1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/proc.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/protosw.h> 45 #include <sys/socketvar.h> 46 #include <sys/syscall.h> 47 #include <sys/sysent.h> 48 #include <sys/sysctl.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 #include <sys/conf.h> 52 #include <sys/event.h> 53 54 #include <posix4/posix4.h> 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/uma.h> 60 #include <sys/aio.h> 61 62 #include "opt_vfs_aio.h" 63 64 NET_NEEDS_GIANT("aio"); 65 66 /* 67 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 68 * overflow. 69 */ 70 static long jobrefid; 71 72 #define JOBST_NULL 0x0 73 #define JOBST_JOBQGLOBAL 0x2 74 #define JOBST_JOBRUNNING 0x3 75 #define JOBST_JOBFINISHED 0x4 76 #define JOBST_JOBQBUF 0x5 77 #define JOBST_JOBBFINISHED 0x6 78 79 #ifndef MAX_AIO_PER_PROC 80 #define MAX_AIO_PER_PROC 32 81 #endif 82 83 #ifndef MAX_AIO_QUEUE_PER_PROC 84 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 85 #endif 86 87 #ifndef MAX_AIO_PROCS 88 #define MAX_AIO_PROCS 32 89 #endif 90 91 #ifndef MAX_AIO_QUEUE 92 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 93 #endif 94 95 #ifndef TARGET_AIO_PROCS 96 #define TARGET_AIO_PROCS 4 97 #endif 98 99 #ifndef MAX_BUF_AIO 100 #define MAX_BUF_AIO 16 101 #endif 102 103 #ifndef AIOD_TIMEOUT_DEFAULT 104 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 105 #endif 106 107 #ifndef AIOD_LIFETIME_DEFAULT 108 #define AIOD_LIFETIME_DEFAULT (30 * hz) 109 #endif 110 111 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 112 113 static int max_aio_procs = MAX_AIO_PROCS; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 115 CTLFLAG_RW, &max_aio_procs, 0, 116 "Maximum number of kernel threads to use for handling async IO "); 117 118 static int num_aio_procs = 0; 119 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 120 CTLFLAG_RD, &num_aio_procs, 0, 121 "Number of presently active kernel threads for async IO"); 122 123 /* 124 * The code will adjust the actual number of AIO processes towards this 125 * number when it gets a chance. 126 */ 127 static int target_aio_procs = TARGET_AIO_PROCS; 128 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 129 0, "Preferred number of ready kernel threads for async IO"); 130 131 static int max_queue_count = MAX_AIO_QUEUE; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 133 "Maximum number of aio requests to queue, globally"); 134 135 static int num_queue_count = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 137 "Number of queued aio requests"); 138 139 static int num_buf_aio = 0; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 141 "Number of aio requests presently handled by the buf subsystem"); 142 143 /* Number of async I/O thread in the process of being started */ 144 /* XXX This should be local to _aio_aqueue() */ 145 static int num_aio_resv_start = 0; 146 147 static int aiod_timeout; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 149 "Timeout value for synchronous aio operations"); 150 151 static int aiod_lifetime; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 153 "Maximum lifetime for idle aiod"); 154 155 static int unloadable = 0; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 157 "Allow unload of aio (not recommended)"); 158 159 160 static int max_aio_per_proc = MAX_AIO_PER_PROC; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 162 0, "Maximum active aio requests per process (stored in the process)"); 163 164 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 166 &max_aio_queue_per_proc, 0, 167 "Maximum queued aio requests per process (stored in the process)"); 168 169 static int max_buf_aio = MAX_BUF_AIO; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 171 "Maximum buf aio requests per process (stored in the process)"); 172 173 struct aiocblist { 174 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 175 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 176 int jobflags; 177 int jobstate; 178 int inputcharge; 179 int outputcharge; 180 struct buf *bp; /* Buffer pointer */ 181 struct proc *userproc; /* User process */ /* Not td! */ 182 struct ucred *cred; /* Active credential when created */ 183 struct file *fd_file; /* Pointer to file structure */ 184 struct aio_liojob *lio; /* Optional lio job */ 185 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 186 struct knlist klist; /* list of knotes */ 187 struct aiocb uaiocb; /* Kernel I/O control block */ 188 }; 189 190 /* jobflags */ 191 #define AIOCBLIST_RUNDOWN 0x4 192 #define AIOCBLIST_DONE 0x10 193 194 /* 195 * AIO process info 196 */ 197 #define AIOP_FREE 0x1 /* proc on free queue */ 198 199 struct aiothreadlist { 200 int aiothreadflags; /* AIO proc flags */ 201 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 202 struct thread *aiothread; /* The AIO thread */ 203 }; 204 205 /* 206 * data-structure for lio signal management 207 */ 208 struct aio_liojob { 209 int lioj_flags; 210 int lioj_buffer_count; 211 int lioj_buffer_finished_count; 212 int lioj_queue_count; 213 int lioj_queue_finished_count; 214 struct sigevent lioj_signal; /* signal on all I/O done */ 215 TAILQ_ENTRY(aio_liojob) lioj_list; 216 }; 217 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 218 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 219 220 /* 221 * per process aio data structure 222 */ 223 struct kaioinfo { 224 int kaio_flags; /* per process kaio flags */ 225 int kaio_maxactive_count; /* maximum number of AIOs */ 226 int kaio_active_count; /* number of currently used AIOs */ 227 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 228 int kaio_queue_count; /* size of AIO queue */ 229 int kaio_ballowed_count; /* maximum number of buffers */ 230 int kaio_queue_finished_count; /* number of daemon jobs finished */ 231 int kaio_buffer_count; /* number of physio buffers */ 232 int kaio_buffer_finished_count; /* count of I/O done */ 233 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 234 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 235 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 239 }; 240 241 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 242 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 243 244 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 245 static struct mtx aio_freeproc_mtx; 246 247 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 248 249 static void aio_init_aioinfo(struct proc *p); 250 static void aio_onceonly(void); 251 static int aio_free_entry(struct aiocblist *aiocbe); 252 static void aio_process(struct aiocblist *aiocbe); 253 static int aio_newproc(void); 254 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 255 static void aio_physwakeup(struct buf *bp); 256 static void aio_proc_rundown(void *arg, struct proc *p); 257 static int aio_fphysio(struct aiocblist *aiocbe); 258 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 259 static void aio_daemon(void *uproc); 260 static void aio_swake_cb(struct socket *, struct sockbuf *); 261 static int aio_unload(void); 262 static int filt_aioattach(struct knote *kn); 263 static void filt_aiodetach(struct knote *kn); 264 static int filt_aio(struct knote *kn, long hint); 265 266 /* 267 * Zones for: 268 * kaio Per process async io info 269 * aiop async io thread data 270 * aiocb async io jobs 271 * aiol list io job pointer - internal to aio_suspend XXX 272 * aiolio list io jobs 273 */ 274 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 275 276 /* kqueue filters for aio */ 277 static struct filterops aio_filtops = 278 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 279 280 static eventhandler_tag exit_tag, exec_tag; 281 282 /* 283 * Main operations function for use as a kernel module. 