1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/socketvar.h> 46 #include <sys/syscall.h> 47 #include <sys/sysent.h> 48 #include <sys/sysctl.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 #include <sys/conf.h> 52 #include <sys/event.h> 53 54 #include <posix4/posix4.h> 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/uma.h> 60 #include <sys/aio.h> 61 62 #include "opt_vfs_aio.h" 63 64 NET_NEEDS_GIANT("aio"); 65 66 /* 67 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 68 * overflow. 69 */ 70 static long jobrefid; 71 72 #define JOBST_NULL 0x0 73 #define JOBST_JOBQGLOBAL 0x2 74 #define JOBST_JOBRUNNING 0x3 75 #define JOBST_JOBFINISHED 0x4 76 #define JOBST_JOBQBUF 0x5 77 #define JOBST_JOBBFINISHED 0x6 78 79 #ifndef MAX_AIO_PER_PROC 80 #define MAX_AIO_PER_PROC 32 81 #endif 82 83 #ifndef MAX_AIO_QUEUE_PER_PROC 84 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 85 #endif 86 87 #ifndef MAX_AIO_PROCS 88 #define MAX_AIO_PROCS 32 89 #endif 90 91 #ifndef MAX_AIO_QUEUE 92 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 93 #endif 94 95 #ifndef TARGET_AIO_PROCS 96 #define TARGET_AIO_PROCS 4 97 #endif 98 99 #ifndef MAX_BUF_AIO 100 #define MAX_BUF_AIO 16 101 #endif 102 103 #ifndef AIOD_TIMEOUT_DEFAULT 104 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 105 #endif 106 107 #ifndef AIOD_LIFETIME_DEFAULT 108 #define AIOD_LIFETIME_DEFAULT (30 * hz) 109 #endif 110 111 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 112 113 static int max_aio_procs = MAX_AIO_PROCS; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 115 CTLFLAG_RW, &max_aio_procs, 0, 116 "Maximum number of kernel threads to use for handling async IO "); 117 118 static int num_aio_procs = 0; 119 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 120 CTLFLAG_RD, &num_aio_procs, 0, 121 "Number of presently active kernel threads for async IO"); 122 123 /* 124 * The code will adjust the actual number of AIO processes towards this 125 * number when it gets a chance. 126 */ 127 static int target_aio_procs = TARGET_AIO_PROCS; 128 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 129 0, "Preferred number of ready kernel threads for async IO"); 130 131 static int max_queue_count = MAX_AIO_QUEUE; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 133 "Maximum number of aio requests to queue, globally"); 134 135 static int num_queue_count = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 137 "Number of queued aio requests"); 138 139 static int num_buf_aio = 0; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 141 "Number of aio requests presently handled by the buf subsystem"); 142 143 /* Number of async I/O thread in the process of being started */ 144 /* XXX This should be local to _aio_aqueue() */ 145 static int num_aio_resv_start = 0; 146 147 static int aiod_timeout; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 149 "Timeout value for synchronous aio operations"); 150 151 static int aiod_lifetime; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 153 "Maximum lifetime for idle aiod"); 154 155 static int unloadable = 0; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 157 "Allow unload of aio (not recommended)"); 158 159 160 static int max_aio_per_proc = MAX_AIO_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 162 0, "Maximum active aio requests per process (stored in the process)"); 163 164 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 166 &max_aio_queue_per_proc, 0, 167 "Maximum queued aio requests per process (stored in the process)"); 168 169 static int max_buf_aio = MAX_BUF_AIO; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 171 "Maximum buf aio requests per process (stored in the process)"); 172 173 struct aiocblist { 174 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 175 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 176 int jobflags; 177 int jobstate; 178 int inputcharge; 179 int outputcharge; 180 struct buf *bp; /* Buffer pointer */ 181 struct proc *userproc; /* User process */ /* Not td! */ 182 struct ucred *cred; /* Active credential when created */ 183 struct file *fd_file; /* Pointer to file structure */ 184 struct aio_liojob *lio; /* Optional lio job */ 185 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 186 struct knlist klist; /* list of knotes */ 187 struct aiocb uaiocb; /* Kernel I/O control block */ 188 }; 189 190 /* jobflags */ 191 #define AIOCBLIST_RUNDOWN 0x4 192 #define AIOCBLIST_DONE 0x10 193 194 /* 195 * AIO process info 196 */ 197 #define AIOP_FREE 0x1 /* proc on free queue */ 198 199 struct aiothreadlist { 200 int aiothreadflags; /* AIO proc flags */ 201 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 202 struct thread *aiothread; /* The AIO thread */ 203 }; 204 205 /* 206 * data-structure for lio signal management 207 */ 208 struct aio_liojob { 209 int lioj_flags; 210 int lioj_buffer_count; 211 int lioj_buffer_finished_count; 212 int lioj_queue_count; 213 int lioj_queue_finished_count; 214 struct sigevent lioj_signal; /* signal on all I/O done */ 215 TAILQ_ENTRY(aio_liojob) lioj_list; 216 struct kaioinfo *lioj_ki; 217 }; 218 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 219 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 220 221 /* 222 * per process aio data structure 223 */ 224 struct kaioinfo { 225 int kaio_flags; /* per process kaio flags */ 226 int kaio_maxactive_count; /* maximum number of AIOs */ 227 int kaio_active_count; /* number of currently used AIOs */ 228 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 229 int kaio_queue_count; /* size of AIO queue */ 230 int kaio_ballowed_count; /* maximum number of buffers */ 231 int kaio_queue_finished_count; /* number of daemon jobs finished */ 232 int kaio_buffer_count; /* number of physio buffers */ 233 int kaio_buffer_finished_count; /* count of I/O done */ 234 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 235 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 239 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 240 }; 241 242 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 243 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 244 245 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 246 static struct mtx aio_freeproc_mtx; 247 248 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 249 250 static void aio_init_aioinfo(struct proc *p); 251 static void aio_onceonly(void); 252 static int aio_free_entry(struct aiocblist *aiocbe); 253 static void aio_process(struct aiocblist *aiocbe); 254 static int aio_newproc(void); 255 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 256 static void aio_physwakeup(struct buf *bp); 257 static void aio_proc_rundown(void *arg, struct proc *p); 258 static int aio_fphysio(struct aiocblist *aiocbe); 259 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 260 static void aio_daemon(void *uproc); 261 static void aio_swake_cb(struct socket *, struct sockbuf *); 262 static int aio_unload(void); 263 static int filt_aioattach(struct knote *kn); 264 static void filt_aiodetach(struct knote *kn); 265 static int filt_aio(struct knote *kn, long hint); 266 267 /* 268 * Zones for: 269 * kaio Per process async io info 270 * aiop async io thread data 271 * aiocb async io jobs 272 * aiol list io job pointer - internal to aio_suspend XXX 273 * aiolio list io jobs 274 */ 275 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 276 277 /* kqueue filters for aio */ 278 static struct filterops aio_filtops = 279 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 280 281 static eventhandler_tag exit_tag, exec_tag; 282 283 /* 284 * Main operations function for use as a kernel module. 