1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/socketvar.h> 46 #include <sys/syscall.h> 47 #include <sys/sysent.h> 48 #include <sys/sysctl.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 #include <sys/conf.h> 52 #include <sys/event.h> 53 54 #include <posix4/posix4.h> 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/uma.h> 60 #include <sys/aio.h> 61 62 #include "opt_vfs_aio.h" 63 64 NET_NEEDS_GIANT("aio"); 65 66 /* 67 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 68 * overflow. 69 */ 70 static long jobrefid; 71 72 #define JOBST_NULL 0x0 73 #define JOBST_JOBQGLOBAL 0x2 74 #define JOBST_JOBRUNNING 0x3 75 #define JOBST_JOBFINISHED 0x4 76 #define JOBST_JOBQBUF 0x5 77 #define JOBST_JOBBFINISHED 0x6 78 79 #ifndef MAX_AIO_PER_PROC 80 #define MAX_AIO_PER_PROC 32 81 #endif 82 83 #ifndef MAX_AIO_QUEUE_PER_PROC 84 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 85 #endif 86 87 #ifndef MAX_AIO_PROCS 88 #define MAX_AIO_PROCS 32 89 #endif 90 91 #ifndef MAX_AIO_QUEUE 92 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 93 #endif 94 95 #ifndef TARGET_AIO_PROCS 96 #define TARGET_AIO_PROCS 4 97 #endif 98 99 #ifndef MAX_BUF_AIO 100 #define MAX_BUF_AIO 16 101 #endif 102 103 #ifndef AIOD_TIMEOUT_DEFAULT 104 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 105 #endif 106 107 #ifndef AIOD_LIFETIME_DEFAULT 108 #define AIOD_LIFETIME_DEFAULT (30 * hz) 109 #endif 110 111 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 112 113 static int max_aio_procs = MAX_AIO_PROCS; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 115 CTLFLAG_RW, &max_aio_procs, 0, 116 "Maximum number of kernel threads to use for handling async IO "); 117 118 static int num_aio_procs = 0; 119 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 120 CTLFLAG_RD, &num_aio_procs, 0, 121 "Number of presently active kernel threads for async IO"); 122 123 /* 124 * The code will adjust the actual number of AIO processes towards this 125 * number when it gets a chance. 126 */ 127 static int target_aio_procs = TARGET_AIO_PROCS; 128 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 129 0, "Preferred number of ready kernel threads for async IO"); 130 131 static int max_queue_count = MAX_AIO_QUEUE; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 133 "Maximum number of aio requests to queue, globally"); 134 135 static int num_queue_count = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 137 "Number of queued aio requests"); 138 139 static int num_buf_aio = 0; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 141 "Number of aio requests presently handled by the buf subsystem"); 142 143 /* Number of async I/O thread in the process of being started */ 144 /* XXX This should be local to _aio_aqueue() */ 145 static int num_aio_resv_start = 0; 146 147 static int aiod_timeout; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 149 "Timeout value for synchronous aio operations"); 150 151 static int aiod_lifetime; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 153 "Maximum lifetime for idle aiod"); 154 155 static int unloadable = 0; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 157 "Allow unload of aio (not recommended)"); 158 159 160 static int max_aio_per_proc = MAX_AIO_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 162 0, "Maximum active aio requests per process (stored in the process)"); 163 164 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 166 &max_aio_queue_per_proc, 0, 167 "Maximum queued aio requests per process (stored in the process)"); 168 169 static int max_buf_aio = MAX_BUF_AIO; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 171 "Maximum buf aio requests per process (stored in the process)"); 172 173 struct aiocblist { 174 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 175 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 176 int jobflags; 177 int jobstate; 178 int inputcharge; 179 int outputcharge; 180 struct buf *bp; /* Buffer pointer */ 181 struct proc *userproc; /* User process */ /* Not td! */ 182 struct ucred *cred; /* Active credential when created */ 183 struct file *fd_file; /* Pointer to file structure */ 184 struct aio_liojob *lio; /* Optional lio job */ 185 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 186 struct knlist klist; /* list of knotes */ 187 struct aiocb uaiocb; /* Kernel I/O control block */ 188 }; 189 190 /* jobflags */ 191 #define AIOCBLIST_RUNDOWN 0x4 192 #define AIOCBLIST_DONE 0x10 193 194 /* 195 * AIO process info 196 */ 197 #define AIOP_FREE 0x1 /* proc on free queue */ 198 199 struct aiothreadlist { 200 int aiothreadflags; /* AIO proc flags */ 201 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 202 struct thread *aiothread; /* The AIO thread */ 203 }; 204 205 /* 206 * data-structure for lio signal management 207 */ 208 struct aio_liojob { 209 int lioj_flags; 210 int lioj_buffer_count; 211 int lioj_buffer_finished_count; 212 int lioj_queue_count; 213 int lioj_queue_finished_count; 214 int lioj_total_count; 215 struct sigevent lioj_signal; /* signal on all I/O done */ 216 TAILQ_ENTRY(aio_liojob) lioj_list; 217 struct knlist klist; /* list of knotes */ 218 }; 219 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 220 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 221 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 222 223 /* 224 * per process aio data structure 225 */ 226 struct kaioinfo { 227 int kaio_flags; /* per process kaio flags */ 228 int kaio_maxactive_count; /* maximum number of AIOs */ 229 int kaio_active_count; /* number of currently used AIOs */ 230 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 231 int kaio_queue_count; /* size of AIO queue */ 232 int kaio_ballowed_count; /* maximum number of buffers */ 233 int kaio_queue_finished_count; /* number of daemon jobs finished */ 234 int kaio_buffer_count; /* number of physio buffers */ 235 int kaio_buffer_finished_count; /* count of I/O done */ 236 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 237 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 239 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 240 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 241 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 242 }; 243 244 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 245 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 246 247 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 248 static struct mtx aio_freeproc_mtx; 249 250 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 251 252 static void aio_init_aioinfo(struct proc *p); 253 static void aio_onceonly(void); 254 static int aio_free_entry(struct aiocblist *aiocbe); 255 static void aio_process(struct aiocblist *aiocbe); 256 static int aio_newproc(void); 257 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 258 static void aio_physwakeup(struct buf *bp); 259 static void aio_proc_rundown(void *arg, struct proc *p); 260 static int aio_fphysio(struct aiocblist *aiocbe); 261 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 262 static void aio_daemon(void *uproc); 263 static void aio_swake_cb(struct socket *, struct sockbuf *); 264 static int aio_unload(void); 265 static int filt_aioattach(struct knote *kn); 266 static void filt_aiodetach(struct knote *kn); 267 static int filt_aio(struct knote *kn, long hint); 268 static int filt_lioattach(struct knote *kn); 269 static void filt_liodetach(struct knote *kn); 270 static int filt_lio(struct knote *kn, long hint); 271 #define DONE_BUF 1 272 #define DONE_QUEUE 2 273 static void aio_bio_done_notify( struct proc *userp, struct aiocblist *aiocbe, int type); 274 275 /* 276 * Zones for: 277 * kaio Per process async io info 278 * aiop async io thread data 279 * aiocb async io jobs 280 * aiol list io job pointer - internal to aio_suspend XXX 281 * aiolio list io jobs 282 */ 283 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 284 285 /* kqueue filters for aio */ 286 static struct filterops aio_filtops = 287 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 288 static struct filterops lio_filtops = 289 { 0, filt_lioattach, filt_liodetach, filt_lio }; 290 291 static eventhandler_tag exit_tag, exec_tag; 292 293 /* 294 * Main operations function for use as a kernel module. 