xref: /freebsd/sys/kern/vfs_aio.c (revision 6b96125afdf245ae61dd82b59891ad0d6aab0066)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61 
62 #include <machine/atomic.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/uma.h>
71 #include <sys/aio.h>
72 
73 /*
74  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
75  * overflow. (XXX will be removed soon.)
76  */
77 static u_long jobrefid;
78 
79 /*
80  * Counter for aio_fsync.
81  */
82 static uint64_t jobseqno;
83 
84 #ifndef MAX_AIO_PER_PROC
85 #define MAX_AIO_PER_PROC	32
86 #endif
87 
88 #ifndef MAX_AIO_QUEUE_PER_PROC
89 #define MAX_AIO_QUEUE_PER_PROC	256
90 #endif
91 
92 #ifndef MAX_AIO_QUEUE
93 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
94 #endif
95 
96 #ifndef MAX_BUF_AIO
97 #define MAX_BUF_AIO		16
98 #endif
99 
100 FEATURE(aio, "Asynchronous I/O");
101 SYSCTL_DECL(_p1003_1b);
102 
103 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
104 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
105 
106 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
107     "Async IO management");
108 
109 static int enable_aio_unsafe = 0;
110 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
111     "Permit asynchronous IO on all file types, not just known-safe types");
112 
113 static unsigned int unsafe_warningcnt = 1;
114 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
115     &unsafe_warningcnt, 0,
116     "Warnings that will be triggered upon failed IO requests on unsafe files");
117 
118 static int max_aio_procs = MAX_AIO_PROCS;
119 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
120     "Maximum number of kernel processes to use for handling async IO ");
121 
122 static int num_aio_procs = 0;
123 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
124     "Number of presently active kernel processes for async IO");
125 
126 /*
127  * The code will adjust the actual number of AIO processes towards this
128  * number when it gets a chance.
129  */
130 static int target_aio_procs = TARGET_AIO_PROCS;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
132     0,
133     "Preferred number of ready kernel processes for async IO");
134 
135 static int max_queue_count = MAX_AIO_QUEUE;
136 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
137     "Maximum number of aio requests to queue, globally");
138 
139 static int num_queue_count = 0;
140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
141     "Number of queued aio requests");
142 
143 static int num_buf_aio = 0;
144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
145     "Number of aio requests presently handled by the buf subsystem");
146 
147 static int num_unmapped_aio = 0;
148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
149     0,
150     "Number of aio requests presently handled by unmapped I/O buffers");
151 
152 /* Number of async I/O processes in the process of being started */
153 /* XXX This should be local to aio_aqueue() */
154 static int num_aio_resv_start = 0;
155 
156 static int aiod_lifetime;
157 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
158     "Maximum lifetime for idle aiod");
159 
160 static int max_aio_per_proc = MAX_AIO_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
162     0,
163     "Maximum active aio requests per process");
164 
165 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
167     &max_aio_queue_per_proc, 0,
168     "Maximum queued aio requests per process");
169 
170 static int max_buf_aio = MAX_BUF_AIO;
171 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
172     "Maximum buf aio requests per process");
173 
174 /*
175  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
176  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
177  * vfs.aio.aio_listio_max.
178  */
179 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
180     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
181     0, "Maximum aio requests for a single lio_listio call");
182 
183 #ifdef COMPAT_FREEBSD6
184 typedef struct oaiocb {
185 	int	aio_fildes;		/* File descriptor */
186 	off_t	aio_offset;		/* File offset for I/O */
187 	volatile void *aio_buf;         /* I/O buffer in process space */
188 	size_t	aio_nbytes;		/* Number of bytes for I/O */
189 	struct	osigevent aio_sigevent;	/* Signal to deliver */
190 	int	aio_lio_opcode;		/* LIO opcode */
191 	int	aio_reqprio;		/* Request priority -- ignored */
192 	struct	__aiocb_private	_aiocb_private;
193 } oaiocb_t;
194 #endif
195 
196 /*
197  * Below is a key of locks used to protect each member of struct kaiocb
198  * aioliojob and kaioinfo and any backends.
199  *
200  * * - need not protected
201  * a - locked by kaioinfo lock
202  * b - locked by backend lock, the backend lock can be null in some cases,
203  *     for example, BIO belongs to this type, in this case, proc lock is
204  *     reused.
205  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
206  */
207 
208 /*
209  * If the routine that services an AIO request blocks while running in an
210  * AIO kernel process it can starve other I/O requests.  BIO requests
211  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
212  * processes at all.  Socket I/O requests use a separate pool of
213  * kprocs and also force non-blocking I/O.  Other file I/O requests
214  * use the generic fo_read/fo_write operations which can block.  The
215  * fsync and mlock operations can also block while executing.  Ideally
216  * none of these requests would block while executing.
217  *
218  * Note that the service routines cannot toggle O_NONBLOCK in the file
219  * structure directly while handling a request due to races with
220  * userland threads.
221  */
222 
223 /* jobflags */
224 #define	KAIOCB_QUEUEING		0x01
225 #define	KAIOCB_CANCELLED	0x02
226 #define	KAIOCB_CANCELLING	0x04
227 #define	KAIOCB_CHECKSYNC	0x08
228 #define	KAIOCB_CLEARED		0x10
229 #define	KAIOCB_FINISHED		0x20
230 
231 /*
232  * AIO process info
233  */
234 #define AIOP_FREE	0x1			/* proc on free queue */
235 
236 struct aioproc {
237 	int	aioprocflags;			/* (c) AIO proc flags */
238 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
239 	struct	proc *aioproc;			/* (*) the AIO proc */
240 };
241 
242 /*
243  * data-structure for lio signal management
244  */
245 struct aioliojob {
246 	int	lioj_flags;			/* (a) listio flags */
247 	int	lioj_count;			/* (a) count of jobs */
248 	int	lioj_finished_count;		/* (a) count of finished jobs */
249 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
250 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
251 	struct	knlist klist;			/* (a) list of knotes */
252 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
253 };
254 
255 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
256 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
257 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
258 
259 /*
260  * per process aio data structure
261  */
262 struct kaioinfo {
263 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
264 	int	kaio_flags;		/* (a) per process kaio flags */
265 	int	kaio_active_count;	/* (c) number of currently used AIOs */
266 	int	kaio_count;		/* (a) size of AIO queue */
267 	int	kaio_buffer_count;	/* (a) number of bio buffers */
268 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
269 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
270 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
271 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
272 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
273 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
274 	struct	task kaio_task;		/* (*) task to kick aio processes */
275 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
276 };
277 
278 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
279 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
280 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
281 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
282 
283 #define KAIO_RUNDOWN	0x1	/* process is being run down */
284 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
285 
286 /*
287  * Operations used to interact with userland aio control blocks.
288  * Different ABIs provide their own operations.
289  */
290 struct aiocb_ops {
291 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
292 	long	(*fetch_status)(struct aiocb *ujob);
293 	long	(*fetch_error)(struct aiocb *ujob);
294 	int	(*store_status)(struct aiocb *ujob, long status);
295 	int	(*store_error)(struct aiocb *ujob, long error);
296 	int	(*store_kernelinfo)(struct aiocb *ujob, long jobref);
297 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
298 };
299 
300 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
301 static struct sema aio_newproc_sem;
302 static struct mtx aio_job_mtx;
303 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
304 static struct unrhdr *aiod_unr;
305 
306 static void	aio_biocleanup(struct bio *bp);
307 void		aio_init_aioinfo(struct proc *p);
308 static int	aio_onceonly(void);
309 static int	aio_free_entry(struct kaiocb *job);
310 static void	aio_process_rw(struct kaiocb *job);
311 static void	aio_process_sync(struct kaiocb *job);
312 static void	aio_process_mlock(struct kaiocb *job);
313 static void	aio_schedule_fsync(void *context, int pending);
314 static int	aio_newproc(int *);
315 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
316 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
317 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
318 static void	aio_biowakeup(struct bio *bp);
319 static void	aio_proc_rundown(void *arg, struct proc *p);
320 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
321 		    struct image_params *imgp);
322 static int	aio_qbio(struct proc *p, struct kaiocb *job);
323 static void	aio_daemon(void *param);
324 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
325 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
326 static int	aio_kick(struct proc *userp);
327 static void	aio_kick_nowait(struct proc *userp);
328 static void	aio_kick_helper(void *context, int pending);
329 static int	filt_aioattach(struct knote *kn);
330 static void	filt_aiodetach(struct knote *kn);
331 static int	filt_aio(struct knote *kn, long hint);
332 static int	filt_lioattach(struct knote *kn);
333 static void	filt_liodetach(struct knote *kn);
334 static int	filt_lio(struct knote *kn, long hint);
335 
336 /*
337  * Zones for:
338  * 	kaio	Per process async io info
339  *	aiocb	async io jobs
340  *	aiolio	list io jobs
341  */
342 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
343 
344 /* kqueue filters for aio */
345 static struct filterops aio_filtops = {
346 	.f_isfd = 0,
347 	.f_attach = filt_aioattach,
348 	.f_detach = filt_aiodetach,
349 	.f_event = filt_aio,
350 };
351 static struct filterops lio_filtops = {
352 	.f_isfd = 0,
353 	.f_attach = filt_lioattach,
354 	.f_detach = filt_liodetach,
355 	.f_event = filt_lio
356 };
357 
358 static eventhandler_tag exit_tag, exec_tag;
359 
360 TASKQUEUE_DEFINE_THREAD(aiod_kick);
361 
362 /*
363  * Main operations function for use as a kernel module.
364  */
365 static int
366 aio_modload(struct module *module, int cmd, void *arg)
367 {
368 	int error = 0;
369 
370 	switch (cmd) {
371 	case MOD_LOAD:
372 		aio_onceonly();
373 		break;
374 	case MOD_SHUTDOWN:
375 		break;
376 	default:
377 		error = EOPNOTSUPP;
378 		break;
379 	}
380 	return (error);
381 }
382 
383 static moduledata_t aio_mod = {
384 	"aio",
385 	&aio_modload,
386 	NULL
387 };
388 
389 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
390 MODULE_VERSION(aio, 1);
391 
392 /*
393  * Startup initialization
394  */
395 static int
396 aio_onceonly(void)
397 {
398 
399 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
400 	    EVENTHANDLER_PRI_ANY);
401 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
402 	    NULL, EVENTHANDLER_PRI_ANY);
403 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
404 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
405 	TAILQ_INIT(&aio_freeproc);
406 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
407 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
408 	TAILQ_INIT(&aio_jobs);
409 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
410 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
411 	    NULL, NULL, UMA_ALIGN_PTR, 0);
412 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
413 	    NULL, NULL, UMA_ALIGN_PTR, 0);
414 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
415 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
416 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
417 	jobrefid = 1;
418 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
419 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
420 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
421 
422 	return (0);
423 }
424 
425 /*
426  * Init the per-process aioinfo structure.  The aioinfo limits are set
427  * per-process for user limit (resource) management.
