1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/sema.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/syscall.h> 49 #include <sys/sysent.h> 50 #include <sys/sysctl.h> 51 #include <sys/sx.h> 52 #include <sys/taskqueue.h> 53 #include <sys/vnode.h> 54 #include <sys/conf.h> 55 #include <sys/event.h> 56 #include <sys/mount.h> 57 58 #include <machine/atomic.h> 59 60 #include <posix4/posix4.h> 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 126 CTLFLAG_RW, &max_aio_procs, 0, 127 "Maximum number of kernel threads to use for handling async IO "); 128 129 static int num_aio_procs = 0; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 131 CTLFLAG_RD, &num_aio_procs, 0, 132 "Number of presently active kernel threads for async IO"); 133 134 /* 135 * The code will adjust the actual number of AIO processes towards this 136 * number when it gets a chance. 137 */ 138 static int target_aio_procs = TARGET_AIO_PROCS; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 140 0, "Preferred number of ready kernel threads for async IO"); 141 142 static int max_queue_count = MAX_AIO_QUEUE; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 144 "Maximum number of aio requests to queue, globally"); 145 146 static int num_queue_count = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 148 "Number of queued aio requests"); 149 150 static int num_buf_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 152 "Number of aio requests presently handled by the buf subsystem"); 153 154 /* Number of async I/O thread in the process of being started */ 155 /* XXX This should be local to aio_aqueue() */ 156 static int num_aio_resv_start = 0; 157 158 static int aiod_timeout; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 160 "Timeout value for synchronous aio operations"); 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int unloadable = 0; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 168 "Allow unload of aio (not recommended)"); 169 170 171 static int max_aio_per_proc = MAX_AIO_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 173 0, "Maximum active aio requests per process (stored in the process)"); 174 175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 177 &max_aio_queue_per_proc, 0, 178 "Maximum queued aio requests per process (stored in the process)"); 179 180 static int max_buf_aio = MAX_BUF_AIO; 181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 182 "Maximum buf aio requests per process (stored in the process)"); 183 184 typedef struct oaiocb { 185 int aio_fildes; /* File descriptor */ 186 off_t aio_offset; /* File offset for I/O */ 187 volatile void *aio_buf; /* I/O buffer in process space */ 188 size_t aio_nbytes; /* Number of bytes for I/O */ 189 struct osigevent aio_sigevent; /* Signal to deliver */ 190 int aio_lio_opcode; /* LIO opcode */ 191 int aio_reqprio; /* Request priority -- ignored */ 192 struct __aiocb_private _aiocb_private; 193 } oaiocb_t; 194 195 /* 196 * Below is a key of locks used to protect each member of struct aiocblist 197 * aioliojob and kaioinfo and any backends. 198 * 199 * * - need not protected 200 * a - locked by proc mtx 201 * b - locked by backend lock, the backend lock can be null in some cases, 202 * for example, BIO belongs to this type, in this case, proc lock is 203 * reused. 204 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 205 */ 206 207 /* 208 * Current, there is only two backends: BIO and generic file I/O. 209 * socket I/O is served by generic file I/O, this is not a good idea, since 210 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 211 * threads, if there is no thread to serve socket I/O, the socket I/O will be 212 * delayed too long or starved, we should create some threads dedicated to 213 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 214 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 215 * structure is not safe because there is race between userland and aio 216 * daemons. 217 */ 218 219 struct aiocblist { 220 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 221 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 222 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 223 int jobflags; /* (a) job flags */ 224 int jobstate; /* (b) job state */ 225 int inputcharge; /* (*) input blockes */ 226 int outputcharge; /* (*) output blockes */ 227 struct buf *bp; /* (*) private to BIO backend, 228 * buffer pointer 229 */ 230 struct proc *userproc; /* (*) user process */ 231 struct ucred *cred; /* (*) active credential when created */ 232 struct file *fd_file; /* (*) pointer to file structure */ 233 struct aioliojob *lio; /* (*) optional lio job */ 234 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 235 struct knlist klist; /* (a) list of knotes */ 236 struct aiocb uaiocb; /* (*) kernel I/O control block */ 237 ksiginfo_t ksi; /* (a) realtime signal info */ 238 struct task biotask; /* (*) private to BIO backend */ 239 uint64_t seqno; /* (*) job number */ 240 int pending; /* (a) number of pending I/O, aio_fsync only */ 241 }; 242 243 /* jobflags */ 244 #define AIOCBLIST_DONE 0x01 245 #define AIOCBLIST_BUFDONE 0x02 246 #define AIOCBLIST_RUNDOWN 0x04 247 #define AIOCBLIST_CHECKSYNC 0x08 248 249 /* 250 * AIO process info 251 */ 252 #define AIOP_FREE 0x1 /* proc on free queue */ 253 254 struct aiothreadlist { 255 int aiothreadflags; /* (c) AIO proc flags */ 256 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 257 struct thread *aiothread; /* (*) the AIO thread */ 258 }; 259 260 /* 261 * data-structure for lio signal management 262 */ 263 struct aioliojob { 264 int lioj_flags; /* (a) listio flags */ 265 int lioj_count; /* (a) listio flags */ 266 int lioj_finished_count; /* (a) listio flags */ 267 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 268 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 269 struct knlist klist; /* (a) list of knotes */ 270 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 271 }; 272 273 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 274 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 275 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 276 277 /* 278 * per process aio data structure 279 */ 280 struct kaioinfo { 281 int kaio_flags; /* (a) per process kaio flags */ 282 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 283 int kaio_active_count; /* (c) number of currently used AIOs */ 284 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 285 int kaio_count; /* (a) size of AIO queue */ 286 int kaio_ballowed_count; /* (*) maximum number of buffers */ 287 int kaio_buffer_count; /* (a) number of physio buffers */ 288 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 289 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 290 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 291 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 292 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 293 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 294 * NOT USED YET. 295 */ 296 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 297 struct task kaio_task; /* (*) task to kick aio threads */ 298 }; 299 300 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 301 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 302 303 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 304 static struct sema aio_newproc_sem; 305 static struct mtx aio_job_mtx; 306 static struct mtx aio_sock_mtx; 307 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 static void aio_init_aioinfo(struct proc *p); 311 static void aio_onceonly(void); 312 static int aio_free_entry(struct aiocblist *aiocbe); 313 static void aio_process(struct aiocblist *aiocbe); 314 static int aio_newproc(int *); 315 static int aio_aqueue(struct thread *td, struct aiocb *job, 316 struct aioliojob *lio, int type, int osigev); 317 static void aio_physwakeup(struct buf *bp); 318 static void aio_proc_rundown(void *arg, struct proc *p); 319 