1 /* 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 * 16 * $FreeBSD$ 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/malloc.h> 26 #include <sys/bio.h> 27 #include <sys/buf.h> 28 #include <sys/sysproto.h> 29 #include <sys/filedesc.h> 30 #include <sys/kernel.h> 31 #include <sys/kthread.h> 32 #include <sys/fcntl.h> 33 #include <sys/file.h> 34 #include <sys/lock.h> 35 #include <sys/mutex.h> 36 #include <sys/unistd.h> 37 #include <sys/proc.h> 38 #include <sys/resourcevar.h> 39 #include <sys/signalvar.h> 40 #include <sys/protosw.h> 41 #include <sys/socketvar.h> 42 #include <sys/syscall.h> 43 #include <sys/sysent.h> 44 #include <sys/sysctl.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 #include <sys/conf.h> 48 #include <sys/event.h> 49 50 #include <posix4/posix4.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/uma.h> 56 #include <sys/aio.h> 57 58 #include <machine/limits.h> 59 60 #include "opt_vfs_aio.h" 61 62 /* 63 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 64 * overflow. 65 */ 66 static long jobrefid; 67 68 #define JOBST_NULL 0x0 69 #define JOBST_JOBQGLOBAL 0x2 70 #define JOBST_JOBRUNNING 0x3 71 #define JOBST_JOBFINISHED 0x4 72 #define JOBST_JOBQBUF 0x5 73 #define JOBST_JOBBFINISHED 0x6 74 75 #ifndef MAX_AIO_PER_PROC 76 #define MAX_AIO_PER_PROC 32 77 #endif 78 79 #ifndef MAX_AIO_QUEUE_PER_PROC 80 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 81 #endif 82 83 #ifndef MAX_AIO_PROCS 84 #define MAX_AIO_PROCS 32 85 #endif 86 87 #ifndef MAX_AIO_QUEUE 88 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 89 #endif 90 91 #ifndef TARGET_AIO_PROCS 92 #define TARGET_AIO_PROCS 4 93 #endif 94 95 #ifndef MAX_BUF_AIO 96 #define MAX_BUF_AIO 16 97 #endif 98 99 #ifndef AIOD_TIMEOUT_DEFAULT 100 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 101 #endif 102 103 #ifndef AIOD_LIFETIME_DEFAULT 104 #define AIOD_LIFETIME_DEFAULT (30 * hz) 105 #endif 106 107 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 108 109 static int max_aio_procs = MAX_AIO_PROCS; 110 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 111 CTLFLAG_RW, &max_aio_procs, 0, 112 "Maximum number of kernel threads to use for handling async IO "); 113 114 static int num_aio_procs = 0; 115 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 116 CTLFLAG_RD, &num_aio_procs, 0, 117 "Number of presently active kernel threads for async IO"); 118 119 /* 120 * The code will adjust the actual number of AIO processes towards this 121 * number when it gets a chance. 122 */ 123 static int target_aio_procs = TARGET_AIO_PROCS; 124 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 125 0, "Preferred number of ready kernel threads for async IO"); 126 127 static int max_queue_count = MAX_AIO_QUEUE; 128 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 129 "Maximum number of aio requests to queue, globally"); 130 131 static int num_queue_count = 0; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 133 "Number of queued aio requests"); 134 135 static int num_buf_aio = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 137 "Number of aio requests presently handled by the buf subsystem"); 138 139 /* Number of async I/O thread in the process of being started */ 140 /* XXX This should be local to _aio_aqueue() */ 141 static int num_aio_resv_start = 0; 142 143 static int aiod_timeout; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 145 "Timeout value for synchronous aio operations"); 146 147 static int aiod_lifetime; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 149 "Maximum lifetime for idle aiod"); 150 151 static int unloadable = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 153 "Allow unload of aio (not recommended)"); 154 155 156 static int max_aio_per_proc = MAX_AIO_PER_PROC; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 158 0, "Maximum active aio requests per process (stored in the process)"); 159 160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 162 &max_aio_queue_per_proc, 0, 163 "Maximum queued aio requests per process (stored in the process)"); 164 165 static int max_buf_aio = MAX_BUF_AIO; 166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 167 "Maximum buf aio requests per process (stored in the process)"); 168 169 struct aiocblist { 170 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 171 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 172 int jobflags; 173 int jobstate; 174 int inputcharge; 175 int outputcharge; 176 struct callout_handle timeouthandle; 177 struct buf *bp; /* Buffer pointer */ 178 struct proc *userproc; /* User process */ /* Not td! */ 179 struct ucred *cred; /* Active credential when created */ 180 struct file *fd_file; /* Pointer to file structure */ 181 struct aio_liojob *lio; /* Optional lio job */ 182 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 183 struct klist klist; /* list of knotes */ 184 struct aiocb uaiocb; /* Kernel I/O control block */ 185 }; 186 187 /* jobflags */ 188 #define AIOCBLIST_RUNDOWN 0x4 189 #define AIOCBLIST_DONE 0x10 190 191 /* 192 * AIO process info 193 */ 194 #define AIOP_FREE 0x1 /* proc on free queue */ 195 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ 196 197 struct aiothreadlist { 198 int aiothreadflags; /* AIO proc flags */ 199 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 200 struct thread *aiothread; /* The AIO thread */ 201 }; 202 203 /* 204 * data-structure for lio signal management 205 */ 206 struct aio_liojob { 207 int lioj_flags; 208 int lioj_buffer_count; 209 int lioj_buffer_finished_count; 210 int lioj_queue_count; 211 int lioj_queue_finished_count; 212 struct sigevent lioj_signal; /* signal on all I/O done */ 213 TAILQ_ENTRY(aio_liojob) lioj_list; 214 struct kaioinfo *lioj_ki; 215 }; 216 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 217 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 218 219 /* 220 * per process aio data structure 221 */ 222 struct kaioinfo { 223 int kaio_flags; /* per process kaio flags */ 224 int kaio_maxactive_count; /* maximum number of AIOs */ 225 int kaio_active_count; /* number of currently used AIOs */ 226 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 227 int kaio_queue_count; /* size of AIO queue */ 228 int kaio_ballowed_count; /* maximum number of buffers */ 229 int kaio_queue_finished_count; /* number of daemon jobs finished */ 230 int kaio_buffer_count; /* number of physio buffers */ 231 int kaio_buffer_finished_count; /* count of I/O done */ 232 struct proc *kaio_p; /* process that uses this kaio block */ 233 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 234 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 235 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 239 }; 240 241 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 242 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 243 244 static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ 245 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 246 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 247 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ 248 249 static void aio_init_aioinfo(struct proc *p); 250 static void aio_onceonly(void); 251 static int aio_free_entry(struct aiocblist *aiocbe); 252 static void aio_process(struct aiocblist *aiocbe); 253 static int aio_newproc(void); 254 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 255 static void aio_physwakeup(struct buf *bp); 256 static void aio_proc_rundown(struct proc *p); 257 static int aio_fphysio(struct aiocblist *aiocbe); 258 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 259 static void aio_daemon(void *uproc); 260 static void aio_swake_cb(struct socket *, struct sockbuf *); 261 static int aio_unload(void); 262 static void process_signal(void *aioj); 263 static int filt_aioattach(struct knote *kn); 264 static void filt_aiodetach(struct knote *kn); 265 static int filt_aio(struct knote *kn, long hint); 266 267 /* 268 * Zones for: 269 * kaio Per process async io info 270 * aiop async io thread data 271 * aiocb async io jobs 272 * aiol list io job pointer - internal to aio_suspend XXX 273 * aiolio list io jobs 274 */ 275 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 276 277 /* kqueue filters for aio */ 278 static struct filterops aio_filtops = 279 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 280 281 /* 282 * Main operations function for use as a kernel module. 