 2322 if (nent < 0 || nent > AIO_LISTIO_MAX) 2323 return (EINVAL); 2324 2325 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2326 error = copyin(uap->sig, &sig, sizeof(sig)); 2327 if (error) 2328 return (error); 2329 sigp = &sig; 2330 } else 2331 sigp = NULL; 2332 2333 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2334 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2335 if (error == 0) 2336 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2337 nent, sigp, &aiocb_ops); 2338 free(acb_list, M_LIO); 2339 return (error); 2340 } 2341 2342 /* 2343 * Called from interrupt thread for physio, we should return as fast 2344 * as possible, so we schedule a biohelper task. 2345 */ 2346 static void 2347 aio_physwakeup(struct buf *bp) 2348 { 2349 struct aiocblist *aiocbe; 2350 2351 aiocbe = (struct aiocblist *)bp->b_caller1; 2352 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2353 } 2354 2355 /* 2356 * Task routine to perform heavy tasks, process wakeup, and signals. 2357 */ 2358 static void 2359 biohelper(void *context, int pending) 2360 { 2361 struct aiocblist *aiocbe = context; 2362 struct buf *bp; 2363 struct proc *userp; 2364 struct kaioinfo *ki; 2365 int nblks; 2366 2367 bp = aiocbe->bp; 2368 userp = aiocbe->userproc; 2369 ki = userp->p_aioinfo; 2370 AIO_LOCK(ki); 2371 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2372 aiocbe->uaiocb._aiocb_private.error = 0; 2373 if (bp->b_ioflags & BIO_ERROR) 2374 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2375 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2376 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2377 aiocbe->outputcharge += nblks; 2378 else 2379 aiocbe->inputcharge += nblks; 2380 aiocbe->bp = NULL; 2381 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2382 ki->kaio_buffer_count--; 2383 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2384 AIO_UNLOCK(ki); 2385 2386 /* Release mapping into kernel space. */ 2387 vunmapbuf(bp); 2388 relpbuf(bp, NULL); 2389 atomic_subtract_int(&num_buf_aio, 1); 2390 } 2391 2392 /* syscall - wait for the next completion of an aio request */ 2393 static int 2394 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, 2395 struct timespec *ts, struct aiocb_ops *ops) 2396 { 2397 struct proc *p = td->td_proc; 2398 struct timeval atv; 2399 struct kaioinfo *ki; 2400 struct aiocblist *cb; 2401 struct aiocb *uuaiocb; 2402 int error, status, timo; 2403 2404 ops->store_aiocb(aiocbp, NULL); 2405 2406 timo = 0; 2407 if (ts) { 2408 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2409 return (EINVAL); 2410 2411 TIMESPEC_TO_TIMEVAL(&atv, ts); 2412 if (itimerfix(&atv)) 2413 return (EINVAL); 2414 timo = tvtohz(&atv); 2415 } 2416 2417 if (p->p_aioinfo == NULL) 2418 aio_init_aioinfo(p); 2419 ki = p->p_aioinfo; 2420 2421 error = 0; 2422 cb = NULL; 2423 AIO_LOCK(ki); 2424 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2425 ki->kaio_flags |= KAIO_WAKEUP; 2426 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2427 "aiowc", timo); 2428 if (timo && error == ERESTART) 2429 error = EINTR; 2430 if (error) 2431 break; 2432 } 2433 2434 if (cb != NULL) { 2435 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2436 uuaiocb = cb->uuaiocb; 2437 status = cb->uaiocb._aiocb_private.status; 2438 error = cb->uaiocb._aiocb_private.error; 2439 td->td_retval[0] = status; 2440 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2441 td->td_ru.ru_oublock += cb->outputcharge; 2442 cb->outputcharge = 0; 2443 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2444 td->td_ru.ru_inblock += cb->inputcharge; 2445 cb->inputcharge = 0; 2446 } 2447 aio_free_entry(cb); 2448 AIO_UNLOCK(ki); 2449 ops->store_aiocb(aiocbp, uuaiocb); 2450 ops->store_error(uuaiocb, error); 2451 ops->store_status(uuaiocb, status); 2452 } else 2453 AIO_UNLOCK(ki); 2454 2455 return (error); 2456 } 2457 2458 int 2459 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2460 { 2461 struct timespec ts, *tsp; 2462 int error; 2463 2464 if (uap->timeout) { 2465 /* Get timespec struct. */ 2466 error = copyin(uap->timeout, &ts, sizeof(ts)); 2467 if (error) 2468 return (error); 2469 tsp = &ts; 2470 } else 2471 tsp = NULL; 2472 2473 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2474 } 2475 2476 static int 2477 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, 2478 struct aiocb_ops *ops) 2479 { 2480 struct proc *p = td->td_proc; 2481 struct kaioinfo *ki; 2482 2483 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2484 return (EINVAL); 2485 ki = p->p_aioinfo; 2486 if (ki == NULL) 2487 aio_init_aioinfo(p); 2488 return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); 2489 } 2490 2491 int 2492 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2493 { 2494 2495 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2496 } 2497 2498 /* kqueue attach function */ 2499 static int 2500 filt_aioattach(struct knote *kn) 2501 { 2502 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2503 2504 /* 2505 * The aiocbe pointer must be validated before using it, so 2506 * registration is restricted to the kernel; the user cannot 2507 * set EV_FLAG1. 