1 /* 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/socketvar.h> 46 #include <sys/syscall.h> 47 #include <sys/sysent.h> 48 #include <sys/sysctl.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 #include <sys/conf.h> 52 #include <sys/event.h> 53 54 #include <posix4/posix4.h> 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/uma.h> 60 #include <sys/aio.h> 61 62 #include "opt_vfs_aio.h" 63 64 /* 65 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 66 * overflow. 67 */ 68 static long jobrefid; 69 70 #define JOBST_NULL 0x0 71 #define JOBST_JOBQGLOBAL 0x2 72 #define JOBST_JOBRUNNING 0x3 73 #define JOBST_JOBFINISHED 0x4 74 #define JOBST_JOBQBUF 0x5 75 #define JOBST_JOBBFINISHED 0x6 76 77 #ifndef MAX_AIO_PER_PROC 78 #define MAX_AIO_PER_PROC 32 79 #endif 80 81 #ifndef MAX_AIO_QUEUE_PER_PROC 82 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 83 #endif 84 85 #ifndef MAX_AIO_PROCS 86 #define MAX_AIO_PROCS 32 87 #endif 88 89 #ifndef MAX_AIO_QUEUE 90 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 91 #endif 92 93 #ifndef TARGET_AIO_PROCS 94 #define TARGET_AIO_PROCS 4 95 #endif 96 97 #ifndef MAX_BUF_AIO 98 #define MAX_BUF_AIO 16 99 #endif 100 101 #ifndef AIOD_TIMEOUT_DEFAULT 102 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 103 #endif 104 105 #ifndef AIOD_LIFETIME_DEFAULT 106 #define AIOD_LIFETIME_DEFAULT (30 * hz) 107 #endif 108 109 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 110 111 static int max_aio_procs = MAX_AIO_PROCS; 112 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 113 CTLFLAG_RW, &max_aio_procs, 0, 114 "Maximum number of kernel threads to use for handling async IO "); 115 116 static int num_aio_procs = 0; 117 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 118 CTLFLAG_RD, &num_aio_procs, 0, 119 "Number of presently active kernel threads for async IO"); 120 121 /* 122 * The code will adjust the actual number of AIO processes towards this 123 * number when it gets a chance. 124 */ 125 static int target_aio_procs = TARGET_AIO_PROCS; 126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 127 0, "Preferred number of ready kernel threads for async IO"); 128 129 static int max_queue_count = MAX_AIO_QUEUE; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 131 "Maximum number of aio requests to queue, globally"); 132 133 static int num_queue_count = 0; 134 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 135 "Number of queued aio requests"); 136 137 static int num_buf_aio = 0; 138 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 139 "Number of aio requests presently handled by the buf subsystem"); 140 141 /* Number of async I/O thread in the process of being started */ 142 /* XXX This should be local to _aio_aqueue() */ 143 static int num_aio_resv_start = 0; 144 145 static int aiod_timeout; 146 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 147 "Timeout value for synchronous aio operations"); 148 149 static int aiod_lifetime; 150 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 151 "Maximum lifetime for idle aiod"); 152 153 static int unloadable = 0; 154 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 155 "Allow unload of aio (not recommended)"); 156 157 158 static int max_aio_per_proc = MAX_AIO_PER_PROC; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 160 0, "Maximum active aio requests per process (stored in the process)"); 161 162 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 164 &max_aio_queue_per_proc, 0, 165 "Maximum queued aio requests per process (stored in the process)"); 166 167 static int max_buf_aio = MAX_BUF_AIO; 168 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 169 "Maximum buf aio requests per process (stored in the process)"); 170 171 struct aiocblist { 172 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 173 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 174 int jobflags; 175 int jobstate; 176 int inputcharge; 177 int outputcharge; 178 struct callout_handle timeouthandle; 179 struct buf *bp; /* Buffer pointer */ 180 struct proc *userproc; /* User process */ /* Not td! */ 181 struct ucred *cred; /* Active credential when created */ 182 struct file *fd_file; /* Pointer to file structure */ 183 struct aio_liojob *lio; /* Optional lio job */ 184 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 185 struct klist klist; /* list of knotes */ 186 struct aiocb uaiocb; /* Kernel I/O control block */ 187 }; 188 189 /* jobflags */ 190 #define AIOCBLIST_RUNDOWN 0x4 191 #define AIOCBLIST_DONE 0x10 192 193 /* 194 * AIO process info 195 */ 196 #define AIOP_FREE 0x1 /* proc on free queue */ 197 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ 198 199 struct aiothreadlist { 200 int aiothreadflags; /* AIO proc flags */ 201 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 202 struct thread *aiothread; /* The AIO thread */ 203 }; 204 205 /* 206 * data-structure for lio signal management 207 */ 208 struct aio_liojob { 209 int lioj_flags; 210 int lioj_buffer_count; 211 int lioj_buffer_finished_count; 212 int lioj_queue_count; 213 int lioj_queue_finished_count; 214 struct sigevent lioj_signal; /* signal on all I/O done */ 215 TAILQ_ENTRY(aio_liojob) lioj_list; 216 struct kaioinfo *lioj_ki; 217 }; 218 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 219 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 220 221 /* 222 * per process aio data structure 223 */ 224 struct kaioinfo { 225 int kaio_flags; /* per process kaio flags */ 226 int kaio_maxactive_count; /* maximum number of AIOs */ 227 int kaio_active_count; /* number of currently used AIOs */ 228 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 229 int kaio_queue_count; /* size of AIO queue */ 230 int kaio_ballowed_count; /* maximum number of buffers */ 231 int kaio_queue_finished_count; /* number of daemon jobs finished */ 232 int kaio_buffer_count; /* number of physio buffers */ 233 int kaio_buffer_finished_count; /* count of I/O done */ 234 struct proc *kaio_p; /* process that uses this kaio block */ 235 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 236 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 239 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 240 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 241 }; 242 243 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 244 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 245 246 static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ 247 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 248 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 249 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ 250 251 static void aio_init_aioinfo(struct proc *p); 252 static void aio_onceonly(void); 253 static int aio_free_entry(struct aiocblist *aiocbe); 254 static void aio_process(struct aiocblist *aiocbe); 255 static int aio_newproc(void); 256 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 257 static void aio_physwakeup(struct buf *bp); 258 static void aio_proc_rundown(void *arg, struct proc *p); 259 static int aio_fphysio(struct aiocblist *aiocbe); 260 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 261 static void aio_daemon(void *uproc); 262 static void aio_swake_cb(struct socket *, struct sockbuf *); 263 static int aio_unload(void); 264 static void process_signal(void *aioj); 265 static int filt_aioattach(struct knote *kn); 266 static void filt_aiodetach(struct knote *kn); 267 static int filt_aio(struct knote *kn, long hint); 268 269 /* 270 * Zones for: 271 * kaio Per process async io info 272 * aiop async io thread data 273 * aiocb async io jobs 274 * aiol list io job pointer - internal to aio_suspend XXX 275 * aiolio list io jobs 276 */ 277 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 278 279 /* kqueue filters for aio */ 280 static struct filterops aio_filtops = 281 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 282 283 static eventhandler_tag exit_tag, exec_tag; 284 285 /* 286 * Main operations function for use as a kernel module. 