284 */ 285 static int 286 aio_modload(struct module *module, int cmd, void *arg) 287 { 288 int error = 0; 289 290 switch (cmd) { 291 case MOD_LOAD: 292 aio_onceonly(); 293 break; 294 case MOD_UNLOAD: 295 error = aio_unload(); 296 break; 297 case MOD_SHUTDOWN: 298 break; 299 default: 300 error = EINVAL; 301 break; 302 } 303 return (error); 304 } 305 306 static moduledata_t aio_mod = { 307 "aio", 308 &aio_modload, 309 NULL 310 }; 311 312 SYSCALL_MODULE_HELPER(aio_return); 313 SYSCALL_MODULE_HELPER(aio_suspend); 314 SYSCALL_MODULE_HELPER(aio_cancel); 315 SYSCALL_MODULE_HELPER(aio_error); 316 SYSCALL_MODULE_HELPER(aio_read); 317 SYSCALL_MODULE_HELPER(aio_write); 318 SYSCALL_MODULE_HELPER(aio_waitcomplete); 319 SYSCALL_MODULE_HELPER(lio_listio); 320 321 DECLARE_MODULE(aio, aio_mod, 322 SI_SUB_VFS, SI_ORDER_ANY); 323 MODULE_VERSION(aio, 1); 324 325 /* 326 * Startup initialization 327 */ 328 static void 329 aio_onceonly(void) 330 { 331 332 /* XXX: should probably just use so->callback */ 333 aio_swake = &aio_swake_cb; 334 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 335 EVENTHANDLER_PRI_ANY); 336 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 337 EVENTHANDLER_PRI_ANY); 338 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 339 TAILQ_INIT(&aio_freeproc); 340 mtx_init(&aio_freeproc_mtx, "aio_freeproc", NULL, MTX_DEF); 341 TAILQ_INIT(&aio_jobs); 342 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 343 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 344 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 345 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 346 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 347 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 348 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 349 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 350 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 351 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 352 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 353 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 354 jobrefid = 1; 355 async_io_version = _POSIX_VERSION; 356 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 357 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 358 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 359 } 360 361 /* 362 * Callback for unload of AIO when used as a module. 363 */ 364 static int 365 aio_unload(void) 366 { 367 int error; 368 369 /* 370 * XXX: no unloads by default, it's too dangerous. 371 * perhaps we could do it if locked out callers and then 372 * did an aio_proc_rundown() on each process. 373 */ 374 if (!unloadable) 375 return (EOPNOTSUPP); 376 377 error = kqueue_del_filteropts(EVFILT_AIO); 378 if (error) 379 return error; 380 381 async_io_version = 0; 382 aio_swake = NULL; 383 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 384 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 385 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 386 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 387 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 388 return (0); 389 } 390 391 /* 392 * Init the per-process aioinfo structure. The aioinfo limits are set 393 * per-process for user limit (resource) management. 394 */ 395 static void 396 aio_init_aioinfo(struct proc *p) 397 { 398 struct kaioinfo *ki; 399 400 ki = uma_zalloc(kaio_zone, M_WAITOK); 401 ki->kaio_flags = 0; 402 ki->kaio_maxactive_count = max_aio_per_proc; 403 ki->kaio_active_count = 0; 404 ki->kaio_qallowed_count = max_aio_queue_per_proc; 405 ki->kaio_queue_count = 0; 406 ki->kaio_ballowed_count = max_buf_aio; 407 ki->kaio_buffer_count = 0; 408 ki->kaio_buffer_finished_count = 0; 409 TAILQ_INIT(&ki->kaio_jobdone); 410 TAILQ_INIT(&ki->kaio_jobqueue); 411 TAILQ_INIT(&ki->kaio_bufdone); 412 TAILQ_INIT(&ki->kaio_bufqueue); 413 TAILQ_INIT(&ki->kaio_liojoblist); 414 TAILQ_INIT(&ki->kaio_sockqueue); 415 PROC_LOCK(p); 416 if (p->p_aioinfo == NULL) { 417 p->p_aioinfo = ki; 418 PROC_UNLOCK(p); 419 } else { 420 PROC_UNLOCK(p); 421 uma_zfree(kaio_zone, ki); 422 } 423 424 while (num_aio_procs < target_aio_procs) 425 aio_newproc(); 426 } 427 428 /* 429 * Free a job entry. Wait for completion if it is currently active, but don't 430 * delay forever. If we delay, we return a flag that says that we have to 431 * restart the queue scan. 432 */ 433 static int 434 aio_free_entry(struct aiocblist *aiocbe) 435 { 436 struct kaioinfo *ki; 437 struct aio_liojob *lj; 438 struct proc *p; 439 int error; 440 int s; 441 442 if (aiocbe->jobstate == JOBST_NULL) 443 panic("aio_free_entry: freeing already free job"); 444 445 p = aiocbe->userproc; 446 ki = p->p_aioinfo; 447 lj = aiocbe->lio; 448 if (ki == NULL) 449 panic("aio_free_entry: missing p->p_aioinfo"); 450 451 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 452 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 453 tsleep(aiocbe, PRIBIO, "jobwai", 0); 454 } 455 if (aiocbe->bp == NULL) { 456 if (ki->kaio_queue_count <= 0) 457 panic("aio_free_entry: process queue size <= 0"); 458 if (num_queue_count <= 0) 459 panic("aio_free_entry: system wide queue size <= 0"); 460 461 if (lj) { 462 lj->lioj_queue_count--; 463 if (aiocbe->jobflags & AIOCBLIST_DONE) 464 lj->lioj_queue_finished_count--; 465 } 466 ki->kaio_queue_count--; 467 if (aiocbe->jobflags & AIOCBLIST_DONE) 468 ki->kaio_queue_finished_count--; 469 num_queue_count--; 470 } else { 471 if (lj) { 472 lj->lioj_buffer_count--; 473 if (aiocbe->jobflags & AIOCBLIST_DONE) 474 lj->lioj_buffer_finished_count--; 475 } 476 if (aiocbe->jobflags & AIOCBLIST_DONE) 477 ki->kaio_buffer_finished_count--; 478 ki->kaio_buffer_count--; 479 num_buf_aio--; 480 } 481 482 /* aiocbe is going away, we need to destroy any knotes */ 483 /* XXXKSE Note the thread here is used to eventually find the 484 * owning process again, but it is also used to do a fo_close 485 * and that requires the thread. (but does it require the 486 * OWNING thread? (or maybe the running thread?) 487 * There is a semantic problem here... 488 */ 489 knlist_delete(&aiocbe->klist, FIRST_THREAD_IN_PROC(p), 0); /* XXXKSE */ 490 491 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 492 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 493 ki->kaio_flags &= ~KAIO_WAKEUP; 494 wakeup(p); 495 } 496 497 if (aiocbe->jobstate == JOBST_JOBQBUF) { 498 if ((error = aio_fphysio(aiocbe)) != 0) 499 return (error); 500 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 501 panic("aio_free_entry: invalid physio finish-up state"); 502 s = splbio(); 503 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 504 splx(s); 505 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 506 s = splnet(); 507 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 508 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 509 splx(s); 510 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 511 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 512 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 513 s = splbio(); 514 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 515 splx(s); 516 if (aiocbe->bp) { 517 vunmapbuf(aiocbe->bp); 518 relpbuf(aiocbe->bp, NULL); 519 aiocbe->bp = NULL; 520 } 521 } 522 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 523 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 524 uma_zfree(aiolio_zone, lj); 525 } 526 aiocbe->jobstate = JOBST_NULL; 527 fdrop(aiocbe->fd_file, curthread); 528 crfree(aiocbe->cred); 529 uma_zfree(aiocb_zone, aiocbe); 530 return (0); 531 } 532 533 /* 534 * Rundown the jobs for a given process. 