295 */ 296 static int 297 aio_modload(struct module *module, int cmd, void *arg) 298 { 299 int error = 0; 300 301 switch (cmd) { 302 case MOD_LOAD: 303 aio_onceonly(); 304 break; 305 case MOD_UNLOAD: 306 error = aio_unload(); 307 break; 308 case MOD_SHUTDOWN: 309 break; 310 default: 311 error = EINVAL; 312 break; 313 } 314 return (error); 315 } 316 317 static moduledata_t aio_mod = { 318 "aio", 319 &aio_modload, 320 NULL 321 }; 322 323 SYSCALL_MODULE_HELPER(aio_return); 324 SYSCALL_MODULE_HELPER(aio_suspend); 325 SYSCALL_MODULE_HELPER(aio_cancel); 326 SYSCALL_MODULE_HELPER(aio_error); 327 SYSCALL_MODULE_HELPER(aio_read); 328 SYSCALL_MODULE_HELPER(aio_write); 329 SYSCALL_MODULE_HELPER(aio_waitcomplete); 330 SYSCALL_MODULE_HELPER(lio_listio); 331 332 DECLARE_MODULE(aio, aio_mod, 333 SI_SUB_VFS, SI_ORDER_ANY); 334 MODULE_VERSION(aio, 1); 335 336 /* 337 * Startup initialization 338 */ 339 static void 340 aio_onceonly(void) 341 { 342 343 /* XXX: should probably just use so->callback */ 344 aio_swake = &aio_swake_cb; 345 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 346 EVENTHANDLER_PRI_ANY); 347 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 348 EVENTHANDLER_PRI_ANY); 349 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 350 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 351 TAILQ_INIT(&aio_freeproc); 352 mtx_init(&aio_freeproc_mtx, "aio_freeproc", NULL, MTX_DEF); 353 TAILQ_INIT(&aio_jobs); 354 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 355 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 356 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 357 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 358 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 359 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 360 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 361 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 362 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 363 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 364 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 365 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 366 jobrefid = 1; 367 async_io_version = _POSIX_VERSION; 368 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 369 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 370 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 371 } 372 373 /* 374 * Callback for unload of AIO when used as a module. 375 */ 376 static int 377 aio_unload(void) 378 { 379 int error; 380 381 /* 382 * XXX: no unloads by default, it's too dangerous. 383 * perhaps we could do it if locked out callers and then 384 * did an aio_proc_rundown() on each process. 385 */ 386 if (!unloadable) 387 return (EOPNOTSUPP); 388 389 error = kqueue_del_filteropts(EVFILT_AIO); 390 if (error) 391 return error; 392 393 async_io_version = 0; 394 aio_swake = NULL; 395 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 396 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 397 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 398 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 399 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 400 return (0); 401 } 402 403 /* 404 * Init the per-process aioinfo structure. The aioinfo limits are set 405 * per-process for user limit (resource) management. 406 */ 407 static void 408 aio_init_aioinfo(struct proc *p) 409 { 410 struct kaioinfo *ki; 411 412 ki = uma_zalloc(kaio_zone, M_WAITOK); 413 ki->kaio_flags = 0; 414 ki->kaio_maxactive_count = max_aio_per_proc; 415 ki->kaio_active_count = 0; 416 ki->kaio_qallowed_count = max_aio_queue_per_proc; 417 ki->kaio_queue_count = 0; 418 ki->kaio_ballowed_count = max_buf_aio; 419 ki->kaio_buffer_count = 0; 420 ki->kaio_buffer_finished_count = 0; 421 TAILQ_INIT(&ki->kaio_jobdone); 422 TAILQ_INIT(&ki->kaio_jobqueue); 423 TAILQ_INIT(&ki->kaio_bufdone); 424 TAILQ_INIT(&ki->kaio_bufqueue); 425 TAILQ_INIT(&ki->kaio_liojoblist); 426 TAILQ_INIT(&ki->kaio_sockqueue); 427 PROC_LOCK(p); 428 if (p->p_aioinfo == NULL) { 429 p->p_aioinfo = ki; 430 PROC_UNLOCK(p); 431 } else { 432 PROC_UNLOCK(p); 433 uma_zfree(kaio_zone, ki); 434 } 435 436 while (num_aio_procs < target_aio_procs) 437 aio_newproc(); 438 } 439 440 /* 441 * Free a job entry. Wait for completion if it is currently active, but don't 442 * delay forever. If we delay, we return a flag that says that we have to 443 * restart the queue scan. 444 */ 445 static int 446 aio_free_entry(struct aiocblist *aiocbe) 447 { 448 struct kaioinfo *ki; 449 struct aio_liojob *lj; 450 struct proc *p; 451 int error; 452 int s; 453 454 if (aiocbe->jobstate == JOBST_NULL) 455 panic("aio_free_entry: freeing already free job"); 456 457 p = aiocbe->userproc; 458 ki = p->p_aioinfo; 459 lj = aiocbe->lio; 460 if (ki == NULL) 461 panic("aio_free_entry: missing p->p_aioinfo"); 462 463 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 464 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 465 tsleep(aiocbe, PRIBIO, "jobwai", 0); 466 } 467 if (aiocbe->bp == NULL) { 468 if (ki->kaio_queue_count <= 0) 469 panic("aio_free_entry: process queue size <= 0"); 470 if (num_queue_count <= 0) 471 panic("aio_free_entry: system wide queue size <= 0"); 472 473 if (lj) { 474 lj->lioj_queue_count--; 475 if (aiocbe->jobflags & AIOCBLIST_DONE) 476 lj->lioj_queue_finished_count--; 477 } 478 ki->kaio_queue_count--; 479 if (aiocbe->jobflags & AIOCBLIST_DONE) 480 ki->kaio_queue_finished_count--; 481 num_queue_count--; 482 } else { 483 if (lj) { 484 lj->lioj_buffer_count--; 485 if (aiocbe->jobflags & AIOCBLIST_DONE) 486 lj->lioj_buffer_finished_count--; 487 } 488 if (aiocbe->jobflags & AIOCBLIST_DONE) 489 ki->kaio_buffer_finished_count--; 490 ki->kaio_buffer_count--; 491 num_buf_aio--; 492 } 493 494 /* aiocbe is going away, we need to destroy any knotes */ 495 /* XXXKSE Note the thread here is used to eventually find the 496 * owning process again, but it is also used to do a fo_close 497 * and that requires the thread. (but does it require the 498 * OWNING thread? (or maybe the running thread?) 499 * There is a semantic problem here... 500 */ 501 if (lj) 502 knlist_delete(&lj->klist, FIRST_THREAD_IN_PROC(p), 0); /* XXXKSE */ 503 knlist_delete(&aiocbe->klist, FIRST_THREAD_IN_PROC(p), 0); /* XXXKSE */ 504 505 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 506 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 507 ki->kaio_flags &= ~KAIO_WAKEUP; 508 wakeup(p); 509 } 510 511 if (aiocbe->jobstate == JOBST_JOBQBUF) { 512 if ((error = aio_fphysio(aiocbe)) != 0) 513 return (error); 514 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 515 panic("aio_free_entry: invalid physio finish-up state"); 516 s = splbio(); 517 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 518 splx(s); 519 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 520 s = splnet(); 521 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 522 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 523 splx(s); 524 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 525 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 526 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 527 s = splbio(); 528 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 529 splx(s); 530 if (aiocbe->bp) { 531 vunmapbuf(aiocbe->bp); 532 relpbuf(aiocbe->bp, NULL); 533 aiocbe->bp = NULL; 534 } 535 } 536 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 537 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 538 uma_zfree(aiolio_zone, lj); 539 } 540 aiocbe->jobstate = JOBST_NULL; 541 fdrop(aiocbe->fd_file, curthread); 542 crfree(aiocbe->cred); 543 uma_zfree(aiocb_zone, aiocbe); 544 return (0); 545 } 546 547 /* 548 * Rundown the jobs for a given process. 