287 */ 288 static int 289 aio_modload(struct module *module, int cmd, void *arg) 290 { 291 int error = 0; 292 293 switch (cmd) { 294 case MOD_LOAD: 295 aio_onceonly(); 296 break; 297 case MOD_UNLOAD: 298 error = aio_unload(); 299 break; 300 case MOD_SHUTDOWN: 301 break; 302 default: 303 error = EINVAL; 304 break; 305 } 306 return (error); 307 } 308 309 static moduledata_t aio_mod = { 310 "aio", 311 &aio_modload, 312 NULL 313 }; 314 315 SYSCALL_MODULE_HELPER(aio_return); 316 SYSCALL_MODULE_HELPER(aio_suspend); 317 SYSCALL_MODULE_HELPER(aio_cancel); 318 SYSCALL_MODULE_HELPER(aio_error); 319 SYSCALL_MODULE_HELPER(aio_read); 320 SYSCALL_MODULE_HELPER(aio_write); 321 SYSCALL_MODULE_HELPER(aio_waitcomplete); 322 SYSCALL_MODULE_HELPER(lio_listio); 323 324 DECLARE_MODULE(aio, aio_mod, 325 SI_SUB_VFS, SI_ORDER_ANY); 326 MODULE_VERSION(aio, 1); 327 328 /* 329 * Startup initialization 330 */ 331 static void 332 aio_onceonly(void) 333 { 334 335 /* XXX: should probably just use so->callback */ 336 aio_swake = &aio_swake_cb; 337 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 338 EVENTHANDLER_PRI_ANY); 339 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 340 EVENTHANDLER_PRI_ANY); 341 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 342 TAILQ_INIT(&aio_freeproc); 343 TAILQ_INIT(&aio_activeproc); 344 TAILQ_INIT(&aio_jobs); 345 TAILQ_INIT(&aio_bufjobs); 346 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 347 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 348 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 349 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 350 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 351 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 352 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 353 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 354 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 355 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 356 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 357 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 358 jobrefid = 1; 359 async_io_version = _POSIX_VERSION; 360 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 361 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 362 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 363 } 364 365 /* 366 * Callback for unload of AIO when used as a module. 367 */ 368 static int 369 aio_unload(void) 370 { 371 372 /* 373 * XXX: no unloads by default, it's too dangerous. 374 * perhaps we could do it if locked out callers and then 375 * did an aio_proc_rundown() on each process. 376 */ 377 if (!unloadable) 378 return (EOPNOTSUPP); 379 380 async_io_version = 0; 381 aio_swake = NULL; 382 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 383 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 384 kqueue_del_filteropts(EVFILT_AIO); 385 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 386 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 387 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 388 return (0); 389 } 390 391 /* 392 * Init the per-process aioinfo structure. The aioinfo limits are set 393 * per-process for user limit (resource) management. 394 */ 395 static void 396 aio_init_aioinfo(struct proc *p) 397 { 398 struct kaioinfo *ki; 399 400 if (p->p_aioinfo == NULL) { 401 ki = uma_zalloc(kaio_zone, M_WAITOK); 402 p->p_aioinfo = ki; 403 ki->kaio_flags = 0; 404 ki->kaio_maxactive_count = max_aio_per_proc; 405 ki->kaio_active_count = 0; 406 ki->kaio_qallowed_count = max_aio_queue_per_proc; 407 ki->kaio_queue_count = 0; 408 ki->kaio_ballowed_count = max_buf_aio; 409 ki->kaio_buffer_count = 0; 410 ki->kaio_buffer_finished_count = 0; 411 ki->kaio_p = p; 412 TAILQ_INIT(&ki->kaio_jobdone); 413 TAILQ_INIT(&ki->kaio_jobqueue); 414 TAILQ_INIT(&ki->kaio_bufdone); 415 TAILQ_INIT(&ki->kaio_bufqueue); 416 TAILQ_INIT(&ki->kaio_liojoblist); 417 TAILQ_INIT(&ki->kaio_sockqueue); 418 } 419 420 while (num_aio_procs < target_aio_procs) 421 aio_newproc(); 422 } 423 424 /* 425 * Free a job entry. Wait for completion if it is currently active, but don't 426 * delay forever. If we delay, we return a flag that says that we have to 427 * restart the queue scan. 428 */ 429 static int 430 aio_free_entry(struct aiocblist *aiocbe) 431 { 432 struct kaioinfo *ki; 433 struct aio_liojob *lj; 434 struct proc *p; 435 int error; 436 int s; 437 438 if (aiocbe->jobstate == JOBST_NULL) 439 panic("aio_free_entry: freeing already free job"); 440 441 p = aiocbe->userproc; 442 ki = p->p_aioinfo; 443 lj = aiocbe->lio; 444 if (ki == NULL) 445 panic("aio_free_entry: missing p->p_aioinfo"); 446 447 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 448 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 449 tsleep(aiocbe, PRIBIO, "jobwai", 0); 450 } 451 if (aiocbe->bp == NULL) { 452 if (ki->kaio_queue_count <= 0) 453 panic("aio_free_entry: process queue size <= 0"); 454 if (num_queue_count <= 0) 455 panic("aio_free_entry: system wide queue size <= 0"); 456 457 if (lj) { 458 lj->lioj_queue_count--; 459 if (aiocbe->jobflags & AIOCBLIST_DONE) 460 lj->lioj_queue_finished_count--; 461 } 462 ki->kaio_queue_count--; 463 if (aiocbe->jobflags & AIOCBLIST_DONE) 464 ki->kaio_queue_finished_count--; 465 num_queue_count--; 466 } else { 467 if (lj) { 468 lj->lioj_buffer_count--; 469 if (aiocbe->jobflags & AIOCBLIST_DONE) 470 lj->lioj_buffer_finished_count--; 471 } 472 if (aiocbe->jobflags & AIOCBLIST_DONE) 473 ki->kaio_buffer_finished_count--; 474 ki->kaio_buffer_count--; 475 num_buf_aio--; 476 } 477 478 /* aiocbe is going away, we need to destroy any knotes */ 479 /* XXXKSE Note the thread here is used to eventually find the 480 * owning process again, but it is also used to do a fo_close 481 * and that requires the thread. (but does it require the 482 * OWNING thread? (or maybe the running thread?) 483 * There is a semantic problem here... 484 */ 485 knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ 486 487 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 488 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 489 ki->kaio_flags &= ~KAIO_WAKEUP; 490 wakeup(p); 491 } 492 493 if (aiocbe->jobstate == JOBST_JOBQBUF) { 494 if ((error = aio_fphysio(aiocbe)) != 0) 495 return (error); 496 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 497 panic("aio_free_entry: invalid physio finish-up state"); 498 s = splbio(); 499 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 500 splx(s); 501 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 502 s = splnet(); 503 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 504 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 505 splx(s); 506 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 507 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 508 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 509 s = splbio(); 510 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 511 splx(s); 512 if (aiocbe->bp) { 513 vunmapbuf(aiocbe->bp); 514 relpbuf(aiocbe->bp, NULL); 515 aiocbe->bp = NULL; 516 } 517 } 518 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 519 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 520 uma_zfree(aiolio_zone, lj); 521 } 522 aiocbe->jobstate = JOBST_NULL; 523 untimeout(process_signal, aiocbe, aiocbe->timeouthandle); 524 fdrop(aiocbe->fd_file, curthread); 525 crfree(aiocbe->cred); 526 uma_zfree(aiocb_zone, aiocbe); 527 return (0); 528 } 529 530 /* 531 * Rundown the jobs for a given process. 