1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) listio flags */ 252 int lioj_finished_count; /* (a) listio flags */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of physio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_physwakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qphysio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_active_count = 0; 444 ki->kaio_count = 0; 445 ki->kaio_buffer_count = 0; 446 TAILQ_INIT(&ki->kaio_all); 447 TAILQ_INIT(&ki->kaio_done); 448 TAILQ_INIT(&ki->kaio_jobqueue); 449 TAILQ_INIT(&ki->kaio_liojoblist); 450 TAILQ_INIT(&ki->kaio_syncqueue); 451 TAILQ_INIT(&ki->kaio_syncready); 452 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 453 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 454 PROC_LOCK(p); 455 if (p->p_aioinfo == NULL) { 456 p->p_aioinfo = ki; 457 PROC_UNLOCK(p); 458 } else { 459 PROC_UNLOCK(p); 460 mtx_destroy(&ki->kaio_mtx); 461 uma_zfree(kaio_zone, ki); 462 } 463 464 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 465 aio_newproc(NULL); 466 } 467 468 static int 469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 470 { 471 struct thread *td; 472 int error; 473 474 error = sigev_findtd(p, sigev, &td); 475 if (error) 476 return (error); 477 if (!KSI_ONQ(ksi)) { 478 ksiginfo_set_sigev(ksi, sigev); 479 ksi->ksi_code = SI_ASYNCIO; 480 ksi->ksi_flags |= KSI_EXT | KSI_INS; 481 tdsendsignal(p, td, ksi->ksi_signo, ksi); 482 } 483 PROC_UNLOCK(p); 484 return (error); 485 } 486 487 /* 488 * Free a job entry. Wait for completion if it is currently active, but don't 489 * delay forever. If we delay, we return a flag that says that we have to 490 * restart the queue scan. 491 */ 492 static int 493 aio_free_entry(struct kaiocb *job) 494 { 495 struct kaioinfo *ki; 496 struct aioliojob *lj; 497 struct proc *p; 498 499 p = job->userproc; 500 MPASS(curproc == p); 501 ki = p->p_aioinfo; 502 MPASS(ki != NULL); 503 504 AIO_LOCK_ASSERT(ki, MA_OWNED); 505 MPASS(job->jobflags & KAIOCB_FINISHED); 506 507 atomic_subtract_int(&num_queue_count, 1); 508 509 ki->kaio_count--; 510 MPASS(ki->kaio_count >= 0); 511 512 TAILQ_REMOVE(&ki->kaio_done, job, plist); 513 TAILQ_REMOVE(&ki->kaio_all, job, allist); 514 515 lj = job->lio; 516 if (lj) { 517 lj->lioj_count--; 518 lj->lioj_finished_count--; 519 520 if (lj->lioj_count == 0) { 521 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 522 /* lio is going away, we need to destroy any knotes */ 523 knlist_delete(&lj->klist, curthread, 1); 524 PROC_LOCK(p); 525 sigqueue_take(&lj->lioj_ksi); 526 PROC_UNLOCK(p); 527 uma_zfree(aiolio_zone, lj); 528 } 529 } 530 531 /* job is going away, we need to destroy any knotes */ 532 knlist_delete(&job->klist, curthread, 1); 533 PROC_LOCK(p); 534 sigqueue_take(&job->ksi); 535 PROC_UNLOCK(p); 536 537 AIO_UNLOCK(ki); 538 539 /* 540 * The thread argument here is used to find the owning process 541 * and is also passed to fo_close() which may pass it to various 542 * places such as devsw close() routines. Because of that, we 543 * need a thread pointer from the process owning the job that is 544 * persistent and won't disappear out from under us or move to 545 * another process. 546 * 547 * Currently, all the callers of this function call it to remove 548 * a kaiocb from the current process' job list either via a 549 * syscall or due to the current process calling exit() or 550 * execve(). Thus, we know that p == curproc. We also know that 551 * curthread can't exit since we are curthread. 552 * 553 * Therefore, we use curthread as the thread to pass to 554 * knlist_delete(). This does mean that it is possible for the 555 * thread pointer at close time to differ from the thread pointer 556 * at open time, but this is already true of file descriptors in 557 * a multithreaded process. 558 */ 559 if (job->fd_file) 560 fdrop(job->fd_file, curthread); 561 crfree(job->cred); 562 uma_zfree(aiocb_zone, job); 563 AIO_LOCK(ki); 564 565 return (0); 566 } 567 568 static void 569 aio_proc_rundown_exec(void *arg, struct proc *p, 570 struct image_params *imgp __unused) 571 { 572 aio_proc_rundown(arg, p); 573 } 574 575 static int 576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 577 { 578 aio_cancel_fn_t *func; 579 int cancelled; 580 581 AIO_LOCK_ASSERT(ki, MA_OWNED); 582 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 583 return (0); 584 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 585 job->jobflags |= KAIOCB_CANCELLED; 586 587 func = job->cancel_fn; 588 589 /* 590 * If there is no cancel routine, just leave the job marked as 591 * cancelled. The job should be in active use by a caller who 592 * should complete it normally or when it fails to install a 593 * cancel routine. 594 */ 595 if (func == NULL) 596 return (0); 597 598 /* 599 * Set the CANCELLING flag so that aio_complete() will defer 600 * completions of this job. This prevents the job from being 601 * freed out from under the cancel callback. After the 602 * callback any deferred completion (whether from the callback 603 * or any other source) will be completed. 604 */ 605 job->jobflags |= KAIOCB_CANCELLING; 606 AIO_UNLOCK(ki); 607 func(job); 608 AIO_LOCK(ki); 609 job->jobflags &= ~KAIOCB_CANCELLING; 610 if (job->jobflags & KAIOCB_FINISHED) { 611 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 612 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 613 aio_bio_done_notify(p, job); 614 } else { 615 /* 616 * The cancel callback might have scheduled an 617 * operation to cancel this request, but it is 618 * only counted as cancelled if the request is 619 * cancelled when the callback returns. 620 */ 621 cancelled = 0; 622 } 623 return (cancelled); 624 } 625 626 /* 627 * Rundown the jobs for a given process. 628 */ 629 static void 630 aio_proc_rundown(void *arg, struct proc *p) 631 { 632 struct kaioinfo *ki; 633 struct aioliojob *lj; 634 struct kaiocb *job, *jobn; 635 636 KASSERT(curthread->td_proc == p, 637 ("%s: called on non-curproc", __func__)); 638 ki = p->p_aioinfo; 639 if (ki == NULL) 640 return; 641 642 AIO_LOCK(ki); 643 ki->kaio_flags |= KAIO_RUNDOWN; 644 645 restart: 646 647 /* 648 * Try to cancel all pending requests. This code simulates 649 * aio_cancel on all pending I/O requests. 650 */ 651 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 652 aio_cancel_job(p, ki, job); 653 } 654 655 /* Wait for all running I/O to be finished */ 656 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 657 ki->kaio_flags |= KAIO_WAKEUP; 658 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 659 goto restart; 660 } 661 662 /* Free all completed I/O requests. */ 663 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 664 aio_free_entry(job); 665 666 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 667 if (lj->lioj_count == 0) { 668 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 669 knlist_delete(&lj->klist, curthread, 1); 670 PROC_LOCK(p); 671 sigqueue_take(&lj->lioj_ksi); 672 PROC_UNLOCK(p); 673 uma_zfree(aiolio_zone, lj); 674 } else { 675 panic("LIO job not cleaned up: C:%d, FC:%d\n", 676 lj->lioj_count, lj->lioj_finished_count); 677 } 678 } 679 AIO_UNLOCK(ki); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 681 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 682 mtx_destroy(&ki->kaio_mtx); 683 uma_zfree(kaio_zone, ki); 684 p->p_aioinfo = NULL; 685 } 686 687 /* 688 * Select a job to run (called by an AIO daemon). 689 */ 690 static struct kaiocb * 691 aio_selectjob(struct aioproc *aiop) 692 { 693 struct kaiocb *job; 694 struct kaioinfo *ki; 695 struct proc *userp; 696 697 mtx_assert(&aio_job_mtx, MA_OWNED); 698 restart: 699 TAILQ_FOREACH(job, &aio_jobs, list) { 700 userp = job->userproc; 701 ki = userp->p_aioinfo; 702 703 if (ki->kaio_active_count < max_aio_per_proc) { 704 TAILQ_REMOVE(&aio_jobs, job, list); 705 if (!aio_clear_cancel_function(job)) 706 goto restart; 707 708 /* Account for currently active jobs. */ 709 ki->kaio_active_count++; 710 break; 711 } 712 } 713 return (job); 714 } 715 716 /* 717 * Move all data to a permanent storage device. This code 718 * simulates the fsync syscall. 