1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) count of jobs */ 252 int lioj_finished_count; /* (a) count of finished jobs */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of bio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 static void aio_biocleanup(struct bio *bp); 311 void aio_init_aioinfo(struct proc *p); 312 static int aio_onceonly(void); 313 static int aio_free_entry(struct kaiocb *job); 314 static void aio_process_rw(struct kaiocb *job); 315 static void aio_process_sync(struct kaiocb *job); 316 static void aio_process_mlock(struct kaiocb *job); 317 static void aio_schedule_fsync(void *context, int pending); 318 static int aio_newproc(int *); 319 int aio_aqueue(struct thread *td, struct aiocb *ujob, 320 struct aioliojob *lio, int type, struct aiocb_ops *ops); 321 static int aio_queue_file(struct file *fp, struct kaiocb *job); 322 static void aio_biowakeup(struct bio *bp); 323 static void aio_proc_rundown(void *arg, struct proc *p); 324 static void aio_proc_rundown_exec(void *arg, struct proc *p, 325 struct image_params *imgp); 326 static int aio_qbio(struct proc *p, struct kaiocb *job); 327 static void aio_daemon(void *param); 328 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 329 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 330 static int aio_kick(struct proc *userp); 331 static void aio_kick_nowait(struct proc *userp); 332 static void aio_kick_helper(void *context, int pending); 333 static int filt_aioattach(struct knote *kn); 334 static void filt_aiodetach(struct knote *kn); 335 static int filt_aio(struct knote *kn, long hint); 336 static int filt_lioattach(struct knote *kn); 337 static void filt_liodetach(struct knote *kn); 338 static int filt_lio(struct knote *kn, long hint); 339 340 /* 341 * Zones for: 342 * kaio Per process async io info 343 * aiop async io process data 344 * aiocb async io jobs 345 * aiolio list io jobs 346 */ 347 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 348 349 /* kqueue filters for aio */ 350 static struct filterops aio_filtops = { 351 .f_isfd = 0, 352 .f_attach = filt_aioattach, 353 .f_detach = filt_aiodetach, 354 .f_event = filt_aio, 355 }; 356 static struct filterops lio_filtops = { 357 .f_isfd = 0, 358 .f_attach = filt_lioattach, 359 .f_detach = filt_liodetach, 360 .f_event = filt_lio 361 }; 362 363 static eventhandler_tag exit_tag, exec_tag; 364 365 TASKQUEUE_DEFINE_THREAD(aiod_kick); 366 367 /* 368 * Main operations function for use as a kernel module. 369 */ 370 static int 371 aio_modload(struct module *module, int cmd, void *arg) 372 { 373 int error = 0; 374 375 switch (cmd) { 376 case MOD_LOAD: 377 aio_onceonly(); 378 break; 379 case MOD_SHUTDOWN: 380 break; 381 default: 382 error = EOPNOTSUPP; 383 break; 384 } 385 return (error); 386 } 387 388 static moduledata_t aio_mod = { 389 "aio", 390 &aio_modload, 391 NULL 392 }; 393 394 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 395 MODULE_VERSION(aio, 1); 396 397 /* 398 * Startup initialization 399 */ 400 static int 401 aio_onceonly(void) 402 { 403 404 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 405 EVENTHANDLER_PRI_ANY); 406 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 407 NULL, EVENTHANDLER_PRI_ANY); 408 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 409 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 410 TAILQ_INIT(&aio_freeproc); 411 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 412 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 413 TAILQ_INIT(&aio_jobs); 414 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 415 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 416 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 417 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 418 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 419 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 420 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 421 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 422 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 423 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 424 jobrefid = 1; 425 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 426 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 427 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 428 429 return (0); 430 } 431 432 /* 433 * Init the per-process aioinfo structure. The aioinfo limits are set 434 * per-process for user limit (resource) management. 435 */ 436 void 437 aio_init_aioinfo(struct proc *p) 438 { 439 struct kaioinfo *ki; 440 441 ki = uma_zalloc(kaio_zone, M_WAITOK); 442 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 443 ki->kaio_flags = 0; 444 ki->kaio_active_count = 0; 445 ki->kaio_count = 0; 446 ki->kaio_buffer_count = 0; 447 TAILQ_INIT(&ki->kaio_all); 448 TAILQ_INIT(&ki->kaio_done); 449 TAILQ_INIT(&ki->kaio_jobqueue); 450 TAILQ_INIT(&ki->kaio_liojoblist); 451 TAILQ_INIT(&ki->kaio_syncqueue); 452 TAILQ_INIT(&ki->kaio_syncready); 453 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 454 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 455 PROC_LOCK(p); 456 if (p->p_aioinfo == NULL) { 457 p->p_aioinfo = ki; 458 PROC_UNLOCK(p); 459 } else { 460 PROC_UNLOCK(p); 461 mtx_destroy(&ki->kaio_mtx); 462 uma_zfree(kaio_zone, ki); 463 } 464 465 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 466 aio_newproc(NULL); 467 } 468 469 static int 470 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 471 { 472 struct thread *td; 473 int error; 474 475 error = sigev_findtd(p, sigev, &td); 476 if (error) 477 return (error); 478 if (!KSI_ONQ(ksi)) { 479 ksiginfo_set_sigev(ksi, sigev); 480 ksi->ksi_code = SI_ASYNCIO; 481 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 482 tdsendsignal(p, td, ksi->ksi_signo, ksi); 483 } 484 PROC_UNLOCK(p); 485 return (error); 486 } 487 488 /* 489 * Free a job entry. Wait for completion if it is currently active, but don't 490 * delay forever. If we delay, we return a flag that says that we have to 