1 /* 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 * 16 * $FreeBSD$ 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/malloc.h> 26 #include <sys/bio.h> 27 #include <sys/buf.h> 28 #include <sys/sysproto.h> 29 #include <sys/filedesc.h> 30 #include <sys/kernel.h> 31 #include <sys/kthread.h> 32 #include <sys/fcntl.h> 33 #include <sys/file.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/unistd.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/signalvar.h> 40 #include <sys/protosw.h> 41 #include <sys/socketvar.h> 42 #include <sys/syscall.h> 43 #include <sys/sysent.h> 44 #include <sys/sysctl.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 #include <sys/conf.h> 48 #include <sys/event.h> 49 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/uma.h> 55 #include <sys/aio.h> 56 57 #include <machine/limits.h> 58 59 #include "opt_vfs_aio.h" 60 61 /* 62 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 63 * overflow. 64 */ 65 static long jobrefid; 66 67 #define JOBST_NULL 0x0 68 #define JOBST_JOBQGLOBAL 0x2 69 #define JOBST_JOBRUNNING 0x3 70 #define JOBST_JOBFINISHED 0x4 71 #define JOBST_JOBQBUF 0x5 72 #define JOBST_JOBBFINISHED 0x6 73 74 #ifndef MAX_AIO_PER_PROC 75 #define MAX_AIO_PER_PROC 32 76 #endif 77 78 #ifndef MAX_AIO_QUEUE_PER_PROC 79 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 80 #endif 81 82 #ifndef MAX_AIO_PROCS 83 #define MAX_AIO_PROCS 32 84 #endif 85 86 #ifndef MAX_AIO_QUEUE 87 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 88 #endif 89 90 #ifndef TARGET_AIO_PROCS 91 #define TARGET_AIO_PROCS 4 92 #endif 93 94 #ifndef MAX_BUF_AIO 95 #define MAX_BUF_AIO 16 96 #endif 97 98 #ifndef AIOD_TIMEOUT_DEFAULT 99 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 100 #endif 101 102 #ifndef AIOD_LIFETIME_DEFAULT 103 #define AIOD_LIFETIME_DEFAULT (30 * hz) 104 #endif 105 106 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 107 108 static int max_aio_procs = MAX_AIO_PROCS; 109 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 110 CTLFLAG_RW, &max_aio_procs, 0, 111 "Maximum number of kernel threads to use for handling async IO "); 112 113 static int num_aio_procs = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 115 CTLFLAG_RD, &num_aio_procs, 0, 116 "Number of presently active kernel threads for async IO"); 117 118 /* 119 * The code will adjust the actual number of AIO processes towards this 120 * number when it gets a chance. 121 */ 122 static int target_aio_procs = TARGET_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 124 0, "Preferred number of ready kernel threads for async IO"); 125 126 static int max_queue_count = MAX_AIO_QUEUE; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 128 "Maximum number of aio requests to queue, globally"); 129 130 static int num_queue_count = 0; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 132 "Number of queued aio requests"); 133 134 static int num_buf_aio = 0; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 136 "Number of aio requests presently handled by the buf subsystem"); 137 138 /* Number of async I/O thread in the process of being started */ 139 /* XXX This should be local to _aio_aqueue() */ 140 static int num_aio_resv_start = 0; 141 142 static int aiod_timeout; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 144 "Timeout value for synchronous aio operations"); 145 146 static int aiod_lifetime; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 148 "Maximum lifetime for idle aiod"); 149 150 static int unloadable = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 152 "Allow unload of aio (not recommended)"); 153 154 155 static int max_aio_per_proc = MAX_AIO_PER_PROC; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 157 0, "Maximum active aio requests per process (stored in the process)"); 158 159 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 160 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 161 &max_aio_queue_per_proc, 0, 162 "Maximum queued aio requests per process (stored in the process)"); 163 164 static int max_buf_aio = MAX_BUF_AIO; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 166 "Maximum buf aio requests per process (stored in the process)"); 167 168 struct aiocblist { 169 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 170 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 171 int jobflags; 172 int jobstate; 173 int inputcharge; 174 int outputcharge; 175 struct callout_handle timeouthandle; 176 struct buf *bp; /* Buffer pointer */ 177 struct proc *userproc; /* User process */ /* Not td! */ 178 struct file *fd_file; /* Pointer to file structure */ 179 struct aio_liojob *lio; /* Optional lio job */ 180 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 181 struct klist klist; /* list of knotes */ 182 struct aiocb uaiocb; /* Kernel I/O control block */ 183 }; 184 185 /* jobflags */ 186 #define AIOCBLIST_RUNDOWN 0x4 187 #define AIOCBLIST_DONE 0x10 188 189 /* 190 * AIO process info 191 */ 192 #define AIOP_FREE 0x1 /* proc on free queue */ 193 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ 194 195 struct aiothreadlist { 196 int aiothreadflags; /* AIO proc flags */ 197 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 198 struct thread *aiothread; /* The AIO thread */ 199 }; 200 201 /* 202 * data-structure for lio signal management 203 */ 204 struct aio_liojob { 205 int lioj_flags; 206 int lioj_buffer_count; 207 int lioj_buffer_finished_count; 208 int lioj_queue_count; 209 int lioj_queue_finished_count; 210 struct sigevent lioj_signal; /* signal on all I/O done */ 211 TAILQ_ENTRY(aio_liojob) lioj_list; 212 struct kaioinfo *lioj_ki; 213 }; 214 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 215 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 216 217 /* 218 * per process aio data structure 219 */ 220 struct kaioinfo { 221 int kaio_flags; /* per process kaio flags */ 222 int kaio_maxactive_count; /* maximum number of AIOs */ 223 int kaio_active_count; /* number of currently used AIOs */ 224 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 225 int kaio_queue_count; /* size of AIO queue */ 226 int kaio_ballowed_count; /* maximum number of buffers */ 227 int kaio_queue_finished_count; /* number of daemon jobs finished */ 228 int kaio_buffer_count; /* number of physio buffers */ 229 int kaio_buffer_finished_count; /* count of I/O done */ 230 struct proc *kaio_p; /* process that uses this kaio block */ 231 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 232 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 233 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 234 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 235 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 237 }; 238 239 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 240 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 241 242 static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ 243 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 244 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 245 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ 246 247 static void aio_init_aioinfo(struct proc *p); 248 static void aio_onceonly(void); 249 static int aio_free_entry(struct aiocblist *aiocbe); 250 static void aio_process(struct aiocblist *aiocbe); 251 static int aio_newproc(void); 252 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 253 static void aio_physwakeup(struct buf *bp); 254 static void aio_proc_rundown(struct proc *p); 255 static int aio_fphysio(struct aiocblist *aiocbe); 256 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 257 static void aio_daemon(void *uproc); 258 static void aio_swake_cb(struct socket *, struct sockbuf *); 259 static int aio_unload(void); 260 static void process_signal(void *aioj); 261 static int filt_aioattach(struct knote *kn); 262 static void filt_aiodetach(struct knote *kn); 263 static int filt_aio(struct knote *kn, long hint); 264 265 /* 266 * Zones for: 267 * kaio Per process async io info 268 * aiop async io thread data 269 * aiocb async io jobs 270 * aiol list io job pointer - internal to aio_suspend XXX 271 * aiolio list io jobs 272 */ 273 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 274 275 /* kqueue filters for aio */ 276 static struct filterops aio_filtops = 277 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 278 279 /* 280 * Main operations function for use as a kernel module. 