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 320 static void biohelper(void *, int); 321 static void aio_daemon(void *param); 322 static void aio_swake_cb(struct socket *, struct sockbuf *); 323 static int aio_unload(void); 324 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 325 #define DONE_BUF 1 326 #define DONE_QUEUE 2 327 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 328 static int aio_kick(struct proc *userp); 329 static void aio_kick_nowait(struct proc *userp); 330 static void aio_kick_helper(void *context, int pending); 331 static int filt_aioattach(struct knote *kn); 332 static void filt_aiodetach(struct knote *kn); 333 static int filt_aio(struct knote *kn, long hint); 334 static int filt_lioattach(struct knote *kn); 335 static void filt_liodetach(struct knote *kn); 336 static int filt_lio(struct knote *kn, long hint); 337 338 /* 339 * Zones for: 340 * kaio Per process async io info 341 * aiop async io thread data 342 * aiocb async io jobs 343 * aiol list io job pointer - internal to aio_suspend XXX 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = 350 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 351 static struct filterops lio_filtops = 352 { 0, filt_lioattach, filt_liodetach, filt_lio }; 353 354 static eventhandler_tag exit_tag, exec_tag; 355 356 TASKQUEUE_DEFINE_THREAD(aiod_bio); 357 358 /* 359 * Main operations function for use as a kernel module. 360 */ 361 static int 362 aio_modload(struct module *module, int cmd, void *arg) 363 { 364 int error = 0; 365 366 switch (cmd) { 367 case MOD_LOAD: 368 aio_onceonly(); 369 break; 370 case MOD_UNLOAD: 371 error = aio_unload(); 372 break; 373 case MOD_SHUTDOWN: 374 break; 375 default: 376 error = EINVAL; 377 break; 378 } 379 return (error); 380 } 381 382 static moduledata_t aio_mod = { 383 "aio", 384 &aio_modload, 385 NULL 386 }; 387 388 SYSCALL_MODULE_HELPER(aio_cancel); 389 SYSCALL_MODULE_HELPER(aio_error); 390 SYSCALL_MODULE_HELPER(aio_fsync); 391 SYSCALL_MODULE_HELPER(aio_read); 392 SYSCALL_MODULE_HELPER(aio_return); 393 SYSCALL_MODULE_HELPER(aio_suspend); 394 SYSCALL_MODULE_HELPER(aio_waitcomplete); 395 SYSCALL_MODULE_HELPER(aio_write); 396 SYSCALL_MODULE_HELPER(lio_listio); 397 SYSCALL_MODULE_HELPER(oaio_read); 398 SYSCALL_MODULE_HELPER(oaio_write); 399 SYSCALL_MODULE_HELPER(olio_listio); 400 401 DECLARE_MODULE(aio, aio_mod, 402 SI_SUB_VFS, SI_ORDER_ANY); 403 MODULE_VERSION(aio, 1); 404 405 /* 406 * Startup initialization 407 */ 408 static void 409 aio_onceonly(void) 410 { 411 412 /* XXX: should probably just use so->callback */ 413 aio_swake = &aio_swake_cb; 414 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 415 EVENTHANDLER_PRI_ANY); 416 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 417 EVENTHANDLER_PRI_ANY); 418 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 419 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 420 TAILQ_INIT(&aio_freeproc); 421 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 422 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 423 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 424 TAILQ_INIT(&aio_jobs); 425 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 426 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 427 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 428 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 429 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 430 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 431 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 432 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 433 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 434 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 435 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 436 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 437 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 438 jobrefid = 1; 439 async_io_version = _POSIX_VERSION; 440 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 441 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 442 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 443 } 444 445 /* 446 * Callback for unload of AIO when used as a module. 447 */ 448 static int 449 aio_unload(void) 450 { 451 int error; 452 453 /* 454 * XXX: no unloads by default, it's too dangerous. 455 * perhaps we could do it if locked out callers and then 456 * did an aio_proc_rundown() on each process. 457 * 458 * jhb: aio_proc_rundown() needs to run on curproc though, 459 * so I don't think that would fly. 460 */ 461 if (!unloadable) 462 return (EOPNOTSUPP); 463 464 error = kqueue_del_filteropts(EVFILT_AIO); 465 if (error) 466 return error; 467 error = kqueue_del_filteropts(EVFILT_LIO); 468 if (error) 469 return error; 470 async_io_version = 0; 471 aio_swake = NULL; 472 taskqueue_free(taskqueue_aiod_bio); 473 delete_unrhdr(aiod_unr); 474 uma_zdestroy(kaio_zone); 475 uma_zdestroy(aiop_zone); 476 uma_zdestroy(aiocb_zone); 477 uma_zdestroy(aiol_zone); 478 uma_zdestroy(aiolio_zone); 479 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 480 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 481 mtx_destroy(&aio_job_mtx); 482 mtx_destroy(&aio_sock_mtx); 483 sema_destroy(&aio_newproc_sem); 484 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 485 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 486 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 487 return (0); 488 } 489 490 /* 491 * Init the per-process aioinfo structure. The aioinfo limits are set 492 * per-process for user limit (resource) management. 493 */ 494 static void 495 aio_init_aioinfo(struct proc *p) 496 { 497 struct kaioinfo *ki; 498 499 ki = uma_zalloc(kaio_zone, M_WAITOK); 500 ki->kaio_flags = 0; 501 ki->kaio_maxactive_count = max_aio_per_proc; 502 ki->kaio_active_count = 0; 503 ki->kaio_qallowed_count = max_aio_queue_per_proc; 504 ki->kaio_count = 0; 505 ki->kaio_ballowed_count = max_buf_aio; 506 ki->kaio_buffer_count = 0; 507 TAILQ_INIT(&ki->kaio_all); 508 TAILQ_INIT(&ki->kaio_done); 509 TAILQ_INIT(&ki->kaio_jobqueue); 510 TAILQ_INIT(&ki->kaio_bufqueue); 511 TAILQ_INIT(&ki->kaio_liojoblist); 512 TAILQ_INIT(&ki->kaio_sockqueue); 513 TAILQ_INIT(&ki->kaio_syncqueue); 514 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 515 PROC_LOCK(p); 516 if (p->p_aioinfo == NULL) { 517 p->p_aioinfo = ki; 518 PROC_UNLOCK(p); 519 } else { 520 PROC_UNLOCK(p); 521 uma_zfree(kaio_zone, ki); 522 } 523 524 while (num_aio_procs < target_aio_procs) 525 aio_newproc(NULL); 526 } 527 528 static int 529 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 530 { 531 PROC_LOCK_ASSERT(p, MA_OWNED); 532 if (!KSI_ONQ(ksi)) { 533 ksi->ksi_code = SI_ASYNCIO; 534 ksi->ksi_flags |= KSI_EXT | KSI_INS; 535 return (psignal_event(p, sigev, ksi)); 536 } 537 return (0); 538 } 539 540 /* 541 * Free a job entry. Wait for completion if it is currently active, but don't 542 * delay forever. If we delay, we return a flag that says that we have to 543 * restart the queue scan. 544 */ 545 static int 546 aio_free_entry(struct aiocblist *aiocbe) 547 { 548 struct kaioinfo *ki; 549 struct aioliojob *lj; 550 struct proc *p; 551 552 p = aiocbe->userproc; 553 554 PROC_LOCK_ASSERT(p, MA_OWNED); 555 MPASS(curproc == p); 556 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 557 558 ki = p->p_aioinfo; 559 MPASS(ki != NULL); 560 561 atomic_subtract_int(&num_queue_count, 1); 562 563 ki->kaio_count--; 564 MPASS(ki->kaio_count >= 0); 565 566 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 567 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 568 569 lj = aiocbe->lio; 570 if (lj) { 571 lj->lioj_count--; 572 lj->lioj_finished_count--; 573 574 if (lj->lioj_count == 0) { 575 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 576 /* lio is going away, we need to destroy any knotes */ 577 knlist_delete(&lj->klist, curthread, 1); 578 sigqueue_take(&lj->lioj_ksi); 579 uma_zfree(aiolio_zone, lj); 580 } 581 } 582 583 /* aiocbe is going away, we need to destroy any knotes */ 584 knlist_delete(&aiocbe->klist, curthread, 1); 585 sigqueue_take(&aiocbe->ksi); 586 587 MPASS(aiocbe->bp == NULL); 588 aiocbe->jobstate = JOBST_NULL; 589 PROC_UNLOCK(p); 590 591 /* 592 * The thread argument here is used to find the owning process 593 * and is also passed to fo_close() which may pass it to various 594 * places such as devsw close() routines. Because of that, we 595 * need a thread pointer from the process owning the job that is 596 * persistent and won't disappear out from under us or move to 597 * another process. 