491 * restart the queue scan. 492 */ 493 static int 494 aio_free_entry(struct kaiocb *job) 495 { 496 struct kaioinfo *ki; 497 struct aioliojob *lj; 498 struct proc *p; 499 500 p = job->userproc; 501 MPASS(curproc == p); 502 ki = p->p_aioinfo; 503 MPASS(ki != NULL); 504 505 AIO_LOCK_ASSERT(ki, MA_OWNED); 506 MPASS(job->jobflags & KAIOCB_FINISHED); 507 508 atomic_subtract_int(&num_queue_count, 1); 509 510 ki->kaio_count--; 511 MPASS(ki->kaio_count >= 0); 512 513 TAILQ_REMOVE(&ki->kaio_done, job, plist); 514 TAILQ_REMOVE(&ki->kaio_all, job, allist); 515 516 lj = job->lio; 517 if (lj) { 518 lj->lioj_count--; 519 lj->lioj_finished_count--; 520 521 if (lj->lioj_count == 0) { 522 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 523 /* lio is going away, we need to destroy any knotes */ 524 knlist_delete(&lj->klist, curthread, 1); 525 PROC_LOCK(p); 526 sigqueue_take(&lj->lioj_ksi); 527 PROC_UNLOCK(p); 528 uma_zfree(aiolio_zone, lj); 529 } 530 } 531 532 /* job is going away, we need to destroy any knotes */ 533 knlist_delete(&job->klist, curthread, 1); 534 PROC_LOCK(p); 535 sigqueue_take(&job->ksi); 536 PROC_UNLOCK(p); 537 538 AIO_UNLOCK(ki); 539 540 /* 541 * The thread argument here is used to find the owning process 542 * and is also passed to fo_close() which may pass it to various 543 * places such as devsw close() routines. Because of that, we 544 * need a thread pointer from the process owning the job that is 545 * persistent and won't disappear out from under us or move to 546 * another process. 547 * 548 * Currently, all the callers of this function call it to remove 549 * a kaiocb from the current process' job list either via a 550 * syscall or due to the current process calling exit() or 551 * execve(). Thus, we know that p == curproc. We also know that 552 * curthread can't exit since we are curthread. 553 * 554 * Therefore, we use curthread as the thread to pass to 555 * knlist_delete(). This does mean that it is possible for the 556 * thread pointer at close time to differ from the thread pointer 557 * at open time, but this is already true of file descriptors in 558 * a multithreaded process. 559 */ 560 if (job->fd_file) 561 fdrop(job->fd_file, curthread); 562 crfree(job->cred); 563 if (job->uiop != &job->uio) 564 free(job->uiop, M_IOV); 565 uma_zfree(aiocb_zone, job); 566 AIO_LOCK(ki); 567 568 return (0); 569 } 570 571 static void 572 aio_proc_rundown_exec(void *arg, struct proc *p, 573 struct image_params *imgp __unused) 574 { 575 aio_proc_rundown(arg, p); 576 } 577 578 static int 579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 580 { 581 aio_cancel_fn_t *func; 582 int cancelled; 583 584 AIO_LOCK_ASSERT(ki, MA_OWNED); 585 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 586 return (0); 587 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 588 job->jobflags |= KAIOCB_CANCELLED; 589 590 func = job->cancel_fn; 591 592 /* 593 * If there is no cancel routine, just leave the job marked as 594 * cancelled. The job should be in active use by a caller who 595 * should complete it normally or when it fails to install a 596 * cancel routine. 597 */ 598 if (func == NULL) 599 return (0); 600 601 /* 602 * Set the CANCELLING flag so that aio_complete() will defer 603 * completions of this job. This prevents the job from being 604 * freed out from under the cancel callback. After the 605 * callback any deferred completion (whether from the callback 606 * or any other source) will be completed. 607 */ 608 job->jobflags |= KAIOCB_CANCELLING; 609 AIO_UNLOCK(ki); 610 func(job); 611 AIO_LOCK(ki); 612 job->jobflags &= ~KAIOCB_CANCELLING; 613 if (job->jobflags & KAIOCB_FINISHED) { 614 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 615 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 616 aio_bio_done_notify(p, job); 617 } else { 618 /* 619 * The cancel callback might have scheduled an 620 * operation to cancel this request, but it is 621 * only counted as cancelled if the request is 622 * cancelled when the callback returns. 623 */ 624 cancelled = 0; 625 } 626 return (cancelled); 627 } 628 629 /* 630 * Rundown the jobs for a given process. 631 */ 632 static void 633 aio_proc_rundown(void *arg, struct proc *p) 634 { 635 struct kaioinfo *ki; 636 struct aioliojob *lj; 637 struct kaiocb *job, *jobn; 638 639 KASSERT(curthread->td_proc == p, 640 ("%s: called on non-curproc", __func__)); 641 ki = p->p_aioinfo; 642 if (ki == NULL) 643 return; 644 645 AIO_LOCK(ki); 646 ki->kaio_flags |= KAIO_RUNDOWN; 647 648 restart: 649 650 /* 651 * Try to cancel all pending requests. This code simulates 652 * aio_cancel on all pending I/O requests. 653 */ 654 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 655 aio_cancel_job(p, ki, job); 656 } 657 658 /* Wait for all running I/O to be finished */ 659 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 660 ki->kaio_flags |= KAIO_WAKEUP; 661 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 662 goto restart; 663 } 664 665 /* Free all completed I/O requests. */ 666 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 667 aio_free_entry(job); 668 669 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 670 if (lj->lioj_count == 0) { 671 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 672 knlist_delete(&lj->klist, curthread, 1); 673 PROC_LOCK(p); 674 sigqueue_take(&lj->lioj_ksi); 675 PROC_UNLOCK(p); 676 uma_zfree(aiolio_zone, lj); 677 } else { 678 panic("LIO job not cleaned up: C:%d, FC:%d\n", 679 lj->lioj_count, lj->lioj_finished_count); 680 } 681 } 682 AIO_UNLOCK(ki); 683 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 684 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 685 mtx_destroy(&ki->kaio_mtx); 686 uma_zfree(kaio_zone, ki); 687 p->p_aioinfo = NULL; 688 } 689 690 /* 691 * Select a job to run (called by an AIO daemon). 