1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/malloc.h> 26 #include <sys/bio.h> 27 #include <sys/buf.h> 28 #include <sys/capsicum.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/syscallsubr.h> 46 #include <sys/protosw.h> 47 #include <sys/rwlock.h> 48 #include <sys/sema.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/syscall.h> 52 #include <sys/sysctl.h> 53 #include <sys/syslog.h> 54 #include <sys/sx.h> 55 #include <sys/taskqueue.h> 56 #include <sys/vnode.h> 57 #include <sys/conf.h> 58 #include <sys/event.h> 59 #include <sys/mount.h> 60 #include <geom/geom.h> 61 62 #include <machine/atomic.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_page.h> 66 #include <vm/vm_extern.h> 67 #include <vm/pmap.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_object.h> 70 #include <vm/vnode_pager.h> 71 #include <vm/uma.h> 72 #include <sys/aio.h> 73 74 /* 75 * Counter for aio_fsync. 76 */ 77 static uint64_t jobseqno; 78 79 #ifndef MAX_AIO_PER_PROC 80 #define MAX_AIO_PER_PROC 32 81 #endif 82 83 #ifndef MAX_AIO_QUEUE_PER_PROC 84 #define MAX_AIO_QUEUE_PER_PROC 256 85 #endif 86 87 #ifndef MAX_AIO_QUEUE 88 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 89 #endif 90 91 #ifndef MAX_BUF_AIO 92 #define MAX_BUF_AIO 16 93 #endif 94 95 FEATURE(aio, "Asynchronous I/O"); 96 SYSCTL_DECL(_p1003_1b); 97 98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O"); 100 101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 102 "Async IO management"); 103 104 static int enable_aio_unsafe = 0; 105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 106 "Permit asynchronous IO on all file types, not just known-safe types"); 107 108 static unsigned int unsafe_warningcnt = 1; 109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 110 &unsafe_warningcnt, 0, 111 "Warnings that will be triggered upon failed IO requests on unsafe files"); 112 113 static int max_aio_procs = MAX_AIO_PROCS; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 115 "Maximum number of kernel processes to use for handling async IO "); 116 117 static int num_aio_procs = 0; 118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 119 "Number of presently active kernel processes for async IO"); 120 121 /* 122 * The code will adjust the actual number of AIO processes towards this 123 * number when it gets a chance. 124 */ 125 static int target_aio_procs = TARGET_AIO_PROCS; 126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 127 0, 128 "Preferred number of ready kernel processes for async IO"); 129 130 static int max_queue_count = MAX_AIO_QUEUE; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 132 "Maximum number of aio requests to queue, globally"); 133 134 static int num_queue_count = 0; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 136 "Number of queued aio requests"); 137 138 static int num_buf_aio = 0; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 140 "Number of aio requests presently handled by the buf subsystem"); 141 142 static int num_unmapped_aio = 0; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 144 0, 145 "Number of aio requests presently handled by unmapped I/O buffers"); 146 147 /* Number of async I/O processes in the process of being started */ 148 /* XXX This should be local to aio_aqueue() */ 149 static int num_aio_resv_start = 0; 150 151 static int aiod_lifetime; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 153 "Maximum lifetime for idle aiod"); 154 155 static int max_aio_per_proc = MAX_AIO_PER_PROC; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 157 0, 158 "Maximum active aio requests per process"); 159 160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 162 &max_aio_queue_per_proc, 0, 163 "Maximum queued aio requests per process"); 164 165 static int max_buf_aio = MAX_BUF_AIO; 166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 167 "Maximum buf aio requests per process"); 168 169 /* 170 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 171 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 172 * vfs.aio.aio_listio_max. 173 */ 174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 175 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 176 0, "Maximum aio requests for a single lio_listio call"); 177 178 #ifdef COMPAT_FREEBSD6 179 typedef struct oaiocb { 180 int aio_fildes; /* File descriptor */ 181 off_t aio_offset; /* File offset for I/O */ 182 volatile void *aio_buf; /* I/O buffer in process space */ 183 size_t aio_nbytes; /* Number of bytes for I/O */ 184 struct osigevent aio_sigevent; /* Signal to deliver */ 185 int aio_lio_opcode; /* LIO opcode */ 186 int aio_reqprio; /* Request priority -- ignored */ 187 struct __aiocb_private _aiocb_private; 188 } oaiocb_t; 189 #endif 190 191 /* 192 * Below is a key of locks used to protect each member of struct kaiocb 193 * aioliojob and kaioinfo and any backends. 194 * 195 * * - need not protected 196 * a - locked by kaioinfo lock 197 * b - locked by backend lock, the backend lock can be null in some cases, 198 * for example, BIO belongs to this type, in this case, proc lock is 199 * reused. 200 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 201 */ 202 203 /* 204 * If the routine that services an AIO request blocks while running in an 205 * AIO kernel process it can starve other I/O requests. BIO requests 206 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 207 * processes at all. Socket I/O requests use a separate pool of 208 * kprocs and also force non-blocking I/O. Other file I/O requests 209 * use the generic fo_read/fo_write operations which can block. The 210 * fsync and mlock operations can also block while executing. Ideally 211 * none of these requests would block while executing. 212 * 213 * Note that the service routines cannot toggle O_NONBLOCK in the file 214 * structure directly while handling a request due to races with 215 * userland threads. 216 */ 217 218 /* jobflags */ 219 #define KAIOCB_QUEUEING 0x01 220 #define KAIOCB_CANCELLED 0x02 221 #define KAIOCB_CANCELLING 0x04 222 #define KAIOCB_CHECKSYNC 0x08 223 #define KAIOCB_CLEARED 0x10 224 #define KAIOCB_FINISHED 0x20 225 #define KAIOCB_MARKER 0x40 226 227 /* ioflags */ 228 #define KAIOCB_IO_FOFFSET 0x01 229 230 /* 231 * AIO process info 232 */ 233 #define AIOP_FREE 0x1 /* proc on free queue */ 234 235 struct aioproc { 236 int aioprocflags; /* (c) AIO proc flags */ 237 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 238 struct proc *aioproc; /* (*) the AIO proc */ 239 }; 240 241 /* 242 * data-structure for lio signal management 243 */ 244 struct aioliojob { 245 int lioj_flags; /* (a) listio flags */ 246 int lioj_count; /* (a) count of jobs */ 247 int lioj_finished_count; /* (a) count of finished jobs */ 248 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 249 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 250 struct knlist klist; /* (a) list of knotes */ 251 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 252 }; 253 254 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 255 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 256 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 257 258 /* 259 * per process aio data structure 260 */ 261 struct kaioinfo { 262 struct mtx kaio_mtx; /* the lock to protect this struct */ 263 int kaio_flags; /* (a) per process kaio flags */ 264 int kaio_active_count; /* (c) number of currently used AIOs */ 265 int kaio_count; /* (a) size of AIO queue */ 266 int kaio_buffer_count; /* (a) number of bio buffers */ 267 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 268 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 269 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 270 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 271 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 272 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 273 struct task kaio_task; /* (*) task to kick aio processes */ 274 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 275 }; 276 277 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 278 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 279 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 280 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 281 282 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 283 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 284 285 /* 286 * Operations used to interact with userland aio control blocks. 287 * Different ABIs provide their own operations. 288 */ 289 struct aiocb_ops { 290 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 291 long (*fetch_status)(struct aiocb *ujob); 292 long (*fetch_error)(struct aiocb *ujob); 293 int (*store_status)(struct aiocb *ujob, long status); 294 int (*store_error)(struct aiocb *ujob, long error); 295 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 296 }; 297 298 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 299 static struct sema aio_newproc_sem; 300 static struct mtx aio_job_mtx; 301 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 302 static struct unrhdr *aiod_unr; 303 304 static void aio_biocleanup(struct bio *bp); 305 static int aio_init_aioinfo(struct proc *p); 306 static int aio_onceonly(void); 307 static int aio_free_entry(struct kaiocb *job); 308 static void aio_process_rw(struct kaiocb *job); 309 static void aio_process_sync(struct kaiocb *job); 310 static void aio_process_mlock(struct kaiocb *job); 311 static void aio_schedule_fsync(void *context, int pending); 312 static int aio_newproc(int *); 313 static int aio_aqueue(struct thread *td, struct aiocb *ujob, 314 struct aioliojob *lio, int type, struct aiocb_ops *ops); 315 static int aio_queue_file(struct file *fp, struct kaiocb *job); 316 static void aio_biowakeup(struct bio *bp); 317 static void aio_proc_rundown(void *arg, struct proc *p); 318 static void aio_proc_rundown_exec(void *arg, struct proc *p, 319 struct image_params *imgp); 320 static int aio_qbio(struct proc *p, struct kaiocb *job); 321 static void aio_daemon(void *param); 322 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 323 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 324 static int aio_kick(struct proc *userp); 325 static void aio_kick_nowait(struct proc *userp); 326 static void aio_kick_helper(void *context, int pending); 327 static int filt_aioattach(struct knote *kn); 328 static void filt_aiodetach(struct knote *kn); 329 static int filt_aio(struct knote *kn, long hint); 330 static int filt_lioattach(struct knote *kn); 331 static void filt_liodetach(struct knote *kn); 332 static int filt_lio(struct knote *kn, long hint); 333 334 /* 335 * Zones for: 336 * kaio Per process async io info 337 * aiocb async io jobs 338 * aiolio list io jobs 339 */ 340 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone; 341 342 /* kqueue filters for aio */ 343 static const struct filterops aio_filtops = { 344 .f_isfd = 0, 345 .f_attach = filt_aioattach, 346 .f_detach = filt_aiodetach, 347 .f_event = filt_aio, 348 .f_copy = knote_triv_copy, 349 }; 350 static const struct filterops lio_filtops = { 351 .f_isfd = 0, 352 .f_attach = filt_lioattach, 353 .f_detach = filt_liodetach, 354 .f_event = filt_lio, 355 .f_copy = knote_triv_copy, 356 }; 357 358 static eventhandler_tag exit_tag, exec_tag; 359 360 TASKQUEUE_DEFINE_THREAD(aiod_kick); 361 362 /* 363 * Main operations function for use as a kernel module. 