532 */ 533 static void 534 aio_proc_rundown(void *arg, struct proc *p) 535 { 536 int s; 537 struct kaioinfo *ki; 538 struct aio_liojob *lj, *ljn; 539 struct aiocblist *aiocbe, *aiocbn; 540 struct file *fp; 541 struct socket *so; 542 543 ki = p->p_aioinfo; 544 if (ki == NULL) 545 return; 546 547 mtx_lock(&Giant); 548 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 549 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 550 ki->kaio_buffer_finished_count)) { 551 ki->kaio_flags |= KAIO_RUNDOWN; 552 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 553 break; 554 } 555 556 /* 557 * Move any aio ops that are waiting on socket I/O to the normal job 558 * queues so they are cleaned up with any others. 559 */ 560 s = splnet(); 561 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 562 aiocbn) { 563 aiocbn = TAILQ_NEXT(aiocbe, plist); 564 fp = aiocbe->fd_file; 565 if (fp != NULL) { 566 so = fp->f_data; 567 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 568 if (TAILQ_EMPTY(&so->so_aiojobq)) { 569 SOCKBUF_LOCK(&so->so_snd); 570 so->so_snd.sb_flags &= ~SB_AIO; 571 SOCKBUF_UNLOCK(&so->so_snd); 572 SOCKBUF_LOCK(&so->so_rcv); 573 so->so_rcv.sb_flags &= ~SB_AIO; 574 SOCKBUF_UNLOCK(&so->so_rcv); 575 } 576 } 577 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 578 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 579 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 580 } 581 splx(s); 582 583 restart1: 584 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 585 aiocbn = TAILQ_NEXT(aiocbe, plist); 586 if (aio_free_entry(aiocbe)) 587 goto restart1; 588 } 589 590 restart2: 591 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 592 aiocbn) { 593 aiocbn = TAILQ_NEXT(aiocbe, plist); 594 if (aio_free_entry(aiocbe)) 595 goto restart2; 596 } 597 598 /* 599 * Note the use of lots of splbio here, trying to avoid splbio for long chains 600 * of I/O. Probably unnecessary. 601 */ 602 restart3: 603 s = splbio(); 604 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 605 ki->kaio_flags |= KAIO_WAKEUP; 606 tsleep(p, PRIBIO, "aioprn", 0); 607 splx(s); 608 goto restart3; 609 } 610 splx(s); 611 612 restart4: 613 s = splbio(); 614 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 615 aiocbn = TAILQ_NEXT(aiocbe, plist); 616 if (aio_free_entry(aiocbe)) { 617 splx(s); 618 goto restart4; 619 } 620 } 621 splx(s); 622 623 /* 624 * If we've slept, jobs might have moved from one queue to another. 625 * Retry rundown if we didn't manage to empty the queues. 626 */ 627 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 628 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 629 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 630 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 631 goto restart1; 632 633 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 634 ljn = TAILQ_NEXT(lj, lioj_list); 635 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 636 0)) { 637 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 638 uma_zfree(aiolio_zone, lj); 639 } else { 640 #ifdef DIAGNOSTIC 641 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 642 "QF:%d\n", lj->lioj_buffer_count, 643 lj->lioj_buffer_finished_count, 644 lj->lioj_queue_count, 645 lj->lioj_queue_finished_count); 646 #endif 647 } 648 } 649 650 uma_zfree(kaio_zone, ki); 651 p->p_aioinfo = NULL; 652 mtx_unlock(&Giant); 653 } 654 655 /* 656 * Select a job to run (called by an AIO daemon). 657 */ 658 static struct aiocblist * 659 aio_selectjob(struct aiothreadlist *aiop) 660 { 661 int s; 662 struct aiocblist *aiocbe; 663 struct kaioinfo *ki; 664 struct proc *userp; 665 666 s = splnet(); 667 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 668 TAILQ_NEXT(aiocbe, list)) { 669 userp = aiocbe->userproc; 670 ki = userp->p_aioinfo; 671 672 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 673 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 674 splx(s); 675 return (aiocbe); 676 } 677 } 678 splx(s); 679 680 return (NULL); 681 } 682 683 /* 684 * The AIO processing activity. This is the code that does the I/O request for 685 * the non-physio version of the operations. The normal vn operations are used, 686 * and this code should work in all instances for every type of file, including 687 * pipes, sockets, fifos, and regular files. 688 */ 689 static void 690 aio_process(struct aiocblist *aiocbe) 691 { 692 struct ucred *td_savedcred; 693 struct thread *td; 694 struct proc *mycp; 695 struct aiocb *cb; 696 struct file *fp; 697 struct uio auio; 698 struct iovec aiov; 699 int cnt; 700 int error; 701 int oublock_st, oublock_end; 702 int inblock_st, inblock_end; 703 704 td = curthread; 705 td_savedcred = td->td_ucred; 706 td->td_ucred = aiocbe->cred; 707 mycp = td->td_proc; 708 cb = &aiocbe->uaiocb; 709 fp = aiocbe->fd_file; 710 711 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 712 aiov.iov_len = cb->aio_nbytes; 713 714 auio.uio_iov = &aiov; 715 auio.uio_iovcnt = 1; 716 auio.uio_offset = cb->aio_offset; 717 auio.uio_resid = cb->aio_nbytes; 718 cnt = cb->aio_nbytes; 719 auio.uio_segflg = UIO_USERSPACE; 720 auio.uio_td = td; 721 722 inblock_st = mycp->p_stats->p_ru.ru_inblock; 723 oublock_st = mycp->p_stats->p_ru.ru_oublock; 724 /* 725 * _aio_aqueue() acquires a reference to the file that is 726 * released in aio_free_entry(). 727 */ 728 if (cb->aio_lio_opcode == LIO_READ) { 729 auio.uio_rw = UIO_READ; 730 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 731 } else { 732 auio.uio_rw = UIO_WRITE; 733 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 734 } 735 inblock_end = mycp->p_stats->p_ru.ru_inblock; 736 oublock_end = mycp->p_stats->p_ru.ru_oublock; 737 738 aiocbe->inputcharge = inblock_end - inblock_st; 739 aiocbe->outputcharge = oublock_end - oublock_st; 740 741 if ((error) && (auio.uio_resid != cnt)) { 742 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 743 error = 0; 744 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 745 PROC_LOCK(aiocbe->userproc); 746 psignal(aiocbe->userproc, SIGPIPE); 747 PROC_UNLOCK(aiocbe->userproc); 748 } 749 } 750 751 cnt -= auio.uio_resid; 752 cb->_aiocb_private.error = error; 753 cb->_aiocb_private.status = cnt; 754 td->td_ucred = td_savedcred; 755 } 756 757 /* 758 * The AIO daemon, most of the actual work is done in aio_process, 759 * but the setup (and address space mgmt) is done in this routine. 760 */ 761 static void 762 aio_daemon(void *uproc) 763 { 764 int s; 765 struct aio_liojob *lj; 766 struct aiocb *cb; 767 struct aiocblist *aiocbe; 768 struct aiothreadlist *aiop; 769 struct kaioinfo *ki; 770 struct proc *curcp, *mycp, *userp; 771 struct vmspace *myvm, *tmpvm; 772 struct thread *td = curthread; 773 struct pgrp *newpgrp; 774 struct session *newsess; 775 776 mtx_lock(&Giant); 777 /* 778 * Local copies of curproc (cp) and vmspace (myvm) 779 */ 780 mycp = td->td_proc; 781 myvm = mycp->p_vmspace; 782 783 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 784 785 /* 786 * Allocate and ready the aio control info. There is one aiop structure 787 * per daemon. 788 */ 789 aiop = uma_zalloc(aiop_zone, M_WAITOK); 790 aiop->aiothread = td; 791 aiop->aiothreadflags |= AIOP_FREE; 792 793 s = splnet(); 794 795 /* 796 * Place thread (lightweight process) onto the AIO free thread list. 797 */ 798 if (TAILQ_EMPTY(&aio_freeproc)) 799 wakeup(&aio_freeproc); 800 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 801 802 splx(s); 803 804 /* 805 * Get rid of our current filedescriptors. AIOD's don't need any 806 * filedescriptors, except as temporarily inherited from the client. 807 */ 808 fdfree(td); 809 810 mtx_unlock(&Giant); 811 /* The daemon resides in its own pgrp. */ 812 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 813 M_WAITOK | M_ZERO); 814 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 815 M_WAITOK | M_ZERO); 816 817 sx_xlock(&proctree_lock); 818 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 819 sx_xunlock(&proctree_lock); 820 mtx_lock(&Giant); 821 822 /* 823 * Wakeup parent process. (Parent sleeps to keep from blasting away 824 * and creating too many daemons.) 825 */ 826 wakeup(mycp); 827 828 for (;;) { 829 /* 830 * curcp is the current daemon process context. 831 * userp is the current user process context. 