285 */ 286 static int 287 aio_modload(struct module *module, int cmd, void *arg) 288 { 289 int error = 0; 290 291 switch (cmd) { 292 case MOD_LOAD: 293 aio_onceonly(); 294 break; 295 case MOD_UNLOAD: 296 error = aio_unload(); 297 break; 298 case MOD_SHUTDOWN: 299 break; 300 default: 301 error = EINVAL; 302 break; 303 } 304 return (error); 305 } 306 307 static moduledata_t aio_mod = { 308 "aio", 309 &aio_modload, 310 NULL 311 }; 312 313 SYSCALL_MODULE_HELPER(aio_return); 314 SYSCALL_MODULE_HELPER(aio_suspend); 315 SYSCALL_MODULE_HELPER(aio_cancel); 316 SYSCALL_MODULE_HELPER(aio_error); 317 SYSCALL_MODULE_HELPER(aio_read); 318 SYSCALL_MODULE_HELPER(aio_write); 319 SYSCALL_MODULE_HELPER(aio_waitcomplete); 320 SYSCALL_MODULE_HELPER(lio_listio); 321 322 DECLARE_MODULE(aio, aio_mod, 323 SI_SUB_VFS, SI_ORDER_ANY); 324 MODULE_VERSION(aio, 1); 325 326 /* 327 * Startup initialization 328 */ 329 static void 330 aio_onceonly(void) 331 { 332 333 /* XXX: should probably just use so->callback */ 334 aio_swake = &aio_swake_cb; 335 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 336 EVENTHANDLER_PRI_ANY); 337 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 338 EVENTHANDLER_PRI_ANY); 339 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 340 TAILQ_INIT(&aio_freeproc); 341 mtx_init(&aio_freeproc_mtx, "aio_freeproc", NULL, MTX_DEF); 342 TAILQ_INIT(&aio_jobs); 343 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 344 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 345 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 346 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 347 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 348 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 349 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 350 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 351 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 352 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 353 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 354 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 355 jobrefid = 1; 356 async_io_version = _POSIX_VERSION; 357 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 358 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 359 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 360 } 361 362 /* 363 * Callback for unload of AIO when used as a module. 364 */ 365 static int 366 aio_unload(void) 367 { 368 int error; 369 370 /* 371 * XXX: no unloads by default, it's too dangerous. 372 * perhaps we could do it if locked out callers and then 373 * did an aio_proc_rundown() on each process. 374 */ 375 if (!unloadable) 376 return (EOPNOTSUPP); 377 378 error = kqueue_del_filteropts(EVFILT_AIO); 379 if (error) 380 return error; 381 382 async_io_version = 0; 383 aio_swake = NULL; 384 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 385 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 386 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 387 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 388 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 389 return (0); 390 } 391 392 /* 393 * Init the per-process aioinfo structure. The aioinfo limits are set 394 * per-process for user limit (resource) management. 395 */ 396 static void 397 aio_init_aioinfo(struct proc *p) 398 { 399 struct kaioinfo *ki; 400 401 ki = uma_zalloc(kaio_zone, M_WAITOK); 402 ki->kaio_flags = 0; 403 ki->kaio_maxactive_count = max_aio_per_proc; 404 ki->kaio_active_count = 0; 405 ki->kaio_qallowed_count = max_aio_queue_per_proc; 406 ki->kaio_queue_count = 0; 407 ki->kaio_ballowed_count = max_buf_aio; 408 ki->kaio_buffer_count = 0; 409 ki->kaio_buffer_finished_count = 0; 410 TAILQ_INIT(&ki->kaio_jobdone); 411 TAILQ_INIT(&ki->kaio_jobqueue); 412 TAILQ_INIT(&ki->kaio_bufdone); 413 TAILQ_INIT(&ki->kaio_bufqueue); 414 TAILQ_INIT(&ki->kaio_liojoblist); 415 TAILQ_INIT(&ki->kaio_sockqueue); 416 PROC_LOCK(p); 417 if (p->p_aioinfo == NULL) { 418 p->p_aioinfo = ki; 419 PROC_UNLOCK(p); 420 } else { 421 PROC_UNLOCK(p); 422 uma_zfree(kaio_zone, ki); 423 } 424 425 while (num_aio_procs < target_aio_procs) 426 aio_newproc(); 427 } 428 429 /* 430 * Free a job entry. Wait for completion if it is currently active, but don't 431 * delay forever. If we delay, we return a flag that says that we have to 432 * restart the queue scan. 433 */ 434 static int 435 aio_free_entry(struct aiocblist *aiocbe) 436 { 437 struct kaioinfo *ki; 438 struct aio_liojob *lj; 439 struct proc *p; 440 int error; 441 int s; 442 443 if (aiocbe->jobstate == JOBST_NULL) 444 panic("aio_free_entry: freeing already free job"); 445 446 p = aiocbe->userproc; 447 ki = p->p_aioinfo; 448 lj = aiocbe->lio; 449 if (ki == NULL) 450 panic("aio_free_entry: missing p->p_aioinfo"); 451 452 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 453 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 454 tsleep(aiocbe, PRIBIO, "jobwai", 0); 455 } 456 if (aiocbe->bp == NULL) { 457 if (ki->kaio_queue_count <= 0) 458 panic("aio_free_entry: process queue size <= 0"); 459 if (num_queue_count <= 0) 460 panic("aio_free_entry: system wide queue size <= 0"); 461 462 if (lj) { 463 lj->lioj_queue_count--; 464 if (aiocbe->jobflags & AIOCBLIST_DONE) 465 lj->lioj_queue_finished_count--; 466 } 467 ki->kaio_queue_count--; 468 if (aiocbe->jobflags & AIOCBLIST_DONE) 469 ki->kaio_queue_finished_count--; 470 num_queue_count--; 471 } else { 472 if (lj) { 473 lj->lioj_buffer_count--; 474 if (aiocbe->jobflags & AIOCBLIST_DONE) 475 lj->lioj_buffer_finished_count--; 476 } 477 if (aiocbe->jobflags & AIOCBLIST_DONE) 478 ki->kaio_buffer_finished_count--; 479 ki->kaio_buffer_count--; 480 num_buf_aio--; 481 } 482 483 /* aiocbe is going away, we need to destroy any knotes */ 484 /* XXXKSE Note the thread here is used to eventually find the 485 * owning process again, but it is also used to do a fo_close 486 * and that requires the thread. (but does it require the 487 * OWNING thread? (or maybe the running thread?) 488 * There is a semantic problem here... 489 */ 490 knlist_delete(&aiocbe->klist, FIRST_THREAD_IN_PROC(p), 0); /* XXXKSE */ 491 492 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 493 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 494 ki->kaio_flags &= ~KAIO_WAKEUP; 495 wakeup(p); 496 } 497 498 if (aiocbe->jobstate == JOBST_JOBQBUF) { 499 if ((error = aio_fphysio(aiocbe)) != 0) 500 return (error); 501 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 502 panic("aio_free_entry: invalid physio finish-up state"); 503 s = splbio(); 504 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 505 splx(s); 506 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 507 s = splnet(); 508 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 509 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 510 splx(s); 511 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 512 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 513 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 514 s = splbio(); 515 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 516 splx(s); 517 if (aiocbe->bp) { 518 vunmapbuf(aiocbe->bp); 519 relpbuf(aiocbe->bp, NULL); 520 aiocbe->bp = NULL; 521 } 522 } 523 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 524 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 525 uma_zfree(aiolio_zone, lj); 526 } 527 aiocbe->jobstate = JOBST_NULL; 528 fdrop(aiocbe->fd_file, curthread); 529 crfree(aiocbe->cred); 530 uma_zfree(aiocb_zone, aiocbe); 531 return (0); 532 } 533 534 /* 535 * Rundown the jobs for a given process. 