364 */ 365 static int 366 aio_modload(struct module *module, int cmd, void *arg) 367 { 368 int error = 0; 369 370 switch (cmd) { 371 case MOD_LOAD: 372 aio_onceonly(); 373 break; 374 case MOD_SHUTDOWN: 375 break; 376 default: 377 error = EOPNOTSUPP; 378 break; 379 } 380 return (error); 381 } 382 383 static moduledata_t aio_mod = { 384 "aio", 385 &aio_modload, 386 NULL 387 }; 388 389 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 390 MODULE_VERSION(aio, 1); 391 392 /* 393 * Startup initialization 394 */ 395 static int 396 aio_onceonly(void) 397 { 398 399 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 400 EVENTHANDLER_PRI_ANY); 401 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 402 NULL, EVENTHANDLER_PRI_ANY); 403 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 404 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 405 TAILQ_INIT(&aio_freeproc); 406 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 407 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 408 TAILQ_INIT(&aio_jobs); 409 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 410 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 411 NULL, NULL, UMA_ALIGN_PTR, 0); 412 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 413 NULL, NULL, UMA_ALIGN_PTR, 0); 414 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 415 NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 416 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 417 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 418 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 419 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 420 421 return (0); 422 } 423 424 /* 425 * Init the per-process aioinfo structure. The aioinfo limits are set 426 * per-process for user limit (resource) management. 427 */ 428 static int 429 aio_init_aioinfo(struct proc *p) 430 { 431 struct kaioinfo *ki; 432 int error; 433 434 ki = uma_zalloc(kaio_zone, M_WAITOK); 435 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 436 ki->kaio_flags = 0; 437 ki->kaio_active_count = 0; 438 ki->kaio_count = 0; 439 ki->kaio_buffer_count = 0; 440 TAILQ_INIT(&ki->kaio_all); 441 TAILQ_INIT(&ki->kaio_done); 442 TAILQ_INIT(&ki->kaio_jobqueue); 443 TAILQ_INIT(&ki->kaio_liojoblist); 444 TAILQ_INIT(&ki->kaio_syncqueue); 445 TAILQ_INIT(&ki->kaio_syncready); 446 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 447 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 448 PROC_LOCK(p); 449 if (p->p_aioinfo == NULL) { 450 p->p_aioinfo = ki; 451 PROC_UNLOCK(p); 452 } else { 453 PROC_UNLOCK(p); 454 mtx_destroy(&ki->kaio_mtx); 455 uma_zfree(kaio_zone, ki); 456 } 457 458 error = 0; 459 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) { 460 error = aio_newproc(NULL); 461 if (error != 0) { 462 /* 463 * At least one worker is enough to have AIO 464 * functional. Clear error in that case. 465 */ 466 if (num_aio_procs > 0) 467 error = 0; 468 break; 469 } 470 } 471 return (error); 472 } 473 474 static int 475 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 476 { 477 struct thread *td; 478 int error; 479 480 error = sigev_findtd(p, sigev, &td); 481 if (error) 482 return (error); 483 if (!KSI_ONQ(ksi)) { 484 ksiginfo_set_sigev(ksi, sigev); 485 ksi->ksi_code = SI_ASYNCIO; 486 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 487 tdsendsignal(p, td, ksi->ksi_signo, ksi); 488 } 489 PROC_UNLOCK(p); 490 return (error); 491 } 492 493 /* 494 * Free a job entry. Wait for completion if it is currently active, but don't 495 * delay forever. If we delay, we return a flag that says that we have to 496 * restart the queue scan. 497 */ 498 static int 499 aio_free_entry(struct kaiocb *job) 500 { 501 struct kaioinfo *ki; 502 struct aioliojob *lj; 503 struct proc *p; 504 505 p = job->userproc; 506 MPASS(curproc == p); 507 ki = p->p_aioinfo; 508 MPASS(ki != NULL); 509 510 AIO_LOCK_ASSERT(ki, MA_OWNED); 511 MPASS(job->jobflags & KAIOCB_FINISHED); 512 513 atomic_subtract_int(&num_queue_count, 1); 514 515 ki->kaio_count--; 516 MPASS(ki->kaio_count >= 0); 517 518 TAILQ_REMOVE(&ki->kaio_done, job, plist); 519 TAILQ_REMOVE(&ki->kaio_all, job, allist); 520 521 lj = job->lio; 522 if (lj) { 523 lj->lioj_count--; 524 lj->lioj_finished_count--; 525 526 if (lj->lioj_count == 0) { 527 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 528 /* lio is going away, we need to destroy any knotes */ 529 knlist_delete(&lj->klist, curthread, 1); 530 PROC_LOCK(p); 531 sigqueue_take(&lj->lioj_ksi); 532 PROC_UNLOCK(p); 533 uma_zfree(aiolio_zone, lj); 534 } 535 } 536 537 /* job is going away, we need to destroy any knotes */ 538 knlist_delete(&job->klist, curthread, 1); 539 PROC_LOCK(p); 540 sigqueue_take(&job->ksi); 541 PROC_UNLOCK(p); 542 543 AIO_UNLOCK(ki); 544 545 /* 546 * The thread argument here is used to find the owning process 547 * and is also passed to fo_close() which may pass it to various 548 * places such as devsw close() routines. Because of that, we 549 * need a thread pointer from the process owning the job that is 550 * persistent and won't disappear out from under us or move to 551 * another process. 552 * 553 * Currently, all the callers of this function call it to remove 554 * a kaiocb from the current process' job list either via a 555 * syscall or due to the current process calling exit() or 556 * execve(). Thus, we know that p == curproc. We also know that 557 * curthread can't exit since we are curthread. 558 * 559 * Therefore, we use curthread as the thread to pass to 560 * knlist_delete(). This does mean that it is possible for the 561 * thread pointer at close time to differ from the thread pointer 562 * at open time, but this is already true of file descriptors in 563 * a multithreaded process. 564 */ 565 if (job->fd_file) 566 fdrop(job->fd_file, curthread); 567 crfree(job->cred); 568 if (job->uiop != &job->uio) 569 freeuio(job->uiop); 570 uma_zfree(aiocb_zone, job); 571 AIO_LOCK(ki); 572 573 return (0); 574 } 575 576 static void 577 aio_proc_rundown_exec(void *arg, struct proc *p, 578 struct image_params *imgp __unused) 579 { 580 aio_proc_rundown(arg, p); 581 } 582 583 static int 584 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 585 { 586 aio_cancel_fn_t *func; 587 int cancelled; 588 589 AIO_LOCK_ASSERT(ki, MA_OWNED); 590 591 /* 592 * If we're running down the queue, the process must be single-threaded, 593 * and so no markers should be present. 594 */ 595 MPASS((job->jobflags & KAIOCB_MARKER) == 0); 596 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 597 return (0); 598 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 599 job->jobflags |= KAIOCB_CANCELLED; 600 601 func = job->cancel_fn; 602 603 /* 604 * If there is no cancel routine, just leave the job marked as 605 * cancelled. The job should be in active use by a caller who 606 * should complete it normally or when it fails to install a 607 * cancel routine. 608 */ 609 if (func == NULL) 610 return (0); 611 612 /* 613 * Set the CANCELLING flag so that aio_complete() will defer 614 * completions of this job. This prevents the job from being 615 * freed out from under the cancel callback. After the 616 * callback any deferred completion (whether from the callback 617 * or any other source) will be completed. 618 */ 619 job->jobflags |= KAIOCB_CANCELLING; 620 AIO_UNLOCK(ki); 621 func(job); 622 AIO_LOCK(ki); 623 job->jobflags &= ~KAIOCB_CANCELLING; 624 if (job->jobflags & KAIOCB_FINISHED) { 625 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 626 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 627 aio_bio_done_notify(p, job); 628 } else { 629 /* 630 * The cancel callback might have scheduled an 631 * operation to cancel this request, but it is 632 * only counted as cancelled if the request is 633 * cancelled when the callback returns. 634 */ 635 cancelled = 0; 636 } 637 return (cancelled); 638 } 639 640 /* 641 * Rundown the jobs for a given process. 642 */ 643 static void 644 aio_proc_rundown(void *arg, struct proc *p) 645 { 646 struct kaioinfo *ki; 647 struct aioliojob *lj; 648 struct kaiocb *job, *jobn; 649 650 KASSERT(curthread->td_proc == p, 651 ("%s: called on non-curproc", __func__)); 652 ki = p->p_aioinfo; 653 if (ki == NULL) 654 return; 655 656 AIO_LOCK(ki); 657 ki->kaio_flags |= KAIO_RUNDOWN; 658 659 restart: 660 661 /* 662 * Try to cancel all pending requests. This code simulates 663 * aio_cancel on all pending I/O requests. 664 */ 665 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 666 aio_cancel_job(p, ki, job); 667 } 668 669 /* Wait for all running I/O to be finished */ 670 if (!TAILQ_EMPTY(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 671 ki->kaio_flags |= KAIO_WAKEUP; 672 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 673 goto restart; 674 } 675 676 /* Free all completed I/O requests. */ 677 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 678 aio_free_entry(job); 679 680 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 681 if (lj->lioj_count == 0) { 682 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 683 knlist_delete(&lj->klist, curthread, 1); 684 PROC_LOCK(p); 685 sigqueue_take(&lj->lioj_ksi); 686 PROC_UNLOCK(p); 687 uma_zfree(aiolio_zone, lj); 688 } else { 689 panic("LIO job not cleaned up: C:%d, FC:%d\n", 690 lj->lioj_count, lj->lioj_finished_count); 691 } 692 } 693 AIO_UNLOCK(ki); 694 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 695 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 696 mtx_destroy(&ki->kaio_mtx); 697 uma_zfree(kaio_zone, ki); 698 p->p_aioinfo = NULL; 699 } 700 701 /* 702 * Select a job to run (called by an AIO daemon). 703 */ 704 static struct kaiocb * 705 aio_selectjob(struct aioproc *aiop) 706 { 707 struct kaiocb *job; 708 struct kaioinfo *ki; 709 struct proc *userp; 710 711 mtx_assert(&aio_job_mtx, MA_OWNED); 712 restart: 713 TAILQ_FOREACH(job, &aio_jobs, list) { 714 userp = job->userproc; 715 ki = userp->p_aioinfo; 716 717 if (ki->kaio_active_count < max_aio_per_proc) { 718 TAILQ_REMOVE(&aio_jobs, job, list); 719 if (!aio_clear_cancel_function(job)) 720 goto restart; 721 722 /* Account for currently active jobs. */ 723 ki->kaio_active_count++; 724 break; 725 } 726 } 727 return (job); 728 } 729 730 /* 731 * Move all data to a permanent storage device. This code 732 * simulates the fsync and fdatasync syscalls. 