428  */
429 void
430 aio_init_aioinfo(struct proc *p)
431 {
432 	struct kaioinfo *ki;
433 
434 	ki = uma_zalloc(kaio_zone, M_WAITOK);
435 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
436 	ki->kaio_flags = 0;
437 	ki->kaio_active_count = 0;
438 	ki->kaio_count = 0;
439 	ki->kaio_buffer_count = 0;
440 	TAILQ_INIT(&ki->kaio_all);
441 	TAILQ_INIT(&ki->kaio_done);
442 	TAILQ_INIT(&ki->kaio_jobqueue);
443 	TAILQ_INIT(&ki->kaio_liojoblist);
444 	TAILQ_INIT(&ki->kaio_syncqueue);
445 	TAILQ_INIT(&ki->kaio_syncready);
446 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
447 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
448 	PROC_LOCK(p);
449 	if (p->p_aioinfo == NULL) {
450 		p->p_aioinfo = ki;
451 		PROC_UNLOCK(p);
452 	} else {
453 		PROC_UNLOCK(p);
454 		mtx_destroy(&ki->kaio_mtx);
455 		uma_zfree(kaio_zone, ki);
456 	}
457 
458 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
459 		aio_newproc(NULL);
460 }
461 
462 static int
463 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
464 {
465 	struct thread *td;
466 	int error;
467 
468 	error = sigev_findtd(p, sigev, &td);
469 	if (error)
470 		return (error);
471 	if (!KSI_ONQ(ksi)) {
472 		ksiginfo_set_sigev(ksi, sigev);
473 		ksi->ksi_code = SI_ASYNCIO;
474 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
475 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
476 	}
477 	PROC_UNLOCK(p);
478 	return (error);
479 }
480 
481 /*
482  * Free a job entry.  Wait for completion if it is currently active, but don't
483  * delay forever.  If we delay, we return a flag that says that we have to
484  * restart the queue scan.
485  */
486 static int
487 aio_free_entry(struct kaiocb *job)
488 {
489 	struct kaioinfo *ki;
490 	struct aioliojob *lj;
491 	struct proc *p;
492 
493 	p = job->userproc;
494 	MPASS(curproc == p);
495 	ki = p->p_aioinfo;
496 	MPASS(ki != NULL);
497 
498 	AIO_LOCK_ASSERT(ki, MA_OWNED);
499 	MPASS(job->jobflags & KAIOCB_FINISHED);
500 
501 	atomic_subtract_int(&num_queue_count, 1);
502 
503 	ki->kaio_count--;
504 	MPASS(ki->kaio_count >= 0);
505 
506 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
507 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
508 
509 	lj = job->lio;
510 	if (lj) {
511 		lj->lioj_count--;
512 		lj->lioj_finished_count--;
513 
514 		if (lj->lioj_count == 0) {
515 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
516 			/* lio is going away, we need to destroy any knotes */
517 			knlist_delete(&lj->klist, curthread, 1);
518 			PROC_LOCK(p);
519 			sigqueue_take(&lj->lioj_ksi);
520 			PROC_UNLOCK(p);
521 			uma_zfree(aiolio_zone, lj);
522 		}
523 	}
524 
525 	/* job is going away, we need to destroy any knotes */
526 	knlist_delete(&job->klist, curthread, 1);
527 	PROC_LOCK(p);
528 	sigqueue_take(&job->ksi);
529 	PROC_UNLOCK(p);
530 
531 	AIO_UNLOCK(ki);
532 
533 	/*
534 	 * The thread argument here is used to find the owning process
535 	 * and is also passed to fo_close() which may pass it to various
536 	 * places such as devsw close() routines.  Because of that, we
537 	 * need a thread pointer from the process owning the job that is
538 	 * persistent and won't disappear out from under us or move to
539 	 * another process.
540 	 *
541 	 * Currently, all the callers of this function call it to remove
542 	 * a kaiocb from the current process' job list either via a
543 	 * syscall or due to the current process calling exit() or
544 	 * execve().  Thus, we know that p == curproc.  We also know that
545 	 * curthread can't exit since we are curthread.
546 	 *
547 	 * Therefore, we use curthread as the thread to pass to
548 	 * knlist_delete().  This does mean that it is possible for the
549 	 * thread pointer at close time to differ from the thread pointer
550 	 * at open time, but this is already true of file descriptors in
551 	 * a multithreaded process.
552 	 */
553 	if (job->fd_file)
554 		fdrop(job->fd_file, curthread);
555 	crfree(job->cred);
556 	if (job->uiop != &job->uio)
557 		free(job->uiop, M_IOV);
558 	uma_zfree(aiocb_zone, job);
559 	AIO_LOCK(ki);
560 
561 	return (0);
562 }
563 
564 static void
565 aio_proc_rundown_exec(void *arg, struct proc *p,
566     struct image_params *imgp __unused)
567 {
568    	aio_proc_rundown(arg, p);
569 }
570 
571 static int
572 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
573 {
574 	aio_cancel_fn_t *func;
575 	int cancelled;
576 
577 	AIO_LOCK_ASSERT(ki, MA_OWNED);
578 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
579 		return (0);
580 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
581 	job->jobflags |= KAIOCB_CANCELLED;
582 
583 	func = job->cancel_fn;
584 
585 	/*
586 	 * If there is no cancel routine, just leave the job marked as
587 	 * cancelled.  The job should be in active use by a caller who
588 	 * should complete it normally or when it fails to install a
589 	 * cancel routine.
590 	 */
591 	if (func == NULL)
592 		return (0);
593 
594 	/*
595 	 * Set the CANCELLING flag so that aio_complete() will defer
596 	 * completions of this job.  This prevents the job from being
597 	 * freed out from under the cancel callback.  After the
598 	 * callback any deferred completion (whether from the callback
599 	 * or any other source) will be completed.
600 	 */
601 	job->jobflags |= KAIOCB_CANCELLING;
602 	AIO_UNLOCK(ki);
603 	func(job);
604 	AIO_LOCK(ki);
605 	job->jobflags &= ~KAIOCB_CANCELLING;
606 	if (job->jobflags & KAIOCB_FINISHED) {
607 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
608 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
609 		aio_bio_done_notify(p, job);
610 	} else {
611 		/*
612 		 * The cancel callback might have scheduled an
613 		 * operation to cancel this request, but it is
614 		 * only counted as cancelled if the request is
615 		 * cancelled when the callback returns.
616 		 */
617 		cancelled = 0;
618 	}
619 	return (cancelled);
620 }
621 
622 /*
623  * Rundown the jobs for a given process.
624  */
625 static void
626 aio_proc_rundown(void *arg, struct proc *p)
627 {
628 	struct kaioinfo *ki;
629 	struct aioliojob *lj;
630 	struct kaiocb *job, *jobn;
631 
632 	KASSERT(curthread->td_proc == p,
633 	    ("%s: called on non-curproc", __func__));
634 	ki = p->p_aioinfo;
635 	if (ki == NULL)
636 		return;
637 
638 	AIO_LOCK(ki);
639 	ki->kaio_flags |= KAIO_RUNDOWN;
640 
641 restart:
642 
643 	/*
644 	 * Try to cancel all pending requests. This code simulates
645 	 * aio_cancel on all pending I/O requests.
646 	 */
647 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
648 		aio_cancel_job(p, ki, job);
649 	}
650 
651 	/* Wait for all running I/O to be finished */
652 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
653 		ki->kaio_flags |= KAIO_WAKEUP;
654 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
655 		goto restart;
656 	}
657 
658 	/* Free all completed I/O requests. */
659 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
660 		aio_free_entry(job);
661 
662 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
663 		if (lj->lioj_count == 0) {
664 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
665 			knlist_delete(&lj->klist, curthread, 1);
666 			PROC_LOCK(p);
667 			sigqueue_take(&lj->lioj_ksi);
668 			PROC_UNLOCK(p);
669 			uma_zfree(aiolio_zone, lj);
670 		} else {
671 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
672 			    lj->lioj_count, lj->lioj_finished_count);
673 		}
674 	}
675 	AIO_UNLOCK(ki);
676 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
677 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
678 	mtx_destroy(&ki->kaio_mtx);
679 	uma_zfree(kaio_zone, ki);
680 	p->p_aioinfo = NULL;
681 }
682 
683 /*
684  * Select a job to run (called by an AIO daemon).
685  */
686 static struct kaiocb *
687 aio_selectjob(struct aioproc *aiop)
688 {
689 	struct kaiocb *job;
690 	struct kaioinfo *ki;
691 	struct proc *userp;
692 
693 	mtx_assert(&aio_job_mtx, MA_OWNED);
694 restart:
695 	TAILQ_FOREACH(job, &aio_jobs, list) {
696 		userp = job->userproc;
697 		ki = userp->p_aioinfo;
698 
699 		if (ki->kaio_active_count < max_aio_per_proc) {
700 			TAILQ_REMOVE(&aio_jobs, job, list);
701 			if (!aio_clear_cancel_function(job))
702 				goto restart;
703 
704 			/* Account for currently active jobs. */
705 			ki->kaio_active_count++;
706 			break;
707 		}
708 	}
709 	return (job);
710 }
711 
712 /*
713  * Move all data to a permanent storage device.  This code
714  * simulates the fsync and fdatasync syscalls.
715  */
716 static int
717 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
718 {
719 	struct mount *mp;
720 	vm_object_t obj;
721 	int error;
722 
723 	for (;;) {
724 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
725 		if (error != 0)
726 			break;
727 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
728 		obj = vp->v_object;
729 		if (obj != NULL) {
730 			VM_OBJECT_WLOCK(obj);
731 			vm_object_page_clean(obj, 0, 0, 0);
732 			VM_OBJECT_WUNLOCK(obj);
733 		}
734 		if (op == LIO_DSYNC)
735 			error = VOP_FDATASYNC(vp, td);
736 		else
737 			error = VOP_FSYNC(vp, MNT_WAIT, td);
738 
739 		VOP_UNLOCK(vp);
740 		vn_finished_write(mp);
741 		if (error != ERELOOKUP)
742 			break;
743 	}
744 	return (error);
745 }
746 
747 /*
748  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
749  * does the I/O request for the non-bio version of the operations.  The normal
750  * vn operations are used, and this code should work in all instances for every
751  * type of file, including pipes, sockets, fifos, and regular files.
752  *
753  * XXX I don't think it works well for socket, pipe, and fifo.
754  */
755 static void
756 aio_process_rw(struct kaiocb *job)
757 {
758 	struct ucred *td_savedcred;
759 	struct thread *td;
760 	struct file *fp;
761 	ssize_t cnt;
762 	long msgsnd_st, msgsnd_end;
763 	long msgrcv_st, msgrcv_end;
764 	long oublock_st, oublock_end;
765 	long inblock_st, inblock_end;
766 	int error, opcode;
767 
768 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
769 	    job->uaiocb.aio_lio_opcode == LIO_READV ||
770 	    job->uaiocb.aio_lio_opcode == LIO_WRITE ||
771 	    job->uaiocb.aio_lio_opcode == LIO_WRITEV,
772 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
773 
774 	aio_switch_vmspace(job);
775 	td = curthread;
776 	td_savedcred = td->td_ucred;
777 	td->td_ucred = job->cred;
778 	job->uiop->uio_td = td;
779 	fp = job->fd_file;
780 
781 	opcode = job->uaiocb.aio_lio_opcode;
782 	cnt = job->uiop->uio_resid;
783 
784 	msgrcv_st = td->td_ru.ru_msgrcv;
785 	msgsnd_st = td->td_ru.ru_msgsnd;
786 	inblock_st = td->td_ru.ru_inblock;
787 	oublock_st = td->td_ru.ru_oublock;
788 
789 	/*
790 	 * aio_aqueue() acquires a reference to the file that is
791 	 * released in aio_free_entry().
