xref: /freebsd/sys/kern/vfs_aio.c (revision 7f9d26bd9d1b2754da8429257edbde0a8237f84f)
1 /*
2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. John S. Dyson's name may not be used to endorse or promote products
10  *    derived from this software without specific prior written permission.
11  *
12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
13  * bad that happens because of using this software isn't the responsibility
14  * of the author.  This software is distributed AS-IS.
15  *
16  * $FreeBSD$
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/buf.h>
26 #include <sys/sysproto.h>
27 #include <sys/filedesc.h>
28 #include <sys/kernel.h>
29 #include <sys/fcntl.h>
30 #include <sys/file.h>
31 #include <sys/lock.h>
32 #include <sys/unistd.h>
33 #include <sys/proc.h>
34 #include <sys/resourcevar.h>
35 #include <sys/signalvar.h>
36 #include <sys/sysctl.h>
37 #include <sys/vnode.h>
38 #include <sys/conf.h>
39 
40 #include <vm/vm.h>
41 #include <vm/vm_extern.h>
42 #include <vm/pmap.h>
43 #include <vm/vm_map.h>
44 #include <vm/vm_zone.h>
45 #include <sys/aio.h>
46 
47 #include <machine/limits.h>
48 
49 static	long jobrefid;
50 
51 #define JOBST_NULL			0x0
52 #define	JOBST_JOBQPROC		0x1
53 #define JOBST_JOBQGLOBAL	0x2
54 #define JOBST_JOBRUNNING	0x3
55 #define JOBST_JOBFINISHED	0x4
56 #define	JOBST_JOBQBUF		0x5
57 #define	JOBST_JOBBFINISHED	0x6
58 
59 #ifndef MAX_AIO_PER_PROC
60 #define MAX_AIO_PER_PROC	32
61 #endif
62 
63 #ifndef MAX_AIO_QUEUE_PER_PROC
64 #define MAX_AIO_QUEUE_PER_PROC	256 /* Bigger than AIO_LISTIO_MAX */
65 #endif
66 
67 #ifndef MAX_AIO_PROCS
68 #define MAX_AIO_PROCS		32
69 #endif
70 
71 #ifndef MAX_AIO_QUEUE
72 #define	MAX_AIO_QUEUE		1024 /* Bigger than AIO_LISTIO_MAX */
73 #endif
74 
75 #ifndef TARGET_AIO_PROCS
76 #define TARGET_AIO_PROCS	0
77 #endif
78 
79 #ifndef MAX_BUF_AIO
80 #define MAX_BUF_AIO 16
81 #endif
82 
83 #ifndef AIOD_TIMEOUT_DEFAULT
84 #define	AIOD_TIMEOUT_DEFAULT (10 * hz)
85 #endif
86 
87 #ifndef AIOD_LIFETIME_DEFAULT
88 #define AIOD_LIFETIME_DEFAULT (30 * hz)
89 #endif
90 
91 static int max_aio_procs = MAX_AIO_PROCS;
92 static int num_aio_procs = 0;
93 static int target_aio_procs = TARGET_AIO_PROCS;
94 static int max_queue_count = MAX_AIO_QUEUE;
95 static int num_queue_count = 0;
96 static int num_buf_aio = 0;
97 static int num_aio_resv_start = 0;
98 static int aiod_timeout;
99 static int aiod_lifetime;
100 
101 static int max_aio_per_proc = MAX_AIO_PER_PROC,
102 	max_aio_queue_per_proc=MAX_AIO_QUEUE_PER_PROC;
103 
104 static int max_buf_aio = MAX_BUF_AIO;
105 
106 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "AIO mgmt");
107 
108 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc,
109 	CTLFLAG_RW, &max_aio_per_proc, 0, "");
110 
111 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc,
112 	CTLFLAG_RW, &max_aio_queue_per_proc, 0, "");
113 
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
115 	CTLFLAG_RW, &max_aio_procs, 0, "");
116 
117 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
118 	CTLFLAG_RD, &num_aio_procs, 0, "");
119 
120 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count,
121 	CTLFLAG_RD, &num_queue_count, 0, "");
122 
123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue,
124 	CTLFLAG_RW, &max_queue_count, 0, "");
125 
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs,
127 	CTLFLAG_RW, &target_aio_procs, 0, "");
128 
129 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio,
130 	CTLFLAG_RW, &max_buf_aio, 0, "");
131 
132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio,
133 	CTLFLAG_RD, &num_buf_aio, 0, "");
134 
135 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime,
136 	CTLFLAG_RW, &aiod_lifetime, 0, "");
137 
138 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout,
139 	CTLFLAG_RW, &aiod_timeout, 0, "");
140 
141 
142 /*
143  * Job queue item
144  */
145 
146 #define AIOCBLIST_CANCELLED	0x1
147 #define AIOCBLIST_RUNDOWN	0x4
148 #define AIOCBLIST_ASYNCFREE	0x8
149 #define AIOCBLIST_DONE		0x10
150 
151 struct aiocblist {
152 	TAILQ_ENTRY (aiocblist) list;		/* List of jobs */
153 	TAILQ_ENTRY (aiocblist) plist;		/* List of jobs for proc */
154 	int	jobflags;
155 	int	jobstate;
156 	int inputcharge, outputcharge;
157 	struct	buf *bp;				/* buffer pointer */
158 	struct	proc *userproc;			/* User process */
159 	struct	aioproclist	*jobaioproc;	/* AIO process descriptor */
160 	struct	aio_liojob	*lio;		/* optional lio job */
161 	struct	aiocb *uuaiocb;			/* pointer in userspace of aiocb */
162 	struct	aiocb uaiocb;			/* Kernel I/O control block */
163 };
164 
165 
166 /*
167  * AIO process info
168  */
169 #define AIOP_FREE	0x1			/* proc on free queue */
170 #define AIOP_SCHED	0x2			/* proc explicitly scheduled */
171 
172 struct aioproclist {
173 	int aioprocflags;			/* AIO proc flags */
174 	TAILQ_ENTRY(aioproclist) list;		/* List of processes */
175 	struct proc *aioproc;			/* The AIO thread */
176 	TAILQ_HEAD (,aiocblist) jobtorun;	/* suggested job to run */
177 };
178 
179 /*
180  * data-structure for lio signal management
181  */
182 struct aio_liojob {
183 	int lioj_flags;
184 	int	lioj_buffer_count;
185 	int	lioj_buffer_finished_count;
186 	int	lioj_queue_count;
187 	int	lioj_queue_finished_count;
188 	struct sigevent lioj_signal;	/* signal on all I/O done */
189 	TAILQ_ENTRY (aio_liojob) lioj_list;
190 	struct kaioinfo *lioj_ki;
191 };
192 #define	LIOJ_SIGNAL			0x1 /* signal on all done (lio) */
193 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
194 
195 /*
196  * per process aio data structure
197  */
198 struct kaioinfo {
199 	int	kaio_flags;			/* per process kaio flags */
200 	int	kaio_maxactive_count;	/* maximum number of AIOs */
201 	int	kaio_active_count;	/* number of currently used AIOs */
202 	int	kaio_qallowed_count;	/* maxiumu size of AIO queue */
203 	int	kaio_queue_count;	/* size of AIO queue */
204 	int	kaio_ballowed_count;	/* maximum number of buffers */
205 	int	kaio_queue_finished_count;	/* number of daemon jobs finished */
206 	int	kaio_buffer_count;	/* number of physio buffers */
207 	int	kaio_buffer_finished_count;	/* count of I/O done */
208 	struct proc *kaio_p;			/* process that uses this kaio block */
209 	TAILQ_HEAD (,aio_liojob) kaio_liojoblist;	/* list of lio jobs */
210 	TAILQ_HEAD (,aiocblist)	kaio_jobqueue;	/* job queue for process */
211 	TAILQ_HEAD (,aiocblist)	kaio_jobdone;	/* done queue for process */
212 	TAILQ_HEAD (,aiocblist)	kaio_bufqueue;	/* buffer job queue for process */
213 	TAILQ_HEAD (,aiocblist)	kaio_bufdone;	/* buffer done queue for process */
214 };
215 
216 #define KAIO_RUNDOWN 0x1		/* process is being run down */
217 #define KAIO_WAKEUP 0x2			/* wakeup process when there is a significant
218 								   event */
219 
220 
221 static TAILQ_HEAD (,aioproclist) aio_freeproc, aio_activeproc;
222 static TAILQ_HEAD(,aiocblist) aio_jobs;			/* Async job list */
223 static TAILQ_HEAD(,aiocblist) aio_bufjobs;		/* Phys I/O job list */
224 static TAILQ_HEAD(,aiocblist) aio_freejobs;		/* Pool of free jobs */
225 
226 static void aio_init_aioinfo(struct proc *p) ;
227 static void aio_onceonly(void *) ;
228 static int aio_free_entry(struct aiocblist *aiocbe);
229 static void aio_process(struct aiocblist *aiocbe);
230 static int aio_newproc(void) ;
231 static int aio_aqueue(struct proc *p, struct aiocb *job, int type) ;
232 static void aio_physwakeup(struct buf *bp);
233 static int aio_fphysio(struct proc *p, struct aiocblist *aiocbe, int type);
234 static int aio_qphysio(struct proc *p, struct aiocblist *iocb);
235 static void aio_daemon(void *uproc);
236 
237 SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
238 
239 static vm_zone_t kaio_zone=0, aiop_zone=0,
240 	aiocb_zone=0, aiol_zone=0, aiolio_zone=0;
241 
242 /*
243  * Startup initialization
244  */
245 void
246 aio_onceonly(void *na)
247 {
248 	TAILQ_INIT(&aio_freeproc);
249 	TAILQ_INIT(&aio_activeproc);
250 	TAILQ_INIT(&aio_jobs);
251 	TAILQ_INIT(&aio_bufjobs);
252 	TAILQ_INIT(&aio_freejobs);
253 	kaio_zone = zinit("AIO", sizeof (struct kaioinfo), 0, 0, 1);
254 	aiop_zone = zinit("AIOP", sizeof (struct aioproclist), 0, 0, 1);
255 	aiocb_zone = zinit("AIOCB", sizeof (struct aiocblist), 0, 0, 1);
256 	aiol_zone = zinit("AIOL", AIO_LISTIO_MAX * sizeof (int), 0, 0, 1);
257 	aiolio_zone = zinit("AIOLIO",
258 		AIO_LISTIO_MAX * sizeof (struct aio_liojob), 0, 0, 1);
259 	aiod_timeout = AIOD_TIMEOUT_DEFAULT;
260 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
261 	jobrefid = 1;
262 }
263 
264 /*
265  * Init the per-process aioinfo structure.