283 */ 284 static int 285 aio_modload(struct module *module, int cmd, void *arg) 286 { 287 int error = 0; 288 289 switch (cmd) { 290 case MOD_LOAD: 291 aio_onceonly(); 292 break; 293 case MOD_UNLOAD: 294 error = aio_unload(); 295 break; 296 case MOD_SHUTDOWN: 297 break; 298 default: 299 error = EINVAL; 300 break; 301 } 302 return (error); 303 } 304 305 static moduledata_t aio_mod = { 306 "aio", 307 &aio_modload, 308 NULL 309 }; 310 311 SYSCALL_MODULE_HELPER(aio_return); 312 SYSCALL_MODULE_HELPER(aio_suspend); 313 SYSCALL_MODULE_HELPER(aio_cancel); 314 SYSCALL_MODULE_HELPER(aio_error); 315 SYSCALL_MODULE_HELPER(aio_read); 316 SYSCALL_MODULE_HELPER(aio_write); 317 SYSCALL_MODULE_HELPER(aio_waitcomplete); 318 SYSCALL_MODULE_HELPER(lio_listio); 319 320 DECLARE_MODULE(aio, aio_mod, 321 SI_SUB_VFS, SI_ORDER_ANY); 322 MODULE_VERSION(aio, 1); 323 324 /* 325 * Startup initialization 326 */ 327 static void 328 aio_onceonly(void) 329 { 330 331 /* XXX: should probably just use so->callback */ 332 aio_swake = &aio_swake_cb; 333 at_exit(aio_proc_rundown); 334 at_exec(aio_proc_rundown); 335 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 336 TAILQ_INIT(&aio_freeproc); 337 TAILQ_INIT(&aio_activeproc); 338 TAILQ_INIT(&aio_jobs); 339 TAILQ_INIT(&aio_bufjobs); 340 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 341 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 342 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 343 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 344 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 345 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 346 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 347 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 348 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 349 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 350 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 351 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 352 jobrefid = 1; 353 async_io_version = _POSIX_VERSION; 354 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 355 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 356 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 357 } 358 359 /* 360 * Callback for unload of AIO when used as a module. 361 */ 362 static int 363 aio_unload(void) 364 { 365 366 /* 367 * XXX: no unloads by default, it's too dangerous. 368 * perhaps we could do it if locked out callers and then 369 * did an aio_proc_rundown() on each process. 370 */ 371 if (!unloadable) 372 return (EOPNOTSUPP); 373 374 async_io_version = 0; 375 aio_swake = NULL; 376 rm_at_exit(aio_proc_rundown); 377 rm_at_exec(aio_proc_rundown); 378 kqueue_del_filteropts(EVFILT_AIO); 379 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 380 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 381 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 382 return (0); 383 } 384 385 /* 386 * Init the per-process aioinfo structure. The aioinfo limits are set 387 * per-process for user limit (resource) management. 388 */ 389 static void 390 aio_init_aioinfo(struct proc *p) 391 { 392 struct kaioinfo *ki; 393 if (p->p_aioinfo == NULL) { 394 ki = uma_zalloc(kaio_zone, M_WAITOK); 395 p->p_aioinfo = ki; 396 ki->kaio_flags = 0; 397 ki->kaio_maxactive_count = max_aio_per_proc; 398 ki->kaio_active_count = 0; 399 ki->kaio_qallowed_count = max_aio_queue_per_proc; 400 ki->kaio_queue_count = 0; 401 ki->kaio_ballowed_count = max_buf_aio; 402 ki->kaio_buffer_count = 0; 403 ki->kaio_buffer_finished_count = 0; 404 ki->kaio_p = p; 405 TAILQ_INIT(&ki->kaio_jobdone); 406 TAILQ_INIT(&ki->kaio_jobqueue); 407 TAILQ_INIT(&ki->kaio_bufdone); 408 TAILQ_INIT(&ki->kaio_bufqueue); 409 TAILQ_INIT(&ki->kaio_liojoblist); 410 TAILQ_INIT(&ki->kaio_sockqueue); 411 } 412 413 while (num_aio_procs < target_aio_procs) 414 aio_newproc(); 415 } 416 417 /* 418 * Free a job entry. Wait for completion if it is currently active, but don't 419 * delay forever. If we delay, we return a flag that says that we have to 420 * restart the queue scan. 421 */ 422 static int 423 aio_free_entry(struct aiocblist *aiocbe) 424 { 425 struct kaioinfo *ki; 426 struct aio_liojob *lj; 427 struct proc *p; 428 int error; 429 int s; 430 431 if (aiocbe->jobstate == JOBST_NULL) 432 panic("aio_free_entry: freeing already free job"); 433 434 p = aiocbe->userproc; 435 ki = p->p_aioinfo; 436 lj = aiocbe->lio; 437 if (ki == NULL) 438 panic("aio_free_entry: missing p->p_aioinfo"); 439 440 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 441 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 442 tsleep(aiocbe, PRIBIO, "jobwai", 0); 443 } 444 if (aiocbe->bp == NULL) { 445 if (ki->kaio_queue_count <= 0) 446 panic("aio_free_entry: process queue size <= 0"); 447 if (num_queue_count <= 0) 448 panic("aio_free_entry: system wide queue size <= 0"); 449 450 if (lj) { 451 lj->lioj_queue_count--; 452 if (aiocbe->jobflags & AIOCBLIST_DONE) 453 lj->lioj_queue_finished_count--; 454 } 455 ki->kaio_queue_count--; 456 if (aiocbe->jobflags & AIOCBLIST_DONE) 457 ki->kaio_queue_finished_count--; 458 num_queue_count--; 459 } else { 460 if (lj) { 461 lj->lioj_buffer_count--; 462 if (aiocbe->jobflags & AIOCBLIST_DONE) 463 lj->lioj_buffer_finished_count--; 464 } 465 if (aiocbe->jobflags & AIOCBLIST_DONE) 466 ki->kaio_buffer_finished_count--; 467 ki->kaio_buffer_count--; 468 num_buf_aio--; 469 } 470 471 /* aiocbe is going away, we need to destroy any knotes */ 472 /* XXXKSE Note the thread here is used to eventually find the 473 * owning process again, but it is also used to do a fo_close 474 * and that requires the thread. (but does it require the 475 * OWNING thread? (or maybe the running thread?) 476 * There is a semantic problem here... 477 */ 478 knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ 479 480 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 481 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 482 ki->kaio_flags &= ~KAIO_WAKEUP; 483 wakeup(p); 484 } 485 486 if (aiocbe->jobstate == JOBST_JOBQBUF) { 487 if ((error = aio_fphysio(aiocbe)) != 0) 488 return error; 489 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 490 panic("aio_free_entry: invalid physio finish-up state"); 491 s = splbio(); 492 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 493 splx(s); 494 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 495 s = splnet(); 496 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 497 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 498 splx(s); 499 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 500 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 501 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 502 s = splbio(); 503 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 504 splx(s); 505 if (aiocbe->bp) { 506 vunmapbuf(aiocbe->bp); 507 relpbuf(aiocbe->bp, NULL); 508 aiocbe->bp = NULL; 509 } 510 } 511 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 512 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 513 uma_zfree(aiolio_zone, lj); 514 } 515 aiocbe->jobstate = JOBST_NULL; 516 untimeout(process_signal, aiocbe, aiocbe->timeouthandle); 517 fdrop(aiocbe->fd_file, curthread); 518 crfree(aiocbe->cred); 519 uma_zfree(aiocb_zone, aiocbe); 520 return 0; 521 } 522 523 /* 524 * Rundown the jobs for a given process. 