792 	 */
793 	if (opcode == LIO_READ || opcode == LIO_READV) {
794 		if (job->uiop->uio_resid == 0)
795 			error = 0;
796 		else
797 			error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
798 			    td);
799 	} else {
800 		if (fp->f_type == DTYPE_VNODE)
801 			bwillwrite();
802 		error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
803 	}
804 	msgrcv_end = td->td_ru.ru_msgrcv;
805 	msgsnd_end = td->td_ru.ru_msgsnd;
806 	inblock_end = td->td_ru.ru_inblock;
807 	oublock_end = td->td_ru.ru_oublock;
808 
809 	job->msgrcv = msgrcv_end - msgrcv_st;
810 	job->msgsnd = msgsnd_end - msgsnd_st;
811 	job->inblock = inblock_end - inblock_st;
812 	job->outblock = oublock_end - oublock_st;
813 
814 	if (error != 0 && job->uiop->uio_resid != cnt) {
815 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
816 			error = 0;
817 		if (error == EPIPE && (opcode & LIO_WRITE)) {
818 			PROC_LOCK(job->userproc);
819 			kern_psignal(job->userproc, SIGPIPE);
820 			PROC_UNLOCK(job->userproc);
821 		}
822 	}
823 
824 	cnt -= job->uiop->uio_resid;
825 	td->td_ucred = td_savedcred;
826 	if (error)
827 		aio_complete(job, -1, error);
828 	else
829 		aio_complete(job, cnt, 0);
830 }
831 
832 static void
833 aio_process_sync(struct kaiocb *job)
834 {
835 	struct thread *td = curthread;
836 	struct ucred *td_savedcred = td->td_ucred;
837 	struct file *fp = job->fd_file;
838 	int error = 0;
839 
840 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
841 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
842 
843 	td->td_ucred = job->cred;
844 	if (fp->f_vnode != NULL) {
845 		error = aio_fsync_vnode(td, fp->f_vnode,
846 		    job->uaiocb.aio_lio_opcode);
847 	}
848 	td->td_ucred = td_savedcred;
849 	if (error)
850 		aio_complete(job, -1, error);
851 	else
852 		aio_complete(job, 0, 0);
853 }
854 
855 static void
856 aio_process_mlock(struct kaiocb *job)
857 {
858 	struct aiocb *cb = &job->uaiocb;
859 	int error;
860 
861 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
862 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
863 
864 	aio_switch_vmspace(job);
865 	error = kern_mlock(job->userproc, job->cred,
866 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
867 	aio_complete(job, error != 0 ? -1 : 0, error);
868 }
869 
870 static void
871 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
872 {
873 	struct aioliojob *lj;
874 	struct kaioinfo *ki;
875 	struct kaiocb *sjob, *sjobn;
876 	int lj_done;
877 	bool schedule_fsync;
878 
879 	ki = userp->p_aioinfo;
880 	AIO_LOCK_ASSERT(ki, MA_OWNED);
881 	lj = job->lio;
882 	lj_done = 0;
883 	if (lj) {
884 		lj->lioj_finished_count++;
885 		if (lj->lioj_count == lj->lioj_finished_count)
886 			lj_done = 1;
887 	}
888 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
889 	MPASS(job->jobflags & KAIOCB_FINISHED);
890 
891 	if (ki->kaio_flags & KAIO_RUNDOWN)
892 		goto notification_done;
893 
894 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
895 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
896 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
897 
898 	KNOTE_LOCKED(&job->klist, 1);
899 
900 	if (lj_done) {
901 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
902 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
903 			KNOTE_LOCKED(&lj->klist, 1);
904 		}
905 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
906 		    == LIOJ_SIGNAL &&
907 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
908 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
909 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
910 			    true);
911 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
912 		}
913 	}
914 
915 notification_done:
916 	if (job->jobflags & KAIOCB_CHECKSYNC) {
917 		schedule_fsync = false;
918 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
919 			if (job->fd_file != sjob->fd_file ||
920 			    job->seqno >= sjob->seqno)
921 				continue;
922 			if (--sjob->pending > 0)
923 				continue;
924 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
925 			if (!aio_clear_cancel_function_locked(sjob))
926 				continue;
927 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
928 			schedule_fsync = true;
929 		}
930 		if (schedule_fsync)
931 			taskqueue_enqueue(taskqueue_aiod_kick,
932 			    &ki->kaio_sync_task);
933 	}
934 	if (ki->kaio_flags & KAIO_WAKEUP) {
935 		ki->kaio_flags &= ~KAIO_WAKEUP;
936 		wakeup(&userp->p_aioinfo);
937 	}
938 }
939 
940 static void
941 aio_schedule_fsync(void *context, int pending)
942 {
943 	struct kaioinfo *ki;
944 	struct kaiocb *job;
945 
946 	ki = context;
947 	AIO_LOCK(ki);
948 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
949 		job = TAILQ_FIRST(&ki->kaio_syncready);
950 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
951 		AIO_UNLOCK(ki);
952 		aio_schedule(job, aio_process_sync);
953 		AIO_LOCK(ki);
954 	}
955 	AIO_UNLOCK(ki);
956 }
957 
958 bool
959 aio_cancel_cleared(struct kaiocb *job)
960 {
961 
962 	/*
963 	 * The caller should hold the same queue lock held when
964 	 * aio_clear_cancel_function() was called and set this flag
965 	 * ensuring this check sees an up-to-date value.  However,
966 	 * there is no way to assert that.
967 	 */
968 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
969 }
970 
971 static bool
972 aio_clear_cancel_function_locked(struct kaiocb *job)
973 {
974 
975 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
976 	MPASS(job->cancel_fn != NULL);
977 	if (job->jobflags & KAIOCB_CANCELLING) {
978 		job->jobflags |= KAIOCB_CLEARED;
979 		return (false);
980 	}
981 	job->cancel_fn = NULL;
982 	return (true);
983 }
984 
985 bool
986 aio_clear_cancel_function(struct kaiocb *job)
987 {
988 	struct kaioinfo *ki;
989 	bool ret;
990 
991 	ki = job->userproc->p_aioinfo;
992 	AIO_LOCK(ki);
993 	ret = aio_clear_cancel_function_locked(job);
994 	AIO_UNLOCK(ki);
995 	return (ret);
996 }
997 
998 static bool
999 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1000 {
1001 
1002 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1003 	if (job->jobflags & KAIOCB_CANCELLED)
1004 		return (false);
1005 	job->cancel_fn = func;
1006 	return (true);
1007 }
1008 
1009 bool
1010 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1011 {
1012 	struct kaioinfo *ki;
1013 	bool ret;
1014 
1015 	ki = job->userproc->p_aioinfo;
1016 	AIO_LOCK(ki);
1017 	ret = aio_set_cancel_function_locked(job, func);
1018 	AIO_UNLOCK(ki);
1019 	return (ret);
1020 }
1021 
1022 void
1023 aio_complete(struct kaiocb *job, long status, int error)
1024 {
1025 	struct kaioinfo *ki;
1026 	struct proc *userp;
1027 
1028 	job->uaiocb._aiocb_private.error = error;
1029 	job->uaiocb._aiocb_private.status = status;
1030 
1031 	userp = job->userproc;
1032 	ki = userp->p_aioinfo;
1033 
1034 	AIO_LOCK(ki);
1035 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1036 	    ("duplicate aio_complete"));
1037 	job->jobflags |= KAIOCB_FINISHED;
1038 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1039 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1040 		aio_bio_done_notify(userp, job);
1041 	}
1042 	AIO_UNLOCK(ki);
1043 }
1044 
1045 void
1046 aio_cancel(struct kaiocb *job)
1047 {
1048 
1049 	aio_complete(job, -1, ECANCELED);
1050 }
1051 
1052 void
1053 aio_switch_vmspace(struct kaiocb *job)
1054 {
1055 
1056 	vmspace_switch_aio(job->userproc->p_vmspace);
1057 }
1058 
1059 /*
1060  * The AIO daemon, most of the actual work is done in aio_process_*,
1061  * but the setup (and address space mgmt) is done in this routine.
1062  */
1063 static void
1064 aio_daemon(void *_id)
1065 {
1066 	struct kaiocb *job;
1067 	struct aioproc *aiop;
1068 	struct kaioinfo *ki;
1069 	struct proc *p;
1070 	struct vmspace *myvm;
1071 	struct thread *td = curthread;
1072 	int id = (intptr_t)_id;
1073 
1074 	/*
1075 	 * Grab an extra reference on the daemon's vmspace so that it
1076 	 * doesn't get freed by jobs that switch to a different
1077 	 * vmspace.
1078 	 */
1079 	p = td->td_proc;
1080 	myvm = vmspace_acquire_ref(p);
1081 
1082 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1083 
1084 	/*
1085 	 * Allocate and ready the aio control info.  There is one aiop structure
1086 	 * per daemon.
1087 	 */
1088 	aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1089 	aiop->aioproc = p;
1090 	aiop->aioprocflags = 0;
1091 
1092 	/*
1093 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1094 	 * and creating too many daemons.)
1095 	 */
1096 	sema_post(&aio_newproc_sem);
1097 
1098 	mtx_lock(&aio_job_mtx);
1099 	for (;;) {
1100 		/*
1101 		 * Take daemon off of free queue
1102 		 */
1103 		if (aiop->aioprocflags & AIOP_FREE) {
1104 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1105 			aiop->aioprocflags &= ~AIOP_FREE;
1106 		}
1107 
1108 		/*
1109 		 * Check for jobs.
1110 		 */
1111 		while ((job = aio_selectjob(aiop)) != NULL) {
1112 			mtx_unlock(&aio_job_mtx);
1113 
1114 			ki = job->userproc->p_aioinfo;
1115 			job->handle_fn(job);
1116 
1117 			mtx_lock(&aio_job_mtx);
1118 			/* Decrement the active job count. */
1119 			ki->kaio_active_count--;
1120 		}
1121 
1122 		/*
1123 		 * Disconnect from user address space.
1124 		 */
1125 		if (p->p_vmspace != myvm) {
1126 			mtx_unlock(&aio_job_mtx);
1127 			vmspace_switch_aio(myvm);
1128 			mtx_lock(&aio_job_mtx);
1129 			/*
1130 			 * We have to restart to avoid race, we only sleep if
1131 			 * no job can be selected.
1132 			 */
1133 			continue;
1134 		}
1135 
1136 		mtx_assert(&aio_job_mtx, MA_OWNED);
1137 
1138 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1139 		aiop->aioprocflags |= AIOP_FREE;
1140 
1141 		/*
1142 		 * If daemon is inactive for a long time, allow it to exit,
1143 		 * thereby freeing resources.
1144 		 */
1145 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1146 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1147 		    (aiop->aioprocflags & AIOP_FREE) &&
1148 		    num_aio_procs > target_aio_procs)
1149 			break;
1150 	}
1151 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1152 	num_aio_procs--;
1153 	mtx_unlock(&aio_job_mtx);
1154 	free(aiop, M_AIO);
1155 	free_unr(aiod_unr, id);
1156 	vmspace_free(myvm);
1157 
1158 	KASSERT(p->p_vmspace == myvm,
1159 	    ("AIOD: bad vmspace for exiting daemon"));
1160 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1161 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1162 	    refcount_load(&myvm->vm_refcnt)));
1163 	kproc_exit(0);
1164 }
1165 
1166 /*
1167  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1168  * AIO daemon modifies its environment itself.
1169  */
1170 static int
1171 aio_newproc(int *start)
1172 {
1173 	int error;
1174 	struct proc *p;
1175 	int id;
1176 
1177 	id = alloc_unr(aiod_unr);
1178 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1179 		RFNOWAIT, 0, "aiod%d", id);
1180 	if (error == 0) {
1181 		/*
1182 		 * Wait until daemon is started.
1183 		 */
1184 		sema_wait(&aio_newproc_sem);
1185 		mtx_lock(&aio_job_mtx);
1186 		num_aio_procs++;
1187 		if (start != NULL)
1188 			(*start)--;
1189 		mtx_unlock(&aio_job_mtx);
1190 	} else {
1191 		free_unr(aiod_unr, id);
1192 	}
1193 	return (error);
1194 }
1195 
1196 /*
1197  * Try the high-performance, low-overhead bio method for eligible
1198  * VCHR devices.  This method doesn't use an aio helper thread, and
1199  * thus has very low overhead.
