1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/sema.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/syscall.h> 54 #include <sys/sysent.h> 55 #include <sys/sysctl.h> 56 #include <sys/sx.h> 57 #include <sys/taskqueue.h> 58 #include <sys/vnode.h> 59 #include <sys/conf.h> 60 #include <sys/event.h> 61 #include <sys/mount.h> 62 #include <geom/geom.h> 63 64 #include <machine/atomic.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_extern.h> 69 #include <vm/pmap.h> 70 #include <vm/vm_map.h> 71 #include <vm/vm_object.h> 72 #include <vm/uma.h> 73 #include <sys/aio.h> 74 75 /* 76 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 77 * overflow. (XXX will be removed soon.) 78 */ 79 static u_long jobrefid; 80 81 /* 82 * Counter for aio_fsync. 83 */ 84 static uint64_t jobseqno; 85 86 #ifndef MAX_AIO_PER_PROC 87 #define MAX_AIO_PER_PROC 32 88 #endif 89 90 #ifndef MAX_AIO_QUEUE_PER_PROC 91 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 92 #endif 93 94 #ifndef MAX_AIO_QUEUE 95 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_BUF_AIO 99 #define MAX_BUF_AIO 16 100 #endif 101 102 FEATURE(aio, "Asynchronous I/O"); 103 104 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 105 106 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 107 "Async IO management"); 108 109 static int enable_aio_unsafe = 0; 110 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 111 "Permit asynchronous IO on all file types, not just known-safe types"); 112 113 static int max_aio_procs = MAX_AIO_PROCS; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 115 "Maximum number of kernel processes to use for handling async IO "); 116 117 static int num_aio_procs = 0; 118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 119 "Number of presently active kernel processes for async IO"); 120 121 /* 122 * The code will adjust the actual number of AIO processes towards this 123 * number when it gets a chance. 124 */ 125 static int target_aio_procs = TARGET_AIO_PROCS; 126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 127 0, 128 "Preferred number of ready kernel processes for async IO"); 129 130 static int max_queue_count = MAX_AIO_QUEUE; 131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 132 "Maximum number of aio requests to queue, globally"); 133 134 static int num_queue_count = 0; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 136 "Number of queued aio requests"); 137 138 static int num_buf_aio = 0; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 140 "Number of aio requests presently handled by the buf subsystem"); 141 142 /* Number of async I/O processes in the process of being started */ 143 /* XXX This should be local to aio_aqueue() */ 144 static int num_aio_resv_start = 0; 145 146 static int aiod_lifetime; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 148 "Maximum lifetime for idle aiod"); 149 150 static int max_aio_per_proc = MAX_AIO_PER_PROC; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 152 0, 153 "Maximum active aio requests per process (stored in the process)"); 154 155 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 157 &max_aio_queue_per_proc, 0, 158 "Maximum queued aio requests per process (stored in the process)"); 159 160 static int max_buf_aio = MAX_BUF_AIO; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 162 "Maximum buf aio requests per process (stored in the process)"); 163 164 typedef struct oaiocb { 165 int aio_fildes; /* File descriptor */ 166 off_t aio_offset; /* File offset for I/O */ 167 volatile void *aio_buf; /* I/O buffer in process space */ 168 size_t aio_nbytes; /* Number of bytes for I/O */ 169 struct osigevent aio_sigevent; /* Signal to deliver */ 170 int aio_lio_opcode; /* LIO opcode */ 171 int aio_reqprio; /* Request priority -- ignored */ 172 struct __aiocb_private _aiocb_private; 173 } oaiocb_t; 174 175 /* 176 * Below is a key of locks used to protect each member of struct kaiocb 177 * aioliojob and kaioinfo and any backends. 178 * 179 * * - need not protected 180 * a - locked by kaioinfo lock 181 * b - locked by backend lock, the backend lock can be null in some cases, 182 * for example, BIO belongs to this type, in this case, proc lock is 183 * reused. 184 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 185 */ 186 187 /* 188 * If the routine that services an AIO request blocks while running in an 189 * AIO kernel process it can starve other I/O requests. BIO requests 190 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 191 * processes at all. Socket I/O requests use a separate pool of 192 * kprocs and also force non-blocking I/O. Other file I/O requests 193 * use the generic fo_read/fo_write operations which can block. The 194 * fsync and mlock operations can also block while executing. Ideally 195 * none of these requests would block while executing. 196 * 197 * Note that the service routines cannot toggle O_NONBLOCK in the file 198 * structure directly while handling a request due to races with 199 * userland threads. 200 */ 201 202 /* jobflags */ 203 #define KAIOCB_QUEUEING 0x01 204 #define KAIOCB_CANCELLED 0x02 205 #define KAIOCB_CANCELLING 0x04 206 #define KAIOCB_CHECKSYNC 0x08 207 #define KAIOCB_CLEARED 0x10 208 #define KAIOCB_FINISHED 0x20 209 210 /* 211 * AIO process info 212 */ 213 #define AIOP_FREE 0x1 /* proc on free queue */ 214 215 struct aioproc { 216 int aioprocflags; /* (c) AIO proc flags */ 217 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 218 struct proc *aioproc; /* (*) the AIO proc */ 219 }; 220 221 /* 222 * data-structure for lio signal management 223 */ 224 struct aioliojob { 225 int lioj_flags; /* (a) listio flags */ 226 int lioj_count; /* (a) listio flags */ 227 int lioj_finished_count; /* (a) listio flags */ 228 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 229 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 230 struct knlist klist; /* (a) list of knotes */ 231 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 232 }; 233 234 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 235 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 236 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 237 238 /* 239 * per process aio data structure 240 */ 241 struct kaioinfo { 242 struct mtx kaio_mtx; /* the lock to protect this struct */ 243 int kaio_flags; /* (a) per process kaio flags */ 244 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 245 int kaio_active_count; /* (c) number of currently used AIOs */ 246 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 247 int kaio_count; /* (a) size of AIO queue */ 248 int kaio_ballowed_count; /* (*) maximum number of buffers */ 249 int kaio_buffer_count; /* (a) number of physio buffers */ 250 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 251 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 252 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 253 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 254 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 255 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 256 struct task kaio_task; /* (*) task to kick aio processes */ 257 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 258 }; 259 260 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 261 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 262 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 263 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 264 265 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 266 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 267 268 /* 269 * Operations used to interact with userland aio control blocks. 270 * Different ABIs provide their own operations. 271 */ 272 struct aiocb_ops { 273 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 274 long (*fetch_status)(struct aiocb *ujob); 275 long (*fetch_error)(struct aiocb *ujob); 276 int (*store_status)(struct aiocb *ujob, long status); 277 int (*store_error)(struct aiocb *ujob, long error); 278 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 279 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 280 }; 281 282 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 283 static struct sema aio_newproc_sem; 284 static struct mtx aio_job_mtx; 285 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 286 static struct unrhdr *aiod_unr; 287 288 void aio_init_aioinfo(struct proc *p); 289 static int aio_onceonly(void); 290 static int aio_free_entry(struct kaiocb *job); 291 static void aio_process_rw(struct kaiocb *job); 292 static void aio_process_sync(struct kaiocb *job); 293 static void aio_process_mlock(struct kaiocb *job); 294 static void aio_schedule_fsync(void *context, int pending); 295 static int aio_newproc(int *); 296 int aio_aqueue(struct thread *td, struct aiocb *ujob, 297 struct aioliojob *lio, int type, struct aiocb_ops *ops); 298 static int aio_queue_file(struct file *fp, struct kaiocb *job); 299 static void aio_physwakeup(struct bio *bp); 300 static void aio_proc_rundown(void *arg, struct proc *p); 301 static void aio_proc_rundown_exec(void *arg, struct proc *p, 302 struct image_params *imgp); 303 static int aio_qphysio(struct proc *p, struct kaiocb *job); 304 static void aio_daemon(void *param); 305 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 306 static int aio_kick(struct proc *userp); 307 static void aio_kick_nowait(struct proc *userp); 308 static void aio_kick_helper(void *context, int pending); 309 static int filt_aioattach(struct knote *kn); 310 static void filt_aiodetach(struct knote *kn); 311 static int filt_aio(struct knote *kn, long hint); 312 static int filt_lioattach(struct knote *kn); 313 static void filt_liodetach(struct knote *kn); 314 static int filt_lio(struct knote *kn, long hint); 315 316 /* 317 * Zones for: 318 * kaio Per process async io info 319 * aiop async io process data 320 * aiocb async io jobs 321 * aiol list io job pointer - internal to aio_suspend XXX 322 * aiolio list io jobs 323 */ 324 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 325 326 /* kqueue filters for aio */ 327 static struct filterops aio_filtops = { 328 .f_isfd = 0, 329 .f_attach = filt_aioattach, 330 .f_detach = filt_aiodetach, 331 .f_event = filt_aio, 332 }; 333 static struct filterops lio_filtops = { 334 .f_isfd = 0, 335 .f_attach = filt_lioattach, 336 .f_detach = filt_liodetach, 337 .f_event = filt_lio 338 }; 339 340 static eventhandler_tag exit_tag, exec_tag; 341 342 TASKQUEUE_DEFINE_THREAD(aiod_kick); 343 344 /* 345 * Main operations function for use as a kernel module. 