598 * 599 * Currently, all the callers of this function call it to remove 600 * an aiocblist from the current process' job list either via a 601 * syscall or due to the current process calling exit() or 602 * execve(). Thus, we know that p == curproc. We also know that 603 * curthread can't exit since we are curthread. 604 * 605 * Therefore, we use curthread as the thread to pass to 606 * knlist_delete(). This does mean that it is possible for the 607 * thread pointer at close time to differ from the thread pointer 608 * at open time, but this is already true of file descriptors in 609 * a multithreaded process. 610 */ 611 fdrop(aiocbe->fd_file, curthread); 612 crfree(aiocbe->cred); 613 uma_zfree(aiocb_zone, aiocbe); 614 PROC_LOCK(p); 615 616 return (0); 617 } 618 619 /* 620 * Rundown the jobs for a given process. 621 */ 622 static void 623 aio_proc_rundown(void *arg, struct proc *p) 624 { 625 struct kaioinfo *ki; 626 struct aioliojob *lj; 627 struct aiocblist *cbe, *cbn; 628 struct file *fp; 629 struct socket *so; 630 int remove; 631 632 KASSERT(curthread->td_proc == p, 633 ("%s: called on non-curproc", __func__)); 634 ki = p->p_aioinfo; 635 if (ki == NULL) 636 return; 637 638 PROC_LOCK(p); 639 ki->kaio_flags |= KAIO_RUNDOWN; 640 641 restart: 642 643 /* 644 * Try to cancel all pending requests. This code simulates 645 * aio_cancel on all pending I/O requests. 646 */ 647 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 648 remove = 0; 649 mtx_lock(&aio_job_mtx); 650 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 651 TAILQ_REMOVE(&aio_jobs, cbe, list); 652 remove = 1; 653 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 654 fp = cbe->fd_file; 655 MPASS(fp->f_type == DTYPE_SOCKET); 656 so = fp->f_data; 657 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 658 remove = 1; 659 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 660 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 661 remove = 1; 662 } 663 mtx_unlock(&aio_job_mtx); 664 665 if (remove) { 666 cbe->jobstate = JOBST_JOBFINISHED; 667 cbe->uaiocb._aiocb_private.status = -1; 668 cbe->uaiocb._aiocb_private.error = ECANCELED; 669 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 670 aio_bio_done_notify(p, cbe, DONE_QUEUE); 671 } 672 } 673 674 /* Wait for all running I/O to be finished */ 675 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 676 TAILQ_FIRST(&ki->kaio_jobqueue)) { 677 ki->kaio_flags |= KAIO_WAKEUP; 678 msleep(&p->p_aioinfo, &p->p_mtx, PRIBIO, "aioprn", hz); 679 goto restart; 680 } 681 682 /* Free all completed I/O requests. */ 683 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 684 aio_free_entry(cbe); 685 686 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 687 if (lj->lioj_count == 0) { 688 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 689 knlist_delete(&lj->klist, curthread, 1); 690 sigqueue_take(&lj->lioj_ksi); 691 uma_zfree(aiolio_zone, lj); 692 } else { 693 panic("LIO job not cleaned up: C:%d, FC:%d\n", 694 lj->lioj_count, lj->lioj_finished_count); 695 } 696 } 697 PROC_UNLOCK(p); 698 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 699 uma_zfree(kaio_zone, ki); 700 p->p_aioinfo = NULL; 701 } 702 703 /* 704 * Select a job to run (called by an AIO daemon). 705 */ 706 static struct aiocblist * 707 aio_selectjob(struct aiothreadlist *aiop) 708 { 709 struct aiocblist *aiocbe; 710 struct kaioinfo *ki; 711 struct proc *userp; 712 713 mtx_assert(&aio_job_mtx, MA_OWNED); 714 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 715 userp = aiocbe->userproc; 716 ki = userp->p_aioinfo; 717 718 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 719 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 720 /* Account for currently active jobs. */ 721 ki->kaio_active_count++; 722 aiocbe->jobstate = JOBST_JOBRUNNING; 723 break; 724 } 725 } 726 return (aiocbe); 727 } 728 729 /* 730 * Move all data to a permanent storage device, this code 731 * simulates fsync syscall. 732 */ 733 static int 734 aio_fsync_vnode(struct thread *td, struct vnode *vp) 735 { 736 struct mount *mp; 737 int vfslocked; 738 int error; 739 740 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 741 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 742 goto drop; 743 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 744 if (vp->v_object != NULL) { 745 VM_OBJECT_LOCK(vp->v_object); 746 vm_object_page_clean(vp->v_object, 0, 0, 0); 747 VM_OBJECT_UNLOCK(vp->v_object); 748 } 749 error = VOP_FSYNC(vp, MNT_WAIT, td); 750 751 VOP_UNLOCK(vp, 0, td); 752 vn_finished_write(mp); 753 drop: 754 VFS_UNLOCK_GIANT(vfslocked); 755 return (error); 756 } 757 758 /* 759 * The AIO processing activity. This is the code that does the I/O request for 760 * the non-physio version of the operations. The normal vn operations are used, 761 * and this code should work in all instances for every type of file, including 762 * pipes, sockets, fifos, and regular files. 763 * 764 * XXX I don't think it works well for socket, pipe, and fifo. 765 */ 766 static void 767 aio_process(struct aiocblist *aiocbe) 768 { 769 struct ucred *td_savedcred; 770 struct thread *td; 771 struct proc *mycp; 772 struct aiocb *cb; 773 struct file *fp; 774 struct socket *so; 775 struct uio auio; 776 struct iovec aiov; 777 int cnt; 778 int error; 779 int oublock_st, oublock_end; 780 int inblock_st, inblock_end; 781 782 td = curthread; 783 td_savedcred = td->td_ucred; 784 td->td_ucred = aiocbe->cred; 785 mycp = td->td_proc; 786 cb = &aiocbe->uaiocb; 787 fp = aiocbe->fd_file; 788 789 if (cb->aio_lio_opcode == LIO_SYNC) { 790 error = 0; 791 cnt = 0; 792 if (fp->f_vnode != NULL) 793 error = aio_fsync_vnode(td, fp->f_vnode); 794 cb->_aiocb_private.error = error; 795 cb->_aiocb_private.status = 0; 796 td->td_ucred = td_savedcred; 797 return; 798 } 799 800 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 801 aiov.iov_len = cb->aio_nbytes; 802 803 auio.uio_iov = &aiov; 804 auio.uio_iovcnt = 1; 805 auio.uio_offset = cb->aio_offset; 806 auio.uio_resid = cb->aio_nbytes; 807 cnt = cb->aio_nbytes; 808 auio.uio_segflg = UIO_USERSPACE; 809 auio.uio_td = td; 810 811 inblock_st = mycp->p_stats->p_ru.ru_inblock; 812 oublock_st = mycp->p_stats->p_ru.ru_oublock; 813 /* 814 * aio_aqueue() acquires a reference to the file that is 815 * released in aio_free_entry(). 