832 */ 833 curcp = mycp; 834 835 /* 836 * Take daemon off of free queue 837 */ 838 if (aiop->aiothreadflags & AIOP_FREE) { 839 s = splnet(); 840 TAILQ_REMOVE(&aio_freeproc, aiop, list); 841 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 842 aiop->aiothreadflags &= ~AIOP_FREE; 843 splx(s); 844 } 845 aiop->aiothreadflags &= ~AIOP_SCHED; 846 847 /* 848 * Check for jobs. 849 */ 850 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 851 cb = &aiocbe->uaiocb; 852 userp = aiocbe->userproc; 853 854 aiocbe->jobstate = JOBST_JOBRUNNING; 855 856 /* 857 * Connect to process address space for user program. 858 */ 859 if (userp != curcp) { 860 /* 861 * Save the current address space that we are 862 * connected to. 863 */ 864 tmpvm = mycp->p_vmspace; 865 866 /* 867 * Point to the new user address space, and 868 * refer to it. 869 */ 870 mycp->p_vmspace = userp->p_vmspace; 871 mycp->p_vmspace->vm_refcnt++; 872 873 /* Activate the new mapping. */ 874 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 875 876 /* 877 * If the old address space wasn't the daemons 878 * own address space, then we need to remove the 879 * daemon's reference from the other process 880 * that it was acting on behalf of. 881 */ 882 if (tmpvm != myvm) { 883 vmspace_free(tmpvm); 884 } 885 curcp = userp; 886 } 887 888 ki = userp->p_aioinfo; 889 lj = aiocbe->lio; 890 891 /* Account for currently active jobs. */ 892 ki->kaio_active_count++; 893 894 /* Do the I/O function. */ 895 aio_process(aiocbe); 896 897 /* Decrement the active job count. */ 898 ki->kaio_active_count--; 899 900 /* 901 * Increment the completion count for wakeup/signal 902 * comparisons. 903 */ 904 aiocbe->jobflags |= AIOCBLIST_DONE; 905 ki->kaio_queue_finished_count++; 906 if (lj) 907 lj->lioj_queue_finished_count++; 908 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 909 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 910 ki->kaio_flags &= ~KAIO_WAKEUP; 911 wakeup(userp); 912 } 913 914 s = splbio(); 915 if (lj && (lj->lioj_flags & 916 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 917 if ((lj->lioj_queue_finished_count == 918 lj->lioj_queue_count) && 919 (lj->lioj_buffer_finished_count == 920 lj->lioj_buffer_count)) { 921 PROC_LOCK(userp); 922 psignal(userp, 923 lj->lioj_signal.sigev_signo); 924 PROC_UNLOCK(userp); 925 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 926 } 927 } 928 splx(s); 929 930 aiocbe->jobstate = JOBST_JOBFINISHED; 931 932 s = splnet(); 933 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 934 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 935 splx(s); 936 KNOTE(&aiocbe->klist, 0); 937 938 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 939 wakeup(aiocbe); 940 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 941 } 942 943 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 944 PROC_LOCK(userp); 945 psignal(userp, cb->aio_sigevent.sigev_signo); 946 PROC_UNLOCK(userp); 947 } 948 } 949 950 /* 951 * Disconnect from user address space. 952 */ 953 if (curcp != mycp) { 954 /* Get the user address space to disconnect from. */ 955 tmpvm = mycp->p_vmspace; 956 957 /* Get original address space for daemon. */ 958 mycp->p_vmspace = myvm; 959 960 /* Activate the daemon's address space. */ 961 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 962 #ifdef DIAGNOSTIC 963 if (tmpvm == myvm) { 964 printf("AIOD: vmspace problem -- %d\n", 965 mycp->p_pid); 966 } 967 #endif 968 /* Remove our vmspace reference. */ 969 vmspace_free(tmpvm); 970 971 curcp = mycp; 972 } 973 974 /* 975 * If we are the first to be put onto the free queue, wakeup 976 * anyone waiting for a daemon. 977 */ 978 s = splnet(); 979 TAILQ_REMOVE(&aio_activeproc, aiop, list); 980 if (TAILQ_EMPTY(&aio_freeproc)) 981 wakeup(&aio_freeproc); 982 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 983 aiop->aiothreadflags |= AIOP_FREE; 984 splx(s); 985 986 /* 987 * If daemon is inactive for a long time, allow it to exit, 988 * thereby freeing resources. 989 */ 990 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && 991 tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { 992 s = splnet(); 993 if (TAILQ_EMPTY(&aio_jobs)) { 994 if ((aiop->aiothreadflags & AIOP_FREE) && 995 (num_aio_procs > target_aio_procs)) { 996 TAILQ_REMOVE(&aio_freeproc, aiop, list); 997 splx(s); 998 uma_zfree(aiop_zone, aiop); 999 num_aio_procs--; 1000 #ifdef DIAGNOSTIC 1001 if (mycp->p_vmspace->vm_refcnt <= 1) { 1002 printf("AIOD: bad vm refcnt for" 1003 " exiting daemon: %d\n", 1004 mycp->p_vmspace->vm_refcnt); 1005 } 1006 #endif 1007 kthread_exit(0); 1008 } 1009 } 1010 splx(s); 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1017 * AIO daemon modifies its environment itself. 1018 */ 1019 static int 1020 aio_newproc(void) 1021 { 1022 int error; 1023 struct proc *p; 1024 1025 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1026 num_aio_procs); 1027 if (error) 1028 return (error); 1029 1030 /* 1031 * Wait until daemon is started, but continue on just in case to 1032 * handle error conditions. 1033 */ 1034 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1035 1036 num_aio_procs++; 1037 1038 return (error); 1039 } 1040 1041 /* 1042 * Try the high-performance, low-overhead physio method for eligible 1043 * VCHR devices. This method doesn't use an aio helper thread, and 1044 * thus has very low overhead. 1045 * 1046 * Assumes that the caller, _aio_aqueue(), has incremented the file 1047 * structure's reference count, preventing its deallocation for the 1048 * duration of this call. 1049 */ 1050 static int 1051 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1052 { 1053 int error; 1054 struct aiocb *cb; 1055 struct file *fp; 1056 struct buf *bp; 1057 struct vnode *vp; 1058 struct kaioinfo *ki; 1059 struct aio_liojob *lj; 1060 int s; 1061 int notify; 1062 1063 cb = &aiocbe->uaiocb; 1064 fp = aiocbe->fd_file; 1065 1066 if (fp->f_type != DTYPE_VNODE) 1067 return (-1); 1068 1069 vp = fp->f_vnode; 1070 1071 /* 1072 * If its not a disk, we don't want to return a positive error. 1073 * It causes the aio code to not fall through to try the thread 1074 * way when you're talking to a regular file. 1075 */ 1076 if (!vn_isdisk(vp, &error)) { 1077 if (error == ENOTBLK) 1078 return (-1); 1079 else 1080 return (error); 1081 } 1082 1083 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) 1084 return (-1); 1085 1086 if (cb->aio_nbytes > 1087 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1088 return (-1); 1089 1090 ki = p->p_aioinfo; 1091 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1092 return (-1); 1093 1094 ki->kaio_buffer_count++; 1095 1096 lj = aiocbe->lio; 1097 if (lj) 1098 lj->lioj_buffer_count++; 1099 1100 /* Create and build a buffer header for a transfer. */ 1101 bp = (struct buf *)getpbuf(NULL); 1102 BUF_KERNPROC(bp); 1103 1104 /* 1105 * Get a copy of the kva from the physical buffer. 1106 */ 1107 bp->b_dev = vp->v_rdev; 1108 error = 0; 1109 1110 bp->b_bcount = cb->aio_nbytes; 1111 bp->b_bufsize = cb->aio_nbytes; 1112 bp->b_iodone = aio_physwakeup; 1113 bp->b_saveaddr = bp->b_data; 1114 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1115 bp->b_offset = cb->aio_offset; 1116 bp->b_iooffset = cb->aio_offset; 1117 bp->b_blkno = btodb(cb->aio_offset); 1118 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1119 1120 /* 1121 * Bring buffer into kernel space. 1122 */ 1123 if (vmapbuf(bp) < 0) { 1124 error = EFAULT; 1125 goto doerror; 1126 } 1127 1128 s = splbio(); 1129 aiocbe->bp = bp; 1130 bp->b_caller1 = (void *)aiocbe; 1131 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); 1132 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1133 aiocbe->jobstate = JOBST_JOBQBUF; 1134 cb->_aiocb_private.status = cb->aio_nbytes; 1135 num_buf_aio++; 1136 bp->b_error = 0; 1137 1138 splx(s); 1139 1140 /* Perform transfer. */ 1141 DEV_STRATEGY(bp); 1142 1143 notify = 0; 1144 s = splbio(); 1145 1146 /* 1147 * If we had an error invoking the request, or an error in processing 1148 * the request before we have returned, we process it as an error in 1149 * transfer. Note that such an I/O error is not indicated immediately, 1150 * but is returned using the aio_error mechanism. In this case, 1151 * aio_suspend will return immediately. 