346 */ 347 static int 348 aio_modload(struct module *module, int cmd, void *arg) 349 { 350 int error = 0; 351 352 switch (cmd) { 353 case MOD_LOAD: 354 aio_onceonly(); 355 break; 356 case MOD_SHUTDOWN: 357 break; 358 default: 359 error = EOPNOTSUPP; 360 break; 361 } 362 return (error); 363 } 364 365 static moduledata_t aio_mod = { 366 "aio", 367 &aio_modload, 368 NULL 369 }; 370 371 static struct syscall_helper_data aio_syscalls[] = { 372 SYSCALL_INIT_HELPER(aio_cancel), 373 SYSCALL_INIT_HELPER(aio_error), 374 SYSCALL_INIT_HELPER(aio_fsync), 375 SYSCALL_INIT_HELPER(aio_mlock), 376 SYSCALL_INIT_HELPER(aio_read), 377 SYSCALL_INIT_HELPER(aio_return), 378 SYSCALL_INIT_HELPER(aio_suspend), 379 SYSCALL_INIT_HELPER(aio_waitcomplete), 380 SYSCALL_INIT_HELPER(aio_write), 381 SYSCALL_INIT_HELPER(lio_listio), 382 SYSCALL_INIT_HELPER(oaio_read), 383 SYSCALL_INIT_HELPER(oaio_write), 384 SYSCALL_INIT_HELPER(olio_listio), 385 SYSCALL_INIT_LAST 386 }; 387 388 #ifdef COMPAT_FREEBSD32 389 #include <sys/mount.h> 390 #include <sys/socket.h> 391 #include <compat/freebsd32/freebsd32.h> 392 #include <compat/freebsd32/freebsd32_proto.h> 393 #include <compat/freebsd32/freebsd32_signal.h> 394 #include <compat/freebsd32/freebsd32_syscall.h> 395 #include <compat/freebsd32/freebsd32_util.h> 396 397 static struct syscall_helper_data aio32_syscalls[] = { 398 SYSCALL32_INIT_HELPER(freebsd32_aio_return), 399 SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), 400 SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), 401 SYSCALL32_INIT_HELPER(freebsd32_aio_error), 402 SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), 403 SYSCALL32_INIT_HELPER(freebsd32_aio_mlock), 404 SYSCALL32_INIT_HELPER(freebsd32_aio_read), 405 SYSCALL32_INIT_HELPER(freebsd32_aio_write), 406 SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), 407 SYSCALL32_INIT_HELPER(freebsd32_lio_listio), 408 SYSCALL32_INIT_HELPER(freebsd32_oaio_read), 409 SYSCALL32_INIT_HELPER(freebsd32_oaio_write), 410 SYSCALL32_INIT_HELPER(freebsd32_olio_listio), 411 SYSCALL_INIT_LAST 412 }; 413 #endif 414 415 DECLARE_MODULE(aio, aio_mod, 416 SI_SUB_VFS, SI_ORDER_ANY); 417 MODULE_VERSION(aio, 1); 418 419 /* 420 * Startup initialization 421 */ 422 static int 423 aio_onceonly(void) 424 { 425 int error; 426 427 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 428 EVENTHANDLER_PRI_ANY); 429 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 430 NULL, EVENTHANDLER_PRI_ANY); 431 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 432 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 433 TAILQ_INIT(&aio_freeproc); 434 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 435 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 436 TAILQ_INIT(&aio_jobs); 437 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 438 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 439 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 440 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 441 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 442 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 443 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 444 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 445 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 446 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 447 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 448 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 449 jobrefid = 1; 450 async_io_version = _POSIX_VERSION; 451 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 452 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 453 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 454 455 error = syscall_helper_register(aio_syscalls, SY_THR_STATIC_KLD); 456 if (error) 457 return (error); 458 #ifdef COMPAT_FREEBSD32 459 error = syscall32_helper_register(aio32_syscalls, SY_THR_STATIC_KLD); 460 if (error) 461 return (error); 462 #endif 463 return (0); 464 } 465 466 /* 467 * Init the per-process aioinfo structure. The aioinfo limits are set 468 * per-process for user limit (resource) management. 469 */ 470 void 471 aio_init_aioinfo(struct proc *p) 472 { 473 struct kaioinfo *ki; 474 475 ki = uma_zalloc(kaio_zone, M_WAITOK); 476 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 477 ki->kaio_flags = 0; 478 ki->kaio_maxactive_count = max_aio_per_proc; 479 ki->kaio_active_count = 0; 480 ki->kaio_qallowed_count = max_aio_queue_per_proc; 481 ki->kaio_count = 0; 482 ki->kaio_ballowed_count = max_buf_aio; 483 ki->kaio_buffer_count = 0; 484 TAILQ_INIT(&ki->kaio_all); 485 TAILQ_INIT(&ki->kaio_done); 486 TAILQ_INIT(&ki->kaio_jobqueue); 487 TAILQ_INIT(&ki->kaio_liojoblist); 488 TAILQ_INIT(&ki->kaio_syncqueue); 489 TAILQ_INIT(&ki->kaio_syncready); 490 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 491 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 492 PROC_LOCK(p); 493 if (p->p_aioinfo == NULL) { 494 p->p_aioinfo = ki; 495 PROC_UNLOCK(p); 496 } else { 497 PROC_UNLOCK(p); 498 mtx_destroy(&ki->kaio_mtx); 499 uma_zfree(kaio_zone, ki); 500 } 501 502 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 503 aio_newproc(NULL); 504 } 505 506 static int 507 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 508 { 509 struct thread *td; 510 int error; 511 512 error = sigev_findtd(p, sigev, &td); 513 if (error) 514 return (error); 515 if (!KSI_ONQ(ksi)) { 516 ksiginfo_set_sigev(ksi, sigev); 517 ksi->ksi_code = SI_ASYNCIO; 518 ksi->ksi_flags |= KSI_EXT | KSI_INS; 519 tdsendsignal(p, td, ksi->ksi_signo, ksi); 520 } 521 PROC_UNLOCK(p); 522 return (error); 523 } 524 525 /* 526 * Free a job entry. Wait for completion if it is currently active, but don't 527 * delay forever. If we delay, we return a flag that says that we have to 528 * restart the queue scan. 529 */ 530 static int 531 aio_free_entry(struct kaiocb *job) 532 { 533 struct kaioinfo *ki; 534 struct aioliojob *lj; 535 struct proc *p; 536 537 p = job->userproc; 538 MPASS(curproc == p); 539 ki = p->p_aioinfo; 540 MPASS(ki != NULL); 541 542 AIO_LOCK_ASSERT(ki, MA_OWNED); 543 MPASS(job->jobflags & KAIOCB_FINISHED); 544 545 atomic_subtract_int(&num_queue_count, 1); 546 547 ki->kaio_count--; 548 MPASS(ki->kaio_count >= 0); 549 550 TAILQ_REMOVE(&ki->kaio_done, job, plist); 551 TAILQ_REMOVE(&ki->kaio_all, job, allist); 552 553 lj = job->lio; 554 if (lj) { 555 lj->lioj_count--; 556 lj->lioj_finished_count--; 557 558 if (lj->lioj_count == 0) { 559 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 560 /* lio is going away, we need to destroy any knotes */ 561 knlist_delete(&lj->klist, curthread, 1); 562 PROC_LOCK(p); 563 sigqueue_take(&lj->lioj_ksi); 564 PROC_UNLOCK(p); 565 uma_zfree(aiolio_zone, lj); 566 } 567 } 568 569 /* job is going away, we need to destroy any knotes */ 570 knlist_delete(&job->klist, curthread, 1); 571 PROC_LOCK(p); 572 sigqueue_take(&job->ksi); 573 PROC_UNLOCK(p); 574 575 MPASS(job->bp == NULL); 576 AIO_UNLOCK(ki); 577 578 /* 579 * The thread argument here is used to find the owning process 580 * and is also passed to fo_close() which may pass it to various 581 * places such as devsw close() routines. Because of that, we 582 * need a thread pointer from the process owning the job that is 583 * persistent and won't disappear out from under us or move to 584 * another process. 585 * 586 * Currently, all the callers of this function call it to remove 587 * a kaiocb from the current process' job list either via a 588 * syscall or due to the current process calling exit() or 589 * execve(). Thus, we know that p == curproc. We also know that 590 * curthread can't exit since we are curthread. 591 * 592 * Therefore, we use curthread as the thread to pass to 593 * knlist_delete(). This does mean that it is possible for the 594 * thread pointer at close time to differ from the thread pointer 595 * at open time, but this is already true of file descriptors in 596 * a multithreaded process. 597 */ 598 if (job->fd_file) 599 fdrop(job->fd_file, curthread); 600 crfree(job->cred); 601 uma_zfree(aiocb_zone, job); 602 AIO_LOCK(ki); 603 604 return (0); 605 } 606 607 static void 608 aio_proc_rundown_exec(void *arg, struct proc *p, 609 struct image_params *imgp __unused) 610 { 611 aio_proc_rundown(arg, p); 612 } 613 614 static int 615 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 616 { 617 aio_cancel_fn_t *func; 618 int cancelled; 619 620 AIO_LOCK_ASSERT(ki, MA_OWNED); 621 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 622 return (0); 623 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 624 job->jobflags |= KAIOCB_CANCELLED; 625 626 func = job->cancel_fn; 627 628 /* 629 * If there is no cancel routine, just leave the job marked as 630 * cancelled. The job should be in active use by a caller who 631 * should complete it normally or when it fails to install a 632 * cancel routine. 633 */ 634 if (func == NULL) 635 return (0); 636 637 /* 638 * Set the CANCELLING flag so that aio_complete() will defer 639 * completions of this job. This prevents the job from being 640 * freed out from under the cancel callback. After the 641 * callback any deferred completion (whether from the callback 642 * or any other source) will be completed. 643 */ 644 job->jobflags |= KAIOCB_CANCELLING; 645 AIO_UNLOCK(ki); 646 func(job); 647 AIO_LOCK(ki); 648 job->jobflags &= ~KAIOCB_CANCELLING; 649 if (job->jobflags & KAIOCB_FINISHED) { 650 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 651 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 652 aio_bio_done_notify(p, job); 653 } else { 654 /* 655 * The cancel callback might have scheduled an 656 * operation to cancel this request, but it is 657 * only counted as cancelled if the request is 658 * cancelled when the callback returns. 