525 */ 526 static void 527 aio_proc_rundown(struct proc *p) 528 { 529 int s; 530 struct kaioinfo *ki; 531 struct aio_liojob *lj, *ljn; 532 struct aiocblist *aiocbe, *aiocbn; 533 struct file *fp; 534 struct socket *so; 535 536 ki = p->p_aioinfo; 537 if (ki == NULL) 538 return; 539 540 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 541 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 542 ki->kaio_buffer_finished_count)) { 543 ki->kaio_flags |= KAIO_RUNDOWN; 544 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 545 break; 546 } 547 548 /* 549 * Move any aio ops that are waiting on socket I/O to the normal job 550 * queues so they are cleaned up with any others. 551 */ 552 s = splnet(); 553 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 554 aiocbn) { 555 aiocbn = TAILQ_NEXT(aiocbe, plist); 556 fp = aiocbe->fd_file; 557 if (fp != NULL) { 558 so = (struct socket *)fp->f_data; 559 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 560 if (TAILQ_EMPTY(&so->so_aiojobq)) { 561 so->so_snd.sb_flags &= ~SB_AIO; 562 so->so_rcv.sb_flags &= ~SB_AIO; 563 } 564 } 565 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 566 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 567 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 568 } 569 splx(s); 570 571 restart1: 572 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 573 aiocbn = TAILQ_NEXT(aiocbe, plist); 574 if (aio_free_entry(aiocbe)) 575 goto restart1; 576 } 577 578 restart2: 579 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 580 aiocbn) { 581 aiocbn = TAILQ_NEXT(aiocbe, plist); 582 if (aio_free_entry(aiocbe)) 583 goto restart2; 584 } 585 586 /* 587 * Note the use of lots of splbio here, trying to avoid splbio for long chains 588 * of I/O. Probably unnecessary. 589 */ 590 restart3: 591 s = splbio(); 592 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 593 ki->kaio_flags |= KAIO_WAKEUP; 594 tsleep(p, PRIBIO, "aioprn", 0); 595 splx(s); 596 goto restart3; 597 } 598 splx(s); 599 600 restart4: 601 s = splbio(); 602 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 603 aiocbn = TAILQ_NEXT(aiocbe, plist); 604 if (aio_free_entry(aiocbe)) { 605 splx(s); 606 goto restart4; 607 } 608 } 609 splx(s); 610 611 /* 612 * If we've slept, jobs might have moved from one queue to another. 613 * Retry rundown if we didn't manage to empty the queues. 614 */ 615 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 616 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 617 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 618 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 619 goto restart1; 620 621 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 622 ljn = TAILQ_NEXT(lj, lioj_list); 623 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 624 0)) { 625 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 626 uma_zfree(aiolio_zone, lj); 627 } else { 628 #ifdef DIAGNOSTIC 629 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 630 "QF:%d\n", lj->lioj_buffer_count, 631 lj->lioj_buffer_finished_count, 632 lj->lioj_queue_count, 633 lj->lioj_queue_finished_count); 634 #endif 635 } 636 } 637 638 uma_zfree(kaio_zone, ki); 639 p->p_aioinfo = NULL; 640 } 641 642 /* 643 * Select a job to run (called by an AIO daemon). 644 */ 645 static struct aiocblist * 646 aio_selectjob(struct aiothreadlist *aiop) 647 { 648 int s; 649 struct aiocblist *aiocbe; 650 struct kaioinfo *ki; 651 struct proc *userp; 652 653 s = splnet(); 654 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 655 TAILQ_NEXT(aiocbe, list)) { 656 userp = aiocbe->userproc; 657 ki = userp->p_aioinfo; 658 659 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 660 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 661 splx(s); 662 return aiocbe; 663 } 664 } 665 splx(s); 666 667 return NULL; 668 } 669 670 /* 671 * The AIO processing activity. This is the code that does the I/O request for 672 * the non-physio version of the operations. The normal vn operations are used, 673 * and this code should work in all instances for every type of file, including 674 * pipes, sockets, fifos, and regular files. 675 */ 676 static void 677 aio_process(struct aiocblist *aiocbe) 678 { 679 struct ucred *td_savedcred; 680 struct thread *td; 681 struct proc *mycp; 682 struct aiocb *cb; 683 struct file *fp; 684 struct uio auio; 685 struct iovec aiov; 686 int cnt; 687 int error; 688 int oublock_st, oublock_end; 689 int inblock_st, inblock_end; 690 691 td = curthread; 692 td_savedcred = td->td_ucred; 693 td->td_ucred = aiocbe->cred; 694 mycp = td->td_proc; 695 cb = &aiocbe->uaiocb; 696 fp = aiocbe->fd_file; 697 698 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 699 aiov.iov_len = cb->aio_nbytes; 700 701 auio.uio_iov = &aiov; 702 auio.uio_iovcnt = 1; 703 auio.uio_offset = cb->aio_offset; 704 auio.uio_resid = cb->aio_nbytes; 705 cnt = cb->aio_nbytes; 706 auio.uio_segflg = UIO_USERSPACE; 707 auio.uio_td = td; 708 709 inblock_st = mycp->p_stats->p_ru.ru_inblock; 710 oublock_st = mycp->p_stats->p_ru.ru_oublock; 711 /* 712 * _aio_aqueue() acquires a reference to the file that is 713 * released in aio_free_entry(). 714 */ 715 if (cb->aio_lio_opcode == LIO_READ) { 716 auio.uio_rw = UIO_READ; 717 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 718 } else { 719 auio.uio_rw = UIO_WRITE; 720 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 721 } 722 inblock_end = mycp->p_stats->p_ru.ru_inblock; 723 oublock_end = mycp->p_stats->p_ru.ru_oublock; 724 725 aiocbe->inputcharge = inblock_end - inblock_st; 726 aiocbe->outputcharge = oublock_end - oublock_st; 727 728 if ((error) && (auio.uio_resid != cnt)) { 729 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 730 error = 0; 731 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 732 PROC_LOCK(aiocbe->userproc); 733 psignal(aiocbe->userproc, SIGPIPE); 734 PROC_UNLOCK(aiocbe->userproc); 735 } 736 } 737 738 cnt -= auio.uio_resid; 739 cb->_aiocb_private.error = error; 740 cb->_aiocb_private.status = cnt; 741 td->td_ucred = td_savedcred; 742 } 743 744 /* 745 * The AIO daemon, most of the actual work is done in aio_process, 746 * but the setup (and address space mgmt) is done in this routine. 747 */ 748 static void 749 aio_daemon(void *uproc) 750 { 751 int s; 752 struct aio_liojob *lj; 753 struct aiocb *cb; 754 struct aiocblist *aiocbe; 755 struct aiothreadlist *aiop; 756 struct kaioinfo *ki; 757 struct proc *curcp, *mycp, *userp; 758 struct vmspace *myvm, *tmpvm; 759 struct thread *td = curthread; 760 struct pgrp *newpgrp; 761 struct session *newsess; 762 763 mtx_lock(&Giant); 764 /* 765 * Local copies of curproc (cp) and vmspace (myvm) 766 */ 767 mycp = td->td_proc; 768 myvm = mycp->p_vmspace; 769 770 if (mycp->p_textvp) { 771 vrele(mycp->p_textvp); 772 mycp->p_textvp = NULL; 773 } 774 775 /* 776 * Allocate and ready the aio control info. There is one aiop structure 777 * per daemon. 778 */ 779 aiop = uma_zalloc(aiop_zone, M_WAITOK); 780 aiop->aiothread = td; 781 aiop->aiothreadflags |= AIOP_FREE; 782 783 s = splnet(); 784 785 /* 786 * Place thread (lightweight process) onto the AIO free thread list. 787 */ 788 if (TAILQ_EMPTY(&aio_freeproc)) 789 wakeup(&aio_freeproc); 790 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 791 792 splx(s); 793 794 /* 795 * Get rid of our current filedescriptors. AIOD's don't need any 796 * filedescriptors, except as temporarily inherited from the client. 797 */ 798 fdfree(td); 799 800 mtx_unlock(&Giant); 801 /* The daemon resides in its own pgrp. */ 802 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 803 M_WAITOK | M_ZERO); 804 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 805 M_WAITOK | M_ZERO); 806 807 sx_xlock(&proctree_lock); 808 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 809 sx_xunlock(&proctree_lock); 810 mtx_lock(&Giant); 811 812 /* Mark special process type. */ 813 mycp->p_flag |= P_SYSTEM; 814 815 /* 816 * Wakeup parent process. (Parent sleeps to keep from blasting away 817 * and creating too many daemons.) 