549 */ 550 static void 551 aio_proc_rundown(void *arg, struct proc *p) 552 { 553 int s; 554 struct kaioinfo *ki; 555 struct aio_liojob *lj, *ljn; 556 struct aiocblist *aiocbe, *aiocbn; 557 struct file *fp; 558 struct socket *so; 559 560 ki = p->p_aioinfo; 561 if (ki == NULL) 562 return; 563 564 mtx_lock(&Giant); 565 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 566 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 567 ki->kaio_buffer_finished_count)) { 568 ki->kaio_flags |= KAIO_RUNDOWN; 569 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 570 break; 571 } 572 573 /* 574 * Move any aio ops that are waiting on socket I/O to the normal job 575 * queues so they are cleaned up with any others. 576 */ 577 s = splnet(); 578 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 579 aiocbn) { 580 aiocbn = TAILQ_NEXT(aiocbe, plist); 581 fp = aiocbe->fd_file; 582 if (fp != NULL) { 583 so = fp->f_data; 584 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 585 if (TAILQ_EMPTY(&so->so_aiojobq)) { 586 SOCKBUF_LOCK(&so->so_snd); 587 so->so_snd.sb_flags &= ~SB_AIO; 588 SOCKBUF_UNLOCK(&so->so_snd); 589 SOCKBUF_LOCK(&so->so_rcv); 590 so->so_rcv.sb_flags &= ~SB_AIO; 591 SOCKBUF_UNLOCK(&so->so_rcv); 592 } 593 } 594 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 595 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 596 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 597 } 598 splx(s); 599 600 restart1: 601 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 602 aiocbn = TAILQ_NEXT(aiocbe, plist); 603 if (aio_free_entry(aiocbe)) 604 goto restart1; 605 } 606 607 restart2: 608 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 609 aiocbn) { 610 aiocbn = TAILQ_NEXT(aiocbe, plist); 611 if (aio_free_entry(aiocbe)) 612 goto restart2; 613 } 614 615 /* 616 * Note the use of lots of splbio here, trying to avoid splbio for long chains 617 * of I/O. Probably unnecessary. 618 */ 619 restart3: 620 s = splbio(); 621 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 622 ki->kaio_flags |= KAIO_WAKEUP; 623 tsleep(p, PRIBIO, "aioprn", 0); 624 splx(s); 625 goto restart3; 626 } 627 splx(s); 628 629 restart4: 630 s = splbio(); 631 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 632 aiocbn = TAILQ_NEXT(aiocbe, plist); 633 if (aio_free_entry(aiocbe)) { 634 splx(s); 635 goto restart4; 636 } 637 } 638 splx(s); 639 640 /* 641 * If we've slept, jobs might have moved from one queue to another. 642 * Retry rundown if we didn't manage to empty the queues. 643 */ 644 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 645 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 646 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 647 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 648 goto restart1; 649 650 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 651 ljn = TAILQ_NEXT(lj, lioj_list); 652 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 653 0)) { 654 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 655 uma_zfree(aiolio_zone, lj); 656 } else { 657 #ifdef DIAGNOSTIC 658 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 659 "QF:%d\n", lj->lioj_buffer_count, 660 lj->lioj_buffer_finished_count, 661 lj->lioj_queue_count, 662 lj->lioj_queue_finished_count); 663 #endif 664 } 665 } 666 667 uma_zfree(kaio_zone, ki); 668 p->p_aioinfo = NULL; 669 mtx_unlock(&Giant); 670 } 671 672 /* 673 * Select a job to run (called by an AIO daemon). 674 */ 675 static struct aiocblist * 676 aio_selectjob(struct aiothreadlist *aiop) 677 { 678 int s; 679 struct aiocblist *aiocbe; 680 struct kaioinfo *ki; 681 struct proc *userp; 682 683 s = splnet(); 684 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 685 TAILQ_NEXT(aiocbe, list)) { 686 userp = aiocbe->userproc; 687 ki = userp->p_aioinfo; 688 689 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 690 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 691 splx(s); 692 return (aiocbe); 693 } 694 } 695 splx(s); 696 697 return (NULL); 698 } 699 700 /* 701 * The AIO processing activity. This is the code that does the I/O request for 702 * the non-physio version of the operations. The normal vn operations are used, 703 * and this code should work in all instances for every type of file, including 704 * pipes, sockets, fifos, and regular files. 705 */ 706 static void 707 aio_process(struct aiocblist *aiocbe) 708 { 709 struct ucred *td_savedcred; 710 struct thread *td; 711 struct proc *mycp; 712 struct aiocb *cb; 713 struct file *fp; 714 struct uio auio; 715 struct iovec aiov; 716 int cnt; 717 int error; 718 int oublock_st, oublock_end; 719 int inblock_st, inblock_end; 720 721 td = curthread; 722 td_savedcred = td->td_ucred; 723 td->td_ucred = aiocbe->cred; 724 mycp = td->td_proc; 725 cb = &aiocbe->uaiocb; 726 fp = aiocbe->fd_file; 727 728 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 729 aiov.iov_len = cb->aio_nbytes; 730 731 auio.uio_iov = &aiov; 732 auio.uio_iovcnt = 1; 733 auio.uio_offset = cb->aio_offset; 734 auio.uio_resid = cb->aio_nbytes; 735 cnt = cb->aio_nbytes; 736 auio.uio_segflg = UIO_USERSPACE; 737 auio.uio_td = td; 738 739 inblock_st = mycp->p_stats->p_ru.ru_inblock; 740 oublock_st = mycp->p_stats->p_ru.ru_oublock; 741 /* 742 * _aio_aqueue() acquires a reference to the file that is 743 * released in aio_free_entry(). 744 */ 745 if (cb->aio_lio_opcode == LIO_READ) { 746 auio.uio_rw = UIO_READ; 747 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 748 } else { 749 auio.uio_rw = UIO_WRITE; 750 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 751 } 752 inblock_end = mycp->p_stats->p_ru.ru_inblock; 753 oublock_end = mycp->p_stats->p_ru.ru_oublock; 754 755 aiocbe->inputcharge = inblock_end - inblock_st; 756 aiocbe->outputcharge = oublock_end - oublock_st; 757 758 if ((error) && (auio.uio_resid != cnt)) { 759 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 760 error = 0; 761 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 762 PROC_LOCK(aiocbe->userproc); 763 psignal(aiocbe->userproc, SIGPIPE); 764 PROC_UNLOCK(aiocbe->userproc); 765 } 766 } 767 768 cnt -= auio.uio_resid; 769 cb->_aiocb_private.error = error; 770 cb->_aiocb_private.status = cnt; 771 td->td_ucred = td_savedcred; 772 } 773 774 static void 775 aio_bio_done_notify( struct proc *userp, struct aiocblist *aiocbe, int type){ 776 int lj_done; 777 struct aio_liojob *lj; 778 struct kaioinfo *ki; 779 780 ki = userp->p_aioinfo; 781 lj = aiocbe->lio; 782 lj_done = 0; 783 if (lj) { 784 if (type == DONE_QUEUE) 785 lj->lioj_queue_finished_count++; 786 else 787 lj->lioj_buffer_finished_count++; 788 if (lj->lioj_queue_finished_count + 789 lj->lioj_buffer_finished_count == 790 lj->lioj_total_count) 791 lj_done = 1; 792 } 793 794 if (ki) { 795 if (type == DONE_QUEUE) { 796 ki->kaio_queue_finished_count++; 797 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 798 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 799 } else { 800 ki->kaio_buffer_finished_count++; 801 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 802 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 803 } 804 if (lj_done) { 805 if (!knlist_empty(&lj->klist) 806 && lj->lioj_signal.sigev_notify == 807 SIGEV_KEVENT) { 808 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 809 KNOTE_UNLOCKED(&lj->klist, 0); 810 } 811 if ((lj->lioj_flags & 812 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 813 == LIOJ_SIGNAL 814 && lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) { 815 PROC_LOCK(userp); 816 psignal(userp, lj->lioj_signal.sigev_signo); 817 PROC_UNLOCK(userp); 818 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 819 } 820 } 821 KNOTE_UNLOCKED(&aiocbe->klist, 0); 822 823 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 824 ki->kaio_flags &= ~KAIO_WAKEUP; 825 wakeup(userp); 826 } 827 } 828 829 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 830 PROC_LOCK(userp); 831 psignal(userp, aiocbe->uaiocb.aio_sigevent.sigev_signo); 832 PROC_UNLOCK(userp); 833 } 834 } 835 /* 836 * The AIO daemon, most of the actual work is done in aio_process, 837 * but the setup (and address space mgmt) is done in this routine. 