659 */ 660 cancelled = 0; 661 } 662 return (cancelled); 663 } 664 665 /* 666 * Rundown the jobs for a given process. 667 */ 668 static void 669 aio_proc_rundown(void *arg, struct proc *p) 670 { 671 struct kaioinfo *ki; 672 struct aioliojob *lj; 673 struct kaiocb *job, *jobn; 674 675 KASSERT(curthread->td_proc == p, 676 ("%s: called on non-curproc", __func__)); 677 ki = p->p_aioinfo; 678 if (ki == NULL) 679 return; 680 681 AIO_LOCK(ki); 682 ki->kaio_flags |= KAIO_RUNDOWN; 683 684 restart: 685 686 /* 687 * Try to cancel all pending requests. This code simulates 688 * aio_cancel on all pending I/O requests. 689 */ 690 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 691 aio_cancel_job(p, ki, job); 692 } 693 694 /* Wait for all running I/O to be finished */ 695 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 696 ki->kaio_flags |= KAIO_WAKEUP; 697 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 698 goto restart; 699 } 700 701 /* Free all completed I/O requests. */ 702 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 703 aio_free_entry(job); 704 705 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 706 if (lj->lioj_count == 0) { 707 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 708 knlist_delete(&lj->klist, curthread, 1); 709 PROC_LOCK(p); 710 sigqueue_take(&lj->lioj_ksi); 711 PROC_UNLOCK(p); 712 uma_zfree(aiolio_zone, lj); 713 } else { 714 panic("LIO job not cleaned up: C:%d, FC:%d\n", 715 lj->lioj_count, lj->lioj_finished_count); 716 } 717 } 718 AIO_UNLOCK(ki); 719 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 720 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 721 mtx_destroy(&ki->kaio_mtx); 722 uma_zfree(kaio_zone, ki); 723 p->p_aioinfo = NULL; 724 } 725 726 /* 727 * Select a job to run (called by an AIO daemon). 728 */ 729 static struct kaiocb * 730 aio_selectjob(struct aioproc *aiop) 731 { 732 struct kaiocb *job; 733 struct kaioinfo *ki; 734 struct proc *userp; 735 736 mtx_assert(&aio_job_mtx, MA_OWNED); 737 restart: 738 TAILQ_FOREACH(job, &aio_jobs, list) { 739 userp = job->userproc; 740 ki = userp->p_aioinfo; 741 742 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 743 TAILQ_REMOVE(&aio_jobs, job, list); 744 if (!aio_clear_cancel_function(job)) 745 goto restart; 746 747 /* Account for currently active jobs. */ 748 ki->kaio_active_count++; 749 break; 750 } 751 } 752 return (job); 753 } 754 755 /* 756 * Move all data to a permanent storage device. This code 757 * simulates the fsync syscall. 758 */ 759 static int 760 aio_fsync_vnode(struct thread *td, struct vnode *vp) 761 { 762 struct mount *mp; 763 int error; 764 765 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 766 goto drop; 767 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 768 if (vp->v_object != NULL) { 769 VM_OBJECT_WLOCK(vp->v_object); 770 vm_object_page_clean(vp->v_object, 0, 0, 0); 771 VM_OBJECT_WUNLOCK(vp->v_object); 772 } 773 error = VOP_FSYNC(vp, MNT_WAIT, td); 774 775 VOP_UNLOCK(vp, 0); 776 vn_finished_write(mp); 777 drop: 778 return (error); 779 } 780 781 /* 782 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 783 * does the I/O request for the non-physio version of the operations. The 784 * normal vn operations are used, and this code should work in all instances 785 * for every type of file, including pipes, sockets, fifos, and regular files. 786 * 787 * XXX I don't think it works well for socket, pipe, and fifo. 788 */ 789 static void 790 aio_process_rw(struct kaiocb *job) 791 { 792 struct ucred *td_savedcred; 793 struct thread *td; 794 struct aiocb *cb; 795 struct file *fp; 796 struct uio auio; 797 struct iovec aiov; 798 int cnt; 799 int error; 800 int oublock_st, oublock_end; 801 int inblock_st, inblock_end; 802 803 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 804 job->uaiocb.aio_lio_opcode == LIO_WRITE, 805 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 806 807 aio_switch_vmspace(job); 808 td = curthread; 809 td_savedcred = td->td_ucred; 810 td->td_ucred = job->cred; 811 cb = &job->uaiocb; 812 fp = job->fd_file; 813 814 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 815 aiov.iov_len = cb->aio_nbytes; 816 817 auio.uio_iov = &aiov; 818 auio.uio_iovcnt = 1; 819 auio.uio_offset = cb->aio_offset; 820 auio.uio_resid = cb->aio_nbytes; 821 cnt = cb->aio_nbytes; 822 auio.uio_segflg = UIO_USERSPACE; 823 auio.uio_td = td; 824 825 inblock_st = td->td_ru.ru_inblock; 826 oublock_st = td->td_ru.ru_oublock; 827 /* 828 * aio_aqueue() acquires a reference to the file that is 829 * released in aio_free_entry(). 830 */ 831 if (cb->aio_lio_opcode == LIO_READ) { 832 auio.uio_rw = UIO_READ; 833 if (auio.uio_resid == 0) 834 error = 0; 835 else 836 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 837 } else { 838 if (fp->f_type == DTYPE_VNODE) 839 bwillwrite(); 840 auio.uio_rw = UIO_WRITE; 841 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 842 } 843 inblock_end = td->td_ru.ru_inblock; 844 oublock_end = td->td_ru.ru_oublock; 845 846 job->inputcharge = inblock_end - inblock_st; 847 job->outputcharge = oublock_end - oublock_st; 848 849 if ((error) && (auio.uio_resid != cnt)) { 850 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 851 error = 0; 852 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 853 PROC_LOCK(job->userproc); 854 kern_psignal(job->userproc, SIGPIPE); 855 PROC_UNLOCK(job->userproc); 856 } 857 } 858 859 cnt -= auio.uio_resid; 860 td->td_ucred = td_savedcred; 861 aio_complete(job, cnt, error); 862 } 863 864 static void 865 aio_process_sync(struct kaiocb *job) 866 { 867 struct thread *td = curthread; 868 struct ucred *td_savedcred = td->td_ucred; 869 struct file *fp = job->fd_file; 870 int error = 0; 871 872 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 873 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 874 875 td->td_ucred = job->cred; 876 if (fp->f_vnode != NULL) 877 error = aio_fsync_vnode(td, fp->f_vnode); 878 td->td_ucred = td_savedcred; 879 aio_complete(job, 0, error); 880 } 881 882 static void 883 aio_process_mlock(struct kaiocb *job) 884 { 885 struct aiocb *cb = &job->uaiocb; 886 int error; 887 888 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 889 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 890 891 aio_switch_vmspace(job); 892 error = vm_mlock(job->userproc, job->cred, 893 __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes); 894 aio_complete(job, 0, error); 895 } 896 897 static void 898 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 899 { 900 struct aioliojob *lj; 901 struct kaioinfo *ki; 902 struct kaiocb *sjob, *sjobn; 903 int lj_done; 904 bool schedule_fsync; 905 906 ki = userp->p_aioinfo; 907 AIO_LOCK_ASSERT(ki, MA_OWNED); 908 lj = job->lio; 909 lj_done = 0; 910 if (lj) { 911 lj->lioj_finished_count++; 912 if (lj->lioj_count == lj->lioj_finished_count) 913 lj_done = 1; 914 } 915 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 916 MPASS(job->jobflags & KAIOCB_FINISHED); 917 918 if (ki->kaio_flags & KAIO_RUNDOWN) 919 goto notification_done; 920 921 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 922 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 923 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 924 925 KNOTE_LOCKED(&job->klist, 1); 926 927 if (lj_done) { 928 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 929 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 930 KNOTE_LOCKED(&lj->klist, 1); 931 } 932 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 933 == LIOJ_SIGNAL 934 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 935 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 936 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 937 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 938 } 939 } 940 941 notification_done: 942 if (job->jobflags & KAIOCB_CHECKSYNC) { 943 schedule_fsync = false; 944 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 945 if (job->fd_file == sjob->fd_file && 946 job->seqno < sjob->seqno) { 947 if (--sjob->pending == 0) { 948 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, 949 list); 950 if (!aio_clear_cancel_function(sjob)) 951 continue; 952 TAILQ_INSERT_TAIL(&ki->kaio_syncready, 953 sjob, list); 954 schedule_fsync = true; 955 } 956 } 957 } 958 if (schedule_fsync) 959 taskqueue_enqueue(taskqueue_aiod_kick, 960 &ki->kaio_sync_task); 961 } 962 if (ki->kaio_flags & KAIO_WAKEUP) { 963 ki->kaio_flags &= ~KAIO_WAKEUP; 964 wakeup(&userp->p_aioinfo); 965 } 966 } 967 968 static void 969 aio_schedule_fsync(void *context, int pending) 970 { 971 struct kaioinfo *ki; 972 struct kaiocb *job; 973 974 ki = context; 975 AIO_LOCK(ki); 976 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 977 job = TAILQ_FIRST(&ki->kaio_syncready); 978 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 979 AIO_UNLOCK(ki); 980 aio_schedule(job, aio_process_sync); 981 AIO_LOCK(ki); 982 } 983 AIO_UNLOCK(ki); 984 } 985 986 bool 987 aio_cancel_cleared(struct kaiocb *job) 988 { 989 struct kaioinfo *ki; 990 991 /* 992 * The caller should hold the same queue lock held when 993 * aio_clear_cancel_function() was called and set this flag 994 * ensuring this check sees an up-to-date value. However, 995 * there is no way to assert that. 996 */ 997 ki = job->userproc->p_aioinfo; 998 return ((job->jobflags & KAIOCB_CLEARED) != 0); 999 } 1000 1001 bool 1002 aio_clear_cancel_function(struct kaiocb *job) 1003 { 1004 struct kaioinfo *ki; 1005 1006 ki = job->userproc->p_aioinfo; 1007 AIO_LOCK(ki); 1008 MPASS(job->cancel_fn != NULL); 1009 if (job->jobflags & KAIOCB_CANCELLING) { 1010 job->jobflags |= KAIOCB_CLEARED; 1011 AIO_UNLOCK(ki); 1012 return (false); 1013 } 1014 job->cancel_fn = NULL; 1015 AIO_UNLOCK(ki); 1016 return (true); 1017 } 1018 1019 bool 1020 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1021 { 1022 struct kaioinfo *ki; 1023 1024 ki = job->userproc->p_aioinfo; 1025 AIO_LOCK(ki); 1026 if (job->jobflags & KAIOCB_CANCELLED) { 1027 AIO_UNLOCK(ki); 1028 return (false); 1029 } 1030 job->cancel_fn = func; 1031 AIO_UNLOCK(ki); 1032 return (true); 1033 } 1034 1035 void 1036 aio_complete(struct kaiocb *job, long status, int error) 1037 { 1038 struct kaioinfo *ki; 1039 struct proc *userp; 1040 1041 job->uaiocb._aiocb_private.error = error; 1042 job->uaiocb._aiocb_private.status = status; 1043 1044 userp = job->userproc; 1045 ki = userp->p_aioinfo; 1046 1047 AIO_LOCK(ki); 1048 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1049 ("duplicate aio_complete")); 1050 job->jobflags |= KAIOCB_FINISHED; 1051 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1052 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1053 aio_bio_done_notify(userp, job); 1054 } 1055 AIO_UNLOCK(ki); 1056 } 1057 1058 void 1059 aio_cancel(struct kaiocb *job) 1060 { 1061 1062 aio_complete(job, -1, ECANCELED); 1063 } 1064 1065 void 1066 aio_switch_vmspace(struct kaiocb *job) 1067 { 1068 1069 vmspace_switch_aio(job->userproc->p_vmspace); 1070 } 1071 1072 /* 1073 * The AIO daemon, most of the actual work is done in aio_process_*, 1074 * but the setup (and address space mgmt) is done in this routine. 