1200  *
1201  * Assumes that the caller, aio_aqueue(), has incremented the file
1202  * structure's reference count, preventing its deallocation for the
1203  * duration of this call.
1204  */
1205 static int
1206 aio_qbio(struct proc *p, struct kaiocb *job)
1207 {
1208 	struct aiocb *cb;
1209 	struct file *fp;
1210 	struct buf *pbuf;
1211 	struct vnode *vp;
1212 	struct cdevsw *csw;
1213 	struct cdev *dev;
1214 	struct kaioinfo *ki;
1215 	struct bio **bios = NULL;
1216 	off_t offset;
1217 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1218 	vm_prot_t prot;
1219 	bool use_unmapped;
1220 
1221 	cb = &job->uaiocb;
1222 	fp = job->fd_file;
1223 	opcode = cb->aio_lio_opcode;
1224 
1225 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1226 	    opcode == LIO_READ || opcode == LIO_READV))
1227 		return (-1);
1228 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1229 		return (-1);
1230 
1231 	vp = fp->f_vnode;
1232 	if (vp->v_type != VCHR)
1233 		return (-1);
1234 	if (vp->v_bufobj.bo_bsize == 0)
1235 		return (-1);
1236 
1237 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1238 	iovcnt = job->uiop->uio_iovcnt;
1239 	if (iovcnt > max_buf_aio)
1240 		return (-1);
1241 	for (i = 0; i < iovcnt; i++) {
1242 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1243 			return (-1);
1244 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1245 			error = -1;
1246 			return (-1);
1247 		}
1248 	}
1249 	offset = cb->aio_offset;
1250 
1251 	ref = 0;
1252 	csw = devvn_refthread(vp, &dev, &ref);
1253 	if (csw == NULL)
1254 		return (ENXIO);
1255 
1256 	if ((csw->d_flags & D_DISK) == 0) {
1257 		error = -1;
1258 		goto unref;
1259 	}
1260 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1261 		error = -1;
1262 		goto unref;
1263 	}
1264 
1265 	ki = p->p_aioinfo;
1266 	job->error = 0;
1267 
1268 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1269 	if (!use_unmapped) {
1270 		AIO_LOCK(ki);
1271 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1272 			AIO_UNLOCK(ki);
1273 			error = EAGAIN;
1274 			goto unref;
1275 		}
1276 		ki->kaio_buffer_count += iovcnt;
1277 		AIO_UNLOCK(ki);
1278 	}
1279 
1280 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1281 	refcount_init(&job->nbio, iovcnt);
1282 	for (i = 0; i < iovcnt; i++) {
1283 		struct vm_page** pages;
1284 		struct bio *bp;
1285 		void *buf;
1286 		size_t nbytes;
1287 		int npages;
1288 
1289 		buf = job->uiop->uio_iov[i].iov_base;
1290 		nbytes = job->uiop->uio_iov[i].iov_len;
1291 
1292 		bios[i] = g_alloc_bio();
1293 		bp = bios[i];
1294 
1295 		poff = (vm_offset_t)buf & PAGE_MASK;
1296 		if (use_unmapped) {
1297 			pbuf = NULL;
1298 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1299 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1300 		} else {
1301 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1302 			BUF_KERNPROC(pbuf);
1303 			pages = pbuf->b_pages;
1304 		}
1305 
1306 		bp->bio_length = nbytes;
1307 		bp->bio_bcount = nbytes;
1308 		bp->bio_done = aio_biowakeup;
1309 		bp->bio_offset = offset;
1310 		bp->bio_cmd = bio_cmd;
1311 		bp->bio_dev = dev;
1312 		bp->bio_caller1 = job;
1313 		bp->bio_caller2 = pbuf;
1314 
1315 		prot = VM_PROT_READ;
1316 		if (opcode == LIO_READ || opcode == LIO_READV)
1317 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1318 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1319 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1320 		    atop(maxphys) + 1);
1321 		if (npages < 0) {
1322 			if (pbuf != NULL)
1323 				uma_zfree(pbuf_zone, pbuf);
1324 			else
1325 				free(pages, M_TEMP);
1326 			error = EFAULT;
1327 			g_destroy_bio(bp);
1328 			i--;
1329 			goto destroy_bios;
1330 		}
1331 		if (pbuf != NULL) {
1332 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1333 			bp->bio_data = pbuf->b_data + poff;
1334 			pbuf->b_npages = npages;
1335 			atomic_add_int(&num_buf_aio, 1);
1336 		} else {
1337 			bp->bio_ma = pages;
1338 			bp->bio_ma_n = npages;
1339 			bp->bio_ma_offset = poff;
1340 			bp->bio_data = unmapped_buf;
1341 			bp->bio_flags |= BIO_UNMAPPED;
1342 			atomic_add_int(&num_unmapped_aio, 1);
1343 		}
1344 
1345 		offset += nbytes;
1346 	}
1347 
1348 	/* Perform transfer. */
1349 	for (i = 0; i < iovcnt; i++)
1350 		csw->d_strategy(bios[i]);
1351 	free(bios, M_TEMP);
1352 
1353 	dev_relthread(dev, ref);
1354 	return (0);
1355 
1356 destroy_bios:
1357 	for (; i >= 0; i--)
1358 		aio_biocleanup(bios[i]);
1359 	free(bios, M_TEMP);
1360 unref:
1361 	dev_relthread(dev, ref);
1362 	return (error);
1363 }
1364 
1365 #ifdef COMPAT_FREEBSD6
1366 static int
1367 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1368 {
1369 
1370 	/*
1371 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1372 	 * supported by AIO with the old sigevent structure.
1373 	 */
1374 	nsig->sigev_notify = osig->sigev_notify;
1375 	switch (nsig->sigev_notify) {
1376 	case SIGEV_NONE:
1377 		break;
1378 	case SIGEV_SIGNAL:
1379 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1380 		break;
1381 	case SIGEV_KEVENT:
1382 		nsig->sigev_notify_kqueue =
1383 		    osig->__sigev_u.__sigev_notify_kqueue;
1384 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1385 		break;
1386 	default:
1387 		return (EINVAL);
1388 	}
1389 	return (0);
1390 }
1391 
1392 static int
1393 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1394     int type __unused)
1395 {
1396 	struct oaiocb *ojob;
1397 	struct aiocb *kcb = &kjob->uaiocb;
1398 	int error;
1399 
1400 	bzero(kcb, sizeof(struct aiocb));
1401 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1402 	if (error)
1403 		return (error);
1404 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1405 	ojob = (struct oaiocb *)kcb;
1406 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1407 }
1408 #endif
1409 
1410 static int
1411 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1412 {
1413 	struct aiocb *kcb = &kjob->uaiocb;
1414 	int error;
1415 
1416 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1417 	if (error)
1418 		return (error);
1419 	if (type == LIO_NOP)
1420 		type = kcb->aio_lio_opcode;
1421 	if (type & LIO_VECTORED) {
1422 		/* malloc a uio and copy in the iovec */
1423 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1424 		    kcb->aio_iovcnt, &kjob->uiop);
1425 	}
1426 
1427 	return (error);
1428 }
1429 
1430 static long
1431 aiocb_fetch_status(struct aiocb *ujob)
1432 {
1433 
1434 	return (fuword(&ujob->_aiocb_private.status));
1435 }
1436 
1437 static long
1438 aiocb_fetch_error(struct aiocb *ujob)
1439 {
1440 
1441 	return (fuword(&ujob->_aiocb_private.error));
1442 }
1443 
1444 static int
1445 aiocb_store_status(struct aiocb *ujob, long status)
1446 {
1447 
1448 	return (suword(&ujob->_aiocb_private.status, status));
1449 }
1450 
1451 static int
1452 aiocb_store_error(struct aiocb *ujob, long error)
1453 {
1454 
1455 	return (suword(&ujob->_aiocb_private.error, error));
1456 }
1457 
1458 static int
1459 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
1460 {
1461 
1462 	return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
1463 }
1464 
1465 static int
1466 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1467 {
1468 
1469 	return (suword(ujobp, (long)ujob));
1470 }
1471 
1472 static struct aiocb_ops aiocb_ops = {
1473 	.aio_copyin = aiocb_copyin,
1474 	.fetch_status = aiocb_fetch_status,
1475 	.fetch_error = aiocb_fetch_error,
1476 	.store_status = aiocb_store_status,
1477 	.store_error = aiocb_store_error,
1478 	.store_kernelinfo = aiocb_store_kernelinfo,
1479 	.store_aiocb = aiocb_store_aiocb,
1480 };
1481 
1482 #ifdef COMPAT_FREEBSD6
1483 static struct aiocb_ops aiocb_ops_osigevent = {
1484 	.aio_copyin = aiocb_copyin_old_sigevent,
1485 	.fetch_status = aiocb_fetch_status,
1486 	.fetch_error = aiocb_fetch_error,
1487 	.store_status = aiocb_store_status,
1488 	.store_error = aiocb_store_error,
1489 	.store_kernelinfo = aiocb_store_kernelinfo,
1490 	.store_aiocb = aiocb_store_aiocb,
1491 };
1492 #endif
1493 
1494 /*
1495  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1496  * technique is done in this code.
1497  */
1498 int
1499 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1500     int type, struct aiocb_ops *ops)
1501 {
1502 	struct proc *p = td->td_proc;
1503 	struct file *fp = NULL;
1504 	struct kaiocb *job;
1505 	struct kaioinfo *ki;
1506 	struct kevent kev;
1507 	int opcode;
1508 	int error;
1509 	int fd, kqfd;
1510 	int jid;
1511 	u_short evflags;
1512 
1513 	if (p->p_aioinfo == NULL)
1514 		aio_init_aioinfo(p);
1515 
1516 	ki = p->p_aioinfo;
1517 
1518 	ops->store_status(ujob, -1);
1519 	ops->store_error(ujob, 0);
1520 	ops->store_kernelinfo(ujob, -1);
1521 
1522 	if (num_queue_count >= max_queue_count ||
1523 	    ki->kaio_count >= max_aio_queue_per_proc) {
1524 		error = EAGAIN;
1525 		goto err1;
1526 	}
1527 
1528 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1529 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1530 
1531 	error = ops->aio_copyin(ujob, job, type);
1532 	if (error)
1533 		goto err2;
1534 
1535 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1536 		error = EINVAL;
1537 		goto err2;
1538 	}
1539 
1540 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1541 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1542 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1543 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1544 		error = EINVAL;
1545 		goto err2;
1546 	}
1547 
1548 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1549 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1550 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1551 		error = EINVAL;
1552 		goto err2;
1553 	}
1554 
1555 	/* Get the opcode. */
1556 	if (type == LIO_NOP) {
1557 		switch (job->uaiocb.aio_lio_opcode) {
1558 		case LIO_WRITE:
1559 		case LIO_WRITEV:
1560 		case LIO_NOP:
1561 		case LIO_READ:
1562 		case LIO_READV:
1563 			opcode = job->uaiocb.aio_lio_opcode;
1564 			break;
1565 		default:
1566 			error = EINVAL;
1567 			goto err2;
1568 		}
1569 	} else
1570 		opcode = job->uaiocb.aio_lio_opcode = type;
1571 
1572 	ksiginfo_init(&job->ksi);
1573 
1574 	/* Save userspace address of the job info. */
1575 	job->ujob = ujob;
1576 
1577 	/*
1578 	 * Validate the opcode and fetch the file object for the specified
1579 	 * file descriptor.