281 */ 282 static int 283 aio_modload(struct module *module, int cmd, void *arg) 284 { 285 int error = 0; 286 287 switch (cmd) { 288 case MOD_LOAD: 289 aio_onceonly(); 290 break; 291 case MOD_UNLOAD: 292 error = aio_unload(); 293 break; 294 case MOD_SHUTDOWN: 295 break; 296 default: 297 error = EINVAL; 298 break; 299 } 300 return (error); 301 } 302 303 static moduledata_t aio_mod = { 304 "aio", 305 &aio_modload, 306 NULL 307 }; 308 309 SYSCALL_MODULE_HELPER(aio_return); 310 SYSCALL_MODULE_HELPER(aio_suspend); 311 SYSCALL_MODULE_HELPER(aio_cancel); 312 SYSCALL_MODULE_HELPER(aio_error); 313 SYSCALL_MODULE_HELPER(aio_read); 314 SYSCALL_MODULE_HELPER(aio_write); 315 SYSCALL_MODULE_HELPER(aio_waitcomplete); 316 SYSCALL_MODULE_HELPER(lio_listio); 317 318 DECLARE_MODULE(aio, aio_mod, 319 SI_SUB_VFS, SI_ORDER_ANY); 320 MODULE_VERSION(aio, 1); 321 322 /* 323 * Startup initialization 324 */ 325 static void 326 aio_onceonly(void) 327 { 328 329 /* XXX: should probably just use so->callback */ 330 aio_swake = &aio_swake_cb; 331 at_exit(aio_proc_rundown); 332 at_exec(aio_proc_rundown); 333 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 334 TAILQ_INIT(&aio_freeproc); 335 TAILQ_INIT(&aio_activeproc); 336 TAILQ_INIT(&aio_jobs); 337 TAILQ_INIT(&aio_bufjobs); 338 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 339 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 340 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 341 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 342 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 343 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 344 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 345 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 346 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 347 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 348 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 349 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 350 jobrefid = 1; 351 async_io_version = _POSIX_VERSION; 352 } 353 354 /* 355 * Callback for unload of AIO when used as a module. 356 */ 357 static int 358 aio_unload(void) 359 { 360 361 /* 362 * XXX: no unloads by default, it's too dangerous. 363 * perhaps we could do it if locked out callers and then 364 * did an aio_proc_rundown() on each process. 365 */ 366 if (!unloadable) 367 return (EOPNOTSUPP); 368 369 async_io_version = 0; 370 aio_swake = NULL; 371 rm_at_exit(aio_proc_rundown); 372 rm_at_exec(aio_proc_rundown); 373 kqueue_del_filteropts(EVFILT_AIO); 374 return (0); 375 } 376 377 /* 378 * Init the per-process aioinfo structure. The aioinfo limits are set 379 * per-process for user limit (resource) management. 380 */ 381 static void 382 aio_init_aioinfo(struct proc *p) 383 { 384 struct kaioinfo *ki; 385 if (p->p_aioinfo == NULL) { 386 ki = uma_zalloc(kaio_zone, M_WAITOK); 387 p->p_aioinfo = ki; 388 ki->kaio_flags = 0; 389 ki->kaio_maxactive_count = max_aio_per_proc; 390 ki->kaio_active_count = 0; 391 ki->kaio_qallowed_count = max_aio_queue_per_proc; 392 ki->kaio_queue_count = 0; 393 ki->kaio_ballowed_count = max_buf_aio; 394 ki->kaio_buffer_count = 0; 395 ki->kaio_buffer_finished_count = 0; 396 ki->kaio_p = p; 397 TAILQ_INIT(&ki->kaio_jobdone); 398 TAILQ_INIT(&ki->kaio_jobqueue); 399 TAILQ_INIT(&ki->kaio_bufdone); 400 TAILQ_INIT(&ki->kaio_bufqueue); 401 TAILQ_INIT(&ki->kaio_liojoblist); 402 TAILQ_INIT(&ki->kaio_sockqueue); 403 } 404 405 while (num_aio_procs < target_aio_procs) 406 aio_newproc(); 407 } 408 409 /* 410 * Free a job entry. Wait for completion if it is currently active, but don't 411 * delay forever. If we delay, we return a flag that says that we have to 412 * restart the queue scan. 413 */ 414 static int 415 aio_free_entry(struct aiocblist *aiocbe) 416 { 417 struct kaioinfo *ki; 418 struct aio_liojob *lj; 419 struct proc *p; 420 int error; 421 int s; 422 423 if (aiocbe->jobstate == JOBST_NULL) 424 panic("aio_free_entry: freeing already free job"); 425 426 p = aiocbe->userproc; 427 ki = p->p_aioinfo; 428 lj = aiocbe->lio; 429 if (ki == NULL) 430 panic("aio_free_entry: missing p->p_aioinfo"); 431 432 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 433 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 434 tsleep(aiocbe, PRIBIO, "jobwai", 0); 435 } 436 if (aiocbe->bp == NULL) { 437 if (ki->kaio_queue_count <= 0) 438 panic("aio_free_entry: process queue size <= 0"); 439 if (num_queue_count <= 0) 440 panic("aio_free_entry: system wide queue size <= 0"); 441 442 if (lj) { 443 lj->lioj_queue_count--; 444 if (aiocbe->jobflags & AIOCBLIST_DONE) 445 lj->lioj_queue_finished_count--; 446 } 447 ki->kaio_queue_count--; 448 if (aiocbe->jobflags & AIOCBLIST_DONE) 449 ki->kaio_queue_finished_count--; 450 num_queue_count--; 451 } else { 452 if (lj) { 453 lj->lioj_buffer_count--; 454 if (aiocbe->jobflags & AIOCBLIST_DONE) 455 lj->lioj_buffer_finished_count--; 456 } 457 if (aiocbe->jobflags & AIOCBLIST_DONE) 458 ki->kaio_buffer_finished_count--; 459 ki->kaio_buffer_count--; 460 num_buf_aio--; 461 } 462 463 /* aiocbe is going away, we need to destroy any knotes */ 464 /* XXXKSE Note the thread here is used to eventually find the 465 * owning process again, but it is also used to do a fo_close 466 * and that requires the thread. (but does it require the 467 * OWNING thread? (or maybe the running thread?) 468 * There is a semantic problem here... 469 */ 470 knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ 471 472 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 473 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 474 ki->kaio_flags &= ~KAIO_WAKEUP; 475 wakeup(p); 476 } 477 478 if (aiocbe->jobstate == JOBST_JOBQBUF) { 479 if ((error = aio_fphysio(aiocbe)) != 0) 480 return error; 481 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 482 panic("aio_free_entry: invalid physio finish-up state"); 483 s = splbio(); 484 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 485 splx(s); 486 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 487 s = splnet(); 488 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 489 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 490 splx(s); 491 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 492 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 493 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 494 s = splbio(); 495 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 496 splx(s); 497 if (aiocbe->bp) { 498 vunmapbuf(aiocbe->bp); 499 relpbuf(aiocbe->bp, NULL); 500 aiocbe->bp = NULL; 501 } 502 } 503 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 504 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 505 uma_zfree(aiolio_zone, lj); 506 } 507 aiocbe->jobstate = JOBST_NULL; 508 untimeout(process_signal, aiocbe, aiocbe->timeouthandle); 509 fdrop(aiocbe->fd_file, curthread); 510 uma_zfree(aiocb_zone, aiocbe); 511 return 0; 512 } 513 514 /* 515 * Rundown the jobs for a given process. 