1075 */ 1076 static void 1077 aio_daemon(void *_id) 1078 { 1079 struct kaiocb *job; 1080 struct aioproc *aiop; 1081 struct kaioinfo *ki; 1082 struct proc *p; 1083 struct vmspace *myvm; 1084 struct thread *td = curthread; 1085 int id = (intptr_t)_id; 1086 1087 /* 1088 * Grab an extra reference on the daemon's vmspace so that it 1089 * doesn't get freed by jobs that switch to a different 1090 * vmspace. 1091 */ 1092 p = td->td_proc; 1093 myvm = vmspace_acquire_ref(p); 1094 1095 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1096 1097 /* 1098 * Allocate and ready the aio control info. There is one aiop structure 1099 * per daemon. 1100 */ 1101 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1102 aiop->aioproc = p; 1103 aiop->aioprocflags = 0; 1104 1105 /* 1106 * Wakeup parent process. (Parent sleeps to keep from blasting away 1107 * and creating too many daemons.) 1108 */ 1109 sema_post(&aio_newproc_sem); 1110 1111 mtx_lock(&aio_job_mtx); 1112 for (;;) { 1113 /* 1114 * Take daemon off of free queue 1115 */ 1116 if (aiop->aioprocflags & AIOP_FREE) { 1117 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1118 aiop->aioprocflags &= ~AIOP_FREE; 1119 } 1120 1121 /* 1122 * Check for jobs. 1123 */ 1124 while ((job = aio_selectjob(aiop)) != NULL) { 1125 mtx_unlock(&aio_job_mtx); 1126 1127 ki = job->userproc->p_aioinfo; 1128 job->handle_fn(job); 1129 1130 mtx_lock(&aio_job_mtx); 1131 /* Decrement the active job count. */ 1132 ki->kaio_active_count--; 1133 } 1134 1135 /* 1136 * Disconnect from user address space. 1137 */ 1138 if (p->p_vmspace != myvm) { 1139 mtx_unlock(&aio_job_mtx); 1140 vmspace_switch_aio(myvm); 1141 mtx_lock(&aio_job_mtx); 1142 /* 1143 * We have to restart to avoid race, we only sleep if 1144 * no job can be selected. 1145 */ 1146 continue; 1147 } 1148 1149 mtx_assert(&aio_job_mtx, MA_OWNED); 1150 1151 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1152 aiop->aioprocflags |= AIOP_FREE; 1153 1154 /* 1155 * If daemon is inactive for a long time, allow it to exit, 1156 * thereby freeing resources. 1157 */ 1158 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1159 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1160 (aiop->aioprocflags & AIOP_FREE) && 1161 num_aio_procs > target_aio_procs) 1162 break; 1163 } 1164 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1165 num_aio_procs--; 1166 mtx_unlock(&aio_job_mtx); 1167 uma_zfree(aiop_zone, aiop); 1168 free_unr(aiod_unr, id); 1169 vmspace_free(myvm); 1170 1171 KASSERT(p->p_vmspace == myvm, 1172 ("AIOD: bad vmspace for exiting daemon")); 1173 KASSERT(myvm->vm_refcnt > 1, 1174 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1175 kproc_exit(0); 1176 } 1177 1178 /* 1179 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1180 * AIO daemon modifies its environment itself. 1181 */ 1182 static int 1183 aio_newproc(int *start) 1184 { 1185 int error; 1186 struct proc *p; 1187 int id; 1188 1189 id = alloc_unr(aiod_unr); 1190 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1191 RFNOWAIT, 0, "aiod%d", id); 1192 if (error == 0) { 1193 /* 1194 * Wait until daemon is started. 1195 */ 1196 sema_wait(&aio_newproc_sem); 1197 mtx_lock(&aio_job_mtx); 1198 num_aio_procs++; 1199 if (start != NULL) 1200 (*start)--; 1201 mtx_unlock(&aio_job_mtx); 1202 } else { 1203 free_unr(aiod_unr, id); 1204 } 1205 return (error); 1206 } 1207 1208 /* 1209 * Try the high-performance, low-overhead physio method for eligible 1210 * VCHR devices. This method doesn't use an aio helper thread, and 1211 * thus has very low overhead. 1212 * 1213 * Assumes that the caller, aio_aqueue(), has incremented the file 1214 * structure's reference count, preventing its deallocation for the 1215 * duration of this call. 1216 */ 1217 static int 1218 aio_qphysio(struct proc *p, struct kaiocb *job) 1219 { 1220 struct aiocb *cb; 1221 struct file *fp; 1222 struct bio *bp; 1223 struct buf *pbuf; 1224 struct vnode *vp; 1225 struct cdevsw *csw; 1226 struct cdev *dev; 1227 struct kaioinfo *ki; 1228 int error, ref, unmap, poff; 1229 vm_prot_t prot; 1230 1231 cb = &job->uaiocb; 1232 fp = job->fd_file; 1233 1234 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1235 return (-1); 1236 1237 vp = fp->f_vnode; 1238 if (vp->v_type != VCHR) 1239 return (-1); 1240 if (vp->v_bufobj.bo_bsize == 0) 1241 return (-1); 1242 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1243 return (-1); 1244 1245 ref = 0; 1246 csw = devvn_refthread(vp, &dev, &ref); 1247 if (csw == NULL) 1248 return (ENXIO); 1249 1250 if ((csw->d_flags & D_DISK) == 0) { 1251 error = -1; 1252 goto unref; 1253 } 1254 if (cb->aio_nbytes > dev->si_iosize_max) { 1255 error = -1; 1256 goto unref; 1257 } 1258 1259 ki = p->p_aioinfo; 1260 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1261 unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed); 1262 if (unmap) { 1263 if (cb->aio_nbytes > MAXPHYS) { 1264 error = -1; 1265 goto unref; 1266 } 1267 } else { 1268 if (cb->aio_nbytes > MAXPHYS - poff) { 1269 error = -1; 1270 goto unref; 1271 } 1272 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1273 error = -1; 1274 goto unref; 1275 } 1276 } 1277 job->bp = bp = g_alloc_bio(); 1278 if (!unmap) { 1279 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1280 BUF_KERNPROC(pbuf); 1281 } 1282 1283 AIO_LOCK(ki); 1284 if (!unmap) 1285 ki->kaio_buffer_count++; 1286 AIO_UNLOCK(ki); 1287 1288 bp->bio_length = cb->aio_nbytes; 1289 bp->bio_bcount = cb->aio_nbytes; 1290 bp->bio_done = aio_physwakeup; 1291 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1292 bp->bio_offset = cb->aio_offset; 1293 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1294 bp->bio_dev = dev; 1295 bp->bio_caller1 = (void *)job; 1296 1297 prot = VM_PROT_READ; 1298 if (cb->aio_lio_opcode == LIO_READ) 1299 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1300 if ((job->npages = vm_fault_quick_hold_pages( 1301 &curproc->p_vmspace->vm_map, 1302 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1303 sizeof(job->pages)/sizeof(job->pages[0]))) < 0) { 1304 error = EFAULT; 1305 goto doerror; 1306 } 1307 if (!unmap) { 1308 pmap_qenter((vm_offset_t)pbuf->b_data, 1309 job->pages, job->npages); 1310 bp->bio_data = pbuf->b_data + poff; 1311 } else { 1312 bp->bio_ma = job->pages; 1313 bp->bio_ma_n = job->npages; 1314 bp->bio_ma_offset = poff; 1315 bp->bio_data = unmapped_buf; 1316 bp->bio_flags |= BIO_UNMAPPED; 1317 } 1318 1319 if (!unmap) 1320 atomic_add_int(&num_buf_aio, 1); 1321 1322 /* Perform transfer. */ 1323 csw->d_strategy(bp); 1324 dev_relthread(dev, ref); 1325 return (0); 1326 1327 doerror: 1328 AIO_LOCK(ki); 1329 if (!unmap) 1330 ki->kaio_buffer_count--; 1331 AIO_UNLOCK(ki); 1332 if (pbuf) { 1333 relpbuf(pbuf, NULL); 1334 job->pbuf = NULL; 1335 } 1336 g_destroy_bio(bp); 1337 job->bp = NULL; 1338 unref: 1339 dev_relthread(dev, ref); 1340 return (error); 1341 } 1342 1343 static int 1344 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1345 { 1346 1347 /* 1348 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1349 * supported by AIO with the old sigevent structure. 1350 */ 1351 nsig->sigev_notify = osig->sigev_notify; 1352 switch (nsig->sigev_notify) { 1353 case SIGEV_NONE: 1354 break; 1355 case SIGEV_SIGNAL: 1356 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1357 break; 1358 case SIGEV_KEVENT: 1359 nsig->sigev_notify_kqueue = 1360 osig->__sigev_u.__sigev_notify_kqueue; 1361 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1362 break; 1363 default: 1364 return (EINVAL); 1365 } 1366 return (0); 1367 } 1368 1369 static int 1370 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1371 { 1372 struct oaiocb *ojob; 1373 int error; 1374 1375 bzero(kjob, sizeof(struct aiocb)); 1376 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1377 if (error) 1378 return (error); 1379 ojob = (struct oaiocb *)kjob; 1380 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1381 } 1382 1383 static int 1384 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1385 { 1386 1387 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1388 } 1389 1390 static long 1391 aiocb_fetch_status(struct aiocb *ujob) 1392 { 1393 1394 return (fuword(&ujob->_aiocb_private.status)); 1395 } 1396 1397 static long 1398 aiocb_fetch_error(struct aiocb *ujob) 1399 { 1400 1401 return (fuword(&ujob->_aiocb_private.error)); 1402 } 1403 1404 static int 1405 aiocb_store_status(struct aiocb *ujob, long status) 1406 { 1407 1408 return (suword(&ujob->_aiocb_private.status, status)); 1409 } 1410 1411 static int 1412 aiocb_store_error(struct aiocb *ujob, long error) 1413 { 1414 1415 return (suword(&ujob->_aiocb_private.error, error)); 1416 } 1417 1418 static int 1419 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1420 { 1421 1422 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1423 } 1424 1425 static int 1426 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1427 { 1428 1429 return (suword(ujobp, (long)ujob)); 1430 } 1431 1432 static struct aiocb_ops aiocb_ops = { 1433 .copyin = aiocb_copyin, 1434 .fetch_status = aiocb_fetch_status, 