816 */ 817 if (cb->aio_lio_opcode == LIO_READ) { 818 auio.uio_rw = UIO_READ; 819 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 820 } else { 821 if (fp->f_type == DTYPE_VNODE) 822 bwillwrite(); 823 auio.uio_rw = UIO_WRITE; 824 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 825 } 826 inblock_end = mycp->p_stats->p_ru.ru_inblock; 827 oublock_end = mycp->p_stats->p_ru.ru_oublock; 828 829 aiocbe->inputcharge = inblock_end - inblock_st; 830 aiocbe->outputcharge = oublock_end - oublock_st; 831 832 if ((error) && (auio.uio_resid != cnt)) { 833 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 834 error = 0; 835 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 836 int sigpipe = 1; 837 if (fp->f_type == DTYPE_SOCKET) { 838 so = fp->f_data; 839 if (so->so_options & SO_NOSIGPIPE) 840 sigpipe = 0; 841 } 842 if (sigpipe) { 843 PROC_LOCK(aiocbe->userproc); 844 psignal(aiocbe->userproc, SIGPIPE); 845 PROC_UNLOCK(aiocbe->userproc); 846 } 847 } 848 } 849 850 cnt -= auio.uio_resid; 851 cb->_aiocb_private.error = error; 852 cb->_aiocb_private.status = cnt; 853 td->td_ucred = td_savedcred; 854 } 855 856 static void 857 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 858 { 859 struct aioliojob *lj; 860 struct kaioinfo *ki; 861 struct aiocblist *scb, *scbn; 862 int lj_done; 863 864 PROC_LOCK_ASSERT(userp, MA_OWNED); 865 ki = userp->p_aioinfo; 866 lj = aiocbe->lio; 867 lj_done = 0; 868 if (lj) { 869 lj->lioj_finished_count++; 870 if (lj->lioj_count == lj->lioj_finished_count) 871 lj_done = 1; 872 } 873 if (type == DONE_QUEUE) { 874 aiocbe->jobflags |= AIOCBLIST_DONE; 875 } else { 876 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 877 } 878 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 879 aiocbe->jobstate = JOBST_JOBFINISHED; 880 881 if (ki->kaio_flags & KAIO_RUNDOWN) 882 goto notification_done; 883 884 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 885 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 886 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 887 888 KNOTE_LOCKED(&aiocbe->klist, 1); 889 890 if (lj_done) { 891 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 892 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 893 KNOTE_LOCKED(&lj->klist, 1); 894 } 895 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 896 == LIOJ_SIGNAL 897 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 898 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 899 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 900 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 901 } 902 } 903 904 notification_done: 905 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 906 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 907 if (aiocbe->fd_file == scb->fd_file && 908 aiocbe->seqno < scb->seqno) { 909 if (--scb->pending == 0) { 910 mtx_lock(&aio_job_mtx); 911 scb->jobstate = JOBST_JOBQGLOBAL; 912 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 913 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 914 aio_kick_nowait(userp); 915 mtx_unlock(&aio_job_mtx); 916 } 917 } 918 } 919 } 920 if (ki->kaio_flags & KAIO_WAKEUP) { 921 ki->kaio_flags &= ~KAIO_WAKEUP; 922 wakeup(&userp->p_aioinfo); 923 } 924 } 925 926 /* 927 * The AIO daemon, most of the actual work is done in aio_process, 928 * but the setup (and address space mgmt) is done in this routine. 929 */ 930 static void 931 aio_daemon(void *_id) 932 { 933 struct aiocblist *aiocbe; 934 struct aiothreadlist *aiop; 935 struct kaioinfo *ki; 936 struct proc *curcp, *mycp, *userp; 937 struct vmspace *myvm, *tmpvm; 938 struct thread *td = curthread; 939 int id = (intptr_t)_id; 940 941 /* 942 * Local copies of curproc (cp) and vmspace (myvm) 943 */ 944 mycp = td->td_proc; 945 myvm = mycp->p_vmspace; 946 947 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 948 949 /* 950 * Allocate and ready the aio control info. There is one aiop structure 951 * per daemon. 952 */ 953 aiop = uma_zalloc(aiop_zone, M_WAITOK); 954 aiop->aiothread = td; 955 aiop->aiothreadflags = 0; 956 957 /* 958 * Get rid of our current filedescriptors. AIOD's don't need any 959 * filedescriptors, except as temporarily inherited from the client. 960 */ 961 fdfree(td); 962 963 /* The daemon resides in its own pgrp. */ 964 setsid(td, NULL); 965 966 /* 967 * Wakeup parent process. (Parent sleeps to keep from blasting away 968 * and creating too many daemons.) 969 */ 970 sema_post(&aio_newproc_sem); 971 972 mtx_lock(&aio_job_mtx); 973 for (;;) { 974 /* 975 * curcp is the current daemon process context. 976 * userp is the current user process context. 977 */ 978 curcp = mycp; 979 980 /* 981 * Take daemon off of free queue 982 */ 983 if (aiop->aiothreadflags & AIOP_FREE) { 984 TAILQ_REMOVE(&aio_freeproc, aiop, list); 985 aiop->aiothreadflags &= ~AIOP_FREE; 986 } 987 988 /* 989 * Check for jobs. 990 */ 991 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 992 mtx_unlock(&aio_job_mtx); 993 userp = aiocbe->userproc; 994 995 /* 996 * Connect to process address space for user program. 997 */ 998 if (userp != curcp) { 999 /* 1000 * Save the current address space that we are 1001 * connected to. 1002 */ 1003 tmpvm = mycp->p_vmspace; 1004 1005 /* 1006 * Point to the new user address space, and 1007 * refer to it. 1008 */ 1009 mycp->p_vmspace = userp->p_vmspace; 1010 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1011 1012 /* Activate the new mapping. */ 1013 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1014 1015 /* 1016 * If the old address space wasn't the daemons 1017 * own address space, then we need to remove the 1018 * daemon's reference from the other process 1019 * that it was acting on behalf of. 1020 */ 1021 if (tmpvm != myvm) { 1022 vmspace_free(tmpvm); 1023 } 1024 curcp = userp; 1025 } 1026 1027 ki = userp->p_aioinfo; 1028 1029 /* Do the I/O function. */ 1030 aio_process(aiocbe); 1031 1032 mtx_lock(&aio_job_mtx); 1033 /* Decrement the active job count. */ 1034 ki->kaio_active_count--; 1035 mtx_unlock(&aio_job_mtx); 1036 1037 PROC_LOCK(userp); 1038 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1039 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1040 PROC_UNLOCK(userp); 1041 1042 mtx_lock(&aio_job_mtx); 1043 } 1044 1045 /* 1046 * Disconnect from user address space. 1047 */ 1048 if (curcp != mycp) { 1049 1050 mtx_unlock(&aio_job_mtx); 1051 1052 /* Get the user address space to disconnect from. */ 1053 tmpvm = mycp->p_vmspace; 1054 1055 /* Get original address space for daemon. */ 1056 mycp->p_vmspace = myvm; 1057 1058 /* Activate the daemon's address space. */ 1059 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1060 #ifdef DIAGNOSTIC 1061 if (tmpvm == myvm) { 1062 printf("AIOD: vmspace problem -- %d\n", 1063 mycp->p_pid); 1064 } 1065 #endif 1066 /* Remove our vmspace reference. */ 1067 vmspace_free(tmpvm); 1068 1069 curcp = mycp; 1070 1071 mtx_lock(&aio_job_mtx); 1072 /* 1073 * We have to restart to avoid race, we only sleep if 1074 * no job can be selected, that should be 1075 * curcp == mycp. 1076 */ 1077 continue; 1078 } 1079 1080 mtx_assert(&aio_job_mtx, MA_OWNED); 1081 1082 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1083 aiop->aiothreadflags |= AIOP_FREE; 1084 1085 /* 1086 * If daemon is inactive for a long time, allow it to exit, 1087 * thereby freeing resources. 1088 */ 1089 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1090 aiod_lifetime)) { 1091 if (TAILQ_EMPTY(&aio_jobs)) { 1092 if ((aiop->aiothreadflags & AIOP_FREE) && 1093 (num_aio_procs > target_aio_procs)) { 1094 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1095 num_aio_procs--; 1096 mtx_unlock(&aio_job_mtx); 1097 uma_zfree(aiop_zone, aiop); 1098 free_unr(aiod_unr, id); 1099 #ifdef DIAGNOSTIC 1100 if (mycp->p_vmspace->vm_refcnt <= 1) { 1101 printf("AIOD: bad vm refcnt for" 1102 " exiting daemon: %d\n", 1103 mycp->p_vmspace->vm_refcnt); 1104 } 1105 #endif 1106 kthread_exit(0); 1107 } 1108 } 1109 } 1110 } 1111 mtx_unlock(&aio_job_mtx); 1112 panic("shouldn't be here\n"); 1113 } 1114 1115 /* 1116 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1117 * AIO daemon modifies its environment itself. 1118 */ 1119 static int 1120 aio_newproc(int *start) 1121 { 1122 int error; 1123 struct proc *p; 1124 int id; 1125 1126 id = alloc_unr(aiod_unr); 1127 error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p, 1128 RFNOWAIT, 0, "aiod%d", id); 1129 if (error == 0) { 1130 /* 1131 * Wait until daemon is started. 1132 */ 1133 sema_wait(&aio_newproc_sem); 1134 mtx_lock(&aio_job_mtx); 1135 num_aio_procs++; 1136 if (start != NULL) 1137 (*start)--; 1138 mtx_unlock(&aio_job_mtx); 1139 } else { 1140 free_unr(aiod_unr, id); 1141 } 1142 return (error); 1143 } 1144 1145 /* 1146 * Try the high-performance, low-overhead physio method for eligible 1147 * VCHR devices. This method doesn't use an aio helper thread, and 1148 * thus has very low overhead. 