838 */ 839 static void 840 aio_daemon(void *uproc) 841 { 842 int s; 843 struct aiocb *cb; 844 struct aiocblist *aiocbe; 845 struct aiothreadlist *aiop; 846 struct kaioinfo *ki; 847 struct proc *curcp, *mycp, *userp; 848 struct vmspace *myvm, *tmpvm; 849 struct thread *td = curthread; 850 struct pgrp *newpgrp; 851 struct session *newsess; 852 853 /* 854 * Local copies of curproc (cp) and vmspace (myvm) 855 */ 856 mycp = td->td_proc; 857 myvm = mycp->p_vmspace; 858 859 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 860 861 /* 862 * Allocate and ready the aio control info. There is one aiop structure 863 * per daemon. 864 */ 865 aiop = uma_zalloc(aiop_zone, M_WAITOK); 866 aiop->aiothread = td; 867 aiop->aiothreadflags |= AIOP_FREE; 868 869 /* 870 * Place thread (lightweight process) onto the AIO free thread list. 871 */ 872 mtx_lock(&aio_freeproc_mtx); 873 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 874 mtx_unlock(&aio_freeproc_mtx); 875 876 /* 877 * Get rid of our current filedescriptors. AIOD's don't need any 878 * filedescriptors, except as temporarily inherited from the client. 879 */ 880 mtx_lock(&Giant); 881 fdfree(td); 882 883 mtx_unlock(&Giant); 884 /* The daemon resides in its own pgrp. */ 885 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 886 M_WAITOK | M_ZERO); 887 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 888 M_WAITOK | M_ZERO); 889 890 sx_xlock(&proctree_lock); 891 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 892 sx_xunlock(&proctree_lock); 893 mtx_lock(&Giant); 894 895 /* 896 * Wakeup parent process. (Parent sleeps to keep from blasting away 897 * and creating too many daemons.) 898 */ 899 wakeup(mycp); 900 901 for (;;) { 902 /* 903 * curcp is the current daemon process context. 904 * userp is the current user process context. 905 */ 906 curcp = mycp; 907 908 /* 909 * Take daemon off of free queue 910 */ 911 mtx_lock(&aio_freeproc_mtx); 912 if (aiop->aiothreadflags & AIOP_FREE) { 913 TAILQ_REMOVE(&aio_freeproc, aiop, list); 914 aiop->aiothreadflags &= ~AIOP_FREE; 915 } 916 mtx_unlock(&aio_freeproc_mtx); 917 918 /* 919 * Check for jobs. 920 */ 921 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 922 cb = &aiocbe->uaiocb; 923 userp = aiocbe->userproc; 924 925 aiocbe->jobstate = JOBST_JOBRUNNING; 926 927 /* 928 * Connect to process address space for user program. 929 */ 930 if (userp != curcp) { 931 /* 932 * Save the current address space that we are 933 * connected to. 934 */ 935 tmpvm = mycp->p_vmspace; 936 937 /* 938 * Point to the new user address space, and 939 * refer to it. 940 */ 941 mycp->p_vmspace = userp->p_vmspace; 942 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 943 944 /* Activate the new mapping. */ 945 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 946 947 /* 948 * If the old address space wasn't the daemons 949 * own address space, then we need to remove the 950 * daemon's reference from the other process 951 * that it was acting on behalf of. 952 */ 953 if (tmpvm != myvm) { 954 vmspace_free(tmpvm); 955 } 956 curcp = userp; 957 } 958 959 ki = userp->p_aioinfo; 960 961 /* Account for currently active jobs. */ 962 ki->kaio_active_count++; 963 964 /* Do the I/O function. */ 965 aio_process(aiocbe); 966 967 s = splbio(); 968 /* Decrement the active job count. */ 969 ki->kaio_active_count--; 970 971 aiocbe->jobflags |= AIOCBLIST_DONE; 972 aiocbe->jobstate = JOBST_JOBFINISHED; 973 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 974 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 975 wakeup(aiocbe); 976 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 977 } 978 } 979 980 /* 981 * Disconnect from user address space. 982 */ 983 if (curcp != mycp) { 984 /* Get the user address space to disconnect from. */ 985 tmpvm = mycp->p_vmspace; 986 987 /* Get original address space for daemon. */ 988 mycp->p_vmspace = myvm; 989 990 /* Activate the daemon's address space. */ 991 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 992 #ifdef DIAGNOSTIC 993 if (tmpvm == myvm) { 994 printf("AIOD: vmspace problem -- %d\n", 995 mycp->p_pid); 996 } 997 #endif 998 /* Remove our vmspace reference. */ 999 vmspace_free(tmpvm); 1000 1001 curcp = mycp; 1002 } 1003 1004 mtx_lock(&aio_freeproc_mtx); 1005 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1006 aiop->aiothreadflags |= AIOP_FREE; 1007 1008 /* 1009 * If daemon is inactive for a long time, allow it to exit, 1010 * thereby freeing resources. 1011 */ 1012 if (msleep(aiop->aiothread, &aio_freeproc_mtx, PDROP | PRIBIO, 1013 "aiordy", aiod_lifetime)) { 1014 s = splnet(); 1015 if (TAILQ_EMPTY(&aio_jobs)) { 1016 mtx_lock(&aio_freeproc_mtx); 1017 if ((aiop->aiothreadflags & AIOP_FREE) && 1018 (num_aio_procs > target_aio_procs)) { 1019 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1020 mtx_unlock(&aio_freeproc_mtx); 1021 splx(s); 1022 uma_zfree(aiop_zone, aiop); 1023 num_aio_procs--; 1024 #ifdef DIAGNOSTIC 1025 if (mycp->p_vmspace->vm_refcnt <= 1) { 1026 printf("AIOD: bad vm refcnt for" 1027 " exiting daemon: %d\n", 1028 mycp->p_vmspace->vm_refcnt); 1029 } 1030 #endif 1031 kthread_exit(0); 1032 } 1033 mtx_unlock(&aio_freeproc_mtx); 1034 } 1035 splx(s); 1036 } 1037 } 1038 } 1039 1040 /* 1041 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1042 * AIO daemon modifies its environment itself. 1043 */ 1044 static int 1045 aio_newproc(void) 1046 { 1047 int error; 1048 struct proc *p; 1049 1050 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1051 num_aio_procs); 1052 if (error) 1053 return (error); 1054 1055 /* 1056 * Wait until daemon is started, but continue on just in case to 1057 * handle error conditions. 1058 */ 1059 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1060 1061 num_aio_procs++; 1062 1063 return (error); 1064 } 1065 1066 /* 1067 * Try the high-performance, low-overhead physio method for eligible 1068 * VCHR devices. This method doesn't use an aio helper thread, and 1069 * thus has very low overhead. 1070 * 1071 * Assumes that the caller, _aio_aqueue(), has incremented the file 1072 * structure's reference count, preventing its deallocation for the 1073 * duration of this call. 1074 */ 1075 static int 1076 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1077 { 1078 int error; 1079 struct aiocb *cb; 1080 struct file *fp; 1081 struct buf *bp; 1082 struct vnode *vp; 1083 struct kaioinfo *ki; 1084 struct aio_liojob *lj; 1085 int s, lj_done = 0; 1086 int notify; 1087 1088 cb = &aiocbe->uaiocb; 1089 fp = aiocbe->fd_file; 1090 1091 if (fp->f_type != DTYPE_VNODE) 1092 return (-1); 1093 1094 vp = fp->f_vnode; 1095 1096 /* 1097 * If its not a disk, we don't want to return a positive error. 1098 * It causes the aio code to not fall through to try the thread 1099 * way when you're talking to a regular file. 1100 */ 1101 if (!vn_isdisk(vp, &error)) { 1102 if (error == ENOTBLK) 1103 return (-1); 1104 else 1105 return (error); 1106 } 1107 1108 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1109 return (-1); 1110 1111 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1112 return (-1); 1113 1114 if (cb->aio_nbytes > 1115 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1116 return (-1); 1117 1118 ki = p->p_aioinfo; 1119 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1120 return (-1); 1121 1122 ki->kaio_buffer_count++; 1123 1124 lj = aiocbe->lio; 1125 if (lj) 1126 lj->lioj_buffer_count++; 1127 1128 /* Create and build a buffer header for a transfer. */ 1129 bp = (struct buf *)getpbuf(NULL); 1130 BUF_KERNPROC(bp); 1131 1132 /* 1133 * Get a copy of the kva from the physical buffer. 1134 */ 1135 error = 0; 1136 1137 bp->b_bcount = cb->aio_nbytes; 1138 bp->b_bufsize = cb->aio_nbytes; 1139 bp->b_iodone = aio_physwakeup; 1140 bp->b_saveaddr = bp->b_data; 1141 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1142 bp->b_offset = cb->aio_offset; 1143 bp->b_iooffset = cb->aio_offset; 1144 bp->b_blkno = btodb(cb->aio_offset); 1145 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1146 1147 /* 1148 * Bring buffer into kernel space. 