535 */ 536 static void 537 aio_proc_rundown(void *arg, struct proc *p) 538 { 539 int s; 540 struct kaioinfo *ki; 541 struct aio_liojob *lj, *ljn; 542 struct aiocblist *aiocbe, *aiocbn; 543 struct file *fp; 544 struct socket *so; 545 546 ki = p->p_aioinfo; 547 if (ki == NULL) 548 return; 549 550 mtx_lock(&Giant); 551 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 552 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 553 ki->kaio_buffer_finished_count)) { 554 ki->kaio_flags |= KAIO_RUNDOWN; 555 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 556 break; 557 } 558 559 /* 560 * Move any aio ops that are waiting on socket I/O to the normal job 561 * queues so they are cleaned up with any others. 562 */ 563 s = splnet(); 564 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 565 aiocbn) { 566 aiocbn = TAILQ_NEXT(aiocbe, plist); 567 fp = aiocbe->fd_file; 568 if (fp != NULL) { 569 so = fp->f_data; 570 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 571 if (TAILQ_EMPTY(&so->so_aiojobq)) { 572 SOCKBUF_LOCK(&so->so_snd); 573 so->so_snd.sb_flags &= ~SB_AIO; 574 SOCKBUF_UNLOCK(&so->so_snd); 575 SOCKBUF_LOCK(&so->so_rcv); 576 so->so_rcv.sb_flags &= ~SB_AIO; 577 SOCKBUF_UNLOCK(&so->so_rcv); 578 } 579 } 580 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 581 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 582 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 583 } 584 splx(s); 585 586 restart1: 587 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 588 aiocbn = TAILQ_NEXT(aiocbe, plist); 589 if (aio_free_entry(aiocbe)) 590 goto restart1; 591 } 592 593 restart2: 594 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 595 aiocbn) { 596 aiocbn = TAILQ_NEXT(aiocbe, plist); 597 if (aio_free_entry(aiocbe)) 598 goto restart2; 599 } 600 601 /* 602 * Note the use of lots of splbio here, trying to avoid splbio for long chains 603 * of I/O. Probably unnecessary. 604 */ 605 restart3: 606 s = splbio(); 607 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 608 ki->kaio_flags |= KAIO_WAKEUP; 609 tsleep(p, PRIBIO, "aioprn", 0); 610 splx(s); 611 goto restart3; 612 } 613 splx(s); 614 615 restart4: 616 s = splbio(); 617 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 618 aiocbn = TAILQ_NEXT(aiocbe, plist); 619 if (aio_free_entry(aiocbe)) { 620 splx(s); 621 goto restart4; 622 } 623 } 624 splx(s); 625 626 /* 627 * If we've slept, jobs might have moved from one queue to another. 628 * Retry rundown if we didn't manage to empty the queues. 629 */ 630 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 631 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 632 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 633 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 634 goto restart1; 635 636 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 637 ljn = TAILQ_NEXT(lj, lioj_list); 638 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 639 0)) { 640 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 641 uma_zfree(aiolio_zone, lj); 642 } else { 643 #ifdef DIAGNOSTIC 644 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 645 "QF:%d\n", lj->lioj_buffer_count, 646 lj->lioj_buffer_finished_count, 647 lj->lioj_queue_count, 648 lj->lioj_queue_finished_count); 649 #endif 650 } 651 } 652 653 uma_zfree(kaio_zone, ki); 654 p->p_aioinfo = NULL; 655 mtx_unlock(&Giant); 656 } 657 658 /* 659 * Select a job to run (called by an AIO daemon). 660 */ 661 static struct aiocblist * 662 aio_selectjob(struct aiothreadlist *aiop) 663 { 664 int s; 665 struct aiocblist *aiocbe; 666 struct kaioinfo *ki; 667 struct proc *userp; 668 669 s = splnet(); 670 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 671 TAILQ_NEXT(aiocbe, list)) { 672 userp = aiocbe->userproc; 673 ki = userp->p_aioinfo; 674 675 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 676 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 677 splx(s); 678 return (aiocbe); 679 } 680 } 681 splx(s); 682 683 return (NULL); 684 } 685 686 /* 687 * The AIO processing activity. This is the code that does the I/O request for 688 * the non-physio version of the operations. The normal vn operations are used, 689 * and this code should work in all instances for every type of file, including 690 * pipes, sockets, fifos, and regular files. 691 */ 692 static void 693 aio_process(struct aiocblist *aiocbe) 694 { 695 struct ucred *td_savedcred; 696 struct thread *td; 697 struct proc *mycp; 698 struct aiocb *cb; 699 struct file *fp; 700 struct uio auio; 701 struct iovec aiov; 702 int cnt; 703 int error; 704 int oublock_st, oublock_end; 705 int inblock_st, inblock_end; 706 707 td = curthread; 708 td_savedcred = td->td_ucred; 709 td->td_ucred = aiocbe->cred; 710 mycp = td->td_proc; 711 cb = &aiocbe->uaiocb; 712 fp = aiocbe->fd_file; 713 714 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 715 aiov.iov_len = cb->aio_nbytes; 716 717 auio.uio_iov = &aiov; 718 auio.uio_iovcnt = 1; 719 auio.uio_offset = cb->aio_offset; 720 auio.uio_resid = cb->aio_nbytes; 721 cnt = cb->aio_nbytes; 722 auio.uio_segflg = UIO_USERSPACE; 723 auio.uio_td = td; 724 725 inblock_st = mycp->p_stats->p_ru.ru_inblock; 726 oublock_st = mycp->p_stats->p_ru.ru_oublock; 727 /* 728 * _aio_aqueue() acquires a reference to the file that is 729 * released in aio_free_entry(). 730 */ 731 if (cb->aio_lio_opcode == LIO_READ) { 732 auio.uio_rw = UIO_READ; 733 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 734 } else { 735 auio.uio_rw = UIO_WRITE; 736 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 737 } 738 inblock_end = mycp->p_stats->p_ru.ru_inblock; 739 oublock_end = mycp->p_stats->p_ru.ru_oublock; 740 741 aiocbe->inputcharge = inblock_end - inblock_st; 742 aiocbe->outputcharge = oublock_end - oublock_st; 743 744 if ((error) && (auio.uio_resid != cnt)) { 745 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 746 error = 0; 747 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 748 PROC_LOCK(aiocbe->userproc); 749 psignal(aiocbe->userproc, SIGPIPE); 750 PROC_UNLOCK(aiocbe->userproc); 751 } 752 } 753 754 cnt -= auio.uio_resid; 755 cb->_aiocb_private.error = error; 756 cb->_aiocb_private.status = cnt; 757 td->td_ucred = td_savedcred; 758 } 759 760 /* 761 * The AIO daemon, most of the actual work is done in aio_process, 762 * but the setup (and address space mgmt) is done in this routine. 763 */ 764 static void 765 aio_daemon(void *uproc) 766 { 767 int s; 768 struct aio_liojob *lj; 769 struct aiocb *cb; 770 struct aiocblist *aiocbe; 771 struct aiothreadlist *aiop; 772 struct kaioinfo *ki; 773 struct proc *curcp, *mycp, *userp; 774 struct vmspace *myvm, *tmpvm; 775 struct thread *td = curthread; 776 struct pgrp *newpgrp; 777 struct session *newsess; 778 779 /* 780 * Local copies of curproc (cp) and vmspace (myvm) 781 */ 782 mycp = td->td_proc; 783 myvm = mycp->p_vmspace; 784 785 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 786 787 /* 788 * Allocate and ready the aio control info. There is one aiop structure 789 * per daemon. 790 */ 791 aiop = uma_zalloc(aiop_zone, M_WAITOK); 792 aiop->aiothread = td; 793 aiop->aiothreadflags |= AIOP_FREE; 794 795 /* 796 * Place thread (lightweight process) onto the AIO free thread list. 797 */ 798 mtx_lock(&aio_freeproc_mtx); 799 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 800 mtx_unlock(&aio_freeproc_mtx); 801 802 /* 803 * Get rid of our current filedescriptors. AIOD's don't need any 804 * filedescriptors, except as temporarily inherited from the client. 805 */ 806 mtx_lock(&Giant); 807 fdfree(td); 808 809 mtx_unlock(&Giant); 810 /* The daemon resides in its own pgrp. */ 811 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 812 M_WAITOK | M_ZERO); 813 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 814 M_WAITOK | M_ZERO); 815 816 sx_xlock(&proctree_lock); 817 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 818 sx_xunlock(&proctree_lock); 819 mtx_lock(&Giant); 820 821 /* 822 * Wakeup parent process. (Parent sleeps to keep from blasting away 823 * and creating too many daemons.) 