692 */ 693 static struct kaiocb * 694 aio_selectjob(struct aioproc *aiop) 695 { 696 struct kaiocb *job; 697 struct kaioinfo *ki; 698 struct proc *userp; 699 700 mtx_assert(&aio_job_mtx, MA_OWNED); 701 restart: 702 TAILQ_FOREACH(job, &aio_jobs, list) { 703 userp = job->userproc; 704 ki = userp->p_aioinfo; 705 706 if (ki->kaio_active_count < max_aio_per_proc) { 707 TAILQ_REMOVE(&aio_jobs, job, list); 708 if (!aio_clear_cancel_function(job)) 709 goto restart; 710 711 /* Account for currently active jobs. */ 712 ki->kaio_active_count++; 713 break; 714 } 715 } 716 return (job); 717 } 718 719 /* 720 * Move all data to a permanent storage device. This code 721 * simulates the fsync and fdatasync syscalls. 722 */ 723 static int 724 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 725 { 726 struct mount *mp; 727 vm_object_t obj; 728 int error; 729 730 for (;;) { 731 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 732 if (error != 0) 733 break; 734 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 735 obj = vp->v_object; 736 if (obj != NULL) { 737 VM_OBJECT_WLOCK(obj); 738 vm_object_page_clean(obj, 0, 0, 0); 739 VM_OBJECT_WUNLOCK(obj); 740 } 741 if (op == LIO_DSYNC) 742 error = VOP_FDATASYNC(vp, td); 743 else 744 error = VOP_FSYNC(vp, MNT_WAIT, td); 745 746 VOP_UNLOCK(vp); 747 vn_finished_write(mp); 748 if (error != ERELOOKUP) 749 break; 750 } 751 return (error); 752 } 753 754 /* 755 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 756 * does the I/O request for the non-bio version of the operations. The normal 757 * vn operations are used, and this code should work in all instances for every 758 * type of file, including pipes, sockets, fifos, and regular files. 759 * 760 * XXX I don't think it works well for socket, pipe, and fifo. 761 */ 762 static void 763 aio_process_rw(struct kaiocb *job) 764 { 765 struct ucred *td_savedcred; 766 struct thread *td; 767 struct aiocb *cb; 768 struct file *fp; 769 ssize_t cnt; 770 long msgsnd_st, msgsnd_end; 771 long msgrcv_st, msgrcv_end; 772 long oublock_st, oublock_end; 773 long inblock_st, inblock_end; 774 int error, opcode; 775 776 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 777 job->uaiocb.aio_lio_opcode == LIO_READV || 778 job->uaiocb.aio_lio_opcode == LIO_WRITE || 779 job->uaiocb.aio_lio_opcode == LIO_WRITEV, 780 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 781 782 aio_switch_vmspace(job); 783 td = curthread; 784 td_savedcred = td->td_ucred; 785 td->td_ucred = job->cred; 786 job->uiop->uio_td = td; 787 cb = &job->uaiocb; 788 fp = job->fd_file; 789 790 opcode = job->uaiocb.aio_lio_opcode; 791 cnt = job->uiop->uio_resid; 792 793 msgrcv_st = td->td_ru.ru_msgrcv; 794 msgsnd_st = td->td_ru.ru_msgsnd; 795 inblock_st = td->td_ru.ru_inblock; 796 oublock_st = td->td_ru.ru_oublock; 797 798 /* 799 * aio_aqueue() acquires a reference to the file that is 800 * released in aio_free_entry(). 801 */ 802 if (opcode == LIO_READ || opcode == LIO_READV) { 803 if (job->uiop->uio_resid == 0) 804 error = 0; 805 else 806 error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET, 807 td); 808 } else { 809 if (fp->f_type == DTYPE_VNODE) 810 bwillwrite(); 811 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); 812 } 813 msgrcv_end = td->td_ru.ru_msgrcv; 814 msgsnd_end = td->td_ru.ru_msgsnd; 815 inblock_end = td->td_ru.ru_inblock; 816 oublock_end = td->td_ru.ru_oublock; 817 818 job->msgrcv = msgrcv_end - msgrcv_st; 819 job->msgsnd = msgsnd_end - msgsnd_st; 820 job->inblock = inblock_end - inblock_st; 821 job->outblock = oublock_end - oublock_st; 822 823 if (error != 0 && job->uiop->uio_resid != cnt) { 824 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 825 error = 0; 826 if (error == EPIPE && (opcode & LIO_WRITE)) { 827 PROC_LOCK(job->userproc); 828 kern_psignal(job->userproc, SIGPIPE); 829 PROC_UNLOCK(job->userproc); 830 } 831 } 832 833 cnt -= job->uiop->uio_resid; 834 td->td_ucred = td_savedcred; 835 if (error) 836 aio_complete(job, -1, error); 837 else 838 aio_complete(job, cnt, 0); 839 } 840 841 static void 842 aio_process_sync(struct kaiocb *job) 843 { 844 struct thread *td = curthread; 845 struct ucred *td_savedcred = td->td_ucred; 846 struct file *fp = job->fd_file; 847 int error = 0; 848 849 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 850 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 851 852 td->td_ucred = job->cred; 853 if (fp->f_vnode != NULL) { 854 error = aio_fsync_vnode(td, fp->f_vnode, 855 job->uaiocb.aio_lio_opcode); 856 } 857 td->td_ucred = td_savedcred; 858 if (error) 859 aio_complete(job, -1, error); 860 else 861 aio_complete(job, 0, 0); 862 } 863 864 static void 865 aio_process_mlock(struct kaiocb *job) 866 { 867 struct aiocb *cb = &job->uaiocb; 868 int error; 869 870 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 871 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 872 873 aio_switch_vmspace(job); 874 error = kern_mlock(job->userproc, job->cred, 875 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 876 aio_complete(job, error != 0 ? -1 : 0, error); 877 } 878 879 static void 880 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 881 { 882 struct aioliojob *lj; 883 struct kaioinfo *ki; 884 struct kaiocb *sjob, *sjobn; 885 int lj_done; 886 bool schedule_fsync; 887 888 ki = userp->p_aioinfo; 889 AIO_LOCK_ASSERT(ki, MA_OWNED); 890 lj = job->lio; 891 lj_done = 0; 892 if (lj) { 893 lj->lioj_finished_count++; 894 if (lj->lioj_count == lj->lioj_finished_count) 895 lj_done = 1; 896 } 897 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 898 MPASS(job->jobflags & KAIOCB_FINISHED); 899 900 if (ki->kaio_flags & KAIO_RUNDOWN) 901 goto notification_done; 902 903 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 904 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 905 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 906 907 KNOTE_LOCKED(&job->klist, 1); 908 909 if (lj_done) { 910 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 911 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 912 KNOTE_LOCKED(&lj->klist, 1); 913 } 914 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 915 == LIOJ_SIGNAL && 916 