1149 * 1150 * Assumes that the caller, aio_aqueue(), has incremented the file 1151 * structure's reference count, preventing its deallocation for the 1152 * duration of this call. 1153 */ 1154 static int 1155 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1156 { 1157 struct aiocb *cb; 1158 struct file *fp; 1159 struct buf *bp; 1160 struct vnode *vp; 1161 struct kaioinfo *ki; 1162 struct aioliojob *lj; 1163 int error; 1164 1165 cb = &aiocbe->uaiocb; 1166 fp = aiocbe->fd_file; 1167 1168 if (fp->f_type != DTYPE_VNODE) 1169 return (-1); 1170 1171 vp = fp->f_vnode; 1172 1173 /* 1174 * If its not a disk, we don't want to return a positive error. 1175 * It causes the aio code to not fall through to try the thread 1176 * way when you're talking to a regular file. 1177 */ 1178 if (!vn_isdisk(vp, &error)) { 1179 if (error == ENOTBLK) 1180 return (-1); 1181 else 1182 return (error); 1183 } 1184 1185 if (vp->v_bufobj.bo_bsize == 0) 1186 return (-1); 1187 1188 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1189 return (-1); 1190 1191 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1192 return (-1); 1193 1194 if (cb->aio_nbytes > 1195 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1196 return (-1); 1197 1198 ki = p->p_aioinfo; 1199 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1200 return (-1); 1201 1202 /* Create and build a buffer header for a transfer. */ 1203 bp = (struct buf *)getpbuf(NULL); 1204 BUF_KERNPROC(bp); 1205 1206 PROC_LOCK(p); 1207 ki->kaio_count++; 1208 ki->kaio_buffer_count++; 1209 lj = aiocbe->lio; 1210 if (lj) 1211 lj->lioj_count++; 1212 PROC_UNLOCK(p); 1213 1214 /* 1215 * Get a copy of the kva from the physical buffer. 1216 */ 1217 error = 0; 1218 1219 bp->b_bcount = cb->aio_nbytes; 1220 bp->b_bufsize = cb->aio_nbytes; 1221 bp->b_iodone = aio_physwakeup; 1222 bp->b_saveaddr = bp->b_data; 1223 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1224 bp->b_offset = cb->aio_offset; 1225 bp->b_iooffset = cb->aio_offset; 1226 bp->b_blkno = btodb(cb->aio_offset); 1227 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1228 1229 /* 1230 * Bring buffer into kernel space. 1231 */ 1232 if (vmapbuf(bp) < 0) { 1233 error = EFAULT; 1234 goto doerror; 1235 } 1236 1237 PROC_LOCK(p); 1238 aiocbe->bp = bp; 1239 bp->b_caller1 = (void *)aiocbe; 1240 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1241 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1242 aiocbe->jobstate = JOBST_JOBQBUF; 1243 cb->_aiocb_private.status = cb->aio_nbytes; 1244 PROC_UNLOCK(p); 1245 1246 atomic_add_int(&num_queue_count, 1); 1247 atomic_add_int(&num_buf_aio, 1); 1248 1249 bp->b_error = 0; 1250 1251 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1252 1253 /* Perform transfer. */ 1254 dev_strategy(vp->v_rdev, bp); 1255 return (0); 1256 1257 doerror: 1258 PROC_LOCK(p); 1259 ki->kaio_count--; 1260 ki->kaio_buffer_count--; 1261 if (lj) 1262 lj->lioj_count--; 1263 aiocbe->bp = NULL; 1264 PROC_UNLOCK(p); 1265 relpbuf(bp, NULL); 1266 return (error); 1267 } 1268 1269 /* 1270 * Wake up aio requests that may be serviceable now. 1271 */ 1272 static void 1273 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1274 { 1275 struct aiocblist *cb, *cbn; 1276 int opcode; 1277 1278 if (sb == &so->so_snd) 1279 opcode = LIO_WRITE; 1280 else 1281 opcode = LIO_READ; 1282 1283 SOCKBUF_LOCK(sb); 1284 sb->sb_flags &= ~SB_AIO; 1285 mtx_lock(&aio_job_mtx); 1286 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1287 if (opcode == cb->uaiocb.aio_lio_opcode) { 1288 if (cb->jobstate != JOBST_JOBQSOCK) 1289 panic("invalid queue value"); 1290 /* XXX 1291 * We don't have actual sockets backend yet, 1292 * so we simply move the requests to the generic 1293 * file I/O backend. 1294 */ 1295 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1296 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1297 aio_kick_nowait(cb->userproc); 1298 } 1299 } 1300 mtx_unlock(&aio_job_mtx); 1301 SOCKBUF_UNLOCK(sb); 1302 } 1303 1304 /* 1305 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1306 * technique is done in this code. 1307 */ 1308 static int 1309 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1310 int type, int oldsigev) 1311 { 1312 struct proc *p = td->td_proc; 1313 struct file *fp; 1314 struct socket *so; 1315 struct aiocblist *aiocbe, *cb; 1316 struct kaioinfo *ki; 1317 struct kevent kev; 1318 struct kqueue *kq; 1319 struct file *kq_fp; 1320 struct sockbuf *sb; 1321 int opcode; 1322 int error; 1323 int fd; 1324 int jid; 1325 1326 if (p->p_aioinfo == NULL) 1327 aio_init_aioinfo(p); 1328 1329 ki = p->p_aioinfo; 1330 1331 suword(&job->_aiocb_private.status, -1); 1332 suword(&job->_aiocb_private.error, 0); 1333 suword(&job->_aiocb_private.kernelinfo, -1); 1334 1335 if (num_queue_count >= max_queue_count || 1336 ki->kaio_count >= ki->kaio_qallowed_count) { 1337 suword(&job->_aiocb_private.error, EAGAIN); 1338 return (EAGAIN); 1339 } 1340 1341 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1342 aiocbe->inputcharge = 0; 1343 aiocbe->outputcharge = 0; 1344 knlist_init(&aiocbe->klist, &p->p_mtx, NULL, NULL, NULL); 1345 1346 if (oldsigev) { 1347 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1348 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1349 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1350 sizeof(struct osigevent)); 1351 } else { 1352 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1353 } 1354 if (error) { 1355 suword(&job->_aiocb_private.error, error); 1356 uma_zfree(aiocb_zone, aiocbe); 1357 return (error); 1358 } 1359 1360 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1361 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1362 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1363 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1364 suword(&job->_aiocb_private.error, EINVAL); 1365 uma_zfree(aiocb_zone, aiocbe); 1366 return (EINVAL); 1367 } 1368 1369 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1370 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1371 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1372 uma_zfree(aiocb_zone, aiocbe); 1373 return (EINVAL); 1374 } 1375 1376 ksiginfo_init(&aiocbe->ksi); 1377 1378 /* Save userspace address of the job info. */ 1379 aiocbe->uuaiocb = job; 1380 1381 /* Get the opcode. */ 1382 if (type != LIO_NOP) 1383 aiocbe->uaiocb.aio_lio_opcode = type; 1384 opcode = aiocbe->uaiocb.aio_lio_opcode; 1385 1386 /* Fetch the file object for the specified file descriptor. */ 1387 fd = aiocbe->uaiocb.aio_fildes; 1388 switch (opcode) { 1389 case LIO_WRITE: 1390 error = fget_write(td, fd, &fp); 1391 break; 1392 case LIO_READ: 1393 error = fget_read(td, fd, &fp); 1394 break; 1395 default: 1396 error = fget(td, fd, &fp); 1397 } 1398 if (error) { 1399 uma_zfree(aiocb_zone, aiocbe); 1400 suword(&job->_aiocb_private.error, error); 1401 return (error); 1402 } 1403 1404 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1405 error = EINVAL; 1406 goto aqueue_fail; 1407 } 1408 1409 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1410 error = EINVAL; 1411 goto aqueue_fail; 1412 } 1413 1414 aiocbe->fd_file = fp; 1415 1416 mtx_lock(&aio_job_mtx); 1417 jid = jobrefid++; 1418 aiocbe->seqno = jobseqno++; 1419 mtx_unlock(&aio_job_mtx); 1420 error = suword(&job->_aiocb_private.kernelinfo, jid); 1421 if (error) { 1422 error = EINVAL; 1423 goto aqueue_fail; 1424 } 1425 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1426 1427 if (opcode == LIO_NOP) { 1428 fdrop(fp, td); 1429 uma_zfree(aiocb_zone, aiocbe); 1430 return (0); 1431 } 1432 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1433 (opcode != LIO_SYNC)) { 1434 error = EINVAL; 1435 goto aqueue_fail; 1436 } 1437 1438 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) 1439 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1440 else 1441 goto no_kqueue; 1442 error = fget(td, (u_int)kev.ident, &kq_fp); 1443 if (error) 1444 goto aqueue_fail; 1445 if (kq_fp->f_type != DTYPE_KQUEUE) { 1446 fdrop(kq_fp, td); 1447 error = EBADF; 1448 goto aqueue_fail; 1449 } 1450 kq = kq_fp->f_data; 1451 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1452 kev.filter = EVFILT_AIO; 1453 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1454 kev.data = (intptr_t)aiocbe; 1455 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1456 error = kqueue_register(kq, &kev, td, 1); 1457 fdrop(kq_fp, td); 1458 aqueue_fail: 1459 if (error) { 1460 fdrop(fp, td); 1461 uma_zfree(aiocb_zone, aiocbe); 1462 suword(&job->_aiocb_private.error, error); 1463 goto done; 1464 } 1465 no_kqueue: 1466 1467 suword(&job->_aiocb_private.error, EINPROGRESS); 1468 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1469 aiocbe->userproc = p; 1470 aiocbe->cred = crhold(td->td_ucred); 1471 aiocbe->jobflags = 0; 1472 aiocbe->lio = lj; 1473 1474 if (opcode == LIO_SYNC) 1475 goto queueit; 1476 1477 if (fp->f_type == DTYPE_SOCKET) { 1478 /* 1479 * Alternate queueing for socket ops: Reach down into the 1480 * descriptor to get the socket data. Then check to see if the 1481 * socket is ready to be read or written (based on the requested 1482 * operation). 