1435 .fetch_error = aiocb_fetch_error, 1436 .store_status = aiocb_store_status, 1437 .store_error = aiocb_store_error, 1438 .store_kernelinfo = aiocb_store_kernelinfo, 1439 .store_aiocb = aiocb_store_aiocb, 1440 }; 1441 1442 static struct aiocb_ops aiocb_ops_osigevent = { 1443 .copyin = aiocb_copyin_old_sigevent, 1444 .fetch_status = aiocb_fetch_status, 1445 .fetch_error = aiocb_fetch_error, 1446 .store_status = aiocb_store_status, 1447 .store_error = aiocb_store_error, 1448 .store_kernelinfo = aiocb_store_kernelinfo, 1449 .store_aiocb = aiocb_store_aiocb, 1450 }; 1451 1452 /* 1453 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1454 * technique is done in this code. 1455 */ 1456 int 1457 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1458 int type, struct aiocb_ops *ops) 1459 { 1460 struct proc *p = td->td_proc; 1461 cap_rights_t rights; 1462 struct file *fp; 1463 struct kaiocb *job; 1464 struct kaioinfo *ki; 1465 struct kevent kev; 1466 int opcode; 1467 int error; 1468 int fd, kqfd; 1469 int jid; 1470 u_short evflags; 1471 1472 if (p->p_aioinfo == NULL) 1473 aio_init_aioinfo(p); 1474 1475 ki = p->p_aioinfo; 1476 1477 ops->store_status(ujob, -1); 1478 ops->store_error(ujob, 0); 1479 ops->store_kernelinfo(ujob, -1); 1480 1481 if (num_queue_count >= max_queue_count || 1482 ki->kaio_count >= ki->kaio_qallowed_count) { 1483 ops->store_error(ujob, EAGAIN); 1484 return (EAGAIN); 1485 } 1486 1487 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1488 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1489 1490 error = ops->copyin(ujob, &job->uaiocb); 1491 if (error) { 1492 ops->store_error(ujob, error); 1493 uma_zfree(aiocb_zone, job); 1494 return (error); 1495 } 1496 1497 /* XXX: aio_nbytes is later casted to signed types. */ 1498 if (job->uaiocb.aio_nbytes > INT_MAX) { 1499 uma_zfree(aiocb_zone, job); 1500 return (EINVAL); 1501 } 1502 1503 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1504 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1505 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1506 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1507 ops->store_error(ujob, EINVAL); 1508 uma_zfree(aiocb_zone, job); 1509 return (EINVAL); 1510 } 1511 1512 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1513 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1514 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1515 uma_zfree(aiocb_zone, job); 1516 return (EINVAL); 1517 } 1518 1519 ksiginfo_init(&job->ksi); 1520 1521 /* Save userspace address of the job info. */ 1522 job->ujob = ujob; 1523 1524 /* Get the opcode. */ 1525 if (type != LIO_NOP) 1526 job->uaiocb.aio_lio_opcode = type; 1527 opcode = job->uaiocb.aio_lio_opcode; 1528 1529 /* 1530 * Validate the opcode and fetch the file object for the specified 1531 * file descriptor. 1532 * 1533 * XXXRW: Moved the opcode validation up here so that we don't 1534 * retrieve a file descriptor without knowing what the capabiltity 1535 * should be. 1536 */ 1537 fd = job->uaiocb.aio_fildes; 1538 switch (opcode) { 1539 case LIO_WRITE: 1540 error = fget_write(td, fd, 1541 cap_rights_init(&rights, CAP_PWRITE), &fp); 1542 break; 1543 case LIO_READ: 1544 error = fget_read(td, fd, 1545 cap_rights_init(&rights, CAP_PREAD), &fp); 1546 break; 1547 case LIO_SYNC: 1548 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1549 break; 1550 case LIO_MLOCK: 1551 fp = NULL; 1552 break; 1553 case LIO_NOP: 1554 error = fget(td, fd, cap_rights_init(&rights), &fp); 1555 break; 1556 default: 1557 error = EINVAL; 1558 } 1559 if (error) { 1560 uma_zfree(aiocb_zone, job); 1561 ops->store_error(ujob, error); 1562 return (error); 1563 } 1564 1565 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1566 error = EINVAL; 1567 goto aqueue_fail; 1568 } 1569 1570 if (opcode != LIO_SYNC && job->uaiocb.aio_offset == -1LL) { 1571 error = EINVAL; 1572 goto aqueue_fail; 1573 } 1574 1575 job->fd_file = fp; 1576 1577 mtx_lock(&aio_job_mtx); 1578 jid = jobrefid++; 1579 job->seqno = jobseqno++; 1580 mtx_unlock(&aio_job_mtx); 1581 error = ops->store_kernelinfo(ujob, jid); 1582 if (error) { 1583 error = EINVAL; 1584 goto aqueue_fail; 1585 } 1586 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1587 1588 if (opcode == LIO_NOP) { 1589 fdrop(fp, td); 1590 uma_zfree(aiocb_zone, job); 1591 return (0); 1592 } 1593 1594 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1595 goto no_kqueue; 1596 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1597 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1598 error = EINVAL; 1599 goto aqueue_fail; 1600 } 1601 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1602 kev.ident = (uintptr_t)job->ujob; 1603 kev.filter = EVFILT_AIO; 1604 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1605 kev.data = (intptr_t)job; 1606 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1607 error = kqfd_register(kqfd, &kev, td, 1); 1608 if (error) 1609 goto aqueue_fail; 1610 1611 no_kqueue: 1612 1613 ops->store_error(ujob, EINPROGRESS); 1614 job->uaiocb._aiocb_private.error = EINPROGRESS; 1615 job->userproc = p; 1616 job->cred = crhold(td->td_ucred); 1617 job->jobflags = KAIOCB_QUEUEING; 1618 job->lio = lj; 1619 1620 if (opcode == LIO_MLOCK) { 1621 aio_schedule(job, aio_process_mlock); 1622 error = 0; 1623 } else if (fp->f_ops->fo_aio_queue == NULL) 1624 error = aio_queue_file(fp, job); 1625 else 1626 error = fo_aio_queue(fp, job); 1627 if (error) 1628 goto aqueue_fail; 1629 1630 AIO_LOCK(ki); 1631 job->jobflags &= ~KAIOCB_QUEUEING; 1632 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1633 ki->kaio_count++; 1634 if (lj) 1635 lj->lioj_count++; 1636 atomic_add_int(&num_queue_count, 1); 1637 if (job->jobflags & KAIOCB_FINISHED) { 1638 /* 1639 * The queue callback completed the request synchronously. 1640 * The bulk of the completion is deferred in that case 1641 * until this point. 1642 */ 1643 aio_bio_done_notify(p, job); 1644 } else 1645 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1646 AIO_UNLOCK(ki); 1647 return (0); 1648 1649 aqueue_fail: 1650 knlist_delete(&job->klist, curthread, 0); 1651 if (fp) 1652 fdrop(fp, td); 1653 uma_zfree(aiocb_zone, job); 1654 ops->store_error(ujob, error); 1655 return (error); 1656 } 1657 1658 static void 1659 aio_cancel_daemon_job(struct kaiocb *job) 1660 { 1661 1662 mtx_lock(&aio_job_mtx); 1663 if (!aio_cancel_cleared(job)) 1664 TAILQ_REMOVE(&aio_jobs, job, list); 1665 mtx_unlock(&aio_job_mtx); 1666 aio_cancel(job); 1667 } 1668 1669 void 1670 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1671 { 1672 1673 mtx_lock(&aio_job_mtx); 1674 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1675 mtx_unlock(&aio_job_mtx); 1676 aio_cancel(job); 1677 return; 1678 } 1679 job->handle_fn = func; 1680 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1681 aio_kick_nowait(job->userproc); 1682 mtx_unlock(&aio_job_mtx); 1683 } 1684 1685 static void 1686 aio_cancel_sync(struct kaiocb *job) 1687 { 1688 struct kaioinfo *ki; 1689 1690 ki = job->userproc->p_aioinfo; 1691 mtx_lock(&aio_job_mtx); 1692 if (!aio_cancel_cleared(job)) 1693 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1694 mtx_unlock(&aio_job_mtx); 1695 aio_cancel(job); 1696 } 1697 1698 int 1699 aio_queue_file(struct file *fp, struct kaiocb *job) 1700 { 1701 struct aioliojob *lj; 1702 struct kaioinfo *ki; 1703 struct kaiocb *job2; 1704 int error, opcode; 1705 1706 lj = job->lio; 1707 ki = job->userproc->p_aioinfo; 1708 opcode = job->uaiocb.aio_lio_opcode; 1709 if (opcode == LIO_SYNC) 1710 goto queueit; 1711 1712 if ((error = aio_qphysio(job->userproc, job)) == 0) 1713 goto done; 1714 #if 0 1715 /* 1716 * XXX: This means qphysio() failed with EFAULT. The current 1717 * behavior is to retry the operation via fo_read/fo_write. 1718 * Wouldn't it be better to just complete the request with an 1719 * error here? 1720 */ 1721 if (error > 0) 1722 goto done; 1723 #endif 1724 queueit: 1725 if (!enable_aio_unsafe) 1726 return (EOPNOTSUPP); 1727 1728 if (opcode == LIO_SYNC) { 1729 AIO_LOCK(ki); 1730 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1731 if (job2->fd_file == job->fd_file && 1732 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1733 job2->seqno < job->seqno) { 1734 job2->jobflags |= KAIOCB_CHECKSYNC; 1735 job->pending++; 1736 } 1737 } 1738 if (job->pending != 0) { 1739 if (!aio_set_cancel_function(job, aio_cancel_sync)) { 1740 AIO_UNLOCK(ki); 1741 aio_cancel(job); 1742 return (0); 1743 } 1744 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1745 AIO_UNLOCK(ki); 1746 return (0); 1747 } 1748 AIO_UNLOCK(ki); 1749 } 1750 1751 switch (opcode) { 1752 case LIO_READ: 1753 case LIO_WRITE: 1754 aio_schedule(job, aio_process_rw); 1755 error = 0; 1756 break; 1757 case LIO_SYNC: 1758 aio_schedule(job, aio_process_sync); 1759 error = 0; 1760 break; 1761 default: 1762 error = EINVAL; 1763 } 1764 done: 1765 return (error); 1766 } 1767 1768 static void 1769 aio_kick_nowait(struct proc *userp) 1770 { 1771 struct kaioinfo *ki = userp->p_aioinfo; 1772 struct aioproc *aiop; 1773 1774 mtx_assert(&aio_job_mtx, MA_OWNED); 1775 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1776 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1777 aiop->aioprocflags &= ~AIOP_FREE; 1778 wakeup(aiop->aioproc); 1779 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1780 ki->kaio_active_count + num_aio_resv_start < 1781 ki->kaio_maxactive_count) { 1782 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1783 } 1784 } 1785 1786 static int 1787 aio_kick(struct proc *userp) 1788 { 1789 struct kaioinfo *ki = userp->p_aioinfo; 1790 struct aioproc *aiop; 1791 int error, ret = 0; 1792 1793 mtx_assert(&aio_job_mtx, MA_OWNED); 1794 retryproc: 1795 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1796 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1797 aiop->aioprocflags &= ~AIOP_FREE; 1798 wakeup(aiop->aioproc); 1799 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1800 ki->kaio_active_count + num_aio_resv_start < 1801 ki->kaio_maxactive_count) { 1802 num_aio_resv_start++; 1803 mtx_unlock(&aio_job_mtx); 1804 error = aio_newproc(&num_aio_resv_start); 1805 mtx_lock(&aio_job_mtx); 1806 if (error) { 1807 num_aio_resv_start--; 1808 goto retryproc; 1809 } 1810 } else { 1811 ret = -1; 1812 } 1813 return (ret); 1814 } 1815 1816 static void 1817 aio_kick_helper(void *context, int pending) 1818 { 1819 struct proc *userp = context; 1820 1821 mtx_lock(&aio_job_mtx); 1822 while (--pending >= 0) { 1823 if (aio_kick(userp)) 1824 break; 1825 } 1826 mtx_unlock(&aio_job_mtx); 1827 } 1828 1829 /* 1830 * Support the aio_return system call, as a side-effect, kernel resources are 1831 * released. 