1149 */ 1150 if (vmapbuf(bp) < 0) { 1151 error = EFAULT; 1152 goto doerror; 1153 } 1154 1155 s = splbio(); 1156 aiocbe->bp = bp; 1157 bp->b_caller1 = (void *)aiocbe; 1158 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1159 aiocbe->jobstate = JOBST_JOBQBUF; 1160 cb->_aiocb_private.status = cb->aio_nbytes; 1161 num_buf_aio++; 1162 bp->b_error = 0; 1163 1164 splx(s); 1165 1166 /* Perform transfer. */ 1167 dev_strategy(vp->v_rdev, bp); 1168 1169 notify = 0; 1170 s = splbio(); 1171 1172 /* 1173 * If we had an error invoking the request, or an error in processing 1174 * the request before we have returned, we process it as an error in 1175 * transfer. Note that such an I/O error is not indicated immediately, 1176 * but is returned using the aio_error mechanism. In this case, 1177 * aio_suspend will return immediately. 1178 */ 1179 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1180 struct aiocb *job = aiocbe->uuaiocb; 1181 1182 aiocbe->uaiocb._aiocb_private.status = 0; 1183 suword(&job->_aiocb_private.status, 0); 1184 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1185 suword(&job->_aiocb_private.error, bp->b_error); 1186 1187 if (lj) { 1188 lj->lioj_buffer_finished_count++; 1189 if (lj->lioj_queue_finished_count + 1190 lj->lioj_buffer_finished_count == 1191 lj->lioj_total_count) 1192 lj_done = 1; 1193 } 1194 1195 ki->kaio_buffer_finished_count++; 1196 1197 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1198 aiocbe->jobstate = JOBST_JOBBFINISHED; 1199 aiocbe->jobflags |= AIOCBLIST_DONE; 1200 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1201 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1202 notify = 1; 1203 } 1204 } 1205 splx(s); 1206 if (notify) { 1207 if (lj && !knlist_empty(&lj->klist)) { 1208 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 1209 KNOTE_UNLOCKED(&lj->klist, 0); 1210 } 1211 KNOTE_UNLOCKED(&aiocbe->klist, 0); 1212 1213 } 1214 if (cb->aio_lio_opcode == LIO_WRITE) { 1215 aiocbe->outputcharge += btodb(cb->aio_nbytes); 1216 } else if (cb->aio_lio_opcode == LIO_READ) { 1217 aiocbe->inputcharge += btodb(cb->aio_nbytes); 1218 } 1219 return (0); 1220 1221 doerror: 1222 ki->kaio_buffer_count--; 1223 if (lj) 1224 lj->lioj_buffer_count--; 1225 aiocbe->bp = NULL; 1226 relpbuf(bp, NULL); 1227 return (error); 1228 } 1229 1230 /* 1231 * This waits/tests physio completion. 1232 */ 1233 static int 1234 aio_fphysio(struct aiocblist *iocb) 1235 { 1236 int s; 1237 struct buf *bp; 1238 int error; 1239 1240 bp = iocb->bp; 1241 1242 s = splbio(); 1243 while ((bp->b_flags & B_DONE) == 0) { 1244 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1245 if ((bp->b_flags & B_DONE) == 0) { 1246 splx(s); 1247 return (EINPROGRESS); 1248 } else 1249 break; 1250 } 1251 } 1252 splx(s); 1253 1254 /* Release mapping into kernel space. */ 1255 vunmapbuf(bp); 1256 iocb->bp = 0; 1257 1258 error = 0; 1259 1260 /* Check for an error. */ 1261 if (bp->b_ioflags & BIO_ERROR) 1262 error = bp->b_error; 1263 1264 relpbuf(bp, NULL); 1265 return (error); 1266 } 1267 1268 /* 1269 * Wake up aio requests that may be serviceable now. 1270 */ 1271 static void 1272 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1273 { 1274 struct aiocblist *cb,*cbn; 1275 struct proc *p; 1276 struct kaioinfo *ki = NULL; 1277 int opcode, wakecount = 0; 1278 struct aiothreadlist *aiop; 1279 1280 if (sb == &so->so_snd) { 1281 opcode = LIO_WRITE; 1282 SOCKBUF_LOCK(&so->so_snd); 1283 so->so_snd.sb_flags &= ~SB_AIO; 1284 SOCKBUF_UNLOCK(&so->so_snd); 1285 } else { 1286 opcode = LIO_READ; 1287 SOCKBUF_LOCK(&so->so_rcv); 1288 so->so_rcv.sb_flags &= ~SB_AIO; 1289 SOCKBUF_UNLOCK(&so->so_rcv); 1290 } 1291 1292 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1293 cbn = TAILQ_NEXT(cb, list); 1294 if (opcode == cb->uaiocb.aio_lio_opcode) { 1295 p = cb->userproc; 1296 ki = p->p_aioinfo; 1297 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1298 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1299 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1300 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1301 wakecount++; 1302 if (cb->jobstate != JOBST_JOBQGLOBAL) 1303 panic("invalid queue value"); 1304 } 1305 } 1306 1307 while (wakecount--) { 1308 mtx_lock(&aio_freeproc_mtx); 1309 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1310 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1311 aiop->aiothreadflags &= ~AIOP_FREE; 1312 wakeup(aiop->aiothread); 1313 } 1314 mtx_unlock(&aio_freeproc_mtx); 1315 } 1316 } 1317 1318 /* 1319 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1320 * technique is done in this code. 1321 */ 1322 static int 1323 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1324 { 1325 struct proc *p = td->td_proc; 1326 struct filedesc *fdp; 1327 struct file *fp; 1328 unsigned int fd; 1329 struct socket *so; 1330 int s; 1331 int error; 1332 int opcode; 1333 struct aiocblist *aiocbe; 1334 struct aiothreadlist *aiop; 1335 struct kaioinfo *ki; 1336 struct kevent kev; 1337 struct kqueue *kq; 1338 struct file *kq_fp; 1339 struct sockbuf *sb; 1340 1341 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1342 aiocbe->inputcharge = 0; 1343 aiocbe->outputcharge = 0; 1344 /* XXX - need a lock */ 1345 knlist_init(&aiocbe->klist, NULL, NULL, NULL, NULL); 1346 1347 suword(&job->_aiocb_private.status, -1); 1348 suword(&job->_aiocb_private.error, 0); 1349 suword(&job->_aiocb_private.kernelinfo, -1); 1350 1351 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1352 if (error) { 1353 suword(&job->_aiocb_private.error, error); 1354 uma_zfree(aiocb_zone, aiocbe); 1355 return (error); 1356 } 1357 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1358 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1359 uma_zfree(aiocb_zone, aiocbe); 1360 return (EINVAL); 1361 } 1362 1363 /* Save userspace address of the job info. */ 1364 aiocbe->uuaiocb = job; 1365 1366 /* Get the opcode. */ 1367 if (type != LIO_NOP) 1368 aiocbe->uaiocb.aio_lio_opcode = type; 1369 opcode = aiocbe->uaiocb.aio_lio_opcode; 1370 1371 /* Get the fd info for process. */ 1372 fdp = p->p_fd; 1373 1374 /* 1375 * Range check file descriptor. 1376 */ 1377 FILEDESC_LOCK(fdp); 1378 fd = aiocbe->uaiocb.aio_fildes; 1379 if (fd >= fdp->fd_nfiles) { 1380 FILEDESC_UNLOCK(fdp); 1381 uma_zfree(aiocb_zone, aiocbe); 1382 if (type == 0) 1383 suword(&job->_aiocb_private.error, EBADF); 1384 return (EBADF); 1385 } 1386 1387 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1388 if ((fp == NULL) || 1389 ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0)) || 1390 ((opcode == LIO_READ) && ((fp->f_flag & FREAD) == 0))) { 1391 FILEDESC_UNLOCK(fdp); 1392 uma_zfree(aiocb_zone, aiocbe); 1393 if (type == 0) 1394 suword(&job->_aiocb_private.error, EBADF); 1395 return (EBADF); 1396 } 1397 fhold(fp); 1398 FILEDESC_UNLOCK(fdp); 1399 1400 if (aiocbe->uaiocb.aio_offset == -1LL) { 1401 error = EINVAL; 1402 goto aqueue_fail; 1403 } 1404 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1405 if (error) { 1406 error = EINVAL; 1407 goto aqueue_fail; 1408 } 1409 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1410 if (jobrefid == LONG_MAX) 1411 jobrefid = 1; 1412 else 1413 jobrefid++; 1414 1415 if (opcode == LIO_NOP) { 1416 fdrop(fp, td); 1417 uma_zfree(aiocb_zone, aiocbe); 1418 if (type == 0) { 1419 suword(&job->_aiocb_private.error, 0); 1420 suword(&job->_aiocb_private.status, 0); 1421 suword(&job->_aiocb_private.kernelinfo, 0); 1422 } 1423 return (0); 1424 } 1425 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1426 if (type == 0) 1427 suword(&job->_aiocb_private.status, 0); 1428 error = EINVAL; 1429 goto aqueue_fail; 1430 } 1431 1432 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1433 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1434 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1435 } else 1436 goto no_kqueue; 1437 if ((u_int)kev.ident >= fdp->fd_nfiles || 1438 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1439 (kq_fp->f_type != DTYPE_KQUEUE)) { 1440 error = EBADF; 1441 goto aqueue_fail; 1442 } 1443 kq = kq_fp->f_data; 1444 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1445 kev.filter = EVFILT_AIO; 1446 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1447 kev.data = (intptr_t)aiocbe; 1448 error = kqueue_register(kq, &kev, td, 1); 1449 aqueue_fail: 1450 if (error) { 1451 fdrop(fp, td); 1452 uma_zfree(aiocb_zone, aiocbe); 1453 if (type == 0) 1454 suword(&job->_aiocb_private.error, error); 1455 goto done; 1456 } 1457 no_kqueue: 1458 1459 suword(&job->_aiocb_private.error, EINPROGRESS); 1460 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1461 aiocbe->userproc = p; 1462 aiocbe->cred = crhold(td->td_ucred); 1463 aiocbe->jobflags = 0; 1464 aiocbe->lio = lj; 1465 ki = p->p_aioinfo; 1466 1467 if (fp->f_type == DTYPE_SOCKET) { 1468 /* 1469 * Alternate queueing for socket ops: Reach down into the 1470 * descriptor to get the socket data. Then check to see if the 1471 * socket is ready to be read or written (based on the requested 1472 * operation). 