2508 */ 2509 if ((kn->kn_flags & EV_FLAG1) == 0) 2510 return (EPERM); 2511 kn->kn_ptr.p_aio = aiocbe; 2512 kn->kn_flags &= ~EV_FLAG1; 2513 2514 knlist_add(&aiocbe->klist, kn, 0); 2515 2516 return (0); 2517 } 2518 2519 /* kqueue detach function */ 2520 static void 2521 filt_aiodetach(struct knote *kn) 2522 { 2523 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2524 2525 if (!knlist_empty(&aiocbe->klist)) 2526 knlist_remove(&aiocbe->klist, kn, 0); 2527 } 2528 2529 /* kqueue filter function */ 2530 /*ARGSUSED*/ 2531 static int 2532 filt_aio(struct knote *kn, long hint) 2533 { 2534 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2535 2536 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2537 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2538 return (0); 2539 kn->kn_flags |= EV_EOF; 2540 return (1); 2541 } 2542 2543 /* kqueue attach function */ 2544 static int 2545 filt_lioattach(struct knote *kn) 2546 { 2547 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2548 2549 /* 2550 * The aioliojob pointer must be validated before using it, so 2551 * registration is restricted to the kernel; the user cannot 2552 * set EV_FLAG1. 2553 */ 2554 if ((kn->kn_flags & EV_FLAG1) == 0) 2555 return (EPERM); 2556 kn->kn_ptr.p_lio = lj; 2557 kn->kn_flags &= ~EV_FLAG1; 2558 2559 knlist_add(&lj->klist, kn, 0); 2560 2561 return (0); 2562 } 2563 2564 /* kqueue detach function */ 2565 static void 2566 filt_liodetach(struct knote *kn) 2567 { 2568 struct aioliojob * lj = kn->kn_ptr.p_lio; 2569 2570 if (!knlist_empty(&lj->klist)) 2571 knlist_remove(&lj->klist, kn, 0); 2572 } 2573 2574 /* kqueue filter function */ 2575 /*ARGSUSED*/ 2576 static int 2577 filt_lio(struct knote *kn, long hint) 2578 { 2579 struct aioliojob * lj = kn->kn_ptr.p_lio; 2580 2581 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2582 } 2583 2584 #ifdef COMPAT_FREEBSD32 2585 2586 struct __aiocb_private32 { 2587 int32_t status; 2588 int32_t error; 2589 uint32_t kernelinfo; 2590 }; 2591 2592 typedef struct oaiocb32 { 2593 int aio_fildes; /* File descriptor */ 2594 uint64_t aio_offset __packed; /* File offset for I/O */ 2595 uint32_t aio_buf; /* I/O buffer in process space */ 2596 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2597 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2598 int aio_lio_opcode; /* LIO opcode */ 2599 int aio_reqprio; /* Request priority -- ignored */ 2600 struct __aiocb_private32 _aiocb_private; 2601 } oaiocb32_t; 2602 2603 typedef struct aiocb32 { 2604 int32_t aio_fildes; /* File descriptor */ 2605 uint64_t aio_offset __packed; /* File offset for I/O */ 2606 uint32_t aio_buf; /* I/O buffer in process space */ 2607 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2608 int __spare__[2]; 2609 uint32_t __spare2__; 2610 int aio_lio_opcode; /* LIO opcode */ 2611 int aio_reqprio; /* Request priority -- ignored */ 2612 struct __aiocb_private32 _aiocb_private; 2613 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2614 } aiocb32_t; 2615 2616 static int 2617 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2618 { 2619 2620 /* 2621 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2622 * supported by AIO with the old sigevent structure. 2623 */ 2624 CP(*osig, *nsig, sigev_notify); 2625 switch (nsig->sigev_notify) { 2626 case SIGEV_NONE: 2627 break; 2628 case SIGEV_SIGNAL: 2629 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2630 break; 2631 case SIGEV_KEVENT: 2632 nsig->sigev_notify_kqueue = 2633 osig->__sigev_u.