818 */ 819 wakeup(mycp); 820 821 for (;;) { 822 /* 823 * curcp is the current daemon process context. 824 * userp is the current user process context. 825 */ 826 curcp = mycp; 827 828 /* 829 * Take daemon off of free queue 830 */ 831 if (aiop->aiothreadflags & AIOP_FREE) { 832 s = splnet(); 833 TAILQ_REMOVE(&aio_freeproc, aiop, list); 834 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 835 aiop->aiothreadflags &= ~AIOP_FREE; 836 splx(s); 837 } 838 aiop->aiothreadflags &= ~AIOP_SCHED; 839 840 /* 841 * Check for jobs. 842 */ 843 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 844 cb = &aiocbe->uaiocb; 845 userp = aiocbe->userproc; 846 847 aiocbe->jobstate = JOBST_JOBRUNNING; 848 849 /* 850 * Connect to process address space for user program. 851 */ 852 if (userp != curcp) { 853 /* 854 * Save the current address space that we are 855 * connected to. 856 */ 857 tmpvm = mycp->p_vmspace; 858 859 /* 860 * Point to the new user address space, and 861 * refer to it. 862 */ 863 mycp->p_vmspace = userp->p_vmspace; 864 mycp->p_vmspace->vm_refcnt++; 865 866 /* Activate the new mapping. */ 867 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 868 869 /* 870 * If the old address space wasn't the daemons 871 * own address space, then we need to remove the 872 * daemon's reference from the other process 873 * that it was acting on behalf of. 874 */ 875 if (tmpvm != myvm) { 876 vmspace_free(tmpvm); 877 } 878 curcp = userp; 879 } 880 881 ki = userp->p_aioinfo; 882 lj = aiocbe->lio; 883 884 /* Account for currently active jobs. */ 885 ki->kaio_active_count++; 886 887 /* Do the I/O function. */ 888 aio_process(aiocbe); 889 890 /* Decrement the active job count. */ 891 ki->kaio_active_count--; 892 893 /* 894 * Increment the completion count for wakeup/signal 895 * comparisons. 896 */ 897 aiocbe->jobflags |= AIOCBLIST_DONE; 898 ki->kaio_queue_finished_count++; 899 if (lj) 900 lj->lioj_queue_finished_count++; 901 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 902 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 903 ki->kaio_flags &= ~KAIO_WAKEUP; 904 wakeup(userp); 905 } 906 907 s = splbio(); 908 if (lj && (lj->lioj_flags & 909 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 910 if ((lj->lioj_queue_finished_count == 911 lj->lioj_queue_count) && 912 (lj->lioj_buffer_finished_count == 913 lj->lioj_buffer_count)) { 914 PROC_LOCK(userp); 915 psignal(userp, 916 lj->lioj_signal.sigev_signo); 917 PROC_UNLOCK(userp); 918 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 919 } 920 } 921 splx(s); 922 923 aiocbe->jobstate = JOBST_JOBFINISHED; 924 925 s = splnet(); 926 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 927 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 928 splx(s); 929 KNOTE(&aiocbe->klist, 0); 930 931 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 932 wakeup(aiocbe); 933 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 934 } 935 936 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 937 PROC_LOCK(userp); 938 psignal(userp, cb->aio_sigevent.sigev_signo); 939 PROC_UNLOCK(userp); 940 } 941 } 942 943 /* 944 * Disconnect from user address space. 945 */ 946 if (curcp != mycp) { 947 /* Get the user address space to disconnect from. */ 948 tmpvm = mycp->p_vmspace; 949 950 /* Get original address space for daemon. */ 951 mycp->p_vmspace = myvm; 952 953 /* Activate the daemon's address space. */ 954 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 955 #ifdef DIAGNOSTIC 956 if (tmpvm == myvm) { 957 printf("AIOD: vmspace problem -- %d\n", 958 mycp->p_pid); 959 } 960 #endif 961 /* Remove our vmspace reference. */ 962 vmspace_free(tmpvm); 963 964 curcp = mycp; 965 } 966 967 /* 968 * If we are the first to be put onto the free queue, wakeup 969 * anyone waiting for a daemon. 970 */ 971 s = splnet(); 972 TAILQ_REMOVE(&aio_activeproc, aiop, list); 973 if (TAILQ_EMPTY(&aio_freeproc)) 974 wakeup(&aio_freeproc); 975 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 976 aiop->aiothreadflags |= AIOP_FREE; 977 splx(s); 978 979 /* 980 * If daemon is inactive for a long time, allow it to exit, 981 * thereby freeing resources. 982 */ 983 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && 984 tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { 985 s = splnet(); 986 if (TAILQ_EMPTY(&aio_jobs)) { 987 if ((aiop->aiothreadflags & AIOP_FREE) && 988 (num_aio_procs > target_aio_procs)) { 989 TAILQ_REMOVE(&aio_freeproc, aiop, list); 990 splx(s); 991 uma_zfree(aiop_zone, aiop); 992 num_aio_procs--; 993 #ifdef DIAGNOSTIC 994 if (mycp->p_vmspace->vm_refcnt <= 1) { 995 printf("AIOD: bad vm refcnt for" 996 " exiting daemon: %d\n", 997 mycp->p_vmspace->vm_refcnt); 998 } 999 #endif 1000 kthread_exit(0); 1001 } 1002 } 1003 splx(s); 1004 } 1005 } 1006 } 1007 1008 /* 1009 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1010 * AIO daemon modifies its environment itself. 1011 */ 1012 static int 1013 aio_newproc() 1014 { 1015 int error; 1016 struct proc *p; 1017 1018 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1019 num_aio_procs); 1020 if (error) 1021 return error; 1022 1023 /* 1024 * Wait until daemon is started, but continue on just in case to 1025 * handle error conditions. 1026 */ 1027 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1028 1029 num_aio_procs++; 1030 1031 return error; 1032 } 1033 1034 /* 1035 * Try the high-performance, low-overhead physio method for eligible 1036 * VCHR devices. This method doesn't use an aio helper thread, and 1037 * thus has very low overhead. 1038 * 1039 * Assumes that the caller, _aio_aqueue(), has incremented the file 1040 * structure's reference count, preventing its deallocation for the 1041 * duration of this call. 1042 */ 1043 static int 1044 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1045 { 1046 int error; 1047 struct aiocb *cb; 1048 struct file *fp; 1049 struct buf *bp; 1050 struct vnode *vp; 1051 struct kaioinfo *ki; 1052 struct aio_liojob *lj; 1053 int s; 1054 int notify; 1055 1056 cb = &aiocbe->uaiocb; 1057 fp = aiocbe->fd_file; 1058 1059 if (fp->f_type != DTYPE_VNODE) 1060 return (-1); 1061 1062 vp = (struct vnode *)fp->f_data; 1063 1064 /* 1065 * If its not a disk, we don't want to return a positive error. 1066 * It causes the aio code to not fall through to try the thread 1067 * way when you're talking to a regular file. 1068 */ 1069 if (!vn_isdisk(vp, &error)) { 1070 if (error == ENOTBLK) 1071 return (-1); 1072 else 1073 return (error); 1074 } 1075 1076 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) 1077 return (-1); 1078 1079 if (cb->aio_nbytes > 1080 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1081 return (-1); 1082 1083 ki = p->p_aioinfo; 1084 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1085 return (-1); 1086 1087 ki->kaio_buffer_count++; 1088 1089 lj = aiocbe->lio; 1090 if (lj) 1091 lj->lioj_buffer_count++; 1092 1093 /* Create and build a buffer header for a transfer. */ 1094 bp = (struct buf *)getpbuf(NULL); 1095 BUF_KERNPROC(bp); 1096 1097 /* 1098 * Get a copy of the kva from the physical buffer. 