733 */ 734 static int 735 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 736 { 737 struct mount *mp; 738 int error; 739 740 for (;;) { 741 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 742 if (error != 0) 743 break; 744 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 745 vnode_pager_clean_async(vp); 746 if (op == LIO_DSYNC) 747 error = VOP_FDATASYNC(vp, td); 748 else 749 error = VOP_FSYNC(vp, MNT_WAIT, td); 750 751 VOP_UNLOCK(vp); 752 vn_finished_write(mp); 753 if (error != ERELOOKUP) 754 break; 755 } 756 return (error); 757 } 758 759 /* 760 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 761 * does the I/O request for the non-bio version of the operations. The normal 762 * vn operations are used, and this code should work in all instances for every 763 * type of file, including pipes, sockets, fifos, and regular files. 764 * 765 * XXX I don't think it works well for socket, pipe, and fifo. 766 */ 767 static void 768 aio_process_rw(struct kaiocb *job) 769 { 770 struct ucred *td_savedcred; 771 struct thread *td; 772 struct file *fp; 773 ssize_t cnt; 774 long msgsnd_st, msgsnd_end; 775 long msgrcv_st, msgrcv_end; 776 long oublock_st, oublock_end; 777 long inblock_st, inblock_end; 778 int error, opcode; 779 780 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET; 781 KASSERT(opcode == LIO_READ || opcode == LIO_READV || 782 opcode == LIO_WRITE || opcode == LIO_WRITEV, 783 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 784 785 aio_switch_vmspace(job); 786 td = curthread; 787 td_savedcred = td->td_ucred; 788 td->td_ucred = job->cred; 789 job->uiop->uio_td = td; 790 fp = job->fd_file; 791 792 cnt = job->uiop->uio_resid; 793 794 msgrcv_st = td->td_ru.ru_msgrcv; 795 msgsnd_st = td->td_ru.ru_msgsnd; 796 inblock_st = td->td_ru.ru_inblock; 797 oublock_st = td->td_ru.ru_oublock; 798 799 /* 800 * aio_aqueue() acquires a reference to the file that is 801 * released in aio_free_entry(). 802 */ 803 if (opcode == LIO_READ || opcode == LIO_READV) { 804 if (job->uiop->uio_resid == 0) 805 error = 0; 806 else 807 error = fo_read(fp, job->uiop, fp->f_cred, 808 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 : 809 FOF_OFFSET, td); 810 } else { 811 if (fp->f_type == DTYPE_VNODE) 812 bwillwrite(); 813 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags & 814 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td); 815 } 816 msgrcv_end = td->td_ru.ru_msgrcv; 817 msgsnd_end = td->td_ru.ru_msgsnd; 818 inblock_end = td->td_ru.ru_inblock; 819 oublock_end = td->td_ru.ru_oublock; 820 821 job->msgrcv = msgrcv_end - msgrcv_st; 822 job->msgsnd = msgsnd_end - msgsnd_st; 823 job->inblock = inblock_end - inblock_st; 824 job->outblock = oublock_end - oublock_st; 825 826 if (error != 0 && job->uiop->uio_resid != cnt) { 827 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 828 error = 0; 829 if (error == EPIPE && (opcode & LIO_WRITE)) { 830 PROC_LOCK(job->userproc); 831 kern_psignal(job->userproc, SIGPIPE); 832 PROC_UNLOCK(job->userproc); 833 } 834 } 835 836 cnt -= job->uiop->uio_resid; 837 td->td_ucred = td_savedcred; 838 if (error) 839 aio_complete(job, -1, error); 840 else 841 aio_complete(job, cnt, 0); 842 } 843 844 static void 845 aio_process_sync(struct kaiocb *job) 846 { 847 struct thread *td = curthread; 848 struct ucred *td_savedcred = td->td_ucred; 849 struct file *fp = job->fd_file; 850 int error = 0; 851 852 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 853 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 854 855 td->td_ucred = job->cred; 856 if (fp->f_vnode != NULL) { 857 error = aio_fsync_vnode(td, fp->f_vnode, 858 job->uaiocb.aio_lio_opcode); 859 } 860 td->td_ucred = td_savedcred; 861 if (error) 862 aio_complete(job, -1, error); 863 else 864 aio_complete(job, 0, 0); 865 } 866 867 static void 868 aio_process_mlock(struct kaiocb *job) 869 { 870 struct aiocb *cb = &job->uaiocb; 871 int error; 872 873 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 874 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 875 876 aio_switch_vmspace(job); 877 error = kern_mlock(job->userproc, job->cred, 878 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 879 aio_complete(job, error != 0 ? -1 : 0, error); 880 } 881 882 static void 883 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 884 { 885 struct aioliojob *lj; 886 struct kaioinfo *ki; 887 struct kaiocb *sjob, *sjobn; 888 int lj_done; 889 bool schedule_fsync; 890 891 ki = userp->p_aioinfo; 892 AIO_LOCK_ASSERT(ki, MA_OWNED); 893 lj = job->lio; 894 lj_done = 0; 895 if (lj) { 896 lj->lioj_finished_count++; 897 if (lj->lioj_count == lj->lioj_finished_count) 898 lj_done = 1; 899 } 900 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 901 MPASS(job->jobflags & KAIOCB_FINISHED); 902 903 if (ki->kaio_flags & KAIO_RUNDOWN) 904 goto notification_done; 905 906 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 907 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 908 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 909 910 KNOTE_LOCKED(&job->klist, 1); 911 912 if (lj_done) { 913 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 914 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 915 KNOTE_LOCKED(&lj->klist, 1); 916 } 917 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 918 == LIOJ_SIGNAL && 919 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 920 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 921 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 922 true); 923 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 924 } 925 } 926 927 notification_done: 928 if (job->jobflags & KAIOCB_CHECKSYNC) { 929 schedule_fsync = false; 930 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 931 if (job->fd_file != sjob->fd_file || 932 job->seqno >= sjob->seqno) 933 continue; 934 if (--sjob->pending > 0) 935 continue; 936 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 937 if (!aio_clear_cancel_function_locked(sjob)) 938 continue; 939 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 940 schedule_fsync = true; 941 } 942 if (schedule_fsync) 943 taskqueue_enqueue(taskqueue_aiod_kick, 944 &ki->kaio_sync_task); 945 } 946 if (ki->kaio_flags & KAIO_WAKEUP) { 947 ki->kaio_flags &= ~KAIO_WAKEUP; 948 wakeup(&userp->p_aioinfo); 949 } 950 } 951 952 static void 953 aio_schedule_fsync(void *context, int pending) 954 { 955 struct kaioinfo *ki; 956 struct kaiocb *job; 957 958 ki = context; 959 AIO_LOCK(ki); 960 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 961 job = TAILQ_FIRST(&ki->kaio_syncready); 962 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 963 AIO_UNLOCK(ki); 964 aio_schedule(job, aio_process_sync); 965 AIO_LOCK(ki); 966 } 967 AIO_UNLOCK(ki); 968 } 969 970 bool 971 aio_cancel_cleared(struct kaiocb *job) 972 { 973 974 /* 975 * The caller should hold the same queue lock held when 976 * aio_clear_cancel_function() was called and set this flag 977 * ensuring this check sees an up-to-date value. However, 978 * there is no way to assert that. 979 */ 980 return ((job->jobflags & KAIOCB_CLEARED) != 0); 981 } 982 983 static bool 984 aio_clear_cancel_function_locked(struct kaiocb *job) 985 { 986 987 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 988 MPASS(job->cancel_fn != NULL); 989 if (job->jobflags & KAIOCB_CANCELLING) { 990 job->jobflags |= KAIOCB_CLEARED; 991 return (false); 992 } 993 job->cancel_fn = NULL; 994 return (true); 995 } 996 997 bool 998 aio_clear_cancel_function(struct kaiocb *job) 999 { 1000 struct kaioinfo *ki; 1001 bool ret; 1002 1003 ki = job->userproc->p_aioinfo; 1004 AIO_LOCK(ki); 1005 ret = aio_clear_cancel_function_locked(job); 1006 AIO_UNLOCK(ki); 1007 return (ret); 1008 } 1009 1010 static bool 1011 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1012 { 1013 1014 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1015 if (job->jobflags & KAIOCB_CANCELLED) 1016 return (false); 1017 job->cancel_fn = func; 1018 return (true); 1019 } 1020 1021 bool 1022 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1023 { 1024 struct kaioinfo *ki; 1025 bool ret; 1026 1027 ki = job->userproc->p_aioinfo; 1028 AIO_LOCK(ki); 1029 ret = aio_set_cancel_function_locked(job, func); 1030 AIO_UNLOCK(ki); 1031 return (ret); 1032 } 1033 1034 void 1035 aio_complete(struct kaiocb *job, long status, int error) 1036 { 1037 struct kaioinfo *ki; 1038 struct proc *userp; 1039 1040 job->uaiocb._aiocb_private.error = error; 1041 job->uaiocb._aiocb_private.status = status; 1042 1043 userp = job->userproc; 1044 ki = userp->p_aioinfo; 1045 1046 AIO_LOCK(ki); 1047 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1048 ("duplicate aio_complete")); 1049 job->jobflags |= KAIOCB_FINISHED; 1050 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1051 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1052 aio_bio_done_notify(userp, job); 1053 } 1054 AIO_UNLOCK(ki); 1055 } 1056 1057 void 1058 aio_cancel(struct kaiocb *job) 1059 { 1060 1061 aio_complete(job, -1, ECANCELED); 1062 } 1063 1064 void 1065 aio_switch_vmspace(struct kaiocb *job) 1066 { 1067 1068 vmspace_switch_aio(job->userproc->p_vmspace); 1069 } 1070 1071 /* 1072 * The AIO daemon, most of the actual work is done in aio_process_*, 1073 * but the setup (and address space mgmt) is done in this routine. 1074 */ 1075 static void 1076 aio_daemon(void *_id) 1077 { 1078 struct kaiocb *job; 1079 struct aioproc *aiop; 1080 struct kaioinfo *ki; 1081 struct proc *p; 1082 struct vmspace *myvm; 1083 struct thread *td = curthread; 1084 int id = (intptr_t)_id; 1085 1086 /* 1087 * Grab an extra reference on the daemon's vmspace so that it 1088 * doesn't get freed by jobs that switch to a different 1089 * vmspace. 1090 */ 1091 p = td->td_proc; 1092 myvm = vmspace_acquire_ref(p); 1093 1094 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1095 1096 /* 1097 * Allocate and ready the aio control info. There is one aiop structure 1098 * per daemon. 1099 */ 1100 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK); 1101 aiop->aioproc = p; 1102 aiop->aioprocflags = 0; 1103 1104 /* 1105 * Wakeup parent process. (Parent sleeps to keep from blasting away 1106 * and creating too many daemons.) 1107 */ 1108 sema_post(&aio_newproc_sem); 1109 1110 mtx_lock(&aio_job_mtx); 1111 for (;;) { 1112 /* 1113 * Take daemon off of free queue 1114 */ 1115 if (aiop->aioprocflags & AIOP_FREE) { 1116 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1117 aiop->aioprocflags &= ~AIOP_FREE; 1118 } 1119 1120 /* 1121 * Check for jobs. 1122 */ 1123 while ((job = aio_selectjob(aiop)) != NULL) { 1124 mtx_unlock(&aio_job_mtx); 1125 1126 ki = job->userproc->p_aioinfo; 1127 job->handle_fn(job); 1128 1129 mtx_lock(&aio_job_mtx); 1130 /* Decrement the active job count. */ 1131 ki->kaio_active_count--; 1132 } 1133 1134 /* 1135 * Disconnect from user address space. 