__sigev_notify_kqueue; 2634 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2635 break; 2636 default: 2637 return (EINVAL); 2638 } 2639 return (0); 2640 } 2641 2642 static int 2643 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2644 { 2645 struct oaiocb32 job32; 2646 int error; 2647 2648 bzero(kjob, sizeof(struct aiocb)); 2649 error = copyin(ujob, &job32, sizeof(job32)); 2650 if (error) 2651 return (error); 2652 2653 CP(job32, *kjob, aio_fildes); 2654 CP(job32, *kjob, aio_offset); 2655 PTRIN_CP(job32, *kjob, aio_buf); 2656 CP(job32, *kjob, aio_nbytes); 2657 CP(job32, *kjob, aio_lio_opcode); 2658 CP(job32, *kjob, aio_reqprio); 2659 CP(job32, *kjob, _aiocb_private.status); 2660 CP(job32, *kjob, _aiocb_private.error); 2661 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2662 return (convert_old_sigevent32(&job32.aio_sigevent, 2663 &kjob->aio_sigevent)); 2664 } 2665 2666 static int 2667 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 2668 { 2669 2670 CP(*sig32, *sig, sigev_notify); 2671 switch (sig->sigev_notify) { 2672 case SIGEV_NONE: 2673 break; 2674 case SIGEV_THREAD_ID: 2675 CP(*sig32, *sig, sigev_notify_thread_id); 2676 /* FALLTHROUGH */ 2677 case SIGEV_SIGNAL: 2678 CP(*sig32, *sig, sigev_signo); 2679 break; 2680 case SIGEV_KEVENT: 2681 CP(*sig32, *sig, sigev_notify_kqueue); 2682 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2683 break; 2684 default: 2685 return (EINVAL); 2686 } 2687 return (0); 2688 } 2689 2690 static int 2691 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2692 { 2693 struct aiocb32 job32; 2694 int error; 2695 2696 error = copyin(ujob, &job32, sizeof(job32)); 2697 if (error) 2698 return (error); 2699 CP(job32, *kjob, aio_fildes); 2700 CP(job32, *kjob, aio_offset); 2701 PTRIN_CP(job32, *kjob, aio_buf); 2702 CP(job32, *kjob, aio_nbytes); 2703 CP(job32, *kjob, aio_lio_opcode); 2704 CP(job32, *kjob, aio_reqprio); 2705 CP(job32, *kjob, _aiocb_private.status); 2706 CP(job32, *kjob, _aiocb_private.error); 2707 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2708 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2709 } 2710 2711 static long 2712 aiocb32_fetch_status(struct aiocb *ujob) 2713 { 2714 struct aiocb32 *ujob32; 2715 2716 ujob32 = (struct aiocb32 *)ujob; 2717 return (fuword32(&ujob32->_aiocb_private.status)); 2718 } 2719 2720 static long 2721 aiocb32_fetch_error(struct aiocb *ujob) 2722 { 2723 struct aiocb32 *ujob32; 2724 2725 ujob32 = (struct aiocb32 *)ujob; 2726 return (fuword32(&ujob32->_aiocb_private.error)); 2727 } 2728 2729 static int 2730 aiocb32_store_status(struct aiocb *ujob, long status) 2731 { 2732 struct aiocb32 *ujob32; 2733 2734 ujob32 = (struct aiocb32 *)ujob; 2735 return (suword32(&ujob32->_aiocb_private.status, status)); 2736 } 2737 2738 static int 2739 aiocb32_store_error(struct aiocb *ujob, long error) 2740 { 2741 struct aiocb32 *ujob32; 2742 2743 ujob32 = (struct aiocb32 *)ujob; 2744 return (suword32(&ujob32->_aiocb_private.error, error)); 2745 } 2746 2747 static int 2748 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2749 { 2750 struct aiocb32 *ujob32; 2751 2752 ujob32 = (struct aiocb32 *)ujob; 2753 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2754 } 2755 2756 static int 2757 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2758 { 2759 2760 return (suword32(ujobp, (long)ujob)); 2761 } 2762 2763 static struct aiocb_ops aiocb32_ops = { 2764 .copyin = aiocb32_copyin, 2765 .fetch_status = aiocb32_fetch_status, 2766 .fetch_error = aiocb32_fetch_error, 2767 .store_status = aiocb32_store_status, 2768 .store_error = aiocb32_store_error, 2769 .store_kernelinfo = aiocb32_store_kernelinfo, 2770 .store_aiocb = aiocb32_store_aiocb, 2771 }; 2772 2773 static struct aiocb_ops aiocb32_ops_osigevent = { 2774 .copyin = aiocb32_copyin_old_sigevent, 2775 .fetch_status = aiocb32_fetch_status, 2776 .fetch_error = aiocb32_fetch_error, 2777 .store_status = aiocb32_store_status, 2778 .store_error = aiocb32_store_error, 2779 .store_kernelinfo = aiocb32_store_kernelinfo, 2780 .store_aiocb = aiocb32_store_aiocb, 2781 }; 2782 2783 int 2784 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2785 { 2786 2787 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2788 } 2789 2790 int 2791 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2792 { 2793 struct timespec32 ts32; 2794 struct timespec ts, *tsp; 2795 struct aiocb **ujoblist; 2796 uint32_t *ujoblist32; 2797 int error, i; 2798 2799 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2800 return (EINVAL); 2801 2802 if (uap->timeout) { 2803 /* Get timespec struct. */ 2804 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2805 return (error); 2806 CP(ts32, ts, tv_sec); 2807 CP(ts32, ts, tv_nsec); 2808 tsp = &ts; 2809 } else 2810 tsp = NULL; 2811 2812 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2813 ujoblist32 = (uint32_t *)ujoblist; 2814 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2815 