1483 * 1484 * If it is not ready for io, then queue the aiocbe on the 1485 * socket, and set the flags so we get a call when sbnotify() 1486 * happens. 1487 * 1488 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1489 * and unlock the snd sockbuf for no reason. 1490 */ 1491 so = fp->f_data; 1492 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1493 SOCKBUF_LOCK(sb); 1494 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1495 LIO_WRITE) && (!sowriteable(so)))) { 1496 sb->sb_flags |= SB_AIO; 1497 1498 mtx_lock(&aio_job_mtx); 1499 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1500 mtx_unlock(&aio_job_mtx); 1501 1502 PROC_LOCK(p); 1503 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1504 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1505 aiocbe->jobstate = JOBST_JOBQSOCK; 1506 ki->kaio_count++; 1507 if (lj) 1508 lj->lioj_count++; 1509 PROC_UNLOCK(p); 1510 SOCKBUF_UNLOCK(sb); 1511 atomic_add_int(&num_queue_count, 1); 1512 error = 0; 1513 goto done; 1514 } 1515 SOCKBUF_UNLOCK(sb); 1516 } 1517 1518 if ((error = aio_qphysio(p, aiocbe)) == 0) 1519 goto done; 1520 #if 0 1521 if (error > 0) { 1522 aiocbe->uaiocb._aiocb_private.error = error; 1523 suword(&job->_aiocb_private.error, error); 1524 goto done; 1525 } 1526 #endif 1527 queueit: 1528 /* No buffer for daemon I/O. */ 1529 aiocbe->bp = NULL; 1530 atomic_add_int(&num_queue_count, 1); 1531 1532 PROC_LOCK(p); 1533 ki->kaio_count++; 1534 if (lj) 1535 lj->lioj_count++; 1536 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1537 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1538 if (opcode == LIO_SYNC) { 1539 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1540 if (cb->fd_file == aiocbe->fd_file && 1541 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1542 cb->seqno < aiocbe->seqno) { 1543 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1544 aiocbe->pending++; 1545 } 1546 } 1547 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1548 if (cb->fd_file == aiocbe->fd_file && 1549 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1550 cb->seqno < aiocbe->seqno) { 1551 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1552 aiocbe->pending++; 1553 } 1554 } 1555 if (aiocbe->pending != 0) { 1556 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1557 aiocbe->jobstate = JOBST_JOBQSYNC; 1558 PROC_UNLOCK(p); 1559 goto done; 1560 } 1561 } 1562 mtx_lock(&aio_job_mtx); 1563 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1564 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1565 aio_kick_nowait(p); 1566 mtx_unlock(&aio_job_mtx); 1567 PROC_UNLOCK(p); 1568 error = 0; 1569 done: 1570 return (error); 1571 } 1572 1573 static void 1574 aio_kick_nowait(struct proc *userp) 1575 { 1576 struct kaioinfo *ki = userp->p_aioinfo; 1577 struct aiothreadlist *aiop; 1578 1579 mtx_assert(&aio_job_mtx, MA_OWNED); 1580 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1581 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1582 aiop->aiothreadflags &= ~AIOP_FREE; 1583 wakeup(aiop->aiothread); 1584 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1585 ((ki->kaio_active_count + num_aio_resv_start) < 1586 ki->kaio_maxactive_count)) { 1587 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1588 } 1589 } 1590 1591 static int 1592 aio_kick(struct proc *userp) 1593 { 1594 struct kaioinfo *ki = userp->p_aioinfo; 1595 struct aiothreadlist *aiop; 1596 int error, ret = 0; 1597 1598 mtx_assert(&aio_job_mtx, MA_OWNED); 1599 retryproc: 1600 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1601 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1602 aiop->aiothreadflags &= ~AIOP_FREE; 1603 wakeup(aiop->aiothread); 1604 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1605 ((ki->kaio_active_count + num_aio_resv_start) < 1606 ki->kaio_maxactive_count)) { 1607 num_aio_resv_start++; 1608 mtx_unlock(&aio_job_mtx); 1609 error = aio_newproc(&num_aio_resv_start); 1610 mtx_lock(&aio_job_mtx); 1611 if (error) { 1612 num_aio_resv_start--; 1613 goto retryproc; 1614 } 1615 } else { 1616 ret = -1; 1617 } 1618 return (ret); 1619 } 1620 1621 static void 1622 aio_kick_helper(void *context, int pending) 1623 { 1624 struct proc *userp = context; 1625 1626 mtx_lock(&aio_job_mtx); 1627 while (--pending >= 0) { 1628 if (aio_kick(userp)) 1629 break; 1630 } 1631 mtx_unlock(&aio_job_mtx); 1632 } 1633 1634 /* 1635 * Support the aio_return system call, as a side-effect, kernel resources are 1636 * released. 1637 */ 1638 int 1639 aio_return(struct thread *td, struct aio_return_args *uap) 1640 { 1641 struct proc *p = td->td_proc; 1642 struct aiocblist *cb; 1643 struct aiocb *uaiocb; 1644 struct kaioinfo *ki; 1645 int status, error; 1646 1647 ki = p->p_aioinfo; 1648 if (ki == NULL) 1649 return (EINVAL); 1650 uaiocb = uap->aiocbp; 1651 PROC_LOCK(p); 1652 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1653 if (cb->uuaiocb == uaiocb) 1654 break; 1655 } 1656 if (cb != NULL) { 1657 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1658 status = cb->uaiocb._aiocb_private.status; 1659 error = cb->uaiocb._aiocb_private.error; 1660 td->td_retval[0] = status; 1661 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1662 p->p_stats->p_ru.ru_oublock += 1663 cb->outputcharge; 1664 cb->outputcharge = 0; 1665 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1666 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1667 cb->inputcharge = 0; 1668 } 1669 aio_free_entry(cb); 1670 PROC_UNLOCK(p); 1671 suword(&uaiocb->_aiocb_private.error, error); 1672 suword(&uaiocb->_aiocb_private.status, status); 1673 } else { 1674 error = EINVAL; 1675 PROC_UNLOCK(p); 1676 } 1677 return (error); 1678 } 1679 1680 /* 1681 * Allow a process to wakeup when any of the I/O requests are completed. 1682 */ 1683 int 1684 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1685 { 1686 struct proc *p = td->td_proc; 1687 struct timeval atv; 1688 struct timespec ts; 1689 struct aiocb *const *cbptr, *cbp; 1690 struct kaioinfo *ki; 1691 struct aiocblist *cb, *cbfirst; 1692 struct aiocb **ujoblist; 1693 int njoblist; 1694 int error; 1695 int timo; 1696 int i; 1697 1698 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1699 return (EINVAL); 1700 1701 timo = 0; 1702 if (uap->timeout) { 1703 /* Get timespec struct. */ 1704 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1705 return (error); 1706 1707 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1708 return (EINVAL); 1709 1710 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1711 if (itimerfix(&atv)) 1712 return (EINVAL); 1713 timo = tvtohz(&atv); 1714 } 1715 1716 ki = p->p_aioinfo; 1717 if (ki == NULL) 1718 return (EAGAIN); 1719 1720 njoblist = 0; 1721 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1722 cbptr = uap->aiocbp; 1723 1724 for (i = 0; i < uap->nent; i++) { 1725 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1726 if (cbp == 0) 1727 continue; 1728 ujoblist[njoblist] = cbp; 1729 njoblist++; 1730 } 1731 1732 if (njoblist == 0) { 1733 uma_zfree(aiol_zone, ujoblist); 1734 return (0); 1735 } 1736 1737 PROC_LOCK(p); 1738 for (;;) { 1739 cbfirst = NULL; 1740 error = 0; 1741 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1742 for (i = 0; i < njoblist; i++) { 1743 if (cb->uuaiocb == ujoblist[i]) { 1744 if (cbfirst == NULL) 1745 cbfirst = cb; 1746 if (cb->jobstate == JOBST_JOBFINISHED) 1747 goto RETURN; 1748 } 1749 } 1750 } 1751 /* All tasks were finished. */ 1752 if (cbfirst == NULL) 1753 break; 1754 1755 ki->kaio_flags |= KAIO_WAKEUP; 1756 error = msleep(&p->p_aioinfo, &p->p_mtx, PRIBIO | PCATCH, 1757 "aiospn", timo); 1758 if (error == ERESTART) 1759 error = EINTR; 1760 if (error) 1761 break; 1762 } 1763 RETURN: 1764 PROC_UNLOCK(p); 1765 uma_zfree(aiol_zone, ujoblist); 1766 return (error); 1767 } 1768 1769 /* 1770 * aio_cancel cancels any non-physio aio operations not currently in 1771 * progress. 