1580 	 *
1581 	 * XXXRW: Moved the opcode validation up here so that we don't
1582 	 * retrieve a file descriptor without knowing what the capabiltity
1583 	 * should be.
1584 	 */
1585 	fd = job->uaiocb.aio_fildes;
1586 	switch (opcode) {
1587 	case LIO_WRITE:
1588 	case LIO_WRITEV:
1589 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1590 		break;
1591 	case LIO_READ:
1592 	case LIO_READV:
1593 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1594 		break;
1595 	case LIO_SYNC:
1596 	case LIO_DSYNC:
1597 		error = fget(td, fd, &cap_fsync_rights, &fp);
1598 		break;
1599 	case LIO_MLOCK:
1600 		break;
1601 	case LIO_NOP:
1602 		error = fget(td, fd, &cap_no_rights, &fp);
1603 		break;
1604 	default:
1605 		error = EINVAL;
1606 	}
1607 	if (error)
1608 		goto err3;
1609 
1610 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1611 		error = EINVAL;
1612 		goto err3;
1613 	}
1614 
1615 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1616 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1617 	    job->uaiocb.aio_offset < 0 &&
1618 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1619 		error = EINVAL;
1620 		goto err3;
1621 	}
1622 
1623 	if (fp != NULL && fp->f_ops == &path_fileops) {
1624 		error = EBADF;
1625 		goto err3;
1626 	}
1627 
1628 	job->fd_file = fp;
1629 
1630 	mtx_lock(&aio_job_mtx);
1631 	jid = jobrefid++;
1632 	job->seqno = jobseqno++;
1633 	mtx_unlock(&aio_job_mtx);
1634 	error = ops->store_kernelinfo(ujob, jid);
1635 	if (error) {
1636 		error = EINVAL;
1637 		goto err3;
1638 	}
1639 	job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
1640 
1641 	if (opcode == LIO_NOP) {
1642 		fdrop(fp, td);
1643 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1644 		uma_zfree(aiocb_zone, job);
1645 		return (0);
1646 	}
1647 
1648 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1649 		goto no_kqueue;
1650 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1651 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1652 		error = EINVAL;
1653 		goto err3;
1654 	}
1655 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1656 	memset(&kev, 0, sizeof(kev));
1657 	kev.ident = (uintptr_t)job->ujob;
1658 	kev.filter = EVFILT_AIO;
1659 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1660 	kev.data = (intptr_t)job;
1661 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1662 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1663 	if (error)
1664 		goto err3;
1665 
1666 no_kqueue:
1667 
1668 	ops->store_error(ujob, EINPROGRESS);
1669 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1670 	job->userproc = p;
1671 	job->cred = crhold(td->td_ucred);
1672 	job->jobflags = KAIOCB_QUEUEING;
1673 	job->lio = lj;
1674 
1675 	if (opcode & LIO_VECTORED) {
1676 		/* Use the uio copied in by aio_copyin */
1677 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1678 	} else {
1679 		/* Setup the inline uio */
1680 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1681 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1682 		job->uio.uio_iov = job->iov;
1683 		job->uio.uio_iovcnt = 1;
1684 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1685 		job->uio.uio_segflg = UIO_USERSPACE;
1686 		job->uiop = &job->uio;
1687 	}
1688 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1689 	case LIO_READ:
1690 		job->uiop->uio_rw = UIO_READ;
1691 		break;
1692 	case LIO_WRITE:
1693 		job->uiop->uio_rw = UIO_WRITE;
1694 		break;
1695 	}
1696 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1697 	job->uiop->uio_td = td;
1698 
1699 	if (opcode == LIO_MLOCK) {
1700 		aio_schedule(job, aio_process_mlock);
1701 		error = 0;
1702 	} else if (fp->f_ops->fo_aio_queue == NULL)
1703 		error = aio_queue_file(fp, job);
1704 	else
1705 		error = fo_aio_queue(fp, job);
1706 	if (error)
1707 		goto err4;
1708 
1709 	AIO_LOCK(ki);
1710 	job->jobflags &= ~KAIOCB_QUEUEING;
1711 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1712 	ki->kaio_count++;
1713 	if (lj)
1714 		lj->lioj_count++;
1715 	atomic_add_int(&num_queue_count, 1);
1716 	if (job->jobflags & KAIOCB_FINISHED) {
1717 		/*
1718 		 * The queue callback completed the request synchronously.
1719 		 * The bulk of the completion is deferred in that case
1720 		 * until this point.
1721 		 */
1722 		aio_bio_done_notify(p, job);
1723 	} else
1724 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1725 	AIO_UNLOCK(ki);
1726 	return (0);
1727 
1728 err4:
1729 	crfree(job->cred);
1730 err3:
1731 	if (fp)
1732 		fdrop(fp, td);
1733 	knlist_delete(&job->klist, curthread, 0);
1734 err2:
1735 	if (job->uiop != &job->uio)
1736 		free(job->uiop, M_IOV);
1737 	uma_zfree(aiocb_zone, job);
1738 err1:
1739 	ops->store_error(ujob, error);
1740 	return (error);
1741 }
1742 
1743 static void
1744 aio_cancel_daemon_job(struct kaiocb *job)
1745 {
1746 
1747 	mtx_lock(&aio_job_mtx);
1748 	if (!aio_cancel_cleared(job))
1749 		TAILQ_REMOVE(&aio_jobs, job, list);
1750 	mtx_unlock(&aio_job_mtx);
1751 	aio_cancel(job);
1752 }
1753 
1754 void
1755 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1756 {
1757 
1758 	mtx_lock(&aio_job_mtx);
1759 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1760 		mtx_unlock(&aio_job_mtx);
1761 		aio_cancel(job);
1762 		return;
1763 	}
1764 	job->handle_fn = func;
1765 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1766 	aio_kick_nowait(job->userproc);
1767 	mtx_unlock(&aio_job_mtx);
1768 }
1769 
1770 static void
1771 aio_cancel_sync(struct kaiocb *job)
1772 {
1773 	struct kaioinfo *ki;
1774 
1775 	ki = job->userproc->p_aioinfo;
1776 	AIO_LOCK(ki);
1777 	if (!aio_cancel_cleared(job))
1778 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1779 	AIO_UNLOCK(ki);
1780 	aio_cancel(job);
1781 }
1782 
1783 int
1784 aio_queue_file(struct file *fp, struct kaiocb *job)
1785 {
1786 	struct kaioinfo *ki;
1787 	struct kaiocb *job2;
1788 	struct vnode *vp;
1789 	struct mount *mp;
1790 	int error;
1791 	bool safe;
1792 
1793 	ki = job->userproc->p_aioinfo;
1794 	error = aio_qbio(job->userproc, job);
1795 	if (error >= 0)
1796 		return (error);
1797 	safe = false;
1798 	if (fp->f_type == DTYPE_VNODE) {
1799 		vp = fp->f_vnode;
1800 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1801 			mp = fp->f_vnode->v_mount;
1802 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1803 				safe = true;
1804 		}
1805 	}
1806 	if (!(safe || enable_aio_unsafe)) {
1807 		counted_warning(&unsafe_warningcnt,
1808 		    "is attempting to use unsafe AIO requests");
1809 		return (EOPNOTSUPP);
1810 	}
1811 
1812 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1813 		aio_schedule(job, aio_process_rw);
1814 		error = 0;
1815 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1816 		AIO_LOCK(ki);
1817 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1818 			if (job2->fd_file == job->fd_file &&
1819 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1820 			    job2->seqno < job->seqno) {
1821 				job2->jobflags |= KAIOCB_CHECKSYNC;
1822 				job->pending++;
1823 			}
1824 		}
1825 		if (job->pending != 0) {
1826 			if (!aio_set_cancel_function_locked(job,
1827 				aio_cancel_sync)) {
1828 				AIO_UNLOCK(ki);
1829 				aio_cancel(job);
1830 				return (0);
1831 			}
1832 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1833 			AIO_UNLOCK(ki);
1834 			return (0);
1835 		}
1836 		AIO_UNLOCK(ki);
1837 		aio_schedule(job, aio_process_sync);
1838 		error = 0;
1839 	} else {
1840 		error = EINVAL;
1841 	}
1842 	return (error);
1843 }
1844 
1845 static void
1846 aio_kick_nowait(struct proc *userp)
1847 {
1848 	struct kaioinfo *ki = userp->p_aioinfo;
1849 	struct aioproc *aiop;
1850 
1851 	mtx_assert(&aio_job_mtx, MA_OWNED);
1852 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1853 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1854 		aiop->aioprocflags &= ~AIOP_FREE;
1855 		wakeup(aiop->aioproc);
1856 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1857 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1858 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1859 	}
1860 }
1861 
1862 static int
1863 aio_kick(struct proc *userp)
1864 {
1865 	struct kaioinfo *ki = userp->p_aioinfo;
1866 	struct aioproc *aiop;
1867 	int error, ret = 0;
1868 
1869 	mtx_assert(&aio_job_mtx, MA_OWNED);
1870 retryproc:
1871 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1872 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1873 		aiop->aioprocflags &= ~AIOP_FREE;
1874 		wakeup(aiop->aioproc);
1875 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1876 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1877 		num_aio_resv_start++;
1878 		mtx_unlock(&aio_job_mtx);
1879 		error = aio_newproc(&num_aio_resv_start);
1880 		mtx_lock(&aio_job_mtx);
1881 		if (error) {
1882 			num_aio_resv_start--;
1883 			goto retryproc;
1884 		}
1885 	} else {
1886 		ret = -1;
1887 	}
1888 	return (ret);
1889 }
1890 
1891 static void
1892 aio_kick_helper(void *context, int pending)
1893 {
1894 	struct proc *userp = context;
1895 
1896 	mtx_lock(&aio_job_mtx);
1897 	while (--pending >= 0) {
1898 		if (aio_kick(userp))
1899 			break;
1900 	}
1901 	mtx_unlock(&aio_job_mtx);
1902 }
1903 
1904 /*
1905  * Support the aio_return system call, as a side-effect, kernel resources are
1906  * released.
1907  */
1908 static int
1909 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1910 {
1911 	struct proc *p = td->td_proc;
1912 	struct kaiocb *job;
1913 	struct kaioinfo *ki;
1914 	long status, error;
1915 
1916 	ki = p->p_aioinfo;
1917 	if (ki == NULL)
1918 		return (EINVAL);
1919 	AIO_LOCK(ki);
1920 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1921 		if (job->ujob == ujob)
1922 			break;
1923 	}
1924 	if (job != NULL) {
1925 		MPASS(job->jobflags & KAIOCB_FINISHED);
1926 		status = job->uaiocb._aiocb_private.status;
1927 		error = job->uaiocb._aiocb_private.error;
1928 		td->td_retval[0] = status;
1929 		td->td_ru.ru_oublock += job->outblock;
1930 		td->td_ru.ru_inblock += job->inblock;
1931 		td->td_ru.ru_msgsnd += job->msgsnd;
1932 		td->td_ru.ru_msgrcv += job->msgrcv;
1933 		aio_free_entry(job);
1934 		AIO_UNLOCK(ki);
1935 		ops->store_error(ujob, error);
1936 		ops->store_status(ujob, status);
1937 	} else {
1938 		error = EINVAL;
1939 		AIO_UNLOCK(ki);
1940 	}
1941 	return (error);
1942 }
1943 
1944 int
1945 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1946 {
1947 
1948 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1949 }
1950 
1951 /*
1952  * Allow a process to wakeup when any of the I/O requests are completed.