536 */ 537 static void 538 aio_proc_rundown(void *arg, struct proc *p) 539 { 540 int s; 541 struct kaioinfo *ki; 542 struct aio_liojob *lj, *ljn; 543 struct aiocblist *aiocbe, *aiocbn; 544 struct file *fp; 545 struct socket *so; 546 547 ki = p->p_aioinfo; 548 if (ki == NULL) 549 return; 550 551 mtx_lock(&Giant); 552 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 553 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 554 ki->kaio_buffer_finished_count)) { 555 ki->kaio_flags |= KAIO_RUNDOWN; 556 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 557 break; 558 } 559 560 /* 561 * Move any aio ops that are waiting on socket I/O to the normal job 562 * queues so they are cleaned up with any others. 563 */ 564 s = splnet(); 565 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 566 aiocbn) { 567 aiocbn = TAILQ_NEXT(aiocbe, plist); 568 fp = aiocbe->fd_file; 569 if (fp != NULL) { 570 so = fp->f_data; 571 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 572 if (TAILQ_EMPTY(&so->so_aiojobq)) { 573 SOCKBUF_LOCK(&so->so_snd); 574 so->so_snd.sb_flags &= ~SB_AIO; 575 SOCKBUF_UNLOCK(&so->so_snd); 576 SOCKBUF_LOCK(&so->so_rcv); 577 so->so_rcv.sb_flags &= ~SB_AIO; 578 SOCKBUF_UNLOCK(&so->so_rcv); 579 } 580 } 581 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 582 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 583 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 584 } 585 splx(s); 586 587 restart1: 588 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 589 aiocbn = TAILQ_NEXT(aiocbe, plist); 590 if (aio_free_entry(aiocbe)) 591 goto restart1; 592 } 593 594 restart2: 595 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 596 aiocbn) { 597 aiocbn = TAILQ_NEXT(aiocbe, plist); 598 if (aio_free_entry(aiocbe)) 599 goto restart2; 600 } 601 602 /* 603 * Note the use of lots of splbio here, trying to avoid splbio for long chains 604 * of I/O. Probably unnecessary. 605 */ 606 restart3: 607 s = splbio(); 608 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 609 ki->kaio_flags |= KAIO_WAKEUP; 610 tsleep(p, PRIBIO, "aioprn", 0); 611 splx(s); 612 goto restart3; 613 } 614 splx(s); 615 616 restart4: 617 s = splbio(); 618 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 619 aiocbn = TAILQ_NEXT(aiocbe, plist); 620 if (aio_free_entry(aiocbe)) { 621 splx(s); 622 goto restart4; 623 } 624 } 625 splx(s); 626 627 /* 628 * If we've slept, jobs might have moved from one queue to another. 629 * Retry rundown if we didn't manage to empty the queues. 630 */ 631 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 632 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 633 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 634 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 635 goto restart1; 636 637 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 638 ljn = TAILQ_NEXT(lj, lioj_list); 639 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 640 0)) { 641 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 642 uma_zfree(aiolio_zone, lj); 643 } else { 644 #ifdef DIAGNOSTIC 645 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 646 "QF:%d\n", lj->lioj_buffer_count, 647 lj->lioj_buffer_finished_count, 648 lj->lioj_queue_count, 649 lj->lioj_queue_finished_count); 650 #endif 651 } 652 } 653 654 uma_zfree(kaio_zone, ki); 655 p->p_aioinfo = NULL; 656 mtx_unlock(&Giant); 657 } 658 659 /* 660 * Select a job to run (called by an AIO daemon). 661 */ 662 static struct aiocblist * 663 aio_selectjob(struct aiothreadlist *aiop) 664 { 665 int s; 666 struct aiocblist *aiocbe; 667 struct kaioinfo *ki; 668 struct proc *userp; 669 670 s = splnet(); 671 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 672 TAILQ_NEXT(aiocbe, list)) { 673 userp = aiocbe->userproc; 674 ki = userp->p_aioinfo; 675 676 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 677 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 678 splx(s); 679 return (aiocbe); 680 } 681 } 682 splx(s); 683 684 return (NULL); 685 } 686 687 /* 688 * The AIO processing activity. This is the code that does the I/O request for 689 * the non-physio version of the operations. The normal vn operations are used, 690 * and this code should work in all instances for every type of file, including 691 * pipes, sockets, fifos, and regular files. 692 */ 693 static void 694 aio_process(struct aiocblist *aiocbe) 695 { 696 struct ucred *td_savedcred; 697 struct thread *td; 698 struct proc *mycp; 699 struct aiocb *cb; 700 struct file *fp; 701 struct uio auio; 702 struct iovec aiov; 703 int cnt; 704 int error; 705 int oublock_st, oublock_end; 706 int inblock_st, inblock_end; 707 708 td = curthread; 709 td_savedcred = td->td_ucred; 710 td->td_ucred = aiocbe->cred; 711 mycp = td->td_proc; 712 cb = &aiocbe->uaiocb; 713 fp = aiocbe->fd_file; 714 715 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 716 aiov.iov_len = cb->aio_nbytes; 717 718 auio.uio_iov = &aiov; 719 auio.uio_iovcnt = 1; 720 auio.uio_offset = cb->aio_offset; 721 auio.uio_resid = cb->aio_nbytes; 722 cnt = cb->aio_nbytes; 723 auio.uio_segflg = UIO_USERSPACE; 724 auio.uio_td = td; 725 726 inblock_st = mycp->p_stats->p_ru.ru_inblock; 727 oublock_st = mycp->p_stats->p_ru.ru_oublock; 728 /* 729 * _aio_aqueue() acquires a reference to the file that is 730 * released in aio_free_entry(). 731 */ 732 if (cb->aio_lio_opcode == LIO_READ) { 733 auio.uio_rw = UIO_READ; 734 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 735 } else { 736 auio.uio_rw = UIO_WRITE; 737 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 738 } 739 inblock_end = mycp->p_stats->p_ru.ru_inblock; 740 oublock_end = mycp->p_stats->p_ru.ru_oublock; 741 742 aiocbe->inputcharge = inblock_end - inblock_st; 743 aiocbe->outputcharge = oublock_end - oublock_st; 744 745 if ((error) && (auio.uio_resid != cnt)) { 746 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 747 error = 0; 748 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 749 PROC_LOCK(aiocbe->userproc); 750 psignal(aiocbe->userproc, SIGPIPE); 751 PROC_UNLOCK(aiocbe->userproc); 752 } 753 } 754 755 cnt -= auio.uio_resid; 756 cb->_aiocb_private.error = error; 757 cb->_aiocb_private.status = cnt; 758 td->td_ucred = td_savedcred; 759 } 760 761 /* 762 * The AIO daemon, most of the actual work is done in aio_process, 763 * but the setup (and address space mgmt) is done in this routine. 764 */ 765 static void 766 aio_daemon(void *uproc) 767 { 768 int s; 769 struct aio_liojob *lj; 770 struct aiocb *cb; 771 struct aiocblist *aiocbe; 772 struct aiothreadlist *aiop; 773 struct kaioinfo *ki; 774 struct proc *curcp, *mycp, *userp; 775 struct vmspace *myvm, *tmpvm; 776 struct thread *td = curthread; 777 struct pgrp *newpgrp; 778 struct session *newsess; 779 780 /* 781 * Local copies of curproc (cp) and vmspace (myvm) 782 */ 783 mycp = td->td_proc; 784 myvm = mycp->p_vmspace; 785 786 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 787 788 /* 789 * Allocate and ready the aio control info. There is one aiop structure 790 * per daemon. 791 */ 792 aiop = uma_zalloc(aiop_zone, M_WAITOK); 793 aiop->aiothread = td; 794 aiop->aiothreadflags |= AIOP_FREE; 795 796 /* 797 * Place thread (lightweight process) onto the AIO free thread list. 798 */ 799 mtx_lock(&aio_freeproc_mtx); 800 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 801 mtx_unlock(&aio_freeproc_mtx); 802 803 /* 804 * Get rid of our current filedescriptors. AIOD's don't need any 805 * filedescriptors, except as temporarily inherited from the client. 806 */ 807 mtx_lock(&Giant); 808 fdfree(td); 809 810 mtx_unlock(&Giant); 811 /* The daemon resides in its own pgrp. */ 812 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 813 M_WAITOK | M_ZERO); 814 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 815 M_WAITOK | M_ZERO); 816 817 sx_xlock(&proctree_lock); 818 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 819 sx_xunlock(&proctree_lock); 820 mtx_lock(&Giant); 821 822 /* 823 * Wakeup parent process. (Parent sleeps to keep from blasting away 824 * and creating too many daemons.) 