1772 */ 1773 int 1774 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1775 { 1776 struct proc *p = td->td_proc; 1777 struct kaioinfo *ki; 1778 struct aiocblist *cbe, *cbn; 1779 struct file *fp; 1780 struct socket *so; 1781 int error; 1782 int remove; 1783 int cancelled = 0; 1784 int notcancelled = 0; 1785 struct vnode *vp; 1786 1787 /* Lookup file object. */ 1788 error = fget(td, uap->fd, &fp); 1789 if (error) 1790 return (error); 1791 1792 ki = p->p_aioinfo; 1793 if (ki == NULL) 1794 goto done; 1795 1796 if (fp->f_type == DTYPE_VNODE) { 1797 vp = fp->f_vnode; 1798 if (vn_isdisk(vp, &error)) { 1799 fdrop(fp, td); 1800 td->td_retval[0] = AIO_NOTCANCELED; 1801 return (0); 1802 } 1803 } 1804 1805 PROC_LOCK(p); 1806 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1807 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1808 ((uap->aiocbp == NULL) || 1809 (uap->aiocbp == cbe->uuaiocb))) { 1810 remove = 0; 1811 1812 mtx_lock(&aio_job_mtx); 1813 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1814 TAILQ_REMOVE(&aio_jobs, cbe, list); 1815 remove = 1; 1816 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1817 MPASS(fp->f_type == DTYPE_SOCKET); 1818 so = fp->f_data; 1819 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1820 remove = 1; 1821 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1822 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1823 remove = 1; 1824 } 1825 mtx_unlock(&aio_job_mtx); 1826 1827 if (remove) { 1828 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1829 cbe->uaiocb._aiocb_private.status = -1; 1830 cbe->uaiocb._aiocb_private.error = ECANCELED; 1831 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1832 cancelled++; 1833 } else { 1834 notcancelled++; 1835 } 1836 if (uap->aiocbp != NULL) 1837 break; 1838 } 1839 } 1840 PROC_UNLOCK(p); 1841 1842 done: 1843 fdrop(fp, td); 1844 1845 if (uap->aiocbp != NULL) { 1846 if (cancelled) { 1847 td->td_retval[0] = AIO_CANCELED; 1848 return (0); 1849 } 1850 } 1851 1852 if (notcancelled) { 1853 td->td_retval[0] = AIO_NOTCANCELED; 1854 return (0); 1855 } 1856 1857 if (cancelled) { 1858 td->td_retval[0] = AIO_CANCELED; 1859 return (0); 1860 } 1861 1862 td->td_retval[0] = AIO_ALLDONE; 1863 1864 return (0); 1865 } 1866 1867 /* 1868 * aio_error is implemented in the kernel level for compatibility purposes only. 1869 * For a user mode async implementation, it would be best to do it in a userland 1870 * subroutine. 1871 */ 1872 int 1873 aio_error(struct thread *td, struct aio_error_args *uap) 1874 { 1875 struct proc *p = td->td_proc; 1876 struct aiocblist *cb; 1877 struct kaioinfo *ki; 1878 int status; 1879 1880 ki = p->p_aioinfo; 1881 if (ki == NULL) { 1882 td->td_retval[0] = EINVAL; 1883 return (0); 1884 } 1885 1886 PROC_LOCK(p); 1887 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1888 if (cb->uuaiocb == uap->aiocbp) { 1889 if (cb->jobstate == JOBST_JOBFINISHED) 1890 td->td_retval[0] = 1891 cb->uaiocb._aiocb_private.error; 1892 else 1893 td->td_retval[0] = EINPROGRESS; 1894 PROC_UNLOCK(p); 1895 return (0); 1896 } 1897 } 1898 PROC_UNLOCK(p); 1899 1900 /* 1901 * Hack for failure of aio_aqueue. 1902 */ 1903 status = fuword(&uap->aiocbp->_aiocb_private.status); 1904 if (status == -1) { 1905 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1906 return (0); 1907 } 1908 1909 td->td_retval[0] = EINVAL; 1910 return (0); 1911 } 1912 1913 /* syscall - asynchronous read from a file (REALTIME) */ 1914 int 1915 oaio_read(struct thread *td, struct oaio_read_args *uap) 1916 { 1917 1918 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1919 } 1920 1921 int 1922 aio_read(struct thread *td, struct aio_read_args *uap) 1923 { 1924 1925 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1926 } 1927 1928 /* syscall - asynchronous write to a file (REALTIME) */ 1929 int 1930 oaio_write(struct thread *td, struct oaio_write_args *uap) 1931 { 1932 1933 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1934 } 1935 1936 int 1937 aio_write(struct thread *td, struct aio_write_args *uap) 1938 { 1939 1940 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1941 } 1942 1943 /* syscall - list directed I/O (REALTIME) */ 1944 int 1945 olio_listio(struct thread *td, struct olio_listio_args *uap) 1946 { 1947 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1948 } 1949 1950 /* syscall - list directed I/O (REALTIME) */ 1951 int 1952 lio_listio(struct thread *td, struct lio_listio_args *uap) 1953 { 1954 return do_lio_listio(td, uap, 0); 1955 } 1956 1957 static int 1958 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1959 { 1960 struct proc *p = td->td_proc; 1961 struct aiocb *iocb, * const *cbptr; 1962 struct kaioinfo *ki; 1963 struct aioliojob *lj; 1964 struct kevent kev; 1965 struct kqueue * kq; 1966 struct file *kq_fp; 1967 int nent; 1968 int error; 1969 int nerror; 1970 int i; 1971 1972 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1973 return (EINVAL); 1974 1975 nent = uap->nent; 1976 if (nent < 0 || nent > AIO_LISTIO_MAX) 1977 return (EINVAL); 1978 1979 if (p->p_aioinfo == NULL) 1980 aio_init_aioinfo(p); 1981 1982 ki = p->p_aioinfo; 1983 1984 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1985 lj->lioj_flags = 0; 1986 lj->lioj_count = 0; 1987 lj->lioj_finished_count = 0; 1988 knlist_init(&lj->klist, &p->p_mtx, NULL, NULL, NULL); 1989 ksiginfo_init(&lj->lioj_ksi); 1990 1991 /* 1992 * Setup signal. 1993 */ 1994 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1995 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 1996 error = copyin(uap->sig, &lj->lioj_signal, 1997 oldsigev ? sizeof(struct osigevent) : 1998 sizeof(struct sigevent)); 1999 if (error) { 2000 uma_zfree(aiolio_zone, lj); 2001 return (error); 2002 } 2003 2004 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2005 /* Assume only new style KEVENT */ 2006 error = fget(td, lj->lioj_signal.sigev_notify_kqueue, 2007 &kq_fp); 2008 if (error) { 2009 uma_zfree(aiolio_zone, lj); 2010 return (error); 2011 } 2012 if (kq_fp->f_type != DTYPE_KQUEUE) { 2013 fdrop(kq_fp, td); 2014 uma_zfree(aiolio_zone, lj); 2015 return (EBADF); 2016 } 2017 kq = (struct kqueue *)kq_fp->f_data; 2018 kev.filter = EVFILT_LIO; 2019 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2020 kev.ident = (uintptr_t)lj; /* something unique */ 2021 kev.data = (intptr_t)lj; 2022 /* pass user defined sigval data */ 2023 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2024 error = kqueue_register(kq, &kev, td, 1); 2025 fdrop(kq_fp, td); 2026 if (error) { 2027 uma_zfree(aiolio_zone, lj); 2028 return (error); 2029 } 2030 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2031 ; 2032 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2033 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2034 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2035 uma_zfree(aiolio_zone, lj); 2036 return EINVAL; 2037 } 2038 lj->lioj_flags |= LIOJ_SIGNAL; 2039 } else { 2040 uma_zfree(aiolio_zone, lj); 2041 return EINVAL; 2042 } 2043 } 2044 2045 PROC_LOCK(p); 2046 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2047 /* 2048 * Add extra aiocb count to avoid the lio to be freed 2049 * by other threads doing aio_waitcomplete or aio_return, 2050 * and prevent event from being sent until we have queued 2051 * all tasks. 