266  * The aioinfo limits are set per-process for user limit (resource) management.
267  */
268 void
269 aio_init_aioinfo(struct proc *p)
270 {
271 	struct kaioinfo *ki;
272 	if (p->p_aioinfo == NULL) {
273 		ki = zalloc(kaio_zone);
274 		p->p_aioinfo = ki;
275 		ki->kaio_flags = 0;
276 		ki->kaio_maxactive_count = max_aio_per_proc;
277 		ki->kaio_active_count = 0;
278 		ki->kaio_qallowed_count = max_aio_queue_per_proc;
279 		ki->kaio_queue_count = 0;
280 		ki->kaio_ballowed_count = max_buf_aio;
281 		ki->kaio_buffer_count = 0;
282 		ki->kaio_buffer_finished_count = 0;
283 		ki->kaio_p = p;
284 		TAILQ_INIT(&ki->kaio_jobdone);
285 		TAILQ_INIT(&ki->kaio_jobqueue);
286 		TAILQ_INIT(&ki->kaio_bufdone);
287 		TAILQ_INIT(&ki->kaio_bufqueue);
288 		TAILQ_INIT(&ki->kaio_liojoblist);
289 	}
290 }
291 
292 /*
293  * Free a job entry.  Wait for completion if it is currently
294  * active, but don't delay forever.  If we delay, we return
295  * a flag that says that we have to restart the queue scan.
296  */
297 int
298 aio_free_entry(struct aiocblist *aiocbe)
299 {
300 	struct kaioinfo *ki;
301 	struct aioproclist *aiop;
302 	struct aio_liojob *lj;
303 	struct proc *p;
304 	int error;
305 	int s;
306 
307 	if (aiocbe->jobstate == JOBST_NULL)
308 		panic("aio_free_entry: freeing already free job");
309 
310 	p = aiocbe->userproc;
311 	ki = p->p_aioinfo;
312 	lj = aiocbe->lio;
313 	if (ki == NULL)
314 		panic("aio_free_entry: missing p->p_aioinfo");
315 
316 	if (aiocbe->jobstate == JOBST_JOBRUNNING) {
317 		if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE)
318 			return 0;
319 		aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
320 		tsleep(aiocbe, PRIBIO|PCATCH, "jobwai", 0);
321 	}
322 	aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE;
323 
324 	if (aiocbe->bp == NULL) {
325 		if (ki->kaio_queue_count <= 0)
326 			panic("aio_free_entry: process queue size <= 0");
327 		if (num_queue_count <= 0)
328 			panic("aio_free_entry: system wide queue size <= 0");
329 
330 		if(lj) {
331 			lj->lioj_queue_count--;
332 			if (aiocbe->jobflags & AIOCBLIST_DONE)
333 				lj->lioj_queue_finished_count--;
334 		}
335 		ki->kaio_queue_count--;
336 		if (aiocbe->jobflags & AIOCBLIST_DONE)
337 			ki->kaio_queue_finished_count--;
338 		num_queue_count--;
339 
340 	} else {
341 		if(lj) {
342 			lj->lioj_buffer_count--;
343 			if (aiocbe->jobflags & AIOCBLIST_DONE)
344 				lj->lioj_buffer_finished_count--;
345 		}
346 		if (aiocbe->jobflags & AIOCBLIST_DONE)
347 			ki->kaio_buffer_finished_count--;
348 		ki->kaio_buffer_count--;
349 		num_buf_aio--;
350 
351 	}
352 
353 	if ((ki->kaio_flags & KAIO_WAKEUP) ||
354 	    ((ki->kaio_flags & KAIO_RUNDOWN) &&
355 	    ((ki->kaio_buffer_count == 0) &&
356 	    (ki->kaio_queue_count == 0)))) {
357 		ki->kaio_flags &= ~KAIO_WAKEUP;
358 		wakeup(p);
359 	}
360 
361 	if ( aiocbe->jobstate == JOBST_JOBQBUF) {
362 		if ((error = aio_fphysio(p, aiocbe, 1)) != 0)
363 			return error;
364 		if (aiocbe->jobstate != JOBST_JOBBFINISHED)
365 			panic("aio_free_entry: invalid physio finish-up state");
366 		s = splbio();
367 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
368 		splx(s);
369 	} else if ( aiocbe->jobstate == JOBST_JOBQPROC) {
370 		aiop = aiocbe->jobaioproc;
371 		TAILQ_REMOVE(&aiop->jobtorun, aiocbe, list);
372 	} else if ( aiocbe->jobstate == JOBST_JOBQGLOBAL) {
373 		TAILQ_REMOVE(&aio_jobs, aiocbe, list);
374 	} else if ( aiocbe->jobstate == JOBST_JOBFINISHED) {
375 		TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
376 	} else if ( aiocbe->jobstate == JOBST_JOBBFINISHED) {
377 		s = splbio();
378 		TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
379 		splx(s);
380 		if (aiocbe->bp) {
381 			vunmapbuf(aiocbe->bp);
382 			relpbuf(aiocbe->bp, NULL);
383 			aiocbe->bp = NULL;
384 		}
385 	}
386 	if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
387 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
388 		zfree(aiolio_zone, lj);
389 	}
390 	TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
391 	aiocbe->jobstate = JOBST_NULL;
392 	return 0;
393 }
394 
395 /*
396  * Rundown the jobs for a given process.
397  */
398 void
399 aio_proc_rundown(struct proc *p)
400 {
401 	int s;
402 	struct kaioinfo *ki;
403 	struct aio_liojob *lj, *ljn;
404 	struct aiocblist *aiocbe, *aiocbn;
405 
406 	ki = p->p_aioinfo;
407 	if (ki == NULL)
408 		return;
409 
410 	ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
411 	while ((ki->kaio_active_count > 0) ||
412 		(ki->kaio_buffer_count > ki->kaio_buffer_finished_count)) {
413 		ki->kaio_flags |= KAIO_RUNDOWN;
414 		if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout))
415 			break;
416 	}
417 
418 restart1:
419 	for ( aiocbe = TAILQ_FIRST(&ki->kaio_jobdone);
420 		aiocbe;
421 		aiocbe = aiocbn) {
422 		aiocbn = TAILQ_NEXT(aiocbe, plist);
423 		if (aio_free_entry(aiocbe))
424 			goto restart1;
425 	}
426 
427 restart2:
428 	for ( aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue);
429 		aiocbe;
430 		aiocbe = aiocbn) {
431 		aiocbn = TAILQ_NEXT(aiocbe, plist);
432 		if (aio_free_entry(aiocbe))
433 			goto restart2;
434 	}
435 
436 /*
437  * Note the use of lots of splbio here, trying to avoid
438  * splbio for long chains of I/O.  Probably unnecessary.