825 */ 826 wakeup(mycp); 827 828 for (;;) { 829 /* 830 * curcp is the current daemon process context. 831 * userp is the current user process context. 832 */ 833 curcp = mycp; 834 835 /* 836 * Take daemon off of free queue 837 */ 838 mtx_lock(&aio_freeproc_mtx); 839 if (aiop->aiothreadflags & AIOP_FREE) { 840 TAILQ_REMOVE(&aio_freeproc, aiop, list); 841 aiop->aiothreadflags &= ~AIOP_FREE; 842 } 843 mtx_unlock(&aio_freeproc_mtx); 844 845 /* 846 * Check for jobs. 847 */ 848 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 849 cb = &aiocbe->uaiocb; 850 userp = aiocbe->userproc; 851 852 aiocbe->jobstate = JOBST_JOBRUNNING; 853 854 /* 855 * Connect to process address space for user program. 856 */ 857 if (userp != curcp) { 858 /* 859 * Save the current address space that we are 860 * connected to. 861 */ 862 tmpvm = mycp->p_vmspace; 863 864 /* 865 * Point to the new user address space, and 866 * refer to it. 867 */ 868 mycp->p_vmspace = userp->p_vmspace; 869 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 870 871 /* Activate the new mapping. */ 872 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 873 874 /* 875 * If the old address space wasn't the daemons 876 * own address space, then we need to remove the 877 * daemon's reference from the other process 878 * that it was acting on behalf of. 879 */ 880 if (tmpvm != myvm) { 881 vmspace_free(tmpvm); 882 } 883 curcp = userp; 884 } 885 886 ki = userp->p_aioinfo; 887 lj = aiocbe->lio; 888 889 /* Account for currently active jobs. */ 890 ki->kaio_active_count++; 891 892 /* Do the I/O function. */ 893 aio_process(aiocbe); 894 895 /* Decrement the active job count. */ 896 ki->kaio_active_count--; 897 898 /* 899 * Increment the completion count for wakeup/signal 900 * comparisons. 901 */ 902 aiocbe->jobflags |= AIOCBLIST_DONE; 903 ki->kaio_queue_finished_count++; 904 if (lj) 905 lj->lioj_queue_finished_count++; 906 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 907 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 908 ki->kaio_flags &= ~KAIO_WAKEUP; 909 wakeup(userp); 910 } 911 912 s = splbio(); 913 if (lj && (lj->lioj_flags & 914 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 915 if ((lj->lioj_queue_finished_count == 916 lj->lioj_queue_count) && 917 (lj->lioj_buffer_finished_count == 918 lj->lioj_buffer_count)) { 919 PROC_LOCK(userp); 920 psignal(userp, 921 lj->lioj_signal.sigev_signo); 922 PROC_UNLOCK(userp); 923 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 924 } 925 } 926 splx(s); 927 928 aiocbe->jobstate = JOBST_JOBFINISHED; 929 930 s = splnet(); 931 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 932 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 933 splx(s); 934 KNOTE_UNLOCKED(&aiocbe->klist, 0); 935 936 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 937 wakeup(aiocbe); 938 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 939 } 940 941 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 942 PROC_LOCK(userp); 943 psignal(userp, cb->aio_sigevent.sigev_signo); 944 PROC_UNLOCK(userp); 945 } 946 } 947 948 /* 949 * Disconnect from user address space. 950 */ 951 if (curcp != mycp) { 952 /* Get the user address space to disconnect from. */ 953 tmpvm = mycp->p_vmspace; 954 955 /* Get original address space for daemon. */ 956 mycp->p_vmspace = myvm; 957 958 /* Activate the daemon's address space. */ 959 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 960 #ifdef DIAGNOSTIC 961 if (tmpvm == myvm) { 962 printf("AIOD: vmspace problem -- %d\n", 963 mycp->p_pid); 964 } 965 #endif 966 /* Remove our vmspace reference. */ 967 vmspace_free(tmpvm); 968 969 curcp = mycp; 970 } 971 972 mtx_lock(&aio_freeproc_mtx); 973 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 974 aiop->aiothreadflags |= AIOP_FREE; 975 976 /* 977 * If daemon is inactive for a long time, allow it to exit, 978 * thereby freeing resources. 979 */ 980 if (msleep(aiop->aiothread, &aio_freeproc_mtx, PDROP | PRIBIO, 981 "aiordy", aiod_lifetime)) { 982 s = splnet(); 983 if (TAILQ_EMPTY(&aio_jobs)) { 984 mtx_lock(&aio_freeproc_mtx); 985 if ((aiop->aiothreadflags & AIOP_FREE) && 986 (num_aio_procs > target_aio_procs)) { 987 TAILQ_REMOVE(&aio_freeproc, aiop, list); 988 mtx_unlock(&aio_freeproc_mtx); 989 splx(s); 990 uma_zfree(aiop_zone, aiop); 991 num_aio_procs--; 992 #ifdef DIAGNOSTIC 993 if (mycp->p_vmspace->vm_refcnt <= 1) { 994 printf("AIOD: bad vm refcnt for" 995 " exiting daemon: %d\n", 996 mycp->p_vmspace->vm_refcnt); 997 } 998 #endif 999 kthread_exit(0); 1000 } 1001 mtx_unlock(&aio_freeproc_mtx); 1002 } 1003 splx(s); 1004 } 1005 } 1006 } 1007 1008 /* 1009 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1010 * AIO daemon modifies its environment itself. 1011 */ 1012 static int 1013 aio_newproc(void) 1014 { 1015 int error; 1016 struct proc *p; 1017 1018 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1019 num_aio_procs); 1020 if (error) 1021 return (error); 1022 1023 /* 1024 * Wait until daemon is started, but continue on just in case to 1025 * handle error conditions. 1026 */ 1027 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1028 1029 num_aio_procs++; 1030 1031 return (error); 1032 } 1033 1034 /* 1035 * Try the high-performance, low-overhead physio method for eligible 1036 * VCHR devices. This method doesn't use an aio helper thread, and 1037 * thus has very low overhead. 1038 * 1039 * Assumes that the caller, _aio_aqueue(), has incremented the file 1040 * structure's reference count, preventing its deallocation for the 1041 * duration of this call. 1042 */ 1043 static int 1044 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1045 { 1046 int error; 1047 struct aiocb *cb; 1048 struct file *fp; 1049 struct buf *bp; 1050 struct vnode *vp; 1051 struct kaioinfo *ki; 1052 struct aio_liojob *lj; 1053 int s; 1054 int notify; 1055 1056 cb = &aiocbe->uaiocb; 1057 fp = aiocbe->fd_file; 1058 1059 if (fp->f_type != DTYPE_VNODE) 1060 return (-1); 1061 1062 vp = fp->f_vnode; 1063 1064 /* 1065 * If its not a disk, we don't want to return a positive error. 1066 * It causes the aio code to not fall through to try the thread 1067 * way when you're talking to a regular file. 1068 */ 1069 if (!vn_isdisk(vp, &error)) { 1070 if (error == ENOTBLK) 1071 return (-1); 1072 else 1073 return (error); 1074 } 1075 1076 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1077 return (-1); 1078 1079 if (cb->aio_nbytes > 1080 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1081 return (-1); 1082 1083 ki = p->p_aioinfo; 1084 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1085 return (-1); 1086 1087 ki->kaio_buffer_count++; 1088 1089 lj = aiocbe->lio; 1090 if (lj) 1091 lj->lioj_buffer_count++; 1092 1093 /* Create and build a buffer header for a transfer. */ 1094 bp = (struct buf *)getpbuf(NULL); 1095 BUF_KERNPROC(bp); 1096 1097 /* 1098 * Get a copy of the kva from the physical buffer. 1099 */ 1100 error = 0; 1101 1102 bp->b_bcount = cb->aio_nbytes; 1103 bp->b_bufsize = cb->aio_nbytes; 1104 bp->b_iodone = aio_physwakeup; 1105 bp->b_saveaddr = bp->b_data; 1106 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1107 bp->b_offset = cb->aio_offset; 1108 bp->b_iooffset = cb->aio_offset; 1109 bp->b_blkno = btodb(cb->aio_offset); 1110 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1111 1112 /* 1113 * Bring buffer into kernel space. 