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 917 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 918 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 919 true); 920 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 921 } 922 } 923 924 notification_done: 925 if (job->jobflags & KAIOCB_CHECKSYNC) { 926 schedule_fsync = false; 927 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 928 if (job->fd_file != sjob->fd_file || 929 job->seqno >= sjob->seqno) 930 continue; 931 if (--sjob->pending > 0) 932 continue; 933 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 934 if (!aio_clear_cancel_function_locked(sjob)) 935 continue; 936 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 937 schedule_fsync = true; 938 } 939 if (schedule_fsync) 940 taskqueue_enqueue(taskqueue_aiod_kick, 941 &ki->kaio_sync_task); 942 } 943 if (ki->kaio_flags & KAIO_WAKEUP) { 944 ki->kaio_flags &= ~KAIO_WAKEUP; 945 wakeup(&userp->p_aioinfo); 946 } 947 } 948 949 static void 950 aio_schedule_fsync(void *context, int pending) 951 { 952 struct kaioinfo *ki; 953 struct kaiocb *job; 954 955 ki = context; 956 AIO_LOCK(ki); 957 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 958 job = TAILQ_FIRST(&ki->kaio_syncready); 959 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 960 AIO_UNLOCK(ki); 961 aio_schedule(job, aio_process_sync); 962 AIO_LOCK(ki); 963 } 964 AIO_UNLOCK(ki); 965 } 966 967 bool 968 aio_cancel_cleared(struct kaiocb *job) 969 { 970 971 /* 972 * The caller should hold the same queue lock held when 973 * aio_clear_cancel_function() was called and set this flag 974 * ensuring this check sees an up-to-date value. However, 975 * there is no way to assert that. 976 */ 977 return ((job->jobflags & KAIOCB_CLEARED) != 0); 978 } 979 980 static bool 981 aio_clear_cancel_function_locked(struct kaiocb *job) 982 { 983 984 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 985 MPASS(job->cancel_fn != NULL); 986 if (job->jobflags & KAIOCB_CANCELLING) { 987 job->jobflags |= KAIOCB_CLEARED; 988 return (false); 989 } 990 job->cancel_fn = NULL; 991 return (true); 992 } 993 994 bool 995 aio_clear_cancel_function(struct kaiocb *job) 996 { 997 struct kaioinfo *ki; 998 bool ret; 999 1000 ki = job->userproc->p_aioinfo; 1001 AIO_LOCK(ki); 1002 ret = aio_clear_cancel_function_locked(job); 1003 AIO_UNLOCK(ki); 1004 return (ret); 1005 } 1006 1007 static bool 1008 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1009 { 1010 1011 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1012 if (job->jobflags & KAIOCB_CANCELLED) 1013 return (false); 1014 job->cancel_fn = func; 1015 return (true); 1016 } 1017 1018 bool 1019 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1020 { 1021 struct kaioinfo *ki; 1022 bool ret; 1023 1024 ki = job->userproc->p_aioinfo; 1025 AIO_LOCK(ki); 1026 ret = aio_set_cancel_function_locked(job, func); 1027 AIO_UNLOCK(ki); 1028 return (ret); 1029 } 1030 1031 void 1032 aio_complete(struct kaiocb *job, long status, int error) 1033 { 1034 struct kaioinfo *ki; 1035 struct proc *userp; 1036 1037 job->uaiocb._aiocb_private.error = error; 1038 job->uaiocb._aiocb_private.status = status; 1039 1040 userp = job->userproc; 1041 ki = userp->p_aioinfo; 1042 1043 AIO_LOCK(ki); 1044 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1045 ("duplicate aio_complete")); 1046 job->jobflags |= KAIOCB_FINISHED; 1047 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1048 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1049 aio_bio_done_notify(userp, job); 1050 } 1051 AIO_UNLOCK(ki); 1052 } 1053 1054 void 1055 aio_cancel(struct kaiocb *job) 1056 { 1057 1058 aio_complete(job, -1, ECANCELED); 1059 } 1060 1061 void 1062 aio_switch_vmspace(struct kaiocb *job) 1063 { 1064 1065 vmspace_switch_aio(job->userproc->p_vmspace); 1066 } 1067 1068 /* 1069 * The AIO daemon, most of the actual work is done in aio_process_*, 1070 * but the setup (and address space mgmt) is done in this routine. 1071 */ 1072 static void 1073 aio_daemon(void *_id) 1074 { 1075 struct kaiocb *job; 1076 struct aioproc *aiop; 1077 struct kaioinfo *ki; 1078 struct proc *p; 1079 struct vmspace *myvm; 1080 struct thread *td = curthread; 1081 int id = (intptr_t)_id; 1082 1083 /* 1084 * Grab an extra reference on the daemon's vmspace so that it 1085 * doesn't get freed by jobs that switch to a different 1086 * vmspace. 1087 */ 1088 p = td->td_proc; 1089 myvm = vmspace_acquire_ref(p); 1090 1091 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1092 1093 /* 1094 * Allocate and ready the aio control info. There is one aiop structure 1095 * per daemon. 1096 */ 1097 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1098 aiop->aioproc = p; 1099 aiop->aioprocflags = 0; 1100 1101 /* 1102 * Wakeup parent process. (Parent sleeps to keep from blasting away 1103 * and creating too many daemons.) 1104 */ 1105 sema_post(&aio_newproc_sem); 1106 1107 mtx_lock(&aio_job_mtx); 1108 for (;;) { 1109 /* 1110 * Take daemon off of free queue 1111 */ 1112 if (aiop->aioprocflags & AIOP_FREE) { 1113 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1114 aiop->aioprocflags &= ~AIOP_FREE; 1115 } 1116 1117 /* 1118 * Check for jobs. 1119 */ 1120 while ((job = aio_selectjob(aiop)) != NULL) { 1121 mtx_unlock(&aio_job_mtx); 1122 1123 ki = job->userproc->p_aioinfo; 1124 job->handle_fn(job); 1125 1126 mtx_lock(&aio_job_mtx); 1127 /* Decrement the active job count. */ 1128 ki->kaio_active_count--; 1129 } 1130 1131 /* 1132 * Disconnect from user address space. 1133 */ 1134 if (p->p_vmspace != myvm) { 1135 mtx_unlock(&aio_job_mtx); 1136 vmspace_switch_aio(myvm); 1137 mtx_lock(&aio_job_mtx); 1138 /* 1139 * We have to restart to avoid race, we only sleep if 1140 * no job can be selected. 1141 */ 1142 continue; 1143 } 1144 1145 mtx_assert(&aio_job_mtx, MA_OWNED); 1146 1147 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1148 aiop->aioprocflags |= AIOP_FREE; 1149 1150 /* 1151 * If daemon is inactive for a long time, allow it to exit, 1152 * thereby freeing resources. 