719 */ 720 static int 721 aio_fsync_vnode(struct thread *td, struct vnode *vp) 722 { 723 struct mount *mp; 724 int error; 725 726 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 727 goto drop; 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 if (vp->v_object != NULL) { 730 VM_OBJECT_WLOCK(vp->v_object); 731 vm_object_page_clean(vp->v_object, 0, 0, 0); 732 VM_OBJECT_WUNLOCK(vp->v_object); 733 } 734 error = VOP_FSYNC(vp, MNT_WAIT, td); 735 736 VOP_UNLOCK(vp, 0); 737 vn_finished_write(mp); 738 drop: 739 return (error); 740 } 741 742 /* 743 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 744 * does the I/O request for the non-physio version of the operations. The 745 * normal vn operations are used, and this code should work in all instances 746 * for every type of file, including pipes, sockets, fifos, and regular files. 747 * 748 * XXX I don't think it works well for socket, pipe, and fifo. 749 */ 750 static void 751 aio_process_rw(struct kaiocb *job) 752 { 753 struct ucred *td_savedcred; 754 struct thread *td; 755 struct aiocb *cb; 756 struct file *fp; 757 struct uio auio; 758 struct iovec aiov; 759 ssize_t cnt; 760 long msgsnd_st, msgsnd_end; 761 long msgrcv_st, msgrcv_end; 762 long oublock_st, oublock_end; 763 long inblock_st, inblock_end; 764 int error; 765 766 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 767 job->uaiocb.aio_lio_opcode == LIO_WRITE, 768 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 769 770 aio_switch_vmspace(job); 771 td = curthread; 772 td_savedcred = td->td_ucred; 773 td->td_ucred = job->cred; 774 cb = &job->uaiocb; 775 fp = job->fd_file; 776 777 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 778 aiov.iov_len = cb->aio_nbytes; 779 780 auio.uio_iov = &aiov; 781 auio.uio_iovcnt = 1; 782 auio.uio_offset = cb->aio_offset; 783 auio.uio_resid = cb->aio_nbytes; 784 cnt = cb->aio_nbytes; 785 auio.uio_segflg = UIO_USERSPACE; 786 auio.uio_td = td; 787 788 msgrcv_st = td->td_ru.ru_msgrcv; 789 msgsnd_st = td->td_ru.ru_msgsnd; 790 inblock_st = td->td_ru.ru_inblock; 791 oublock_st = td->td_ru.ru_oublock; 792 793 /* 794 * aio_aqueue() acquires a reference to the file that is 795 * released in aio_free_entry(). 796 */ 797 if (cb->aio_lio_opcode == LIO_READ) { 798 auio.uio_rw = UIO_READ; 799 if (auio.uio_resid == 0) 800 error = 0; 801 else 802 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 803 } else { 804 if (fp->f_type == DTYPE_VNODE) 805 bwillwrite(); 806 auio.uio_rw = UIO_WRITE; 807 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 808 } 809 msgrcv_end = td->td_ru.ru_msgrcv; 810 msgsnd_end = td->td_ru.ru_msgsnd; 811 inblock_end = td->td_ru.ru_inblock; 812 oublock_end = td->td_ru.ru_oublock; 813 814 job->msgrcv = msgrcv_end - msgrcv_st; 815 job->msgsnd = msgsnd_end - msgsnd_st; 816 job->inblock = inblock_end - inblock_st; 817 job->outblock = oublock_end - oublock_st; 818 819 if ((error) && (auio.uio_resid != cnt)) { 820 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 821 error = 0; 822 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 823 PROC_LOCK(job->userproc); 824 kern_psignal(job->userproc, SIGPIPE); 825 PROC_UNLOCK(job->userproc); 826 } 827 } 828 829 cnt -= auio.uio_resid; 830 td->td_ucred = td_savedcred; 831 if (error) 832 aio_complete(job, -1, error); 833 else 834 aio_complete(job, cnt, 0); 835 } 836 837 static void 838 aio_process_sync(struct kaiocb *job) 839 { 840 struct thread *td = curthread; 841 struct ucred *td_savedcred = td->td_ucred; 842 struct file *fp = job->fd_file; 843 int error = 0; 844 845 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 846 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 847 848 td->td_ucred = job->cred; 849 if (fp->f_vnode != NULL) 850 error = aio_fsync_vnode(td, fp->f_vnode); 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL 910 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 913 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 914 } 915 } 916 917 notification_done: 918 if (job->jobflags & KAIOCB_CHECKSYNC) { 919 schedule_fsync = false; 920 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 921 if (job->fd_file != sjob->fd_file || 922 job->seqno >= sjob->seqno) 923 continue; 924 if (--sjob->pending > 0) 925 continue; 926 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 927 if (!aio_clear_cancel_function_locked(sjob)) 928 continue; 929 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 930 schedule_fsync = true; 931 } 932 if (schedule_fsync) 933 taskqueue_enqueue(taskqueue_aiod_kick, 934 &ki->kaio_sync_task); 935 } 936 if (ki->kaio_flags & KAIO_WAKEUP) { 937 ki->kaio_flags &= ~KAIO_WAKEUP; 938 wakeup(&userp->p_aioinfo); 939 } 940 } 941 942 static void 943 aio_schedule_fsync(void *context, int pending) 944 { 945 struct kaioinfo *ki; 946 struct kaiocb *job; 947 948 ki = context; 949 AIO_LOCK(ki); 950 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 951 job = TAILQ_FIRST(&ki->kaio_syncready); 952 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 953 AIO_UNLOCK(ki); 954 aio_schedule(job, aio_process_sync); 955 AIO_LOCK(ki); 956 } 957 AIO_UNLOCK(ki); 958 } 959 960 bool 961 aio_cancel_cleared(struct kaiocb *job) 962 { 963 964 /* 965 * The caller should hold the same queue lock held when 966 * aio_clear_cancel_function() was called and set this flag 967 * ensuring this check sees an up-to-date value. However, 968 * there is no way to assert that. 969 */ 970 return ((job->jobflags & KAIOCB_CLEARED) != 0); 971 } 972 973 static bool 974 aio_clear_cancel_function_locked(struct kaiocb *job) 975 { 976 977 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 978 MPASS(job->cancel_fn != NULL); 979 if (job->jobflags & KAIOCB_CANCELLING) { 980 job->jobflags |= KAIOCB_CLEARED; 981 return (false); 982 } 983 job->cancel_fn = NULL; 984 return (true); 985 } 986 987 bool 988 aio_clear_cancel_function(struct kaiocb *job) 989 { 990 struct kaioinfo *ki; 991 bool ret; 992 993 ki = job->userproc->p_aioinfo; 994 AIO_LOCK(ki); 995 ret = aio_clear_cancel_function_locked(job); 996 AIO_UNLOCK(ki); 997 return (ret); 998 } 999 1000 static bool 1001 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1002 { 1003 1004 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1005 if (job->jobflags & KAIOCB_CANCELLED) 1006 return (false); 1007 job->cancel_fn = func; 1008 return (true); 1009 } 1010 1011 bool 1012 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1013 { 1014 struct kaioinfo *ki; 1015 bool ret; 1016 1017 ki = job->userproc->p_aioinfo; 1018 AIO_LOCK(ki); 1019 ret = aio_set_cancel_function_locked(job, func); 1020 AIO_UNLOCK(ki); 1021 return (ret); 1022 } 1023 1024 void 1025 aio_complete(struct kaiocb *job, long status, int error) 1026 { 1027 struct kaioinfo *ki; 1028 struct proc *userp; 1029 1030 job->uaiocb._aiocb_private.error = error; 1031 job->uaiocb._aiocb_private.status = status; 1032 1033 userp = job->userproc; 1034 ki = userp->p_aioinfo; 1035 1036 AIO_LOCK(ki); 1037 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1038 ("duplicate aio_complete")); 1039 job->jobflags |= KAIOCB_FINISHED; 1040 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1041 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1042 aio_bio_done_notify(userp, job); 1043 } 1044 AIO_UNLOCK(ki); 1045 } 1046 1047 void 1048 aio_cancel(struct kaiocb *job) 1049 { 1050 1051 aio_complete(job, -1, ECANCELED); 1052 } 1053 1054 void 1055 aio_switch_vmspace(struct kaiocb *job) 1056 { 1057 1058 vmspace_switch_aio(job->userproc->p_vmspace); 1059 } 1060 1061 /* 1062 * The AIO daemon, most of the actual work is done in aio_process_*, 1063 * but the setup (and address space mgmt) is done in this routine. 1064 */ 1065 static void 1066 aio_daemon(void *_id) 1067 { 1068 struct kaiocb *job; 1069 struct aioproc *aiop; 1070 struct kaioinfo *ki; 1071 struct proc *p; 1072 struct vmspace *myvm; 1073 struct thread *td = curthread; 1074 int id = (intptr_t)_id; 1075 1076 /* 1077 * Grab an extra reference on the daemon's vmspace so that it 1078 * doesn't get freed by jobs that switch to a different 1079 * vmspace. 1080 */ 1081 p = td->td_proc; 1082 myvm = vmspace_acquire_ref(p); 1083 1084 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1085 1086 /* 1087 * Allocate and ready the aio control info. There is one aiop structure 1088 * per daemon. 