1114 */ 1115 if (vmapbuf(bp) < 0) { 1116 error = EFAULT; 1117 goto doerror; 1118 } 1119 1120 s = splbio(); 1121 aiocbe->bp = bp; 1122 bp->b_caller1 = (void *)aiocbe; 1123 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1124 aiocbe->jobstate = JOBST_JOBQBUF; 1125 cb->_aiocb_private.status = cb->aio_nbytes; 1126 num_buf_aio++; 1127 bp->b_error = 0; 1128 1129 splx(s); 1130 1131 /* Perform transfer. */ 1132 dev_strategy(vp->v_rdev, bp); 1133 1134 notify = 0; 1135 s = splbio(); 1136 1137 /* 1138 * If we had an error invoking the request, or an error in processing 1139 * the request before we have returned, we process it as an error in 1140 * transfer. Note that such an I/O error is not indicated immediately, 1141 * but is returned using the aio_error mechanism. In this case, 1142 * aio_suspend will return immediately. 1143 */ 1144 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1145 struct aiocb *job = aiocbe->uuaiocb; 1146 1147 aiocbe->uaiocb._aiocb_private.status = 0; 1148 suword(&job->_aiocb_private.status, 0); 1149 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1150 suword(&job->_aiocb_private.error, bp->b_error); 1151 1152 ki->kaio_buffer_finished_count++; 1153 1154 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1155 aiocbe->jobstate = JOBST_JOBBFINISHED; 1156 aiocbe->jobflags |= AIOCBLIST_DONE; 1157 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1158 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1159 notify = 1; 1160 } 1161 } 1162 splx(s); 1163 if (notify) 1164 KNOTE_UNLOCKED(&aiocbe->klist, 0); 1165 return (0); 1166 1167 doerror: 1168 ki->kaio_buffer_count--; 1169 if (lj) 1170 lj->lioj_buffer_count--; 1171 aiocbe->bp = NULL; 1172 relpbuf(bp, NULL); 1173 return (error); 1174 } 1175 1176 /* 1177 * This waits/tests physio completion. 1178 */ 1179 static int 1180 aio_fphysio(struct aiocblist *iocb) 1181 { 1182 int s; 1183 struct buf *bp; 1184 int error; 1185 1186 bp = iocb->bp; 1187 1188 s = splbio(); 1189 while ((bp->b_flags & B_DONE) == 0) { 1190 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1191 if ((bp->b_flags & B_DONE) == 0) { 1192 splx(s); 1193 return (EINPROGRESS); 1194 } else 1195 break; 1196 } 1197 } 1198 splx(s); 1199 1200 /* Release mapping into kernel space. */ 1201 vunmapbuf(bp); 1202 iocb->bp = 0; 1203 1204 error = 0; 1205 1206 /* Check for an error. */ 1207 if (bp->b_ioflags & BIO_ERROR) 1208 error = bp->b_error; 1209 1210 relpbuf(bp, NULL); 1211 return (error); 1212 } 1213 1214 /* 1215 * Wake up aio requests that may be serviceable now. 1216 */ 1217 static void 1218 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1219 { 1220 struct aiocblist *cb,*cbn; 1221 struct proc *p; 1222 struct kaioinfo *ki = NULL; 1223 int opcode, wakecount = 0; 1224 struct aiothreadlist *aiop; 1225 1226 if (sb == &so->so_snd) { 1227 opcode = LIO_WRITE; 1228 SOCKBUF_LOCK(&so->so_snd); 1229 so->so_snd.sb_flags &= ~SB_AIO; 1230 SOCKBUF_UNLOCK(&so->so_snd); 1231 } else { 1232 opcode = LIO_READ; 1233 SOCKBUF_LOCK(&so->so_rcv); 1234 so->so_rcv.sb_flags &= ~SB_AIO; 1235 SOCKBUF_UNLOCK(&so->so_rcv); 1236 } 1237 1238 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1239 cbn = TAILQ_NEXT(cb, list); 1240 if (opcode == cb->uaiocb.aio_lio_opcode) { 1241 p = cb->userproc; 1242 ki = p->p_aioinfo; 1243 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1244 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1245 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1246 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1247 wakecount++; 1248 if (cb->jobstate != JOBST_JOBQGLOBAL) 1249 panic("invalid queue value"); 1250 } 1251 } 1252 1253 while (wakecount--) { 1254 mtx_lock(&aio_freeproc_mtx); 1255 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1256 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1257 aiop->aiothreadflags &= ~AIOP_FREE; 1258 wakeup(aiop->aiothread); 1259 } 1260 mtx_unlock(&aio_freeproc_mtx); 1261 } 1262 } 1263 1264 /* 1265 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1266 * technique is done in this code. 1267 */ 1268 static int 1269 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1270 { 1271 struct proc *p = td->td_proc; 1272 struct filedesc *fdp; 1273 struct file *fp; 1274 unsigned int fd; 1275 struct socket *so; 1276 int s; 1277 int error; 1278 int opcode; 1279 struct aiocblist *aiocbe; 1280 struct aiothreadlist *aiop; 1281 struct kaioinfo *ki; 1282 struct kevent kev; 1283 struct kqueue *kq; 1284 struct file *kq_fp; 1285 struct sockbuf *sb; 1286 1287 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1288 aiocbe->inputcharge = 0; 1289 aiocbe->outputcharge = 0; 1290 /* XXX - need a lock */ 1291 knlist_init(&aiocbe->klist, NULL); 1292 1293 suword(&job->_aiocb_private.status, -1); 1294 suword(&job->_aiocb_private.error, 0); 1295 suword(&job->_aiocb_private.kernelinfo, -1); 1296 1297 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1298 if (error) { 1299 suword(&job->_aiocb_private.error, error); 1300 uma_zfree(aiocb_zone, aiocbe); 1301 return (error); 1302 } 1303 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1304 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1305 uma_zfree(aiocb_zone, aiocbe); 1306 return (EINVAL); 1307 } 1308 1309 /* Save userspace address of the job info. */ 1310 aiocbe->uuaiocb = job; 1311 1312 /* Get the opcode. */ 1313 if (type != LIO_NOP) 1314 aiocbe->uaiocb.aio_lio_opcode = type; 1315 opcode = aiocbe->uaiocb.aio_lio_opcode; 1316 1317 /* Get the fd info for process. */ 1318 fdp = p->p_fd; 1319 1320 /* 1321 * Range check file descriptor. 1322 */ 1323 FILEDESC_LOCK(fdp); 1324 fd = aiocbe->uaiocb.aio_fildes; 1325 if (fd >= fdp->fd_nfiles) { 1326 FILEDESC_UNLOCK(fdp); 1327 uma_zfree(aiocb_zone, aiocbe); 1328 if (type == 0) 1329 suword(&job->_aiocb_private.error, EBADF); 1330 return (EBADF); 1331 } 1332 1333 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1334 if ((fp == NULL) || 1335 ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0)) || 1336 ((opcode == LIO_READ) && ((fp->f_flag & FREAD) == 0))) { 1337 FILEDESC_UNLOCK(fdp); 1338 uma_zfree(aiocb_zone, aiocbe); 1339 if (type == 0) 1340 suword(&job->_aiocb_private.error, EBADF); 1341 return (EBADF); 1342 } 1343 fhold(fp); 1344 FILEDESC_UNLOCK(fdp); 1345 1346 if (aiocbe->uaiocb.aio_offset == -1LL) { 1347 error = EINVAL; 1348 goto aqueue_fail; 1349 } 1350 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1351 if (error) { 1352 error = EINVAL; 1353 goto aqueue_fail; 1354 } 1355 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1356 if (jobrefid == LONG_MAX) 1357 jobrefid = 1; 1358 else 1359 jobrefid++; 1360 1361 if (opcode == LIO_NOP) { 1362 fdrop(fp, td); 1363 uma_zfree(aiocb_zone, aiocbe); 1364 if (type == 0) { 1365 suword(&job->_aiocb_private.error, 0); 1366 suword(&job->_aiocb_private.status, 0); 1367 suword(&job->_aiocb_private.kernelinfo, 0); 1368 } 1369 return (0); 1370 } 1371 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1372 if (type == 0) 1373 suword(&job->_aiocb_private.status, 0); 1374 error = EINVAL; 1375 goto aqueue_fail; 1376 } 1377 1378 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1379 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1380 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1381 } else 1382 goto no_kqueue; 1383 if ((u_int)kev.ident >= fdp->fd_nfiles || 1384 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1385 (kq_fp->f_type != DTYPE_KQUEUE)) { 1386 error = EBADF; 1387 goto aqueue_fail; 1388 } 1389 kq = kq_fp->f_data; 1390 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1391 kev.filter = EVFILT_AIO; 1392 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1393 kev.data = (intptr_t)aiocbe; 1394 error = kqueue_register(kq, &kev, td, 1); 1395 aqueue_fail: 1396 if (error) { 1397 fdrop(fp, td); 1398 uma_zfree(aiocb_zone, aiocbe); 1399 if (type == 0) 1400 suword(&job->_aiocb_private.error, error); 1401 goto done; 1402 } 1403 no_kqueue: 1404 1405 suword(&job->_aiocb_private.error, EINPROGRESS); 1406 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1407 aiocbe->userproc = p; 1408 aiocbe->cred = crhold(td->td_ucred); 1409 aiocbe->jobflags = 0; 1410 aiocbe->lio = lj; 1411 ki = p->p_aioinfo; 1412 1413 if (fp->f_type == DTYPE_SOCKET) { 1414 /* 1415 * Alternate queueing for socket ops: Reach down into the 1416 * descriptor to get the socket data. Then check to see if the 1417 * socket is ready to be read or written (based on the requested 1418 * operation). 