1153 */ 1154 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1155 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1156 (aiop->aioprocflags & AIOP_FREE) && 1157 num_aio_procs > target_aio_procs) 1158 break; 1159 } 1160 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1161 num_aio_procs--; 1162 mtx_unlock(&aio_job_mtx); 1163 uma_zfree(aiop_zone, aiop); 1164 free_unr(aiod_unr, id); 1165 vmspace_free(myvm); 1166 1167 KASSERT(p->p_vmspace == myvm, 1168 ("AIOD: bad vmspace for exiting daemon")); 1169 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1170 ("AIOD: bad vm refcnt for exiting daemon: %d", 1171 refcount_load(&myvm->vm_refcnt))); 1172 kproc_exit(0); 1173 } 1174 1175 /* 1176 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1177 * AIO daemon modifies its environment itself. 1178 */ 1179 static int 1180 aio_newproc(int *start) 1181 { 1182 int error; 1183 struct proc *p; 1184 int id; 1185 1186 id = alloc_unr(aiod_unr); 1187 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1188 RFNOWAIT, 0, "aiod%d", id); 1189 if (error == 0) { 1190 /* 1191 * Wait until daemon is started. 1192 */ 1193 sema_wait(&aio_newproc_sem); 1194 mtx_lock(&aio_job_mtx); 1195 num_aio_procs++; 1196 if (start != NULL) 1197 (*start)--; 1198 mtx_unlock(&aio_job_mtx); 1199 } else { 1200 free_unr(aiod_unr, id); 1201 } 1202 return (error); 1203 } 1204 1205 /* 1206 * Try the high-performance, low-overhead bio method for eligible 1207 * VCHR devices. This method doesn't use an aio helper thread, and 1208 * thus has very low overhead. 1209 * 1210 * Assumes that the caller, aio_aqueue(), has incremented the file 1211 * structure's reference count, preventing its deallocation for the 1212 * duration of this call. 1213 */ 1214 static int 1215 aio_qbio(struct proc *p, struct kaiocb *job) 1216 { 1217 struct aiocb *cb; 1218 struct file *fp; 1219 struct buf *pbuf; 1220 struct vnode *vp; 1221 struct cdevsw *csw; 1222 struct cdev *dev; 1223 struct kaioinfo *ki; 1224 struct bio **bios = NULL; 1225 off_t offset; 1226 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1227 vm_prot_t prot; 1228 bool use_unmapped; 1229 1230 cb = &job->uaiocb; 1231 fp = job->fd_file; 1232 opcode = cb->aio_lio_opcode; 1233 1234 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1235 opcode == LIO_READ || opcode == LIO_READV)) 1236 return (-1); 1237 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1238 return (-1); 1239 1240 vp = fp->f_vnode; 1241 if (vp->v_type != VCHR) 1242 return (-1); 1243 if (vp->v_bufobj.bo_bsize == 0) 1244 return (-1); 1245 1246 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1247 iovcnt = job->uiop->uio_iovcnt; 1248 if (iovcnt > max_buf_aio) 1249 return (-1); 1250 for (i = 0; i < iovcnt; i++) { 1251 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1252 return (-1); 1253 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1254 error = -1; 1255 return (-1); 1256 } 1257 } 1258 offset = cb->aio_offset; 1259 1260 ref = 0; 1261 csw = devvn_refthread(vp, &dev, &ref); 1262 if (csw == NULL) 1263 return (ENXIO); 1264 1265 if ((csw->d_flags & D_DISK) == 0) { 1266 error = -1; 1267 goto unref; 1268 } 1269 if (job->uiop->uio_resid > dev->si_iosize_max) { 1270 error = -1; 1271 goto unref; 1272 } 1273 1274 ki = p->p_aioinfo; 1275 job->error = 0; 1276 1277 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1278 if (!use_unmapped) { 1279 AIO_LOCK(ki); 1280 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1281 AIO_UNLOCK(ki); 1282 error = EAGAIN; 1283 goto unref; 1284 } 1285 ki->kaio_buffer_count += iovcnt; 1286 AIO_UNLOCK(ki); 1287 } 1288 1289 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1290 atomic_store_int(&job->nbio, iovcnt); 1291 for (i = 0; i < iovcnt; i++) { 1292 struct vm_page** pages; 1293 struct bio *bp; 1294 void *buf; 1295 size_t nbytes; 1296 int npages; 1297 1298 buf = job->uiop->uio_iov[i].iov_base; 1299 nbytes = job->uiop->uio_iov[i].iov_len; 1300 1301 bios[i] = g_alloc_bio(); 1302 bp = bios[i]; 1303 1304 poff = (vm_offset_t)buf & PAGE_MASK; 1305 if (use_unmapped) { 1306 pbuf = NULL; 1307 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1308 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1309 } else { 1310 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1311 BUF_KERNPROC(pbuf); 1312 pages = pbuf->b_pages; 1313 } 1314 1315 bp->bio_length = nbytes; 1316 bp->bio_bcount = nbytes; 1317 bp->bio_done = aio_biowakeup; 1318 bp->bio_offset = offset; 1319 bp->bio_cmd = bio_cmd; 1320 bp->bio_dev = dev; 1321 bp->bio_caller1 = job; 1322 bp->bio_caller2 = pbuf; 1323 1324 prot = VM_PROT_READ; 1325 if (opcode == LIO_READ || opcode == LIO_READV) 1326 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1327 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1328 (vm_offset_t)buf, bp->bio_length, prot, pages, 1329 atop(maxphys) + 1); 1330 if (npages < 0) { 1331 if (pbuf != NULL) 1332 uma_zfree(pbuf_zone, pbuf); 1333 else 1334 free(pages, M_TEMP); 1335 error = EFAULT; 1336 g_destroy_bio(bp); 1337 i--; 1338 goto destroy_bios; 1339 } 1340 if (pbuf != NULL) { 1341 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1342 bp->bio_data = pbuf->b_data + poff; 1343 pbuf->b_npages = npages; 1344 atomic_add_int(&num_buf_aio, 1); 1345 } else { 1346 bp->bio_ma = pages; 1347 bp->bio_ma_n = npages; 1348 bp->bio_ma_offset = poff; 1349 bp->bio_data = unmapped_buf; 1350 bp->bio_flags |= BIO_UNMAPPED; 1351 atomic_add_int(&num_unmapped_aio, 1); 1352 } 1353 1354 offset += nbytes; 1355 } 1356 1357 /* Perform transfer. */ 1358 for (i = 0; i < iovcnt; i++) 1359 csw->d_strategy(bios[i]); 1360 free(bios, M_TEMP); 1361 1362 dev_relthread(dev, ref); 1363 return (0); 1364 1365 destroy_bios: 1366 for (; i >= 0; i--) 1367 aio_biocleanup(bios[i]); 1368 free(bios, M_TEMP); 1369 unref: 1370 dev_relthread(dev, ref); 1371 return (error); 1372 } 1373 1374 #ifdef COMPAT_FREEBSD6 1375 static int 1376 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1377 { 1378 1379 /* 1380 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1381 * supported by AIO with the old sigevent structure. 