2052 */ 2053 lj->lioj_count = 1; 2054 PROC_UNLOCK(p); 2055 2056 /* 2057 * Get pointers to the list of I/O requests. 2058 */ 2059 nerror = 0; 2060 cbptr = uap->acb_list; 2061 for (i = 0; i < uap->nent; i++) { 2062 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2063 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2064 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2065 if (error != 0) 2066 nerror++; 2067 } 2068 } 2069 2070 error = 0; 2071 PROC_LOCK(p); 2072 if (uap->mode == LIO_WAIT) { 2073 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2074 ki->kaio_flags |= KAIO_WAKEUP; 2075 error = msleep(&p->p_aioinfo, &p->p_mtx, 2076 PRIBIO | PCATCH, "aiospn", 0); 2077 if (error == ERESTART) 2078 error = EINTR; 2079 if (error) 2080 break; 2081 } 2082 } else { 2083 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2084 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2085 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2086 KNOTE_LOCKED(&lj->klist, 1); 2087 } 2088 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2089 == LIOJ_SIGNAL 2090 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2091 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2092 aio_sendsig(p, &lj->lioj_signal, 2093 &lj->lioj_ksi); 2094 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2095 } 2096 } 2097 } 2098 lj->lioj_count--; 2099 if (lj->lioj_count == 0) { 2100 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2101 knlist_delete(&lj->klist, curthread, 1); 2102 sigqueue_take(&lj->lioj_ksi); 2103 PROC_UNLOCK(p); 2104 uma_zfree(aiolio_zone, lj); 2105 } else 2106 PROC_UNLOCK(p); 2107 2108 if (nerror) 2109 return (EIO); 2110 return (error); 2111 } 2112 2113 /* 2114 * Called from interrupt thread for physio, we should return as fast 2115 * as possible, so we schedule a biohelper task. 2116 */ 2117 static void 2118 aio_physwakeup(struct buf *bp) 2119 { 2120 struct aiocblist *aiocbe; 2121 2122 aiocbe = (struct aiocblist *)bp->b_caller1; 2123 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2124 } 2125 2126 /* 2127 * Task routine to perform heavy tasks, process wakeup, and signals. 2128 */ 2129 static void 2130 biohelper(void *context, int pending) 2131 { 2132 struct aiocblist *aiocbe = context; 2133 struct buf *bp; 2134 struct proc *userp; 2135 struct kaioinfo *ki; 2136 int nblks; 2137 2138 bp = aiocbe->bp; 2139 userp = aiocbe->userproc; 2140 ki = userp->p_aioinfo; 2141 PROC_LOCK(userp); 2142 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2143 aiocbe->uaiocb._aiocb_private.error = 0; 2144 if (bp->b_ioflags & BIO_ERROR) 2145 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2146 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2147 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2148 aiocbe->outputcharge += nblks; 2149 else 2150 aiocbe->inputcharge += nblks; 2151 aiocbe->bp = NULL; 2152 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2153 ki->kaio_buffer_count--; 2154 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2155 PROC_UNLOCK(userp); 2156 2157 /* Release mapping into kernel space. */ 2158 vunmapbuf(bp); 2159 relpbuf(bp, NULL); 2160 atomic_subtract_int(&num_buf_aio, 1); 2161 } 2162 2163 /* syscall - wait for the next completion of an aio request */ 2164 int 2165 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2166 { 2167 struct proc *p = td->td_proc; 2168 struct timeval atv; 2169 struct timespec ts; 2170 struct kaioinfo *ki; 2171 struct aiocblist *cb; 2172 struct aiocb *uuaiocb; 2173 int error, status, timo; 2174 2175 suword(uap->aiocbp, (long)NULL); 2176 2177 timo = 0; 2178 if (uap->timeout) { 2179 /* Get timespec struct. */ 2180 error = copyin(uap->timeout, &ts, sizeof(ts)); 2181 if (error) 2182 return (error); 2183 2184 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2185 return (EINVAL); 2186 2187 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2188 if (itimerfix(&atv)) 2189 return (EINVAL); 2190 timo = tvtohz(&atv); 2191 } 2192 2193 if (p->p_aioinfo == NULL) 2194 aio_init_aioinfo(p); 2195 ki = p->p_aioinfo; 2196 2197 error = 0; 2198 cb = NULL; 2199 PROC_LOCK(p); 2200 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2201 ki->kaio_flags |= KAIO_WAKEUP; 2202 error = msleep(&p->p_aioinfo, &p->p_mtx, PRIBIO | PCATCH, 2203 "aiowc", timo); 2204 if (timo && error == ERESTART) 2205 error = EINTR; 2206 if (error) 2207 break; 2208 } 2209 2210 if (cb != NULL) { 2211 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2212 uuaiocb = cb->uuaiocb; 2213 status = cb->uaiocb._aiocb_private.status; 2214 error = cb->uaiocb._aiocb_private.error; 2215 td->td_retval[0] = status; 2216 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2217 p->p_stats->p_ru.ru_oublock += cb->outputcharge; 2218 cb->outputcharge = 0; 2219 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2220 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2221 cb->inputcharge = 0; 2222 } 2223 aio_free_entry(cb); 2224 PROC_UNLOCK(p); 2225 suword(uap->aiocbp, (long)uuaiocb); 2226 suword(&uuaiocb->_aiocb_private.error, error); 2227 suword(&uuaiocb->_aiocb_private.status, status); 2228 } else 2229 PROC_UNLOCK(p); 2230 2231 return (error); 2232 } 2233 2234 int 2235 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2236 { 2237 struct proc *p = td->td_proc; 2238 struct kaioinfo *ki; 2239 2240 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2241 return (EINVAL); 2242 ki = p->p_aioinfo; 2243 if (ki == NULL) 2244 aio_init_aioinfo(p); 2245 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2246 } 2247 2248 /* kqueue attach function */ 2249 static int 2250 filt_aioattach(struct knote *kn) 2251 { 2252 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2253 2254 /* 2255 * The aiocbe pointer must be validated before using it, so 2256 * registration is restricted to the kernel; the user cannot 2257 * set EV_FLAG1. 2258 */ 2259 if ((kn->kn_flags & EV_FLAG1) == 0) 2260 return (EPERM); 2261 kn->kn_flags &= ~EV_FLAG1; 2262 2263 knlist_add(&aiocbe->klist, kn, 0); 2264 2265 return (0); 2266 } 2267 2268 /* kqueue detach function */ 2269 static void 2270 filt_aiodetach(struct knote *kn) 2271 { 2272 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2273 2274 if (!knlist_empty(&aiocbe->klist)) 2275 knlist_remove(&aiocbe->klist, kn, 0); 2276 } 2277 2278 /* kqueue filter function */ 2279 /*ARGSUSED*/ 2280 static int 2281 filt_aio(struct knote *kn, long hint) 2282 { 2283 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2284 2285 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2286 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2287 return (0); 2288 kn->kn_flags |= EV_EOF; 2289 return (1); 2290 } 2291 2292 /* kqueue attach function */ 2293 static int 2294 filt_lioattach(struct knote *kn) 2295 { 2296 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2297 2298 /* 2299 * The aioliojob pointer must be validated before using it, so 2300 * registration is restricted to the kernel; the user cannot 2301 * set EV_FLAG1. 2302 */ 2303 if ((kn->kn_flags & EV_FLAG1) == 0) 2304 return (EPERM); 2305 kn->kn_flags &= ~EV_FLAG1; 2306 2307 knlist_add(&lj->klist, kn, 0); 2308 2309 return (0); 2310 } 2311 2312 /* kqueue detach function */ 2313 static void 2314 filt_liodetach(struct knote *kn) 2315 { 2316 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2317 2318 if (!knlist_empty(&lj->klist)) 2319 knlist_remove(&lj->klist, kn, 0); 2320 } 2321 2322 /* kqueue filter function */ 2323 /*ARGSUSED*/ 2324 static int 2325 filt_lio(struct knote *kn, long hint) 2326 { 2327 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2328 2329 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2330 } 2331