1089 */ 1090 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1091 aiop->aioproc = p; 1092 aiop->aioprocflags = 0; 1093 1094 /* 1095 * Wakeup parent process. (Parent sleeps to keep from blasting away 1096 * and creating too many daemons.) 1097 */ 1098 sema_post(&aio_newproc_sem); 1099 1100 mtx_lock(&aio_job_mtx); 1101 for (;;) { 1102 /* 1103 * Take daemon off of free queue 1104 */ 1105 if (aiop->aioprocflags & AIOP_FREE) { 1106 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1107 aiop->aioprocflags &= ~AIOP_FREE; 1108 } 1109 1110 /* 1111 * Check for jobs. 1112 */ 1113 while ((job = aio_selectjob(aiop)) != NULL) { 1114 mtx_unlock(&aio_job_mtx); 1115 1116 ki = job->userproc->p_aioinfo; 1117 job->handle_fn(job); 1118 1119 mtx_lock(&aio_job_mtx); 1120 /* Decrement the active job count. */ 1121 ki->kaio_active_count--; 1122 } 1123 1124 /* 1125 * Disconnect from user address space. 1126 */ 1127 if (p->p_vmspace != myvm) { 1128 mtx_unlock(&aio_job_mtx); 1129 vmspace_switch_aio(myvm); 1130 mtx_lock(&aio_job_mtx); 1131 /* 1132 * We have to restart to avoid race, we only sleep if 1133 * no job can be selected. 1134 */ 1135 continue; 1136 } 1137 1138 mtx_assert(&aio_job_mtx, MA_OWNED); 1139 1140 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1141 aiop->aioprocflags |= AIOP_FREE; 1142 1143 /* 1144 * If daemon is inactive for a long time, allow it to exit, 1145 * thereby freeing resources. 1146 */ 1147 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1148 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1149 (aiop->aioprocflags & AIOP_FREE) && 1150 num_aio_procs > target_aio_procs) 1151 break; 1152 } 1153 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1154 num_aio_procs--; 1155 mtx_unlock(&aio_job_mtx); 1156 uma_zfree(aiop_zone, aiop); 1157 free_unr(aiod_unr, id); 1158 vmspace_free(myvm); 1159 1160 KASSERT(p->p_vmspace == myvm, 1161 ("AIOD: bad vmspace for exiting daemon")); 1162 KASSERT(myvm->vm_refcnt > 1, 1163 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1164 kproc_exit(0); 1165 } 1166 1167 /* 1168 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1169 * AIO daemon modifies its environment itself. 1170 */ 1171 static int 1172 aio_newproc(int *start) 1173 { 1174 int error; 1175 struct proc *p; 1176 int id; 1177 1178 id = alloc_unr(aiod_unr); 1179 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1180 RFNOWAIT, 0, "aiod%d", id); 1181 if (error == 0) { 1182 /* 1183 * Wait until daemon is started. 1184 */ 1185 sema_wait(&aio_newproc_sem); 1186 mtx_lock(&aio_job_mtx); 1187 num_aio_procs++; 1188 if (start != NULL) 1189 (*start)--; 1190 mtx_unlock(&aio_job_mtx); 1191 } else { 1192 free_unr(aiod_unr, id); 1193 } 1194 return (error); 1195 } 1196 1197 /* 1198 * Try the high-performance, low-overhead physio method for eligible 1199 * VCHR devices. This method doesn't use an aio helper thread, and 1200 * thus has very low overhead. 1201 * 1202 * Assumes that the caller, aio_aqueue(), has incremented the file 1203 * structure's reference count, preventing its deallocation for the 1204 * duration of this call. 1205 */ 1206 static int 1207 aio_qphysio(struct proc *p, struct kaiocb *job) 1208 { 1209 struct aiocb *cb; 1210 struct file *fp; 1211 struct bio *bp; 1212 struct buf *pbuf; 1213 struct vnode *vp; 1214 struct cdevsw *csw; 1215 struct cdev *dev; 1216 struct kaioinfo *ki; 1217 int error, ref, poff; 1218 vm_prot_t prot; 1219 1220 cb = &job->uaiocb; 1221 fp = job->fd_file; 1222 1223 if (!(cb->aio_lio_opcode == LIO_WRITE || 1224 cb->aio_lio_opcode == LIO_READ)) 1225 return (-1); 1226 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1227 return (-1); 1228 1229 vp = fp->f_vnode; 1230 if (vp->v_type != VCHR) 1231 return (-1); 1232 if (vp->v_bufobj.bo_bsize == 0) 1233 return (-1); 1234 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1235 return (-1); 1236 1237 ref = 0; 1238 csw = devvn_refthread(vp, &dev, &ref); 1239 if (csw == NULL) 1240 return (ENXIO); 1241 1242 if ((csw->d_flags & D_DISK) == 0) { 1243 error = -1; 1244 goto unref; 1245 } 1246 if (cb->aio_nbytes > dev->si_iosize_max) { 1247 error = -1; 1248 goto unref; 1249 } 1250 1251 ki = p->p_aioinfo; 1252 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1253 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1254 if (cb->aio_nbytes > MAXPHYS) { 1255 error = -1; 1256 goto unref; 1257 } 1258 1259 pbuf = NULL; 1260 } else { 1261 if (cb->aio_nbytes > MAXPHYS - poff) { 1262 error = -1; 1263 goto unref; 1264 } 1265 if (ki->kaio_buffer_count >= max_buf_aio) { 1266 error = EAGAIN; 1267 goto unref; 1268 } 1269 1270 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1271 BUF_KERNPROC(pbuf); 1272 AIO_LOCK(ki); 1273 ki->kaio_buffer_count++; 1274 AIO_UNLOCK(ki); 1275 } 1276 job->bp = bp = g_alloc_bio(); 1277 1278 bp->bio_length = cb->aio_nbytes; 1279 bp->bio_bcount = cb->aio_nbytes; 1280 bp->bio_done = aio_physwakeup; 1281 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1282 bp->bio_offset = cb->aio_offset; 1283 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1284 bp->bio_dev = dev; 1285 bp->bio_caller1 = (void *)job; 1286 1287 prot = VM_PROT_READ; 1288 if (cb->aio_lio_opcode == LIO_READ) 1289 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1290 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1291 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1292 nitems(job->pages)); 1293 if (job->npages < 0) { 1294 error = EFAULT; 1295 goto doerror; 1296 } 1297 if (pbuf != NULL) { 1298 pmap_qenter((vm_offset_t)pbuf->b_data, 1299 job->pages, job->npages); 1300 bp->bio_data = pbuf->b_data + poff; 1301 atomic_add_int(&num_buf_aio, 1); 1302 } else { 1303 bp->bio_ma = job->pages; 1304 bp->bio_ma_n = job->npages; 1305 bp->bio_ma_offset = poff; 1306 bp->bio_data = unmapped_buf; 1307 bp->bio_flags |= BIO_UNMAPPED; 1308 atomic_add_int(&num_unmapped_aio, 1); 1309 } 1310 1311 /* Perform transfer. */ 1312 csw->d_strategy(bp); 1313 dev_relthread(dev, ref); 1314 return (0); 1315 1316 doerror: 1317 if (pbuf != NULL) { 1318 AIO_LOCK(ki); 1319 ki->kaio_buffer_count--; 1320 AIO_UNLOCK(ki); 1321 relpbuf(pbuf, NULL); 1322 job->pbuf = NULL; 1323 } 1324 g_destroy_bio(bp); 1325 job->bp = NULL; 1326 unref: 1327 dev_relthread(dev, ref); 1328 return (error); 1329 } 1330 1331 #ifdef COMPAT_FREEBSD6 1332 static int 1333 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1334 { 1335 1336 /* 1337 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1338 * supported by AIO with the old sigevent structure. 1339 */ 1340 nsig->sigev_notify = osig->sigev_notify; 1341 switch (nsig->sigev_notify) { 1342 case SIGEV_NONE: 1343 break; 1344 case SIGEV_SIGNAL: 1345 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1346 break; 1347 case SIGEV_KEVENT: 1348 nsig->sigev_notify_kqueue = 1349 osig->__sigev_u.__sigev_notify_kqueue; 1350 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1351 break; 1352 default: 1353 return (EINVAL); 1354 } 1355 return (0); 1356 } 1357 1358 static int 1359 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1360 { 1361 struct oaiocb *ojob; 1362 int error; 1363 1364 bzero(kjob, sizeof(struct aiocb)); 1365 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1366 if (error) 1367 return (error); 1368 ojob = (struct oaiocb *)kjob; 1369 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1370 } 1371 #endif 1372 1373 static int 1374 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1375 { 1376 1377 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1378 } 1379 1380 static long 1381 aiocb_fetch_status(struct aiocb *ujob) 1382 { 1383 1384 return (fuword(&ujob->_aiocb_private.status)); 1385 } 1386 1387 static long 1388 aiocb_fetch_error(struct aiocb *ujob) 1389 { 1390 1391 return (fuword(&ujob->_aiocb_private.error)); 1392 } 1393 1394 static int 1395 aiocb_store_status(struct aiocb *ujob, long status) 1396 { 1397 1398 return (suword(&ujob->_aiocb_private.status, status)); 1399 } 1400 1401 static int 1402 aiocb_store_error(struct aiocb *ujob, long error) 1403 { 1404 1405 return (suword(&ujob->_aiocb_private.error, error)); 1406 } 1407 1408 static int 1409 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1410 { 1411 1412 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1413 } 1414 1415 static int 1416 