824 */ 825 wakeup(mycp); 826 827 for (;;) { 828 /* 829 * curcp is the current daemon process context. 830 * userp is the current user process context. 831 */ 832 curcp = mycp; 833 834 /* 835 * Take daemon off of free queue 836 */ 837 mtx_lock(&aio_freeproc_mtx); 838 if (aiop->aiothreadflags & AIOP_FREE) { 839 TAILQ_REMOVE(&aio_freeproc, aiop, list); 840 aiop->aiothreadflags &= ~AIOP_FREE; 841 } 842 mtx_unlock(&aio_freeproc_mtx); 843 844 /* 845 * Check for jobs. 846 */ 847 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 848 cb = &aiocbe->uaiocb; 849 userp = aiocbe->userproc; 850 851 aiocbe->jobstate = JOBST_JOBRUNNING; 852 853 /* 854 * Connect to process address space for user program. 855 */ 856 if (userp != curcp) { 857 /* 858 * Save the current address space that we are 859 * connected to. 860 */ 861 tmpvm = mycp->p_vmspace; 862 863 /* 864 * Point to the new user address space, and 865 * refer to it. 866 */ 867 mycp->p_vmspace = userp->p_vmspace; 868 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 869 870 /* Activate the new mapping. */ 871 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 872 873 /* 874 * If the old address space wasn't the daemons 875 * own address space, then we need to remove the 876 * daemon's reference from the other process 877 * that it was acting on behalf of. 878 */ 879 if (tmpvm != myvm) { 880 vmspace_free(tmpvm); 881 } 882 curcp = userp; 883 } 884 885 ki = userp->p_aioinfo; 886 lj = aiocbe->lio; 887 888 /* Account for currently active jobs. */ 889 ki->kaio_active_count++; 890 891 /* Do the I/O function. */ 892 aio_process(aiocbe); 893 894 /* Decrement the active job count. */ 895 ki->kaio_active_count--; 896 897 /* 898 * Increment the completion count for wakeup/signal 899 * comparisons. 900 */ 901 aiocbe->jobflags |= AIOCBLIST_DONE; 902 ki->kaio_queue_finished_count++; 903 if (lj) 904 lj->lioj_queue_finished_count++; 905 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 906 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 907 ki->kaio_flags &= ~KAIO_WAKEUP; 908 wakeup(userp); 909 } 910 911 s = splbio(); 912 if (lj && (lj->lioj_flags & 913 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 914 if ((lj->lioj_queue_finished_count == 915 lj->lioj_queue_count) && 916 (lj->lioj_buffer_finished_count == 917 lj->lioj_buffer_count)) { 918 PROC_LOCK(userp); 919 psignal(userp, 920 lj->lioj_signal.sigev_signo); 921 PROC_UNLOCK(userp); 922 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 923 } 924 } 925 splx(s); 926 927 aiocbe->jobstate = JOBST_JOBFINISHED; 928 929 s = splnet(); 930 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 931 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 932 splx(s); 933 KNOTE_UNLOCKED(&aiocbe->klist, 0); 934 935 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 936 wakeup(aiocbe); 937 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 938 } 939 940 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 941 PROC_LOCK(userp); 942 psignal(userp, cb->aio_sigevent.sigev_signo); 943 PROC_UNLOCK(userp); 944 } 945 } 946 947 /* 948 * Disconnect from user address space. 949 */ 950 if (curcp != mycp) { 951 /* Get the user address space to disconnect from. */ 952 tmpvm = mycp->p_vmspace; 953 954 /* Get original address space for daemon. */ 955 mycp->p_vmspace = myvm; 956 957 /* Activate the daemon's address space. */ 958 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 959 #ifdef DIAGNOSTIC 960 if (tmpvm == myvm) { 961 printf("AIOD: vmspace problem -- %d\n", 962 mycp->p_pid); 963 } 964 #endif 965 /* Remove our vmspace reference. */ 966 vmspace_free(tmpvm); 967 968 curcp = mycp; 969 } 970 971 mtx_lock(&aio_freeproc_mtx); 972 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 973 aiop->aiothreadflags |= AIOP_FREE; 974 975 /* 976 * If daemon is inactive for a long time, allow it to exit, 977 * thereby freeing resources. 978 */ 979 if (msleep(aiop->aiothread, &aio_freeproc_mtx, PDROP | PRIBIO, 980 "aiordy", aiod_lifetime)) { 981 s = splnet(); 982 if (TAILQ_EMPTY(&aio_jobs)) { 983 mtx_lock(&aio_freeproc_mtx); 984 if ((aiop->aiothreadflags & AIOP_FREE) && 985 (num_aio_procs > target_aio_procs)) { 986 TAILQ_REMOVE(&aio_freeproc, aiop, list); 987 mtx_unlock(&aio_freeproc_mtx); 988 splx(s); 989 uma_zfree(aiop_zone, aiop); 990 num_aio_procs--; 991 #ifdef DIAGNOSTIC 992 if (mycp->p_vmspace->vm_refcnt <= 1) { 993 printf("AIOD: bad vm refcnt for" 994 " exiting daemon: %d\n", 995 mycp->p_vmspace->vm_refcnt); 996 } 997 #endif 998 kthread_exit(0); 999 } 1000 mtx_unlock(&aio_freeproc_mtx); 1001 } 1002 splx(s); 1003 } 1004 } 1005 } 1006 1007 /* 1008 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1009 * AIO daemon modifies its environment itself. 1010 */ 1011 static int 1012 aio_newproc(void) 1013 { 1014 int error; 1015 struct proc *p; 1016 1017 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1018 num_aio_procs); 1019 if (error) 1020 return (error); 1021 1022 /* 1023 * Wait until daemon is started, but continue on just in case to 1024 * handle error conditions. 1025 */ 1026 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1027 1028 num_aio_procs++; 1029 1030 return (error); 1031 } 1032 1033 /* 1034 * Try the high-performance, low-overhead physio method for eligible 1035 * VCHR devices. This method doesn't use an aio helper thread, and 1036 * thus has very low overhead. 1037 * 1038 * Assumes that the caller, _aio_aqueue(), has incremented the file 1039 * structure's reference count, preventing its deallocation for the 1040 * duration of this call. 1041 */ 1042 static int 1043 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1044 { 1045 int error; 1046 struct aiocb *cb; 1047 struct file *fp; 1048 struct buf *bp; 1049 struct vnode *vp; 1050 struct kaioinfo *ki; 1051 struct aio_liojob *lj; 1052 int s; 1053 int notify; 1054 1055 cb = &aiocbe->uaiocb; 1056 fp = aiocbe->fd_file; 1057 1058 if (fp->f_type != DTYPE_VNODE) 1059 return (-1); 1060 1061 vp = fp->f_vnode; 1062 1063 /* 1064 * If its not a disk, we don't want to return a positive error. 1065 * It causes the aio code to not fall through to try the thread 1066 * way when you're talking to a regular file. 1067 */ 1068 if (!vn_isdisk(vp, &error)) { 1069 if (error == ENOTBLK) 1070 return (-1); 1071 else 1072 return (error); 1073 } 1074 1075 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1076 return (-1); 1077 1078 if (cb->aio_nbytes > 1079 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1080 return (-1); 1081 1082 ki = p->p_aioinfo; 1083 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1084 return (-1); 1085 1086 ki->kaio_buffer_count++; 1087 1088 lj = aiocbe->lio; 1089 if (lj) 1090 lj->lioj_buffer_count++; 1091 1092 /* Create and build a buffer header for a transfer. */ 1093 bp = (struct buf *)getpbuf(NULL); 1094 BUF_KERNPROC(bp); 1095 1096 /* 1097 * Get a copy of the kva from the physical buffer. 1098 */ 1099 error = 0; 1100 1101 bp->b_bcount = cb->aio_nbytes; 1102 bp->b_bufsize = cb->aio_nbytes; 1103 bp->b_iodone = aio_physwakeup; 1104 bp->b_saveaddr = bp->b_data; 1105 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1106 bp->b_offset = cb->aio_offset; 1107 bp->b_iooffset = cb->aio_offset; 1108 bp->b_blkno = btodb(cb->aio_offset); 1109 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1110 1111 /* 1112 * Bring buffer into kernel space. 