1419 * 1420 * If it is not ready for io, then queue the aiocbe on the 1421 * socket, and set the flags so we get a call when sbnotify() 1422 * happens. 1423 * 1424 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1425 * and unlock the snd sockbuf for no reason. 1426 */ 1427 so = fp->f_data; 1428 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1429 SOCKBUF_LOCK(sb); 1430 s = splnet(); 1431 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1432 LIO_WRITE) && (!sowriteable(so)))) { 1433 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1434 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1435 sb->sb_flags |= SB_AIO; 1436 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1437 ki->kaio_queue_count++; 1438 num_queue_count++; 1439 SOCKBUF_UNLOCK(sb); 1440 splx(s); 1441 error = 0; 1442 goto done; 1443 } 1444 SOCKBUF_UNLOCK(sb); 1445 splx(s); 1446 } 1447 1448 if ((error = aio_qphysio(p, aiocbe)) == 0) 1449 goto done; 1450 if (error > 0) { 1451 suword(&job->_aiocb_private.status, 0); 1452 aiocbe->uaiocb._aiocb_private.error = error; 1453 suword(&job->_aiocb_private.error, error); 1454 goto done; 1455 } 1456 1457 /* No buffer for daemon I/O. */ 1458 aiocbe->bp = NULL; 1459 1460 ki->kaio_queue_count++; 1461 if (lj) 1462 lj->lioj_queue_count++; 1463 s = splnet(); 1464 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1465 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1466 splx(s); 1467 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1468 1469 num_queue_count++; 1470 error = 0; 1471 1472 /* 1473 * If we don't have a free AIO process, and we are below our quota, then 1474 * start one. Otherwise, depend on the subsequent I/O completions to 1475 * pick-up this job. If we don't sucessfully create the new process 1476 * (thread) due to resource issues, we return an error for now (EAGAIN), 1477 * which is likely not the correct thing to do. 1478 */ 1479 mtx_lock(&aio_freeproc_mtx); 1480 retryproc: 1481 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1482 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1483 aiop->aiothreadflags &= ~AIOP_FREE; 1484 wakeup(aiop->aiothread); 1485 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1486 ((ki->kaio_active_count + num_aio_resv_start) < 1487 ki->kaio_maxactive_count)) { 1488 num_aio_resv_start++; 1489 mtx_unlock(&aio_freeproc_mtx); 1490 if ((error = aio_newproc()) == 0) { 1491 mtx_lock(&aio_freeproc_mtx); 1492 num_aio_resv_start--; 1493 goto retryproc; 1494 } 1495 mtx_lock(&aio_freeproc_mtx); 1496 num_aio_resv_start--; 1497 } 1498 mtx_unlock(&aio_freeproc_mtx); 1499 done: 1500 return (error); 1501 } 1502 1503 /* 1504 * This routine queues an AIO request, checking for quotas. 1505 */ 1506 static int 1507 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1508 { 1509 struct proc *p = td->td_proc; 1510 struct kaioinfo *ki; 1511 1512 if (p->p_aioinfo == NULL) 1513 aio_init_aioinfo(p); 1514 1515 if (num_queue_count >= max_queue_count) 1516 return (EAGAIN); 1517 1518 ki = p->p_aioinfo; 1519 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1520 return (EAGAIN); 1521 1522 return _aio_aqueue(td, job, NULL, type); 1523 } 1524 1525 /* 1526 * Support the aio_return system call, as a side-effect, kernel resources are 1527 * released. 1528 */ 1529 int 1530 aio_return(struct thread *td, struct aio_return_args *uap) 1531 { 1532 struct proc *p = td->td_proc; 1533 int s; 1534 long jobref; 1535 struct aiocblist *cb, *ncb; 1536 struct aiocb *ujob; 1537 struct kaioinfo *ki; 1538 1539 ujob = uap->aiocbp; 1540 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1541 if (jobref == -1 || jobref == 0) 1542 return (EINVAL); 1543 1544 ki = p->p_aioinfo; 1545 if (ki == NULL) 1546 return (EINVAL); 1547 PROC_LOCK(p); 1548 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1549 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1550 jobref) { 1551 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1552 p->p_stats->p_ru.ru_oublock += 1553 cb->outputcharge; 1554 cb->outputcharge = 0; 1555 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1556 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1557 cb->inputcharge = 0; 1558 } 1559 goto done; 1560 } 1561 } 1562 s = splbio(); 1563 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1564 ncb = TAILQ_NEXT(cb, plist); 1565 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1566 == jobref) { 1567 break; 1568 } 1569 } 1570 splx(s); 1571 done: 1572 PROC_UNLOCK(p); 1573 if (cb != NULL) { 1574 if (ujob == cb->uuaiocb) { 1575 td->td_retval[0] = 1576 cb->uaiocb._aiocb_private.status; 1577 } else 1578 td->td_retval[0] = EFAULT; 1579 aio_free_entry(cb); 1580 return (0); 1581 } 1582 return (EINVAL); 1583 } 1584 1585 /* 1586 * Allow a process to wakeup when any of the I/O requests are completed. 1587 */ 1588 int 1589 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1590 { 1591 struct proc *p = td->td_proc; 1592 struct timeval atv; 1593 struct timespec ts; 1594 struct aiocb *const *cbptr, *cbp; 1595 struct kaioinfo *ki; 1596 struct aiocblist *cb; 1597 int i; 1598 int njoblist; 1599 int error, s, timo; 1600 long *ijoblist; 1601 struct aiocb **ujoblist; 1602 1603 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1604 return (EINVAL); 1605 1606 timo = 0; 1607 if (uap->timeout) { 1608 /* Get timespec struct. */ 1609 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1610 return (error); 1611 1612 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1613 return (EINVAL); 1614 1615 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1616 if (itimerfix(&atv)) 1617 return (EINVAL); 1618 timo = tvtohz(&atv); 1619 } 1620 1621 ki = p->p_aioinfo; 1622 if (ki == NULL) 1623 return (EAGAIN); 1624 1625 njoblist = 0; 1626 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1627 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1628 cbptr = uap->aiocbp; 1629 1630 for (i = 0; i < uap->nent; i++) { 1631 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1632 if (cbp == 0) 1633 continue; 1634 ujoblist[njoblist] = cbp; 1635 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1636 njoblist++; 1637 } 1638 1639 if (njoblist == 0) { 1640 uma_zfree(aiol_zone, ijoblist); 1641 uma_zfree(aiol_zone, ujoblist); 1642 return (0); 1643 } 1644 1645 error = 0; 1646 for (;;) { 1647 PROC_LOCK(p); 1648 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1649 for (i = 0; i < njoblist; i++) { 1650 if (((intptr_t) 1651 cb->uaiocb._aiocb_private.kernelinfo) == 1652 ijoblist[i]) { 1653 PROC_UNLOCK(p); 1654 if (ujoblist[i] != cb->uuaiocb) 1655 error = EINVAL; 1656 uma_zfree(aiol_zone, ijoblist); 1657 uma_zfree(aiol_zone, ujoblist); 1658 return (error); 1659 } 1660 } 1661 } 1662 1663 s = splbio(); 1664 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1665 TAILQ_NEXT(cb, plist)) { 1666 for (i = 0; i < njoblist; i++) { 1667 if (((intptr_t) 1668 cb->uaiocb._aiocb_private.kernelinfo) == 1669 ijoblist[i]) { 1670 PROC_UNLOCK(p); 1671 splx(s); 1672 if (ujoblist[i] != cb->uuaiocb) 1673 error = EINVAL; 1674 uma_zfree(aiol_zone, ijoblist); 1675 uma_zfree(aiol_zone, ujoblist); 1676 return (error); 1677 } 1678 } 1679 } 1680 1681 ki->kaio_flags |= KAIO_WAKEUP; 1682 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiospn", 1683 timo); 1684 splx(s); 1685 1686 if (error == ERESTART || error == EINTR) { 1687 uma_zfree(aiol_zone, ijoblist); 1688 uma_zfree(aiol_zone, ujoblist); 1689 return (EINTR); 1690 } else if (error == EWOULDBLOCK) { 1691 uma_zfree(aiol_zone, ijoblist); 1692 uma_zfree(aiol_zone, ujoblist); 1693 return (EAGAIN); 1694 } 1695 } 1696 1697 /* NOTREACHED */ 1698 return (EINVAL); 1699 } 1700 1701 /* 1702 * aio_cancel cancels any non-physio aio operations not currently in 1703 * progress. 