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1417 { 1418 1419 return (suword(ujobp, (long)ujob)); 1420 } 1421 1422 static struct aiocb_ops aiocb_ops = { 1423 .copyin = aiocb_copyin, 1424 .fetch_status = aiocb_fetch_status, 1425 .fetch_error = aiocb_fetch_error, 1426 .store_status = aiocb_store_status, 1427 .store_error = aiocb_store_error, 1428 .store_kernelinfo = aiocb_store_kernelinfo, 1429 .store_aiocb = aiocb_store_aiocb, 1430 }; 1431 1432 #ifdef COMPAT_FREEBSD6 1433 static struct aiocb_ops aiocb_ops_osigevent = { 1434 .copyin = aiocb_copyin_old_sigevent, 1435 .fetch_status = aiocb_fetch_status, 1436 .fetch_error = aiocb_fetch_error, 1437 .store_status = aiocb_store_status, 1438 .store_error = aiocb_store_error, 1439 .store_kernelinfo = aiocb_store_kernelinfo, 1440 .store_aiocb = aiocb_store_aiocb, 1441 }; 1442 #endif 1443 1444 /* 1445 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1446 * technique is done in this code. 1447 */ 1448 int 1449 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1450 int type, struct aiocb_ops *ops) 1451 { 1452 struct proc *p = td->td_proc; 1453 struct file *fp; 1454 struct kaiocb *job; 1455 struct kaioinfo *ki; 1456 struct kevent kev; 1457 int opcode; 1458 int error; 1459 int fd, kqfd; 1460 int jid; 1461 u_short evflags; 1462 1463 if (p->p_aioinfo == NULL) 1464 aio_init_aioinfo(p); 1465 1466 ki = p->p_aioinfo; 1467 1468 ops->store_status(ujob, -1); 1469 ops->store_error(ujob, 0); 1470 ops->store_kernelinfo(ujob, -1); 1471 1472 if (num_queue_count >= max_queue_count || 1473 ki->kaio_count >= max_aio_queue_per_proc) { 1474 ops->store_error(ujob, EAGAIN); 1475 return (EAGAIN); 1476 } 1477 1478 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1479 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1480 1481 error = ops->copyin(ujob, &job->uaiocb); 1482 if (error) { 1483 ops->store_error(ujob, error); 1484 uma_zfree(aiocb_zone, job); 1485 return (error); 1486 } 1487 1488 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1489 uma_zfree(aiocb_zone, job); 1490 return (EINVAL); 1491 } 1492 1493 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1494 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1495 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1496 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1497 ops->store_error(ujob, EINVAL); 1498 uma_zfree(aiocb_zone, job); 1499 return (EINVAL); 1500 } 1501 1502 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1503 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1504 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1505 uma_zfree(aiocb_zone, job); 1506 return (EINVAL); 1507 } 1508 1509 ksiginfo_init(&job->ksi); 1510 1511 /* Save userspace address of the job info. */ 1512 job->ujob = ujob; 1513 1514 /* Get the opcode. */ 1515 if (type != LIO_NOP) 1516 job->uaiocb.aio_lio_opcode = type; 1517 opcode = job->uaiocb.aio_lio_opcode; 1518 1519 /* 1520 * Validate the opcode and fetch the file object for the specified 1521 * file descriptor. 1522 * 1523 * XXXRW: Moved the opcode validation up here so that we don't 1524 * retrieve a file descriptor without knowing what the capabiltity 1525 * should be. 1526 */ 1527 fd = job->uaiocb.aio_fildes; 1528 switch (opcode) { 1529 case LIO_WRITE: 1530 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1531 break; 1532 case LIO_READ: 1533 error = fget_read(td, fd, &cap_pread_rights, &fp); 1534 break; 1535 case LIO_SYNC: 1536 error = fget(td, fd, &cap_fsync_rights, &fp); 1537 break; 1538 case LIO_MLOCK: 1539 fp = NULL; 1540 break; 1541 case LIO_NOP: 1542 error = fget(td, fd, &cap_no_rights, &fp); 1543 break; 1544 default: 1545 error = EINVAL; 1546 } 1547 if (error) { 1548 uma_zfree(aiocb_zone, job); 1549 ops->store_error(ujob, error); 1550 return (error); 1551 } 1552 1553 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1554 error = EINVAL; 1555 goto aqueue_fail; 1556 } 1557 1558 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1559 job->uaiocb.aio_offset < 0 && 1560 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1561 error = EINVAL; 1562 goto aqueue_fail; 1563 } 1564 1565 job->fd_file = fp; 1566 1567 mtx_lock(&aio_job_mtx); 1568 jid = jobrefid++; 1569 job->seqno = jobseqno++; 1570 mtx_unlock(&aio_job_mtx); 1571 error = ops->store_kernelinfo(ujob, jid); 1572 if (error) { 1573 error = EINVAL; 1574 goto aqueue_fail; 1575 } 1576 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1577 1578 if (opcode == LIO_NOP) { 1579 fdrop(fp, td); 1580 uma_zfree(aiocb_zone, job); 1581 return (0); 1582 } 1583 1584 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1585 goto no_kqueue; 1586 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1587 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1588 error = EINVAL; 1589 goto aqueue_fail; 1590 } 1591 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1592 kev.ident = (uintptr_t)job->ujob; 1593 kev.filter = EVFILT_AIO; 1594 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1595 kev.data = (intptr_t)job; 1596 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1597 error = kqfd_register(kqfd, &kev, td, 1); 1598 if (error) 1599 goto aqueue_fail; 1600 1601 no_kqueue: 1602 1603 ops->store_error(ujob, EINPROGRESS); 1604 job->uaiocb._aiocb_private.error = EINPROGRESS; 1605 job->userproc = p; 1606 job->cred = crhold(td->td_ucred); 1607 job->jobflags = KAIOCB_QUEUEING; 1608 job->lio = lj; 1609 1610 if (opcode == LIO_MLOCK) { 1611 aio_schedule(job, aio_process_mlock); 1612 error = 0; 1613 } else if (fp->f_ops->fo_aio_queue == NULL) 1614 error = aio_queue_file(fp, job); 1615 else 1616 error = fo_aio_queue(fp, job); 1617 if (error) 1618 goto aqueue_fail; 1619 1620 AIO_LOCK(ki); 1621 job->jobflags &= ~KAIOCB_QUEUEING; 1622 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1623 ki->kaio_count++; 1624 if (lj) 1625 lj->lioj_count++; 1626 atomic_add_int(&num_queue_count, 1); 1627 if (job->jobflags & KAIOCB_FINISHED) { 1628 /* 1629 * The queue callback completed the request synchronously. 1630 * The bulk of the completion is deferred in that case 1631 * until this point. 1632 */ 1633 aio_bio_done_notify(p, job); 1634 } else 1635 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1636 AIO_UNLOCK(ki); 1637 return (0); 1638 1639 aqueue_fail: 1640 knlist_delete(&job->klist, curthread, 0); 1641 if (fp) 1642 fdrop(fp, td); 1643 uma_zfree(aiocb_zone, job); 1644 ops->store_error(ujob, error); 1645 return (error); 1646 } 1647 1648 static void 1649 aio_cancel_daemon_job(struct kaiocb *job) 1650 { 1651 1652 mtx_lock(&aio_job_mtx); 1653 if (!aio_cancel_cleared(job)) 1654 TAILQ_REMOVE(&aio_jobs, job, list); 1655 mtx_unlock(&aio_job_mtx); 1656 aio_cancel(job); 1657 } 1658 1659 void 1660 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1661 { 1662 1663 mtx_lock(&aio_job_mtx); 1664 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1665 mtx_unlock(&aio_job_mtx); 1666 aio_cancel(job); 1667 return; 1668 } 1669 job->handle_fn = func; 1670 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1671 aio_kick_nowait(job->userproc); 1672 mtx_unlock(&aio_job_mtx); 1673 } 1674 1675 static void 1676 aio_cancel_sync(struct kaiocb *job) 1677 { 1678 struct kaioinfo *ki; 1679 1680 ki = job->userproc->p_aioinfo; 1681 AIO_LOCK(ki); 1682 if (!aio_cancel_cleared(job)) 1683 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1684 AIO_UNLOCK(ki); 1685 aio_cancel(job); 1686 } 1687 1688 int 1689 aio_queue_file(struct file *fp, struct kaiocb *job) 1690 { 1691 struct kaioinfo *ki; 1692 struct kaiocb *job2; 1693 struct vnode *vp; 1694 struct mount *mp; 1695 int error; 1696 bool safe; 1697 1698 ki = job->userproc->p_aioinfo; 1699 error = aio_qphysio(job->userproc, job); 1700 if (error >= 0) 1701 return (error); 1702 safe = false; 1703 if (fp->f_type == DTYPE_VNODE) { 1704 vp = fp->f_vnode; 1705 if (vp->v_type == VREG || vp->v_type == VDIR) { 1706 mp = fp->f_vnode->v_mount; 1707 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1708 safe = true; 1709 } 1710 } 1711 if (!