1113 */ 1114 if (vmapbuf(bp) < 0) { 1115 error = EFAULT; 1116 goto doerror; 1117 } 1118 1119 s = splbio(); 1120 aiocbe->bp = bp; 1121 bp->b_caller1 = (void *)aiocbe; 1122 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1123 aiocbe->jobstate = JOBST_JOBQBUF; 1124 cb->_aiocb_private.status = cb->aio_nbytes; 1125 num_buf_aio++; 1126 bp->b_error = 0; 1127 1128 splx(s); 1129 1130 /* Perform transfer. */ 1131 dev_strategy(vp->v_rdev, bp); 1132 1133 notify = 0; 1134 s = splbio(); 1135 1136 /* 1137 * If we had an error invoking the request, or an error in processing 1138 * the request before we have returned, we process it as an error in 1139 * transfer. Note that such an I/O error is not indicated immediately, 1140 * but is returned using the aio_error mechanism. In this case, 1141 * aio_suspend will return immediately. 1142 */ 1143 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1144 struct aiocb *job = aiocbe->uuaiocb; 1145 1146 aiocbe->uaiocb._aiocb_private.status = 0; 1147 suword(&job->_aiocb_private.status, 0); 1148 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1149 suword(&job->_aiocb_private.error, bp->b_error); 1150 1151 ki->kaio_buffer_finished_count++; 1152 1153 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1154 aiocbe->jobstate = JOBST_JOBBFINISHED; 1155 aiocbe->jobflags |= AIOCBLIST_DONE; 1156 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1157 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1158 notify = 1; 1159 } 1160 } 1161 splx(s); 1162 if (notify) 1163 KNOTE_UNLOCKED(&aiocbe->klist, 0); 1164 return (0); 1165 1166 doerror: 1167 ki->kaio_buffer_count--; 1168 if (lj) 1169 lj->lioj_buffer_count--; 1170 aiocbe->bp = NULL; 1171 relpbuf(bp, NULL); 1172 return (error); 1173 } 1174 1175 /* 1176 * This waits/tests physio completion. 1177 */ 1178 static int 1179 aio_fphysio(struct aiocblist *iocb) 1180 { 1181 int s; 1182 struct buf *bp; 1183 int error; 1184 1185 bp = iocb->bp; 1186 1187 s = splbio(); 1188 while ((bp->b_flags & B_DONE) == 0) { 1189 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1190 if ((bp->b_flags & B_DONE) == 0) { 1191 splx(s); 1192 return (EINPROGRESS); 1193 } else 1194 break; 1195 } 1196 } 1197 splx(s); 1198 1199 /* Release mapping into kernel space. */ 1200 vunmapbuf(bp); 1201 iocb->bp = 0; 1202 1203 error = 0; 1204 1205 /* Check for an error. */ 1206 if (bp->b_ioflags & BIO_ERROR) 1207 error = bp->b_error; 1208 1209 relpbuf(bp, NULL); 1210 return (error); 1211 } 1212 1213 /* 1214 * Wake up aio requests that may be serviceable now. 1215 */ 1216 static void 1217 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1218 { 1219 struct aiocblist *cb,*cbn; 1220 struct proc *p; 1221 struct kaioinfo *ki = NULL; 1222 int opcode, wakecount = 0; 1223 struct aiothreadlist *aiop; 1224 1225 if (sb == &so->so_snd) { 1226 opcode = LIO_WRITE; 1227 SOCKBUF_LOCK(&so->so_snd); 1228 so->so_snd.sb_flags &= ~SB_AIO; 1229 SOCKBUF_UNLOCK(&so->so_snd); 1230 } else { 1231 opcode = LIO_READ; 1232 SOCKBUF_LOCK(&so->so_rcv); 1233 so->so_rcv.sb_flags &= ~SB_AIO; 1234 SOCKBUF_UNLOCK(&so->so_rcv); 1235 } 1236 1237 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1238 cbn = TAILQ_NEXT(cb, list); 1239 if (opcode == cb->uaiocb.aio_lio_opcode) { 1240 p = cb->userproc; 1241 ki = p->p_aioinfo; 1242 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1243 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1244 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1245 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1246 wakecount++; 1247 if (cb->jobstate != JOBST_JOBQGLOBAL) 1248 panic("invalid queue value"); 1249 } 1250 } 1251 1252 while (wakecount--) { 1253 mtx_lock(&aio_freeproc_mtx); 1254 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1255 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1256 aiop->aiothreadflags &= ~AIOP_FREE; 1257 wakeup(aiop->aiothread); 1258 } 1259 mtx_unlock(&aio_freeproc_mtx); 1260 } 1261 } 1262 1263 /* 1264 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1265 * technique is done in this code. 1266 */ 1267 static int 1268 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1269 { 1270 struct proc *p = td->td_proc; 1271 struct filedesc *fdp; 1272 struct file *fp; 1273 unsigned int fd; 1274 struct socket *so; 1275 int s; 1276 int error; 1277 int opcode; 1278 struct aiocblist *aiocbe; 1279 struct aiothreadlist *aiop; 1280 struct kaioinfo *ki; 1281 struct kevent kev; 1282 struct kqueue *kq; 1283 struct file *kq_fp; 1284 struct sockbuf *sb; 1285 1286 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1287 aiocbe->inputcharge = 0; 1288 aiocbe->outputcharge = 0; 1289 /* XXX - need a lock */ 1290 knlist_init(&aiocbe->klist, NULL, NULL, NULL, NULL); 1291 1292 suword(&job->_aiocb_private.status, -1); 1293 suword(&job->_aiocb_private.error, 0); 1294 suword(&job->_aiocb_private.kernelinfo, -1); 1295 1296 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1297 if (error) { 1298 suword(&job->_aiocb_private.error, error); 1299 uma_zfree(aiocb_zone, aiocbe); 1300 return (error); 1301 } 1302 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1303 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1304 uma_zfree(aiocb_zone, aiocbe); 1305 return (EINVAL); 1306 } 1307 1308 /* Save userspace address of the job info. */ 1309 aiocbe->uuaiocb = job; 1310 1311 /* Get the opcode. */ 1312 if (type != LIO_NOP) 1313 aiocbe->uaiocb.aio_lio_opcode = type; 1314 opcode = aiocbe->uaiocb.aio_lio_opcode; 1315 1316 /* Get the fd info for process. */ 1317 fdp = p->p_fd; 1318 1319 /* 1320 * Range check file descriptor. 1321 */ 1322 FILEDESC_LOCK(fdp); 1323 fd = aiocbe->uaiocb.aio_fildes; 1324 if (fd >= fdp->fd_nfiles) { 1325 FILEDESC_UNLOCK(fdp); 1326 uma_zfree(aiocb_zone, aiocbe); 1327 if (type == 0) 1328 suword(&job->_aiocb_private.error, EBADF); 1329 return (EBADF); 1330 } 1331 1332 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1333 if ((fp == NULL) || 1334 ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0)) || 1335 ((opcode == LIO_READ) && ((fp->f_flag & FREAD) == 0))) { 1336 FILEDESC_UNLOCK(fdp); 1337 uma_zfree(aiocb_zone, aiocbe); 1338 if (type == 0) 1339 suword(&job->_aiocb_private.error, EBADF); 1340 return (EBADF); 1341 } 1342 fhold(fp); 1343 FILEDESC_UNLOCK(fdp); 1344 1345 if (aiocbe->uaiocb.aio_offset == -1LL) { 1346 error = EINVAL; 1347 goto aqueue_fail; 1348 } 1349 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1350 if (error) { 1351 error = EINVAL; 1352 goto aqueue_fail; 1353 } 1354 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1355 if (jobrefid == LONG_MAX) 1356 jobrefid = 1; 1357 else 1358 jobrefid++; 1359 1360 if (opcode == LIO_NOP) { 1361 fdrop(fp, td); 1362 uma_zfree(aiocb_zone, aiocbe); 1363 if (type == 0) { 1364 suword(&job->_aiocb_private.error, 0); 1365 suword(&job->_aiocb_private.status, 0); 1366 suword(&job->_aiocb_private.kernelinfo, 0); 1367 } 1368 return (0); 1369 } 1370 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1371 if (type == 0) 1372 suword(&job->_aiocb_private.status, 0); 1373 error = EINVAL; 1374 goto aqueue_fail; 1375 } 1376 1377 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1378 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1379 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1380 } else 1381 goto no_kqueue; 1382 if ((u_int)kev.ident >= fdp->fd_nfiles || 1383 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1384 (kq_fp->f_type != DTYPE_KQUEUE)) { 1385 error = EBADF; 1386 goto aqueue_fail; 1387 } 1388 kq = kq_fp->f_data; 1389 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1390 kev.filter = EVFILT_AIO; 1391 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1392 kev.data = (intptr_t)aiocbe; 1393 error = kqueue_register(kq, &kev, td, 1); 1394 aqueue_fail: 1395 if (error) { 1396 fdrop(fp, td); 1397 uma_zfree(aiocb_zone, aiocbe); 1398 if (type == 0) 1399 suword(&job->_aiocb_private.error, error); 1400 goto done; 1401 } 1402 no_kqueue: 1403 1404 suword(&job->_aiocb_private.error, EINPROGRESS); 1405 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1406 aiocbe->userproc = p; 1407 aiocbe->cred = crhold(td->td_ucred); 1408 aiocbe->jobflags = 0; 1409 aiocbe->lio = lj; 1410 ki = p->p_aioinfo; 1411 1412 if (fp->f_type == DTYPE_SOCKET) { 1413 /* 1414 * Alternate queueing for socket ops: Reach down into the 1415 * descriptor to get the socket data. Then check to see if the 1416 * socket is ready to be read or written (based on the requested 1417 * operation). 