1473 * 1474 * If it is not ready for io, then queue the aiocbe on the 1475 * socket, and set the flags so we get a call when sbnotify() 1476 * happens. 1477 * 1478 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1479 * and unlock the snd sockbuf for no reason. 1480 */ 1481 so = fp->f_data; 1482 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1483 SOCKBUF_LOCK(sb); 1484 s = splnet(); 1485 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1486 LIO_WRITE) && (!sowriteable(so)))) { 1487 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1488 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1489 sb->sb_flags |= SB_AIO; 1490 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1491 ki->kaio_queue_count++; 1492 num_queue_count++; 1493 SOCKBUF_UNLOCK(sb); 1494 splx(s); 1495 error = 0; 1496 goto done; 1497 } 1498 SOCKBUF_UNLOCK(sb); 1499 splx(s); 1500 } 1501 1502 if ((error = aio_qphysio(p, aiocbe)) == 0) 1503 goto done; 1504 if (error > 0) { 1505 suword(&job->_aiocb_private.status, 0); 1506 aiocbe->uaiocb._aiocb_private.error = error; 1507 suword(&job->_aiocb_private.error, error); 1508 goto done; 1509 } 1510 1511 /* No buffer for daemon I/O. */ 1512 aiocbe->bp = NULL; 1513 1514 ki->kaio_queue_count++; 1515 if (lj) 1516 lj->lioj_queue_count++; 1517 s = splnet(); 1518 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1519 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1520 splx(s); 1521 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1522 1523 num_queue_count++; 1524 error = 0; 1525 1526 /* 1527 * If we don't have a free AIO process, and we are below our quota, then 1528 * start one. Otherwise, depend on the subsequent I/O completions to 1529 * pick-up this job. If we don't sucessfully create the new process 1530 * (thread) due to resource issues, we return an error for now (EAGAIN), 1531 * which is likely not the correct thing to do. 1532 */ 1533 mtx_lock(&aio_freeproc_mtx); 1534 retryproc: 1535 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1536 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1537 aiop->aiothreadflags &= ~AIOP_FREE; 1538 wakeup(aiop->aiothread); 1539 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1540 ((ki->kaio_active_count + num_aio_resv_start) < 1541 ki->kaio_maxactive_count)) { 1542 num_aio_resv_start++; 1543 mtx_unlock(&aio_freeproc_mtx); 1544 if ((error = aio_newproc()) == 0) { 1545 mtx_lock(&aio_freeproc_mtx); 1546 num_aio_resv_start--; 1547 goto retryproc; 1548 } 1549 mtx_lock(&aio_freeproc_mtx); 1550 num_aio_resv_start--; 1551 } 1552 mtx_unlock(&aio_freeproc_mtx); 1553 done: 1554 return (error); 1555 } 1556 1557 /* 1558 * This routine queues an AIO request, checking for quotas. 1559 */ 1560 static int 1561 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1562 { 1563 struct proc *p = td->td_proc; 1564 struct kaioinfo *ki; 1565 1566 if (p->p_aioinfo == NULL) 1567 aio_init_aioinfo(p); 1568 1569 if (num_queue_count >= max_queue_count) 1570 return (EAGAIN); 1571 1572 ki = p->p_aioinfo; 1573 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1574 return (EAGAIN); 1575 1576 return _aio_aqueue(td, job, NULL, type); 1577 } 1578 1579 /* 1580 * Support the aio_return system call, as a side-effect, kernel resources are 1581 * released. 1582 */ 1583 int 1584 aio_return(struct thread *td, struct aio_return_args *uap) 1585 { 1586 struct proc *p = td->td_proc; 1587 int s; 1588 long jobref; 1589 struct aiocblist *cb, *ncb; 1590 struct aiocb *ujob; 1591 struct kaioinfo *ki; 1592 1593 ujob = uap->aiocbp; 1594 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1595 if (jobref == -1 || jobref == 0) 1596 return (EINVAL); 1597 1598 ki = p->p_aioinfo; 1599 if (ki == NULL) 1600 return (EINVAL); 1601 PROC_LOCK(p); 1602 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1603 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1604 jobref) 1605 goto done; 1606 } 1607 1608 s = splbio(); 1609 /* aio_physwakeup */ 1610 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1611 ncb = TAILQ_NEXT(cb, plist); 1612 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1613 == jobref) { 1614 break; 1615 } 1616 } 1617 splx(s); 1618 done: 1619 PROC_UNLOCK(p); 1620 if (cb != NULL) { 1621 if (ujob == cb->uuaiocb) { 1622 td->td_retval[0] = 1623 cb->uaiocb._aiocb_private.status; 1624 } else 1625 td->td_retval[0] = EFAULT; 1626 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1627 p->p_stats->p_ru.ru_oublock += 1628 cb->outputcharge; 1629 cb->outputcharge = 0; 1630 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1631 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1632 cb->inputcharge = 0; 1633 } 1634 aio_free_entry(cb); 1635 return (0); 1636 } 1637 return (EINVAL); 1638 } 1639 1640 /* 1641 * Allow a process to wakeup when any of the I/O requests are completed. 1642 */ 1643 int 1644 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1645 { 1646 struct proc *p = td->td_proc; 1647 struct timeval atv; 1648 struct timespec ts; 1649 struct aiocb *const *cbptr, *cbp; 1650 struct kaioinfo *ki; 1651 struct aiocblist *cb; 1652 int i; 1653 int njoblist; 1654 int error, s, timo; 1655 long *ijoblist; 1656 struct aiocb **ujoblist; 1657 1658 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1659 return (EINVAL); 1660 1661 timo = 0; 1662 if (uap->timeout) { 1663 /* Get timespec struct. */ 1664 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1665 return (error); 1666 1667 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1668 return (EINVAL); 1669 1670 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1671 if (itimerfix(&atv)) 1672 return (EINVAL); 1673 timo = tvtohz(&atv); 1674 } 1675 1676 ki = p->p_aioinfo; 1677 if (ki == NULL) 1678 return (EAGAIN); 1679 1680 njoblist = 0; 1681 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1682 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1683 cbptr = uap->aiocbp; 1684 1685 for (i = 0; i < uap->nent; i++) { 1686 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1687 if (cbp == 0) 1688 continue; 1689 ujoblist[njoblist] = cbp; 1690 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1691 njoblist++; 1692 } 1693 1694 if (njoblist == 0) { 1695 uma_zfree(aiol_zone, ijoblist); 1696 uma_zfree(aiol_zone, ujoblist); 1697 return (0); 1698 } 1699 1700 error = 0; 1701 for (;;) { 1702 PROC_LOCK(p); 1703 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1704 for (i = 0; i < njoblist; i++) { 1705 if (((intptr_t) 1706 cb->uaiocb._aiocb_private.kernelinfo) == 1707 ijoblist[i]) { 1708 PROC_UNLOCK(p); 1709 if (ujoblist[i] != cb->uuaiocb) 1710 error = EINVAL; 1711 uma_zfree(aiol_zone, ijoblist); 1712 uma_zfree(aiol_zone, ujoblist); 1713 return (error); 1714 } 1715 } 1716 } 1717 1718 s = splbio(); 1719 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1720 TAILQ_NEXT(cb, plist)) { 1721 for (i = 0; i < njoblist; i++) { 1722 if (((intptr_t) 1723 cb->uaiocb._aiocb_private.kernelinfo) == 1724 ijoblist[i]) { 1725 PROC_UNLOCK(p); 1726 splx(s); 1727 if (ujoblist[i] != cb->uuaiocb) 1728 error = EINVAL; 1729 uma_zfree(aiol_zone, ijoblist); 1730 uma_zfree(aiol_zone, ujoblist); 1731 return (error); 1732 } 1733 } 1734 } 1735 1736 ki->kaio_flags |= KAIO_WAKEUP; 1737 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiospn", 1738 timo); 1739 splx(s); 1740 1741 if (error == ERESTART || error == EINTR) { 1742 uma_zfree(aiol_zone, ijoblist); 1743 uma_zfree(aiol_zone, ujoblist); 1744 return (EINTR); 1745 } else if (error == EWOULDBLOCK) { 1746 uma_zfree(aiol_zone, ijoblist); 1747 uma_zfree(aiol_zone, ujoblist); 1748 return (EAGAIN); 1749 } 1750 } 1751 1752 /* NOTREACHED */ 1753 return (EINVAL); 1754 } 1755 1756 /* 1757 * aio_cancel cancels any non-physio aio operations not currently in 1758 * progress. 