516 */ 517 static void 518 aio_proc_rundown(struct proc *p) 519 { 520 int s; 521 struct kaioinfo *ki; 522 struct aio_liojob *lj, *ljn; 523 struct aiocblist *aiocbe, *aiocbn; 524 struct file *fp; 525 struct socket *so; 526 527 ki = p->p_aioinfo; 528 if (ki == NULL) 529 return; 530 531 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 532 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 533 ki->kaio_buffer_finished_count)) { 534 ki->kaio_flags |= KAIO_RUNDOWN; 535 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 536 break; 537 } 538 539 /* 540 * Move any aio ops that are waiting on socket I/O to the normal job 541 * queues so they are cleaned up with any others. 542 */ 543 s = splnet(); 544 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 545 aiocbn) { 546 aiocbn = TAILQ_NEXT(aiocbe, plist); 547 fp = aiocbe->fd_file; 548 if (fp != NULL) { 549 so = (struct socket *)fp->f_data; 550 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 551 if (TAILQ_EMPTY(&so->so_aiojobq)) { 552 so->so_snd.sb_flags &= ~SB_AIO; 553 so->so_rcv.sb_flags &= ~SB_AIO; 554 } 555 } 556 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 557 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 558 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 559 } 560 splx(s); 561 562 restart1: 563 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 564 aiocbn = TAILQ_NEXT(aiocbe, plist); 565 if (aio_free_entry(aiocbe)) 566 goto restart1; 567 } 568 569 restart2: 570 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 571 aiocbn) { 572 aiocbn = TAILQ_NEXT(aiocbe, plist); 573 if (aio_free_entry(aiocbe)) 574 goto restart2; 575 } 576 577 /* 578 * Note the use of lots of splbio here, trying to avoid splbio for long chains 579 * of I/O. Probably unnecessary. 580 */ 581 restart3: 582 s = splbio(); 583 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 584 ki->kaio_flags |= KAIO_WAKEUP; 585 tsleep(p, PRIBIO, "aioprn", 0); 586 splx(s); 587 goto restart3; 588 } 589 splx(s); 590 591 restart4: 592 s = splbio(); 593 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 594 aiocbn = TAILQ_NEXT(aiocbe, plist); 595 if (aio_free_entry(aiocbe)) { 596 splx(s); 597 goto restart4; 598 } 599 } 600 splx(s); 601 602 /* 603 * If we've slept, jobs might have moved from one queue to another. 604 * Retry rundown if we didn't manage to empty the queues. 605 */ 606 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 607 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 608 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 609 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 610 goto restart1; 611 612 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 613 ljn = TAILQ_NEXT(lj, lioj_list); 614 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 615 0)) { 616 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 617 uma_zfree(aiolio_zone, lj); 618 } else { 619 #ifdef DIAGNOSTIC 620 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 621 "QF:%d\n", lj->lioj_buffer_count, 622 lj->lioj_buffer_finished_count, 623 lj->lioj_queue_count, 624 lj->lioj_queue_finished_count); 625 #endif 626 } 627 } 628 629 uma_zfree(kaio_zone, ki); 630 p->p_aioinfo = NULL; 631 } 632 633 /* 634 * Select a job to run (called by an AIO daemon). 635 */ 636 static struct aiocblist * 637 aio_selectjob(struct aiothreadlist *aiop) 638 { 639 int s; 640 struct aiocblist *aiocbe; 641 struct kaioinfo *ki; 642 struct proc *userp; 643 644 s = splnet(); 645 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 646 TAILQ_NEXT(aiocbe, list)) { 647 userp = aiocbe->userproc; 648 ki = userp->p_aioinfo; 649 650 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 651 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 652 splx(s); 653 return aiocbe; 654 } 655 } 656 splx(s); 657 658 return NULL; 659 } 660 661 /* 662 * The AIO processing activity. This is the code that does the I/O request for 663 * the non-physio version of the operations. The normal vn operations are used, 664 * and this code should work in all instances for every type of file, including 665 * pipes, sockets, fifos, and regular files. 666 */ 667 static void 668 aio_process(struct aiocblist *aiocbe) 669 { 670 struct thread *td; 671 struct proc *mycp; 672 struct aiocb *cb; 673 struct file *fp; 674 struct uio auio; 675 struct iovec aiov; 676 int cnt; 677 int error; 678 int oublock_st, oublock_end; 679 int inblock_st, inblock_end; 680 681 td = curthread; 682 mycp = td->td_proc; 683 cb = &aiocbe->uaiocb; 684 fp = aiocbe->fd_file; 685 686 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 687 aiov.iov_len = cb->aio_nbytes; 688 689 auio.uio_iov = &aiov; 690 auio.uio_iovcnt = 1; 691 auio.uio_offset = cb->aio_offset; 692 auio.uio_resid = cb->aio_nbytes; 693 cnt = cb->aio_nbytes; 694 auio.uio_segflg = UIO_USERSPACE; 695 auio.uio_td = td; 696 697 inblock_st = mycp->p_stats->p_ru.ru_inblock; 698 oublock_st = mycp->p_stats->p_ru.ru_oublock; 699 /* 700 * _aio_aqueue() acquires a reference to the file that is 701 * released in aio_free_entry(). 702 */ 703 if (cb->aio_lio_opcode == LIO_READ) { 704 auio.uio_rw = UIO_READ; 705 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 706 } else { 707 auio.uio_rw = UIO_WRITE; 708 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 709 } 710 inblock_end = mycp->p_stats->p_ru.ru_inblock; 711 oublock_end = mycp->p_stats->p_ru.ru_oublock; 712 713 aiocbe->inputcharge = inblock_end - inblock_st; 714 aiocbe->outputcharge = oublock_end - oublock_st; 715 716 if ((error) && (auio.uio_resid != cnt)) { 717 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 718 error = 0; 719 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 720 PROC_LOCK(aiocbe->userproc); 721 psignal(aiocbe->userproc, SIGPIPE); 722 PROC_UNLOCK(aiocbe->userproc); 723 } 724 } 725 726 cnt -= auio.uio_resid; 727 cb->_aiocb_private.error = error; 728 cb->_aiocb_private.status = cnt; 729 } 730 731 /* 732 * The AIO daemon, most of the actual work is done in aio_process, 733 * but the setup (and address space mgmt) is done in this routine. 734 */ 735 static void 736 aio_daemon(void *uproc) 737 { 738 int s; 739 struct aio_liojob *lj; 740 struct aiocb *cb; 741 struct aiocblist *aiocbe; 742 struct aiothreadlist *aiop; 743 struct kaioinfo *ki; 744 struct proc *curcp, *mycp, *userp; 745 struct vmspace *myvm, *tmpvm; 746 struct thread *td = curthread; 747 struct pgrp *newpgrp; 748 struct session *newsess; 749 750 mtx_lock(&Giant); 751 /* 752 * Local copies of curproc (cp) and vmspace (myvm) 753 */ 754 mycp = td->td_proc; 755 myvm = mycp->p_vmspace; 756 757 if (mycp->p_textvp) { 758 vrele(mycp->p_textvp); 759 mycp->p_textvp = NULL; 760 } 761 762 /* 763 * Allocate and ready the aio control info. There is one aiop structure 764 * per daemon. 765 */ 766 aiop = uma_zalloc(aiop_zone, M_WAITOK); 767 aiop->aiothread = td; 768 aiop->aiothreadflags |= AIOP_FREE; 769 770 s = splnet(); 771 772 /* 773 * Place thread (lightweight process) onto the AIO free thread list. 774 */ 775 if (TAILQ_EMPTY(&aio_freeproc)) 776 wakeup(&aio_freeproc); 777 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 778 779 splx(s); 780 781 /* 782 * Get rid of our current filedescriptors. AIOD's don't need any 783 * filedescriptors, except as temporarily inherited from the client. 784 */ 785 fdfree(td); 786 787 mtx_unlock(&Giant); 788 /* The daemon resides in its own pgrp. */ 789 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 790 M_WAITOK | M_ZERO); 791 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 792 M_WAITOK | M_ZERO); 793 794 sx_xlock(&proctree_lock); 795 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 796 sx_xunlock(&proctree_lock); 797 mtx_lock(&Giant); 798 799 /* Mark special process type. */ 800 mycp->p_flag |= P_SYSTEM; 801 802 /* 803 * Wakeup parent process. (Parent sleeps to keep from blasting away 804 * and creating too many daemons.) 805 */ 806 wakeup(mycp); 807 808 for (;;) { 809 /* 810 * curcp is the current daemon process context. 811 * userp is the current user process context. 