1136 */ 1137 if (p->p_vmspace != myvm) { 1138 mtx_unlock(&aio_job_mtx); 1139 vmspace_switch_aio(myvm); 1140 mtx_lock(&aio_job_mtx); 1141 /* 1142 * We have to restart to avoid race, we only sleep if 1143 * no job can be selected. 1144 */ 1145 continue; 1146 } 1147 1148 mtx_assert(&aio_job_mtx, MA_OWNED); 1149 1150 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1151 aiop->aioprocflags |= AIOP_FREE; 1152 1153 /* 1154 * If daemon is inactive for a long time, allow it to exit, 1155 * thereby freeing resources. 1156 */ 1157 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1158 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1159 (aiop->aioprocflags & AIOP_FREE) && 1160 num_aio_procs > target_aio_procs) 1161 break; 1162 } 1163 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1164 num_aio_procs--; 1165 mtx_unlock(&aio_job_mtx); 1166 free(aiop, M_AIO); 1167 free_unr(aiod_unr, id); 1168 vmspace_free(myvm); 1169 1170 KASSERT(p->p_vmspace == myvm, 1171 ("AIOD: bad vmspace for exiting daemon")); 1172 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1173 ("AIOD: bad vm refcnt for exiting daemon: %d", 1174 refcount_load(&myvm->vm_refcnt))); 1175 kproc_exit(0); 1176 } 1177 1178 /* 1179 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1180 * AIO daemon modifies its environment itself. 1181 */ 1182 static int 1183 aio_newproc(int *start) 1184 { 1185 int error; 1186 struct proc *p; 1187 int id; 1188 1189 id = alloc_unr(aiod_unr); 1190 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1191 RFNOWAIT, 0, "aiod%d", id); 1192 if (error == 0) { 1193 /* 1194 * Wait until daemon is started. 1195 */ 1196 sema_wait(&aio_newproc_sem); 1197 mtx_lock(&aio_job_mtx); 1198 num_aio_procs++; 1199 if (start != NULL) 1200 (*start)--; 1201 mtx_unlock(&aio_job_mtx); 1202 } else { 1203 free_unr(aiod_unr, id); 1204 } 1205 return (error); 1206 } 1207 1208 /* 1209 * Try the high-performance, low-overhead bio method for eligible 1210 * VCHR devices. This method doesn't use an aio helper thread, and 1211 * thus has very low overhead. 1212 * 1213 * Assumes that the caller, aio_aqueue(), has incremented the file 1214 * structure's reference count, preventing its deallocation for the 1215 * duration of this call. 1216 */ 1217 static int 1218 aio_qbio(struct proc *p, struct kaiocb *job) 1219 { 1220 struct aiocb *cb; 1221 struct file *fp; 1222 struct buf *pbuf; 1223 struct vnode *vp; 1224 struct cdevsw *csw; 1225 struct cdev *dev; 1226 struct kaioinfo *ki; 1227 struct bio **bios = NULL; 1228 off_t offset; 1229 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1230 vm_prot_t prot; 1231 bool use_unmapped; 1232 1233 cb = &job->uaiocb; 1234 fp = job->fd_file; 1235 opcode = cb->aio_lio_opcode; 1236 1237 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1238 opcode == LIO_READ || opcode == LIO_READV)) 1239 return (-1); 1240 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1241 return (-1); 1242 1243 vp = fp->f_vnode; 1244 if (vp->v_type != VCHR) 1245 return (-1); 1246 if (vp->v_bufobj.bo_bsize == 0) 1247 return (-1); 1248 1249 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1250 iovcnt = job->uiop->uio_iovcnt; 1251 if (iovcnt > max_buf_aio) 1252 return (-1); 1253 for (i = 0; i < iovcnt; i++) { 1254 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1255 return (-1); 1256 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1257 error = -1; 1258 return (-1); 1259 } 1260 } 1261 offset = cb->aio_offset; 1262 1263 ref = 0; 1264 csw = devvn_refthread(vp, &dev, &ref); 1265 if (csw == NULL) 1266 return (ENXIO); 1267 1268 if ((csw->d_flags & D_DISK) == 0) { 1269 error = -1; 1270 goto unref; 1271 } 1272 if (job->uiop->uio_resid > dev->si_iosize_max) { 1273 error = -1; 1274 goto unref; 1275 } 1276 1277 ki = p->p_aioinfo; 1278 job->error = 0; 1279 1280 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1281 if (!use_unmapped) { 1282 AIO_LOCK(ki); 1283 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1284 AIO_UNLOCK(ki); 1285 error = EAGAIN; 1286 goto unref; 1287 } 1288 ki->kaio_buffer_count += iovcnt; 1289 AIO_UNLOCK(ki); 1290 } 1291 1292 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1293 refcount_init(&job->nbio, iovcnt); 1294 for (i = 0; i < iovcnt; i++) { 1295 struct vm_page** pages; 1296 struct bio *bp; 1297 void *buf; 1298 size_t nbytes; 1299 int npages; 1300 1301 buf = job->uiop->uio_iov[i].iov_base; 1302 nbytes = job->uiop->uio_iov[i].iov_len; 1303 1304 bios[i] = g_alloc_bio(); 1305 bp = bios[i]; 1306 1307 poff = (vm_offset_t)buf & PAGE_MASK; 1308 if (use_unmapped) { 1309 pbuf = NULL; 1310 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1311 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1312 } else { 1313 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1314 BUF_KERNPROC(pbuf); 1315 pages = pbuf->b_pages; 1316 } 1317 1318 bp->bio_length = nbytes; 1319 bp->bio_bcount = nbytes; 1320 bp->bio_done = aio_biowakeup; 1321 bp->bio_offset = offset; 1322 bp->bio_cmd = bio_cmd; 1323 bp->bio_dev = dev; 1324 bp->bio_caller1 = job; 1325 bp->bio_caller2 = pbuf; 1326 1327 prot = VM_PROT_READ; 1328 if (opcode == LIO_READ || opcode == LIO_READV) 1329 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1330 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1331 (vm_offset_t)buf, bp->bio_length, prot, pages, 1332 atop(maxphys) + 1); 1333 if (npages < 0) { 1334 if (pbuf != NULL) 1335 uma_zfree(pbuf_zone, pbuf); 1336 else 1337 free(pages, M_TEMP); 1338 error = EFAULT; 1339 g_destroy_bio(bp); 1340 i--; 1341 goto destroy_bios; 1342 } 1343 if (pbuf != NULL) { 1344 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1345 bp->bio_data = pbuf->b_data + poff; 1346 pbuf->b_npages = npages; 1347 atomic_add_int(&num_buf_aio, 1); 1348 } else { 1349 bp->bio_ma = pages; 1350 bp->bio_ma_n = npages; 1351 bp->bio_ma_offset = poff; 1352 bp->bio_data = unmapped_buf; 1353 bp->bio_flags |= BIO_UNMAPPED; 1354 atomic_add_int(&num_unmapped_aio, 1); 1355 } 1356 1357 offset += nbytes; 1358 } 1359 1360 /* Perform transfer. */ 1361 for (i = 0; i < iovcnt; i++) 1362 csw->d_strategy(bios[i]); 1363 free(bios, M_TEMP); 1364 1365 dev_relthread(dev, ref); 1366 return (0); 1367 1368 destroy_bios: 1369 for (; i >= 0; i--) 1370 aio_biocleanup(bios[i]); 1371 free(bios, M_TEMP); 1372 unref: 1373 dev_relthread(dev, ref); 1374 return (error); 1375 } 1376 1377 #ifdef COMPAT_FREEBSD6 1378 static int 1379 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1380 { 1381 1382 /* 1383 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1384 * supported by AIO with the old sigevent structure. 1385 */ 1386 nsig->sigev_notify = osig->sigev_notify; 1387 switch (nsig->sigev_notify) { 1388 case SIGEV_NONE: 1389 break; 1390 case SIGEV_SIGNAL: 1391 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1392 break; 1393 case SIGEV_KEVENT: 1394 nsig->sigev_notify_kqueue = 1395 osig->__sigev_u.__sigev_notify_kqueue; 1396 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1397 break; 1398 default: 1399 return (EINVAL); 1400 } 1401 return (0); 1402 } 1403 1404 static int 1405 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1406 int type __unused) 1407 { 1408 struct oaiocb *ojob; 1409 struct aiocb *kcb = &kjob->uaiocb; 1410 int error; 1411 1412 bzero(kcb, sizeof(struct aiocb)); 1413 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1414 if (error) 1415 return (error); 1416 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1417 ojob = (struct oaiocb *)kcb; 1418 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1419 } 1420 #endif 1421 1422 static int 1423 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1424 { 1425 struct aiocb *kcb = &kjob->uaiocb; 1426 int error; 1427 1428 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1429 if (error) 1430 return (error); 1431 if (type == LIO_NOP) 1432 type = kcb->aio_lio_opcode; 1433 if (type & LIO_VECTORED) { 1434 /* malloc a uio and copy in the iovec */ 1435 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1436 kcb->aio_iovcnt, &kjob->uiop); 1437 } 1438 1439 return (error); 1440 } 1441 1442 static long 1443 aiocb_fetch_status(struct aiocb *ujob) 1444 { 1445 1446 return (fuword(&ujob->_aiocb_private.status)); 1447 } 1448 1449 static long 1450 aiocb_fetch_error(struct aiocb *ujob) 1451 { 1452 1453 return (fuword(&ujob->_aiocb_private.error)); 1454 } 1455 1456 static int 1457 aiocb_store_status(struct aiocb *ujob, long status) 1458 { 1459 1460 return (suword(&ujob->_aiocb_private.status, status)); 1461 } 1462 1463 static int 1464 aiocb_store_error(struct aiocb *ujob, long error) 1465 { 1466 1467 return (suword(&ujob->_aiocb_private.error, error)); 1468 } 1469 1470 static int 1471 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1472 { 1473 1474 return (suword(ujobp, (long)ujob)); 1475 } 1476 1477 static struct aiocb_ops aiocb_ops = { 1478 .aio_copyin = aiocb_copyin, 1479 .fetch_status = aiocb_fetch_status, 1480 .fetch_error = aiocb_fetch_error, 1481 .store_status = aiocb_store_status, 1482 .store_error = aiocb_store_error, 1483 .store_aiocb = aiocb_store_aiocb, 1484 }; 1485 1486 #ifdef COMPAT_FREEBSD6 1487 static struct aiocb_ops aiocb_ops_osigevent = { 1488 .aio_copyin = aiocb_copyin_old_sigevent, 1489 .fetch_status = aiocb_fetch_status, 1490 .fetch_error = aiocb_fetch_error, 1491 .store_status = aiocb_store_status, 1492 .store_error = aiocb_store_error, 1493 .store_aiocb = aiocb_store_aiocb, 1494 }; 1495 #endif 1496 1497 /* 1498 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1499 * technique is done in this code. 1500 */ 1501 static int 1502 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1503 int type, struct aiocb_ops *ops) 1504 { 1505 struct proc *p = td->td_proc; 1506 struct file *fp = NULL; 1507 struct kaiocb *job; 1508 struct kaioinfo *ki; 1509 struct kevent kev; 1510 int opcode; 1511 int error; 1512 int fd, kqfd; 1513 u_short evflags; 1514 1515 if (p->p_aioinfo == NULL) { 1516 error = aio_init_aioinfo(p); 1517 if (error != 0) 1518 goto err1; 1519 } 1520 1521 ki = p->p_aioinfo; 1522 1523 ops->store_status(ujob, -1); 1524 ops->store_error(ujob, 0); 1525 1526 if (num_queue_count >= max_queue_count || 1527 ki->kaio_count >= max_aio_queue_per_proc) { 1528 error = EAGAIN; 1529 goto err1; 1530 } 1531 1532 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1533 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1534 1535 error = ops->aio_copyin(ujob, job, type); 1536 if (error) 1537 goto err2; 1538 1539 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1540 error = EINVAL; 1541 goto err2; 1542 } 1543 1544 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1545 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1546 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1547 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1548 error = EINVAL; 1549 goto err2; 1550 } 1551 1552 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1553 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1554 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1555 error = EINVAL; 1556 goto err2; 1557 } 1558 1559 /* Get the opcode. */ 1560 if (type == LIO_NOP) { 1561 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) { 1562 case LIO_WRITE: 1563 case LIO_WRITEV: 1564 case LIO_NOP: 1565 case LIO_READ: 1566 case LIO_READV: 1567 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET; 1568 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0) 1569 job->ioflags |= KAIOCB_IO_FOFFSET; 1570 break; 1571 default: 1572 error = EINVAL; 1573 goto err2; 1574 } 1575 } else 1576 opcode = job->uaiocb.aio_lio_opcode = type; 1577 1578 ksiginfo_init(&job->ksi); 1579 1580 /* Save userspace address of the job info. */ 1581 job->ujob = ujob; 1582 1583 /* 1584 * Validate the opcode and fetch the file object for the specified 1585 * file descriptor. 