1099 */ 1100 bp->b_caller1 = p; 1101 bp->b_dev = vp->v_rdev; 1102 error = bp->b_error = 0; 1103 1104 bp->b_bcount = cb->aio_nbytes; 1105 bp->b_bufsize = cb->aio_nbytes; 1106 bp->b_flags = B_PHYS; 1107 bp->b_iodone = aio_physwakeup; 1108 bp->b_saveaddr = bp->b_data; 1109 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1110 bp->b_blkno = btodb(cb->aio_offset); 1111 1112 if (cb->aio_lio_opcode == LIO_WRITE) { 1113 bp->b_iocmd = BIO_WRITE; 1114 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) { 1115 error = EFAULT; 1116 goto doerror; 1117 } 1118 } else { 1119 bp->b_iocmd = BIO_READ; 1120 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) { 1121 error = EFAULT; 1122 goto doerror; 1123 } 1124 } 1125 1126 /* Bring buffer into kernel space. */ 1127 vmapbuf(bp); 1128 1129 s = splbio(); 1130 aiocbe->bp = bp; 1131 bp->b_spc = (void *)aiocbe; 1132 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); 1133 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1134 aiocbe->jobstate = JOBST_JOBQBUF; 1135 cb->_aiocb_private.status = cb->aio_nbytes; 1136 num_buf_aio++; 1137 bp->b_error = 0; 1138 1139 splx(s); 1140 1141 /* Perform transfer. */ 1142 DEV_STRATEGY(bp); 1143 1144 notify = 0; 1145 s = splbio(); 1146 1147 /* 1148 * If we had an error invoking the request, or an error in processing 1149 * the request before we have returned, we process it as an error in 1150 * transfer. Note that such an I/O error is not indicated immediately, 1151 * but is returned using the aio_error mechanism. In this case, 1152 * aio_suspend will return immediately. 1153 */ 1154 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1155 struct aiocb *job = aiocbe->uuaiocb; 1156 1157 aiocbe->uaiocb._aiocb_private.status = 0; 1158 suword(&job->_aiocb_private.status, 0); 1159 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1160 suword(&job->_aiocb_private.error, bp->b_error); 1161 1162 ki->kaio_buffer_finished_count++; 1163 1164 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1165 aiocbe->jobstate = JOBST_JOBBFINISHED; 1166 aiocbe->jobflags |= AIOCBLIST_DONE; 1167 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 1168 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1169 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1170 notify = 1; 1171 } 1172 } 1173 splx(s); 1174 if (notify) 1175 KNOTE(&aiocbe->klist, 0); 1176 return 0; 1177 1178 doerror: 1179 ki->kaio_buffer_count--; 1180 if (lj) 1181 lj->lioj_buffer_count--; 1182 aiocbe->bp = NULL; 1183 relpbuf(bp, NULL); 1184 return error; 1185 } 1186 1187 /* 1188 * This waits/tests physio completion. 1189 */ 1190 static int 1191 aio_fphysio(struct aiocblist *iocb) 1192 { 1193 int s; 1194 struct buf *bp; 1195 int error; 1196 1197 bp = iocb->bp; 1198 1199 s = splbio(); 1200 while ((bp->b_flags & B_DONE) == 0) { 1201 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1202 if ((bp->b_flags & B_DONE) == 0) { 1203 splx(s); 1204 return EINPROGRESS; 1205 } else 1206 break; 1207 } 1208 } 1209 splx(s); 1210 1211 /* Release mapping into kernel space. */ 1212 vunmapbuf(bp); 1213 iocb->bp = 0; 1214 1215 error = 0; 1216 1217 /* Check for an error. */ 1218 if (bp->b_ioflags & BIO_ERROR) 1219 error = bp->b_error; 1220 1221 relpbuf(bp, NULL); 1222 return (error); 1223 } 1224 1225 /* 1226 * Wake up aio requests that may be serviceable now. 1227 */ 1228 static void 1229 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1230 { 1231 struct aiocblist *cb,*cbn; 1232 struct proc *p; 1233 struct kaioinfo *ki = NULL; 1234 int opcode, wakecount = 0; 1235 struct aiothreadlist *aiop; 1236 1237 if (sb == &so->so_snd) { 1238 opcode = LIO_WRITE; 1239 so->so_snd.sb_flags &= ~SB_AIO; 1240 } else { 1241 opcode = LIO_READ; 1242 so->so_rcv.sb_flags &= ~SB_AIO; 1243 } 1244 1245 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1246 cbn = TAILQ_NEXT(cb, list); 1247 if (opcode == cb->uaiocb.aio_lio_opcode) { 1248 p = cb->userproc; 1249 ki = p->p_aioinfo; 1250 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1251 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1252 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1253 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1254 wakecount++; 1255 if (cb->jobstate != JOBST_JOBQGLOBAL) 1256 panic("invalid queue value"); 1257 } 1258 } 1259 1260 while (wakecount--) { 1261 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1262 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1263 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1264 aiop->aiothreadflags &= ~AIOP_FREE; 1265 wakeup(aiop->aiothread); 1266 } 1267 } 1268 } 1269 1270 /* 1271 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1272 * technique is done in this code. 1273 */ 1274 static int 1275 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1276 { 1277 struct proc *p = td->td_proc; 1278 struct filedesc *fdp; 1279 struct file *fp; 1280 unsigned int fd; 1281 struct socket *so; 1282 int s; 1283 int error; 1284 int opcode, user_opcode; 1285 struct aiocblist *aiocbe; 1286 struct aiothreadlist *aiop; 1287 struct kaioinfo *ki; 1288 struct kevent kev; 1289 struct kqueue *kq; 1290 struct file *kq_fp; 1291 1292 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1293 aiocbe->inputcharge = 0; 1294 aiocbe->outputcharge = 0; 1295 callout_handle_init(&aiocbe->timeouthandle); 1296 SLIST_INIT(&aiocbe->klist); 1297 1298 suword(&job->_aiocb_private.status, -1); 1299 suword(&job->_aiocb_private.error, 0); 1300 suword(&job->_aiocb_private.kernelinfo, -1); 1301 1302 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1303 if (error) { 1304 suword(&job->_aiocb_private.error, error); 1305 uma_zfree(aiocb_zone, aiocbe); 1306 return error; 1307 } 1308 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1309 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1310 uma_zfree(aiocb_zone, aiocbe); 1311 return EINVAL; 1312 } 1313 1314 /* Save userspace address of the job info. */ 1315 aiocbe->uuaiocb = job; 1316 1317 /* Get the opcode. */ 1318 user_opcode = aiocbe->uaiocb.aio_lio_opcode; 1319 if (type != LIO_NOP) 1320 aiocbe->uaiocb.aio_lio_opcode = type; 1321 opcode = aiocbe->uaiocb.aio_lio_opcode; 1322 1323 /* Get the fd info for process. */ 1324 fdp = p->p_fd; 1325 1326 /* 1327 * Range check file descriptor. 1328 */ 1329 FILEDESC_LOCK(fdp); 1330 fd = aiocbe->uaiocb.aio_fildes; 1331 if (fd >= fdp->fd_nfiles) { 1332 FILEDESC_UNLOCK(fdp); 1333 uma_zfree(aiocb_zone, aiocbe); 1334 if (type == 0) 1335 suword(&job->_aiocb_private.error, EBADF); 1336 return EBADF; 1337 } 1338 1339 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1340 if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 1341 0))) { 1342 FILEDESC_UNLOCK(fdp); 1343 uma_zfree(aiocb_zone, aiocbe); 1344 if (type == 0) 1345 suword(&job->_aiocb_private.error, EBADF); 1346 return EBADF; 1347 } 1348 fhold(fp); 1349 FILEDESC_UNLOCK(fdp); 1350 1351 if (aiocbe->uaiocb.aio_offset == -1LL) { 1352 error = EINVAL; 1353 goto aqueue_fail; 1354 } 1355 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1356 if (error) { 1357 error = EINVAL; 1358 goto aqueue_fail; 1359 } 1360 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1361 if (jobrefid == LONG_MAX) 1362 jobrefid = 1; 1363 else 1364 jobrefid++; 1365 1366 if (opcode == LIO_NOP) { 1367 fdrop(fp, td); 1368 uma_zfree(aiocb_zone, aiocbe); 1369 if (type == 0) { 1370 suword(&job->_aiocb_private.error, 0); 1371 suword(&job->_aiocb_private.status, 0); 1372 suword(&job->_aiocb_private.kernelinfo, 0); 1373 } 1374 return 0; 1375 } 1376 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1377 if (type == 0) 1378 suword(&job->_aiocb_private.status, 0); 1379 error = EINVAL; 1380 goto aqueue_fail; 1381 } 1382 1383 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1384 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1385 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1386 } 1387 else { 1388 /* 1389 * This method for requesting kevent-based notification won't 1390 * work on the alpha, since we're passing in a pointer 1391 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- 1392 * based method instead. 