1152 */ 1153 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1154 struct aiocb *job = aiocbe->uuaiocb; 1155 1156 aiocbe->uaiocb._aiocb_private.status = 0; 1157 suword(&job->_aiocb_private.status, 0); 1158 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1159 suword(&job->_aiocb_private.error, bp->b_error); 1160 1161 ki->kaio_buffer_finished_count++; 1162 1163 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1164 aiocbe->jobstate = JOBST_JOBBFINISHED; 1165 aiocbe->jobflags |= AIOCBLIST_DONE; 1166 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 1167 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1168 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1169 notify = 1; 1170 } 1171 } 1172 splx(s); 1173 if (notify) 1174 KNOTE(&aiocbe->klist, 0); 1175 return (0); 1176 1177 doerror: 1178 ki->kaio_buffer_count--; 1179 if (lj) 1180 lj->lioj_buffer_count--; 1181 aiocbe->bp = NULL; 1182 relpbuf(bp, NULL); 1183 return (error); 1184 } 1185 1186 /* 1187 * This waits/tests physio completion. 1188 */ 1189 static int 1190 aio_fphysio(struct aiocblist *iocb) 1191 { 1192 int s; 1193 struct buf *bp; 1194 int error; 1195 1196 bp = iocb->bp; 1197 1198 s = splbio(); 1199 while ((bp->b_flags & B_DONE) == 0) { 1200 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1201 if ((bp->b_flags & B_DONE) == 0) { 1202 splx(s); 1203 return (EINPROGRESS); 1204 } else 1205 break; 1206 } 1207 } 1208 splx(s); 1209 1210 /* Release mapping into kernel space. */ 1211 vunmapbuf(bp); 1212 iocb->bp = 0; 1213 1214 error = 0; 1215 1216 /* Check for an error. */ 1217 if (bp->b_ioflags & BIO_ERROR) 1218 error = bp->b_error; 1219 1220 relpbuf(bp, NULL); 1221 return (error); 1222 } 1223 1224 /* 1225 * Wake up aio requests that may be serviceable now. 1226 */ 1227 static void 1228 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1229 { 1230 struct aiocblist *cb,*cbn; 1231 struct proc *p; 1232 struct kaioinfo *ki = NULL; 1233 int opcode, wakecount = 0; 1234 struct aiothreadlist *aiop; 1235 1236 if (sb == &so->so_snd) { 1237 opcode = LIO_WRITE; 1238 SOCKBUF_LOCK(&so->so_snd); 1239 so->so_snd.sb_flags &= ~SB_AIO; 1240 SOCKBUF_UNLOCK(&so->so_snd); 1241 } else { 1242 opcode = LIO_READ; 1243 SOCKBUF_LOCK(&so->so_rcv); 1244 so->so_rcv.sb_flags &= ~SB_AIO; 1245 SOCKBUF_UNLOCK(&so->so_rcv); 1246 } 1247 1248 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1249 cbn = TAILQ_NEXT(cb, list); 1250 if (opcode == cb->uaiocb.aio_lio_opcode) { 1251 p = cb->userproc; 1252 ki = p->p_aioinfo; 1253 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1254 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1255 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1256 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1257 wakecount++; 1258 if (cb->jobstate != JOBST_JOBQGLOBAL) 1259 panic("invalid queue value"); 1260 } 1261 } 1262 1263 while (wakecount--) { 1264 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1265 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1266 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1267 aiop->aiothreadflags &= ~AIOP_FREE; 1268 wakeup(aiop->aiothread); 1269 } 1270 } 1271 } 1272 1273 /* 1274 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1275 * technique is done in this code. 1276 */ 1277 static int 1278 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1279 { 1280 struct proc *p = td->td_proc; 1281 struct filedesc *fdp; 1282 struct file *fp; 1283 unsigned int fd; 1284 struct socket *so; 1285 int s; 1286 int error; 1287 int opcode, user_opcode; 1288 struct aiocblist *aiocbe; 1289 struct aiothreadlist *aiop; 1290 struct kaioinfo *ki; 1291 struct kevent kev; 1292 struct kqueue *kq; 1293 struct file *kq_fp; 1294 1295 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1296 aiocbe->inputcharge = 0; 1297 aiocbe->outputcharge = 0; 1298 callout_handle_init(&aiocbe->timeouthandle); 1299 SLIST_INIT(&aiocbe->klist); 1300 1301 suword(&job->_aiocb_private.status, -1); 1302 suword(&job->_aiocb_private.error, 0); 1303 suword(&job->_aiocb_private.kernelinfo, -1); 1304 1305 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1306 if (error) { 1307 suword(&job->_aiocb_private.error, error); 1308 uma_zfree(aiocb_zone, aiocbe); 1309 return (error); 1310 } 1311 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1312 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1313 uma_zfree(aiocb_zone, aiocbe); 1314 return (EINVAL); 1315 } 1316 1317 /* Save userspace address of the job info. */ 1318 aiocbe->uuaiocb = job; 1319 1320 /* Get the opcode. */ 1321 user_opcode = aiocbe->uaiocb.aio_lio_opcode; 1322 if (type != LIO_NOP) 1323 aiocbe->uaiocb.aio_lio_opcode = type; 1324 opcode = aiocbe->uaiocb.aio_lio_opcode; 1325 1326 /* Get the fd info for process. */ 1327 fdp = p->p_fd; 1328 1329 /* 1330 * Range check file descriptor. 1331 */ 1332 FILEDESC_LOCK(fdp); 1333 fd = aiocbe->uaiocb.aio_fildes; 1334 if (fd >= fdp->fd_nfiles) { 1335 FILEDESC_UNLOCK(fdp); 1336 uma_zfree(aiocb_zone, aiocbe); 1337 if (type == 0) 1338 suword(&job->_aiocb_private.error, EBADF); 1339 return (EBADF); 1340 } 1341 1342 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1343 if ((fp == NULL) || 1344 ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0)) || 1345 ((opcode == LIO_READ) && ((fp->f_flag & FREAD) == 0))) { 1346 FILEDESC_UNLOCK(fdp); 1347 uma_zfree(aiocb_zone, aiocbe); 1348 if (type == 0) 1349 suword(&job->_aiocb_private.error, EBADF); 1350 return (EBADF); 1351 } 1352 fhold(fp); 1353 FILEDESC_UNLOCK(fdp); 1354 1355 if (aiocbe->uaiocb.aio_offset == -1LL) { 1356 error = EINVAL; 1357 goto aqueue_fail; 1358 } 1359 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1360 if (error) { 1361 error = EINVAL; 1362 goto aqueue_fail; 1363 } 1364 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1365 if (jobrefid == LONG_MAX) 1366 jobrefid = 1; 1367 else 1368 jobrefid++; 1369 1370 if (opcode == LIO_NOP) { 1371 fdrop(fp, td); 1372 uma_zfree(aiocb_zone, aiocbe); 1373 if (type == 0) { 1374 suword(&job->_aiocb_private.error, 0); 1375 suword(&job->_aiocb_private.status, 0); 1376 suword(&job->_aiocb_private.kernelinfo, 0); 1377 } 1378 return (0); 1379 } 1380 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1381 if (type == 0) 1382 suword(&job->_aiocb_private.status, 0); 1383 error = EINVAL; 1384 goto aqueue_fail; 1385 } 1386 1387 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1388 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1389 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1390 } 1391 else { 1392 /* 1393 * This method for requesting kevent-based notification won't 1394 * work on the alpha, since we're passing in a pointer 1395 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- 1396 * based method instead. 1397 */ 1398 if (user_opcode == LIO_NOP || user_opcode == LIO_READ || 1399 user_opcode == LIO_WRITE) 1400 goto no_kqueue; 1401 1402 error = copyin((struct kevent *)(uintptr_t)user_opcode, 1403 &kev, sizeof(kev)); 1404 if (error) 1405 goto aqueue_fail; 1406 } 1407 if ((u_int)kev.ident >= fdp->fd_nfiles || 1408 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1409 (kq_fp->f_type != DTYPE_KQUEUE)) { 1410 error = EBADF; 1411 goto aqueue_fail; 1412 } 1413 kq = kq_fp->f_data; 1414 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1415 kev.filter = EVFILT_AIO; 1416 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1417 kev.data = (intptr_t)aiocbe; 1418 error = kqueue_register(kq, &kev, td); 1419 aqueue_fail: 1420 if (error) { 1421 fdrop(fp, td); 1422 uma_zfree(aiocb_zone, aiocbe); 1423 if (type == 0) 1424 suword(&job->_aiocb_private.error, error); 1425 goto done; 1426 } 1427 no_kqueue: 1428 1429 suword(&job->_aiocb_private.error, EINPROGRESS); 1430 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1431 aiocbe->userproc = p; 1432 aiocbe->cred = crhold(td->td_ucred); 1433 aiocbe->jobflags = 0; 1434 aiocbe->lio = lj; 1435 ki = p->p_aioinfo; 1436 1437 if (fp->f_type == DTYPE_SOCKET) { 1438 /* 1439 * Alternate queueing for socket ops: Reach down into the 1440 * descriptor to get the socket data. Then check to see if the 1441 * socket is ready to be read or written (based on the requested 1442 * operation). 