1704 */ 1705 int 1706 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1707 { 1708 struct proc *p = td->td_proc; 1709 struct kaioinfo *ki; 1710 struct aiocblist *cbe, *cbn; 1711 struct file *fp; 1712 struct filedesc *fdp; 1713 struct socket *so; 1714 struct proc *po; 1715 int s,error; 1716 int cancelled=0; 1717 int notcancelled=0; 1718 struct vnode *vp; 1719 1720 fdp = p->p_fd; 1721 if ((u_int)uap->fd >= fdp->fd_nfiles || 1722 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1723 return (EBADF); 1724 1725 if (fp->f_type == DTYPE_VNODE) { 1726 vp = fp->f_vnode; 1727 1728 if (vn_isdisk(vp,&error)) { 1729 td->td_retval[0] = AIO_NOTCANCELED; 1730 return (0); 1731 } 1732 } else if (fp->f_type == DTYPE_SOCKET) { 1733 so = fp->f_data; 1734 1735 s = splnet(); 1736 1737 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1738 cbn = TAILQ_NEXT(cbe, list); 1739 if ((uap->aiocbp == NULL) || 1740 (uap->aiocbp == cbe->uuaiocb) ) { 1741 po = cbe->userproc; 1742 ki = po->p_aioinfo; 1743 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1744 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1745 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1746 if (ki->kaio_flags & KAIO_WAKEUP) { 1747 wakeup(po); 1748 } 1749 cbe->jobstate = JOBST_JOBFINISHED; 1750 cbe->uaiocb._aiocb_private.status=-1; 1751 cbe->uaiocb._aiocb_private.error=ECANCELED; 1752 cancelled++; 1753 /* XXX cancelled, knote? */ 1754 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1755 SIGEV_SIGNAL) { 1756 PROC_LOCK(cbe->userproc); 1757 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1758 PROC_UNLOCK(cbe->userproc); 1759 } 1760 if (uap->aiocbp) 1761 break; 1762 } 1763 } 1764 splx(s); 1765 1766 if ((cancelled) && (uap->aiocbp)) { 1767 td->td_retval[0] = AIO_CANCELED; 1768 return (0); 1769 } 1770 } 1771 ki=p->p_aioinfo; 1772 if (ki == NULL) 1773 goto done; 1774 s = splnet(); 1775 1776 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1777 cbn = TAILQ_NEXT(cbe, plist); 1778 1779 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1780 ((uap->aiocbp == NULL ) || 1781 (uap->aiocbp == cbe->uuaiocb))) { 1782 1783 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1784 TAILQ_REMOVE(&aio_jobs, cbe, list); 1785 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1786 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1787 plist); 1788 cancelled++; 1789 ki->kaio_queue_finished_count++; 1790 cbe->jobstate = JOBST_JOBFINISHED; 1791 cbe->uaiocb._aiocb_private.status = -1; 1792 cbe->uaiocb._aiocb_private.error = ECANCELED; 1793 /* XXX cancelled, knote? */ 1794 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1795 SIGEV_SIGNAL) { 1796 PROC_LOCK(cbe->userproc); 1797 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1798 PROC_UNLOCK(cbe->userproc); 1799 } 1800 } else { 1801 notcancelled++; 1802 } 1803 } 1804 } 1805 splx(s); 1806 done: 1807 if (notcancelled) { 1808 td->td_retval[0] = AIO_NOTCANCELED; 1809 return (0); 1810 } 1811 if (cancelled) { 1812 td->td_retval[0] = AIO_CANCELED; 1813 return (0); 1814 } 1815 td->td_retval[0] = AIO_ALLDONE; 1816 1817 return (0); 1818 } 1819 1820 /* 1821 * aio_error is implemented in the kernel level for compatibility purposes only. 1822 * For a user mode async implementation, it would be best to do it in a userland 1823 * subroutine. 1824 */ 1825 int 1826 aio_error(struct thread *td, struct aio_error_args *uap) 1827 { 1828 struct proc *p = td->td_proc; 1829 int s; 1830 struct aiocblist *cb; 1831 struct kaioinfo *ki; 1832 long jobref; 1833 1834 ki = p->p_aioinfo; 1835 if (ki == NULL) 1836 return (EINVAL); 1837 1838 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1839 if ((jobref == -1) || (jobref == 0)) 1840 return (EINVAL); 1841 1842 PROC_LOCK(p); 1843 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1844 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1845 jobref) { 1846 PROC_UNLOCK(p); 1847 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1848 return (0); 1849 } 1850 } 1851 1852 s = splnet(); 1853 1854 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1855 plist)) { 1856 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1857 jobref) { 1858 PROC_UNLOCK(p); 1859 td->td_retval[0] = EINPROGRESS; 1860 splx(s); 1861 return (0); 1862 } 1863 } 1864 1865 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1866 plist)) { 1867 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1868 jobref) { 1869 PROC_UNLOCK(p); 1870 td->td_retval[0] = EINPROGRESS; 1871 splx(s); 1872 return (0); 1873 } 1874 } 1875 splx(s); 1876 1877 s = splbio(); 1878 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1879 plist)) { 1880 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1881 jobref) { 1882 PROC_UNLOCK(p); 1883 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1884 splx(s); 1885 return (0); 1886 } 1887 } 1888 1889 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1890 plist)) { 1891 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1892 jobref) { 1893 PROC_UNLOCK(p); 1894 td->td_retval[0] = EINPROGRESS; 1895 splx(s); 1896 return (0); 1897 } 1898 } 1899 splx(s); 1900 PROC_UNLOCK(p); 1901 1902 #if (0) 1903 /* 1904 * Hack for lio. 1905 */ 1906 status = fuword(&uap->aiocbp->_aiocb_private.status); 1907 if (status == -1) 1908 return fuword(&uap->aiocbp->_aiocb_private.error); 1909 #endif 1910 return (EINVAL); 1911 } 1912 1913 /* syscall - asynchronous read from a file (REALTIME) */ 1914 int 1915 aio_read(struct thread *td, struct aio_read_args *uap) 1916 { 1917 1918 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1919 } 1920 1921 /* syscall - asynchronous write to a file (REALTIME) */ 1922 int 1923 aio_write(struct thread *td, struct aio_write_args *uap) 1924 { 1925 1926 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1927 } 1928 1929 /* syscall - list directed I/O (REALTIME) */ 1930 int 1931 lio_listio(struct thread *td, struct lio_listio_args *uap) 1932 { 1933 struct proc *p = td->td_proc; 1934 int nent, nentqueued; 1935 struct aiocb *iocb, * const *cbptr; 1936 struct aiocblist *cb; 1937 struct kaioinfo *ki; 1938 struct aio_liojob *lj; 1939 int error, runningcode; 1940 int nerror; 1941 int i; 1942 int s; 1943 1944 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1945 return (EINVAL); 1946 1947 nent = uap->nent; 1948 if (nent < 0 || nent > AIO_LISTIO_MAX) 1949 return (EINVAL); 1950 1951 if (p->p_aioinfo == NULL) 1952 aio_init_aioinfo(p); 1953 1954 if ((nent + num_queue_count) > max_queue_count) 1955 return (EAGAIN); 1956 1957 ki = p->p_aioinfo; 1958 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1959 return (EAGAIN); 1960 1961 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1962 if (!lj) 1963 return (EAGAIN); 1964 1965 lj->lioj_flags = 0; 1966 lj->lioj_buffer_count = 0; 1967 lj->lioj_buffer_finished_count = 0; 1968 lj->lioj_queue_count = 0; 1969 lj->lioj_queue_finished_count = 0; 1970 lj->lioj_ki = ki; 1971 1972 /* 1973 * Setup signal. 1974 */ 1975 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1976 error = copyin(uap->sig, &lj->lioj_signal, 1977 sizeof(lj->lioj_signal)); 1978 if (error) { 1979 uma_zfree(aiolio_zone, lj); 1980 return (error); 1981 } 1982 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1983 uma_zfree(aiolio_zone, lj); 1984 return (EINVAL); 1985 } 1986 lj->lioj_flags |= LIOJ_SIGNAL; 1987 } 1988 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1989 /* 1990 * Get pointers to the list of I/O requests. 