1759 */ 1760 int 1761 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1762 { 1763 struct proc *p = td->td_proc; 1764 struct kaioinfo *ki; 1765 struct aiocblist *cbe, *cbn; 1766 struct file *fp; 1767 struct filedesc *fdp; 1768 struct socket *so; 1769 struct proc *po; 1770 int s,error; 1771 int cancelled=0; 1772 int notcancelled=0; 1773 struct vnode *vp; 1774 1775 fdp = p->p_fd; 1776 if ((u_int)uap->fd >= fdp->fd_nfiles || 1777 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1778 return (EBADF); 1779 1780 if (fp->f_type == DTYPE_VNODE) { 1781 vp = fp->f_vnode; 1782 1783 if (vn_isdisk(vp,&error)) { 1784 td->td_retval[0] = AIO_NOTCANCELED; 1785 return (0); 1786 } 1787 } else if (fp->f_type == DTYPE_SOCKET) { 1788 so = fp->f_data; 1789 1790 s = splnet(); 1791 1792 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1793 cbn = TAILQ_NEXT(cbe, list); 1794 if ((uap->aiocbp == NULL) || 1795 (uap->aiocbp == cbe->uuaiocb) ) { 1796 po = cbe->userproc; 1797 ki = po->p_aioinfo; 1798 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1799 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1800 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1801 if (ki->kaio_flags & KAIO_WAKEUP) { 1802 wakeup(po); 1803 } 1804 cbe->jobstate = JOBST_JOBFINISHED; 1805 cbe->uaiocb._aiocb_private.status=-1; 1806 cbe->uaiocb._aiocb_private.error=ECANCELED; 1807 cancelled++; 1808 /* XXX cancelled, knote? */ 1809 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1810 SIGEV_SIGNAL) { 1811 PROC_LOCK(cbe->userproc); 1812 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1813 PROC_UNLOCK(cbe->userproc); 1814 } 1815 if (uap->aiocbp) 1816 break; 1817 } 1818 } 1819 splx(s); 1820 1821 if ((cancelled) && (uap->aiocbp)) { 1822 td->td_retval[0] = AIO_CANCELED; 1823 return (0); 1824 } 1825 } 1826 ki=p->p_aioinfo; 1827 if (ki == NULL) 1828 goto done; 1829 s = splnet(); 1830 1831 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1832 cbn = TAILQ_NEXT(cbe, plist); 1833 1834 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1835 ((uap->aiocbp == NULL ) || 1836 (uap->aiocbp == cbe->uuaiocb))) { 1837 1838 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1839 TAILQ_REMOVE(&aio_jobs, cbe, list); 1840 cbe->jobstate = JOBST_JOBFINISHED; 1841 cancelled++; 1842 cbe->uaiocb._aiocb_private.status = -1; 1843 cbe->uaiocb._aiocb_private.error = ECANCELED; 1844 aio_bio_done_notify(cbe->userproc, cbe, DONE_QUEUE); 1845 } else { 1846 notcancelled++; 1847 } 1848 } 1849 } 1850 splx(s); 1851 done: 1852 if (notcancelled) { 1853 td->td_retval[0] = AIO_NOTCANCELED; 1854 return (0); 1855 } 1856 if (cancelled) { 1857 td->td_retval[0] = AIO_CANCELED; 1858 return (0); 1859 } 1860 td->td_retval[0] = AIO_ALLDONE; 1861 1862 return (0); 1863 } 1864 1865 /* 1866 * aio_error is implemented in the kernel level for compatibility purposes only. 1867 * For a user mode async implementation, it would be best to do it in a userland 1868 * subroutine. 1869 */ 1870 int 1871 aio_error(struct thread *td, struct aio_error_args *uap) 1872 { 1873 struct proc *p = td->td_proc; 1874 int s; 1875 struct aiocblist *cb; 1876 struct kaioinfo *ki; 1877 long jobref; 1878 1879 ki = p->p_aioinfo; 1880 if (ki == NULL) 1881 return (EINVAL); 1882 1883 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1884 if ((jobref == -1) || (jobref == 0)) 1885 return (EINVAL); 1886 1887 PROC_LOCK(p); 1888 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1889 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1890 jobref) { 1891 PROC_UNLOCK(p); 1892 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1893 return (0); 1894 } 1895 } 1896 1897 s = splnet(); 1898 1899 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1900 plist)) { 1901 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1902 jobref) { 1903 PROC_UNLOCK(p); 1904 td->td_retval[0] = EINPROGRESS; 1905 splx(s); 1906 return (0); 1907 } 1908 } 1909 1910 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1911 plist)) { 1912 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1913 jobref) { 1914 PROC_UNLOCK(p); 1915 td->td_retval[0] = EINPROGRESS; 1916 splx(s); 1917 return (0); 1918 } 1919 } 1920 splx(s); 1921 1922 s = splbio(); 1923 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1924 plist)) { 1925 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1926 jobref) { 1927 PROC_UNLOCK(p); 1928 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1929 splx(s); 1930 return (0); 1931 } 1932 } 1933 1934 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1935 plist)) { 1936 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1937 jobref) { 1938 PROC_UNLOCK(p); 1939 td->td_retval[0] = EINPROGRESS; 1940 splx(s); 1941 return (0); 1942 } 1943 } 1944 splx(s); 1945 PROC_UNLOCK(p); 1946 1947 #if (0) 1948 /* 1949 * Hack for lio. 1950 */ 1951 status = fuword(&uap->aiocbp->_aiocb_private.status); 1952 if (status == -1) 1953 return fuword(&uap->aiocbp->_aiocb_private.error); 1954 #endif 1955 return (EINVAL); 1956 } 1957 1958 /* syscall - asynchronous read from a file (REALTIME) */ 1959 int 1960 aio_read(struct thread *td, struct aio_read_args *uap) 1961 { 1962 1963 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1964 } 1965 1966 /* syscall - asynchronous write to a file (REALTIME) */ 1967 int 1968 aio_write(struct thread *td, struct aio_write_args *uap) 1969 { 1970 1971 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1972 } 1973 1974 /* syscall - list directed I/O (REALTIME) */ 1975 int 1976 lio_listio(struct thread *td, struct lio_listio_args *uap) 1977 { 1978 struct proc *p = td->td_proc; 1979 int nent, nentqueued; 1980 struct aiocb *iocb, * const *cbptr; 1981 struct aiocblist *cb; 1982 struct kaioinfo *ki; 1983 struct aio_liojob *lj; 1984 struct kevent kev; 1985 struct kqueue * kq; 1986 struct file *kq_fp; 1987 int error, runningcode; 1988 int nerror; 1989 int i; 1990 1991 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1992 return (EINVAL); 1993 1994 nent = uap->nent; 1995 if (nent < 0 || nent > AIO_LISTIO_MAX) 1996 return (EINVAL); 1997 1998 if (p->p_aioinfo == NULL) 1999 aio_init_aioinfo(p); 2000 2001 if ((nent + num_queue_count) > max_queue_count) 2002 return (EAGAIN); 2003 2004 ki = p->p_aioinfo; 2005 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 2006 return (EAGAIN); 2007 2008 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2009 if (!lj) 2010 return (EAGAIN); 2011 2012 lj->lioj_flags = 0; 2013 lj->lioj_buffer_count = 0; 2014 lj->lioj_buffer_finished_count = 0; 2015 lj->lioj_queue_count = 0; 2016 lj->lioj_queue_finished_count = 0; 2017 lj->lioj_total_count = nent; 2018 knlist_init(&lj->klist, NULL, NULL, NULL, NULL); 2019 2020 kev.ident = 0; 2021 2022 /* 2023 * Setup signal. 2024 */ 2025 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2026 error = copyin(uap->sig, &lj->lioj_signal, 2027 sizeof(lj->lioj_signal)); 2028 if (error) { 2029 uma_zfree(aiolio_zone, lj); 2030 return (error); 2031 } 2032 2033 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2034 /* Assume only new style KEVENT */ 2035 kev.ident = lj->lioj_signal.sigev_notify_kqueue; 2036 kev.udata = lj->lioj_signal.sigev_value.sigval_ptr; 2037 2038 if ((u_int)kev.ident >= p->p_fd->fd_nfiles || 2039 (kq_fp = p->p_fd->fd_ofiles[kev.ident]) == NULL || 2040 (kq_fp->f_type != DTYPE_KQUEUE)) { 2041 uma_zfree(aiolio_zone, lj); 2042 return (EBADF); 2043 } 2044 kq = (struct kqueue *)kq_fp->f_data; 2045 kev.filter = EVFILT_LIO; 2046 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2047 kev.ident = (uintptr_t)lj; /* something unique */ 2048 kev.data = (intptr_t)lj; 2049 error = kqueue_register(kq, &kev, td, 1); 2050 if (error) { 2051 uma_zfree(aiolio_zone, lj); 2052 return (error); 2053 } 2054 } else if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2055 uma_zfree(aiolio_zone, lj); 2056 return EINVAL; 2057 } else { 2058 lj->lioj_flags |= LIOJ_SIGNAL; 2059 lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED; 2060 } 2061 } else 2062 lj->lioj_flags &= ~LIOJ_SIGNAL; 2063 2064 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2065 /* 2066 * Get pointers to the list of I/O requests. 