812 */ 813 curcp = mycp; 814 815 /* 816 * Take daemon off of free queue 817 */ 818 if (aiop->aiothreadflags & AIOP_FREE) { 819 s = splnet(); 820 TAILQ_REMOVE(&aio_freeproc, aiop, list); 821 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 822 aiop->aiothreadflags &= ~AIOP_FREE; 823 splx(s); 824 } 825 aiop->aiothreadflags &= ~AIOP_SCHED; 826 827 /* 828 * Check for jobs. 829 */ 830 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 831 cb = &aiocbe->uaiocb; 832 userp = aiocbe->userproc; 833 834 aiocbe->jobstate = JOBST_JOBRUNNING; 835 836 /* 837 * Connect to process address space for user program. 838 */ 839 if (userp != curcp) { 840 /* 841 * Save the current address space that we are 842 * connected to. 843 */ 844 tmpvm = mycp->p_vmspace; 845 846 /* 847 * Point to the new user address space, and 848 * refer to it. 849 */ 850 mycp->p_vmspace = userp->p_vmspace; 851 mycp->p_vmspace->vm_refcnt++; 852 853 /* Activate the new mapping. */ 854 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 855 856 /* 857 * If the old address space wasn't the daemons 858 * own address space, then we need to remove the 859 * daemon's reference from the other process 860 * that it was acting on behalf of. 861 */ 862 if (tmpvm != myvm) { 863 vmspace_free(tmpvm); 864 } 865 curcp = userp; 866 } 867 868 ki = userp->p_aioinfo; 869 lj = aiocbe->lio; 870 871 /* Account for currently active jobs. */ 872 ki->kaio_active_count++; 873 874 /* Do the I/O function. */ 875 aio_process(aiocbe); 876 877 /* Decrement the active job count. */ 878 ki->kaio_active_count--; 879 880 /* 881 * Increment the completion count for wakeup/signal 882 * comparisons. 883 */ 884 aiocbe->jobflags |= AIOCBLIST_DONE; 885 ki->kaio_queue_finished_count++; 886 if (lj) 887 lj->lioj_queue_finished_count++; 888 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 889 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 890 ki->kaio_flags &= ~KAIO_WAKEUP; 891 wakeup(userp); 892 } 893 894 s = splbio(); 895 if (lj && (lj->lioj_flags & 896 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 897 if ((lj->lioj_queue_finished_count == 898 lj->lioj_queue_count) && 899 (lj->lioj_buffer_finished_count == 900 lj->lioj_buffer_count)) { 901 PROC_LOCK(userp); 902 psignal(userp, 903 lj->lioj_signal.sigev_signo); 904 PROC_UNLOCK(userp); 905 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 906 } 907 } 908 splx(s); 909 910 aiocbe->jobstate = JOBST_JOBFINISHED; 911 912 s = splnet(); 913 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 914 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 915 splx(s); 916 KNOTE(&aiocbe->klist, 0); 917 918 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 919 wakeup(aiocbe); 920 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 921 } 922 923 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 924 PROC_LOCK(userp); 925 psignal(userp, cb->aio_sigevent.sigev_signo); 926 PROC_UNLOCK(userp); 927 } 928 } 929 930 /* 931 * Disconnect from user address space. 932 */ 933 if (curcp != mycp) { 934 /* Get the user address space to disconnect from. */ 935 tmpvm = mycp->p_vmspace; 936 937 /* Get original address space for daemon. */ 938 mycp->p_vmspace = myvm; 939 940 /* Activate the daemon's address space. */ 941 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 942 #ifdef DIAGNOSTIC 943 if (tmpvm == myvm) { 944 printf("AIOD: vmspace problem -- %d\n", 945 mycp->p_pid); 946 } 947 #endif 948 /* Remove our vmspace reference. */ 949 vmspace_free(tmpvm); 950 951 curcp = mycp; 952 } 953 954 /* 955 * If we are the first to be put onto the free queue, wakeup 956 * anyone waiting for a daemon. 957 */ 958 s = splnet(); 959 TAILQ_REMOVE(&aio_activeproc, aiop, list); 960 if (TAILQ_EMPTY(&aio_freeproc)) 961 wakeup(&aio_freeproc); 962 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 963 aiop->aiothreadflags |= AIOP_FREE; 964 splx(s); 965 966 /* 967 * If daemon is inactive for a long time, allow it to exit, 968 * thereby freeing resources. 969 */ 970 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && 971 tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { 972 s = splnet(); 973 if (TAILQ_EMPTY(&aio_jobs)) { 974 if ((aiop->aiothreadflags & AIOP_FREE) && 975 (num_aio_procs > target_aio_procs)) { 976 TAILQ_REMOVE(&aio_freeproc, aiop, list); 977 splx(s); 978 uma_zfree(aiop_zone, aiop); 979 num_aio_procs--; 980 #ifdef DIAGNOSTIC 981 if (mycp->p_vmspace->vm_refcnt <= 1) { 982 printf("AIOD: bad vm refcnt for" 983 " exiting daemon: %d\n", 984 mycp->p_vmspace->vm_refcnt); 985 } 986 #endif 987 kthread_exit(0); 988 } 989 } 990 splx(s); 991 } 992 } 993 } 994 995 /* 996 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 997 * AIO daemon modifies its environment itself. 998 */ 999 static int 1000 aio_newproc() 1001 { 1002 int error; 1003 struct proc *p; 1004 1005 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1006 num_aio_procs); 1007 if (error) 1008 return error; 1009 1010 /* 1011 * Wait until daemon is started, but continue on just in case to 1012 * handle error conditions. 1013 */ 1014 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1015 1016 num_aio_procs++; 1017 1018 return error; 1019 } 1020 1021 /* 1022 * Try the high-performance, low-overhead physio method for eligible 1023 * VCHR devices. This method doesn't use an aio helper thread, and 1024 * thus has very low overhead. 1025 * 1026 * Assumes that the caller, _aio_aqueue(), has incremented the file 1027 * structure's reference count, preventing its deallocation for the 1028 * duration of this call. 1029 */ 1030 static int 1031 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1032 { 1033 int error; 1034 struct aiocb *cb; 1035 struct file *fp; 1036 struct buf *bp; 1037 struct vnode *vp; 1038 struct kaioinfo *ki; 1039 struct aio_liojob *lj; 1040 int s; 1041 int notify; 1042 1043 cb = &aiocbe->uaiocb; 1044 fp = aiocbe->fd_file; 1045 1046 if (fp->f_type != DTYPE_VNODE) 1047 return (-1); 1048 1049 vp = (struct vnode *)fp->f_data; 1050 1051 /* 1052 * If its not a disk, we don't want to return a positive error. 1053 * It causes the aio code to not fall through to try the thread 1054 * way when you're talking to a regular file. 1055 */ 1056 if (!vn_isdisk(vp, &error)) { 1057 if (error == ENOTBLK) 1058 return (-1); 1059 else 1060 return (error); 1061 } 1062 1063 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) 1064 return (-1); 1065 1066 if (cb->aio_nbytes > 1067 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1068 return (-1); 1069 1070 ki = p->p_aioinfo; 1071 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1072 return (-1); 1073 1074 ki->kaio_buffer_count++; 1075 1076 lj = aiocbe->lio; 1077 if (lj) 1078 lj->lioj_buffer_count++; 1079 1080 /* Create and build a buffer header for a transfer. */ 1081 bp = (struct buf *)getpbuf(NULL); 1082 BUF_KERNPROC(bp); 1083 1084 /* 1085 * Get a copy of the kva from the physical buffer. 1086 */ 1087 bp->b_caller1 = p; 1088 bp->b_dev = vp->v_rdev; 1089 error = bp->b_error = 0; 1090 1091 bp->b_bcount = cb->aio_nbytes; 1092 bp->b_bufsize = cb->aio_nbytes; 1093 bp->b_flags = B_PHYS; 1094 bp->b_iodone = aio_physwakeup; 1095 bp->b_saveaddr = bp->b_data; 1096 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1097 bp->b_blkno = btodb(cb->aio_offset); 1098 1099 if (cb->aio_lio_opcode == LIO_WRITE) { 1100 bp->b_iocmd = BIO_WRITE; 1101 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) { 1102 error = EFAULT; 1103 goto doerror; 1104 } 1105 } else { 1106 bp->b_iocmd = BIO_READ; 1107 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) { 1108 error = EFAULT; 1109 goto doerror; 1110 } 1111 } 1112 1113 /* Bring buffer into kernel space. */ 1114 vmapbuf(bp); 1115 1116 s = splbio(); 1117 aiocbe->bp = bp; 1118 bp->b_spc = (void *)aiocbe; 1119 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); 1120 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1121 aiocbe->jobstate = JOBST_JOBQBUF; 1122 cb->_aiocb_private.status = cb->aio_nbytes; 1123 num_buf_aio++; 1124 bp->b_error = 0; 1125 1126 splx(s); 1127 1128 /* Perform transfer. */ 1129 DEV_STRATEGY(bp, 0); 1130 1131 notify = 0; 1132 s = splbio(); 1133 1134 /* 1135 * If we had an error invoking the request, or an error in processing 1136 * the request before we have returned, we process it as an error in 1137 * transfer. Note that such an I/O error is not indicated immediately, 1138 * but is returned using the aio_error mechanism. In this case, 1139 * aio_suspend will return immediately. 