1832 */ 1833 static int 1834 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1835 { 1836 struct proc *p = td->td_proc; 1837 struct kaiocb *job; 1838 struct kaioinfo *ki; 1839 int status, error; 1840 1841 ki = p->p_aioinfo; 1842 if (ki == NULL) 1843 return (EINVAL); 1844 AIO_LOCK(ki); 1845 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1846 if (job->ujob == ujob) 1847 break; 1848 } 1849 if (job != NULL) { 1850 MPASS(job->jobflags & KAIOCB_FINISHED); 1851 status = job->uaiocb._aiocb_private.status; 1852 error = job->uaiocb._aiocb_private.error; 1853 td->td_retval[0] = status; 1854 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) { 1855 td->td_ru.ru_oublock += job->outputcharge; 1856 job->outputcharge = 0; 1857 } else if (job->uaiocb.aio_lio_opcode == LIO_READ) { 1858 td->td_ru.ru_inblock += job->inputcharge; 1859 job->inputcharge = 0; 1860 } 1861 aio_free_entry(job); 1862 AIO_UNLOCK(ki); 1863 ops->store_error(ujob, error); 1864 ops->store_status(ujob, status); 1865 } else { 1866 error = EINVAL; 1867 AIO_UNLOCK(ki); 1868 } 1869 return (error); 1870 } 1871 1872 int 1873 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1874 { 1875 1876 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1877 } 1878 1879 /* 1880 * Allow a process to wakeup when any of the I/O requests are completed. 1881 */ 1882 static int 1883 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1884 struct timespec *ts) 1885 { 1886 struct proc *p = td->td_proc; 1887 struct timeval atv; 1888 struct kaioinfo *ki; 1889 struct kaiocb *firstjob, *job; 1890 int error, i, timo; 1891 1892 timo = 0; 1893 if (ts) { 1894 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1895 return (EINVAL); 1896 1897 TIMESPEC_TO_TIMEVAL(&atv, ts); 1898 if (itimerfix(&atv)) 1899 return (EINVAL); 1900 timo = tvtohz(&atv); 1901 } 1902 1903 ki = p->p_aioinfo; 1904 if (ki == NULL) 1905 return (EAGAIN); 1906 1907 if (njoblist == 0) 1908 return (0); 1909 1910 AIO_LOCK(ki); 1911 for (;;) { 1912 firstjob = NULL; 1913 error = 0; 1914 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1915 for (i = 0; i < njoblist; i++) { 1916 if (job->ujob == ujoblist[i]) { 1917 if (firstjob == NULL) 1918 firstjob = job; 1919 if (job->jobflags & KAIOCB_FINISHED) 1920 goto RETURN; 1921 } 1922 } 1923 } 1924 /* All tasks were finished. */ 1925 if (firstjob == NULL) 1926 break; 1927 1928 ki->kaio_flags |= KAIO_WAKEUP; 1929 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1930 "aiospn", timo); 1931 if (error == ERESTART) 1932 error = EINTR; 1933 if (error) 1934 break; 1935 } 1936 RETURN: 1937 AIO_UNLOCK(ki); 1938 return (error); 1939 } 1940 1941 int 1942 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1943 { 1944 struct timespec ts, *tsp; 1945 struct aiocb **ujoblist; 1946 int error; 1947 1948 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1949 return (EINVAL); 1950 1951 if (uap->timeout) { 1952 /* Get timespec struct. */ 1953 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1954 return (error); 1955 tsp = &ts; 1956 } else 1957 tsp = NULL; 1958 1959 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1960 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1961 if (error == 0) 1962 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1963 uma_zfree(aiol_zone, ujoblist); 1964 return (error); 1965 } 1966 1967 /* 1968 * aio_cancel cancels any non-physio aio operations not currently in 1969 * progress. 1970 */ 1971 int 1972 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1973 { 1974 struct proc *p = td->td_proc; 1975 struct kaioinfo *ki; 1976 struct kaiocb *job, *jobn; 1977 struct file *fp; 1978 cap_rights_t rights; 1979 int error; 1980 int cancelled = 0; 1981 int notcancelled = 0; 1982 struct vnode *vp; 1983 1984 /* Lookup file object. */ 1985 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1986 if (error) 1987 return (error); 1988 1989 ki = p->p_aioinfo; 1990 if (ki == NULL) 1991 goto done; 1992 1993 if (fp->f_type == DTYPE_VNODE) { 1994 vp = fp->f_vnode; 1995 if (vn_isdisk(vp, &error)) { 1996 fdrop(fp, td); 1997 td->td_retval[0] = AIO_NOTCANCELED; 1998 return (0); 1999 } 2000 } 2001 2002 AIO_LOCK(ki); 2003 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2004 if ((uap->fd == job->uaiocb.aio_fildes) && 2005 ((uap->aiocbp == NULL) || 2006 (uap->aiocbp == job->ujob))) { 2007 if (aio_cancel_job(p, ki, job)) { 2008 cancelled++; 2009 } else { 2010 notcancelled++; 2011 } 2012 if (uap->aiocbp != NULL) 2013 break; 2014 } 2015 } 2016 AIO_UNLOCK(ki); 2017 2018 done: 2019 fdrop(fp, td); 2020 2021 if (uap->aiocbp != NULL) { 2022 if (cancelled) { 2023 td->td_retval[0] = AIO_CANCELED; 2024 return (0); 2025 } 2026 } 2027 2028 if (notcancelled) { 2029 td->td_retval[0] = AIO_NOTCANCELED; 2030 return (0); 2031 } 2032 2033 if (cancelled) { 2034 td->td_retval[0] = AIO_CANCELED; 2035 return (0); 2036 } 2037 2038 td->td_retval[0] = AIO_ALLDONE; 2039 2040 return (0); 2041 } 2042 2043 /* 2044 * aio_error is implemented in the kernel level for compatibility purposes 2045 * only. For a user mode async implementation, it would be best to do it in 2046 * a userland subroutine. 2047 */ 2048 static int 2049 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2050 { 2051 struct proc *p = td->td_proc; 2052 struct kaiocb *job; 2053 struct kaioinfo *ki; 2054 int status; 2055 2056 ki = p->p_aioinfo; 2057 if (ki == NULL) { 2058 td->td_retval[0] = EINVAL; 2059 return (0); 2060 } 2061 2062 AIO_LOCK(ki); 2063 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2064 if (job->ujob == ujob) { 2065 if (job->jobflags & KAIOCB_FINISHED) 2066 td->td_retval[0] = 2067 job->uaiocb._aiocb_private.error; 2068 else 2069 td->td_retval[0] = EINPROGRESS; 2070 AIO_UNLOCK(ki); 2071 return (0); 2072 } 2073 } 2074 AIO_UNLOCK(ki); 2075 2076 /* 2077 * Hack for failure of aio_aqueue. 2078 */ 2079 status = ops->fetch_status(ujob); 2080 if (status == -1) { 2081 td->td_retval[0] = ops->fetch_error(ujob); 2082 return (0); 2083 } 2084 2085 td->td_retval[0] = EINVAL; 2086 return (0); 2087 } 2088 2089 int 2090 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2091 { 2092 2093 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2094 } 2095 2096 /* syscall - asynchronous read from a file (REALTIME) */ 2097 int 2098 sys_oaio_read(struct thread *td, struct oaio_read_args *uap) 2099 { 2100 2101 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2102 &aiocb_ops_osigevent)); 2103 } 2104 2105 int 2106 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2107 { 2108 2109 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2110 } 2111 2112 /* syscall - asynchronous write to a file (REALTIME) */ 2113 int 2114 sys_oaio_write(struct thread *td, struct oaio_write_args *uap) 2115 { 2116 2117 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2118 &aiocb_ops_osigevent)); 2119 } 2120 2121 int 2122 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2123 { 2124 2125 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2126 } 2127 2128 int 2129 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2130 { 2131 2132 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2133 } 2134 2135 static int 2136 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2137 struct aiocb **acb_list, int nent, struct sigevent *sig, 2138 struct aiocb_ops *ops) 2139 { 2140 struct proc *p = td->td_proc; 2141 struct aiocb *job; 2142 struct kaioinfo *ki; 2143 struct aioliojob *lj; 2144 struct kevent kev; 2145 int error; 2146 int nerror; 2147 int i; 2148 2149 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2150 return (EINVAL); 2151 2152 if (nent < 0 || nent > AIO_LISTIO_MAX) 2153 return (EINVAL); 2154 2155 if (p->p_aioinfo == NULL) 2156 aio_init_aioinfo(p); 2157 2158 ki = p->p_aioinfo; 2159 2160 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2161 lj->lioj_flags = 0; 2162 lj->lioj_count = 0; 2163 lj->lioj_finished_count = 0; 2164 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2165 ksiginfo_init(&lj->lioj_ksi); 2166 2167 /* 2168 * Setup signal. 2169 */ 2170 if (sig && (mode == LIO_NOWAIT)) { 2171 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2172 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2173 /* Assume only new style KEVENT */ 2174 kev.filter = EVFILT_LIO; 2175 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2176 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2177 kev.data = (intptr_t)lj; 2178 /* pass user defined sigval data */ 2179 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2180 error = kqfd_register( 2181 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2182 if (error) { 2183 uma_zfree(aiolio_zone, lj); 2184 return (error); 2185 } 2186 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2187 ; 2188 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2189 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2190 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2191 uma_zfree(aiolio_zone, lj); 2192 return EINVAL; 2193 } 2194 lj->lioj_flags |= LIOJ_SIGNAL; 2195 } else { 2196 uma_zfree(aiolio_zone, lj); 2197 return EINVAL; 2198 } 2199 } 2200 2201 AIO_LOCK(ki); 2202 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2203 /* 2204 * Add extra aiocb count to avoid the lio to be freed 2205 * by other threads doing aio_waitcomplete or aio_return, 2206 * and prevent event from being sent until we have queued 2207 * all tasks. 2208 */ 2209 lj->lioj_count = 1; 2210 AIO_UNLOCK(ki); 2211 2212 /* 2213 * Get pointers to the list of I/O requests. 