(safe || enable_aio_unsafe)) { 1712 counted_warning(&unsafe_warningcnt, 1713 "is attempting to use unsafe AIO requests"); 1714 return (EOPNOTSUPP); 1715 } 1716 1717 switch (job->uaiocb.aio_lio_opcode) { 1718 case LIO_READ: 1719 case LIO_WRITE: 1720 aio_schedule(job, aio_process_rw); 1721 error = 0; 1722 break; 1723 case LIO_SYNC: 1724 AIO_LOCK(ki); 1725 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1726 if (job2->fd_file == job->fd_file && 1727 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1728 job2->seqno < job->seqno) { 1729 job2->jobflags |= KAIOCB_CHECKSYNC; 1730 job->pending++; 1731 } 1732 } 1733 if (job->pending != 0) { 1734 if (!aio_set_cancel_function_locked(job, 1735 aio_cancel_sync)) { 1736 AIO_UNLOCK(ki); 1737 aio_cancel(job); 1738 return (0); 1739 } 1740 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1741 AIO_UNLOCK(ki); 1742 return (0); 1743 } 1744 AIO_UNLOCK(ki); 1745 aio_schedule(job, aio_process_sync); 1746 error = 0; 1747 break; 1748 default: 1749 error = EINVAL; 1750 } 1751 return (error); 1752 } 1753 1754 static void 1755 aio_kick_nowait(struct proc *userp) 1756 { 1757 struct kaioinfo *ki = userp->p_aioinfo; 1758 struct aioproc *aiop; 1759 1760 mtx_assert(&aio_job_mtx, MA_OWNED); 1761 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1762 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1763 aiop->aioprocflags &= ~AIOP_FREE; 1764 wakeup(aiop->aioproc); 1765 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1766 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1767 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1768 } 1769 } 1770 1771 static int 1772 aio_kick(struct proc *userp) 1773 { 1774 struct kaioinfo *ki = userp->p_aioinfo; 1775 struct aioproc *aiop; 1776 int error, ret = 0; 1777 1778 mtx_assert(&aio_job_mtx, MA_OWNED); 1779 retryproc: 1780 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1781 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1782 aiop->aioprocflags &= ~AIOP_FREE; 1783 wakeup(aiop->aioproc); 1784 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1785 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1786 num_aio_resv_start++; 1787 mtx_unlock(&aio_job_mtx); 1788 error = aio_newproc(&num_aio_resv_start); 1789 mtx_lock(&aio_job_mtx); 1790 if (error) { 1791 num_aio_resv_start--; 1792 goto retryproc; 1793 } 1794 } else { 1795 ret = -1; 1796 } 1797 return (ret); 1798 } 1799 1800 static void 1801 aio_kick_helper(void *context, int pending) 1802 { 1803 struct proc *userp = context; 1804 1805 mtx_lock(&aio_job_mtx); 1806 while (--pending >= 0) { 1807 if (aio_kick(userp)) 1808 break; 1809 } 1810 mtx_unlock(&aio_job_mtx); 1811 } 1812 1813 /* 1814 * Support the aio_return system call, as a side-effect, kernel resources are 1815 * released. 1816 */ 1817 static int 1818 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1819 { 1820 struct proc *p = td->td_proc; 1821 struct kaiocb *job; 1822 struct kaioinfo *ki; 1823 long status, error; 1824 1825 ki = p->p_aioinfo; 1826 if (ki == NULL) 1827 return (EINVAL); 1828 AIO_LOCK(ki); 1829 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1830 if (job->ujob == ujob) 1831 break; 1832 } 1833 if (job != NULL) { 1834 MPASS(job->jobflags & KAIOCB_FINISHED); 1835 status = job->uaiocb._aiocb_private.status; 1836 error = job->uaiocb._aiocb_private.error; 1837 td->td_retval[0] = status; 1838 td->td_ru.ru_oublock += job->outblock; 1839 td->td_ru.ru_inblock += job->inblock; 1840 td->td_ru.ru_msgsnd += job->msgsnd; 1841 td->td_ru.ru_msgrcv += job->msgrcv; 1842 aio_free_entry(job); 1843 AIO_UNLOCK(ki); 1844 ops->store_error(ujob, error); 1845 ops->store_status(ujob, status); 1846 } else { 1847 error = EINVAL; 1848 AIO_UNLOCK(ki); 1849 } 1850 return (error); 1851 } 1852 1853 int 1854 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1855 { 1856 1857 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1858 } 1859 1860 /* 1861 * Allow a process to wakeup when any of the I/O requests are completed. 1862 */ 1863 static int 1864 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1865 struct timespec *ts) 1866 { 1867 struct proc *p = td->td_proc; 1868 struct timeval atv; 1869 struct kaioinfo *ki; 1870 struct kaiocb *firstjob, *job; 1871 int error, i, timo; 1872 1873 timo = 0; 1874 if (ts) { 1875 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1876 return (EINVAL); 1877 1878 TIMESPEC_TO_TIMEVAL(&atv, ts); 1879 if (itimerfix(&atv)) 1880 return (EINVAL); 1881 timo = tvtohz(&atv); 1882 } 1883 1884 ki = p->p_aioinfo; 1885 if (ki == NULL) 1886 return (EAGAIN); 1887 1888 if (njoblist == 0) 1889 return (0); 1890 1891 AIO_LOCK(ki); 1892 for (;;) { 1893 firstjob = NULL; 1894 error = 0; 1895 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1896 for (i = 0; i < njoblist; i++) { 1897 if (job->ujob == ujoblist[i]) { 1898 if (firstjob == NULL) 1899 firstjob = job; 1900 if (job->jobflags & KAIOCB_FINISHED) 1901 goto RETURN; 1902 } 1903 } 1904 } 1905 /* All tasks were finished. */ 1906 if (firstjob == NULL) 1907 break; 1908 1909 ki->kaio_flags |= KAIO_WAKEUP; 1910 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1911 "aiospn", timo); 1912 if (error == ERESTART) 1913 error = EINTR; 1914 if (error) 1915 break; 1916 } 1917 RETURN: 1918 AIO_UNLOCK(ki); 1919 return (error); 1920 } 1921 1922 int 1923 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1924 { 1925 struct timespec ts, *tsp; 1926 struct aiocb **ujoblist; 1927 int error; 1928 1929 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1930 return (EINVAL); 1931 1932 if (uap->timeout) { 1933 /* Get timespec struct. */ 1934 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1935 return (error); 1936 tsp = &ts; 1937 } else 1938 tsp = NULL; 1939 1940 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1941 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1942 if (error == 0) 1943 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1944 free(ujoblist, M_AIOS); 1945 return (error); 1946 } 1947 1948 /* 1949 * aio_cancel cancels any non-physio aio operations not currently in 1950 * progress. 1951 */ 1952 int 1953 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1954 { 1955 struct proc *p = td->td_proc; 1956 struct kaioinfo *ki; 1957 struct kaiocb *job, *jobn; 1958 struct file *fp; 1959 int error; 1960 int cancelled = 0; 1961 int notcancelled = 0; 1962 struct vnode *vp; 1963 1964 /* Lookup file object. */ 1965 error = fget(td, uap->fd, &cap_no_rights, &fp); 1966 if (error) 1967 return (error); 1968 1969 ki = p->p_aioinfo; 1970 if (ki == NULL) 1971 goto done; 1972 1973 if (fp->f_type == DTYPE_VNODE) { 1974 vp = fp->f_vnode; 1975 if (vn_isdisk(vp, &error)) { 1976 fdrop(fp, td); 1977 td->td_retval[0] = AIO_NOTCANCELED; 1978 return (0); 1979 } 1980 } 1981 1982 AIO_LOCK(ki); 1983 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1984 if ((uap->fd == job->uaiocb.aio_fildes) && 1985 ((uap->aiocbp == NULL) || 1986 (uap->aiocbp == job->ujob))) { 1987 if (aio_cancel_job(p, ki, job)) { 1988 cancelled++; 1989 } else { 1990 notcancelled++; 1991 } 1992 if (uap->aiocbp != NULL) 1993 break; 1994 } 1995 } 1996 AIO_UNLOCK(ki); 1997 1998 done: 1999 fdrop(fp, td); 2000 2001 if (uap->aiocbp != NULL) { 2002 if (cancelled) { 2003 td->td_retval[0] = AIO_CANCELED; 2004 return (0); 2005 } 2006 } 2007 2008 if (notcancelled) { 2009 td->td_retval[0] = AIO_NOTCANCELED; 2010 return (0); 2011 } 2012 2013 if (cancelled) { 2014 td->td_retval[0] = AIO_CANCELED; 2015 return (0); 2016 } 2017 2018 td->td_retval[0] = AIO_ALLDONE; 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * aio_error is implemented in the kernel level for compatibility purposes 2025 * only. For a user mode async implementation, it would be best to do it in 2026 * a userland subroutine. 2027 */ 2028 static int 2029 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2030 { 2031 struct proc *p = td->td_proc; 2032 struct kaiocb *job; 2033 struct kaioinfo *ki; 2034 int status; 2035 2036 ki = p->p_aioinfo; 2037 if (ki == NULL) { 2038 td->td_retval[0] = EINVAL; 2039 return (0); 2040 } 2041 2042 AIO_LOCK(ki); 2043 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2044 if (job->ujob == ujob) { 2045 if (job->jobflags & KAIOCB_FINISHED) 2046 td->td_retval[0] = 2047 job->uaiocb._aiocb_private.error; 2048 else 2049 td->td_retval[0] = EINPROGRESS; 2050 AIO_UNLOCK(ki); 2051 return (0); 2052 } 2053 } 2054 AIO_UNLOCK(ki); 2055 2056 /* 2057 * Hack for failure of aio_aqueue. 