1991 */ 1992 nerror = 0; 1993 nentqueued = 0; 1994 cbptr = uap->acb_list; 1995 for (i = 0; i < uap->nent; i++) { 1996 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1997 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 1998 error = _aio_aqueue(td, iocb, lj, 0); 1999 if (error == 0) 2000 nentqueued++; 2001 else 2002 nerror++; 2003 } 2004 } 2005 2006 /* 2007 * If we haven't queued any, then just return error. 2008 */ 2009 if (nentqueued == 0) 2010 return (0); 2011 2012 /* 2013 * Calculate the appropriate error return. 2014 */ 2015 runningcode = 0; 2016 if (nerror) 2017 runningcode = EIO; 2018 2019 if (uap->mode == LIO_WAIT) { 2020 int command, found, jobref; 2021 2022 for (;;) { 2023 found = 0; 2024 for (i = 0; i < uap->nent; i++) { 2025 /* 2026 * Fetch address of the control buf pointer in 2027 * user space. 2028 */ 2029 iocb = (struct aiocb *) 2030 (intptr_t)fuword(&cbptr[i]); 2031 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2032 == 0)) 2033 continue; 2034 2035 /* 2036 * Fetch the associated command from user space. 2037 */ 2038 command = fuword(&iocb->aio_lio_opcode); 2039 if (command == LIO_NOP) { 2040 found++; 2041 continue; 2042 } 2043 2044 jobref = 2045 fuword(&iocb->_aiocb_private.kernelinfo); 2046 2047 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2048 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2049 == jobref) { 2050 if (cb->uaiocb.aio_lio_opcode 2051 == LIO_WRITE) { 2052 p->p_stats->p_ru.ru_oublock 2053 += 2054 cb->outputcharge; 2055 cb->outputcharge = 0; 2056 } else if (cb->uaiocb.aio_lio_opcode 2057 == LIO_READ) { 2058 p->p_stats->p_ru.ru_inblock 2059 += cb->inputcharge; 2060 cb->inputcharge = 0; 2061 } 2062 found++; 2063 break; 2064 } 2065 } 2066 2067 s = splbio(); 2068 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2069 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2070 == jobref) { 2071 found++; 2072 break; 2073 } 2074 } 2075 splx(s); 2076 } 2077 2078 /* 2079 * If all I/Os have been disposed of, then we can 2080 * return. 2081 */ 2082 if (found == nentqueued) 2083 return (runningcode); 2084 2085 ki->kaio_flags |= KAIO_WAKEUP; 2086 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2087 2088 if (error == EINTR) 2089 return (EINTR); 2090 else if (error == EWOULDBLOCK) 2091 return (EAGAIN); 2092 } 2093 } 2094 2095 return (runningcode); 2096 } 2097 2098 /* 2099 * Interrupt handler for physio, performs the necessary process wakeups, and 2100 * signals. 2101 */ 2102 static void 2103 aio_physwakeup(struct buf *bp) 2104 { 2105 struct aiocblist *aiocbe; 2106 struct proc *p; 2107 struct kaioinfo *ki; 2108 struct aio_liojob *lj; 2109 2110 mtx_lock(&Giant); 2111 wakeup(bp); 2112 2113 aiocbe = (struct aiocblist *)bp->b_caller1; 2114 if (aiocbe) { 2115 p = aiocbe->userproc; 2116 2117 aiocbe->jobstate = JOBST_JOBBFINISHED; 2118 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2119 aiocbe->uaiocb._aiocb_private.error = 0; 2120 aiocbe->jobflags |= AIOCBLIST_DONE; 2121 2122 if (bp->b_ioflags & BIO_ERROR) 2123 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2124 2125 lj = aiocbe->lio; 2126 if (lj) { 2127 lj->lioj_buffer_finished_count++; 2128 2129 /* 2130 * wakeup/signal if all of the interrupt jobs are done. 2131 */ 2132 if (lj->lioj_buffer_finished_count == 2133 lj->lioj_buffer_count && 2134 lj->lioj_queue_finished_count == 2135 lj->lioj_queue_count) { 2136 /* 2137 * Post a signal if it is called for. 2138 */ 2139 if ((lj->lioj_flags & 2140 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2141 LIOJ_SIGNAL) { 2142 PROC_LOCK(p); 2143 psignal(p, lj->lioj_signal.sigev_signo); 2144 PROC_UNLOCK(p); 2145 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2146 } 2147 } 2148 } 2149 2150 ki = p->p_aioinfo; 2151 if (ki) { 2152 ki->kaio_buffer_finished_count++; 2153 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2154 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2155 2156 KNOTE_UNLOCKED(&aiocbe->klist, 0); 2157 /* Do the wakeup. */ 2158 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2159 ki->kaio_flags &= ~KAIO_WAKEUP; 2160 wakeup(p); 2161 } 2162 } 2163 2164 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2165 PROC_LOCK(p); 2166 psignal(p, aiocbe->uaiocb.aio_sigevent.sigev_signo); 2167 PROC_UNLOCK(p); 2168 } 2169 } 2170 mtx_unlock(&Giant); 2171 } 2172 2173 /* syscall - wait for the next completion of an aio request */ 2174 int 2175 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2176 { 2177 struct proc *p = td->td_proc; 2178 struct timeval atv; 2179 struct timespec ts; 2180 struct kaioinfo *ki; 2181 struct aiocblist *cb = NULL; 2182 int error, s, timo; 2183 2184 suword(uap->aiocbp, (int)NULL); 2185 2186 timo = 0; 2187 if (uap->timeout) { 2188 /* Get timespec struct. */ 2189 error = copyin(uap->timeout, &ts, sizeof(ts)); 2190 if (error) 2191 return (error); 2192 2193 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2194 return (EINVAL); 2195 2196 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2197 if (itimerfix(&atv)) 2198 return (EINVAL); 2199 timo = tvtohz(&atv); 2200 } 2201 2202 ki = p->p_aioinfo; 2203 if (ki == NULL) 2204 return (EAGAIN); 2205 2206 for (;;) { 2207 PROC_LOCK(p); 2208 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2209 PROC_UNLOCK(p); 2210 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2211 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2212 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2213 p->p_stats->p_ru.ru_oublock += 2214 cb->outputcharge; 2215 cb->outputcharge = 0; 2216 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2217 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2218 cb->inputcharge = 0; 2219 } 2220 error = cb->uaiocb._aiocb_private.error; 2221 aio_free_entry(cb); 2222 return (error); 2223 } 2224 2225 s = splbio(); 2226 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2227 PROC_UNLOCK(p); 2228 splx(s); 2229 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2230 error = cb->uaiocb._aiocb_private.error; 2231 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2232 aio_free_entry(cb); 2233 return (error); 2234 } 2235 2236 ki->kaio_flags |= KAIO_WAKEUP; 2237 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiowc", 2238 timo); 2239 splx(s); 2240 2241 if (error == ERESTART) 2242 return (EINTR); 2243 else if (error < 0) 2244 return (error); 2245 else if (error == EINTR) 2246 return (EINTR); 2247 else if (error == EWOULDBLOCK) 2248 return (EAGAIN); 2249 } 2250 } 2251 2252 /* kqueue attach function */ 2253 static int 2254 filt_aioattach(struct knote *kn) 2255 { 2256 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2257 2258 /* 2259 * The aiocbe pointer must be validated before using it, so 2260 * registration is restricted to the kernel; the user cannot 2261 * set EV_FLAG1. 2262 */ 2263 if ((kn->kn_flags & EV_FLAG1) == 0) 2264 return (EPERM); 2265 kn->kn_flags &= ~EV_FLAG1; 2266 2267 knlist_add(&aiocbe->klist, kn, 0); 2268 2269 return (0); 2270 } 2271 2272 /* kqueue detach function */ 2273 static void 2274 filt_aiodetach(struct knote *kn) 2275 { 2276 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2277 2278 knlist_remove(&aiocbe->klist, kn, 0); 2279 } 2280 2281 /* kqueue filter function */ 2282 /*ARGSUSED*/ 2283 static int 2284 filt_aio(struct knote *kn, long hint) 2285 { 2286 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2287 2288 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2289 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2290 aiocbe->jobstate != JOBST_JOBBFINISHED) 2291 return (0); 2292 kn->kn_flags |= EV_EOF; 2293 return (1); 2294 } 2295