439  */
440 
441 restart3:
442 	s = splbio();
443 	while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
444 		ki->kaio_flags |= KAIO_WAKEUP;
445 		tsleep (p, PRIBIO, "aioprn", 0);
446 		splx(s);
447 		goto restart3;
448 	}
449 	splx(s);
450 
451 restart4:
452 	s = splbio();
453 	for ( aiocbe = TAILQ_FIRST(&ki->kaio_bufdone);
454 		aiocbe;
455 		aiocbe = aiocbn) {
456 		aiocbn = TAILQ_NEXT(aiocbe, plist);
457 		if (aio_free_entry(aiocbe)) {
458 			splx(s);
459 			goto restart4;
460 		}
461 	}
462 	splx(s);
463 
464 	for ( lj = TAILQ_FIRST(&ki->kaio_liojoblist);
465 		  lj;
466 		  lj = ljn) {
467 			ljn = TAILQ_NEXT(lj, lioj_list);
468 			if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
469 				TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
470 				zfree(aiolio_zone, lj);
471 			} else {
472 #if defined(DIAGNOSTIC)
473 				printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, QF:%d\n",
474 					lj->lioj_buffer_count, lj->lioj_buffer_finished_count,
475 					lj->lioj_queue_count, lj->lioj_queue_finished_count);
476 #endif
477 			}
478 	}
479 
480 	zfree(kaio_zone, ki);
481 	p->p_aioinfo = NULL;
482 }
483 
484 /*
485  * Select a job to run (called by an AIO daemon)
486  */
487 static struct aiocblist *
488 aio_selectjob(struct aioproclist *aiop)
489 {
490 
491 	struct aiocblist *aiocbe;
492 
493 	aiocbe = TAILQ_FIRST(&aiop->jobtorun);
494 	if (aiocbe) {
495 		TAILQ_REMOVE(&aiop->jobtorun, aiocbe, list);
496 		return aiocbe;
497 	}
498 
499 	for (aiocbe = TAILQ_FIRST(&aio_jobs);
500 		aiocbe;
501 		aiocbe = TAILQ_NEXT(aiocbe, list)) {
502 		struct kaioinfo *ki;
503 		struct proc *userp;
504 
505 		userp = aiocbe->userproc;
506 		ki = userp->p_aioinfo;
507 
508 		if (ki->kaio_active_count < ki->kaio_maxactive_count) {
509 			TAILQ_REMOVE(&aio_jobs, aiocbe, list);
510 			return aiocbe;
511 		}
512 	}
513 
514 	return NULL;
515 }
516 
517 /*
518  * The AIO processing activity.  This is the code that does the
519  * I/O request for the non-physio version of the operations.  The
520  * normal vn operations are used, and this code should work in
521  * all instances for every type of file, including pipes, sockets,
522  * fifos, and regular files.
523  */
524 void
525 aio_process(struct aiocblist *aiocbe)
526 {
527 	struct filedesc *fdp;
528 	struct proc *userp, *mycp;
529 	struct aiocb *cb;
530 	struct file *fp;
531 	struct uio auio;
532 	struct iovec aiov;
533 	unsigned int fd;
534 	int cnt;
535 	int error;
536 	off_t offset;
537 	int oublock_st, oublock_end;
538 	int inblock_st, inblock_end;
539 
540 	userp = aiocbe->userproc;
541 	cb = &aiocbe->uaiocb;
542 
543 	mycp = curproc;
544 
545 	fdp = mycp->p_fd;
546 	fd = cb->aio_fildes;
547 	fp = fdp->fd_ofiles[fd];
548 
549 	aiov.iov_base = (void *) cb->aio_buf;
550 	aiov.iov_len = cb->aio_nbytes;
551 
552 	auio.uio_iov = &aiov;
553 	auio.uio_iovcnt = 1;
554 	auio.uio_offset = offset = cb->aio_offset;
555 	auio.uio_resid = cb->aio_nbytes;
556 	cnt = cb->aio_nbytes;
557 	auio.uio_segflg = UIO_USERSPACE;
558 	auio.uio_procp = mycp;
559 
560 	inblock_st = mycp->p_stats->p_ru.ru_inblock;
561 	oublock_st = mycp->p_stats->p_ru.ru_oublock;
562 	if (cb->aio_lio_opcode == LIO_READ) {
563 		auio.uio_rw = UIO_READ;
564 		error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, mycp);
565 	} else {
566 		auio.uio_rw = UIO_WRITE;
567 		error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, mycp);
568 	}
569 	inblock_end = mycp->p_stats->p_ru.ru_inblock;
570 	oublock_end = mycp->p_stats->p_ru.ru_oublock;
571 
572 	aiocbe->inputcharge = inblock_end - inblock_st;
573 	aiocbe->outputcharge = oublock_end - oublock_st;
574 
575 	if (error) {
576 		if (auio.uio_resid != cnt) {
577 			if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
578 				error = 0;
579 			if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
580 				psignal(userp, SIGPIPE);
581 		}
582 	}
583 
584 	cnt -= auio.uio_resid;
585 	cb->_aiocb_private.error = error;
586 	cb->_aiocb_private.status = cnt;
587 
588 	return;
589 
590 }
591 
592 /*
593  * The AIO daemon, most of the actual work is done in aio_process,
594  * but the setup (and address space mgmt) is done in this routine.
595  */
596 static void
597 aio_daemon(void *uproc)
598 {
599 	int s;
600 	struct aioproclist *aiop;
601 	struct vmspace *myvm;
602 	struct proc *mycp;
603 
604 	/*
605 	 * Local copies of curproc (cp) and vmspace (myvm)
606 	 */
607 	mycp = curproc;
608 	myvm = mycp->p_vmspace;
609 
610 	if (mycp->p_textvp) {
611 		vrele(mycp->p_textvp);
612 		mycp->p_textvp = NULL;
613 	}
614 
615 	/*
616 	 * Allocate and ready the aio control info.  There is one
617 	 * aiop structure per daemon.
618 	 */
619 	aiop = zalloc(aiop_zone);
620 	aiop->aioproc = mycp;
621 	aiop->aioprocflags |= AIOP_FREE;
622 	TAILQ_INIT(&aiop->jobtorun);
623 
624 	/*
625 	 * Place thread (lightweight process) onto the AIO free thread list
626 	 */
627 	if (TAILQ_EMPTY(&aio_freeproc))
628 		wakeup(&aio_freeproc);
629 	TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
630 
631 	/*
632 	 * Make up a name for the daemon
633 	 */
634 	strcpy(mycp->p_comm, "aiod");
635 
636 	/*
637 	 * Get rid of our current filedescriptors.  AIOD's don't need any
638 	 * filedescriptors, except as temporarily inherited from the client.
639 	 * Credentials are also cloned, and made equivalent to "root."
640 	 */
641 	fdfree(mycp);
642 	mycp->p_fd = NULL;
643 	mycp->p_ucred = crcopy(mycp->p_ucred);
644 	mycp->p_ucred->cr_uid = 0;
645 	mycp->p_ucred->cr_ngroups = 1;
646 	mycp->p_ucred->cr_groups[0] = 1;
647 
648 	/*
649 	 * The daemon resides in its own pgrp.
650 	 */
651 	enterpgrp(mycp, mycp->p_pid, 1);
652 
653 	/*
654 	 * Mark special process type
655 	 */
656 	mycp->p_flag |= P_SYSTEM|P_KTHREADP;
657 
658 	/*
659 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
660 	 * creating to many daemons.)
661 	 */
662 	wakeup(mycp);
663 
664 	while(1) {
665 		struct proc *curcp;
666 		struct	aiocblist *aiocbe;
667 
668 		/*
669 		 * curcp is the current daemon process context.
670 		 * userp is the current user process context.
671 		 */
672 		curcp = mycp;
673 
674 		/*
675 		 * Take daemon off of free queue
676 		 */
677 		if (aiop->aioprocflags & AIOP_FREE) {
678 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
679 			TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
680 			aiop->aioprocflags &= ~AIOP_FREE;
681 		}
682 		aiop->aioprocflags &= ~AIOP_SCHED;
683 
684 		/*
685 		 * Check for jobs
686 		 */
687 		while ((aiocbe = aio_selectjob(aiop)) != NULL) {
688 			struct proc *userp;
689 			struct aiocb *cb;
690 			struct kaioinfo *ki;
691 			struct aio_liojob *lj;
692 
693 			cb = &aiocbe->uaiocb;
694 			userp = aiocbe->userproc;
695 
696 			aiocbe->jobstate = JOBST_JOBRUNNING;
697 
698 			/*
699 			 * Connect to process address space for user program
700 			 */
701 			if (userp != curcp) {
702 				struct vmspace *tmpvm;
703 				/*
704 				 * Save the current address space that we are connected to.