2058 */ 2059 status = ops->fetch_status(ujob); 2060 if (status == -1) { 2061 td->td_retval[0] = ops->fetch_error(ujob); 2062 return (0); 2063 } 2064 2065 td->td_retval[0] = EINVAL; 2066 return (0); 2067 } 2068 2069 int 2070 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2071 { 2072 2073 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2074 } 2075 2076 /* syscall - asynchronous read from a file (REALTIME) */ 2077 #ifdef COMPAT_FREEBSD6 2078 int 2079 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2080 { 2081 2082 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2083 &aiocb_ops_osigevent)); 2084 } 2085 #endif 2086 2087 int 2088 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2089 { 2090 2091 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2092 } 2093 2094 /* syscall - asynchronous write to a file (REALTIME) */ 2095 #ifdef COMPAT_FREEBSD6 2096 int 2097 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2098 { 2099 2100 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2101 &aiocb_ops_osigevent)); 2102 } 2103 #endif 2104 2105 int 2106 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2107 { 2108 2109 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2110 } 2111 2112 int 2113 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2114 { 2115 2116 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2117 } 2118 2119 static int 2120 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2121 struct aiocb **acb_list, int nent, struct sigevent *sig, 2122 struct aiocb_ops *ops) 2123 { 2124 struct proc *p = td->td_proc; 2125 struct aiocb *job; 2126 struct kaioinfo *ki; 2127 struct aioliojob *lj; 2128 struct kevent kev; 2129 int error; 2130 int nagain, nerror; 2131 int i; 2132 2133 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2134 return (EINVAL); 2135 2136 if (nent < 0 || nent > max_aio_queue_per_proc) 2137 return (EINVAL); 2138 2139 if (p->p_aioinfo == NULL) 2140 aio_init_aioinfo(p); 2141 2142 ki = p->p_aioinfo; 2143 2144 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2145 lj->lioj_flags = 0; 2146 lj->lioj_count = 0; 2147 lj->lioj_finished_count = 0; 2148 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2149 ksiginfo_init(&lj->lioj_ksi); 2150 2151 /* 2152 * Setup signal. 2153 */ 2154 if (sig && (mode == LIO_NOWAIT)) { 2155 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2156 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2157 /* Assume only new style KEVENT */ 2158 kev.filter = EVFILT_LIO; 2159 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2160 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2161 kev.data = (intptr_t)lj; 2162 /* pass user defined sigval data */ 2163 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2164 error = kqfd_register( 2165 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2166 if (error) { 2167 uma_zfree(aiolio_zone, lj); 2168 return (error); 2169 } 2170 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2171 ; 2172 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2173 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2174 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2175 uma_zfree(aiolio_zone, lj); 2176 return EINVAL; 2177 } 2178 lj->lioj_flags |= LIOJ_SIGNAL; 2179 } else { 2180 uma_zfree(aiolio_zone, lj); 2181 return EINVAL; 2182 } 2183 } 2184 2185 AIO_LOCK(ki); 2186 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2187 /* 2188 * Add extra aiocb count to avoid the lio to be freed 2189 * by other threads doing aio_waitcomplete or aio_return, 2190 * and prevent event from being sent until we have queued 2191 * all tasks. 2192 */ 2193 lj->lioj_count = 1; 2194 AIO_UNLOCK(ki); 2195 2196 /* 2197 * Get pointers to the list of I/O requests. 2198 */ 2199 nagain = 0; 2200 nerror = 0; 2201 for (i = 0; i < nent; i++) { 2202 job = acb_list[i]; 2203 if (job != NULL) { 2204 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2205 if (error == EAGAIN) 2206 nagain++; 2207 else if (error != 0) 2208 nerror++; 2209 } 2210 } 2211 2212 error = 0; 2213 AIO_LOCK(ki); 2214 if (mode == LIO_WAIT) { 2215 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2216 ki->kaio_flags |= KAIO_WAKEUP; 2217 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2218 PRIBIO | PCATCH, "aiospn", 0); 2219 if (error == ERESTART) 2220 error = EINTR; 2221 if (error) 2222 break; 2223 } 2224 } else { 2225 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2226 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2227 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2228 KNOTE_LOCKED(&lj->klist, 1); 2229 } 2230 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2231 == LIOJ_SIGNAL 2232 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2233 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2234 aio_sendsig(p, &lj->lioj_signal, 2235 &lj->lioj_ksi); 2236 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2237 } 2238 } 2239 } 2240 lj->lioj_count--; 2241 if (lj->lioj_count == 0) { 2242 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2243 knlist_delete(&lj->klist, curthread, 1); 2244 PROC_LOCK(p); 2245 sigqueue_take(&lj->lioj_ksi); 2246 PROC_UNLOCK(p); 2247 AIO_UNLOCK(ki); 2248 uma_zfree(aiolio_zone, lj); 2249 } else 2250 AIO_UNLOCK(ki); 2251 2252 if (nerror) 2253 return (EIO); 2254 else if (nagain) 2255 return (EAGAIN); 2256 else 2257 return (error); 2258 } 2259 2260 /* syscall - list directed I/O (REALTIME) */ 2261 #ifdef COMPAT_FREEBSD6 2262 int 2263 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2264 { 2265 struct aiocb **acb_list; 2266 struct sigevent *sigp, sig; 2267 struct osigevent osig; 2268 int error, nent; 2269 2270 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2271 return (EINVAL); 2272 2273 nent = uap->nent; 2274 if (nent < 0 || nent > max_aio_queue_per_proc) 2275 return (EINVAL); 2276 2277 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2278 error = copyin(uap->sig, &osig, sizeof(osig)); 2279 if (error) 2280 return (error); 2281 error = convert_old_sigevent(&osig, &sig); 2282 if (error) 2283 return (error); 2284 sigp = &sig; 2285 } else 2286 sigp = NULL; 2287 2288 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2289 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2290 if (error == 0) 2291 error = kern_lio_listio(td, uap->mode, 2292 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2293 &aiocb_ops_osigevent); 2294 free(acb_list, M_LIO); 2295 return (error); 2296 } 2297 #endif 2298 2299 /* syscall - list directed I/O (REALTIME) */ 2300 int 2301 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2302 { 2303 struct aiocb **acb_list; 2304 struct sigevent *sigp, sig; 2305 int error, nent; 2306 2307 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2308 return (EINVAL); 2309 2310 nent = uap->nent; 2311 if (nent < 0 || nent > max_aio_queue_per_proc) 2312 return (EINVAL); 2313 2314 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2315 error = copyin(uap->sig, &sig, sizeof(sig)); 2316 if (error) 2317 return (error); 2318 sigp = &sig; 2319 } else 2320 sigp = NULL; 2321 2322 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2323 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2324 if (error == 0) 2325 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2326 nent, sigp, &aiocb_ops); 2327 free(acb_list, M_LIO); 2328 return (error); 2329 } 2330 2331 static void 2332 aio_physwakeup(struct bio *bp) 2333 { 2334 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2335 struct proc *userp; 2336 struct kaioinfo *ki; 2337 size_t nbytes; 2338 int error, nblks; 2339 2340 /* Release mapping into kernel space. */ 2341 userp = job->userproc; 2342 ki = userp->p_aioinfo; 2343 if (job->pbuf) { 2344 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2345 relpbuf(job->pbuf, NULL); 2346 job->pbuf = NULL; 2347 atomic_subtract_int(&num_buf_aio, 1); 2348 AIO_LOCK(ki); 2349 ki->kaio_buffer_count--; 2350 AIO_UNLOCK(ki); 2351 } else 2352 atomic_subtract_int(&num_unmapped_aio, 1); 2353 vm_page_unhold_pages(job->pages, job->npages); 2354 2355 bp = job->bp; 2356 job->bp = NULL; 2357 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2358 error = 0; 2359 if (bp->bio_flags & BIO_ERROR) 2360 error = bp->bio_error; 2361 nblks = btodb(nbytes); 2362 