1140 */ 1141 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1142 struct aiocb *job = aiocbe->uuaiocb; 1143 1144 aiocbe->uaiocb._aiocb_private.status = 0; 1145 suword(&job->_aiocb_private.status, 0); 1146 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1147 suword(&job->_aiocb_private.error, bp->b_error); 1148 1149 ki->kaio_buffer_finished_count++; 1150 1151 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1152 aiocbe->jobstate = JOBST_JOBBFINISHED; 1153 aiocbe->jobflags |= AIOCBLIST_DONE; 1154 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 1155 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1156 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1157 notify = 1; 1158 } 1159 } 1160 splx(s); 1161 if (notify) 1162 KNOTE(&aiocbe->klist, 0); 1163 return 0; 1164 1165 doerror: 1166 ki->kaio_buffer_count--; 1167 if (lj) 1168 lj->lioj_buffer_count--; 1169 aiocbe->bp = NULL; 1170 relpbuf(bp, NULL); 1171 return error; 1172 } 1173 1174 /* 1175 * This waits/tests physio completion. 1176 */ 1177 static int 1178 aio_fphysio(struct aiocblist *iocb) 1179 { 1180 int s; 1181 struct buf *bp; 1182 int error; 1183 1184 bp = iocb->bp; 1185 1186 s = splbio(); 1187 while ((bp->b_flags & B_DONE) == 0) { 1188 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1189 if ((bp->b_flags & B_DONE) == 0) { 1190 splx(s); 1191 return EINPROGRESS; 1192 } else 1193 break; 1194 } 1195 } 1196 splx(s); 1197 1198 /* Release mapping into kernel space. */ 1199 vunmapbuf(bp); 1200 iocb->bp = 0; 1201 1202 error = 0; 1203 1204 /* Check for an error. */ 1205 if (bp->b_ioflags & BIO_ERROR) 1206 error = bp->b_error; 1207 1208 relpbuf(bp, NULL); 1209 return (error); 1210 } 1211 1212 /* 1213 * Wake up aio requests that may be serviceable now. 1214 */ 1215 static void 1216 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1217 { 1218 struct aiocblist *cb,*cbn; 1219 struct proc *p; 1220 struct kaioinfo *ki = NULL; 1221 int opcode, wakecount = 0; 1222 struct aiothreadlist *aiop; 1223 1224 if (sb == &so->so_snd) { 1225 opcode = LIO_WRITE; 1226 so->so_snd.sb_flags &= ~SB_AIO; 1227 } else { 1228 opcode = LIO_READ; 1229 so->so_rcv.sb_flags &= ~SB_AIO; 1230 } 1231 1232 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1233 cbn = TAILQ_NEXT(cb, list); 1234 if (opcode == cb->uaiocb.aio_lio_opcode) { 1235 p = cb->userproc; 1236 ki = p->p_aioinfo; 1237 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1238 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1239 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1240 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1241 wakecount++; 1242 if (cb->jobstate != JOBST_JOBQGLOBAL) 1243 panic("invalid queue value"); 1244 } 1245 } 1246 1247 while (wakecount--) { 1248 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1249 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1250 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1251 aiop->aiothreadflags &= ~AIOP_FREE; 1252 wakeup(aiop->aiothread); 1253 } 1254 } 1255 } 1256 1257 /* 1258 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1259 * technique is done in this code. 1260 */ 1261 static int 1262 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1263 { 1264 struct proc *p = td->td_proc; 1265 struct filedesc *fdp; 1266 struct file *fp; 1267 unsigned int fd; 1268 struct socket *so; 1269 int s; 1270 int error; 1271 int opcode, user_opcode; 1272 struct aiocblist *aiocbe; 1273 struct aiothreadlist *aiop; 1274 struct kaioinfo *ki; 1275 struct kevent kev; 1276 struct kqueue *kq; 1277 struct file *kq_fp; 1278 1279 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1280 aiocbe->inputcharge = 0; 1281 aiocbe->outputcharge = 0; 1282 callout_handle_init(&aiocbe->timeouthandle); 1283 SLIST_INIT(&aiocbe->klist); 1284 1285 suword(&job->_aiocb_private.status, -1); 1286 suword(&job->_aiocb_private.error, 0); 1287 suword(&job->_aiocb_private.kernelinfo, -1); 1288 1289 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1290 if (error) { 1291 suword(&job->_aiocb_private.error, error); 1292 uma_zfree(aiocb_zone, aiocbe); 1293 return error; 1294 } 1295 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1296 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1297 uma_zfree(aiocb_zone, aiocbe); 1298 return EINVAL; 1299 } 1300 1301 /* Save userspace address of the job info. */ 1302 aiocbe->uuaiocb = job; 1303 1304 /* Get the opcode. */ 1305 user_opcode = aiocbe->uaiocb.aio_lio_opcode; 1306 if (type != LIO_NOP) 1307 aiocbe->uaiocb.aio_lio_opcode = type; 1308 opcode = aiocbe->uaiocb.aio_lio_opcode; 1309 1310 /* Get the fd info for process. */ 1311 fdp = p->p_fd; 1312 1313 /* 1314 * Range check file descriptor. 1315 */ 1316 fd = aiocbe->uaiocb.aio_fildes; 1317 if (fd >= fdp->fd_nfiles) { 1318 uma_zfree(aiocb_zone, aiocbe); 1319 if (type == 0) 1320 suword(&job->_aiocb_private.error, EBADF); 1321 return EBADF; 1322 } 1323 1324 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1325 if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 1326 0))) { 1327 uma_zfree(aiocb_zone, aiocbe); 1328 if (type == 0) 1329 suword(&job->_aiocb_private.error, EBADF); 1330 return EBADF; 1331 } 1332 fhold(fp); 1333 1334 if (aiocbe->uaiocb.aio_offset == -1LL) { 1335 error = EINVAL; 1336 goto aqueue_fail; 1337 } 1338 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1339 if (error) { 1340 error = EINVAL; 1341 goto aqueue_fail; 1342 } 1343 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1344 if (jobrefid == LONG_MAX) 1345 jobrefid = 1; 1346 else 1347 jobrefid++; 1348 1349 if (opcode == LIO_NOP) { 1350 fdrop(fp, td); 1351 uma_zfree(aiocb_zone, aiocbe); 1352 if (type == 0) { 1353 suword(&job->_aiocb_private.error, 0); 1354 suword(&job->_aiocb_private.status, 0); 1355 suword(&job->_aiocb_private.kernelinfo, 0); 1356 } 1357 return 0; 1358 } 1359 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1360 if (type == 0) 1361 suword(&job->_aiocb_private.status, 0); 1362 error = EINVAL; 1363 goto aqueue_fail; 1364 } 1365 1366 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1367 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1368 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1369 } 1370 else { 1371 /* 1372 * This method for requesting kevent-based notification won't 1373 * work on the alpha, since we're passing in a pointer 1374 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- 1375 * based method instead. 1376 */ 1377 if (user_opcode == LIO_NOP || user_opcode == LIO_READ || 1378 user_opcode == LIO_WRITE) 1379 goto no_kqueue; 1380 1381 error = copyin((struct kevent *)(uintptr_t)user_opcode, 1382 &kev, sizeof(kev)); 1383 if (error) 1384 goto aqueue_fail; 1385 } 1386 if ((u_int)kev.ident >= fdp->fd_nfiles || 1387 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1388 (kq_fp->f_type != DTYPE_KQUEUE)) { 1389 error = EBADF; 1390 goto aqueue_fail; 1391 } 1392 kq = (struct kqueue *)kq_fp->f_data; 1393 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1394 kev.filter = EVFILT_AIO; 1395 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1396 kev.data = (intptr_t)aiocbe; 1397 error = kqueue_register(kq, &kev, td); 1398 aqueue_fail: 1399 if (error) { 1400 fdrop(fp, td); 1401 uma_zfree(aiocb_zone, aiocbe); 1402 if (type == 0) 1403 suword(&job->_aiocb_private.error, error); 1404 goto done; 1405 } 1406 no_kqueue: 1407 1408 suword(&job->_aiocb_private.error, EINPROGRESS); 1409 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1410 aiocbe->userproc = p; 1411 aiocbe->jobflags = 0; 1412 aiocbe->lio = lj; 1413 ki = p->p_aioinfo; 1414 1415 if (fp->f_type == DTYPE_SOCKET) { 1416 /* 1417 * Alternate queueing for socket ops: Reach down into the 1418 * descriptor to get the socket data. Then check to see if the 1419 * socket is ready to be read or written (based on the requested 1420 * operation). 