705 				 */
706 				tmpvm = mycp->p_vmspace;
707 				/*
708 				 * Point to the new user address space, and refer to it.
709 				 */
710 				mycp->p_vmspace = userp->p_vmspace;
711 				mycp->p_vmspace->vm_refcnt++;
712 				/*
713 				 * Activate the new mapping.
714 				 */
715 				pmap_activate(mycp);
716 				/*
717 				 * If the old address space wasn't the daemons own address
718 				 * space, then we need to remove the daemon's reference from
719 				 * the other process that it was acting on behalf of.
720 				 */
721 				if (tmpvm != myvm) {
722 					vmspace_free(tmpvm);
723 				}
724 				/*
725 				 * Disassociate from previous clients file descriptors, and
726 				 * associate to the new clients descriptors.  Note that
727 				 * the daemon doesn't need to worry about its orginal
728 				 * descriptors, because they were originally freed.
729 				 */
730 				if (mycp->p_fd)
731 					fdfree(mycp);
732 				mycp->p_fd = fdshare(userp);
733 				curcp = userp;
734 			}
735 
736 			ki = userp->p_aioinfo;
737 			lj = aiocbe->lio;
738 
739 			/*
740 			 * Account for currently active jobs
741 			 */
742 			ki->kaio_active_count++;
743 
744 			/*
745 			 * Do the I/O function
746 			 */
747 			aiocbe->jobaioproc = aiop;
748 			aio_process(aiocbe);
749 
750 			/*
751 			 * decrement the active job count
752 			 */
753 			ki->kaio_active_count--;
754 
755 			/*
756 			 * increment the completion count for wakeup/signal comparisons
757 			 */
758 			aiocbe->jobflags |= AIOCBLIST_DONE;
759 			ki->kaio_queue_finished_count++;
760 			if (lj) {
761 				lj->lioj_queue_finished_count++;
762 			}
763 			if ((ki->kaio_flags & KAIO_WAKEUP) ||
764 			    ((ki->kaio_flags & KAIO_RUNDOWN) &&
765 			    (ki->kaio_active_count == 0))) {
766 				ki->kaio_flags &= ~KAIO_WAKEUP;
767 				wakeup(userp);
768 			}
769 
770 			s = splbio();
771 			if (lj && (lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
772 				LIOJ_SIGNAL) {
773 				if ((lj->lioj_queue_finished_count == lj->lioj_queue_count) &&
774 					(lj->lioj_buffer_finished_count == lj->lioj_buffer_count)) {
775 						psignal(userp, lj->lioj_signal.sigev_signo);
776 						lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
777 				}
778 			}
779 			splx(s);
780 
781 			aiocbe->jobstate = JOBST_JOBFINISHED;
782 
783 			/*
784 			 * If the I/O request should be automatically rundown, do the
785 			 * needed cleanup.  Otherwise, place the queue entry for
786 			 * the just finished I/O request into the done queue for the
787 			 * associated client.
788 			 */
789 			if (aiocbe->jobflags & AIOCBLIST_ASYNCFREE) {
790 				aiocbe->jobflags &= ~AIOCBLIST_ASYNCFREE;
791 				TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
792 			} else {
793 				TAILQ_REMOVE(&ki->kaio_jobqueue,
794 					aiocbe, plist);
795 				TAILQ_INSERT_TAIL(&ki->kaio_jobdone,
796 					aiocbe, plist);
797 			}
798 
799 			if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
800 				wakeup(aiocbe);
801 				aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
802 			}
803 
804 			if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
805 				psignal(userp, cb->aio_sigevent.sigev_signo);
806 			}
807 		}
808 
809 		/*
810 		 * Disconnect from user address space
811 		 */
812 		if (curcp != mycp) {
813 			struct vmspace *tmpvm;
814 			/*
815 			 * Get the user address space to disconnect from.
816 			 */
817 			tmpvm = mycp->p_vmspace;
818 			/*
819 			 * Get original address space for daemon.
820 			 */
821 			mycp->p_vmspace = myvm;
822 			/*
823 			 * Activate the daemon's address space.
824 			 */
825 			pmap_activate(mycp);
826 #if defined(DIAGNOSTIC)
827 			if (tmpvm == myvm)
828 				printf("AIOD: vmspace problem -- %d\n", mycp->p_pid);
829 #endif
830 			/*
831 			 * remove our vmspace reference.
832 			 */
833 			vmspace_free(tmpvm);
834 			/*
835 			 * disassociate from the user process's file descriptors.
836 			 */
837 			if (mycp->p_fd)
838 				fdfree(mycp);
839 			mycp->p_fd = NULL;
840 			curcp = mycp;
841 		}
842 
843 		/*
844 		 * If we are the first to be put onto the free queue, wakeup
845 		 * anyone waiting for a daemon.
846 		 */
847 		TAILQ_REMOVE(&aio_activeproc, aiop, list);
848 		if (TAILQ_EMPTY(&aio_freeproc))
849 			wakeup(&aio_freeproc);
850 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
851 		aiop->aioprocflags |= AIOP_FREE;
852 
853 		/*
854 		 * If daemon is inactive for a long time, allow it to exit, thereby
855 		 * freeing resources.
856 		 */
857 		if (((aiop->aioprocflags & AIOP_SCHED) == 0) &&
858 			tsleep(mycp, PRIBIO, "aiordy", aiod_lifetime)) {
859 			if ((TAILQ_FIRST(&aio_jobs) == NULL) &&
860 				(TAILQ_FIRST(&aiop->jobtorun) == NULL)) {
861 				if ((aiop->aioprocflags & AIOP_FREE) &&
862 					(num_aio_procs > target_aio_procs)) {
863 					TAILQ_REMOVE(&aio_freeproc, aiop, list);
864 					zfree(aiop_zone, aiop);
865 					num_aio_procs--;
866 #if defined(DIAGNOSTIC)
867 					if (mycp->p_vmspace->vm_refcnt <= 1)
868 						printf("AIOD: bad vm refcnt for exiting daemon: %d\n",
869 							mycp->p_vmspace->vm_refcnt);
870 #endif
871 					exit1(mycp, 0);
872 				}
873 			}
874 		}
875 	}
876 }
877 
878 /*
879  * Create a new AIO daemon.  This is mostly a kernel-thread fork routine.
880  * The AIO daemon modifies its environment itself.
881  */
882 static int
883 aio_newproc()
884 {
885 	int error;
886 	struct proc *p, *np;
887 
888 	p = &proc0;
889 	error = fork1(p, RFPROC|RFMEM|RFNOWAIT, &np);
890 	if (error)
891 		return error;
892 	cpu_set_fork_handler(np, aio_daemon, curproc);
893 
894 	/*
895 	 * Wait until daemon is started, but continue on just in case (to
896 	 * handle error conditions.
897 	 */
898 	error = tsleep(np, PZERO, "aiosta", aiod_timeout);
899 	num_aio_procs++;
900 
901 	return error;
902 
903 }
904 
905 /*
906  * Try the high-performance physio method for eligible VCHR devices.  This
907  * routine doesn't require the use of any additional threads, and have
908  * overhead.
909  */
910 int
911 aio_qphysio(p, aiocbe)
912 	struct proc *p;
913 	struct aiocblist *aiocbe;
914 {
915 	int error;
916 	struct aiocb *cb;
917 	struct file *fp;
918 	struct buf *bp;
919 	struct vnode *vp;
920 	struct kaioinfo *ki;
921 	struct filedesc *fdp;
922 	struct aio_liojob *lj;
923 	int fd;
924 	int s;
925 	int cnt;
926 	struct cdevsw *cdev;
927 
928 	cb = &aiocbe->uaiocb;
929 	fdp = p->p_fd;
930 	fd = cb->aio_fildes;
931 	fp = fdp->fd_ofiles[fd];
932 
933 	if (fp->f_type != DTYPE_VNODE) {
934 		return -1;
935 	}
936 
937 	vp = (struct vnode *)fp->f_data;
938 	if (vp->v_type != VCHR || ((cb->aio_nbytes & (DEV_BSIZE - 1)) != 0)) {
939 		return -1;
940 	}
941 
942 	if ((cb->aio_nbytes > MAXPHYS) && (num_buf_aio >= max_buf_aio)) {
943 		return -1;
944 	}
945 
946 	if ((vp->v_rdev == NULL) || (vp->v_flag & VISTTY)) {
947 		return -1;
948 	}
949 
950 	if (vp->v_rdev == NODEV) {
951 		return -1;
952 	}
953 
954 	cdev = devsw(vp->v_rdev);
955 	if (cdev == NULL) {
956 		return -1;
957 	}
958 
959 	if (cdev->d_bmaj == -1) {
960 		return -1;
961 	}
962 
963 	ki = p->p_aioinfo;
964 	if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
965 		return -1;
966 	}
967 
968 	cnt = cb->aio_nbytes;
969 	if (cnt > MAXPHYS) {
970 		return -1;
971 	}
972 
973 	/*
974 	 * Physical I/O is charged directly to the process, so we don't have
975 	 * to fake it.