1443 * 1444 * If it is not ready for io, then queue the aiocbe on the 1445 * socket, and set the flags so we get a call when sbnotify() 1446 * happens. 1447 */ 1448 so = fp->f_data; 1449 s = splnet(); 1450 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1451 LIO_WRITE) && (!sowriteable(so)))) { 1452 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1453 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1454 if (opcode == LIO_READ) { 1455 SOCKBUF_LOCK(&so->so_rcv); 1456 so->so_rcv.sb_flags |= SB_AIO; 1457 SOCKBUF_UNLOCK(&so->so_rcv); 1458 } else { 1459 SOCKBUF_LOCK(&so->so_snd); 1460 so->so_snd.sb_flags |= SB_AIO; 1461 SOCKBUF_UNLOCK(&so->so_snd); 1462 } 1463 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1464 ki->kaio_queue_count++; 1465 num_queue_count++; 1466 splx(s); 1467 error = 0; 1468 goto done; 1469 } 1470 splx(s); 1471 } 1472 1473 if ((error = aio_qphysio(p, aiocbe)) == 0) 1474 goto done; 1475 if (error > 0) { 1476 suword(&job->_aiocb_private.status, 0); 1477 aiocbe->uaiocb._aiocb_private.error = error; 1478 suword(&job->_aiocb_private.error, error); 1479 goto done; 1480 } 1481 1482 /* No buffer for daemon I/O. */ 1483 aiocbe->bp = NULL; 1484 1485 ki->kaio_queue_count++; 1486 if (lj) 1487 lj->lioj_queue_count++; 1488 s = splnet(); 1489 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1490 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1491 splx(s); 1492 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1493 1494 num_queue_count++; 1495 error = 0; 1496 1497 /* 1498 * If we don't have a free AIO process, and we are below our quota, then 1499 * start one. Otherwise, depend on the subsequent I/O completions to 1500 * pick-up this job. If we don't sucessfully create the new process 1501 * (thread) due to resource issues, we return an error for now (EAGAIN), 1502 * which is likely not the correct thing to do. 1503 */ 1504 s = splnet(); 1505 retryproc: 1506 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1507 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1508 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1509 aiop->aiothreadflags &= ~AIOP_FREE; 1510 wakeup(aiop->aiothread); 1511 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1512 ((ki->kaio_active_count + num_aio_resv_start) < 1513 ki->kaio_maxactive_count)) { 1514 num_aio_resv_start++; 1515 if ((error = aio_newproc()) == 0) { 1516 num_aio_resv_start--; 1517 goto retryproc; 1518 } 1519 num_aio_resv_start--; 1520 } 1521 splx(s); 1522 done: 1523 return (error); 1524 } 1525 1526 /* 1527 * This routine queues an AIO request, checking for quotas. 1528 */ 1529 static int 1530 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1531 { 1532 struct proc *p = td->td_proc; 1533 struct kaioinfo *ki; 1534 1535 if (p->p_aioinfo == NULL) 1536 aio_init_aioinfo(p); 1537 1538 if (num_queue_count >= max_queue_count) 1539 return (EAGAIN); 1540 1541 ki = p->p_aioinfo; 1542 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1543 return (EAGAIN); 1544 1545 return _aio_aqueue(td, job, NULL, type); 1546 } 1547 1548 /* 1549 * Support the aio_return system call, as a side-effect, kernel resources are 1550 * released. 1551 */ 1552 int 1553 aio_return(struct thread *td, struct aio_return_args *uap) 1554 { 1555 struct proc *p = td->td_proc; 1556 int s; 1557 long jobref; 1558 struct aiocblist *cb, *ncb; 1559 struct aiocb *ujob; 1560 struct kaioinfo *ki; 1561 1562 ujob = uap->aiocbp; 1563 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1564 if (jobref == -1 || jobref == 0) 1565 return (EINVAL); 1566 1567 ki = p->p_aioinfo; 1568 if (ki == NULL) 1569 return (EINVAL); 1570 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1571 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1572 jobref) { 1573 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1574 p->p_stats->p_ru.ru_oublock += 1575 cb->outputcharge; 1576 cb->outputcharge = 0; 1577 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1578 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1579 cb->inputcharge = 0; 1580 } 1581 goto done; 1582 } 1583 } 1584 s = splbio(); 1585 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1586 ncb = TAILQ_NEXT(cb, plist); 1587 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1588 == jobref) { 1589 break; 1590 } 1591 } 1592 splx(s); 1593 done: 1594 if (cb != NULL) { 1595 if (ujob == cb->uuaiocb) { 1596 td->td_retval[0] = 1597 cb->uaiocb._aiocb_private.status; 1598 } else 1599 td->td_retval[0] = EFAULT; 1600 aio_free_entry(cb); 1601 return (0); 1602 } 1603 return (EINVAL); 1604 } 1605 1606 /* 1607 * Allow a process to wakeup when any of the I/O requests are completed. 1608 */ 1609 int 1610 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1611 { 1612 struct proc *p = td->td_proc; 1613 struct timeval atv; 1614 struct timespec ts; 1615 struct aiocb *const *cbptr, *cbp; 1616 struct kaioinfo *ki; 1617 struct aiocblist *cb; 1618 int i; 1619 int njoblist; 1620 int error, s, timo; 1621 long *ijoblist; 1622 struct aiocb **ujoblist; 1623 1624 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1625 return (EINVAL); 1626 1627 timo = 0; 1628 if (uap->timeout) { 1629 /* Get timespec struct. */ 1630 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1631 return (error); 1632 1633 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1634 return (EINVAL); 1635 1636 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1637 if (itimerfix(&atv)) 1638 return (EINVAL); 1639 timo = tvtohz(&atv); 1640 } 1641 1642 ki = p->p_aioinfo; 1643 if (ki == NULL) 1644 return (EAGAIN); 1645 1646 njoblist = 0; 1647 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1648 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1649 cbptr = uap->aiocbp; 1650 1651 for (i = 0; i < uap->nent; i++) { 1652 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1653 if (cbp == 0) 1654 continue; 1655 ujoblist[njoblist] = cbp; 1656 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1657 njoblist++; 1658 } 1659 1660 if (njoblist == 0) { 1661 uma_zfree(aiol_zone, ijoblist); 1662 uma_zfree(aiol_zone, ujoblist); 1663 return (0); 1664 } 1665 1666 error = 0; 1667 for (;;) { 1668 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1669 for (i = 0; i < njoblist; i++) { 1670 if (((intptr_t) 1671 cb->uaiocb._aiocb_private.kernelinfo) == 1672 ijoblist[i]) { 1673 if (ujoblist[i] != cb->uuaiocb) 1674 error = EINVAL; 1675 uma_zfree(aiol_zone, ijoblist); 1676 uma_zfree(aiol_zone, ujoblist); 1677 return (error); 1678 } 1679 } 1680 } 1681 1682 s = splbio(); 1683 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1684 TAILQ_NEXT(cb, plist)) { 1685 for (i = 0; i < njoblist; i++) { 1686 if (((intptr_t) 1687 cb->uaiocb._aiocb_private.kernelinfo) == 1688 ijoblist[i]) { 1689 splx(s); 1690 if (ujoblist[i] != cb->uuaiocb) 1691 error = EINVAL; 1692 uma_zfree(aiol_zone, ijoblist); 1693 uma_zfree(aiol_zone, ujoblist); 1694 return (error); 1695 } 1696 } 1697 } 1698 1699 ki->kaio_flags |= KAIO_WAKEUP; 1700 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); 1701 splx(s); 1702 1703 if (error == ERESTART || error == EINTR) { 1704 uma_zfree(aiol_zone, ijoblist); 1705 uma_zfree(aiol_zone, ujoblist); 1706 return (EINTR); 1707 } else if (error == EWOULDBLOCK) { 1708 uma_zfree(aiol_zone, ijoblist); 1709 uma_zfree(aiol_zone, ujoblist); 1710 return (EAGAIN); 1711 } 1712 } 1713 1714 /* NOTREACHED */ 1715 return (EINVAL); 1716 } 1717 1718 /* 1719 * aio_cancel cancels any non-physio aio operations not currently in 1720 * progress. 