2214 */ 2215 nerror = 0; 2216 for (i = 0; i < nent; i++) { 2217 job = acb_list[i]; 2218 if (job != NULL) { 2219 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2220 if (error != 0) 2221 nerror++; 2222 } 2223 } 2224 2225 error = 0; 2226 AIO_LOCK(ki); 2227 if (mode == LIO_WAIT) { 2228 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2229 ki->kaio_flags |= KAIO_WAKEUP; 2230 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2231 PRIBIO | PCATCH, "aiospn", 0); 2232 if (error == ERESTART) 2233 error = EINTR; 2234 if (error) 2235 break; 2236 } 2237 } else { 2238 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2239 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2240 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2241 KNOTE_LOCKED(&lj->klist, 1); 2242 } 2243 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2244 == LIOJ_SIGNAL 2245 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2246 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2247 aio_sendsig(p, &lj->lioj_signal, 2248 &lj->lioj_ksi); 2249 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2250 } 2251 } 2252 } 2253 lj->lioj_count--; 2254 if (lj->lioj_count == 0) { 2255 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2256 knlist_delete(&lj->klist, curthread, 1); 2257 PROC_LOCK(p); 2258 sigqueue_take(&lj->lioj_ksi); 2259 PROC_UNLOCK(p); 2260 AIO_UNLOCK(ki); 2261 uma_zfree(aiolio_zone, lj); 2262 } else 2263 AIO_UNLOCK(ki); 2264 2265 if (nerror) 2266 return (EIO); 2267 return (error); 2268 } 2269 2270 /* syscall - list directed I/O (REALTIME) */ 2271 int 2272 sys_olio_listio(struct thread *td, struct olio_listio_args *uap) 2273 { 2274 struct aiocb **acb_list; 2275 struct sigevent *sigp, sig; 2276 struct osigevent osig; 2277 int error, nent; 2278 2279 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2280 return (EINVAL); 2281 2282 nent = uap->nent; 2283 if (nent < 0 || nent > AIO_LISTIO_MAX) 2284 return (EINVAL); 2285 2286 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2287 error = copyin(uap->sig, &osig, sizeof(osig)); 2288 if (error) 2289 return (error); 2290 error = convert_old_sigevent(&osig, &sig); 2291 if (error) 2292 return (error); 2293 sigp = &sig; 2294 } else 2295 sigp = NULL; 2296 2297 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2298 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2299 if (error == 0) 2300 error = kern_lio_listio(td, uap->mode, 2301 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2302 &aiocb_ops_osigevent); 2303 free(acb_list, M_LIO); 2304 return (error); 2305 } 2306 2307 /* syscall - list directed I/O (REALTIME) */ 2308 int 2309 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2310 { 2311 struct aiocb **acb_list; 2312 struct sigevent *sigp, sig; 2313 int error, nent; 2314 2315 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2316 return (EINVAL); 2317 2318 nent = uap->nent; 2319 if (nent < 0 || nent > AIO_LISTIO_MAX) 2320 return (EINVAL); 2321 2322 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2323 error = copyin(uap->sig, &sig, sizeof(sig)); 2324 if (error) 2325 return (error); 2326 sigp = &sig; 2327 } else 2328 sigp = NULL; 2329 2330 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2331 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2332 if (error == 0) 2333 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2334 nent, sigp, &aiocb_ops); 2335 free(acb_list, M_LIO); 2336 return (error); 2337 } 2338 2339 static void 2340 aio_physwakeup(struct bio *bp) 2341 { 2342 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2343 struct proc *userp; 2344 struct kaioinfo *ki; 2345 size_t nbytes; 2346 int error, nblks; 2347 2348 /* Release mapping into kernel space. */ 2349 userp = job->userproc; 2350 ki = userp->p_aioinfo; 2351 if (job->pbuf) { 2352 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2353 relpbuf(job->pbuf, NULL); 2354 job->pbuf = NULL; 2355 atomic_subtract_int(&num_buf_aio, 1); 2356 AIO_LOCK(ki); 2357 ki->kaio_buffer_count--; 2358 AIO_UNLOCK(ki); 2359 } 2360 vm_page_unhold_pages(job->pages, job->npages); 2361 2362 bp = job->bp; 2363 job->bp = NULL; 2364 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2365 error = 0; 2366 if (bp->bio_flags & BIO_ERROR) 2367 error = bp->bio_error; 2368 nblks = btodb(nbytes); 2369 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2370 job->outputcharge += nblks; 2371 else 2372 job->inputcharge += nblks; 2373 2374 aio_complete(job, nbytes, error); 2375 2376 g_destroy_bio(bp); 2377 } 2378 2379 /* syscall - wait for the next completion of an aio request */ 2380 static int 2381 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2382 struct timespec *ts, struct aiocb_ops *ops) 2383 { 2384 struct proc *p = td->td_proc; 2385 struct timeval atv; 2386 struct kaioinfo *ki; 2387 struct kaiocb *job; 2388 struct aiocb *ujob; 2389 int error, status, timo; 2390 2391 ops->store_aiocb(ujobp, NULL); 2392 2393 if (ts == NULL) { 2394 timo = 0; 2395 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2396 timo = -1; 2397 } else { 2398 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2399 return (EINVAL); 2400 2401 TIMESPEC_TO_TIMEVAL(&atv, ts); 2402 if (itimerfix(&atv)) 2403 return (EINVAL); 2404 timo = tvtohz(&atv); 2405 } 2406 2407 if (p->p_aioinfo == NULL) 2408 aio_init_aioinfo(p); 2409 ki = p->p_aioinfo; 2410 2411 error = 0; 2412 job = NULL; 2413 AIO_LOCK(ki); 2414 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2415 if (timo == -1) { 2416 error = EWOULDBLOCK; 2417 break; 2418 } 2419 ki->kaio_flags |= KAIO_WAKEUP; 2420 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2421 "aiowc", timo); 2422 if (timo && error == ERESTART) 2423 error = EINTR; 2424 if (error) 2425 break; 2426 } 2427 2428 if (job != NULL) { 2429 MPASS(job->jobflags & KAIOCB_FINISHED); 2430 ujob = job->ujob; 2431 status = job->uaiocb._aiocb_private.status; 2432 error = job->uaiocb._aiocb_private.error; 2433 td->td_retval[0] = status; 2434 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) { 2435 td->td_ru.ru_oublock += job->outputcharge; 2436 job->outputcharge = 0; 2437 } else if (job->uaiocb.aio_lio_opcode == LIO_READ) { 2438 td->td_ru.ru_inblock += job->inputcharge; 2439 job->inputcharge = 0; 2440 } 2441 aio_free_entry(job); 2442 AIO_UNLOCK(ki); 2443 ops->store_aiocb(ujobp, ujob); 2444 ops->store_error(ujob, error); 2445 ops->store_status(ujob, status); 2446 } else 2447 AIO_UNLOCK(ki); 2448 2449 return (error); 2450 } 2451 2452 int 2453 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2454 { 2455 struct timespec ts, *tsp; 2456 int error; 2457 2458 if (uap->timeout) { 2459 /* Get timespec struct. */ 2460 error = copyin(uap->timeout, &ts, sizeof(ts)); 2461 if (error) 2462 return (error); 2463 tsp = &ts; 2464 } else 2465 tsp = NULL; 2466 2467 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2468 } 2469 2470 static int 2471 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2472 struct aiocb_ops *ops) 2473 { 2474 struct proc *p = td->td_proc; 2475 struct kaioinfo *ki; 2476 2477 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2478 return (EINVAL); 2479 ki = p->p_aioinfo; 2480 if (ki == NULL) 2481 aio_init_aioinfo(p); 2482 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2483 } 2484 2485 int 2486 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2487 { 2488 2489 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2490 } 2491 2492 /* kqueue attach function */ 2493 static int 2494 filt_aioattach(struct knote *kn) 2495 { 2496 struct kaiocb *job = (struct kaiocb *)kn->kn_sdata; 2497 2498 /* 2499 * The job pointer must be validated before using it, so 2500 * registration is restricted to the kernel; the user cannot 2501 * set EV_FLAG1. 2502 */ 2503 if ((kn->kn_flags & EV_FLAG1) == 0) 2504 return (EPERM); 2505 kn->kn_ptr.p_aio = job; 2506 kn->kn_flags &= ~EV_FLAG1; 2507 2508 knlist_add(&job->klist, kn, 0); 2509 2510 return (0); 2511 } 2512 2513 /* kqueue detach function */ 2514 static void 2515 filt_aiodetach(struct knote *kn) 2516 { 2517 struct knlist *knl; 2518 2519 knl = &kn->kn_ptr.p_aio->klist; 2520 knl->kl_lock(knl->kl_lockarg); 2521 if (!knlist_empty(knl)) 2522 knlist_remove(knl, kn, 1); 2523 knl->kl_unlock(knl->kl_lockarg); 2524 } 2525 2526 /* kqueue filter function */ 2527 /*ARGSUSED*/ 2528 static int 2529 filt_aio(struct knote *kn, long hint) 2530 { 2531 struct kaiocb *job = kn->kn_ptr.p_aio; 2532 2533 kn->kn_data = job->uaiocb._aiocb_private.error; 2534 if (!(job->jobflags & KAIOCB_FINISHED)) 2535 return (0); 2536 kn->kn_flags |= EV_EOF; 2537 return (1); 2538 } 2539 2540 /* kqueue attach function */ 2541 static int 2542 filt_lioattach(struct knote *kn) 2543 { 2544 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2545 2546 /* 2547 * The aioliojob pointer must be validated before using it, so 2548 * registration is restricted to the kernel; the user cannot 2549 * set EV_FLAG1. 2550 */ 2551 if ((kn->kn_flags & EV_FLAG1) == 0) 2552 return (EPERM); 2553 kn->kn_ptr.p_lio = lj; 2554 kn->kn_flags &= ~EV_FLAG1; 2555 2556 knlist_add(&lj->klist, kn, 0); 2557 2558 return (0); 2559 } 2560 2561 /* kqueue detach function */ 2562 static void 2563 filt_liodetach(struct knote *kn) 2564 { 2565 struct knlist *knl; 2566 2567 knl = &kn->kn_ptr.p_lio->klist; 2568 knl->kl_lock(knl->kl_lockarg); 2569 if (!knlist_empty(knl)) 2570 knlist_remove(knl, kn, 1); 2571 knl->kl_unlock(knl->kl_lockarg); 2572 } 2573 2574 /* kqueue filter function */ 2575 /*ARGSUSED*/ 2576 static int 2577 filt_lio(struct knote *kn, long hint) 2578 { 2579 struct aioliojob * lj = kn->kn_ptr.p_lio; 2580 2581 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2582 } 2583 2584 #ifdef COMPAT_FREEBSD32 2585 2586 struct __aiocb_private32 { 2587 int32_t status; 2588 int32_t error; 2589 uint32_t kernelinfo; 2590 }; 2591 2592 typedef struct oaiocb32 { 2593 int aio_fildes; /* File descriptor */ 2594 uint64_t aio_offset __packed; /* File offset for I/O */ 2595 uint32_t aio_buf; /* I/O buffer in process space */ 2596 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2597 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2598 int aio_lio_opcode; /* LIO opcode */ 2599 int aio_reqprio; /* Request priority -- ignored */ 2600 struct __aiocb_private32 _aiocb_private; 2601 } oaiocb32_t; 2602 2603 typedef struct aiocb32 { 2604 int32_t aio_fildes; /* File descriptor */ 2605 uint64_t aio_offset __packed; /* File offset for I/O */ 2606 uint32_t aio_buf; /* I/O buffer in process space */ 2607 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2608 int __spare__[2]; 2609 uint32_t __spare2__; 2610 int aio_lio_opcode; /* LIO opcode */ 2611 int aio_reqprio; /* Request priority -- ignored */ 2612 struct __aiocb_private32 _aiocb_private; 2613 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2614 } aiocb32_t; 2615 2616 static int 2617 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2618 { 2619 2620 /* 2621 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2622 * supported by AIO with the old sigevent structure. 