976 	 */
977 	aiocbe->inputcharge = 0;
978 	aiocbe->outputcharge = 0;
979 
980 	ki->kaio_buffer_count++;
981 
982 	lj = aiocbe->lio;
983 	if (lj) {
984 		lj->lioj_buffer_count++;
985 	}
986 
987 	/* create and build a buffer header for a transfer */
988 	bp = (struct buf *)getpbuf(NULL);
989 
990 	/*
991 	 * get a copy of the kva from the physical buffer
992 	 */
993 	bp->b_caller1 = p;
994 	bp->b_dev = vp->v_rdev;
995 	error = bp->b_error = 0;
996 
997 	bp->b_bcount = cb->aio_nbytes;
998 	bp->b_bufsize = cb->aio_nbytes;
999 	bp->b_flags = B_PHYS | B_CALL;
1000 	bp->b_iodone = aio_physwakeup;
1001 	bp->b_saveaddr = bp->b_data;
1002 	bp->b_data = (void *) cb->aio_buf;
1003 	bp->b_blkno = btodb(cb->aio_offset);
1004 
1005 	if (cb->aio_lio_opcode == LIO_WRITE) {
1006 		bp->b_flags |= B_WRITE;
1007 		if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) {
1008 			error = EFAULT;
1009 			goto doerror;
1010 		}
1011 	} else {
1012 		bp->b_flags |= B_READ;
1013 		if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) {
1014 			error = EFAULT;
1015 			goto doerror;
1016 		}
1017 	}
1018 
1019 	/* bring buffer into kernel space */
1020 	vmapbuf(bp);
1021 
1022 	s = splbio();
1023 	aiocbe->bp = bp;
1024 	bp->b_spc = (void *)aiocbe;
1025 	TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
1026 	TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
1027 	aiocbe->jobstate = JOBST_JOBQBUF;
1028 	cb->_aiocb_private.status = cb->aio_nbytes;
1029 	num_buf_aio++;
1030 	bp->b_error = 0;
1031 
1032 	splx(s);
1033 	/* perform transfer */
1034 	BUF_STRATEGY(bp, 0);
1035 
1036 	s = splbio();
1037 	/*
1038 	 * If we had an error invoking the request, or an error in processing
1039 	 * the request before we have returned, we process it as an error
1040 	 * in transfer.  Note that such an I/O error is not indicated immediately,
1041 	 * but is returned using the aio_error mechanism.  In this case, aio_suspend
1042 	 * will return immediately.
1043 	 */
1044 	if (bp->b_error || (bp->b_flags & B_ERROR)) {
1045 		struct aiocb *job = aiocbe->uuaiocb;
1046 
1047 		aiocbe->uaiocb._aiocb_private.status = 0;
1048 		suword(&job->_aiocb_private.status, 0);
1049 		aiocbe->uaiocb._aiocb_private.error = bp->b_error;
1050 		suword(&job->_aiocb_private.error, bp->b_error);
1051 
1052 		ki->kaio_buffer_finished_count++;
1053 
1054 		if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
1055 			aiocbe->jobstate = JOBST_JOBBFINISHED;
1056 			aiocbe->jobflags |= AIOCBLIST_DONE;
1057 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
1058 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1059 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
1060 		}
1061 	}
1062 	splx(s);
1063 	return 0;
1064 
1065 doerror:
1066 	ki->kaio_buffer_count--;
1067 	if (lj) {
1068 		lj->lioj_buffer_count--;
1069 	}
1070 	aiocbe->bp = NULL;
1071 	relpbuf(bp, NULL);
1072 	return error;
1073 }
1074 
1075 /*
1076  * This waits/tests physio completion.
1077  */
1078 int
1079 aio_fphysio(p, iocb, flgwait)
1080 	struct proc *p;
1081 	struct aiocblist *iocb;
1082 	int flgwait;
1083 {
1084 	int s;
1085 	struct buf *bp;
1086 	int error;
1087 
1088 	bp = iocb->bp;
1089 
1090 	s = splbio();
1091 	if (flgwait == 0) {
1092 		if ((bp->b_flags & B_DONE) == 0) {
1093 			splx(s);
1094 			return EINPROGRESS;
1095 		}
1096 	}
1097 
1098 	while ((bp->b_flags & B_DONE) == 0) {
1099 		if (tsleep((caddr_t)bp, PRIBIO, "physstr", aiod_timeout)) {
1100 			if ((bp->b_flags & B_DONE) == 0) {
1101 				splx(s);
1102 				return EINPROGRESS;
1103 			} else {
1104 				break;
1105 			}
1106 		}
1107 	}
1108 
1109 	/* release mapping into kernel space */
1110 	vunmapbuf(bp);
1111 	iocb->bp = 0;
1112 
1113 	error = 0;
1114 	/*
1115 	 * check for an error
1116 	 */
1117 	if (bp->b_flags & B_ERROR) {
1118 		error = bp->b_error;
1119 	}
1120 
1121 	relpbuf(bp, NULL);
1122 	return (error);
1123 }
1124 
1125 /*
1126  * Queue a new AIO request.  Choosing either the threaded or direct physio
1127  * VCHR technique is done in this code.