1721 */ 1722 int 1723 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1724 { 1725 struct proc *p = td->td_proc; 1726 struct kaioinfo *ki; 1727 struct aiocblist *cbe, *cbn; 1728 struct file *fp; 1729 struct filedesc *fdp; 1730 struct socket *so; 1731 struct proc *po; 1732 int s,error; 1733 int cancelled=0; 1734 int notcancelled=0; 1735 struct vnode *vp; 1736 1737 fdp = p->p_fd; 1738 if ((u_int)uap->fd >= fdp->fd_nfiles || 1739 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1740 return (EBADF); 1741 1742 if (fp->f_type == DTYPE_VNODE) { 1743 vp = fp->f_vnode; 1744 1745 if (vn_isdisk(vp,&error)) { 1746 td->td_retval[0] = AIO_NOTCANCELED; 1747 return (0); 1748 } 1749 } else if (fp->f_type == DTYPE_SOCKET) { 1750 so = fp->f_data; 1751 1752 s = splnet(); 1753 1754 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1755 cbn = TAILQ_NEXT(cbe, list); 1756 if ((uap->aiocbp == NULL) || 1757 (uap->aiocbp == cbe->uuaiocb) ) { 1758 po = cbe->userproc; 1759 ki = po->p_aioinfo; 1760 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1761 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1762 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1763 if (ki->kaio_flags & KAIO_WAKEUP) { 1764 wakeup(po); 1765 } 1766 cbe->jobstate = JOBST_JOBFINISHED; 1767 cbe->uaiocb._aiocb_private.status=-1; 1768 cbe->uaiocb._aiocb_private.error=ECANCELED; 1769 cancelled++; 1770 /* XXX cancelled, knote? */ 1771 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1772 SIGEV_SIGNAL) { 1773 PROC_LOCK(cbe->userproc); 1774 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1775 PROC_UNLOCK(cbe->userproc); 1776 } 1777 if (uap->aiocbp) 1778 break; 1779 } 1780 } 1781 splx(s); 1782 1783 if ((cancelled) && (uap->aiocbp)) { 1784 td->td_retval[0] = AIO_CANCELED; 1785 return (0); 1786 } 1787 } 1788 ki=p->p_aioinfo; 1789 if (ki == NULL) 1790 goto done; 1791 s = splnet(); 1792 1793 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1794 cbn = TAILQ_NEXT(cbe, plist); 1795 1796 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1797 ((uap->aiocbp == NULL ) || 1798 (uap->aiocbp == cbe->uuaiocb))) { 1799 1800 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1801 TAILQ_REMOVE(&aio_jobs, cbe, list); 1802 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1803 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1804 plist); 1805 cancelled++; 1806 ki->kaio_queue_finished_count++; 1807 cbe->jobstate = JOBST_JOBFINISHED; 1808 cbe->uaiocb._aiocb_private.status = -1; 1809 cbe->uaiocb._aiocb_private.error = ECANCELED; 1810 /* XXX cancelled, knote? */ 1811 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1812 SIGEV_SIGNAL) { 1813 PROC_LOCK(cbe->userproc); 1814 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1815 PROC_UNLOCK(cbe->userproc); 1816 } 1817 } else { 1818 notcancelled++; 1819 } 1820 } 1821 } 1822 splx(s); 1823 done: 1824 if (notcancelled) { 1825 td->td_retval[0] = AIO_NOTCANCELED; 1826 return (0); 1827 } 1828 if (cancelled) { 1829 td->td_retval[0] = AIO_CANCELED; 1830 return (0); 1831 } 1832 td->td_retval[0] = AIO_ALLDONE; 1833 1834 return (0); 1835 } 1836 1837 /* 1838 * aio_error is implemented in the kernel level for compatibility purposes only. 1839 * For a user mode async implementation, it would be best to do it in a userland 1840 * subroutine. 1841 */ 1842 int 1843 aio_error(struct thread *td, struct aio_error_args *uap) 1844 { 1845 struct proc *p = td->td_proc; 1846 int s; 1847 struct aiocblist *cb; 1848 struct kaioinfo *ki; 1849 long jobref; 1850 1851 ki = p->p_aioinfo; 1852 if (ki == NULL) 1853 return (EINVAL); 1854 1855 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1856 if ((jobref == -1) || (jobref == 0)) 1857 return (EINVAL); 1858 1859 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1860 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1861 jobref) { 1862 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1863 return (0); 1864 } 1865 } 1866 1867 s = splnet(); 1868 1869 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1870 plist)) { 1871 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1872 jobref) { 1873 td->td_retval[0] = EINPROGRESS; 1874 splx(s); 1875 return (0); 1876 } 1877 } 1878 1879 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1880 plist)) { 1881 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1882 jobref) { 1883 td->td_retval[0] = EINPROGRESS; 1884 splx(s); 1885 return (0); 1886 } 1887 } 1888 splx(s); 1889 1890 s = splbio(); 1891 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1892 plist)) { 1893 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1894 jobref) { 1895 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1896 splx(s); 1897 return (0); 1898 } 1899 } 1900 1901 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1902 plist)) { 1903 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1904 jobref) { 1905 td->td_retval[0] = EINPROGRESS; 1906 splx(s); 1907 return (0); 1908 } 1909 } 1910 splx(s); 1911 1912 #if (0) 1913 /* 1914 * Hack for lio. 1915 */ 1916 status = fuword(&uap->aiocbp->_aiocb_private.status); 1917 if (status == -1) 1918 return fuword(&uap->aiocbp->_aiocb_private.error); 1919 #endif 1920 return (EINVAL); 1921 } 1922 1923 /* syscall - asynchronous read from a file (REALTIME) */ 1924 int 1925 aio_read(struct thread *td, struct aio_read_args *uap) 1926 { 1927 1928 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1929 } 1930 1931 /* syscall - asynchronous write to a file (REALTIME) */ 1932 int 1933 aio_write(struct thread *td, struct aio_write_args *uap) 1934 { 1935 1936 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1937 } 1938 1939 /* syscall - list directed I/O (REALTIME) */ 1940 int 1941 lio_listio(struct thread *td, struct lio_listio_args *uap) 1942 { 1943 struct proc *p = td->td_proc; 1944 int nent, nentqueued; 1945 struct aiocb *iocb, * const *cbptr; 1946 struct aiocblist *cb; 1947 struct kaioinfo *ki; 1948 struct aio_liojob *lj; 1949 int error, runningcode; 1950 int nerror; 1951 int i; 1952 int s; 1953 1954 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1955 return (EINVAL); 1956 1957 nent = uap->nent; 1958 if (nent < 0 || nent > AIO_LISTIO_MAX) 1959 return (EINVAL); 1960 1961 if (p->p_aioinfo == NULL) 1962 aio_init_aioinfo(p); 1963 1964 if ((nent + num_queue_count) > max_queue_count) 1965 return (EAGAIN); 1966 1967 ki = p->p_aioinfo; 1968 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1969 return (EAGAIN); 1970 1971 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1972 if (!lj) 1973 return (EAGAIN); 1974 1975 lj->lioj_flags = 0; 1976 lj->lioj_buffer_count = 0; 1977 lj->lioj_buffer_finished_count = 0; 1978 lj->lioj_queue_count = 0; 1979 lj->lioj_queue_finished_count = 0; 1980 lj->lioj_ki = ki; 1981 1982 /* 1983 * Setup signal. 1984 */ 1985 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1986 error = copyin(uap->sig, &lj->lioj_signal, 1987 sizeof(lj->lioj_signal)); 1988 if (error) { 1989 uma_zfree(aiolio_zone, lj); 1990 return (error); 1991 } 1992 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1993 uma_zfree(aiolio_zone, lj); 1994 return (EINVAL); 1995 } 1996 lj->lioj_flags |= LIOJ_SIGNAL; 1997 } 1998 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1999 /* 2000 * Get pointers to the list of I/O requests. 2001 */ 2002 nerror = 0; 2003 nentqueued = 0; 2004 cbptr = uap->acb_list; 2005 for (i = 0; i < uap->nent; i++) { 2006 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2007 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2008 error = _aio_aqueue(td, iocb, lj, 0); 2009 if (error == 0) 2010 nentqueued++; 2011 else 2012 nerror++; 2013 } 2014 } 2015 2016 /* 2017 * If we haven't queued any, then just return error. 