1953  */
1954 static int
1955 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1956     struct timespec *ts)
1957 {
1958 	struct proc *p = td->td_proc;
1959 	struct timeval atv;
1960 	struct kaioinfo *ki;
1961 	struct kaiocb *firstjob, *job;
1962 	int error, i, timo;
1963 
1964 	timo = 0;
1965 	if (ts) {
1966 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1967 			return (EINVAL);
1968 
1969 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1970 		if (itimerfix(&atv))
1971 			return (EINVAL);
1972 		timo = tvtohz(&atv);
1973 	}
1974 
1975 	ki = p->p_aioinfo;
1976 	if (ki == NULL)
1977 		return (EAGAIN);
1978 
1979 	if (njoblist == 0)
1980 		return (0);
1981 
1982 	AIO_LOCK(ki);
1983 	for (;;) {
1984 		firstjob = NULL;
1985 		error = 0;
1986 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1987 			for (i = 0; i < njoblist; i++) {
1988 				if (job->ujob == ujoblist[i]) {
1989 					if (firstjob == NULL)
1990 						firstjob = job;
1991 					if (job->jobflags & KAIOCB_FINISHED)
1992 						goto RETURN;
1993 				}
1994 			}
1995 		}
1996 		/* All tasks were finished. */
1997 		if (firstjob == NULL)
1998 			break;
1999 
2000 		ki->kaio_flags |= KAIO_WAKEUP;
2001 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2002 		    "aiospn", timo);
2003 		if (error == ERESTART)
2004 			error = EINTR;
2005 		if (error)
2006 			break;
2007 	}
2008 RETURN:
2009 	AIO_UNLOCK(ki);
2010 	return (error);
2011 }
2012 
2013 int
2014 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2015 {
2016 	struct timespec ts, *tsp;
2017 	struct aiocb **ujoblist;
2018 	int error;
2019 
2020 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2021 		return (EINVAL);
2022 
2023 	if (uap->timeout) {
2024 		/* Get timespec struct. */
2025 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2026 			return (error);
2027 		tsp = &ts;
2028 	} else
2029 		tsp = NULL;
2030 
2031 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2032 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2033 	if (error == 0)
2034 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2035 	free(ujoblist, M_AIO);
2036 	return (error);
2037 }
2038 
2039 /*
2040  * aio_cancel cancels any non-bio aio operations not currently in progress.
2041  */
2042 int
2043 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2044 {
2045 	struct proc *p = td->td_proc;
2046 	struct kaioinfo *ki;
2047 	struct kaiocb *job, *jobn;
2048 	struct file *fp;
2049 	int error;
2050 	int cancelled = 0;
2051 	int notcancelled = 0;
2052 	struct vnode *vp;
2053 
2054 	/* Lookup file object. */
2055 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2056 	if (error)
2057 		return (error);
2058 
2059 	ki = p->p_aioinfo;
2060 	if (ki == NULL)
2061 		goto done;
2062 
2063 	if (fp->f_type == DTYPE_VNODE) {
2064 		vp = fp->f_vnode;
2065 		if (vn_isdisk(vp)) {
2066 			fdrop(fp, td);
2067 			td->td_retval[0] = AIO_NOTCANCELED;
2068 			return (0);
2069 		}
2070 	}
2071 
2072 	AIO_LOCK(ki);
2073 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2074 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2075 		    ((uap->aiocbp == NULL) ||
2076 		     (uap->aiocbp == job->ujob))) {
2077 			if (aio_cancel_job(p, ki, job)) {
2078 				cancelled++;
2079 			} else {
2080 				notcancelled++;
2081 			}
2082 			if (uap->aiocbp != NULL)
2083 				break;
2084 		}
2085 	}
2086 	AIO_UNLOCK(ki);
2087 
2088 done:
2089 	fdrop(fp, td);
2090 
2091 	if (uap->aiocbp != NULL) {
2092 		if (cancelled) {
2093 			td->td_retval[0] = AIO_CANCELED;
2094 			return (0);
2095 		}
2096 	}
2097 
2098 	if (notcancelled) {
2099 		td->td_retval[0] = AIO_NOTCANCELED;
2100 		return (0);
2101 	}
2102 
2103 	if (cancelled) {
2104 		td->td_retval[0] = AIO_CANCELED;
2105 		return (0);
2106 	}
2107 
2108 	td->td_retval[0] = AIO_ALLDONE;
2109 
2110 	return (0);
2111 }
2112 
2113 /*
2114  * aio_error is implemented in the kernel level for compatibility purposes
2115  * only.  For a user mode async implementation, it would be best to do it in
2116  * a userland subroutine.
2117  */
2118 static int
2119 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2120 {
2121 	struct proc *p = td->td_proc;
2122 	struct kaiocb *job;
2123 	struct kaioinfo *ki;
2124 	int status;
2125 
2126 	ki = p->p_aioinfo;
2127 	if (ki == NULL) {
2128 		td->td_retval[0] = EINVAL;
2129 		return (0);
2130 	}
2131 
2132 	AIO_LOCK(ki);
2133 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2134 		if (job->ujob == ujob) {
2135 			if (job->jobflags & KAIOCB_FINISHED)
2136 				td->td_retval[0] =
2137 					job->uaiocb._aiocb_private.error;
2138 			else
2139 				td->td_retval[0] = EINPROGRESS;
2140 			AIO_UNLOCK(ki);
2141 			return (0);
2142 		}
2143 	}
2144 	AIO_UNLOCK(ki);
2145 
2146 	/*
2147 	 * Hack for failure of aio_aqueue.
2148 	 */
2149 	status = ops->fetch_status(ujob);
2150 	if (status == -1) {
2151 		td->td_retval[0] = ops->fetch_error(ujob);
2152 		return (0);
2153 	}
2154 
2155 	td->td_retval[0] = EINVAL;
2156 	return (0);
2157 }
2158 
2159 int
2160 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2161 {
2162 
2163 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2164 }
2165 
2166 /* syscall - asynchronous read from a file (REALTIME) */
2167 #ifdef COMPAT_FREEBSD6
2168 int
2169 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2170 {
2171 
2172 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2173 	    &aiocb_ops_osigevent));
2174 }
2175 #endif
2176 
2177 int
2178 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2179 {
2180 
2181 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2182 }
2183 
2184 int
2185 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2186 {
2187 
2188 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2189 }
2190 
2191 /* syscall - asynchronous write to a file (REALTIME) */
2192 #ifdef COMPAT_FREEBSD6
2193 int
2194 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2195 {
2196 
2197 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2198 	    &aiocb_ops_osigevent));
2199 }
2200 #endif
2201 
2202 int
2203 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2204 {
2205 
2206 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2207 }
2208 
2209 int
2210 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2211 {
2212 
2213 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2214 }
2215 
2216 int
2217 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2218 {
2219 
2220 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2221 }
2222 
2223 static int
2224 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2225     struct aiocb **acb_list, int nent, struct sigevent *sig,
2226     struct aiocb_ops *ops)
2227 {
2228 	struct proc *p = td->td_proc;
2229 	struct aiocb *job;
2230 	struct kaioinfo *ki;
2231 	struct aioliojob *lj;
2232 	struct kevent kev;
2233 	int error;
2234 	int nagain, nerror;
2235 	int i;
2236 
2237 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2238 		return (EINVAL);
2239 
2240 	if (nent < 0 || nent > max_aio_queue_per_proc)
2241 		return (EINVAL);
2242 
2243 	if (p->p_aioinfo == NULL)
2244 		aio_init_aioinfo(p);
2245 
2246 	ki = p->p_aioinfo;
2247 
2248 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2249 	lj->lioj_flags = 0;
2250 	lj->lioj_count = 0;
2251 	lj->lioj_finished_count = 0;
2252 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2253 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2254 	ksiginfo_init(&lj->lioj_ksi);
2255 
2256 	/*
2257 	 * Setup signal.
2258 	 */
2259 	if (sig && (mode == LIO_NOWAIT)) {
2260 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2261 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2262 			/* Assume only new style KEVENT */
2263 			memset(&kev, 0, sizeof(kev));
2264 			kev.filter = EVFILT_LIO;
2265 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2266 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2267 			kev.data = (intptr_t)lj;
2268 			/* pass user defined sigval data */
2269 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2270 			error = kqfd_register(
2271 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2272 			    M_WAITOK);
2273 			if (error) {
2274 				uma_zfree(aiolio_zone, lj);
2275 				return (error);
2276 			}
2277 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2278 			;
2279 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2280 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2281 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2282 					uma_zfree(aiolio_zone, lj);
2283 					return EINVAL;
2284 				}
2285 				lj->lioj_flags |= LIOJ_SIGNAL;
2286 		} else {
2287 			uma_zfree(aiolio_zone, lj);
2288 			return EINVAL;
2289 		}
2290 	}
2291 
2292 	AIO_LOCK(ki);
2293 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2294 	/*
2295 	 * Add extra aiocb count to avoid the lio to be freed
2296 	 * by other threads doing aio_waitcomplete or aio_return,
2297 	 * and prevent event from being sent until we have queued
2298 	 * all tasks.
2299 	 */
2300 	lj->lioj_count = 1;
2301 	AIO_UNLOCK(ki);
2302 
2303 	/*
2304 	 * Get pointers to the list of I/O requests.