1586 * 1587 * XXXRW: Moved the opcode validation up here so that we don't 1588 * retrieve a file descriptor without knowing what the capabiltity 1589 * should be. 1590 */ 1591 fd = job->uaiocb.aio_fildes; 1592 switch (opcode) { 1593 case LIO_WRITE: 1594 case LIO_WRITEV: 1595 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1596 break; 1597 case LIO_READ: 1598 case LIO_READV: 1599 error = fget_read(td, fd, &cap_pread_rights, &fp); 1600 break; 1601 case LIO_SYNC: 1602 case LIO_DSYNC: 1603 error = fget(td, fd, &cap_fsync_rights, &fp); 1604 break; 1605 case LIO_MLOCK: 1606 break; 1607 case LIO_NOP: 1608 error = fget(td, fd, &cap_no_rights, &fp); 1609 break; 1610 default: 1611 error = EINVAL; 1612 } 1613 if (error) 1614 goto err3; 1615 1616 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1617 error = EINVAL; 1618 goto err3; 1619 } 1620 1621 if ((opcode == LIO_READ || opcode == LIO_READV || 1622 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1623 job->uaiocb.aio_offset < 0 && 1624 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1625 error = EINVAL; 1626 goto err3; 1627 } 1628 1629 if (fp != NULL && fp->f_ops == &path_fileops) { 1630 error = EBADF; 1631 goto err3; 1632 } 1633 1634 job->fd_file = fp; 1635 1636 mtx_lock(&aio_job_mtx); 1637 job->seqno = jobseqno++; 1638 mtx_unlock(&aio_job_mtx); 1639 if (opcode == LIO_NOP) { 1640 fdrop(fp, td); 1641 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1642 uma_zfree(aiocb_zone, job); 1643 return (0); 1644 } 1645 1646 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1647 goto no_kqueue; 1648 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1649 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1650 error = EINVAL; 1651 goto err3; 1652 } 1653 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1654 memset(&kev, 0, sizeof(kev)); 1655 kev.ident = (uintptr_t)job->ujob; 1656 kev.filter = EVFILT_AIO; 1657 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1658 kev.data = (intptr_t)job; 1659 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1660 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1661 if (error) 1662 goto err3; 1663 1664 no_kqueue: 1665 1666 ops->store_error(ujob, EINPROGRESS); 1667 job->uaiocb._aiocb_private.error = EINPROGRESS; 1668 job->userproc = p; 1669 job->cred = crhold(td->td_ucred); 1670 job->jobflags = KAIOCB_QUEUEING; 1671 job->lio = lj; 1672 1673 if (opcode & LIO_VECTORED) { 1674 /* Use the uio copied in by aio_copyin */ 1675 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1676 } else { 1677 /* Setup the inline uio */ 1678 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1679 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1680 job->uio.uio_iov = job->iov; 1681 job->uio.uio_iovcnt = 1; 1682 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1683 job->uio.uio_segflg = UIO_USERSPACE; 1684 job->uiop = &job->uio; 1685 } 1686 switch (opcode & (LIO_READ | LIO_WRITE)) { 1687 case LIO_READ: 1688 job->uiop->uio_rw = UIO_READ; 1689 break; 1690 case LIO_WRITE: 1691 job->uiop->uio_rw = UIO_WRITE; 1692 break; 1693 } 1694 job->uiop->uio_offset = job->uaiocb.aio_offset; 1695 job->uiop->uio_td = td; 1696 1697 if (opcode == LIO_MLOCK) { 1698 aio_schedule(job, aio_process_mlock); 1699 error = 0; 1700 } else if (fp->f_ops->fo_aio_queue == NULL) 1701 error = aio_queue_file(fp, job); 1702 else 1703 error = fo_aio_queue(fp, job); 1704 if (error) 1705 goto err4; 1706 1707 AIO_LOCK(ki); 1708 job->jobflags &= ~KAIOCB_QUEUEING; 1709 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1710 ki->kaio_count++; 1711 if (lj) 1712 lj->lioj_count++; 1713 atomic_add_int(&num_queue_count, 1); 1714 if (job->jobflags & KAIOCB_FINISHED) { 1715 /* 1716 * The queue callback completed the request synchronously. 1717 * The bulk of the completion is deferred in that case 1718 * until this point. 1719 */ 1720 aio_bio_done_notify(p, job); 1721 } else 1722 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1723 AIO_UNLOCK(ki); 1724 return (0); 1725 1726 err4: 1727 crfree(job->cred); 1728 err3: 1729 if (fp) 1730 fdrop(fp, td); 1731 knlist_delete(&job->klist, curthread, 0); 1732 err2: 1733 if (job->uiop != &job->uio) 1734 freeuio(job->uiop); 1735 uma_zfree(aiocb_zone, job); 1736 err1: 1737 ops->store_error(ujob, error); 1738 return (error); 1739 } 1740 1741 static void 1742 aio_cancel_daemon_job(struct kaiocb *job) 1743 { 1744 1745 mtx_lock(&aio_job_mtx); 1746 if (!aio_cancel_cleared(job)) 1747 TAILQ_REMOVE(&aio_jobs, job, list); 1748 mtx_unlock(&aio_job_mtx); 1749 aio_cancel(job); 1750 } 1751 1752 void 1753 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1754 { 1755 1756 mtx_lock(&aio_job_mtx); 1757 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1758 mtx_unlock(&aio_job_mtx); 1759 aio_cancel(job); 1760 return; 1761 } 1762 job->handle_fn = func; 1763 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1764 aio_kick_nowait(job->userproc); 1765 mtx_unlock(&aio_job_mtx); 1766 } 1767 1768 static void 1769 aio_cancel_sync(struct kaiocb *job) 1770 { 1771 struct kaioinfo *ki; 1772 1773 ki = job->userproc->p_aioinfo; 1774 AIO_LOCK(ki); 1775 if (!aio_cancel_cleared(job)) 1776 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1777 AIO_UNLOCK(ki); 1778 aio_cancel(job); 1779 } 1780 1781 int 1782 aio_queue_file(struct file *fp, struct kaiocb *job) 1783 { 1784 struct kaioinfo *ki; 1785 struct kaiocb *job2; 1786 struct vnode *vp; 1787 struct mount *mp; 1788 int error; 1789 bool safe; 1790 1791 ki = job->userproc->p_aioinfo; 1792 error = aio_qbio(job->userproc, job); 1793 if (error >= 0) 1794 return (error); 1795 safe = false; 1796 if (fp->f_type == DTYPE_VNODE) { 1797 vp = fp->f_vnode; 1798 if (vp->v_type == VREG || vp->v_type == VDIR) { 1799 mp = fp->f_vnode->v_mount; 1800 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1801 safe = true; 1802 } 1803 } 1804 if (!(safe || enable_aio_unsafe)) { 1805 counted_warning(&unsafe_warningcnt, 1806 "is attempting to use unsafe AIO requests"); 1807 return (EOPNOTSUPP); 1808 } 1809 1810 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1811 aio_schedule(job, aio_process_rw); 1812 error = 0; 1813 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1814 AIO_LOCK(ki); 1815 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1816 if ((job2->jobflags & KAIOCB_MARKER) != 0) 1817 continue; 1818 if (job2->fd_file == job->fd_file && 1819 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1820 job2->seqno < job->seqno) { 1821 job2->jobflags |= KAIOCB_CHECKSYNC; 1822 job->pending++; 1823 } 1824 } 1825 if (job->pending != 0) { 1826 if (!aio_set_cancel_function_locked(job, 1827 aio_cancel_sync)) { 1828 AIO_UNLOCK(ki); 1829 aio_cancel(job); 1830 return (0); 1831 } 1832 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1833 AIO_UNLOCK(ki); 1834 return (0); 1835 } 1836 AIO_UNLOCK(ki); 1837 aio_schedule(job, aio_process_sync); 1838 error = 0; 1839 } else { 1840 error = EINVAL; 1841 } 1842 return (error); 1843 } 1844 1845 static void 1846 aio_kick_nowait(struct proc *userp) 1847 { 1848 struct kaioinfo *ki = userp->p_aioinfo; 1849 struct aioproc *aiop; 1850 1851 mtx_assert(&aio_job_mtx, MA_OWNED); 1852 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1853 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1854 aiop->aioprocflags &= ~AIOP_FREE; 1855 wakeup(aiop->aioproc); 1856 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1857 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1858 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1859 } 1860 } 1861 1862 static int 1863 aio_kick(struct proc *userp) 1864 { 1865 struct kaioinfo *ki = userp->p_aioinfo; 1866 struct aioproc *aiop; 1867 int error, ret = 0; 1868 1869 mtx_assert(&aio_job_mtx, MA_OWNED); 1870 retryproc: 1871 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1872 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1873 aiop->aioprocflags &= ~AIOP_FREE; 1874 wakeup(aiop->aioproc); 1875 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1876 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1877 num_aio_resv_start++; 1878 mtx_unlock(&aio_job_mtx); 1879 error = aio_newproc(&num_aio_resv_start); 1880 mtx_lock(&aio_job_mtx); 1881 if (error) { 1882 num_aio_resv_start--; 1883 goto retryproc; 1884 } 1885 } else { 1886 ret = -1; 1887 } 1888 return (ret); 1889 } 1890 1891 static void 1892 aio_kick_helper(void *context, int pending) 1893 { 1894 struct proc *userp = context; 1895 1896 mtx_lock(&aio_job_mtx); 1897 while (--pending >= 0) { 1898 if (aio_kick(userp)) 1899 break; 1900 } 1901 mtx_unlock(&aio_job_mtx); 1902 } 1903 1904 /* 1905 * Support the aio_return system call, as a side-effect, kernel resources are 1906 * released. 1907 */ 1908 static int 1909 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1910 { 1911 struct proc *p = td->td_proc; 1912 struct kaiocb *job; 1913 struct kaioinfo *ki; 1914 long status, error; 1915 1916 ki = p->p_aioinfo; 1917 if (ki == NULL) 1918 return (EINVAL); 1919 AIO_LOCK(ki); 1920 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1921 if (job->ujob == ujob) 1922 break; 1923 } 1924 if (job != NULL) { 1925 MPASS(job->jobflags & KAIOCB_FINISHED); 1926 status = job->uaiocb._aiocb_private.status; 1927 error = job->uaiocb._aiocb_private.error; 1928 td->td_retval[0] = status; 1929 td->td_ru.ru_oublock += job->outblock; 1930 td->td_ru.ru_inblock += job->inblock; 1931 td->td_ru.ru_msgsnd += job->msgsnd; 1932 td->td_ru.ru_msgrcv += job->msgrcv; 1933 aio_free_entry(job); 1934 AIO_UNLOCK(ki); 1935 ops->store_error(ujob, error); 1936 ops->store_status(ujob, status); 1937 } else { 1938 error = EINVAL; 1939 AIO_UNLOCK(ki); 1940 } 1941 return (error); 1942 } 1943 1944 int 1945 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1946 { 1947 1948 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1949 } 1950 1951 /* 1952 * Allow a process to wakeup when any of the I/O requests are completed. 