1128  */
1129 static int
1130 _aio_aqueue(struct proc *p, struct aiocb *job, struct aio_liojob *lj, int type)
1131 {
1132 	struct filedesc *fdp;
1133 	struct file *fp;
1134 	unsigned int fd;
1135 
1136 	int error;
1137 	int opcode;
1138 	struct aiocblist *aiocbe;
1139 	struct aioproclist *aiop;
1140 	struct kaioinfo *ki;
1141 
1142 	if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL) {
1143 		TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
1144 	} else {
1145 		aiocbe = zalloc (aiocb_zone);
1146 	}
1147 
1148 	aiocbe->inputcharge = 0;
1149 	aiocbe->outputcharge = 0;
1150 
1151 	suword(&job->_aiocb_private.status, -1);
1152 	suword(&job->_aiocb_private.error, 0);
1153 	suword(&job->_aiocb_private.kernelinfo, -1);
1154 
1155 	error = copyin((caddr_t)job,
1156 		(caddr_t) &aiocbe->uaiocb, sizeof aiocbe->uaiocb);
1157 	if (error) {
1158 		suword(&job->_aiocb_private.error, error);
1159 
1160 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1161 		return error;
1162 	}
1163 
1164 	/*
1165 	 * Save userspace address of the job info
1166 	 */
1167 	aiocbe->uuaiocb = job;
1168 
1169 	/*
1170 	 * Get the opcode
1171 	 */
1172 	if (type != LIO_NOP) {
1173 		aiocbe->uaiocb.aio_lio_opcode = type;
1174 	}
1175 	opcode = aiocbe->uaiocb.aio_lio_opcode;
1176 
1177 	/*
1178 	 * Get the fd info for process
1179 	 */
1180 	fdp = p->p_fd;
1181 
1182 	/*
1183 	 * Range check file descriptor
1184 	 */
1185 	fd = aiocbe->uaiocb.aio_fildes;
1186 	if (fd >= fdp->fd_nfiles) {
1187 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1188 		if (type == 0) {
1189 			suword(&job->_aiocb_private.error, EBADF);
1190 		}
1191 		return EBADF;
1192 	}
1193 
1194 	fp = fdp->fd_ofiles[fd];
1195 	if ((fp == NULL) ||
1196 		((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0))) {
1197 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1198 		if (type == 0) {
1199 			suword(&job->_aiocb_private.error, EBADF);
1200 		}
1201 		return EBADF;
1202 	}
1203 
1204 	if (aiocbe->uaiocb.aio_offset == -1LL) {
1205 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1206 		if (type == 0) {
1207 			suword(&job->_aiocb_private.error, EINVAL);
1208 		}
1209 		return EINVAL;
1210 	}
1211 
1212 	error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
1213 	if (error) {
1214 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1215 		if (type == 0) {
1216 			suword(&job->_aiocb_private.error, EINVAL);
1217 		}
1218 		return error;
1219 	}
1220 
1221 	aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
1222 	if (jobrefid == LONG_MAX)
1223 		jobrefid = 1;
1224 	else
1225 		jobrefid++;
1226 
1227 	if (opcode == LIO_NOP) {
1228 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1229 		if (type == 0) {
1230 			suword(&job->_aiocb_private.error, 0);
1231 			suword(&job->_aiocb_private.status, 0);
1232 			suword(&job->_aiocb_private.kernelinfo, 0);
1233 		}
1234 		return 0;
1235 	}
1236 
1237 	if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
1238 		TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1239 		if (type == 0) {
1240 			suword(&job->_aiocb_private.status, 0);
1241 			suword(&job->_aiocb_private.error, EINVAL);
1242 		}
1243 		return EINVAL;
1244 	}
1245 
1246 	suword(&job->_aiocb_private.error, EINPROGRESS);
1247 	aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1248 	aiocbe->userproc = p;
1249 	aiocbe->jobflags = 0;
1250 	aiocbe->lio = lj;
1251 	ki = p->p_aioinfo;
1252 
1253 	if ((error = aio_qphysio(p, aiocbe)) == 0) {
1254 		return 0;
1255 	} else if (error > 0) {
1256 		suword(&job->_aiocb_private.status, 0);
1257 		aiocbe->uaiocb._aiocb_private.error = error;
1258 		suword(&job->_aiocb_private.error, error);
1259 		return error;
1260 	}
1261 
1262 	/*
1263 	 * No buffer for daemon I/O
1264 	 */
1265 	aiocbe->bp = NULL;
1266 
1267 	ki->kaio_queue_count++;
1268 	if (lj) {
1269 		lj->lioj_queue_count++;
1270 	}
1271 	TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1272 	TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1273 	aiocbe->jobstate = JOBST_JOBQGLOBAL;
1274 
1275 	num_queue_count++;
1276 	error = 0;
1277 
1278 	/*
1279 	 * If we don't have a free AIO process, and we are below our
1280 	 * quota, then start one.  Otherwise, depend on the subsequent
1281 	 * I/O completions to pick-up this job.  If we don't sucessfully
1282 	 * create the new process (thread) due to resource issues, we
1283 	 * return an error for now (EAGAIN), which is likely not the
1284 	 * correct thing to do.
1285 	 */
1286 retryproc:
1287 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1288 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1289 		TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1290 		aiop->aioprocflags &= ~AIOP_FREE;
1291 		wakeup(aiop->aioproc);
1292 	} else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1293 			((ki->kaio_active_count + num_aio_resv_start) <
1294 				ki->kaio_maxactive_count)) {
1295 		num_aio_resv_start++;
1296 		if ((error = aio_newproc()) == 0) {
1297 			num_aio_resv_start--;
1298 			p->p_retval[0] = 0;
1299 			goto retryproc;
1300 		}
1301 		num_aio_resv_start--;
1302 	}
1303 	return error;
1304 }
1305 
1306 /*
1307  * This routine queues an AIO request, checking for quotas.
1308  */
1309 static int
1310 aio_aqueue(struct proc *p, struct aiocb *job, int type)
1311 {
1312 	struct kaioinfo *ki;
1313 
1314 	if (p->p_aioinfo == NULL) {
1315 		aio_init_aioinfo(p);
1316 	}
1317 
1318 	if (num_queue_count >= max_queue_count)
1319 		return EAGAIN;
1320 
1321 	ki = p->p_aioinfo;
1322 	if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
1323 		return EAGAIN;
1324 
1325 	return _aio_aqueue(p, job, NULL, type);
1326 }
1327 
1328 /*
1329  * Support the aio_return system call, as a side-effect, kernel
1330  * resources are released.
1331  */
1332 int
1333 aio_return(struct proc *p, struct aio_return_args *uap)
1334 {
1335 	int s;
1336 	int jobref;
1337 	struct aiocblist *cb, *ncb;
1338 	struct aiocb *ujob;
1339 	struct kaioinfo *ki;
1340 
1341 	ki = p->p_aioinfo;
1342 	if (ki == NULL) {
1343 		return EINVAL;
1344 	}
1345 
1346 	ujob = uap->aiocbp;
1347 
1348 	jobref = fuword(&ujob->_aiocb_private.kernelinfo);
1349 	if (jobref == -1 || jobref == 0)
1350 		return EINVAL;
1351 
1352 	for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
1353 		cb;
1354 		cb = TAILQ_NEXT(cb, plist)) {
1355 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1356 			if (ujob == cb->uuaiocb) {
1357 				p->p_retval[0] = cb->uaiocb._aiocb_private.status;
1358 			} else {
1359 				p->p_retval[0] = EFAULT;
1360 			}
1361 			if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1362 				curproc->p_stats->p_ru.ru_oublock += cb->outputcharge;
1363 				cb->outputcharge = 0;
1364 			} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1365 				curproc->p_stats->p_ru.ru_inblock += cb->inputcharge;
1366 				cb->inputcharge = 0;
1367 			}
1368 			aio_free_entry(cb);
1369 			return 0;
1370 		}
1371 	}
1372 
1373 	s = splbio();
1374 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
1375 		cb;
1376 		cb = ncb) {
1377 		ncb = TAILQ_NEXT(cb, plist);
1378 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1379 			splx(s);
1380 			if (ujob == cb->uuaiocb) {
1381 				p->p_retval[0] = cb->uaiocb._aiocb_private.status;
1382 			} else {
1383 				p->p_retval[0] = EFAULT;
1384 			}
1385 			aio_free_entry(cb);
1386 			return 0;
1387 		}
1388 	}
1389 	splx(s);
1390 
1391 	return (EINVAL);
1392 }
1393 
1394 /*
1395  * Allow a process to wakeup when any of the I/O requests are
1396  * completed.
1397  */
1398 int
1399 aio_suspend(struct proc *p, struct aio_suspend_args *uap)
1400 {
1401 	struct timeval atv;
1402 	struct timespec ts;
1403 	struct aiocb *const *cbptr, *cbp;
1404 	struct kaioinfo *ki;
1405 	struct aiocblist *cb;
1406 	int i;
1407 	int njoblist;
1408 	int error, s, timo;
1409 	int *ijoblist;
1410 	struct aiocb **ujoblist;
1411 
1412 	if (uap->nent >= AIO_LISTIO_MAX)
1413 		return EINVAL;
1414 
1415 	timo = 0;
1416 	if (uap->timeout) {
1417 		/*
1418 		 * Get timespec struct
1419 		 */
1420 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) {
1421 			return error;
1422 		}
1423 
1424 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1425 			return (EINVAL);
1426 
1427 		TIMESPEC_TO_TIMEVAL(&atv, &ts);
1428 		if (itimerfix(&atv))
1429 			return (EINVAL);
1430 		timo = tvtohz(&atv);
1431 	}
1432 
1433 	ki = p->p_aioinfo;
1434 	if (ki == NULL)
1435 		return EAGAIN;
1436 
1437 	njoblist = 0;
1438 	ijoblist = zalloc(aiol_zone);
1439 	ujoblist = zalloc(aiol_zone);
1440 	cbptr = uap->aiocbp;
1441 
1442 	for(i = 0; i < uap->nent; i++) {
1443 		cbp = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
1444 		if (cbp == 0)
1445 			continue;
1446 		ujoblist[njoblist] = cbp;
1447 		ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
1448 		njoblist++;
1449 	}
1450 	if (njoblist == 0) {
1451 		zfree(aiol_zone, ijoblist);
1452 		zfree(aiol_zone, ujoblist);
1453 		return 0;
1454 	}
1455 
1456 	error = 0;
1457 	while (1) {
1458 		for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
1459 			cb; cb = TAILQ_NEXT(cb, plist)) {
1460 			for(i = 0; i < njoblist; i++) {
1461 				if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1462 					ijoblist[i]) {
1463 					if (ujoblist[i] != cb->uuaiocb)
1464 						error = EINVAL;
1465 					zfree(aiol_zone, ijoblist);
1466 					zfree(aiol_zone, ujoblist);
1467 					return error;
1468 				}
1469 			}
1470 		}
1471 
1472 		s = splbio();
1473 		for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
1474 			cb; cb = TAILQ_NEXT(cb, plist)) {
1475 			for(i = 0; i < njoblist; i++) {
1476 				if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1477 					ijoblist[i]) {
1478 					splx(s);
1479 					if (ujoblist[i] != cb->uuaiocb)
1480 						error = EINVAL;
1481 					zfree(aiol_zone, ijoblist);
1482 					zfree(aiol_zone, ujoblist);
1483 					return error;
1484 				}
1485 			}
1486 		}
1487 
1488 		ki->kaio_flags |= KAIO_WAKEUP;
1489 		error = tsleep(p, PRIBIO|PCATCH, "aiospn", timo);
1490 		splx(s);
1491 
1492 		if (error == EINTR) {
1493 			zfree(aiol_zone, ijoblist);
1494 			zfree(aiol_zone, ujoblist);
1495 			return EINTR;
1496 		} else if (error == EWOULDBLOCK) {
1497 			zfree(aiol_zone, ijoblist);
1498 			zfree(aiol_zone, ujoblist);
1499 			return EAGAIN;
1500 		}
1501 	}
1502 
1503 /* NOTREACHED */
1504 	return EINVAL;
1505 }
1506 
1507 /*
1508  * aio_cancel at the kernel level is a NOOP right now.  It
1509  * might be possible to support it partially in user mode, or
1510  * in kernel mode later on.