1421 * 1422 * If it is not ready for io, then queue the aiocbe on the 1423 * socket, and set the flags so we get a call when sbnotify() 1424 * happens. 1425 */ 1426 so = (struct socket *)fp->f_data; 1427 s = splnet(); 1428 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1429 LIO_WRITE) && (!sowriteable(so)))) { 1430 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1431 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1432 if (opcode == LIO_READ) 1433 so->so_rcv.sb_flags |= SB_AIO; 1434 else 1435 so->so_snd.sb_flags |= SB_AIO; 1436 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1437 ki->kaio_queue_count++; 1438 num_queue_count++; 1439 splx(s); 1440 error = 0; 1441 goto done; 1442 } 1443 splx(s); 1444 } 1445 1446 if ((error = aio_qphysio(p, aiocbe)) == 0) 1447 goto done; 1448 if (error > 0) { 1449 suword(&job->_aiocb_private.status, 0); 1450 aiocbe->uaiocb._aiocb_private.error = error; 1451 suword(&job->_aiocb_private.error, error); 1452 goto done; 1453 } 1454 1455 /* No buffer for daemon I/O. */ 1456 aiocbe->bp = NULL; 1457 1458 ki->kaio_queue_count++; 1459 if (lj) 1460 lj->lioj_queue_count++; 1461 s = splnet(); 1462 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1463 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1464 splx(s); 1465 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1466 1467 num_queue_count++; 1468 error = 0; 1469 1470 /* 1471 * If we don't have a free AIO process, and we are below our quota, then 1472 * start one. Otherwise, depend on the subsequent I/O completions to 1473 * pick-up this job. If we don't sucessfully create the new process 1474 * (thread) due to resource issues, we return an error for now (EAGAIN), 1475 * which is likely not the correct thing to do. 1476 */ 1477 s = splnet(); 1478 retryproc: 1479 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1480 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1481 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1482 aiop->aiothreadflags &= ~AIOP_FREE; 1483 wakeup(aiop->aiothread); 1484 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1485 ((ki->kaio_active_count + num_aio_resv_start) < 1486 ki->kaio_maxactive_count)) { 1487 num_aio_resv_start++; 1488 if ((error = aio_newproc()) == 0) { 1489 num_aio_resv_start--; 1490 goto retryproc; 1491 } 1492 num_aio_resv_start--; 1493 } 1494 splx(s); 1495 done: 1496 return error; 1497 } 1498 1499 /* 1500 * This routine queues an AIO request, checking for quotas. 1501 */ 1502 static int 1503 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1504 { 1505 struct proc *p = td->td_proc; 1506 struct kaioinfo *ki; 1507 1508 if (p->p_aioinfo == NULL) 1509 aio_init_aioinfo(p); 1510 1511 if (num_queue_count >= max_queue_count) 1512 return EAGAIN; 1513 1514 ki = p->p_aioinfo; 1515 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1516 return EAGAIN; 1517 1518 return _aio_aqueue(td, job, NULL, type); 1519 } 1520 1521 /* 1522 * Support the aio_return system call, as a side-effect, kernel resources are 1523 * released. 1524 */ 1525 int 1526 aio_return(struct thread *td, struct aio_return_args *uap) 1527 { 1528 struct proc *p = td->td_proc; 1529 int s; 1530 long jobref; 1531 struct aiocblist *cb, *ncb; 1532 struct aiocb *ujob; 1533 struct kaioinfo *ki; 1534 1535 ujob = uap->aiocbp; 1536 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1537 if (jobref == -1 || jobref == 0) 1538 return EINVAL; 1539 1540 ki = p->p_aioinfo; 1541 if (ki == NULL) 1542 return EINVAL; 1543 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1544 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1545 jobref) { 1546 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1547 p->p_stats->p_ru.ru_oublock += 1548 cb->outputcharge; 1549 cb->outputcharge = 0; 1550 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1551 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1552 cb->inputcharge = 0; 1553 } 1554 goto done; 1555 } 1556 } 1557 s = splbio(); 1558 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1559 ncb = TAILQ_NEXT(cb, plist); 1560 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1561 == jobref) { 1562 break; 1563 } 1564 } 1565 splx(s); 1566 done: 1567 if (cb != NULL) { 1568 if (ujob == cb->uuaiocb) { 1569 td->td_retval[0] = 1570 cb->uaiocb._aiocb_private.status; 1571 } else 1572 td->td_retval[0] = EFAULT; 1573 aio_free_entry(cb); 1574 return (0); 1575 } 1576 return (EINVAL); 1577 } 1578 1579 /* 1580 * Allow a process to wakeup when any of the I/O requests are completed. 1581 */ 1582 int 1583 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1584 { 1585 struct proc *p = td->td_proc; 1586 struct timeval atv; 1587 struct timespec ts; 1588 struct aiocb *const *cbptr, *cbp; 1589 struct kaioinfo *ki; 1590 struct aiocblist *cb; 1591 int i; 1592 int njoblist; 1593 int error, s, timo; 1594 long *ijoblist; 1595 struct aiocb **ujoblist; 1596 1597 if (uap->nent > AIO_LISTIO_MAX) 1598 return EINVAL; 1599 1600 timo = 0; 1601 if (uap->timeout) { 1602 /* Get timespec struct. */ 1603 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1604 return error; 1605 1606 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1607 return (EINVAL); 1608 1609 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1610 if (itimerfix(&atv)) 1611 return (EINVAL); 1612 timo = tvtohz(&atv); 1613 } 1614 1615 ki = p->p_aioinfo; 1616 if (ki == NULL) 1617 return EAGAIN; 1618 1619 njoblist = 0; 1620 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1621 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1622 cbptr = uap->aiocbp; 1623 1624 for (i = 0; i < uap->nent; i++) { 1625 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1626 if (cbp == 0) 1627 continue; 1628 ujoblist[njoblist] = cbp; 1629 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1630 njoblist++; 1631 } 1632 1633 if (njoblist == 0) { 1634 uma_zfree(aiol_zone, ijoblist); 1635 uma_zfree(aiol_zone, ujoblist); 1636 return 0; 1637 } 1638 1639 error = 0; 1640 for (;;) { 1641 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1642 for (i = 0; i < njoblist; i++) { 1643 if (((intptr_t) 1644 cb->uaiocb._aiocb_private.kernelinfo) == 1645 ijoblist[i]) { 1646 if (ujoblist[i] != cb->uuaiocb) 1647 error = EINVAL; 1648 uma_zfree(aiol_zone, ijoblist); 1649 uma_zfree(aiol_zone, ujoblist); 1650 return error; 1651 } 1652 } 1653 } 1654 1655 s = splbio(); 1656 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1657 TAILQ_NEXT(cb, plist)) { 1658 for (i = 0; i < njoblist; i++) { 1659 if (((intptr_t) 1660 cb->uaiocb._aiocb_private.kernelinfo) == 1661 ijoblist[i]) { 1662 splx(s); 1663 if (ujoblist[i] != cb->uuaiocb) 1664 error = EINVAL; 1665 uma_zfree(aiol_zone, ijoblist); 1666 uma_zfree(aiol_zone, ujoblist); 1667 return error; 1668 } 1669 } 1670 } 1671 1672 ki->kaio_flags |= KAIO_WAKEUP; 1673 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); 1674 splx(s); 1675 1676 if (error == ERESTART || error == EINTR) { 1677 uma_zfree(aiol_zone, ijoblist); 1678 uma_zfree(aiol_zone, ujoblist); 1679 return EINTR; 1680 } else if (error == EWOULDBLOCK) { 1681 uma_zfree(aiol_zone, ijoblist); 1682 uma_zfree(aiol_zone, ujoblist); 1683 return EAGAIN; 1684 } 1685 } 1686 1687 /* NOTREACHED */ 1688 return EINVAL; 1689 } 1690 1691 /* 1692 * aio_cancel cancels any non-physio aio operations not currently in 1693 * progress. 