1418 * 1419 * If it is not ready for io, then queue the aiocbe on the 1420 * socket, and set the flags so we get a call when sbnotify() 1421 * happens. 1422 * 1423 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1424 * and unlock the snd sockbuf for no reason. 1425 */ 1426 so = fp->f_data; 1427 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1428 SOCKBUF_LOCK(sb); 1429 s = splnet(); 1430 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1431 LIO_WRITE) && (!sowriteable(so)))) { 1432 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1433 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1434 sb->sb_flags |= SB_AIO; 1435 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1436 ki->kaio_queue_count++; 1437 num_queue_count++; 1438 SOCKBUF_UNLOCK(sb); 1439 splx(s); 1440 error = 0; 1441 goto done; 1442 } 1443 SOCKBUF_UNLOCK(sb); 1444 splx(s); 1445 } 1446 1447 if ((error = aio_qphysio(p, aiocbe)) == 0) 1448 goto done; 1449 if (error > 0) { 1450 suword(&job->_aiocb_private.status, 0); 1451 aiocbe->uaiocb._aiocb_private.error = error; 1452 suword(&job->_aiocb_private.error, error); 1453 goto done; 1454 } 1455 1456 /* No buffer for daemon I/O. */ 1457 aiocbe->bp = NULL; 1458 1459 ki->kaio_queue_count++; 1460 if (lj) 1461 lj->lioj_queue_count++; 1462 s = splnet(); 1463 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1464 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1465 splx(s); 1466 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1467 1468 num_queue_count++; 1469 error = 0; 1470 1471 /* 1472 * If we don't have a free AIO process, and we are below our quota, then 1473 * start one. Otherwise, depend on the subsequent I/O completions to 1474 * pick-up this job. If we don't sucessfully create the new process 1475 * (thread) due to resource issues, we return an error for now (EAGAIN), 1476 * which is likely not the correct thing to do. 1477 */ 1478 mtx_lock(&aio_freeproc_mtx); 1479 retryproc: 1480 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1481 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1482 aiop->aiothreadflags &= ~AIOP_FREE; 1483 wakeup(aiop->aiothread); 1484 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1485 ((ki->kaio_active_count + num_aio_resv_start) < 1486 ki->kaio_maxactive_count)) { 1487 num_aio_resv_start++; 1488 mtx_unlock(&aio_freeproc_mtx); 1489 if ((error = aio_newproc()) == 0) { 1490 mtx_lock(&aio_freeproc_mtx); 1491 num_aio_resv_start--; 1492 goto retryproc; 1493 } 1494 mtx_lock(&aio_freeproc_mtx); 1495 num_aio_resv_start--; 1496 } 1497 mtx_unlock(&aio_freeproc_mtx); 1498 done: 1499 return (error); 1500 } 1501 1502 /* 1503 * This routine queues an AIO request, checking for quotas. 1504 */ 1505 static int 1506 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1507 { 1508 struct proc *p = td->td_proc; 1509 struct kaioinfo *ki; 1510 1511 if (p->p_aioinfo == NULL) 1512 aio_init_aioinfo(p); 1513 1514 if (num_queue_count >= max_queue_count) 1515 return (EAGAIN); 1516 1517 ki = p->p_aioinfo; 1518 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1519 return (EAGAIN); 1520 1521 return _aio_aqueue(td, job, NULL, type); 1522 } 1523 1524 /* 1525 * Support the aio_return system call, as a side-effect, kernel resources are 1526 * released. 1527 */ 1528 int 1529 aio_return(struct thread *td, struct aio_return_args *uap) 1530 { 1531 struct proc *p = td->td_proc; 1532 int s; 1533 long jobref; 1534 struct aiocblist *cb, *ncb; 1535 struct aiocb *ujob; 1536 struct kaioinfo *ki; 1537 1538 ujob = uap->aiocbp; 1539 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1540 if (jobref == -1 || jobref == 0) 1541 return (EINVAL); 1542 1543 ki = p->p_aioinfo; 1544 if (ki == NULL) 1545 return (EINVAL); 1546 PROC_LOCK(p); 1547 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1548 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1549 jobref) { 1550 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1551 p->p_stats->p_ru.ru_oublock += 1552 cb->outputcharge; 1553 cb->outputcharge = 0; 1554 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1555 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1556 cb->inputcharge = 0; 1557 } 1558 goto done; 1559 } 1560 } 1561 s = splbio(); 1562 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1563 ncb = TAILQ_NEXT(cb, plist); 1564 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1565 == jobref) { 1566 break; 1567 } 1568 } 1569 splx(s); 1570 done: 1571 PROC_UNLOCK(p); 1572 if (cb != NULL) { 1573 if (ujob == cb->uuaiocb) { 1574 td->td_retval[0] = 1575 cb->uaiocb._aiocb_private.status; 1576 } else 1577 td->td_retval[0] = EFAULT; 1578 aio_free_entry(cb); 1579 return (0); 1580 } 1581 return (EINVAL); 1582 } 1583 1584 /* 1585 * Allow a process to wakeup when any of the I/O requests are completed. 1586 */ 1587 int 1588 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1589 { 1590 struct proc *p = td->td_proc; 1591 struct timeval atv; 1592 struct timespec ts; 1593 struct aiocb *const *cbptr, *cbp; 1594 struct kaioinfo *ki; 1595 struct aiocblist *cb; 1596 int i; 1597 int njoblist; 1598 int error, s, timo; 1599 long *ijoblist; 1600 struct aiocb **ujoblist; 1601 1602 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1603 return (EINVAL); 1604 1605 timo = 0; 1606 if (uap->timeout) { 1607 /* Get timespec struct. */ 1608 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1609 return (error); 1610 1611 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1612 return (EINVAL); 1613 1614 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1615 if (itimerfix(&atv)) 1616 return (EINVAL); 1617 timo = tvtohz(&atv); 1618 } 1619 1620 ki = p->p_aioinfo; 1621 if (ki == NULL) 1622 return (EAGAIN); 1623 1624 njoblist = 0; 1625 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1626 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1627 cbptr = uap->aiocbp; 1628 1629 for (i = 0; i < uap->nent; i++) { 1630 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1631 if (cbp == 0) 1632 continue; 1633 ujoblist[njoblist] = cbp; 1634 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1635 njoblist++; 1636 } 1637 1638 if (njoblist == 0) { 1639 uma_zfree(aiol_zone, ijoblist); 1640 uma_zfree(aiol_zone, ujoblist); 1641 return (0); 1642 } 1643 1644 error = 0; 1645 for (;;) { 1646 PROC_LOCK(p); 1647 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1648 for (i = 0; i < njoblist; i++) { 1649 if (((intptr_t) 1650 cb->uaiocb._aiocb_private.kernelinfo) == 1651 ijoblist[i]) { 1652 PROC_UNLOCK(p); 1653 if (ujoblist[i] != cb->uuaiocb) 1654 error = EINVAL; 1655 uma_zfree(aiol_zone, ijoblist); 1656 uma_zfree(aiol_zone, ujoblist); 1657 return (error); 1658 } 1659 } 1660 } 1661 1662 s = splbio(); 1663 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1664 TAILQ_NEXT(cb, plist)) { 1665 for (i = 0; i < njoblist; i++) { 1666 if (((intptr_t) 1667 cb->uaiocb._aiocb_private.kernelinfo) == 1668 ijoblist[i]) { 1669 PROC_UNLOCK(p); 1670 splx(s); 1671 if (ujoblist[i] != cb->uuaiocb) 1672 error = EINVAL; 1673 uma_zfree(aiol_zone, ijoblist); 1674 uma_zfree(aiol_zone, ujoblist); 1675 return (error); 1676 } 1677 } 1678 } 1679 1680 ki->kaio_flags |= KAIO_WAKEUP; 1681 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiospn", 1682 timo); 1683 splx(s); 1684 1685 if (error == ERESTART || error == EINTR) { 1686 uma_zfree(aiol_zone, ijoblist); 1687 uma_zfree(aiol_zone, ujoblist); 1688 return (EINTR); 1689 } else if (error == EWOULDBLOCK) { 1690 uma_zfree(aiol_zone, ijoblist); 1691 uma_zfree(aiol_zone, ujoblist); 1692 return (EAGAIN); 1693 } 1694 } 1695 1696 /* NOTREACHED */ 1697 return (EINVAL); 1698 } 1699 1700 /* 1701 * aio_cancel cancels any non-physio aio operations not currently in 1702 * progress. 