1953 */ 1954 static int 1955 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1956 struct timespec *ts) 1957 { 1958 struct proc *p = td->td_proc; 1959 struct timeval atv; 1960 struct kaioinfo *ki; 1961 struct kaiocb *firstjob, *job; 1962 int error, i, timo; 1963 1964 timo = 0; 1965 if (ts) { 1966 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1967 return (EINVAL); 1968 1969 TIMESPEC_TO_TIMEVAL(&atv, ts); 1970 if (itimerfix(&atv)) 1971 return (EINVAL); 1972 timo = tvtohz(&atv); 1973 } 1974 1975 ki = p->p_aioinfo; 1976 if (ki == NULL) 1977 return (EAGAIN); 1978 1979 if (njoblist == 0) 1980 return (0); 1981 1982 AIO_LOCK(ki); 1983 for (;;) { 1984 firstjob = NULL; 1985 error = 0; 1986 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1987 for (i = 0; i < njoblist; i++) { 1988 if (job->ujob == ujoblist[i]) { 1989 if (firstjob == NULL) 1990 firstjob = job; 1991 if (job->jobflags & KAIOCB_FINISHED) 1992 goto RETURN; 1993 } 1994 } 1995 } 1996 /* All tasks were finished. */ 1997 if (firstjob == NULL) 1998 break; 1999 2000 ki->kaio_flags |= KAIO_WAKEUP; 2001 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2002 "aiospn", timo); 2003 if (error == ERESTART) 2004 error = EINTR; 2005 if (error) 2006 break; 2007 } 2008 RETURN: 2009 AIO_UNLOCK(ki); 2010 return (error); 2011 } 2012 2013 int 2014 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2015 { 2016 struct timespec ts, *tsp; 2017 struct aiocb **ujoblist; 2018 int error; 2019 2020 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2021 return (EINVAL); 2022 2023 if (uap->timeout) { 2024 /* Get timespec struct. */ 2025 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2026 return (error); 2027 tsp = &ts; 2028 } else 2029 tsp = NULL; 2030 2031 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2032 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2033 if (error == 0) 2034 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2035 free(ujoblist, M_AIO); 2036 return (error); 2037 } 2038 2039 /* 2040 * aio_cancel cancels any non-bio aio operations not currently in progress. 2041 */ 2042 int 2043 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2044 { 2045 struct proc *p = td->td_proc; 2046 struct kaioinfo *ki; 2047 struct kaiocb *job, *jobn, marker; 2048 struct file *fp; 2049 int error; 2050 int cancelled = 0; 2051 int notcancelled = 0; 2052 struct vnode *vp; 2053 2054 /* Lookup file object. */ 2055 error = fget(td, uap->fd, &cap_no_rights, &fp); 2056 if (error) 2057 return (error); 2058 2059 ki = p->p_aioinfo; 2060 if (ki == NULL) 2061 goto done; 2062 2063 if (fp->f_type == DTYPE_VNODE) { 2064 vp = fp->f_vnode; 2065 if (vn_isdisk(vp)) { 2066 fdrop(fp, td); 2067 td->td_retval[0] = AIO_NOTCANCELED; 2068 return (0); 2069 } 2070 } 2071 2072 /* 2073 * We may have to drop the list mutex in order to cancel a job. After 2074 * that point it is unsafe to rely on the stability of the list. We 2075 * could restart the search from the beginning after canceling a job, 2076 * but this may inefficient. Instead, use a marker job to keep our 2077 * place in the list. 2078 */ 2079 memset(&marker, 0, sizeof(marker)); 2080 marker.jobflags = KAIOCB_MARKER; 2081 2082 AIO_LOCK(ki); 2083 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2084 if (uap->fd == job->uaiocb.aio_fildes && 2085 (uap->aiocbp == NULL || uap->aiocbp == job->ujob) && 2086 (job->jobflags & KAIOCB_MARKER) == 0) { 2087 TAILQ_INSERT_AFTER(&ki->kaio_jobqueue, job, &marker, 2088 plist); 2089 if (aio_cancel_job(p, ki, job)) { 2090 cancelled++; 2091 } else { 2092 notcancelled++; 2093 } 2094 jobn = TAILQ_NEXT(&marker, plist); 2095 TAILQ_REMOVE(&ki->kaio_jobqueue, &marker, plist); 2096 if (uap->aiocbp != NULL) 2097 break; 2098 } 2099 } 2100 AIO_UNLOCK(ki); 2101 2102 done: 2103 fdrop(fp, td); 2104 2105 if (uap->aiocbp != NULL) { 2106 if (cancelled) { 2107 td->td_retval[0] = AIO_CANCELED; 2108 return (0); 2109 } 2110 } 2111 2112 if (notcancelled) { 2113 td->td_retval[0] = AIO_NOTCANCELED; 2114 return (0); 2115 } 2116 2117 if (cancelled) { 2118 td->td_retval[0] = AIO_CANCELED; 2119 return (0); 2120 } 2121 2122 td->td_retval[0] = AIO_ALLDONE; 2123 2124 return (0); 2125 } 2126 2127 /* 2128 * aio_error is implemented in the kernel level for compatibility purposes 2129 * only. For a user mode async implementation, it would be best to do it in 2130 * a userland subroutine. 2131 */ 2132 static int 2133 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2134 { 2135 struct proc *p = td->td_proc; 2136 struct kaiocb *job; 2137 struct kaioinfo *ki; 2138 int status; 2139 2140 ki = p->p_aioinfo; 2141 if (ki == NULL) { 2142 td->td_retval[0] = EINVAL; 2143 return (0); 2144 } 2145 2146 AIO_LOCK(ki); 2147 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2148 if (job->ujob == ujob) { 2149 if (job->jobflags & KAIOCB_FINISHED) 2150 td->td_retval[0] = 2151 job->uaiocb._aiocb_private.error; 2152 else 2153 td->td_retval[0] = EINPROGRESS; 2154 AIO_UNLOCK(ki); 2155 return (0); 2156 } 2157 } 2158 AIO_UNLOCK(ki); 2159 2160 /* 2161 * Hack for failure of aio_aqueue. 2162 */ 2163 status = ops->fetch_status(ujob); 2164 if (status == -1) { 2165 td->td_retval[0] = ops->fetch_error(ujob); 2166 return (0); 2167 } 2168 2169 td->td_retval[0] = EINVAL; 2170 return (0); 2171 } 2172 2173 int 2174 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2175 { 2176 2177 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2178 } 2179 2180 /* syscall - asynchronous read from a file (REALTIME) */ 2181 #ifdef COMPAT_FREEBSD6 2182 int 2183 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2184 { 2185 2186 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2187 &aiocb_ops_osigevent)); 2188 } 2189 #endif 2190 2191 int 2192 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2193 { 2194 2195 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2196 } 2197 2198 int 2199 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2200 { 2201 2202 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2203 } 2204 2205 /* syscall - asynchronous write to a file (REALTIME) */ 2206 #ifdef COMPAT_FREEBSD6 2207 int 2208 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2209 { 2210 2211 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2212 &aiocb_ops_osigevent)); 2213 } 2214 #endif 2215 2216 int 2217 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2218 { 2219 2220 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2221 } 2222 2223 int 2224 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2225 { 2226 2227 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2228 } 2229 2230 int 2231 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2232 { 2233 2234 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2235 } 2236 2237 static int 2238 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2239 struct aiocb **acb_list, int nent, struct sigevent *sig, 2240 struct aiocb_ops *ops) 2241 { 2242 struct proc *p = td->td_proc; 2243 struct aiocb *job; 2244 struct kaioinfo *ki; 2245 struct aioliojob *lj; 2246 struct kevent kev; 2247 int error; 2248 int nagain, nerror; 2249 int i; 2250 2251 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2252 return (EINVAL); 2253 2254 if (nent < 0 || nent > max_aio_queue_per_proc) 2255 return (EINVAL); 2256 2257 if (p->p_aioinfo == NULL) { 2258 error = aio_init_aioinfo(p); 2259 if (error != 0) 2260 return (error); 2261 } 2262 2263 ki = p->p_aioinfo; 2264 2265 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2266 lj->lioj_flags = 0; 2267 lj->lioj_count = 0; 2268 lj->lioj_finished_count = 0; 2269 lj->lioj_signal.sigev_notify = SIGEV_NONE; 2270 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2271 ksiginfo_init(&lj->lioj_ksi); 2272 2273 /* 2274 * Setup signal. 2275 */ 2276 if (sig && (mode == LIO_NOWAIT)) { 2277 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2278 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2279 /* Assume only new style KEVENT */ 2280 memset(&kev, 0, sizeof(kev)); 2281 kev.filter = EVFILT_LIO; 2282 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2283 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2284 kev.data = (intptr_t)lj; 2285 /* pass user defined sigval data */ 2286 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2287 error = kqfd_register( 2288 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2289 M_WAITOK); 2290 if (error) { 2291 uma_zfree(aiolio_zone, lj); 2292 return (error); 2293 } 2294 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2295 ; 2296 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2297 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2298 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2299 uma_zfree(aiolio_zone, lj); 2300 return EINVAL; 2301 } 2302 lj->lioj_flags |= LIOJ_SIGNAL; 2303 } else { 2304 uma_zfree(aiolio_zone, lj); 2305 return EINVAL; 2306 } 2307 } 2308 2309 AIO_LOCK(ki); 2310 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2311 /* 2312 * Add extra aiocb count to avoid the lio to be freed 2313 * by other threads doing aio_waitcomplete or aio_return, 2314 * and prevent event from being sent until we have queued 2315 * all tasks. 2316 */ 2317 lj->lioj_count = 1; 2318 AIO_UNLOCK(ki); 2319 2320 /* 2321 * Get pointers to the list of I/O requests. 