2018 */ 2019 if (nentqueued == 0) 2020 return (0); 2021 2022 /* 2023 * Calculate the appropriate error return. 2024 */ 2025 runningcode = 0; 2026 if (nerror) 2027 runningcode = EIO; 2028 2029 if (uap->mode == LIO_WAIT) { 2030 int command, found, jobref; 2031 2032 for (;;) { 2033 found = 0; 2034 for (i = 0; i < uap->nent; i++) { 2035 /* 2036 * Fetch address of the control buf pointer in 2037 * user space. 2038 */ 2039 iocb = (struct aiocb *) 2040 (intptr_t)fuword(&cbptr[i]); 2041 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2042 == 0)) 2043 continue; 2044 2045 /* 2046 * Fetch the associated command from user space. 2047 */ 2048 command = fuword(&iocb->aio_lio_opcode); 2049 if (command == LIO_NOP) { 2050 found++; 2051 continue; 2052 } 2053 2054 jobref = 2055 fuword(&iocb->_aiocb_private.kernelinfo); 2056 2057 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2058 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2059 == jobref) { 2060 if (cb->uaiocb.aio_lio_opcode 2061 == LIO_WRITE) { 2062 p->p_stats->p_ru.ru_oublock 2063 += 2064 cb->outputcharge; 2065 cb->outputcharge = 0; 2066 } else if (cb->uaiocb.aio_lio_opcode 2067 == LIO_READ) { 2068 p->p_stats->p_ru.ru_inblock 2069 += cb->inputcharge; 2070 cb->inputcharge = 0; 2071 } 2072 found++; 2073 break; 2074 } 2075 } 2076 2077 s = splbio(); 2078 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2079 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2080 == jobref) { 2081 found++; 2082 break; 2083 } 2084 } 2085 splx(s); 2086 } 2087 2088 /* 2089 * If all I/Os have been disposed of, then we can 2090 * return. 2091 */ 2092 if (found == nentqueued) 2093 return (runningcode); 2094 2095 ki->kaio_flags |= KAIO_WAKEUP; 2096 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2097 2098 if (error == EINTR) 2099 return (EINTR); 2100 else if (error == EWOULDBLOCK) 2101 return (EAGAIN); 2102 } 2103 } 2104 2105 return (runningcode); 2106 } 2107 2108 /* 2109 * This is a weird hack so that we can post a signal. It is safe to do so from 2110 * a timeout routine, but *not* from an interrupt routine. 2111 */ 2112 static void 2113 process_signal(void *aioj) 2114 { 2115 struct aiocblist *aiocbe = aioj; 2116 struct aio_liojob *lj = aiocbe->lio; 2117 struct aiocb *cb = &aiocbe->uaiocb; 2118 2119 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && 2120 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { 2121 PROC_LOCK(lj->lioj_ki->kaio_p); 2122 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); 2123 PROC_UNLOCK(lj->lioj_ki->kaio_p); 2124 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2125 } 2126 2127 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2128 PROC_LOCK(aiocbe->userproc); 2129 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); 2130 PROC_UNLOCK(aiocbe->userproc); 2131 } 2132 } 2133 2134 /* 2135 * Interrupt handler for physio, performs the necessary process wakeups, and 2136 * signals. 2137 */ 2138 static void 2139 aio_physwakeup(struct buf *bp) 2140 { 2141 struct aiocblist *aiocbe; 2142 struct proc *p; 2143 struct kaioinfo *ki; 2144 struct aio_liojob *lj; 2145 2146 wakeup(bp); 2147 2148 aiocbe = (struct aiocblist *)bp->b_caller1; 2149 if (aiocbe) { 2150 p = aiocbe->userproc; 2151 2152 aiocbe->jobstate = JOBST_JOBBFINISHED; 2153 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2154 aiocbe->uaiocb._aiocb_private.error = 0; 2155 aiocbe->jobflags |= AIOCBLIST_DONE; 2156 2157 if (bp->b_ioflags & BIO_ERROR) 2158 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2159 2160 lj = aiocbe->lio; 2161 if (lj) { 2162 lj->lioj_buffer_finished_count++; 2163 2164 /* 2165 * wakeup/signal if all of the interrupt jobs are done. 2166 */ 2167 if (lj->lioj_buffer_finished_count == 2168 lj->lioj_buffer_count) { 2169 /* 2170 * Post a signal if it is called for. 2171 */ 2172 if ((lj->lioj_flags & 2173 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2174 LIOJ_SIGNAL) { 2175 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2176 aiocbe->timeouthandle = 2177 timeout(process_signal, 2178 aiocbe, 0); 2179 } 2180 } 2181 } 2182 2183 ki = p->p_aioinfo; 2184 if (ki) { 2185 ki->kaio_buffer_finished_count++; 2186 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 2187 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2188 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2189 2190 KNOTE(&aiocbe->klist, 0); 2191 /* Do the wakeup. */ 2192 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2193 ki->kaio_flags &= ~KAIO_WAKEUP; 2194 wakeup(p); 2195 } 2196 } 2197 2198 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) 2199 aiocbe->timeouthandle = 2200 timeout(process_signal, aiocbe, 0); 2201 } 2202 } 2203 2204 /* syscall - wait for the next completion of an aio request */ 2205 int 2206 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2207 { 2208 struct proc *p = td->td_proc; 2209 struct timeval atv; 2210 struct timespec ts; 2211 struct kaioinfo *ki; 2212 struct aiocblist *cb = NULL; 2213 int error, s, timo; 2214 2215 suword(uap->aiocbp, (int)NULL); 2216 2217 timo = 0; 2218 if (uap->timeout) { 2219 /* Get timespec struct. */ 2220 error = copyin(uap->timeout, &ts, sizeof(ts)); 2221 if (error) 2222 return (error); 2223 2224 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2225 return (EINVAL); 2226 2227 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2228 if (itimerfix(&atv)) 2229 return (EINVAL); 2230 timo = tvtohz(&atv); 2231 } 2232 2233 ki = p->p_aioinfo; 2234 if (ki == NULL) 2235 return (EAGAIN); 2236 2237 for (;;) { 2238 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2239 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2240 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2241 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2242 p->p_stats->p_ru.ru_oublock += 2243 cb->outputcharge; 2244 cb->outputcharge = 0; 2245 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2246 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2247 cb->inputcharge = 0; 2248 } 2249 aio_free_entry(cb); 2250 return (cb->uaiocb._aiocb_private.error); 2251 } 2252 2253 s = splbio(); 2254 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2255 splx(s); 2256 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2257 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2258 aio_free_entry(cb); 2259 return (cb->uaiocb._aiocb_private.error); 2260 } 2261 2262 ki->kaio_flags |= KAIO_WAKEUP; 2263 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); 2264 splx(s); 2265 2266 if (error == ERESTART) 2267 return (EINTR); 2268 else if (error < 0) 2269 return (error); 2270 else if (error == EINTR) 2271 return (EINTR); 2272 else if (error == EWOULDBLOCK) 2273 return (EAGAIN); 2274 } 2275 } 2276 2277 /* kqueue attach function */ 2278 static int 2279 filt_aioattach(struct knote *kn) 2280 { 2281 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2282 2283 /* 2284 * The aiocbe pointer must be validated before using it, so 2285 * registration is restricted to the kernel; the user cannot 2286 * set EV_FLAG1. 2287 */ 2288 if ((kn->kn_flags & EV_FLAG1) == 0) 2289 return (EPERM); 2290 kn->kn_flags &= ~EV_FLAG1; 2291 2292 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); 2293 2294 return (0); 2295 } 2296 2297 /* kqueue detach function */ 2298 static void 2299 filt_aiodetach(struct knote *kn) 2300 { 2301 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2302 2303 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); 2304 } 2305 2306 /* kqueue filter function */ 2307 /*ARGSUSED*/ 2308 static int 2309 filt_aio(struct knote *kn, long hint) 2310 { 2311 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2312 2313 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2314 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2315 aiocbe->jobstate != JOBST_JOBBFINISHED) 2316 return (0); 2317 kn->kn_flags |= EV_EOF; 2318 return (1); 2319 } 2320