1703 */ 1704 int 1705 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1706 { 1707 struct proc *p = td->td_proc; 1708 struct kaioinfo *ki; 1709 struct aiocblist *cbe, *cbn; 1710 struct file *fp; 1711 struct filedesc *fdp; 1712 struct socket *so; 1713 struct proc *po; 1714 int s,error; 1715 int cancelled=0; 1716 int notcancelled=0; 1717 struct vnode *vp; 1718 1719 fdp = p->p_fd; 1720 if ((u_int)uap->fd >= fdp->fd_nfiles || 1721 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1722 return (EBADF); 1723 1724 if (fp->f_type == DTYPE_VNODE) { 1725 vp = fp->f_vnode; 1726 1727 if (vn_isdisk(vp,&error)) { 1728 td->td_retval[0] = AIO_NOTCANCELED; 1729 return (0); 1730 } 1731 } else if (fp->f_type == DTYPE_SOCKET) { 1732 so = fp->f_data; 1733 1734 s = splnet(); 1735 1736 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1737 cbn = TAILQ_NEXT(cbe, list); 1738 if ((uap->aiocbp == NULL) || 1739 (uap->aiocbp == cbe->uuaiocb) ) { 1740 po = cbe->userproc; 1741 ki = po->p_aioinfo; 1742 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1743 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1744 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1745 if (ki->kaio_flags & KAIO_WAKEUP) { 1746 wakeup(po); 1747 } 1748 cbe->jobstate = JOBST_JOBFINISHED; 1749 cbe->uaiocb._aiocb_private.status=-1; 1750 cbe->uaiocb._aiocb_private.error=ECANCELED; 1751 cancelled++; 1752 /* XXX cancelled, knote? */ 1753 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1754 SIGEV_SIGNAL) { 1755 PROC_LOCK(cbe->userproc); 1756 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1757 PROC_UNLOCK(cbe->userproc); 1758 } 1759 if (uap->aiocbp) 1760 break; 1761 } 1762 } 1763 splx(s); 1764 1765 if ((cancelled) && (uap->aiocbp)) { 1766 td->td_retval[0] = AIO_CANCELED; 1767 return (0); 1768 } 1769 } 1770 ki=p->p_aioinfo; 1771 if (ki == NULL) 1772 goto done; 1773 s = splnet(); 1774 1775 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1776 cbn = TAILQ_NEXT(cbe, plist); 1777 1778 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1779 ((uap->aiocbp == NULL ) || 1780 (uap->aiocbp == cbe->uuaiocb))) { 1781 1782 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1783 TAILQ_REMOVE(&aio_jobs, cbe, list); 1784 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1785 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1786 plist); 1787 cancelled++; 1788 ki->kaio_queue_finished_count++; 1789 cbe->jobstate = JOBST_JOBFINISHED; 1790 cbe->uaiocb._aiocb_private.status = -1; 1791 cbe->uaiocb._aiocb_private.error = ECANCELED; 1792 /* XXX cancelled, knote? */ 1793 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1794 SIGEV_SIGNAL) { 1795 PROC_LOCK(cbe->userproc); 1796 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1797 PROC_UNLOCK(cbe->userproc); 1798 } 1799 } else { 1800 notcancelled++; 1801 } 1802 } 1803 } 1804 splx(s); 1805 done: 1806 if (notcancelled) { 1807 td->td_retval[0] = AIO_NOTCANCELED; 1808 return (0); 1809 } 1810 if (cancelled) { 1811 td->td_retval[0] = AIO_CANCELED; 1812 return (0); 1813 } 1814 td->td_retval[0] = AIO_ALLDONE; 1815 1816 return (0); 1817 } 1818 1819 /* 1820 * aio_error is implemented in the kernel level for compatibility purposes only. 1821 * For a user mode async implementation, it would be best to do it in a userland 1822 * subroutine. 1823 */ 1824 int 1825 aio_error(struct thread *td, struct aio_error_args *uap) 1826 { 1827 struct proc *p = td->td_proc; 1828 int s; 1829 struct aiocblist *cb; 1830 struct kaioinfo *ki; 1831 long jobref; 1832 1833 ki = p->p_aioinfo; 1834 if (ki == NULL) 1835 return (EINVAL); 1836 1837 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1838 if ((jobref == -1) || (jobref == 0)) 1839 return (EINVAL); 1840 1841 PROC_LOCK(p); 1842 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1843 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1844 jobref) { 1845 PROC_UNLOCK(p); 1846 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1847 return (0); 1848 } 1849 } 1850 1851 s = splnet(); 1852 1853 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1854 plist)) { 1855 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1856 jobref) { 1857 PROC_UNLOCK(p); 1858 td->td_retval[0] = EINPROGRESS; 1859 splx(s); 1860 return (0); 1861 } 1862 } 1863 1864 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1865 plist)) { 1866 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1867 jobref) { 1868 PROC_UNLOCK(p); 1869 td->td_retval[0] = EINPROGRESS; 1870 splx(s); 1871 return (0); 1872 } 1873 } 1874 splx(s); 1875 1876 s = splbio(); 1877 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1878 plist)) { 1879 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1880 jobref) { 1881 PROC_UNLOCK(p); 1882 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1883 splx(s); 1884 return (0); 1885 } 1886 } 1887 1888 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1889 plist)) { 1890 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1891 jobref) { 1892 PROC_UNLOCK(p); 1893 td->td_retval[0] = EINPROGRESS; 1894 splx(s); 1895 return (0); 1896 } 1897 } 1898 splx(s); 1899 PROC_UNLOCK(p); 1900 1901 #if (0) 1902 /* 1903 * Hack for lio. 1904 */ 1905 status = fuword(&uap->aiocbp->_aiocb_private.status); 1906 if (status == -1) 1907 return fuword(&uap->aiocbp->_aiocb_private.error); 1908 #endif 1909 return (EINVAL); 1910 } 1911 1912 /* syscall - asynchronous read from a file (REALTIME) */ 1913 int 1914 aio_read(struct thread *td, struct aio_read_args *uap) 1915 { 1916 1917 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1918 } 1919 1920 /* syscall - asynchronous write to a file (REALTIME) */ 1921 int 1922 aio_write(struct thread *td, struct aio_write_args *uap) 1923 { 1924 1925 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1926 } 1927 1928 /* syscall - list directed I/O (REALTIME) */ 1929 int 1930 lio_listio(struct thread *td, struct lio_listio_args *uap) 1931 { 1932 struct proc *p = td->td_proc; 1933 int nent, nentqueued; 1934 struct aiocb *iocb, * const *cbptr; 1935 struct aiocblist *cb; 1936 struct kaioinfo *ki; 1937 struct aio_liojob *lj; 1938 int error, runningcode; 1939 int nerror; 1940 int i; 1941 int s; 1942 1943 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1944 return (EINVAL); 1945 1946 nent = uap->nent; 1947 if (nent < 0 || nent > AIO_LISTIO_MAX) 1948 return (EINVAL); 1949 1950 if (p->p_aioinfo == NULL) 1951 aio_init_aioinfo(p); 1952 1953 if ((nent + num_queue_count) > max_queue_count) 1954 return (EAGAIN); 1955 1956 ki = p->p_aioinfo; 1957 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1958 return (EAGAIN); 1959 1960 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1961 if (!lj) 1962 return (EAGAIN); 1963 1964 lj->lioj_flags = 0; 1965 lj->lioj_buffer_count = 0; 1966 lj->lioj_buffer_finished_count = 0; 1967 lj->lioj_queue_count = 0; 1968 lj->lioj_queue_finished_count = 0; 1969 1970 /* 1971 * Setup signal. 1972 */ 1973 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1974 error = copyin(uap->sig, &lj->lioj_signal, 1975 sizeof(lj->lioj_signal)); 1976 if (error) { 1977 uma_zfree(aiolio_zone, lj); 1978 return (error); 1979 } 1980 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1981 uma_zfree(aiolio_zone, lj); 1982 return (EINVAL); 1983 } 1984 lj->lioj_flags |= LIOJ_SIGNAL; 1985 } 1986 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1987 /* 1988 * Get pointers to the list of I/O requests. 