1694 */ 1695 int 1696 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1697 { 1698 struct proc *p = td->td_proc; 1699 struct kaioinfo *ki; 1700 struct aiocblist *cbe, *cbn; 1701 struct file *fp; 1702 struct filedesc *fdp; 1703 struct socket *so; 1704 struct proc *po; 1705 int s,error; 1706 int cancelled=0; 1707 int notcancelled=0; 1708 struct vnode *vp; 1709 1710 fdp = p->p_fd; 1711 if ((u_int)uap->fd >= fdp->fd_nfiles || 1712 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1713 return (EBADF); 1714 1715 if (fp->f_type == DTYPE_VNODE) { 1716 vp = (struct vnode *)fp->f_data; 1717 1718 if (vn_isdisk(vp,&error)) { 1719 td->td_retval[0] = AIO_NOTCANCELED; 1720 return 0; 1721 } 1722 } else if (fp->f_type == DTYPE_SOCKET) { 1723 so = (struct socket *)fp->f_data; 1724 1725 s = splnet(); 1726 1727 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1728 cbn = TAILQ_NEXT(cbe, list); 1729 if ((uap->aiocbp == NULL) || 1730 (uap->aiocbp == cbe->uuaiocb) ) { 1731 po = cbe->userproc; 1732 ki = po->p_aioinfo; 1733 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1734 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1735 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1736 if (ki->kaio_flags & KAIO_WAKEUP) { 1737 wakeup(po); 1738 } 1739 cbe->jobstate = JOBST_JOBFINISHED; 1740 cbe->uaiocb._aiocb_private.status=-1; 1741 cbe->uaiocb._aiocb_private.error=ECANCELED; 1742 cancelled++; 1743 /* XXX cancelled, knote? */ 1744 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1745 SIGEV_SIGNAL) { 1746 PROC_LOCK(cbe->userproc); 1747 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1748 PROC_UNLOCK(cbe->userproc); 1749 } 1750 if (uap->aiocbp) 1751 break; 1752 } 1753 } 1754 splx(s); 1755 1756 if ((cancelled) && (uap->aiocbp)) { 1757 td->td_retval[0] = AIO_CANCELED; 1758 return 0; 1759 } 1760 } 1761 ki=p->p_aioinfo; 1762 if (ki == NULL) 1763 goto done; 1764 s = splnet(); 1765 1766 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1767 cbn = TAILQ_NEXT(cbe, plist); 1768 1769 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1770 ((uap->aiocbp == NULL ) || 1771 (uap->aiocbp == cbe->uuaiocb))) { 1772 1773 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1774 TAILQ_REMOVE(&aio_jobs, cbe, list); 1775 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1776 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1777 plist); 1778 cancelled++; 1779 ki->kaio_queue_finished_count++; 1780 cbe->jobstate = JOBST_JOBFINISHED; 1781 cbe->uaiocb._aiocb_private.status = -1; 1782 cbe->uaiocb._aiocb_private.error = ECANCELED; 1783 /* XXX cancelled, knote? */ 1784 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1785 SIGEV_SIGNAL) { 1786 PROC_LOCK(cbe->userproc); 1787 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1788 PROC_UNLOCK(cbe->userproc); 1789 } 1790 } else { 1791 notcancelled++; 1792 } 1793 } 1794 } 1795 splx(s); 1796 done: 1797 if (notcancelled) { 1798 td->td_retval[0] = AIO_NOTCANCELED; 1799 return 0; 1800 } 1801 if (cancelled) { 1802 td->td_retval[0] = AIO_CANCELED; 1803 return 0; 1804 } 1805 td->td_retval[0] = AIO_ALLDONE; 1806 1807 return 0; 1808 } 1809 1810 /* 1811 * aio_error is implemented in the kernel level for compatibility purposes only. 1812 * For a user mode async implementation, it would be best to do it in a userland 1813 * subroutine. 1814 */ 1815 int 1816 aio_error(struct thread *td, struct aio_error_args *uap) 1817 { 1818 struct proc *p = td->td_proc; 1819 int s; 1820 struct aiocblist *cb; 1821 struct kaioinfo *ki; 1822 long jobref; 1823 1824 ki = p->p_aioinfo; 1825 if (ki == NULL) 1826 return EINVAL; 1827 1828 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1829 if ((jobref == -1) || (jobref == 0)) 1830 return EINVAL; 1831 1832 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1833 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1834 jobref) { 1835 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1836 return 0; 1837 } 1838 } 1839 1840 s = splnet(); 1841 1842 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1843 plist)) { 1844 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1845 jobref) { 1846 td->td_retval[0] = EINPROGRESS; 1847 splx(s); 1848 return 0; 1849 } 1850 } 1851 1852 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1853 plist)) { 1854 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1855 jobref) { 1856 td->td_retval[0] = EINPROGRESS; 1857 splx(s); 1858 return 0; 1859 } 1860 } 1861 splx(s); 1862 1863 s = splbio(); 1864 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1865 plist)) { 1866 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1867 jobref) { 1868 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1869 splx(s); 1870 return 0; 1871 } 1872 } 1873 1874 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1875 plist)) { 1876 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1877 jobref) { 1878 td->td_retval[0] = EINPROGRESS; 1879 splx(s); 1880 return 0; 1881 } 1882 } 1883 splx(s); 1884 1885 #if (0) 1886 /* 1887 * Hack for lio. 1888 */ 1889 status = fuword(&uap->aiocbp->_aiocb_private.status); 1890 if (status == -1) 1891 return fuword(&uap->aiocbp->_aiocb_private.error); 1892 #endif 1893 return EINVAL; 1894 } 1895 1896 /* syscall - asynchronous read from a file (REALTIME) */ 1897 int 1898 aio_read(struct thread *td, struct aio_read_args *uap) 1899 { 1900 1901 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1902 } 1903 1904 /* syscall - asynchronous write to a file (REALTIME) */ 1905 int 1906 aio_write(struct thread *td, struct aio_write_args *uap) 1907 { 1908 1909 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1910 } 1911 1912 /* syscall - XXX undocumented */ 1913 int 1914 lio_listio(struct thread *td, struct lio_listio_args *uap) 1915 { 1916 struct proc *p = td->td_proc; 1917 int nent, nentqueued; 1918 struct aiocb *iocb, * const *cbptr; 1919 struct aiocblist *cb; 1920 struct kaioinfo *ki; 1921 struct aio_liojob *lj; 1922 int error, runningcode; 1923 int nerror; 1924 int i; 1925 int s; 1926 1927 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1928 return EINVAL; 1929 1930 nent = uap->nent; 1931 if (nent > AIO_LISTIO_MAX) 1932 return EINVAL; 1933 1934 if (p->p_aioinfo == NULL) 1935 aio_init_aioinfo(p); 1936 1937 if ((nent + num_queue_count) > max_queue_count) 1938 return EAGAIN; 1939 1940 ki = p->p_aioinfo; 1941 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1942 return EAGAIN; 1943 1944 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1945 if (!lj) 1946 return EAGAIN; 1947 1948 lj->lioj_flags = 0; 1949 lj->lioj_buffer_count = 0; 1950 lj->lioj_buffer_finished_count = 0; 1951 lj->lioj_queue_count = 0; 1952 lj->lioj_queue_finished_count = 0; 1953 lj->lioj_ki = ki; 1954 1955 /* 1956 * Setup signal. 1957 */ 1958 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1959 error = copyin(uap->sig, &lj->lioj_signal, 1960 sizeof(lj->lioj_signal)); 1961 if (error) { 1962 uma_zfree(aiolio_zone, lj); 1963 return error; 1964 } 1965 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1966 uma_zfree(aiolio_zone, lj); 1967 return EINVAL; 1968 } 1969 lj->lioj_flags |= LIOJ_SIGNAL; 1970 } 1971 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1972 /* 1973 * Get pointers to the list of I/O requests. 1974 */ 1975 nerror = 0; 1976 nentqueued = 0; 1977 cbptr = uap->acb_list; 1978 for (i = 0; i < uap->nent; i++) { 1979 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1980 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 1981 error = _aio_aqueue(td, iocb, lj, 0); 1982 if (error == 0) 1983 nentqueued++; 1984 else 1985 nerror++; 1986 } 1987 } 1988 1989 /* 1990 * If we haven't queued any, then just return error. 