2322 */ 2323 nagain = 0; 2324 nerror = 0; 2325 for (i = 0; i < nent; i++) { 2326 job = acb_list[i]; 2327 if (job != NULL) { 2328 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2329 if (error == EAGAIN) 2330 nagain++; 2331 else if (error != 0) 2332 nerror++; 2333 } 2334 } 2335 2336 error = 0; 2337 AIO_LOCK(ki); 2338 if (mode == LIO_WAIT) { 2339 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2340 ki->kaio_flags |= KAIO_WAKEUP; 2341 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2342 PRIBIO | PCATCH, "aiospn", 0); 2343 if (error == ERESTART) 2344 error = EINTR; 2345 if (error) 2346 break; 2347 } 2348 } else { 2349 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2350 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2351 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2352 KNOTE_LOCKED(&lj->klist, 1); 2353 } 2354 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2355 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2356 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2357 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2358 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2359 lj->lioj_count != 1); 2360 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2361 } 2362 } 2363 } 2364 lj->lioj_count--; 2365 if (lj->lioj_count == 0) { 2366 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2367 knlist_delete(&lj->klist, curthread, 1); 2368 PROC_LOCK(p); 2369 sigqueue_take(&lj->lioj_ksi); 2370 PROC_UNLOCK(p); 2371 AIO_UNLOCK(ki); 2372 uma_zfree(aiolio_zone, lj); 2373 } else 2374 AIO_UNLOCK(ki); 2375 2376 if (nerror) 2377 return (EIO); 2378 else if (nagain) 2379 return (EAGAIN); 2380 else 2381 return (error); 2382 } 2383 2384 /* syscall - list directed I/O (REALTIME) */ 2385 #ifdef COMPAT_FREEBSD6 2386 int 2387 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2388 { 2389 struct aiocb **acb_list; 2390 struct sigevent *sigp, sig; 2391 struct osigevent osig; 2392 int error, nent; 2393 2394 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2395 return (EINVAL); 2396 2397 nent = uap->nent; 2398 if (nent < 0 || nent > max_aio_queue_per_proc) 2399 return (EINVAL); 2400 2401 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2402 error = copyin(uap->sig, &osig, sizeof(osig)); 2403 if (error) 2404 return (error); 2405 error = convert_old_sigevent(&osig, &sig); 2406 if (error) 2407 return (error); 2408 sigp = &sig; 2409 } else 2410 sigp = NULL; 2411 2412 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2413 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2414 if (error == 0) 2415 error = kern_lio_listio(td, uap->mode, 2416 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2417 &aiocb_ops_osigevent); 2418 free(acb_list, M_LIO); 2419 return (error); 2420 } 2421 #endif 2422 2423 /* syscall - list directed I/O (REALTIME) */ 2424 int 2425 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2426 { 2427 struct aiocb **acb_list; 2428 struct sigevent *sigp, sig; 2429 int error, nent; 2430 2431 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2432 return (EINVAL); 2433 2434 nent = uap->nent; 2435 if (nent < 0 || nent > max_aio_queue_per_proc) 2436 return (EINVAL); 2437 2438 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2439 error = copyin(uap->sig, &sig, sizeof(sig)); 2440 if (error) 2441 return (error); 2442 sigp = &sig; 2443 } else 2444 sigp = NULL; 2445 2446 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2447 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2448 if (error == 0) 2449 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2450 nent, sigp, &aiocb_ops); 2451 free(acb_list, M_LIO); 2452 return (error); 2453 } 2454 2455 static void 2456 aio_biocleanup(struct bio *bp) 2457 { 2458 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2459 struct kaioinfo *ki; 2460 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2461 2462 /* Release mapping into kernel space. */ 2463 if (pbuf != NULL) { 2464 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2465 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2466 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2467 uma_zfree(pbuf_zone, pbuf); 2468 atomic_subtract_int(&num_buf_aio, 1); 2469 ki = job->userproc->p_aioinfo; 2470 AIO_LOCK(ki); 2471 ki->kaio_buffer_count--; 2472 AIO_UNLOCK(ki); 2473 } else { 2474 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2475 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2476 free(bp->bio_ma, M_TEMP); 2477 atomic_subtract_int(&num_unmapped_aio, 1); 2478 } 2479 g_destroy_bio(bp); 2480 } 2481 2482 static void 2483 aio_biowakeup(struct bio *bp) 2484 { 2485 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2486 size_t nbytes; 2487 long bcount = bp->bio_bcount; 2488 long resid = bp->bio_resid; 2489 int opcode, nblks; 2490 int bio_error = bp->bio_error; 2491 uint16_t flags = bp->bio_flags; 2492 2493 opcode = job->uaiocb.aio_lio_opcode; 2494 2495 aio_biocleanup(bp); 2496 2497 nbytes = bcount - resid; 2498 atomic_add_acq_long(&job->nbytes, nbytes); 2499 nblks = btodb(nbytes); 2500 2501 /* 2502 * If multiple bios experienced an error, the job will reflect the 2503 * error of whichever failed bio completed last. 2504 */ 2505 if (flags & BIO_ERROR) 2506 atomic_store_int(&job->error, bio_error); 2507 if (opcode & LIO_WRITE) 2508 atomic_add_int(&job->outblock, nblks); 2509 else 2510 atomic_add_int(&job->inblock, nblks); 2511 2512 if (refcount_release(&job->nbio)) { 2513 bio_error = atomic_load_int(&job->error); 2514 if (bio_error != 0) 2515 aio_complete(job, -1, bio_error); 2516 else 2517 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2518 } 2519 } 2520 2521 /* syscall - wait for the next completion of an aio request */ 2522 static int 2523 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2524 struct timespec *ts, struct aiocb_ops *ops) 2525 { 2526 struct proc *p = td->td_proc; 2527 struct timeval atv; 2528 struct kaioinfo *ki; 2529 struct kaiocb *job; 2530 struct aiocb *ujob; 2531 long error, status; 2532 int timo; 2533 2534 ops->store_aiocb(ujobp, NULL); 2535 2536 if (ts == NULL) { 2537 timo = 0; 2538 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2539 timo = -1; 2540 } else { 2541 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2542 return (EINVAL); 2543 2544 TIMESPEC_TO_TIMEVAL(&atv, ts); 2545 if (itimerfix(&atv)) 2546 return (EINVAL); 2547 timo = tvtohz(&atv); 2548 } 2549 2550 if (p->p_aioinfo == NULL) { 2551 error = aio_init_aioinfo(p); 2552 if (error != 0) 2553 return (error); 2554 } 2555 ki = p->p_aioinfo; 2556 2557 error = 0; 2558 job = NULL; 2559 AIO_LOCK(ki); 2560 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2561 if (timo == -1) { 2562 error = EWOULDBLOCK; 2563 break; 2564 } 2565 ki->kaio_flags |= KAIO_WAKEUP; 2566 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2567 "aiowc", timo); 2568 if (timo && error == ERESTART) 2569 error = EINTR; 2570 if (error) 2571 break; 2572 } 2573 2574 if (job != NULL) { 2575 MPASS(job->jobflags & KAIOCB_FINISHED); 2576 ujob = job->ujob; 2577 status = job->uaiocb._aiocb_private.status; 2578 error = job->uaiocb._aiocb_private.error; 2579 td->td_retval[0] = status; 2580 td->td_ru.ru_oublock += job->outblock; 2581 td->td_ru.ru_inblock += job->inblock; 2582 td->td_ru.ru_msgsnd += job->msgsnd; 2583 td->td_ru.ru_msgrcv += job->msgrcv; 2584 aio_free_entry(job); 2585 AIO_UNLOCK(ki); 2586 ops->store_aiocb(ujobp, ujob); 2587 ops->store_error(ujob, error); 2588 ops->store_status(ujob, status); 2589 } else 2590 AIO_UNLOCK(ki); 2591 2592 return (error); 2593 } 2594 2595 int 2596 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2597 { 2598 struct timespec ts, *tsp; 2599 int error; 2600 2601 if (uap->timeout) { 2602 /* Get timespec struct. */ 2603 error = copyin(uap->timeout, &ts, sizeof(ts)); 2604 if (error) 2605 return (error); 2606 tsp = &ts; 2607 } else 2608 tsp = NULL; 2609 2610 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2611 } 2612 2613 static int 2614 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2615 struct aiocb_ops *ops) 2616 { 2617 int listop; 2618 2619 switch (op) { 2620 case O_SYNC: 2621 listop = LIO_SYNC; 2622 break; 2623 case O_DSYNC: 2624 listop = LIO_DSYNC; 2625 break; 2626 default: 2627 return (EINVAL); 2628 } 2629 2630 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2631 } 2632 2633 int 2634 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2635 { 2636 2637 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2638 } 2639 2640 /* kqueue attach function */ 2641 static int 2642 filt_aioattach(struct knote *kn) 2643 { 2644 struct kaiocb *job; 2645 2646 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2647 2648 /* 2649 * The job pointer must be validated before using it, so 2650 * registration is restricted to the kernel; the user cannot 2651 * set EV_FLAG1. 2652 */ 2653 if ((kn->kn_flags & EV_FLAG1) == 0) 2654 return (EPERM); 2655 kn->kn_ptr.p_aio = job; 2656 kn->kn_flags &= ~EV_FLAG1; 2657 2658 knlist_add(&job->klist, kn, 0); 2659 2660 return (0); 2661 } 2662 2663 /* kqueue detach function */ 2664 static void 2665 filt_aiodetach(struct knote *kn) 2666 { 2667 struct knlist *knl; 2668 2669 knl = &kn->kn_ptr.p_aio->klist; 2670 knl->kl_lock(knl->kl_lockarg); 2671 if (!knlist_empty(knl)) 2672 knlist_remove(knl, kn, 1); 2673 knl->kl_unlock(knl->kl_lockarg); 2674 } 2675 2676 /* kqueue filter function */ 2677 /*ARGSUSED*/ 2678 static int 2679 filt_aio(struct knote *kn, long hint) 2680 { 2681 struct kaiocb *job = kn->kn_ptr.p_aio; 2682 2683 kn->kn_data = job->uaiocb._aiocb_private.error; 2684 if (!(job->jobflags & KAIOCB_FINISHED)) 2685 return (0); 2686 kn->kn_flags |= EV_EOF; 2687 return (1); 2688 } 2689 2690 /* kqueue attach function */ 2691 static int 2692 filt_lioattach(struct knote *kn) 2693 { 2694 struct aioliojob *lj; 2695 2696 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2697 2698 /* 2699 * The aioliojob pointer must be validated before using it, so 2700 * registration is restricted to the kernel; the user cannot 2701 * set EV_FLAG1. 2702 */ 2703 if ((kn->kn_flags & EV_FLAG1) == 0) 2704 return (EPERM); 2705 kn->kn_ptr.p_lio = lj; 2706 kn->kn_flags &= ~EV_FLAG1; 2707 2708 knlist_add(&lj->klist, kn, 0); 2709 2710 return (0); 2711 } 2712 2713 /* kqueue detach function */ 2714 static void 2715 filt_liodetach(struct knote *kn) 2716 { 2717 struct knlist *knl; 2718 2719 knl = &kn->kn_ptr.p_lio->klist; 2720 knl->kl_lock(knl->kl_lockarg); 2721 if (!knlist_empty(knl)) 2722 knlist_remove(knl, kn, 1); 2723 knl->kl_unlock(knl->kl_lockarg); 2724 } 2725 2726 /* kqueue filter function */ 2727 /*ARGSUSED*/ 2728 static int 2729 filt_lio(struct knote *kn, long hint) 2730 { 2731 struct aioliojob * lj = kn->kn_ptr.p_lio; 2732 2733 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2734 } 2735 2736 #ifdef COMPAT_FREEBSD32 2737 #include <sys/mount.h> 2738 #include <sys/socket.h> 2739 #include <sys/sysent.h> 2740 #include <compat/freebsd32/freebsd32.h> 2741 #include <compat/freebsd32/freebsd32_proto.h> 2742 #include <compat/freebsd32/freebsd32_signal.h> 2743 #include <compat/freebsd32/freebsd32_syscall.h> 2744 #include <compat/freebsd32/freebsd32_util.h> 2745 2746 struct __aiocb_private32 { 2747 int32_t status; 2748 int32_t error; 2749 uint32_t spare; 2750 }; 2751 2752 #ifdef COMPAT_FREEBSD6 2753 typedef struct oaiocb32 { 2754 int aio_fildes; /* File descriptor */ 2755 uint64_t aio_offset __packed; /* File offset for I/O */ 2756 uint32_t aio_buf; /* I/O buffer in process space */ 2757 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2758 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2759 int aio_lio_opcode; /* LIO opcode */ 2760 int aio_reqprio; /* Request priority -- ignored */ 2761 struct __aiocb_private32 _aiocb_private; 2762 } oaiocb32_t; 2763 #endif 2764 2765 typedef struct aiocb32 { 2766 int32_t aio_fildes; /* File descriptor */ 2767 uint64_t aio_offset __packed; /* File offset for I/O */ 2768 uint32_t aio_buf; /* I/O buffer in process space */ 2769 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2770 int __spare__[2]; 2771 uint32_t __spare2__; 2772 int aio_lio_opcode; /* LIO opcode */ 2773 int aio_reqprio; /* Request priority -- ignored */ 2774 struct __aiocb_private32 _aiocb_private; 2775 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2776 } aiocb32_t; 2777 2778 #ifdef COMPAT_FREEBSD6 2779 static int 2780 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2781 { 2782 2783 /* 2784 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2785 * supported by AIO with the old sigevent structure. 