2305 	 */
2306 	nagain = 0;
2307 	nerror = 0;
2308 	for (i = 0; i < nent; i++) {
2309 		job = acb_list[i];
2310 		if (job != NULL) {
2311 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2312 			if (error == EAGAIN)
2313 				nagain++;
2314 			else if (error != 0)
2315 				nerror++;
2316 		}
2317 	}
2318 
2319 	error = 0;
2320 	AIO_LOCK(ki);
2321 	if (mode == LIO_WAIT) {
2322 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2323 			ki->kaio_flags |= KAIO_WAKEUP;
2324 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2325 			    PRIBIO | PCATCH, "aiospn", 0);
2326 			if (error == ERESTART)
2327 				error = EINTR;
2328 			if (error)
2329 				break;
2330 		}
2331 	} else {
2332 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2333 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2334 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2335 				KNOTE_LOCKED(&lj->klist, 1);
2336 			}
2337 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2338 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2339 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2340 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2341 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2342 				    lj->lioj_count != 1);
2343 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2344 			}
2345 		}
2346 	}
2347 	lj->lioj_count--;
2348 	if (lj->lioj_count == 0) {
2349 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2350 		knlist_delete(&lj->klist, curthread, 1);
2351 		PROC_LOCK(p);
2352 		sigqueue_take(&lj->lioj_ksi);
2353 		PROC_UNLOCK(p);
2354 		AIO_UNLOCK(ki);
2355 		uma_zfree(aiolio_zone, lj);
2356 	} else
2357 		AIO_UNLOCK(ki);
2358 
2359 	if (nerror)
2360 		return (EIO);
2361 	else if (nagain)
2362 		return (EAGAIN);
2363 	else
2364 		return (error);
2365 }
2366 
2367 /* syscall - list directed I/O (REALTIME) */
2368 #ifdef COMPAT_FREEBSD6
2369 int
2370 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2371 {
2372 	struct aiocb **acb_list;
2373 	struct sigevent *sigp, sig;
2374 	struct osigevent osig;
2375 	int error, nent;
2376 
2377 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2378 		return (EINVAL);
2379 
2380 	nent = uap->nent;
2381 	if (nent < 0 || nent > max_aio_queue_per_proc)
2382 		return (EINVAL);
2383 
2384 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2385 		error = copyin(uap->sig, &osig, sizeof(osig));
2386 		if (error)
2387 			return (error);
2388 		error = convert_old_sigevent(&osig, &sig);
2389 		if (error)
2390 			return (error);
2391 		sigp = &sig;
2392 	} else
2393 		sigp = NULL;
2394 
2395 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2396 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2397 	if (error == 0)
2398 		error = kern_lio_listio(td, uap->mode,
2399 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2400 		    &aiocb_ops_osigevent);
2401 	free(acb_list, M_LIO);
2402 	return (error);
2403 }
2404 #endif
2405 
2406 /* syscall - list directed I/O (REALTIME) */
2407 int
2408 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2409 {
2410 	struct aiocb **acb_list;
2411 	struct sigevent *sigp, sig;
2412 	int error, nent;
2413 
2414 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2415 		return (EINVAL);
2416 
2417 	nent = uap->nent;
2418 	if (nent < 0 || nent > max_aio_queue_per_proc)
2419 		return (EINVAL);
2420 
2421 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2422 		error = copyin(uap->sig, &sig, sizeof(sig));
2423 		if (error)
2424 			return (error);
2425 		sigp = &sig;
2426 	} else
2427 		sigp = NULL;
2428 
2429 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2430 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2431 	if (error == 0)
2432 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2433 		    nent, sigp, &aiocb_ops);
2434 	free(acb_list, M_LIO);
2435 	return (error);
2436 }
2437 
2438 static void
2439 aio_biocleanup(struct bio *bp)
2440 {
2441 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2442 	struct kaioinfo *ki;
2443 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2444 
2445 	/* Release mapping into kernel space. */
2446 	if (pbuf != NULL) {
2447 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2448 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2449 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2450 		uma_zfree(pbuf_zone, pbuf);
2451 		atomic_subtract_int(&num_buf_aio, 1);
2452 		ki = job->userproc->p_aioinfo;
2453 		AIO_LOCK(ki);
2454 		ki->kaio_buffer_count--;
2455 		AIO_UNLOCK(ki);
2456 	} else {
2457 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2458 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2459 		free(bp->bio_ma, M_TEMP);
2460 		atomic_subtract_int(&num_unmapped_aio, 1);
2461 	}
2462 	g_destroy_bio(bp);
2463 }
2464 
2465 static void
2466 aio_biowakeup(struct bio *bp)
2467 {
2468 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2469 	size_t nbytes;
2470 	long bcount = bp->bio_bcount;
2471 	long resid = bp->bio_resid;
2472 	int opcode, nblks;
2473 	int bio_error = bp->bio_error;
2474 	uint16_t flags = bp->bio_flags;
2475 
2476 	opcode = job->uaiocb.aio_lio_opcode;
2477 
2478 	aio_biocleanup(bp);
2479 
2480 	nbytes = bcount - resid;
2481 	atomic_add_acq_long(&job->nbytes, nbytes);
2482 	nblks = btodb(nbytes);
2483 
2484 	/*
2485 	 * If multiple bios experienced an error, the job will reflect the
2486 	 * error of whichever failed bio completed last.
2487 	 */
2488 	if (flags & BIO_ERROR)
2489 		atomic_store_int(&job->error, bio_error);
2490 	if (opcode & LIO_WRITE)
2491 		atomic_add_int(&job->outblock, nblks);
2492 	else
2493 		atomic_add_int(&job->inblock, nblks);
2494 
2495 	if (refcount_release(&job->nbio)) {
2496 		bio_error = atomic_load_int(&job->error);
2497 		if (bio_error != 0)
2498 			aio_complete(job, -1, bio_error);
2499 		else
2500 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2501 	}
2502 }
2503 
2504 /* syscall - wait for the next completion of an aio request */
2505 static int
2506 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2507     struct timespec *ts, struct aiocb_ops *ops)
2508 {
2509 	struct proc *p = td->td_proc;
2510 	struct timeval atv;
2511 	struct kaioinfo *ki;
2512 	struct kaiocb *job;
2513 	struct aiocb *ujob;
2514 	long error, status;
2515 	int timo;
2516 
2517 	ops->store_aiocb(ujobp, NULL);
2518 
2519 	if (ts == NULL) {
2520 		timo = 0;
2521 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2522 		timo = -1;
2523 	} else {
2524 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2525 			return (EINVAL);
2526 
2527 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2528 		if (itimerfix(&atv))
2529 			return (EINVAL);
2530 		timo = tvtohz(&atv);
2531 	}
2532 
2533 	if (p->p_aioinfo == NULL)
2534 		aio_init_aioinfo(p);
2535 	ki = p->p_aioinfo;
2536 
2537 	error = 0;
2538 	job = NULL;
2539 	AIO_LOCK(ki);
2540 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2541 		if (timo == -1) {
2542 			error = EWOULDBLOCK;
2543 			break;
2544 		}
2545 		ki->kaio_flags |= KAIO_WAKEUP;
2546 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2547 		    "aiowc", timo);
2548 		if (timo && error == ERESTART)
2549 			error = EINTR;
2550 		if (error)
2551 			break;
2552 	}
2553 
2554 	if (job != NULL) {
2555 		MPASS(job->jobflags & KAIOCB_FINISHED);
2556 		ujob = job->ujob;
2557 		status = job->uaiocb._aiocb_private.status;
2558 		error = job->uaiocb._aiocb_private.error;
2559 		td->td_retval[0] = status;
2560 		td->td_ru.ru_oublock += job->outblock;
2561 		td->td_ru.ru_inblock += job->inblock;
2562 		td->td_ru.ru_msgsnd += job->msgsnd;
2563 		td->td_ru.ru_msgrcv += job->msgrcv;
2564 		aio_free_entry(job);
2565 		AIO_UNLOCK(ki);
2566 		ops->store_aiocb(ujobp, ujob);
2567 		ops->store_error(ujob, error);
2568 		ops->store_status(ujob, status);
2569 	} else
2570 		AIO_UNLOCK(ki);
2571 
2572 	return (error);
2573 }
2574 
2575 int
2576 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2577 {
2578 	struct timespec ts, *tsp;
2579 	int error;
2580 
2581 	if (uap->timeout) {
2582 		/* Get timespec struct. */
2583 		error = copyin(uap->timeout, &ts, sizeof(ts));
2584 		if (error)
2585 			return (error);
2586 		tsp = &ts;
2587 	} else
2588 		tsp = NULL;
2589 
2590 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2591 }
2592 
2593 static int
2594 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2595     struct aiocb_ops *ops)
2596 {
2597 	int listop;
2598 
2599 	switch (op) {
2600 	case O_SYNC:
2601 		listop = LIO_SYNC;
2602 		break;
2603 	case O_DSYNC:
2604 		listop = LIO_DSYNC;
2605 		break;
2606 	default:
2607 		return (EINVAL);
2608 	}
2609 
2610 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2611 }
2612 
2613 int
2614 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2615 {
2616 
2617 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2618 }
2619 
2620 /* kqueue attach function */
2621 static int
2622 filt_aioattach(struct knote *kn)
2623 {
2624 	struct kaiocb *job;
2625 
2626 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2627 
2628 	/*
2629 	 * The job pointer must be validated before using it, so
2630 	 * registration is restricted to the kernel; the user cannot
2631 	 * set EV_FLAG1.
2632 	 */
2633 	if ((kn->kn_flags & EV_FLAG1) == 0)
2634 		return (EPERM);
2635 	kn->kn_ptr.p_aio = job;
2636 	kn->kn_flags &= ~EV_FLAG1;
2637 
2638 	knlist_add(&job->klist, kn, 0);
2639 
2640 	return (0);
2641 }
2642 
2643 /* kqueue detach function */
2644 static void
2645 filt_aiodetach(struct knote *kn)
2646 {
2647 	struct knlist *knl;
2648 
2649 	knl = &kn->kn_ptr.p_aio->klist;
2650 	knl->kl_lock(knl->kl_lockarg);
2651 	if (!knlist_empty(knl))
2652 		knlist_remove(knl, kn, 1);
2653 	knl->kl_unlock(knl->kl_lockarg);
2654 }
2655 
2656 /* kqueue filter function */
2657 /*ARGSUSED*/
2658 static int
2659 filt_aio(struct knote *kn, long hint)
2660 {
2661 	struct kaiocb *job = kn->kn_ptr.p_aio;
2662 
2663 	kn->kn_data = job->uaiocb._aiocb_private.error;
2664 	if (!(job->jobflags & KAIOCB_FINISHED))
2665 		return (0);
2666 	kn->kn_flags |= EV_EOF;
2667 	return (1);
2668 }
2669 
2670 /* kqueue attach function */
2671 static int
2672 filt_lioattach(struct knote *kn)
2673 {
2674 	struct aioliojob *lj;
2675 
2676 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2677 
2678 	/*
2679 	 * The aioliojob pointer must be validated before using it, so
2680 	 * registration is restricted to the kernel; the user cannot
2681 	 * set EV_FLAG1.
2682 	 */
2683 	if ((kn->kn_flags & EV_FLAG1) == 0)
2684 		return (EPERM);
2685 	kn->kn_ptr.p_lio = lj;
2686 	kn->kn_flags &= ~EV_FLAG1;
2687 
2688 	knlist_add(&lj->klist, kn, 0);
2689 
2690 	return (0);
2691 }
2692 
2693 /* kqueue detach function */
2694 static void
2695 filt_liodetach(struct knote *kn)
2696 {
2697 	struct knlist *knl;
2698 
2699 	knl = &kn->kn_ptr.p_lio->klist;
2700 	knl->kl_lock(knl->kl_lockarg);
2701 	if (!knlist_empty(knl))
2702 		knlist_remove(knl, kn, 1);
2703 	knl->kl_unlock(knl->kl_lockarg);
2704 }
2705 
2706 /* kqueue filter function */
2707 /*ARGSUSED*/
2708 static int
2709 filt_lio(struct knote *kn, long hint)
2710 {
2711 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2712 
2713 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2714 }
2715 
2716 #ifdef COMPAT_FREEBSD32
2717 #include <sys/mount.h>
2718 #include <sys/socket.h>
2719 #include <sys/sysent.h>
2720 #include <compat/freebsd32/freebsd32.h>
2721 #include <compat/freebsd32/freebsd32_proto.h>
2722 #include <compat/freebsd32/freebsd32_signal.h>
2723 #include <compat/freebsd32/freebsd32_syscall.h>
2724 #include <compat/freebsd32/freebsd32_util.h>
2725 
2726 struct __aiocb_private32 {
2727 	int32_t	status;
2728 	int32_t	error;
2729 	uint32_t kernelinfo;
2730 };
2731 
2732 #ifdef COMPAT_FREEBSD6
2733 typedef struct oaiocb32 {
2734 	int	aio_fildes;		/* File descriptor */
2735 	uint64_t aio_offset __packed;	/* File offset for I/O */
2736 	uint32_t aio_buf;		/* I/O buffer in process space */
2737 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2738 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2739 	int	aio_lio_opcode;		/* LIO opcode */
2740 	int	aio_reqprio;		/* Request priority -- ignored */
2741 	struct	__aiocb_private32 _aiocb_private;
2742 } oaiocb32_t;
2743 #endif
2744 
2745 typedef struct aiocb32 {
2746 	int32_t	aio_fildes;		/* File descriptor */
2747 	uint64_t aio_offset __packed;	/* File offset for I/O */
2748 	uint32_t aio_buf;	/* I/O buffer in process space */
2749 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2750 	int	__spare__[2];
2751 	uint32_t __spare2__;
2752 	int	aio_lio_opcode;		/* LIO opcode */
2753 	int	aio_reqprio;		/* Request priority -- ignored */
2754 	struct	__aiocb_private32 _aiocb_private;
2755 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2756 } aiocb32_t;
2757 
2758 #ifdef COMPAT_FREEBSD6
2759 static int
2760 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2761 {
2762 
2763 	/*
2764 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2765 	 * supported by AIO with the old sigevent structure.