1511  */
1512 int
1513 aio_cancel(struct proc *p, struct aio_cancel_args *uap)
1514 {
1515       return ENOSYS;
1516 }
1517 
1518 /*
1519  * aio_error is implemented in the kernel level for compatibility
1520  * purposes only.  For a user mode async implementation, it would be
1521  * best to do it in a userland subroutine.
1522  */
1523 int
1524 aio_error(struct proc *p, struct aio_error_args *uap)
1525 {
1526 	int s;
1527 	struct aiocblist *cb;
1528 	struct kaioinfo *ki;
1529 	int jobref;
1530 
1531 	ki = p->p_aioinfo;
1532 	if (ki == NULL)
1533 		return EINVAL;
1534 
1535 	jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
1536 	if ((jobref == -1) || (jobref == 0))
1537 		return EINVAL;
1538 
1539 	for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
1540 		cb;
1541 		cb = TAILQ_NEXT(cb, plist)) {
1542 
1543 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1544 			p->p_retval[0] = cb->uaiocb._aiocb_private.error;
1545 			return 0;
1546 		}
1547 	}
1548 
1549 	for (cb = TAILQ_FIRST(&ki->kaio_jobqueue);
1550 		cb;
1551 		cb = TAILQ_NEXT(cb, plist)) {
1552 
1553 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1554 			p->p_retval[0] = EINPROGRESS;
1555 			return 0;
1556 		}
1557 	}
1558 
1559 	s = splbio();
1560 	for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
1561 		cb;
1562 		cb = TAILQ_NEXT(cb, plist)) {
1563 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1564 			p->p_retval[0] = cb->uaiocb._aiocb_private.error;
1565 			splx(s);
1566 			return 0;
1567 		}
1568 	}
1569 
1570 	for (cb = TAILQ_FIRST(&ki->kaio_bufqueue);
1571 		cb;
1572 		cb = TAILQ_NEXT(cb, plist)) {
1573 		if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == jobref) {
1574 			p->p_retval[0] = EINPROGRESS;
1575 			splx(s);
1576 			return 0;
1577 		}
1578 	}
1579 	splx(s);
1580 
1581 
1582 	/*
1583 	 * Hack for lio
1584 	 */
1585 /*
1586 	status = fuword(&uap->aiocbp->_aiocb_private.status);
1587 	if (status == -1) {
1588 		return fuword(&uap->aiocbp->_aiocb_private.error);
1589 	}
1590 */
1591 	return EINVAL;
1592 }
1593 
1594 int
1595 aio_read(struct proc *p, struct aio_read_args *uap)
1596 {
1597 	struct filedesc *fdp;
1598 	struct file *fp;
1599 	struct uio auio;
1600 	struct iovec aiov;
1601 	unsigned int fd;
1602 	int cnt;
1603 	struct aiocb iocb;
1604 	int error, pmodes;
1605 
1606 	pmodes = fuword(&uap->aiocbp->_aiocb_private.privatemodes);
1607 	if ((pmodes & AIO_PMODE_SYNC) == 0) {
1608 		return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_READ);
1609 	}
1610 
1611 	/*
1612 	 * Get control block
1613 	 */
1614 	if ((error = copyin((caddr_t) uap->aiocbp, (caddr_t) &iocb, sizeof iocb)) != 0)
1615 		return error;
1616 
1617 	/*
1618 	 * Get the fd info for process
1619 	 */
1620 	fdp = p->p_fd;
1621 
1622 	/*
1623 	 * Range check file descriptor
1624 	 */
1625 	fd = iocb.aio_fildes;
1626 	if (fd >= fdp->fd_nfiles)
1627 		return EBADF;
1628 	fp = fdp->fd_ofiles[fd];
1629 	if ((fp == NULL) || ((fp->f_flag & FREAD) == 0))
1630 		return EBADF;
1631 	if (iocb.aio_offset == -1LL)
1632 		return EINVAL;
1633 
1634 	auio.uio_resid = iocb.aio_nbytes;
1635 	if (auio.uio_resid < 0)
1636 		return (EINVAL);
1637 
1638 	/*
1639 	 * Process sync simply -- queue async request.
1640 	 */
1641 	if ((iocb._aiocb_private.privatemodes & AIO_PMODE_SYNC) == 0) {
1642 		return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_READ);
1643 	}
1644 
1645 	aiov.iov_base = (void *) iocb.aio_buf;
1646 	aiov.iov_len = iocb.aio_nbytes;
1647 
1648 	auio.uio_iov = &aiov;
1649 	auio.uio_iovcnt = 1;
1650 	auio.uio_offset = iocb.aio_offset;
1651 	auio.uio_rw = UIO_READ;
1652 	auio.uio_segflg = UIO_USERSPACE;
1653 	auio.uio_procp = p;
1654 
1655 	cnt = iocb.aio_nbytes;
1656 	error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, p);
1657 	if (error &&
1658 		(auio.uio_resid != cnt) &&
1659 		(error == ERESTART || error == EINTR || error == EWOULDBLOCK))
1660 			error = 0;
1661 	cnt -= auio.uio_resid;
1662 	p->p_retval[0] = cnt;
1663 	return error;
1664 }
1665 
1666 int
1667 aio_write(struct proc *p, struct aio_write_args *uap)
1668 {
1669 	struct filedesc *fdp;
1670 	struct file *fp;
1671 	struct uio auio;
1672 	struct iovec aiov;
1673 	unsigned int fd;
1674 	int cnt;
1675 	struct aiocb iocb;
1676 	int error;
1677 	int pmodes;
1678 
1679 	/*
1680 	 * Process sync simply -- queue async request.