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2363 job->outblock += nblks; 2364 else 2365 job->inblock += nblks; 2366 2367 if (error) 2368 aio_complete(job, -1, error); 2369 else 2370 aio_complete(job, nbytes, 0); 2371 2372 g_destroy_bio(bp); 2373 } 2374 2375 /* syscall - wait for the next completion of an aio request */ 2376 static int 2377 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2378 struct timespec *ts, struct aiocb_ops *ops) 2379 { 2380 struct proc *p = td->td_proc; 2381 struct timeval atv; 2382 struct kaioinfo *ki; 2383 struct kaiocb *job; 2384 struct aiocb *ujob; 2385 long error, status; 2386 int timo; 2387 2388 ops->store_aiocb(ujobp, NULL); 2389 2390 if (ts == NULL) { 2391 timo = 0; 2392 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2393 timo = -1; 2394 } else { 2395 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2396 return (EINVAL); 2397 2398 TIMESPEC_TO_TIMEVAL(&atv, ts); 2399 if (itimerfix(&atv)) 2400 return (EINVAL); 2401 timo = tvtohz(&atv); 2402 } 2403 2404 if (p->p_aioinfo == NULL) 2405 aio_init_aioinfo(p); 2406 ki = p->p_aioinfo; 2407 2408 error = 0; 2409 job = NULL; 2410 AIO_LOCK(ki); 2411 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2412 if (timo == -1) { 2413 error = EWOULDBLOCK; 2414 break; 2415 } 2416 ki->kaio_flags |= KAIO_WAKEUP; 2417 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2418 "aiowc", timo); 2419 if (timo && error == ERESTART) 2420 error = EINTR; 2421 if (error) 2422 break; 2423 } 2424 2425 if (job != NULL) { 2426 MPASS(job->jobflags & KAIOCB_FINISHED); 2427 ujob = job->ujob; 2428 status = job->uaiocb._aiocb_private.status; 2429 error = job->uaiocb._aiocb_private.error; 2430 td->td_retval[0] = status; 2431 td->td_ru.ru_oublock += job->outblock; 2432 td->td_ru.ru_inblock += job->inblock; 2433 td->td_ru.ru_msgsnd += job->msgsnd; 2434 td->td_ru.ru_msgrcv += job->msgrcv; 2435 aio_free_entry(job); 2436 AIO_UNLOCK(ki); 2437 ops->store_aiocb(ujobp, ujob); 2438 ops->store_error(ujob, error); 2439 ops->store_status(ujob, status); 2440 } else 2441 AIO_UNLOCK(ki); 2442 2443 return (error); 2444 } 2445 2446 int 2447 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2448 { 2449 struct timespec ts, *tsp; 2450 int error; 2451 2452 if (uap->timeout) { 2453 /* Get timespec struct. */ 2454 error = copyin(uap->timeout, &ts, sizeof(ts)); 2455 if (error) 2456 return (error); 2457 tsp = &ts; 2458 } else 2459 tsp = NULL; 2460 2461 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2462 } 2463 2464 static int 2465 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2466 struct aiocb_ops *ops) 2467 { 2468 2469 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2470 return (EINVAL); 2471 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2472 } 2473 2474 int 2475 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2476 { 2477 2478 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2479 } 2480 2481 /* kqueue attach function */ 2482 static int 2483 filt_aioattach(struct knote *kn) 2484 { 2485 struct kaiocb *job; 2486 2487 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2488 2489 /* 2490 * The job pointer must be validated before using it, so 2491 * registration is restricted to the kernel; the user cannot 2492 * set EV_FLAG1. 2493 */ 2494 if ((kn->kn_flags & EV_FLAG1) == 0) 2495 return (EPERM); 2496 kn->kn_ptr.p_aio = job; 2497 kn->kn_flags &= ~EV_FLAG1; 2498 2499 knlist_add(&job->klist, kn, 0); 2500 2501 return (0); 2502 } 2503 2504 /* kqueue detach function */ 2505 static void 2506 filt_aiodetach(struct knote *kn) 2507 { 2508 struct knlist *knl; 2509 2510 knl = &kn->kn_ptr.p_aio->klist; 2511 knl->kl_lock(knl->kl_lockarg); 2512 if (!knlist_empty(knl)) 2513 knlist_remove(knl, kn, 1); 2514 knl->kl_unlock(knl->kl_lockarg); 2515 } 2516 2517 /* kqueue filter function */ 2518 /*ARGSUSED*/ 2519 static int 2520 filt_aio(struct knote *kn, long hint) 2521 { 2522 struct kaiocb *job = kn->kn_ptr.p_aio; 2523 2524 kn->kn_data = job->uaiocb._aiocb_private.error; 2525 if (!(job->jobflags & KAIOCB_FINISHED)) 2526 return (0); 2527 kn->kn_flags |= EV_EOF; 2528 return (1); 2529 } 2530 2531 /* kqueue attach function */ 2532 static int 2533 filt_lioattach(struct knote *kn) 2534 { 2535 struct aioliojob *lj; 2536 2537 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2538 2539 /* 2540 * The aioliojob pointer must be validated before using it, so 2541 * registration is restricted to the kernel; the user cannot 2542 * set EV_FLAG1. 2543 */ 2544 if ((kn->kn_flags & EV_FLAG1) == 0) 2545 return (EPERM); 2546 kn->kn_ptr.p_lio = lj; 2547 kn->kn_flags &= ~EV_FLAG1; 2548 2549 knlist_add(&lj->klist, kn, 0); 2550 2551 return (0); 2552 } 2553 2554 /* kqueue detach function */ 2555 static void 2556 filt_liodetach(struct knote *kn) 2557 { 2558 struct knlist *knl; 2559 2560 knl = &kn->kn_ptr.p_lio->klist; 2561 knl->kl_lock(knl->kl_lockarg); 2562 if (!knlist_empty(knl)) 2563 knlist_remove(knl, kn, 1); 2564 knl->kl_unlock(knl->kl_lockarg); 2565 } 2566 2567 /* kqueue filter function */ 2568 /*ARGSUSED*/ 2569 static int 2570 filt_lio(struct knote *kn, long hint) 2571 { 2572 struct aioliojob * lj = kn->kn_ptr.p_lio; 2573 2574 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2575 } 2576 2577 #ifdef COMPAT_FREEBSD32 2578 #include <sys/mount.h> 2579 #include <sys/socket.h> 2580 #include <compat/freebsd32/freebsd32.h> 2581 #include <compat/freebsd32/freebsd32_proto.h> 2582 #include <compat/freebsd32/freebsd32_signal.h> 2583 #include <compat/freebsd32/freebsd32_syscall.h> 2584 #include <compat/freebsd32/freebsd32_util.h> 2585 2586 struct __aiocb_private32 { 2587 int32_t status; 2588 int32_t error; 2589 uint32_t kernelinfo; 2590 }; 2591 2592 #ifdef COMPAT_FREEBSD6 2593 typedef struct oaiocb32 { 2594 int aio_fildes; /* File descriptor */ 2595 uint64_t aio_offset __packed; /* File offset for I/O */ 2596 uint32_t aio_buf; /* I/O buffer in process space */ 2597 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2598 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2599 int aio_lio_opcode; /* LIO opcode */ 2600 int aio_reqprio; /* Request priority -- ignored */ 2601 struct __aiocb_private32 _aiocb_private; 2602 } oaiocb32_t; 2603 #endif 2604 2605 typedef struct aiocb32 { 2606 int32_t aio_fildes; /* File descriptor */ 2607 uint64_t aio_offset __packed; /* File offset for I/O */ 2608 uint32_t aio_buf; /* I/O buffer in process space */ 2609 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2610 int __spare__[2]; 2611 uint32_t __spare2__; 2612 int aio_lio_opcode; /* LIO opcode */ 2613 int aio_reqprio; /* Request priority -- ignored */ 2614 struct __aiocb_private32 _aiocb_private; 2615 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2616 } aiocb32_t; 2617 2618 #ifdef COMPAT_FREEBSD6 2619 static int 2620 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2621 { 2622 2623 /* 2624 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2625 * supported by AIO with the old sigevent structure. 2626 */ 2627 CP(*osig, *nsig, sigev_notify); 2628 switch (nsig->sigev_notify) { 2629 case SIGEV_NONE: 2630 break; 2631 case SIGEV_SIGNAL: 2632 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2633 break; 2634 case SIGEV_KEVENT: 2635 nsig->sigev_notify_kqueue = 2636 osig->__sigev_u.