2067 */ 2068 nerror = 0; 2069 nentqueued = 0; 2070 cbptr = uap->acb_list; 2071 for (i = 0; i < uap->nent; i++) { 2072 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2073 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2074 error = _aio_aqueue(td, iocb, lj, 0); 2075 if (error == 0) 2076 nentqueued++; 2077 else 2078 nerror++; 2079 } 2080 } 2081 2082 /* 2083 * If we haven't queued any, then just return error. 2084 */ 2085 if (nentqueued == 0) 2086 return (0); 2087 2088 /* 2089 * Calculate the appropriate error return. 2090 */ 2091 runningcode = 0; 2092 if (nerror) 2093 runningcode = EIO; 2094 2095 if (uap->mode == LIO_WAIT) { 2096 int command, found; 2097 long jobref; 2098 2099 for (;;) { 2100 found = 0; 2101 for (i = 0; i < uap->nent; i++) { 2102 /* 2103 * Fetch address of the control buf pointer in 2104 * user space. 2105 */ 2106 iocb = (struct aiocb *) 2107 (intptr_t)fuword(&cbptr[i]); 2108 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2109 == 0)) 2110 continue; 2111 2112 /* 2113 * Fetch the associated command from user space. 2114 */ 2115 command = fuword(&iocb->aio_lio_opcode); 2116 if (command == LIO_NOP) { 2117 found++; 2118 continue; 2119 } 2120 2121 jobref = 2122 fuword(&iocb->_aiocb_private.kernelinfo); 2123 2124 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2125 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2126 == jobref) { 2127 if (cb->uaiocb.aio_lio_opcode 2128 == LIO_WRITE) { 2129 p->p_stats->p_ru.ru_oublock 2130 += 2131 cb->outputcharge; 2132 cb->outputcharge = 0; 2133 } else if (cb->uaiocb.aio_lio_opcode 2134 == LIO_READ) { 2135 p->p_stats->p_ru.ru_inblock 2136 += cb->inputcharge; 2137 cb->inputcharge = 0; 2138 } 2139 found++; 2140 break; 2141 } 2142 } 2143 2144 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2145 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2146 == jobref) { 2147 found++; 2148 break; 2149 } 2150 } 2151 } 2152 2153 /* 2154 * If all I/Os have been disposed of, then we can 2155 * return. 2156 */ 2157 if (found == nentqueued) 2158 return (runningcode); 2159 2160 ki->kaio_flags |= KAIO_WAKEUP; 2161 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2162 2163 if (error == EINTR) 2164 return (EINTR); 2165 else if (error == EWOULDBLOCK) 2166 return (EAGAIN); 2167 } 2168 } 2169 2170 return (runningcode); 2171 } 2172 2173 /* 2174 * Interrupt handler for physio, performs the necessary process wakeups, and 2175 * signals. 2176 */ 2177 static void 2178 aio_physwakeup(struct buf *bp) 2179 { 2180 struct aiocblist *aiocbe; 2181 struct proc *userp; 2182 2183 mtx_lock(&Giant); 2184 bp->b_flags |= B_DONE; 2185 wakeup(bp); 2186 2187 aiocbe = (struct aiocblist *)bp->b_caller1; 2188 if (aiocbe) { 2189 userp = aiocbe->userproc; 2190 2191 aiocbe->jobstate = JOBST_JOBBFINISHED; 2192 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2193 aiocbe->uaiocb._aiocb_private.error = 0; 2194 aiocbe->jobflags |= AIOCBLIST_DONE; 2195 2196 if (bp->b_ioflags & BIO_ERROR) 2197 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2198 2199 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2200 } 2201 mtx_unlock(&Giant); 2202 } 2203 2204 /* syscall - wait for the next completion of an aio request */ 2205 int 2206 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2207 { 2208 struct proc *p = td->td_proc; 2209 struct timeval atv; 2210 struct timespec ts; 2211 struct kaioinfo *ki; 2212 struct aiocblist *cb = NULL; 2213 int error, s, timo; 2214 2215 suword(uap->aiocbp, (int)NULL); 2216 2217 timo = 0; 2218 if (uap->timeout) { 2219 /* Get timespec struct. */ 2220 error = copyin(uap->timeout, &ts, sizeof(ts)); 2221 if (error) 2222 return (error); 2223 2224 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2225 return (EINVAL); 2226 2227 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2228 if (itimerfix(&atv)) 2229 return (EINVAL); 2230 timo = tvtohz(&atv); 2231 } 2232 2233 ki = p->p_aioinfo; 2234 if (ki == NULL) 2235 return (EAGAIN); 2236 2237 for (;;) { 2238 PROC_LOCK(p); 2239 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2240 PROC_UNLOCK(p); 2241 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2242 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2243 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2244 p->p_stats->p_ru.ru_oublock += 2245 cb->outputcharge; 2246 cb->outputcharge = 0; 2247 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2248 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2249 cb->inputcharge = 0; 2250 } 2251 error = cb->uaiocb._aiocb_private.error; 2252 aio_free_entry(cb); 2253 return (error); 2254 } 2255 2256 s = splbio(); 2257 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2258 PROC_UNLOCK(p); 2259 splx(s); 2260 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2261 error = cb->uaiocb._aiocb_private.error; 2262 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2263 aio_free_entry(cb); 2264 return (error); 2265 } 2266 2267 ki->kaio_flags |= KAIO_WAKEUP; 2268 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiowc", 2269 timo); 2270 splx(s); 2271 2272 if (error == ERESTART) 2273 return (EINTR); 2274 else if (error < 0) 2275 return (error); 2276 else if (error == EINTR) 2277 return (EINTR); 2278 else if (error == EWOULDBLOCK) 2279 return (EAGAIN); 2280 } 2281 } 2282 2283 /* kqueue attach function */ 2284 static int 2285 filt_aioattach(struct knote *kn) 2286 { 2287 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2288 2289 /* 2290 * The aiocbe pointer must be validated before using it, so 2291 * registration is restricted to the kernel; the user cannot 2292 * set EV_FLAG1. 2293 */ 2294 if ((kn->kn_flags & EV_FLAG1) == 0) 2295 return (EPERM); 2296 kn->kn_flags &= ~EV_FLAG1; 2297 2298 knlist_add(&aiocbe->klist, kn, 0); 2299 2300 return (0); 2301 } 2302 2303 /* kqueue detach function */ 2304 static void 2305 filt_aiodetach(struct knote *kn) 2306 { 2307 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2308 2309 if (!knlist_empty(&aiocbe->klist)) 2310 knlist_remove(&aiocbe->klist, kn, 0); 2311 } 2312 2313 /* kqueue filter function */ 2314 /*ARGSUSED*/ 2315 static int 2316 filt_aio(struct knote *kn, long hint) 2317 { 2318 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2319 2320 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2321 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2322 aiocbe->jobstate != JOBST_JOBBFINISHED) 2323 return (0); 2324 kn->kn_flags |= EV_EOF; 2325 return (1); 2326 } 2327 2328 /* kqueue attach function */ 2329 static int 2330 filt_lioattach(struct knote *kn) 2331 { 2332 struct aio_liojob * lj = (struct aio_liojob *)kn->kn_sdata; 2333 2334 /* 2335 * The aio_liojob pointer must be validated before using it, so 2336 * registration is restricted to the kernel; the user cannot 2337 * set EV_FLAG1. 2338 */ 2339 if ((kn->kn_flags & EV_FLAG1) == 0) 2340 return (EPERM); 2341 kn->kn_flags &= ~EV_FLAG1; 2342 2343 knlist_add(&lj->klist, kn, 0); 2344 2345 return (0); 2346 } 2347 2348 /* kqueue detach function */ 2349 static void 2350 filt_liodetach(struct knote *kn) 2351 { 2352 struct aio_liojob * lj = (struct aio_liojob *)kn->kn_sdata; 2353 2354 if (!knlist_empty(&lj->klist)) 2355 knlist_remove(&lj->klist, kn, 0); 2356 } 2357 2358 /* kqueue filter function */ 2359 /*ARGSUSED*/ 2360 static int 2361 filt_lio(struct knote *kn, long hint) 2362 { 2363 struct aio_liojob * lj = (struct aio_liojob *)kn->kn_sdata; 2364 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2365 } 2366