2766 	 */
2767 	CP(*osig, *nsig, sigev_notify);
2768 	switch (nsig->sigev_notify) {
2769 	case SIGEV_NONE:
2770 		break;
2771 	case SIGEV_SIGNAL:
2772 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2773 		break;
2774 	case SIGEV_KEVENT:
2775 		nsig->sigev_notify_kqueue =
2776 		    osig->__sigev_u.__sigev_notify_kqueue;
2777 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2778 		break;
2779 	default:
2780 		return (EINVAL);
2781 	}
2782 	return (0);
2783 }
2784 
2785 static int
2786 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2787     int type __unused)
2788 {
2789 	struct oaiocb32 job32;
2790 	struct aiocb *kcb = &kjob->uaiocb;
2791 	int error;
2792 
2793 	bzero(kcb, sizeof(struct aiocb));
2794 	error = copyin(ujob, &job32, sizeof(job32));
2795 	if (error)
2796 		return (error);
2797 
2798 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2799 
2800 	CP(job32, *kcb, aio_fildes);
2801 	CP(job32, *kcb, aio_offset);
2802 	PTRIN_CP(job32, *kcb, aio_buf);
2803 	CP(job32, *kcb, aio_nbytes);
2804 	CP(job32, *kcb, aio_lio_opcode);
2805 	CP(job32, *kcb, aio_reqprio);
2806 	CP(job32, *kcb, _aiocb_private.status);
2807 	CP(job32, *kcb, _aiocb_private.error);
2808 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2809 	return (convert_old_sigevent32(&job32.aio_sigevent,
2810 	    &kcb->aio_sigevent));
2811 }
2812 #endif
2813 
2814 static int
2815 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2816 {
2817 	struct aiocb32 job32;
2818 	struct aiocb *kcb = &kjob->uaiocb;
2819 	struct iovec32 *iov32;
2820 	int error;
2821 
2822 	error = copyin(ujob, &job32, sizeof(job32));
2823 	if (error)
2824 		return (error);
2825 	CP(job32, *kcb, aio_fildes);
2826 	CP(job32, *kcb, aio_offset);
2827 	CP(job32, *kcb, aio_lio_opcode);
2828 	if (type == LIO_NOP)
2829 		type = kcb->aio_lio_opcode;
2830 	if (type & LIO_VECTORED) {
2831 		iov32 = PTRIN(job32.aio_iov);
2832 		CP(job32, *kcb, aio_iovcnt);
2833 		/* malloc a uio and copy in the iovec */
2834 		error = freebsd32_copyinuio(iov32,
2835 		    kcb->aio_iovcnt, &kjob->uiop);
2836 		if (error)
2837 			return (error);
2838 	} else {
2839 		PTRIN_CP(job32, *kcb, aio_buf);
2840 		CP(job32, *kcb, aio_nbytes);
2841 	}
2842 	CP(job32, *kcb, aio_reqprio);
2843 	CP(job32, *kcb, _aiocb_private.status);
2844 	CP(job32, *kcb, _aiocb_private.error);
2845 	PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
2846 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2847 
2848 	return (error);
2849 }
2850 
2851 static long
2852 aiocb32_fetch_status(struct aiocb *ujob)
2853 {
2854 	struct aiocb32 *ujob32;
2855 
2856 	ujob32 = (struct aiocb32 *)ujob;
2857 	return (fuword32(&ujob32->_aiocb_private.status));
2858 }
2859 
2860 static long
2861 aiocb32_fetch_error(struct aiocb *ujob)
2862 {
2863 	struct aiocb32 *ujob32;
2864 
2865 	ujob32 = (struct aiocb32 *)ujob;
2866 	return (fuword32(&ujob32->_aiocb_private.error));
2867 }
2868 
2869 static int
2870 aiocb32_store_status(struct aiocb *ujob, long status)
2871 {
2872 	struct aiocb32 *ujob32;
2873 
2874 	ujob32 = (struct aiocb32 *)ujob;
2875 	return (suword32(&ujob32->_aiocb_private.status, status));
2876 }
2877 
2878 static int
2879 aiocb32_store_error(struct aiocb *ujob, long error)
2880 {
2881 	struct aiocb32 *ujob32;
2882 
2883 	ujob32 = (struct aiocb32 *)ujob;
2884 	return (suword32(&ujob32->_aiocb_private.error, error));
2885 }
2886 
2887 static int
2888 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
2889 {
2890 	struct aiocb32 *ujob32;
2891 
2892 	ujob32 = (struct aiocb32 *)ujob;
2893 	return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
2894 }
2895 
2896 static int
2897 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2898 {
2899 
2900 	return (suword32(ujobp, (long)ujob));
2901 }
2902 
2903 static struct aiocb_ops aiocb32_ops = {
2904 	.aio_copyin = aiocb32_copyin,
2905 	.fetch_status = aiocb32_fetch_status,
2906 	.fetch_error = aiocb32_fetch_error,
2907 	.store_status = aiocb32_store_status,
2908 	.store_error = aiocb32_store_error,
2909 	.store_kernelinfo = aiocb32_store_kernelinfo,
2910 	.store_aiocb = aiocb32_store_aiocb,
2911 };
2912 
2913 #ifdef COMPAT_FREEBSD6
2914 static struct aiocb_ops aiocb32_ops_osigevent = {
2915 	.aio_copyin = aiocb32_copyin_old_sigevent,
2916 	.fetch_status = aiocb32_fetch_status,
2917 	.fetch_error = aiocb32_fetch_error,
2918 	.store_status = aiocb32_store_status,
2919 	.store_error = aiocb32_store_error,
2920 	.store_kernelinfo = aiocb32_store_kernelinfo,
2921 	.store_aiocb = aiocb32_store_aiocb,
2922 };
2923 #endif
2924 
2925 int
2926 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2927 {
2928 
2929 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2930 }
2931 
2932 int
2933 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2934 {
2935 	struct timespec32 ts32;
2936 	struct timespec ts, *tsp;
2937 	struct aiocb **ujoblist;
2938 	uint32_t *ujoblist32;
2939 	int error, i;
2940 
2941 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2942 		return (EINVAL);
2943 
2944 	if (uap->timeout) {
2945 		/* Get timespec struct. */
2946 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2947 			return (error);
2948 		CP(ts32, ts, tv_sec);
2949 		CP(ts32, ts, tv_nsec);
2950 		tsp = &ts;
2951 	} else
2952 		tsp = NULL;
2953 
2954 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2955 	ujoblist32 = (uint32_t *)ujoblist;
2956 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2957 	    sizeof(ujoblist32[0]));
2958 	if (error == 0) {
2959 		for (i = uap->nent - 1; i >= 0; i--)
2960 			ujoblist[i] = PTRIN(ujoblist32[i]);
2961 
2962 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2963 	}
2964 	free(ujoblist, M_AIO);
2965 	return (error);
2966 }
2967 
2968 int
2969 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2970 {
2971 
2972 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2973 }
2974 
2975 #ifdef COMPAT_FREEBSD6
2976 int
2977 freebsd6_freebsd32_aio_read(struct thread *td,
2978     struct freebsd6_freebsd32_aio_read_args *uap)
2979 {
2980 
2981 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2982 	    &aiocb32_ops_osigevent));
2983 }
2984 #endif
2985 
2986 int
2987 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2988 {
2989 
2990 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2991 	    &aiocb32_ops));
2992 }
2993 
2994 int
2995 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2996 {
2997 
2998 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2999 	    &aiocb32_ops));
3000 }
3001 
3002 #ifdef COMPAT_FREEBSD6
3003 int
3004 freebsd6_freebsd32_aio_write(struct thread *td,
3005     struct freebsd6_freebsd32_aio_write_args *uap)
3006 {
3007 
3008 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3009 	    &aiocb32_ops_osigevent));
3010 }
3011 #endif
3012 
3013 int
3014 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
3015 {
3016 
3017 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3018 	    &aiocb32_ops));
3019 }
3020 
3021 int
3022 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3023 {
3024 
3025 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3026 	    &aiocb32_ops));
3027 }
3028 
3029 int
3030 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3031 {
3032 
3033 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3034 	    &aiocb32_ops));
3035 }
3036 
3037 int
3038 freebsd32_aio_waitcomplete(struct thread *td,
3039     struct freebsd32_aio_waitcomplete_args *uap)
3040 {
3041 	struct timespec32 ts32;
3042 	struct timespec ts, *tsp;
3043 	int error;
3044 
3045 	if (uap->timeout) {
3046 		/* Get timespec struct. */
3047 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3048 		if (error)
3049 			return (error);
3050 		CP(ts32, ts, tv_sec);
3051 		CP(ts32, ts, tv_nsec);
3052 		tsp = &ts;
3053 	} else
3054 		tsp = NULL;
3055 
3056 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3057 	    &aiocb32_ops));
3058 }
3059 
3060 int
3061 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3062 {
3063 
3064 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3065 	    &aiocb32_ops));
3066 }
3067 
3068 #ifdef COMPAT_FREEBSD6
3069 int
3070 freebsd6_freebsd32_lio_listio(struct thread *td,
3071     struct freebsd6_freebsd32_lio_listio_args *uap)
3072 {
3073 	struct aiocb **acb_list;
3074 	struct sigevent *sigp, sig;
3075 	struct osigevent32 osig;
3076 	uint32_t *acb_list32;
3077 	int error, i, nent;
3078 
3079 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3080 		return (EINVAL);
3081 
3082 	nent = uap->nent;
3083 	if (nent < 0 || nent > max_aio_queue_per_proc)
3084 		return (EINVAL);
3085 
3086 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3087 		error = copyin(uap->sig, &osig, sizeof(osig));
3088 		if (error)
3089 			return (error);
3090 		error = convert_old_sigevent32(&osig, &sig);
3091 		if (error)
3092 			return (error);
3093 		sigp = &sig;
3094 	} else
3095 		sigp = NULL;
3096 
3097 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3098 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3099 	if (error) {
3100 		free(acb_list32, M_LIO);
3101 		return (error);
3102 	}
3103 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3104 	for (i = 0; i < nent; i++)
3105 		acb_list[i] = PTRIN(acb_list32[i]);
3106 	free(acb_list32, M_LIO);
3107 
3108 	error = kern_lio_listio(td, uap->mode,
3109 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3110 	    &aiocb32_ops_osigevent);
3111 	free(acb_list, M_LIO);
3112 	return (error);
3113 }
3114 #endif
3115 
3116 int
3117 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3118 {
3119 	struct aiocb **acb_list;
3120 	struct sigevent *sigp, sig;
3121 	struct sigevent32 sig32;
3122 	uint32_t *acb_list32;
3123 	int error, i, nent;
3124 
3125 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3126 		return (EINVAL);
3127 
3128 	nent = uap->nent;
3129 	if (nent < 0 || nent > max_aio_queue_per_proc)
3130 		return (EINVAL);
3131 
3132 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3133 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3134 		if (error)
3135 			return (error);
3136 		error = convert_sigevent32(&sig32, &sig);
3137 		if (error)
3138 			return (error);
3139 		sigp = &sig;
3140 	} else
3141 		sigp = NULL;
3142 
3143 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3144 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3145 	if (error) {
3146 		free(acb_list32, M_LIO);
3147 		return (error);
3148 	}
3149 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3150 	for (i = 0; i < nent; i++)
3151 		acb_list[i] = PTRIN(acb_list32[i]);
3152 	free(acb_list32, M_LIO);
3153 
3154 	error = kern_lio_listio(td, uap->mode,
3155 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3156 	    &aiocb32_ops);
3157 	free(acb_list, M_LIO);
3158 	return (error);
3159 }
3160 
3161 #endif
3162