1382 */ 1383 nsig->sigev_notify = osig->sigev_notify; 1384 switch (nsig->sigev_notify) { 1385 case SIGEV_NONE: 1386 break; 1387 case SIGEV_SIGNAL: 1388 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1389 break; 1390 case SIGEV_KEVENT: 1391 nsig->sigev_notify_kqueue = 1392 osig->__sigev_u.__sigev_notify_kqueue; 1393 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1394 break; 1395 default: 1396 return (EINVAL); 1397 } 1398 return (0); 1399 } 1400 1401 static int 1402 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1403 int type __unused) 1404 { 1405 struct oaiocb *ojob; 1406 struct aiocb *kcb = &kjob->uaiocb; 1407 int error; 1408 1409 bzero(kcb, sizeof(struct aiocb)); 1410 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1411 if (error) 1412 return (error); 1413 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1414 ojob = (struct oaiocb *)kcb; 1415 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1416 } 1417 #endif 1418 1419 static int 1420 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1421 { 1422 struct aiocb *kcb = &kjob->uaiocb; 1423 int error; 1424 1425 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1426 if (error) 1427 return (error); 1428 if (type == LIO_NOP) 1429 type = kcb->aio_lio_opcode; 1430 if (type & LIO_VECTORED) { 1431 /* malloc a uio and copy in the iovec */ 1432 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1433 kcb->aio_iovcnt, &kjob->uiop); 1434 } 1435 1436 return (error); 1437 } 1438 1439 static long 1440 aiocb_fetch_status(struct aiocb *ujob) 1441 { 1442 1443 return (fuword(&ujob->_aiocb_private.status)); 1444 } 1445 1446 static long 1447 aiocb_fetch_error(struct aiocb *ujob) 1448 { 1449 1450 return (fuword(&ujob->_aiocb_private.error)); 1451 } 1452 1453 static int 1454 aiocb_store_status(struct aiocb *ujob, long status) 1455 { 1456 1457 return (suword(&ujob->_aiocb_private.status, status)); 1458 } 1459 1460 static int 1461 aiocb_store_error(struct aiocb *ujob, long error) 1462 { 1463 1464 return (suword(&ujob->_aiocb_private.error, error)); 1465 } 1466 1467 static int 1468 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1469 { 1470 1471 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1472 } 1473 1474 static int 1475 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1476 { 1477 1478 return (suword(ujobp, (long)ujob)); 1479 } 1480 1481 static struct aiocb_ops aiocb_ops = { 1482 .aio_copyin = aiocb_copyin, 1483 .fetch_status = aiocb_fetch_status, 1484 .fetch_error = aiocb_fetch_error, 1485 .store_status = aiocb_store_status, 1486 .store_error = aiocb_store_error, 1487 .store_kernelinfo = aiocb_store_kernelinfo, 1488 .store_aiocb = aiocb_store_aiocb, 1489 }; 1490 1491 #ifdef COMPAT_FREEBSD6 1492 static struct aiocb_ops aiocb_ops_osigevent = { 1493 .aio_copyin = aiocb_copyin_old_sigevent, 1494 .fetch_status = aiocb_fetch_status, 1495 .fetch_error = aiocb_fetch_error, 1496 .store_status = aiocb_store_status, 1497 .store_error = aiocb_store_error, 1498 .store_kernelinfo = aiocb_store_kernelinfo, 1499 .store_aiocb = aiocb_store_aiocb, 1500 }; 1501 #endif 1502 1503 /* 1504 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1505 * technique is done in this code. 1506 */ 1507 int 1508 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1509 int type, struct aiocb_ops *ops) 1510 { 1511 struct proc *p = td->td_proc; 1512 struct file *fp = NULL; 1513 struct kaiocb *job; 1514 struct kaioinfo *ki; 1515 struct kevent kev; 1516 int opcode; 1517 int error; 1518 int fd, kqfd; 1519 int jid; 1520 u_short evflags; 1521 1522 if (p->p_aioinfo == NULL) 1523 aio_init_aioinfo(p); 1524 1525 ki = p->p_aioinfo; 1526 1527 ops->store_status(ujob, -1); 1528 ops->store_error(ujob, 0); 1529 ops->store_kernelinfo(ujob, -1); 1530 1531 if (num_queue_count >= max_queue_count || 1532 ki->kaio_count >= max_aio_queue_per_proc) { 1533 error = EAGAIN; 1534 goto err1; 1535 } 1536 1537 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1538 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1539 1540 error = ops->aio_copyin(ujob, job, type); 1541 if (error) 1542 goto err2; 1543 1544 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1545 error = EINVAL; 1546 goto err2; 1547 } 1548 1549 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1550 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1551 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1552 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1553 error = EINVAL; 1554 goto err2; 1555 } 1556 1557 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1558 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1559 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1560 error = EINVAL; 1561 goto err2; 1562 } 1563 1564 /* Get the opcode. */ 1565 if (type == LIO_NOP) { 1566 switch (job->uaiocb.aio_lio_opcode) { 1567 case LIO_WRITE: 1568 case LIO_WRITEV: 1569 case LIO_NOP: 1570 case LIO_READ: 1571 case LIO_READV: 1572 opcode = job->uaiocb.aio_lio_opcode; 1573 break; 1574 default: 1575 error = EINVAL; 1576 goto err2; 1577 } 1578 } else 1579 opcode = job->uaiocb.aio_lio_opcode = type; 1580 1581 ksiginfo_init(&job->ksi); 1582 1583 /* Save userspace address of the job info. */ 1584 job->ujob = ujob; 1585 1586 /* 1587 * Validate the opcode and fetch the file object for the specified 1588 * file descriptor. 