__sigev_notify_kqueue; 2637 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2638 break; 2639 default: 2640 return (EINVAL); 2641 } 2642 return (0); 2643 } 2644 2645 static int 2646 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2647 { 2648 struct oaiocb32 job32; 2649 int error; 2650 2651 bzero(kjob, sizeof(struct aiocb)); 2652 error = copyin(ujob, &job32, sizeof(job32)); 2653 if (error) 2654 return (error); 2655 2656 CP(job32, *kjob, aio_fildes); 2657 CP(job32, *kjob, aio_offset); 2658 PTRIN_CP(job32, *kjob, aio_buf); 2659 CP(job32, *kjob, aio_nbytes); 2660 CP(job32, *kjob, aio_lio_opcode); 2661 CP(job32, *kjob, aio_reqprio); 2662 CP(job32, *kjob, _aiocb_private.status); 2663 CP(job32, *kjob, _aiocb_private.error); 2664 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2665 return (convert_old_sigevent32(&job32.aio_sigevent, 2666 &kjob->aio_sigevent)); 2667 } 2668 #endif 2669 2670 static int 2671 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2672 { 2673 struct aiocb32 job32; 2674 int error; 2675 2676 error = copyin(ujob, &job32, sizeof(job32)); 2677 if (error) 2678 return (error); 2679 CP(job32, *kjob, aio_fildes); 2680 CP(job32, *kjob, aio_offset); 2681 PTRIN_CP(job32, *kjob, aio_buf); 2682 CP(job32, *kjob, aio_nbytes); 2683 CP(job32, *kjob, aio_lio_opcode); 2684 CP(job32, *kjob, aio_reqprio); 2685 CP(job32, *kjob, _aiocb_private.status); 2686 CP(job32, *kjob, _aiocb_private.error); 2687 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2688 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2689 } 2690 2691 static long 2692 aiocb32_fetch_status(struct aiocb *ujob) 2693 { 2694 struct aiocb32 *ujob32; 2695 2696 ujob32 = (struct aiocb32 *)ujob; 2697 return (fuword32(&ujob32->_aiocb_private.status)); 2698 } 2699 2700 static long 2701 aiocb32_fetch_error(struct aiocb *ujob) 2702 { 2703 struct aiocb32 *ujob32; 2704 2705 ujob32 = (struct aiocb32 *)ujob; 2706 return (fuword32(&ujob32->_aiocb_private.error)); 2707 } 2708 2709 static int 2710 aiocb32_store_status(struct aiocb *ujob, long status) 2711 { 2712 struct aiocb32 *ujob32; 2713 2714 ujob32 = (struct aiocb32 *)ujob; 2715 return (suword32(&ujob32->_aiocb_private.status, status)); 2716 } 2717 2718 static int 2719 aiocb32_store_error(struct aiocb *ujob, long error) 2720 { 2721 struct aiocb32 *ujob32; 2722 2723 ujob32 = (struct aiocb32 *)ujob; 2724 return (suword32(&ujob32->_aiocb_private.error, error)); 2725 } 2726 2727 static int 2728 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2729 { 2730 struct aiocb32 *ujob32; 2731 2732 ujob32 = (struct aiocb32 *)ujob; 2733 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2734 } 2735 2736 static int 2737 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2738 { 2739 2740 return (suword32(ujobp, (long)ujob)); 2741 } 2742 2743 static struct aiocb_ops aiocb32_ops = { 2744 .copyin = aiocb32_copyin, 2745 .fetch_status = aiocb32_fetch_status, 2746 .fetch_error = aiocb32_fetch_error, 2747 .store_status = aiocb32_store_status, 2748 .store_error = aiocb32_store_error, 2749 .store_kernelinfo = aiocb32_store_kernelinfo, 2750 .store_aiocb = aiocb32_store_aiocb, 2751 }; 2752 2753 #ifdef COMPAT_FREEBSD6 2754 static struct aiocb_ops aiocb32_ops_osigevent = { 2755 .copyin = aiocb32_copyin_old_sigevent, 2756 .fetch_status = aiocb32_fetch_status, 2757 .fetch_error = aiocb32_fetch_error, 2758 .store_status = aiocb32_store_status, 2759 .store_error = aiocb32_store_error, 2760 .store_kernelinfo = aiocb32_store_kernelinfo, 2761 .store_aiocb = aiocb32_store_aiocb, 2762 }; 2763 #endif 2764 2765 int 2766 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2767 { 2768 2769 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2770 } 2771 2772 int 2773 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2774 { 2775 struct timespec32 ts32; 2776 struct timespec ts, *tsp; 2777 struct aiocb **ujoblist; 2778 uint32_t *ujoblist32; 2779 int error, i; 2780 2781 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2782 return (EINVAL); 2783 2784 if (uap->timeout) { 2785 /* Get timespec struct. */ 2786 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2787 return (error); 2788 CP(ts32, ts, tv_sec); 2789 CP(ts32, ts, tv_nsec); 2790 tsp = &ts; 2791 } else 2792 tsp = NULL; 2793 2794 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2795 ujoblist32 = (uint32_t *)ujoblist; 2796 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2797 sizeof(ujoblist32[0])); 2798 if (error == 0) { 2799 for (i = uap->nent - 1; i >= 0; i--) 2800 ujoblist[i] = PTRIN(ujoblist32[i]); 2801 2802 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2803 } 2804 free(ujoblist, M_AIOS); 2805 return (error); 2806 } 2807 2808 int 2809 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2810 { 2811 2812 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2813 } 2814 2815 #ifdef COMPAT_FREEBSD6 2816 int 2817 freebsd6_freebsd32_aio_read(struct thread *td, 2818 struct freebsd6_freebsd32_aio_read_args *uap) 2819 { 2820 2821 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2822 &aiocb32_ops_osigevent)); 2823 } 2824 #endif 2825 2826 int 2827 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2828 { 2829 2830 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2831 &aiocb32_ops)); 2832 } 2833 2834 #ifdef COMPAT_FREEBSD6 2835 int 2836 freebsd6_freebsd32_aio_write(struct thread *td, 2837 struct freebsd6_freebsd32_aio_write_args *uap) 2838 { 2839 2840 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2841 &aiocb32_ops_osigevent)); 2842 } 2843 #endif 2844 2845 int 2846 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2847 { 2848 2849 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2850 &aiocb32_ops)); 2851 } 2852 2853 int 2854 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2855 { 2856 2857 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2858 &aiocb32_ops)); 2859 } 2860 2861 int 2862 freebsd32_aio_waitcomplete(struct thread *td, 2863 struct freebsd32_aio_waitcomplete_args *uap) 2864 { 2865 struct timespec32 ts32; 2866 struct timespec ts, *tsp; 2867 int error; 2868 2869 if (uap->timeout) { 2870 /* Get timespec struct. */ 2871 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2872 if (error) 2873 return (error); 2874 CP(ts32, ts, tv_sec); 2875 CP(ts32, ts, tv_nsec); 2876 tsp = &ts; 2877 } else 2878 tsp = NULL; 2879 2880 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2881 &aiocb32_ops)); 2882 } 2883 2884 int 2885 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2886 { 2887 2888 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2889 &aiocb32_ops)); 2890 } 2891 2892 #ifdef COMPAT_FREEBSD6 2893 int 2894 freebsd6_freebsd32_lio_listio(struct thread *td, 2895 struct freebsd6_freebsd32_lio_listio_args *uap) 2896 { 2897 struct aiocb **acb_list; 2898 struct sigevent *sigp, sig; 2899 struct osigevent32 osig; 2900 uint32_t *acb_list32; 2901 int error, i, nent; 2902 2903 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2904 return (EINVAL); 2905 2906 nent = uap->nent; 2907 if (nent < 0 || nent > max_aio_queue_per_proc) 2908 return (EINVAL); 2909 2910 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2911 error = copyin(uap->sig, &osig, sizeof(osig)); 2912 if (error) 2913 return (error); 2914 error = convert_old_sigevent32(&osig, &sig); 2915 if (error) 2916 return (error); 2917 sigp = &sig; 2918 } else 2919 sigp = NULL; 2920 2921 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2922 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2923 if (error) { 2924 free(acb_list32, M_LIO); 2925 return (error); 2926 } 2927 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2928 for (i = 0; i < nent; i++) 2929 acb_list[i] = PTRIN(acb_list32[i]); 2930 free(acb_list32, M_LIO); 2931 2932 error = kern_lio_listio(td, uap->mode, 2933 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2934 &aiocb32_ops_osigevent); 2935 free(acb_list, M_LIO); 2936 return (error); 2937 } 2938 #endif 2939 2940 int 2941 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2942 { 2943 struct aiocb **acb_list; 2944 struct sigevent *sigp, sig; 2945 struct sigevent32 sig32; 2946 uint32_t *acb_list32; 2947 int error, i, nent; 2948 2949 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2950 return (EINVAL); 2951 2952 nent = uap->nent; 2953 if (nent < 0 || nent > max_aio_queue_per_proc) 2954 return (EINVAL); 2955 2956 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2957 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2958 if (error) 2959 return (error); 2960 error = convert_sigevent32(&sig32, &sig); 2961 if (error) 2962 return (error); 2963 sigp = &sig; 2964 } else 2965 sigp = NULL; 2966 2967 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2968 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2969 if (error) { 2970 free(acb_list32, M_LIO); 2971 return (error); 2972 } 2973 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2974 for (i = 0; i < nent; i++) 2975 acb_list[i] = PTRIN(acb_list32[i]); 2976 free(acb_list32, M_LIO); 2977 2978 error = kern_lio_listio(td, uap->mode, 2979 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2980 &aiocb32_ops); 2981 free(acb_list, M_LIO); 2982 return (error); 2983 } 2984 2985 #endif 2986