sizeof(ujoblist32[0])); 2816 if (error == 0) { 2817 for (i = uap->nent; i > 0; i--) 2818 ujoblist[i] = PTRIN(ujoblist32[i]); 2819 2820 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2821 } 2822 uma_zfree(aiol_zone, ujoblist); 2823 return (error); 2824 } 2825 2826 int 2827 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2828 { 2829 2830 return (aio_cancel(td, (struct aio_cancel_args *)uap)); 2831 } 2832 2833 int 2834 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2835 { 2836 2837 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2838 } 2839 2840 int 2841 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2842 { 2843 2844 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2845 &aiocb32_ops_osigevent)); 2846 } 2847 2848 int 2849 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2850 { 2851 2852 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2853 &aiocb32_ops)); 2854 } 2855 2856 int 2857 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2858 { 2859 2860 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2861 &aiocb32_ops_osigevent)); 2862 } 2863 2864 int 2865 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2866 { 2867 2868 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2869 &aiocb32_ops)); 2870 } 2871 2872 int 2873 freebsd32_aio_waitcomplete(struct thread *td, 2874 struct freebsd32_aio_waitcomplete_args *uap) 2875 { 2876 struct timespec32 ts32; 2877 struct timespec ts, *tsp; 2878 int error; 2879 2880 if (uap->timeout) { 2881 /* Get timespec struct. */ 2882 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2883 if (error) 2884 return (error); 2885 CP(ts32, ts, tv_sec); 2886 CP(ts32, ts, tv_nsec); 2887 tsp = &ts; 2888 } else 2889 tsp = NULL; 2890 2891 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2892 &aiocb32_ops)); 2893 } 2894 2895 int 2896 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2897 { 2898 2899 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2900 &aiocb32_ops)); 2901 } 2902 2903 int 2904 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2905 { 2906 struct aiocb **acb_list; 2907 struct sigevent *sigp, sig; 2908 struct osigevent32 osig; 2909 uint32_t *acb_list32; 2910 int error, i, nent; 2911 2912 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2913 return (EINVAL); 2914 2915 nent = uap->nent; 2916 if (nent < 0 || nent > AIO_LISTIO_MAX) 2917 return (EINVAL); 2918 2919 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2920 error = copyin(uap->sig, &osig, sizeof(osig)); 2921 if (error) 2922 return (error); 2923 error = convert_old_sigevent32(&osig, &sig); 2924 if (error) 2925 return (error); 2926 sigp = &sig; 2927 } else 2928 sigp = NULL; 2929 2930 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2931 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2932 if (error) { 2933 free(acb_list32, M_LIO); 2934 return (error); 2935 } 2936 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2937 for (i = 0; i < nent; i++) 2938 acb_list[i] = PTRIN(acb_list32[i]); 2939 free(acb_list32, M_LIO); 2940 2941 error = kern_lio_listio(td, uap->mode, 2942 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2943 &aiocb32_ops_osigevent); 2944 free(acb_list, M_LIO); 2945 return (error); 2946 } 2947 2948 int 2949 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2950 { 2951 struct aiocb **acb_list; 2952 struct sigevent *sigp, sig; 2953 struct sigevent32 sig32; 2954 uint32_t *acb_list32; 2955 int error, i, nent; 2956 2957 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2958 return (EINVAL); 2959 2960 nent = uap->nent; 2961 if (nent < 0 || nent > AIO_LISTIO_MAX) 2962 return (EINVAL); 2963 2964 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2965 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2966 if (error) 2967 return (error); 2968 error = convert_sigevent32(&sig32, &sig); 2969 if (error) 2970 return (error); 2971 sigp = &sig; 2972 } else 2973 sigp = NULL; 2974 2975 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2976 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2977 if (error) { 2978 free(acb_list32, M_LIO); 2979 return (error); 2980 } 2981 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2982 for (i = 0; i < nent; i++) 2983 acb_list[i] = PTRIN(acb_list32[i]); 2984 free(acb_list32, M_LIO); 2985 2986 error = kern_lio_listio(td, uap->mode, 2987 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2988 &aiocb32_ops); 2989 free(acb_list, M_LIO); 2990 return (error); 2991 } 2992 2993 #endif 2994