2786 */ 2787 CP(*osig, *nsig, sigev_notify); 2788 switch (nsig->sigev_notify) { 2789 case SIGEV_NONE: 2790 break; 2791 case SIGEV_SIGNAL: 2792 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2793 break; 2794 case SIGEV_KEVENT: 2795 nsig->sigev_notify_kqueue = 2796 osig->__sigev_u.__sigev_notify_kqueue; 2797 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2798 break; 2799 default: 2800 return (EINVAL); 2801 } 2802 return (0); 2803 } 2804 2805 static int 2806 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2807 int type __unused) 2808 { 2809 struct oaiocb32 job32; 2810 struct aiocb *kcb = &kjob->uaiocb; 2811 int error; 2812 2813 bzero(kcb, sizeof(struct aiocb)); 2814 error = copyin(ujob, &job32, sizeof(job32)); 2815 if (error) 2816 return (error); 2817 2818 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2819 2820 CP(job32, *kcb, aio_fildes); 2821 CP(job32, *kcb, aio_offset); 2822 PTRIN_CP(job32, *kcb, aio_buf); 2823 CP(job32, *kcb, aio_nbytes); 2824 CP(job32, *kcb, aio_lio_opcode); 2825 CP(job32, *kcb, aio_reqprio); 2826 CP(job32, *kcb, _aiocb_private.status); 2827 CP(job32, *kcb, _aiocb_private.error); 2828 return (convert_old_sigevent32(&job32.aio_sigevent, 2829 &kcb->aio_sigevent)); 2830 } 2831 #endif 2832 2833 static int 2834 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2835 { 2836 struct aiocb32 job32; 2837 struct aiocb *kcb = &kjob->uaiocb; 2838 struct iovec32 *iov32; 2839 int error; 2840 2841 error = copyin(ujob, &job32, sizeof(job32)); 2842 if (error) 2843 return (error); 2844 CP(job32, *kcb, aio_fildes); 2845 CP(job32, *kcb, aio_offset); 2846 CP(job32, *kcb, aio_lio_opcode); 2847 if (type == LIO_NOP) 2848 type = kcb->aio_lio_opcode; 2849 if (type & LIO_VECTORED) { 2850 iov32 = PTRIN(job32.aio_iov); 2851 CP(job32, *kcb, aio_iovcnt); 2852 /* malloc a uio and copy in the iovec */ 2853 error = freebsd32_copyinuio(iov32, 2854 kcb->aio_iovcnt, &kjob->uiop); 2855 if (error) 2856 return (error); 2857 } else { 2858 PTRIN_CP(job32, *kcb, aio_buf); 2859 CP(job32, *kcb, aio_nbytes); 2860 } 2861 CP(job32, *kcb, aio_reqprio); 2862 CP(job32, *kcb, _aiocb_private.status); 2863 CP(job32, *kcb, _aiocb_private.error); 2864 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2865 2866 return (error); 2867 } 2868 2869 static long 2870 aiocb32_fetch_status(struct aiocb *ujob) 2871 { 2872 struct aiocb32 *ujob32; 2873 2874 ujob32 = (struct aiocb32 *)ujob; 2875 return (fuword32(&ujob32->_aiocb_private.status)); 2876 } 2877 2878 static long 2879 aiocb32_fetch_error(struct aiocb *ujob) 2880 { 2881 struct aiocb32 *ujob32; 2882 2883 ujob32 = (struct aiocb32 *)ujob; 2884 return (fuword32(&ujob32->_aiocb_private.error)); 2885 } 2886 2887 static int 2888 aiocb32_store_status(struct aiocb *ujob, long status) 2889 { 2890 struct aiocb32 *ujob32; 2891 2892 ujob32 = (struct aiocb32 *)ujob; 2893 return (suword32(&ujob32->_aiocb_private.status, status)); 2894 } 2895 2896 static int 2897 aiocb32_store_error(struct aiocb *ujob, long error) 2898 { 2899 struct aiocb32 *ujob32; 2900 2901 ujob32 = (struct aiocb32 *)ujob; 2902 return (suword32(&ujob32->_aiocb_private.error, error)); 2903 } 2904 2905 static int 2906 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2907 { 2908 2909 return (suword32(ujobp, (long)ujob)); 2910 } 2911 2912 static struct aiocb_ops aiocb32_ops = { 2913 .aio_copyin = aiocb32_copyin, 2914 .fetch_status = aiocb32_fetch_status, 2915 .fetch_error = aiocb32_fetch_error, 2916 .store_status = aiocb32_store_status, 2917 .store_error = aiocb32_store_error, 2918 .store_aiocb = aiocb32_store_aiocb, 2919 }; 2920 2921 #ifdef COMPAT_FREEBSD6 2922 static struct aiocb_ops aiocb32_ops_osigevent = { 2923 .aio_copyin = aiocb32_copyin_old_sigevent, 2924 .fetch_status = aiocb32_fetch_status, 2925 .fetch_error = aiocb32_fetch_error, 2926 .store_status = aiocb32_store_status, 2927 .store_error = aiocb32_store_error, 2928 .store_aiocb = aiocb32_store_aiocb, 2929 }; 2930 #endif 2931 2932 int 2933 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2934 { 2935 2936 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2937 } 2938 2939 int 2940 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2941 { 2942 struct timespec32 ts32; 2943 struct timespec ts, *tsp; 2944 struct aiocb **ujoblist; 2945 uint32_t *ujoblist32; 2946 int error, i; 2947 2948 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2949 return (EINVAL); 2950 2951 if (uap->timeout) { 2952 /* Get timespec struct. */ 2953 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2954 return (error); 2955 CP(ts32, ts, tv_sec); 2956 CP(ts32, ts, tv_nsec); 2957 tsp = &ts; 2958 } else 2959 tsp = NULL; 2960 2961 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2962 ujoblist32 = (uint32_t *)ujoblist; 2963 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2964 sizeof(ujoblist32[0])); 2965 if (error == 0) { 2966 for (i = uap->nent - 1; i >= 0; i--) 2967 ujoblist[i] = PTRIN(ujoblist32[i]); 2968 2969 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2970 } 2971 free(ujoblist, M_AIO); 2972 return (error); 2973 } 2974 2975 int 2976 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2977 { 2978 2979 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2980 } 2981 2982 #ifdef COMPAT_FREEBSD6 2983 int 2984 freebsd6_freebsd32_aio_read(struct thread *td, 2985 struct freebsd6_freebsd32_aio_read_args *uap) 2986 { 2987 2988 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2989 &aiocb32_ops_osigevent)); 2990 } 2991 #endif 2992 2993 int 2994 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2995 { 2996 2997 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2998 &aiocb32_ops)); 2999 } 3000 3001 int 3002 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 3003 { 3004 3005 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 3006 &aiocb32_ops)); 3007 } 3008 3009 #ifdef COMPAT_FREEBSD6 3010 int 3011 freebsd6_freebsd32_aio_write(struct thread *td, 3012 struct freebsd6_freebsd32_aio_write_args *uap) 3013 { 3014 3015 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3016 &aiocb32_ops_osigevent)); 3017 } 3018 #endif 3019 3020 int 3021 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3022 { 3023 3024 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3025 &aiocb32_ops)); 3026 } 3027 3028 int 3029 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3030 { 3031 3032 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3033 &aiocb32_ops)); 3034 } 3035 3036 int 3037 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3038 { 3039 3040 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3041 &aiocb32_ops)); 3042 } 3043 3044 int 3045 freebsd32_aio_waitcomplete(struct thread *td, 3046 struct freebsd32_aio_waitcomplete_args *uap) 3047 { 3048 struct timespec32 ts32; 3049 struct timespec ts, *tsp; 3050 int error; 3051 3052 if (uap->timeout) { 3053 /* Get timespec struct. */ 3054 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3055 if (error) 3056 return (error); 3057 CP(ts32, ts, tv_sec); 3058 CP(ts32, ts, tv_nsec); 3059 tsp = &ts; 3060 } else 3061 tsp = NULL; 3062 3063 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3064 &aiocb32_ops)); 3065 } 3066 3067 int 3068 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3069 { 3070 3071 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3072 &aiocb32_ops)); 3073 } 3074 3075 #ifdef COMPAT_FREEBSD6 3076 int 3077 freebsd6_freebsd32_lio_listio(struct thread *td, 3078 struct freebsd6_freebsd32_lio_listio_args *uap) 3079 { 3080 struct aiocb **acb_list; 3081 struct sigevent *sigp, sig; 3082 struct osigevent32 osig; 3083 uint32_t *acb_list32; 3084 int error, i, nent; 3085 3086 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3087 return (EINVAL); 3088 3089 nent = uap->nent; 3090 if (nent < 0 || nent > max_aio_queue_per_proc) 3091 return (EINVAL); 3092 3093 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3094 error = copyin(uap->sig, &osig, sizeof(osig)); 3095 if (error) 3096 return (error); 3097 error = convert_old_sigevent32(&osig, &sig); 3098 if (error) 3099 return (error); 3100 sigp = &sig; 3101 } else 3102 sigp = NULL; 3103 3104 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3105 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3106 if (error) { 3107 free(acb_list32, M_LIO); 3108 return (error); 3109 } 3110 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3111 for (i = 0; i < nent; i++) 3112 acb_list[i] = PTRIN(acb_list32[i]); 3113 free(acb_list32, M_LIO); 3114 3115 error = kern_lio_listio(td, uap->mode, 3116 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3117 &aiocb32_ops_osigevent); 3118 free(acb_list, M_LIO); 3119 return (error); 3120 } 3121 #endif 3122 3123 int 3124 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3125 { 3126 struct aiocb **acb_list; 3127 struct sigevent *sigp, sig; 3128 struct sigevent32 sig32; 3129 uint32_t *acb_list32; 3130 int error, i, nent; 3131 3132 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3133 return (EINVAL); 3134 3135 nent = uap->nent; 3136 if (nent < 0 || nent > max_aio_queue_per_proc) 3137 return (EINVAL); 3138 3139 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3140 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3141 if (error) 3142 return (error); 3143 error = convert_sigevent32(&sig32, &sig); 3144 if (error) 3145 return (error); 3146 sigp = &sig; 3147 } else 3148 sigp = NULL; 3149 3150 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3151 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3152 if (error) { 3153 free(acb_list32, M_LIO); 3154 return (error); 3155 } 3156 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3157 for (i = 0; i < nent; i++) 3158 acb_list[i] = PTRIN(acb_list32[i]); 3159 free(acb_list32, M_LIO); 3160 3161 error = kern_lio_listio(td, uap->mode, 3162 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3163 &aiocb32_ops); 3164 free(acb_list, M_LIO); 3165 return (error); 3166 } 3167 3168 #endif 3169