1589 * 1590 * XXXRW: Moved the opcode validation up here so that we don't 1591 * retrieve a file descriptor without knowing what the capabiltity 1592 * should be. 1593 */ 1594 fd = job->uaiocb.aio_fildes; 1595 switch (opcode) { 1596 case LIO_WRITE: 1597 case LIO_WRITEV: 1598 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1599 break; 1600 case LIO_READ: 1601 case LIO_READV: 1602 error = fget_read(td, fd, &cap_pread_rights, &fp); 1603 break; 1604 case LIO_SYNC: 1605 case LIO_DSYNC: 1606 error = fget(td, fd, &cap_fsync_rights, &fp); 1607 break; 1608 case LIO_MLOCK: 1609 break; 1610 case LIO_NOP: 1611 error = fget(td, fd, &cap_no_rights, &fp); 1612 break; 1613 default: 1614 error = EINVAL; 1615 } 1616 if (error) 1617 goto err3; 1618 1619 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1620 error = EINVAL; 1621 goto err3; 1622 } 1623 1624 if ((opcode == LIO_READ || opcode == LIO_READV || 1625 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1626 job->uaiocb.aio_offset < 0 && 1627 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1628 error = EINVAL; 1629 goto err3; 1630 } 1631 1632 if (fp != NULL && fp->f_ops == &path_fileops) { 1633 error = EBADF; 1634 goto err3; 1635 } 1636 1637 job->fd_file = fp; 1638 1639 mtx_lock(&aio_job_mtx); 1640 jid = jobrefid++; 1641 job->seqno = jobseqno++; 1642 mtx_unlock(&aio_job_mtx); 1643 error = ops->store_kernelinfo(ujob, jid); 1644 if (error) { 1645 error = EINVAL; 1646 goto err3; 1647 } 1648 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1649 1650 if (opcode == LIO_NOP) { 1651 fdrop(fp, td); 1652 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1653 uma_zfree(aiocb_zone, job); 1654 return (0); 1655 } 1656 1657 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1658 goto no_kqueue; 1659 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1660 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1661 error = EINVAL; 1662 goto err3; 1663 } 1664 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1665 memset(&kev, 0, sizeof(kev)); 1666 kev.ident = (uintptr_t)job->ujob; 1667 kev.filter = EVFILT_AIO; 1668 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1669 kev.data = (intptr_t)job; 1670 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1671 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1672 if (error) 1673 goto err3; 1674 1675 no_kqueue: 1676 1677 ops->store_error(ujob, EINPROGRESS); 1678 job->uaiocb._aiocb_private.error = EINPROGRESS; 1679 job->userproc = p; 1680 job->cred = crhold(td->td_ucred); 1681 job->jobflags = KAIOCB_QUEUEING; 1682 job->lio = lj; 1683 1684 if (opcode & LIO_VECTORED) { 1685 /* Use the uio copied in by aio_copyin */ 1686 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1687 } else { 1688 /* Setup the inline uio */ 1689 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1690 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1691 job->uio.uio_iov = job->iov; 1692 job->uio.uio_iovcnt = 1; 1693 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1694 job->uio.uio_segflg = UIO_USERSPACE; 1695 job->uiop = &job->uio; 1696 } 1697 switch (opcode & (LIO_READ | LIO_WRITE)) { 1698 case LIO_READ: 1699 job->uiop->uio_rw = UIO_READ; 1700 break; 1701 case LIO_WRITE: 1702 job->uiop->uio_rw = UIO_WRITE; 1703 break; 1704 } 1705 job->uiop->uio_offset = job->uaiocb.aio_offset; 1706 job->uiop->uio_td = td; 1707 1708 if (opcode == LIO_MLOCK) { 1709 aio_schedule(job, aio_process_mlock); 1710 error = 0; 1711 } else if (fp->f_ops->fo_aio_queue == NULL) 1712 error = aio_queue_file(fp, job); 1713 else 1714 error = fo_aio_queue(fp, job); 1715 if (error) 1716 goto err4; 1717 1718 AIO_LOCK(ki); 1719 job->jobflags &= ~KAIOCB_QUEUEING; 1720 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1721 ki->kaio_count++; 1722 if (lj) 1723 lj->lioj_count++; 1724 atomic_add_int(&num_queue_count, 1); 1725 if (job->jobflags & KAIOCB_FINISHED) { 1726 /* 1727 * The queue callback completed the request synchronously. 1728 * The bulk of the completion is deferred in that case 1729 * until this point. 1730 */ 1731 aio_bio_done_notify(p, job); 1732 } else 1733 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1734 AIO_UNLOCK(ki); 1735 return (0); 1736 1737 err4: 1738 crfree(job->cred); 1739 err3: 1740 if (fp) 1741 fdrop(fp, td); 1742 knlist_delete(&job->klist, curthread, 0); 1743 err2: 1744 if (job->uiop != &job->uio) 1745 free(job->uiop, M_IOV); 1746 uma_zfree(aiocb_zone, job); 1747 err1: 1748 ops->store_error(ujob, error); 1749 return (error); 1750 } 1751 1752 static void 1753 aio_cancel_daemon_job(struct kaiocb *job) 1754 { 1755 1756 mtx_lock(&aio_job_mtx); 1757 if (!aio_cancel_cleared(job)) 1758 TAILQ_REMOVE(&aio_jobs, job, list); 1759 mtx_unlock(&aio_job_mtx); 1760 aio_cancel(job); 1761 } 1762 1763 void 1764 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1765 { 1766 1767 mtx_lock(&aio_job_mtx); 1768 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1769 mtx_unlock(&aio_job_mtx); 1770 aio_cancel(job); 1771 return; 1772 } 1773 job->handle_fn = func; 1774 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1775 aio_kick_nowait(job->userproc); 1776 mtx_unlock(&aio_job_mtx); 1777 } 1778 1779 static void 1780 aio_cancel_sync(struct kaiocb *job) 1781 { 1782 struct kaioinfo *ki; 1783 1784 ki = job->userproc->p_aioinfo; 1785 AIO_LOCK(ki); 1786 if (!aio_cancel_cleared(job)) 1787 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1788 AIO_UNLOCK(ki); 1789 aio_cancel(job); 1790 } 1791 1792 int 1793 aio_queue_file(struct file *fp, struct kaiocb *job) 1794 { 1795 struct kaioinfo *ki; 1796 struct kaiocb *job2; 1797 struct vnode *vp; 1798 struct mount *mp; 1799 int error; 1800 bool safe; 1801 1802 ki = job->userproc->p_aioinfo; 1803 error = aio_qbio(job->userproc, job); 1804 if (error >= 0) 1805 return (error); 1806 safe = false; 1807 if (fp->f_type == DTYPE_VNODE) { 1808 vp = fp->f_vnode; 1809 if (vp->v_type == VREG || vp->v_type == VDIR) { 1810 mp = fp->f_vnode->v_mount; 1811 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1812 safe = true; 1813 } 1814 } 1815 if (!