2623 */ 2624 CP(*osig, *nsig, sigev_notify); 2625 switch (nsig->sigev_notify) { 2626 case SIGEV_NONE: 2627 break; 2628 case SIGEV_SIGNAL: 2629 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2630 break; 2631 case SIGEV_KEVENT: 2632 nsig->sigev_notify_kqueue = 2633 osig->__sigev_u.__sigev_notify_kqueue; 2634 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2635 break; 2636 default: 2637 return (EINVAL); 2638 } 2639 return (0); 2640 } 2641 2642 static int 2643 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2644 { 2645 struct oaiocb32 job32; 2646 int error; 2647 2648 bzero(kjob, sizeof(struct aiocb)); 2649 error = copyin(ujob, &job32, sizeof(job32)); 2650 if (error) 2651 return (error); 2652 2653 CP(job32, *kjob, aio_fildes); 2654 CP(job32, *kjob, aio_offset); 2655 PTRIN_CP(job32, *kjob, aio_buf); 2656 CP(job32, *kjob, aio_nbytes); 2657 CP(job32, *kjob, aio_lio_opcode); 2658 CP(job32, *kjob, aio_reqprio); 2659 CP(job32, *kjob, _aiocb_private.status); 2660 CP(job32, *kjob, _aiocb_private.error); 2661 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2662 return (convert_old_sigevent32(&job32.aio_sigevent, 2663 &kjob->aio_sigevent)); 2664 } 2665 2666 static int 2667 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2668 { 2669 struct aiocb32 job32; 2670 int error; 2671 2672 error = copyin(ujob, &job32, sizeof(job32)); 2673 if (error) 2674 return (error); 2675 CP(job32, *kjob, aio_fildes); 2676 CP(job32, *kjob, aio_offset); 2677 PTRIN_CP(job32, *kjob, aio_buf); 2678 CP(job32, *kjob, aio_nbytes); 2679 CP(job32, *kjob, aio_lio_opcode); 2680 CP(job32, *kjob, aio_reqprio); 2681 CP(job32, *kjob, _aiocb_private.status); 2682 CP(job32, *kjob, _aiocb_private.error); 2683 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2684 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2685 } 2686 2687 static long 2688 aiocb32_fetch_status(struct aiocb *ujob) 2689 { 2690 struct aiocb32 *ujob32; 2691 2692 ujob32 = (struct aiocb32 *)ujob; 2693 return (fuword32(&ujob32->_aiocb_private.status)); 2694 } 2695 2696 static long 2697 aiocb32_fetch_error(struct aiocb *ujob) 2698 { 2699 struct aiocb32 *ujob32; 2700 2701 ujob32 = (struct aiocb32 *)ujob; 2702 return (fuword32(&ujob32->_aiocb_private.error)); 2703 } 2704 2705 static int 2706 aiocb32_store_status(struct aiocb *ujob, long status) 2707 { 2708 struct aiocb32 *ujob32; 2709 2710 ujob32 = (struct aiocb32 *)ujob; 2711 return (suword32(&ujob32->_aiocb_private.status, status)); 2712 } 2713 2714 static int 2715 aiocb32_store_error(struct aiocb *ujob, long error) 2716 { 2717 struct aiocb32 *ujob32; 2718 2719 ujob32 = (struct aiocb32 *)ujob; 2720 return (suword32(&ujob32->_aiocb_private.error, error)); 2721 } 2722 2723 static int 2724 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2725 { 2726 struct aiocb32 *ujob32; 2727 2728 ujob32 = (struct aiocb32 *)ujob; 2729 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2730 } 2731 2732 static int 2733 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2734 { 2735 2736 return (suword32(ujobp, (long)ujob)); 2737 } 2738 2739 static struct aiocb_ops aiocb32_ops = { 2740 .copyin = aiocb32_copyin, 2741 .fetch_status = aiocb32_fetch_status, 2742 .fetch_error = aiocb32_fetch_error, 2743 .store_status = aiocb32_store_status, 2744 .store_error = aiocb32_store_error, 2745 .store_kernelinfo = aiocb32_store_kernelinfo, 2746 .store_aiocb = aiocb32_store_aiocb, 2747 }; 2748 2749 static struct aiocb_ops aiocb32_ops_osigevent = { 2750 .copyin = aiocb32_copyin_old_sigevent, 2751 .fetch_status = aiocb32_fetch_status, 2752 .fetch_error = aiocb32_fetch_error, 2753 .store_status = aiocb32_store_status, 2754 .store_error = aiocb32_store_error, 2755 .store_kernelinfo = aiocb32_store_kernelinfo, 2756 .store_aiocb = aiocb32_store_aiocb, 2757 }; 2758 2759 int 2760 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2761 { 2762 2763 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2764 } 2765 2766 int 2767 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2768 { 2769 struct timespec32 ts32; 2770 struct timespec ts, *tsp; 2771 struct aiocb **ujoblist; 2772 uint32_t *ujoblist32; 2773 int error, i; 2774 2775 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2776 return (EINVAL); 2777 2778 if (uap->timeout) { 2779 /* Get timespec struct. */ 2780 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2781 return (error); 2782 CP(ts32, ts, tv_sec); 2783 CP(ts32, ts, tv_nsec); 2784 tsp = &ts; 2785 } else 2786 tsp = NULL; 2787 2788 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2789 ujoblist32 = (uint32_t *)ujoblist; 2790 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2791 sizeof(ujoblist32[0])); 2792 if (error == 0) { 2793 for (i = uap->nent; i > 0; i--) 2794 ujoblist[i] = PTRIN(ujoblist32[i]); 2795 2796 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2797 } 2798 uma_zfree(aiol_zone, ujoblist); 2799 return (error); 2800 } 2801 2802 int 2803 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2804 { 2805 2806 return (sys_aio_cancel(td, (struct aio_cancel_args *)uap)); 2807 } 2808 2809 int 2810 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2811 { 2812 2813 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2814 } 2815 2816 int 2817 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2818 { 2819 2820 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2821 &aiocb32_ops_osigevent)); 2822 } 2823 2824 int 2825 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2826 { 2827 2828 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2829 &aiocb32_ops)); 2830 } 2831 2832 int 2833 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2834 { 2835 2836 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2837 &aiocb32_ops_osigevent)); 2838 } 2839 2840 int 2841 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2842 { 2843 2844 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2845 &aiocb32_ops)); 2846 } 2847 2848 int 2849 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2850 { 2851 2852 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2853 &aiocb32_ops)); 2854 } 2855 2856 int 2857 freebsd32_aio_waitcomplete(struct thread *td, 2858 struct freebsd32_aio_waitcomplete_args *uap) 2859 { 2860 struct timespec32 ts32; 2861 struct timespec ts, *tsp; 2862 int error; 2863 2864 if (uap->timeout) { 2865 /* Get timespec struct. */ 2866 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2867 if (error) 2868 return (error); 2869 CP(ts32, ts, tv_sec); 2870 CP(ts32, ts, tv_nsec); 2871 tsp = &ts; 2872 } else 2873 tsp = NULL; 2874 2875 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2876 &aiocb32_ops)); 2877 } 2878 2879 int 2880 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2881 { 2882 2883 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2884 &aiocb32_ops)); 2885 } 2886 2887 int 2888 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2889 { 2890 struct aiocb **acb_list; 2891 struct sigevent *sigp, sig; 2892 struct osigevent32 osig; 2893 uint32_t *acb_list32; 2894 int error, i, nent; 2895 2896 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2897 return (EINVAL); 2898 2899 nent = uap->nent; 2900 if (nent < 0 || nent > AIO_LISTIO_MAX) 2901 return (EINVAL); 2902 2903 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2904 error = copyin(uap->sig, &osig, sizeof(osig)); 2905 if (error) 2906 return (error); 2907 error = convert_old_sigevent32(&osig, &sig); 2908 if (error) 2909 return (error); 2910 sigp = &sig; 2911 } else 2912 sigp = NULL; 2913 2914 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2915 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2916 if (error) { 2917 free(acb_list32, M_LIO); 2918 return (error); 2919 } 2920 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2921 for (i = 0; i < nent; i++) 2922 acb_list[i] = PTRIN(acb_list32[i]); 2923 free(acb_list32, M_LIO); 2924 2925 error = kern_lio_listio(td, uap->mode, 2926 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2927 &aiocb32_ops_osigevent); 2928 free(acb_list, M_LIO); 2929 return (error); 2930 } 2931 2932 int 2933 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2934 { 2935 struct aiocb **acb_list; 2936 struct sigevent *sigp, sig; 2937 struct sigevent32 sig32; 2938 uint32_t *acb_list32; 2939 int error, i, nent; 2940 2941 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2942 return (EINVAL); 2943 2944 nent = uap->nent; 2945 if (nent < 0 || nent > AIO_LISTIO_MAX) 2946 return (EINVAL); 2947 2948 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2949 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2950 if (error) 2951 return (error); 2952 error = convert_sigevent32(&sig32, &sig); 2953 if (error) 2954 return (error); 2955 sigp = &sig; 2956 } else 2957 sigp = NULL; 2958 2959 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2960 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2961 if (error) { 2962 free(acb_list32, M_LIO); 2963 return (error); 2964 } 2965 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2966 for (i = 0; i < nent; i++) 2967 acb_list[i] = PTRIN(acb_list32[i]); 2968 free(acb_list32, M_LIO); 2969 2970 error = kern_lio_listio(td, uap->mode, 2971 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2972 &aiocb32_ops); 2973 free(acb_list, M_LIO); 2974 return (error); 2975 } 2976 2977 #endif 2978