1681 	 */
1682 	pmodes = fuword(&uap->aiocbp->_aiocb_private.privatemodes);
1683 	if ((pmodes & AIO_PMODE_SYNC) == 0) {
1684 		return aio_aqueue(p, (struct aiocb *) uap->aiocbp, LIO_WRITE);
1685 	}
1686 
1687 	if ((error = copyin((caddr_t) uap->aiocbp, (caddr_t) &iocb, sizeof iocb)) != 0)
1688 		return error;
1689 
1690 	/*
1691 	 * Get the fd info for process
1692 	 */
1693 	fdp = p->p_fd;
1694 
1695 	/*
1696 	 * Range check file descriptor
1697 	 */
1698 	fd = iocb.aio_fildes;
1699 	if (fd >= fdp->fd_nfiles)
1700 		return EBADF;
1701 	fp = fdp->fd_ofiles[fd];
1702 	if ((fp == NULL) || ((fp->f_flag & FWRITE) == 0))
1703 		return EBADF;
1704 	if (iocb.aio_offset == -1LL)
1705 		return EINVAL;
1706 
1707 	aiov.iov_base = (void *) iocb.aio_buf;
1708 	aiov.iov_len = iocb.aio_nbytes;
1709 	auio.uio_iov = &aiov;
1710 	auio.uio_iovcnt = 1;
1711 	auio.uio_offset = iocb.aio_offset;
1712 
1713 	auio.uio_resid = iocb.aio_nbytes;
1714 	if (auio.uio_resid < 0)
1715 		return (EINVAL);
1716 
1717 	auio.uio_rw = UIO_WRITE;
1718 	auio.uio_segflg = UIO_USERSPACE;
1719 	auio.uio_procp = p;
1720 
1721 	cnt = iocb.aio_nbytes;
1722 	error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, p);
1723 	if (error) {
1724 		if (auio.uio_resid != cnt) {
1725 			if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
1726 				error = 0;
1727 			if (error == EPIPE)
1728 				psignal(p, SIGPIPE);
1729 		}
1730 	}
1731 	cnt -= auio.uio_resid;
1732 	p->p_retval[0] = cnt;
1733 	return error;
1734 }
1735 
1736 int
1737 lio_listio(struct proc *p, struct lio_listio_args *uap)
1738 {
1739 	int nent, nentqueued;
1740 	struct aiocb *iocb, * const *cbptr;
1741 	struct aiocblist *cb;
1742 	struct kaioinfo *ki;
1743 	struct aio_liojob *lj;
1744 	int error, runningcode;
1745 	int nerror;
1746 	int i;
1747 	int s;
1748 
1749 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) {
1750 		return EINVAL;
1751 	}
1752 
1753 	nent = uap->nent;
1754 	if (nent > AIO_LISTIO_MAX) {
1755 		return EINVAL;
1756 	}
1757 
1758 	if (p->p_aioinfo == NULL) {
1759 		aio_init_aioinfo(p);
1760 	}
1761 
1762 	if ((nent + num_queue_count) > max_queue_count) {
1763 		return EAGAIN;
1764 	}
1765 
1766 	ki = p->p_aioinfo;
1767 	if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) {
1768 		return EAGAIN;
1769 	}
1770 
1771 	lj = zalloc(aiolio_zone);
1772 	if (!lj) {
1773 		return EAGAIN;
1774 	}
1775 
1776 	lj->lioj_flags = 0;
1777 	lj->lioj_buffer_count = 0;
1778 	lj->lioj_buffer_finished_count = 0;
1779 	lj->lioj_queue_count = 0;
1780 	lj->lioj_queue_finished_count = 0;
1781 	lj->lioj_ki = ki;
1782 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
1783 
1784 	/*
1785 	 * Setup signal
1786 	 */
1787 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
1788 		error = copyin(uap->sig, &lj->lioj_signal, sizeof lj->lioj_signal);
1789 		if (error)
1790 			return error;
1791 		lj->lioj_flags |= LIOJ_SIGNAL;
1792 		lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
1793 	} else {
1794 		lj->lioj_flags &= ~LIOJ_SIGNAL;
1795 	}
1796 
1797 /*
1798  * get pointers to the list of I/O requests
1799  */
1800 
1801 	nerror = 0;
1802 	nentqueued = 0;
1803 	cbptr = uap->acb_list;
1804 	for(i = 0; i < uap->nent; i++) {
1805 		iocb = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
1806 		if (((intptr_t) iocb != -1) && ((intptr_t) iocb != NULL)) {
1807 			error = _aio_aqueue(p, iocb, lj, 0);
1808 			if (error == 0) {
1809 				nentqueued++;
1810 			} else {
1811 				nerror++;
1812 			}
1813 		}
1814 	}
1815 
1816 	/*
1817 	 * If we haven't queued any, then just return error
1818 	 */
1819 	if (nentqueued == 0) {
1820 		return 0;
1821 	}
1822 
1823 	/*
1824 	 * Calculate the appropriate error return
1825 	 */
1826 	runningcode = 0;
1827 	if (nerror)
1828 		runningcode = EIO;
1829 
1830 	if (uap->mode == LIO_WAIT) {
1831 		while (1) {
1832 			int found;
1833 			found = 0;
1834 			for(i = 0; i < uap->nent; i++) {
1835 				int jobref, command;
1836 
1837 				/*
1838 				 * Fetch address of the control buf pointer in user space
1839 				 */
1840 				iocb = (struct aiocb *) (intptr_t) fuword((caddr_t) &cbptr[i]);
1841 				if (((intptr_t) iocb == -1) || ((intptr_t) iocb == 0))
1842 					continue;
1843 
1844 				/*
1845 				 * Fetch the associated command from user space
1846 				 */
1847 				command = fuword(&iocb->aio_lio_opcode);
1848 				if (command == LIO_NOP) {
1849 					found++;
1850 					continue;
1851 				}
1852 
1853 				jobref = fuword(&iocb->_aiocb_private.kernelinfo);
1854 
1855 				for (cb = TAILQ_FIRST(&ki->kaio_jobdone);
1856 					cb;
1857 					cb = TAILQ_NEXT(cb, plist)) {
1858 					if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1859 						jobref) {
1860 						if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1861 							curproc->p_stats->p_ru.ru_oublock +=
1862 								cb->outputcharge;
1863 							cb->outputcharge = 0;
1864 						} else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1865 							curproc->p_stats->p_ru.ru_inblock +=
1866 								cb->inputcharge;
1867 							cb->inputcharge = 0;
1868 						}
1869 						found++;
1870 						break;
1871 					}
1872 				}
1873 
1874 				s = splbio();
1875 				for (cb = TAILQ_FIRST(&ki->kaio_bufdone);
1876 					cb;
1877 					cb = TAILQ_NEXT(cb, plist)) {
1878 					if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1879 						jobref) {
1880 						found++;
1881 						break;
1882 					}
1883 				}
1884 				splx(s);
1885 
1886 			}
1887 
1888 			/*
1889 			 * If all I/Os have been disposed of, then we can return
1890 			 */
1891 			if (found == nentqueued) {
1892 				return runningcode;
1893 			}
1894 
1895 			ki->kaio_flags |= KAIO_WAKEUP;
1896 			error = tsleep(p, PRIBIO|PCATCH, "aiospn", 0);
1897 
1898 			if (error == EINTR) {
1899 				return EINTR;
1900 			} else if (error == EWOULDBLOCK) {
1901 				return EAGAIN;
1902 			}
1903 
1904 		}
1905 	}
1906 
1907 	return runningcode;
1908 }
1909 
1910 /*
1911  * This is a wierd hack so that we can post a signal.  It is safe
1912  * to do so from a timeout routine, but *not* from an interrupt routine.
1913  */
1914 static void
1915 process_signal(void *ljarg)
1916 {
1917 	struct aio_liojob *lj = ljarg;
1918 	if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) {
1919 		if (lj->lioj_queue_count == lj->lioj_queue_finished_count) {
1920 			psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
1921 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1922 		}
1923 	}
1924 }
1925 
1926 /*
1927  * Interrupt handler for physio, performs the necessary process wakeups,
1928  * and signals.
1929  */
1930 static void
1931 aio_physwakeup(bp)
1932 	struct buf *bp;
1933 {
1934 	struct aiocblist *aiocbe;
1935 	struct proc *p;
1936 	struct kaioinfo *ki;
1937 	struct aio_liojob *lj;
1938 	int s;
1939 	s = splbio();
1940 
1941 	wakeup((caddr_t) bp);
1942 	bp->b_flags &= ~B_CALL;
1943 	bp->b_flags |= B_DONE;
1944 
1945 	aiocbe = (struct aiocblist *)bp->b_spc;
1946 	if (aiocbe) {
1947 		p = bp->b_caller1;
1948 
1949 		aiocbe->jobstate = JOBST_JOBBFINISHED;
1950 		aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
1951 		aiocbe->uaiocb._aiocb_private.error = 0;
1952 		aiocbe->jobflags |= AIOCBLIST_DONE;
1953 
1954 		if (bp->b_flags & B_ERROR) {
1955 			aiocbe->uaiocb._aiocb_private.error = bp->b_error;
1956 		}
1957 
1958 		lj = aiocbe->lio;
1959 		if (lj) {
1960 			lj->lioj_buffer_finished_count++;
1961 			/*
1962 			 * wakeup/signal if all of the interrupt jobs are done
1963 			 */
1964 			if (lj->lioj_buffer_finished_count == lj->lioj_buffer_count) {
1965 				/*
1966 				 * post a signal if it is called for
1967 				 */
1968 				if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
1969 					LIOJ_SIGNAL) {
1970 					lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
1971 					timeout(process_signal, lj, 0);
1972 				}
1973 			}
1974 		}
1975 
1976 		ki = p->p_aioinfo;
1977 		if (ki) {
1978 			ki->kaio_buffer_finished_count++;
1979 			TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
1980 			TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1981 			TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
1982 			/*
1983 			 * and do the wakeup
1984 			 */
1985 			if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
1986 				ki->kaio_flags &= ~KAIO_WAKEUP;
1987 				wakeup(p);
1988 			}
1989 		}
1990 	}
1991 	splx(s);
1992 }
1993