1393 */ 1394 if (user_opcode == LIO_NOP || user_opcode == LIO_READ || 1395 user_opcode == LIO_WRITE) 1396 goto no_kqueue; 1397 1398 error = copyin((struct kevent *)(uintptr_t)user_opcode, 1399 &kev, sizeof(kev)); 1400 if (error) 1401 goto aqueue_fail; 1402 } 1403 if ((u_int)kev.ident >= fdp->fd_nfiles || 1404 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1405 (kq_fp->f_type != DTYPE_KQUEUE)) { 1406 error = EBADF; 1407 goto aqueue_fail; 1408 } 1409 kq = (struct kqueue *)kq_fp->f_data; 1410 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1411 kev.filter = EVFILT_AIO; 1412 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1413 kev.data = (intptr_t)aiocbe; 1414 error = kqueue_register(kq, &kev, td); 1415 aqueue_fail: 1416 if (error) { 1417 fdrop(fp, td); 1418 uma_zfree(aiocb_zone, aiocbe); 1419 if (type == 0) 1420 suword(&job->_aiocb_private.error, error); 1421 goto done; 1422 } 1423 no_kqueue: 1424 1425 suword(&job->_aiocb_private.error, EINPROGRESS); 1426 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1427 aiocbe->userproc = p; 1428 aiocbe->cred = crhold(td->td_ucred); 1429 aiocbe->jobflags = 0; 1430 aiocbe->lio = lj; 1431 ki = p->p_aioinfo; 1432 1433 if (fp->f_type == DTYPE_SOCKET) { 1434 /* 1435 * Alternate queueing for socket ops: Reach down into the 1436 * descriptor to get the socket data. Then check to see if the 1437 * socket is ready to be read or written (based on the requested 1438 * operation). 1439 * 1440 * If it is not ready for io, then queue the aiocbe on the 1441 * socket, and set the flags so we get a call when sbnotify() 1442 * happens. 1443 */ 1444 so = (struct socket *)fp->f_data; 1445 s = splnet(); 1446 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1447 LIO_WRITE) && (!sowriteable(so)))) { 1448 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1449 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1450 if (opcode == LIO_READ) 1451 so->so_rcv.sb_flags |= SB_AIO; 1452 else 1453 so->so_snd.sb_flags |= SB_AIO; 1454 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1455 ki->kaio_queue_count++; 1456 num_queue_count++; 1457 splx(s); 1458 error = 0; 1459 goto done; 1460 } 1461 splx(s); 1462 } 1463 1464 if ((error = aio_qphysio(p, aiocbe)) == 0) 1465 goto done; 1466 if (error > 0) { 1467 suword(&job->_aiocb_private.status, 0); 1468 aiocbe->uaiocb._aiocb_private.error = error; 1469 suword(&job->_aiocb_private.error, error); 1470 goto done; 1471 } 1472 1473 /* No buffer for daemon I/O. */ 1474 aiocbe->bp = NULL; 1475 1476 ki->kaio_queue_count++; 1477 if (lj) 1478 lj->lioj_queue_count++; 1479 s = splnet(); 1480 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1481 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1482 splx(s); 1483 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1484 1485 num_queue_count++; 1486 error = 0; 1487 1488 /* 1489 * If we don't have a free AIO process, and we are below our quota, then 1490 * start one. Otherwise, depend on the subsequent I/O completions to 1491 * pick-up this job. If we don't sucessfully create the new process 1492 * (thread) due to resource issues, we return an error for now (EAGAIN), 1493 * which is likely not the correct thing to do. 1494 */ 1495 s = splnet(); 1496 retryproc: 1497 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1498 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1499 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1500 aiop->aiothreadflags &= ~AIOP_FREE; 1501 wakeup(aiop->aiothread); 1502 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1503 ((ki->kaio_active_count + num_aio_resv_start) < 1504 ki->kaio_maxactive_count)) { 1505 num_aio_resv_start++; 1506 if ((error = aio_newproc()) == 0) { 1507 num_aio_resv_start--; 1508 goto retryproc; 1509 } 1510 num_aio_resv_start--; 1511 } 1512 splx(s); 1513 done: 1514 return error; 1515 } 1516 1517 /* 1518 * This routine queues an AIO request, checking for quotas. 1519 */ 1520 static int 1521 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1522 { 1523 struct proc *p = td->td_proc; 1524 struct kaioinfo *ki; 1525 1526 if (p->p_aioinfo == NULL) 1527 aio_init_aioinfo(p); 1528 1529 if (num_queue_count >= max_queue_count) 1530 return EAGAIN; 1531 1532 ki = p->p_aioinfo; 1533 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1534 return EAGAIN; 1535 1536 return _aio_aqueue(td, job, NULL, type); 1537 } 1538 1539 /* 1540 * Support the aio_return system call, as a side-effect, kernel resources are 1541 * released. 1542 */ 1543 int 1544 aio_return(struct thread *td, struct aio_return_args *uap) 1545 { 1546 struct proc *p = td->td_proc; 1547 int s; 1548 long jobref; 1549 struct aiocblist *cb, *ncb; 1550 struct aiocb *ujob; 1551 struct kaioinfo *ki; 1552 1553 ujob = uap->aiocbp; 1554 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1555 if (jobref == -1 || jobref == 0) 1556 return EINVAL; 1557 1558 ki = p->p_aioinfo; 1559 if (ki == NULL) 1560 return EINVAL; 1561 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1562 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1563 jobref) { 1564 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1565 p->p_stats->p_ru.ru_oublock += 1566 cb->outputcharge; 1567 cb->outputcharge = 0; 1568 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1569 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1570 cb->inputcharge = 0; 1571 } 1572 goto done; 1573 } 1574 } 1575 s = splbio(); 1576 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1577 ncb = TAILQ_NEXT(cb, plist); 1578 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1579 == jobref) { 1580 break; 1581 } 1582 } 1583 splx(s); 1584 done: 1585 if (cb != NULL) { 1586 if (ujob == cb->uuaiocb) { 1587 td->td_retval[0] = 1588 cb->uaiocb._aiocb_private.status; 1589 } else 1590 td->td_retval[0] = EFAULT; 1591 aio_free_entry(cb); 1592 return (0); 1593 } 1594 return (EINVAL); 1595 } 1596 1597 /* 1598 * Allow a process to wakeup when any of the I/O requests are completed. 1599 */ 1600 int 1601 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1602 { 1603 struct proc *p = td->td_proc; 1604 struct timeval atv; 1605 struct timespec ts; 1606 struct aiocb *const *cbptr, *cbp; 1607 struct kaioinfo *ki; 1608 struct aiocblist *cb; 1609 int i; 1610 int njoblist; 1611 int error, s, timo; 1612 long *ijoblist; 1613 struct aiocb **ujoblist; 1614 1615 if (uap->nent > AIO_LISTIO_MAX) 1616 return EINVAL; 1617 1618 timo = 0; 1619 if (uap->timeout) { 1620 /* Get timespec struct. */ 1621 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1622 return error; 1623 1624 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1625 return (EINVAL); 1626 1627 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1628 if (itimerfix(&atv)) 1629 return (EINVAL); 1630 timo = tvtohz(&atv); 1631 } 1632 1633 ki = p->p_aioinfo; 1634 if (ki == NULL) 1635 return EAGAIN; 1636 1637 njoblist = 0; 1638 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1639 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1640 cbptr = uap->aiocbp; 1641 1642 for (i = 0; i < uap->nent; i++) { 1643 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1644 if (cbp == 0) 1645 continue; 1646 ujoblist[njoblist] = cbp; 1647 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1648 njoblist++; 1649 } 1650 1651 if (njoblist == 0) { 1652 uma_zfree(aiol_zone, ijoblist); 1653 uma_zfree(aiol_zone, ujoblist); 1654 return 0; 1655 } 1656 1657 error = 0; 1658 for (;;) { 1659 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1660 for (i = 0; i < njoblist; i++) { 1661 if (((intptr_t) 1662 cb->uaiocb._aiocb_private.kernelinfo) == 1663 ijoblist[i]) { 1664 if (ujoblist[i] != cb->uuaiocb) 1665 error = EINVAL; 1666 uma_zfree(aiol_zone, ijoblist); 1667 uma_zfree(aiol_zone, ujoblist); 1668 return error; 1669 } 1670 } 1671 } 1672 1673 s = splbio(); 1674 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1675 TAILQ_NEXT(cb, plist)) { 1676 for (i = 0; i < njoblist; i++) { 1677 if (((intptr_t) 1678 cb->uaiocb._aiocb_private.kernelinfo) == 1679 ijoblist[i]) { 1680 splx(s); 1681 if (ujoblist[i] != cb->uuaiocb) 1682 error = EINVAL; 1683 uma_zfree(aiol_zone, ijoblist); 1684 uma_zfree(aiol_zone, ujoblist); 1685 return error; 1686 } 1687 } 1688 } 1689 1690 ki->kaio_flags |= KAIO_WAKEUP; 1691 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); 1692 splx(s); 1693 1694 if (error == ERESTART || error == EINTR) { 1695 uma_zfree(aiol_zone, ijoblist); 1696 uma_zfree(aiol_zone, ujoblist); 1697 return EINTR; 1698 } else if (error == EWOULDBLOCK) { 1699 uma_zfree(aiol_zone, ijoblist); 1700 uma_zfree(aiol_zone, ujoblist); 1701 return EAGAIN; 1702 } 1703 } 1704 1705 /* NOTREACHED */ 1706 return EINVAL; 1707 } 1708 1709 /* 1710 * aio_cancel cancels any non-physio aio operations not currently in 1711 * progress. 