1989 */ 1990 nerror = 0; 1991 nentqueued = 0; 1992 cbptr = uap->acb_list; 1993 for (i = 0; i < uap->nent; i++) { 1994 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1995 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 1996 error = _aio_aqueue(td, iocb, lj, 0); 1997 if (error == 0) 1998 nentqueued++; 1999 else 2000 nerror++; 2001 } 2002 } 2003 2004 /* 2005 * If we haven't queued any, then just return error. 2006 */ 2007 if (nentqueued == 0) 2008 return (0); 2009 2010 /* 2011 * Calculate the appropriate error return. 2012 */ 2013 runningcode = 0; 2014 if (nerror) 2015 runningcode = EIO; 2016 2017 if (uap->mode == LIO_WAIT) { 2018 int command, found; 2019 long jobref; 2020 2021 for (;;) { 2022 found = 0; 2023 for (i = 0; i < uap->nent; i++) { 2024 /* 2025 * Fetch address of the control buf pointer in 2026 * user space. 2027 */ 2028 iocb = (struct aiocb *) 2029 (intptr_t)fuword(&cbptr[i]); 2030 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2031 == 0)) 2032 continue; 2033 2034 /* 2035 * Fetch the associated command from user space. 2036 */ 2037 command = fuword(&iocb->aio_lio_opcode); 2038 if (command == LIO_NOP) { 2039 found++; 2040 continue; 2041 } 2042 2043 jobref = 2044 fuword(&iocb->_aiocb_private.kernelinfo); 2045 2046 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2047 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2048 == jobref) { 2049 if (cb->uaiocb.aio_lio_opcode 2050 == LIO_WRITE) { 2051 p->p_stats->p_ru.ru_oublock 2052 += 2053 cb->outputcharge; 2054 cb->outputcharge = 0; 2055 } else if (cb->uaiocb.aio_lio_opcode 2056 == LIO_READ) { 2057 p->p_stats->p_ru.ru_inblock 2058 += cb->inputcharge; 2059 cb->inputcharge = 0; 2060 } 2061 found++; 2062 break; 2063 } 2064 } 2065 2066 s = splbio(); 2067 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2068 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2069 == jobref) { 2070 found++; 2071 break; 2072 } 2073 } 2074 splx(s); 2075 } 2076 2077 /* 2078 * If all I/Os have been disposed of, then we can 2079 * return. 2080 */ 2081 if (found == nentqueued) 2082 return (runningcode); 2083 2084 ki->kaio_flags |= KAIO_WAKEUP; 2085 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2086 2087 if (error == EINTR) 2088 return (EINTR); 2089 else if (error == EWOULDBLOCK) 2090 return (EAGAIN); 2091 } 2092 } 2093 2094 return (runningcode); 2095 } 2096 2097 /* 2098 * Interrupt handler for physio, performs the necessary process wakeups, and 2099 * signals. 2100 */ 2101 static void 2102 aio_physwakeup(struct buf *bp) 2103 { 2104 struct aiocblist *aiocbe; 2105 struct proc *p; 2106 struct kaioinfo *ki; 2107 struct aio_liojob *lj; 2108 2109 mtx_lock(&Giant); 2110 bp->b_flags |= B_DONE; 2111 wakeup(bp); 2112 2113 aiocbe = (struct aiocblist *)bp->b_caller1; 2114 if (aiocbe) { 2115 p = aiocbe->userproc; 2116 2117 aiocbe->jobstate = JOBST_JOBBFINISHED; 2118 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2119 aiocbe->uaiocb._aiocb_private.error = 0; 2120 aiocbe->jobflags |= AIOCBLIST_DONE; 2121 2122 if (bp->b_ioflags & BIO_ERROR) 2123 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2124 2125 lj = aiocbe->lio; 2126 if (lj) { 2127 lj->lioj_buffer_finished_count++; 2128 2129 /* 2130 * wakeup/signal if all of the interrupt jobs are done. 2131 */ 2132 if (lj->lioj_buffer_finished_count == 2133 lj->lioj_buffer_count && 2134 lj->lioj_queue_finished_count == 2135 lj->lioj_queue_count) { 2136 /* 2137 * Post a signal if it is called for. 2138 */ 2139 if ((lj->lioj_flags & 2140 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2141 LIOJ_SIGNAL) { 2142 PROC_LOCK(p); 2143 psignal(p, lj->lioj_signal.sigev_signo); 2144 PROC_UNLOCK(p); 2145 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2146 } 2147 } 2148 } 2149 2150 ki = p->p_aioinfo; 2151 if (ki) { 2152 ki->kaio_buffer_finished_count++; 2153 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2154 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2155 2156 KNOTE_UNLOCKED(&aiocbe->klist, 0); 2157 /* Do the wakeup. */ 2158 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2159 ki->kaio_flags &= ~KAIO_WAKEUP; 2160 wakeup(p); 2161 } 2162 } 2163 2164 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2165 PROC_LOCK(p); 2166 psignal(p, aiocbe->uaiocb.aio_sigevent.sigev_signo); 2167 PROC_UNLOCK(p); 2168 } 2169 } 2170 mtx_unlock(&Giant); 2171 } 2172 2173 /* syscall - wait for the next completion of an aio request */ 2174 int 2175 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2176 { 2177 struct proc *p = td->td_proc; 2178 struct timeval atv; 2179 struct timespec ts; 2180 struct kaioinfo *ki; 2181 struct aiocblist *cb = NULL; 2182 int error, s, timo; 2183 2184 suword(uap->aiocbp, (int)NULL); 2185 2186 timo = 0; 2187 if (uap->timeout) { 2188 /* Get timespec struct. */ 2189 error = copyin(uap->timeout, &ts, sizeof(ts)); 2190 if (error) 2191 return (error); 2192 2193 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2194 return (EINVAL); 2195 2196 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2197 if (itimerfix(&atv)) 2198 return (EINVAL); 2199 timo = tvtohz(&atv); 2200 } 2201 2202 ki = p->p_aioinfo; 2203 if (ki == NULL) 2204 return (EAGAIN); 2205 2206 for (;;) { 2207 PROC_LOCK(p); 2208 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2209 PROC_UNLOCK(p); 2210 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2211 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2212 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2213 p->p_stats->p_ru.ru_oublock += 2214 cb->outputcharge; 2215 cb->outputcharge = 0; 2216 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2217 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2218 cb->inputcharge = 0; 2219 } 2220 error = cb->uaiocb._aiocb_private.error; 2221 aio_free_entry(cb); 2222 return (error); 2223 } 2224 2225 s = splbio(); 2226 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2227 PROC_UNLOCK(p); 2228 splx(s); 2229 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2230 error = cb->uaiocb._aiocb_private.error; 2231 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2232 aio_free_entry(cb); 2233 return (error); 2234 } 2235 2236 ki->kaio_flags |= KAIO_WAKEUP; 2237 error = msleep(p, &p->p_mtx, PDROP | PRIBIO | PCATCH, "aiowc", 2238 timo); 2239 splx(s); 2240 2241 if (error == ERESTART) 2242 return (EINTR); 2243 else if (error < 0) 2244 return (error); 2245 else if (error == EINTR) 2246 return (EINTR); 2247 else if (error == EWOULDBLOCK) 2248 return (EAGAIN); 2249 } 2250 } 2251 2252 /* kqueue attach function */ 2253 static int 2254 filt_aioattach(struct knote *kn) 2255 { 2256 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2257 2258 /* 2259 * The aiocbe pointer must be validated before using it, so 2260 * registration is restricted to the kernel; the user cannot 2261 * set EV_FLAG1. 2262 */ 2263 if ((kn->kn_flags & EV_FLAG1) == 0) 2264 return (EPERM); 2265 kn->kn_flags &= ~EV_FLAG1; 2266 2267 knlist_add(&aiocbe->klist, kn, 0); 2268 2269 return (0); 2270 } 2271 2272 /* kqueue detach function */ 2273 static void 2274 filt_aiodetach(struct knote *kn) 2275 { 2276 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2277 2278 knlist_remove(&aiocbe->klist, kn, 0); 2279 } 2280 2281 /* kqueue filter function */ 2282 /*ARGSUSED*/ 2283 static int 2284 filt_aio(struct knote *kn, long hint) 2285 { 2286 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2287 2288 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2289 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2290 aiocbe->jobstate != JOBST_JOBBFINISHED) 2291 return (0); 2292 kn->kn_flags |= EV_EOF; 2293 return (1); 2294 } 2295