1991 */ 1992 if (nentqueued == 0) 1993 return 0; 1994 1995 /* 1996 * Calculate the appropriate error return. 1997 */ 1998 runningcode = 0; 1999 if (nerror) 2000 runningcode = EIO; 2001 2002 if (uap->mode == LIO_WAIT) { 2003 int command, found, jobref; 2004 2005 for (;;) { 2006 found = 0; 2007 for (i = 0; i < uap->nent; i++) { 2008 /* 2009 * Fetch address of the control buf pointer in 2010 * user space. 2011 */ 2012 iocb = (struct aiocb *) 2013 (intptr_t)fuword(&cbptr[i]); 2014 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2015 == 0)) 2016 continue; 2017 2018 /* 2019 * Fetch the associated command from user space. 2020 */ 2021 command = fuword(&iocb->aio_lio_opcode); 2022 if (command == LIO_NOP) { 2023 found++; 2024 continue; 2025 } 2026 2027 jobref = fuword(&iocb->_aiocb_private.kernelinfo); 2028 2029 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2030 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2031 == jobref) { 2032 if (cb->uaiocb.aio_lio_opcode 2033 == LIO_WRITE) { 2034 p->p_stats->p_ru.ru_oublock 2035 += 2036 cb->outputcharge; 2037 cb->outputcharge = 0; 2038 } else if (cb->uaiocb.aio_lio_opcode 2039 == LIO_READ) { 2040 p->p_stats->p_ru.ru_inblock 2041 += cb->inputcharge; 2042 cb->inputcharge = 0; 2043 } 2044 found++; 2045 break; 2046 } 2047 } 2048 2049 s = splbio(); 2050 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2051 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2052 == jobref) { 2053 found++; 2054 break; 2055 } 2056 } 2057 splx(s); 2058 } 2059 2060 /* 2061 * If all I/Os have been disposed of, then we can 2062 * return. 2063 */ 2064 if (found == nentqueued) 2065 return runningcode; 2066 2067 ki->kaio_flags |= KAIO_WAKEUP; 2068 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2069 2070 if (error == EINTR) 2071 return EINTR; 2072 else if (error == EWOULDBLOCK) 2073 return EAGAIN; 2074 } 2075 } 2076 2077 return runningcode; 2078 } 2079 2080 /* 2081 * This is a weird hack so that we can post a signal. It is safe to do so from 2082 * a timeout routine, but *not* from an interrupt routine. 2083 */ 2084 static void 2085 process_signal(void *aioj) 2086 { 2087 struct aiocblist *aiocbe = aioj; 2088 struct aio_liojob *lj = aiocbe->lio; 2089 struct aiocb *cb = &aiocbe->uaiocb; 2090 2091 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && 2092 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { 2093 PROC_LOCK(lj->lioj_ki->kaio_p); 2094 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); 2095 PROC_UNLOCK(lj->lioj_ki->kaio_p); 2096 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2097 } 2098 2099 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2100 PROC_LOCK(aiocbe->userproc); 2101 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); 2102 PROC_UNLOCK(aiocbe->userproc); 2103 } 2104 } 2105 2106 /* 2107 * Interrupt handler for physio, performs the necessary process wakeups, and 2108 * signals. 2109 */ 2110 static void 2111 aio_physwakeup(struct buf *bp) 2112 { 2113 struct aiocblist *aiocbe; 2114 struct proc *p; 2115 struct kaioinfo *ki; 2116 struct aio_liojob *lj; 2117 2118 wakeup(bp); 2119 2120 aiocbe = (struct aiocblist *)bp->b_spc; 2121 if (aiocbe) { 2122 p = bp->b_caller1; 2123 2124 aiocbe->jobstate = JOBST_JOBBFINISHED; 2125 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2126 aiocbe->uaiocb._aiocb_private.error = 0; 2127 aiocbe->jobflags |= AIOCBLIST_DONE; 2128 2129 if (bp->b_ioflags & BIO_ERROR) 2130 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2131 2132 lj = aiocbe->lio; 2133 if (lj) { 2134 lj->lioj_buffer_finished_count++; 2135 2136 /* 2137 * wakeup/signal if all of the interrupt jobs are done. 2138 */ 2139 if (lj->lioj_buffer_finished_count == 2140 lj->lioj_buffer_count) { 2141 /* 2142 * Post a signal if it is called for. 2143 */ 2144 if ((lj->lioj_flags & 2145 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2146 LIOJ_SIGNAL) { 2147 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2148 aiocbe->timeouthandle = 2149 timeout(process_signal, 2150 aiocbe, 0); 2151 } 2152 } 2153 } 2154 2155 ki = p->p_aioinfo; 2156 if (ki) { 2157 ki->kaio_buffer_finished_count++; 2158 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 2159 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2160 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2161 2162 KNOTE(&aiocbe->klist, 0); 2163 /* Do the wakeup. */ 2164 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2165 ki->kaio_flags &= ~KAIO_WAKEUP; 2166 wakeup(p); 2167 } 2168 } 2169 2170 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) 2171 aiocbe->timeouthandle = 2172 timeout(process_signal, aiocbe, 0); 2173 } 2174 } 2175 2176 /* syscall - wait for the next completion of an aio request */ 2177 int 2178 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2179 { 2180 struct proc *p = td->td_proc; 2181 struct timeval atv; 2182 struct timespec ts; 2183 struct kaioinfo *ki; 2184 struct aiocblist *cb = NULL; 2185 int error, s, timo; 2186 2187 suword(uap->aiocbp, (int)NULL); 2188 2189 timo = 0; 2190 if (uap->timeout) { 2191 /* Get timespec struct. */ 2192 error = copyin(uap->timeout, &ts, sizeof(ts)); 2193 if (error) 2194 return error; 2195 2196 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2197 return (EINVAL); 2198 2199 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2200 if (itimerfix(&atv)) 2201 return (EINVAL); 2202 timo = tvtohz(&atv); 2203 } 2204 2205 ki = p->p_aioinfo; 2206 if (ki == NULL) 2207 return EAGAIN; 2208 2209 for (;;) { 2210 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2211 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2212 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2213 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2214 p->p_stats->p_ru.ru_oublock += 2215 cb->outputcharge; 2216 cb->outputcharge = 0; 2217 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2218 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2219 cb->inputcharge = 0; 2220 } 2221 aio_free_entry(cb); 2222 return cb->uaiocb._aiocb_private.error; 2223 } 2224 2225 s = splbio(); 2226 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2227 splx(s); 2228 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2229 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2230 aio_free_entry(cb); 2231 return cb->uaiocb._aiocb_private.error; 2232 } 2233 2234 ki->kaio_flags |= KAIO_WAKEUP; 2235 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); 2236 splx(s); 2237 2238 if (error == ERESTART) 2239 return EINTR; 2240 else if (error < 0) 2241 return error; 2242 else if (error == EINTR) 2243 return EINTR; 2244 else if (error == EWOULDBLOCK) 2245 return EAGAIN; 2246 } 2247 } 2248 2249 /* kqueue attach function */ 2250 static int 2251 filt_aioattach(struct knote *kn) 2252 { 2253 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2254 2255 /* 2256 * The aiocbe pointer must be validated before using it, so 2257 * registration is restricted to the kernel; the user cannot 2258 * set EV_FLAG1. 2259 */ 2260 if ((kn->kn_flags & EV_FLAG1) == 0) 2261 return (EPERM); 2262 kn->kn_flags &= ~EV_FLAG1; 2263 2264 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); 2265 2266 return (0); 2267 } 2268 2269 /* kqueue detach function */ 2270 static void 2271 filt_aiodetach(struct knote *kn) 2272 { 2273 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2274 2275 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); 2276 } 2277 2278 /* kqueue filter function */ 2279 /*ARGSUSED*/ 2280 static int 2281 filt_aio(struct knote *kn, long hint) 2282 { 2283 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2284 2285 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2286 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2287 aiocbe->jobstate != JOBST_JOBBFINISHED) 2288 return (0); 2289 kn->kn_flags |= EV_EOF; 2290 return (1); 2291 } 2292