1712 */ 1713 int 1714 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1715 { 1716 struct proc *p = td->td_proc; 1717 struct kaioinfo *ki; 1718 struct aiocblist *cbe, *cbn; 1719 struct file *fp; 1720 struct filedesc *fdp; 1721 struct socket *so; 1722 struct proc *po; 1723 int s,error; 1724 int cancelled=0; 1725 int notcancelled=0; 1726 struct vnode *vp; 1727 1728 fdp = p->p_fd; 1729 if ((u_int)uap->fd >= fdp->fd_nfiles || 1730 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1731 return (EBADF); 1732 1733 if (fp->f_type == DTYPE_VNODE) { 1734 vp = (struct vnode *)fp->f_data; 1735 1736 if (vn_isdisk(vp,&error)) { 1737 td->td_retval[0] = AIO_NOTCANCELED; 1738 return 0; 1739 } 1740 } else if (fp->f_type == DTYPE_SOCKET) { 1741 so = (struct socket *)fp->f_data; 1742 1743 s = splnet(); 1744 1745 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1746 cbn = TAILQ_NEXT(cbe, list); 1747 if ((uap->aiocbp == NULL) || 1748 (uap->aiocbp == cbe->uuaiocb) ) { 1749 po = cbe->userproc; 1750 ki = po->p_aioinfo; 1751 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1752 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1753 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1754 if (ki->kaio_flags & KAIO_WAKEUP) { 1755 wakeup(po); 1756 } 1757 cbe->jobstate = JOBST_JOBFINISHED; 1758 cbe->uaiocb._aiocb_private.status=-1; 1759 cbe->uaiocb._aiocb_private.error=ECANCELED; 1760 cancelled++; 1761 /* XXX cancelled, knote? */ 1762 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1763 SIGEV_SIGNAL) { 1764 PROC_LOCK(cbe->userproc); 1765 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1766 PROC_UNLOCK(cbe->userproc); 1767 } 1768 if (uap->aiocbp) 1769 break; 1770 } 1771 } 1772 splx(s); 1773 1774 if ((cancelled) && (uap->aiocbp)) { 1775 td->td_retval[0] = AIO_CANCELED; 1776 return 0; 1777 } 1778 } 1779 ki=p->p_aioinfo; 1780 if (ki == NULL) 1781 goto done; 1782 s = splnet(); 1783 1784 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1785 cbn = TAILQ_NEXT(cbe, plist); 1786 1787 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1788 ((uap->aiocbp == NULL ) || 1789 (uap->aiocbp == cbe->uuaiocb))) { 1790 1791 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1792 TAILQ_REMOVE(&aio_jobs, cbe, list); 1793 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1794 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1795 plist); 1796 cancelled++; 1797 ki->kaio_queue_finished_count++; 1798 cbe->jobstate = JOBST_JOBFINISHED; 1799 cbe->uaiocb._aiocb_private.status = -1; 1800 cbe->uaiocb._aiocb_private.error = ECANCELED; 1801 /* XXX cancelled, knote? */ 1802 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1803 SIGEV_SIGNAL) { 1804 PROC_LOCK(cbe->userproc); 1805 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1806 PROC_UNLOCK(cbe->userproc); 1807 } 1808 } else { 1809 notcancelled++; 1810 } 1811 } 1812 } 1813 splx(s); 1814 done: 1815 if (notcancelled) { 1816 td->td_retval[0] = AIO_NOTCANCELED; 1817 return 0; 1818 } 1819 if (cancelled) { 1820 td->td_retval[0] = AIO_CANCELED; 1821 return 0; 1822 } 1823 td->td_retval[0] = AIO_ALLDONE; 1824 1825 return 0; 1826 } 1827 1828 /* 1829 * aio_error is implemented in the kernel level for compatibility purposes only. 1830 * For a user mode async implementation, it would be best to do it in a userland 1831 * subroutine. 1832 */ 1833 int 1834 aio_error(struct thread *td, struct aio_error_args *uap) 1835 { 1836 struct proc *p = td->td_proc; 1837 int s; 1838 struct aiocblist *cb; 1839 struct kaioinfo *ki; 1840 long jobref; 1841 1842 ki = p->p_aioinfo; 1843 if (ki == NULL) 1844 return EINVAL; 1845 1846 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1847 if ((jobref == -1) || (jobref == 0)) 1848 return EINVAL; 1849 1850 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1851 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1852 jobref) { 1853 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1854 return 0; 1855 } 1856 } 1857 1858 s = splnet(); 1859 1860 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1861 plist)) { 1862 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1863 jobref) { 1864 td->td_retval[0] = EINPROGRESS; 1865 splx(s); 1866 return 0; 1867 } 1868 } 1869 1870 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1871 plist)) { 1872 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1873 jobref) { 1874 td->td_retval[0] = EINPROGRESS; 1875 splx(s); 1876 return 0; 1877 } 1878 } 1879 splx(s); 1880 1881 s = splbio(); 1882 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1883 plist)) { 1884 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1885 jobref) { 1886 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1887 splx(s); 1888 return 0; 1889 } 1890 } 1891 1892 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1893 plist)) { 1894 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1895 jobref) { 1896 td->td_retval[0] = EINPROGRESS; 1897 splx(s); 1898 return 0; 1899 } 1900 } 1901 splx(s); 1902 1903 #if (0) 1904 /* 1905 * Hack for lio. 1906 */ 1907 status = fuword(&uap->aiocbp->_aiocb_private.status); 1908 if (status == -1) 1909 return fuword(&uap->aiocbp->_aiocb_private.error); 1910 #endif 1911 return EINVAL; 1912 } 1913 1914 /* syscall - asynchronous read from a file (REALTIME) */ 1915 int 1916 aio_read(struct thread *td, struct aio_read_args *uap) 1917 { 1918 1919 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1920 } 1921 1922 /* syscall - asynchronous write to a file (REALTIME) */ 1923 int 1924 aio_write(struct thread *td, struct aio_write_args *uap) 1925 { 1926 1927 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1928 } 1929 1930 /* syscall - XXX undocumented */ 1931 int 1932 lio_listio(struct thread *td, struct lio_listio_args *uap) 1933 { 1934 struct proc *p = td->td_proc; 1935 int nent, nentqueued; 1936 struct aiocb *iocb, * const *cbptr; 1937 struct aiocblist *cb; 1938 struct kaioinfo *ki; 1939 struct aio_liojob *lj; 1940 int error, runningcode; 1941 int nerror; 1942 int i; 1943 int s; 1944 1945 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1946 return EINVAL; 1947 1948 nent = uap->nent; 1949 if (nent > AIO_LISTIO_MAX) 1950 return EINVAL; 1951 1952 if (p->p_aioinfo == NULL) 1953 aio_init_aioinfo(p); 1954 1955 if ((nent + num_queue_count) > max_queue_count) 1956 return EAGAIN; 1957 1958 ki = p->p_aioinfo; 1959 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1960 return EAGAIN; 1961 1962 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1963 if (!lj) 1964 return EAGAIN; 1965 1966 lj->lioj_flags = 0; 1967 lj->lioj_buffer_count = 0; 1968 lj->lioj_buffer_finished_count = 0; 1969 lj->lioj_queue_count = 0; 1970 lj->lioj_queue_finished_count = 0; 1971 lj->lioj_ki = ki; 1972 1973 /* 1974 * Setup signal. 1975 */ 1976 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1977 error = copyin(uap->sig, &lj->lioj_signal, 1978 sizeof(lj->lioj_signal)); 1979 if (error) { 1980 uma_zfree(aiolio_zone, lj); 1981 return error; 1982 } 1983 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1984 uma_zfree(aiolio_zone, lj); 1985 return EINVAL; 1986 } 1987 lj->lioj_flags |= LIOJ_SIGNAL; 1988 } 1989 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1990 /* 1991 * Get pointers to the list of I/O requests. 1992 */ 1993 nerror = 0; 1994 nentqueued = 0; 1995 cbptr = uap->acb_list; 1996 for (i = 0; i < uap->nent; i++) { 1997 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1998 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 1999 error = _aio_aqueue(td, iocb, lj, 0); 2000 if (error == 0) 2001 nentqueued++; 2002 else 2003 nerror++; 2004 } 2005 } 2006 2007 /* 2008 * If we haven't queued any, then just return error. 2009 */ 2010 if (nentqueued == 0) 2011 return 0; 2012 2013 /* 2014 * Calculate the appropriate error return. 2015 */ 2016 runningcode = 0; 2017 if (nerror) 2018 runningcode = EIO; 2019 2020 if (uap->mode == LIO_WAIT) { 2021 int command, found, jobref; 2022 2023 for (;;) { 2024 found = 0; 2025 for (i = 0; i < uap->nent; i++) { 2026 /* 2027 * Fetch address of the control buf pointer in 2028 * user space. 2029 */ 2030 iocb = (struct aiocb *) 2031 (intptr_t)fuword(&cbptr[i]); 2032 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2033 == 0)) 2034 continue; 2035 2036 /* 2037 * Fetch the associated command from user space. 2038 */ 2039 command = fuword(&iocb->aio_lio_opcode); 2040 if (command == LIO_NOP) { 2041 found++; 2042 continue; 2043 } 2044 2045 jobref = fuword(&iocb->_aiocb_private.kernelinfo); 2046 2047 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2048 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2049 == jobref) { 2050 if (cb->uaiocb.aio_lio_opcode 2051 == LIO_WRITE) { 2052 p->p_stats->p_ru.ru_oublock 2053 += 2054 cb->outputcharge; 2055 cb->outputcharge = 0; 2056 } else if (cb->uaiocb.aio_lio_opcode 2057 == LIO_READ) { 2058 p->p_stats->p_ru.ru_inblock 2059 += cb->inputcharge; 2060 cb->inputcharge = 0; 2061 } 2062 found++; 2063 break; 2064 } 2065 } 2066 2067 s = splbio(); 2068 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2069 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2070 == jobref) { 2071 found++; 2072 break; 2073 } 2074 } 2075 splx(s); 2076 } 2077 2078 /* 2079 * If all I/Os have been disposed of, then we can 2080 * return. 2081 */ 2082 if (found == nentqueued) 2083 return runningcode; 2084 2085 ki->kaio_flags |= KAIO_WAKEUP; 2086 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2087 2088 if (error == EINTR) 2089 return EINTR; 2090 else if (error == EWOULDBLOCK) 2091 return EAGAIN; 2092 } 2093 } 2094 2095 return runningcode; 2096 } 2097 2098 /* 2099 * This is a weird hack so that we can post a signal. It is safe to do so from 2100 * a timeout routine, but *not* from an interrupt routine. 2101 */ 2102 static void 2103 process_signal(void *aioj) 2104 { 2105 struct aiocblist *aiocbe = aioj; 2106 struct aio_liojob *lj = aiocbe->lio; 2107 struct aiocb *cb = &aiocbe->uaiocb; 2108 2109 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && 2110 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { 2111 PROC_LOCK(lj->lioj_ki->kaio_p); 2112 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); 2113 PROC_UNLOCK(lj->lioj_ki->kaio_p); 2114 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2115 } 2116 2117 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2118 PROC_LOCK(aiocbe->userproc); 2119 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); 2120 PROC_UNLOCK(aiocbe->userproc); 2121 } 2122 } 2123 2124 /* 2125 * Interrupt handler for physio, performs the necessary process wakeups, and 2126 * signals. 2127 */ 2128 static void 2129 aio_physwakeup(struct buf *bp) 2130 { 2131 struct aiocblist *aiocbe; 2132 struct proc *p; 2133 struct kaioinfo *ki; 2134 struct aio_liojob *lj; 2135 2136 wakeup(bp); 2137 2138 aiocbe = (struct aiocblist *)bp->b_spc; 2139 if (aiocbe) { 2140 p = bp->b_caller1; 2141 2142 aiocbe->jobstate = JOBST_JOBBFINISHED; 2143 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2144 aiocbe->uaiocb._aiocb_private.error = 0; 2145 aiocbe->jobflags |= AIOCBLIST_DONE; 2146 2147 if (bp->b_ioflags & BIO_ERROR) 2148 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2149 2150 lj = aiocbe->lio; 2151 if (lj) { 2152 lj->lioj_buffer_finished_count++; 2153 2154 /* 2155 * wakeup/signal if all of the interrupt jobs are done. 2156 */ 2157 if (lj->lioj_buffer_finished_count == 2158 lj->lioj_buffer_count) { 2159 /* 2160 * Post a signal if it is called for. 2161 */ 2162 if ((lj->lioj_flags & 2163 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2164 LIOJ_SIGNAL) { 2165 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2166 aiocbe->timeouthandle = 2167 timeout(process_signal, 2168 aiocbe, 0); 2169 } 2170 } 2171 } 2172 2173 ki = p->p_aioinfo; 2174 if (ki) { 2175 ki->kaio_buffer_finished_count++; 2176 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 2177 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2178 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2179 2180 KNOTE(&aiocbe->klist, 0); 2181 /* Do the wakeup. */ 2182 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2183 ki->kaio_flags &= ~KAIO_WAKEUP; 2184 wakeup(p); 2185 } 2186 } 2187 2188 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) 2189 aiocbe->timeouthandle = 2190 timeout(process_signal, aiocbe, 0); 2191 } 2192 } 2193 2194 /* syscall - wait for the next completion of an aio request */ 2195 int 2196 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2197 { 2198 struct proc *p = td->td_proc; 2199 struct timeval atv; 2200 struct timespec ts; 2201 struct kaioinfo *ki; 2202 struct aiocblist *cb = NULL; 2203 int error, s, timo; 2204 2205 suword(uap->aiocbp, (int)NULL); 2206 2207 timo = 0; 2208 if (uap->timeout) { 2209 /* Get timespec struct. */ 2210 error = copyin(uap->timeout, &ts, sizeof(ts)); 2211 if (error) 2212 return error; 2213 2214 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2215 return (EINVAL); 2216 2217 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2218 if (itimerfix(&atv)) 2219 return (EINVAL); 2220 timo = tvtohz(&atv); 2221 } 2222 2223 ki = p->p_aioinfo; 2224 if (ki == NULL) 2225 return EAGAIN; 2226 2227 for (;;) { 2228 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2229 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2230 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2231 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2232 p->p_stats->p_ru.ru_oublock += 2233 cb->outputcharge; 2234 cb->outputcharge = 0; 2235 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2236 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2237 cb->inputcharge = 0; 2238 } 2239 aio_free_entry(cb); 2240 return cb->uaiocb._aiocb_private.error; 2241 } 2242 2243 s = splbio(); 2244 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2245 splx(s); 2246 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2247 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2248 aio_free_entry(cb); 2249 return cb->uaiocb._aiocb_private.error; 2250 } 2251 2252 ki->kaio_flags |= KAIO_WAKEUP; 2253 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); 2254 splx(s); 2255 2256 if (error == ERESTART) 2257 return EINTR; 2258 else if (error < 0) 2259 return error; 2260 else if (error == EINTR) 2261 return EINTR; 2262 else if (error == EWOULDBLOCK) 2263 return EAGAIN; 2264 } 2265 } 2266 2267 /* kqueue attach function */ 2268 static int 2269 filt_aioattach(struct knote *kn) 2270 { 2271 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2272 2273 /* 2274 * The aiocbe pointer must be validated before using it, so 2275 * registration is restricted to the kernel; the user cannot 2276 * set EV_FLAG1. 2277 */ 2278 if ((kn->kn_flags & EV_FLAG1) == 0) 2279 return (EPERM); 2280 kn->kn_flags &= ~EV_FLAG1; 2281 2282 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); 2283 2284 return (0); 2285 } 2286 2287 /* kqueue detach function */ 2288 static void 2289 filt_aiodetach(struct knote *kn) 2290 { 2291 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2292 2293 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); 2294 } 2295 2296 /* kqueue filter function */ 2297 /*ARGSUSED*/ 2298 static int 2299 filt_aio(struct knote *kn, long hint) 2300 { 2301 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2302 2303 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2304 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2305 aiocbe->jobstate != JOBST_JOBBFINISHED) 2306 return (0); 2307 kn->kn_flags |= EV_EOF; 2308 return (1); 2309 } 2310