(safe || enable_aio_unsafe)) { 1816 counted_warning(&unsafe_warningcnt, 1817 "is attempting to use unsafe AIO requests"); 1818 return (EOPNOTSUPP); 1819 } 1820 1821 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1822 aio_schedule(job, aio_process_rw); 1823 error = 0; 1824 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1825 AIO_LOCK(ki); 1826 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1827 if (job2->fd_file == job->fd_file && 1828 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1829 job2->seqno < job->seqno) { 1830 job2->jobflags |= KAIOCB_CHECKSYNC; 1831 job->pending++; 1832 } 1833 } 1834 if (job->pending != 0) { 1835 if (!aio_set_cancel_function_locked(job, 1836 aio_cancel_sync)) { 1837 AIO_UNLOCK(ki); 1838 aio_cancel(job); 1839 return (0); 1840 } 1841 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1842 AIO_UNLOCK(ki); 1843 return (0); 1844 } 1845 AIO_UNLOCK(ki); 1846 aio_schedule(job, aio_process_sync); 1847 error = 0; 1848 } else { 1849 error = EINVAL; 1850 } 1851 return (error); 1852 } 1853 1854 static void 1855 aio_kick_nowait(struct proc *userp) 1856 { 1857 struct kaioinfo *ki = userp->p_aioinfo; 1858 struct aioproc *aiop; 1859 1860 mtx_assert(&aio_job_mtx, MA_OWNED); 1861 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1862 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1863 aiop->aioprocflags &= ~AIOP_FREE; 1864 wakeup(aiop->aioproc); 1865 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1866 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1867 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1868 } 1869 } 1870 1871 static int 1872 aio_kick(struct proc *userp) 1873 { 1874 struct kaioinfo *ki = userp->p_aioinfo; 1875 struct aioproc *aiop; 1876 int error, ret = 0; 1877 1878 mtx_assert(&aio_job_mtx, MA_OWNED); 1879 retryproc: 1880 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1881 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1882 aiop->aioprocflags &= ~AIOP_FREE; 1883 wakeup(aiop->aioproc); 1884 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1885 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1886 num_aio_resv_start++; 1887 mtx_unlock(&aio_job_mtx); 1888 error = aio_newproc(&num_aio_resv_start); 1889 mtx_lock(&aio_job_mtx); 1890 if (error) { 1891 num_aio_resv_start--; 1892 goto retryproc; 1893 } 1894 } else { 1895 ret = -1; 1896 } 1897 return (ret); 1898 } 1899 1900 static void 1901 aio_kick_helper(void *context, int pending) 1902 { 1903 struct proc *userp = context; 1904 1905 mtx_lock(&aio_job_mtx); 1906 while (--pending >= 0) { 1907 if (aio_kick(userp)) 1908 break; 1909 } 1910 mtx_unlock(&aio_job_mtx); 1911 } 1912 1913 /* 1914 * Support the aio_return system call, as a side-effect, kernel resources are 1915 * released. 1916 */ 1917 static int 1918 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1919 { 1920 struct proc *p = td->td_proc; 1921 struct kaiocb *job; 1922 struct kaioinfo *ki; 1923 long status, error; 1924 1925 ki = p->p_aioinfo; 1926 if (ki == NULL) 1927 return (EINVAL); 1928 AIO_LOCK(ki); 1929 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1930 if (job->ujob == ujob) 1931 break; 1932 } 1933 if (job != NULL) { 1934 MPASS(job->jobflags & KAIOCB_FINISHED); 1935 status = job->uaiocb._aiocb_private.status; 1936 error = job->uaiocb._aiocb_private.error; 1937 td->td_retval[0] = status; 1938 td->td_ru.ru_oublock += job->outblock; 1939 td->td_ru.ru_inblock += job->inblock; 1940 td->td_ru.ru_msgsnd += job->msgsnd; 1941 td->td_ru.ru_msgrcv += job->msgrcv; 1942 aio_free_entry(job); 1943 AIO_UNLOCK(ki); 1944 ops->store_error(ujob, error); 1945 ops->store_status(ujob, status); 1946 } else { 1947 error = EINVAL; 1948 AIO_UNLOCK(ki); 1949 } 1950 return (error); 1951 } 1952 1953 int 1954 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1955 { 1956 1957 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1958 } 1959 1960 /* 1961 * Allow a process to wakeup when any of the I/O requests are completed. 1962 */ 1963 static int 1964 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1965 struct timespec *ts) 1966 { 1967 struct proc *p = td->td_proc; 1968 struct timeval atv; 1969 struct kaioinfo *ki; 1970 struct kaiocb *firstjob, *job; 1971 int error, i, timo; 1972 1973 timo = 0; 1974 if (ts) { 1975 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1976 return (EINVAL); 1977 1978 TIMESPEC_TO_TIMEVAL(&atv, ts); 1979 if (itimerfix(&atv)) 1980 return (EINVAL); 1981 timo = tvtohz(&atv); 1982 } 1983 1984 ki = p->p_aioinfo; 1985 if (ki == NULL) 1986 return (EAGAIN); 1987 1988 if (njoblist == 0) 1989 return (0); 1990 1991 AIO_LOCK(ki); 1992 for (;;) { 1993 firstjob = NULL; 1994 error = 0; 1995 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1996 for (i = 0; i < njoblist; i++) { 1997 if (job->ujob == ujoblist[i]) { 1998 if (firstjob == NULL) 1999 firstjob = job; 2000 if (job->jobflags & KAIOCB_FINISHED) 2001 goto RETURN; 2002 } 2003 } 2004 } 2005 /* All tasks were finished. */ 2006 if (firstjob == NULL) 2007 break; 2008 2009 ki->kaio_flags |= KAIO_WAKEUP; 2010 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2011 "aiospn", timo); 2012 if (error == ERESTART) 2013 error = EINTR; 2014 if (error) 2015 break; 2016 } 2017 RETURN: 2018 AIO_UNLOCK(ki); 2019 return (error); 2020 } 2021 2022 int 2023 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2024 { 2025 struct timespec ts, *tsp; 2026 struct aiocb **ujoblist; 2027 int error; 2028 2029 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2030 return (EINVAL); 2031 2032 if (uap->timeout) { 2033 /* Get timespec struct. */ 2034 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2035 return (error); 2036 tsp = &ts; 2037 } else 2038 tsp = NULL; 2039 2040 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2041 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2042 if (error == 0) 2043 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2044 free(ujoblist, M_AIOS); 2045 return (error); 2046 } 2047 2048 /* 2049 * aio_cancel cancels any non-bio aio operations not currently in progress. 2050 */ 2051 int 2052 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2053 { 2054 struct proc *p = td->td_proc; 2055 struct kaioinfo *ki; 2056 struct kaiocb *job, *jobn; 2057 struct file *fp; 2058 int error; 2059 int cancelled = 0; 2060 int notcancelled = 0; 2061 struct vnode *vp; 2062 2063 /* Lookup file object. */ 2064 error = fget(td, uap->fd, &cap_no_rights, &fp); 2065 if (error) 2066 return (error); 2067 2068 ki = p->p_aioinfo; 2069 if (ki == NULL) 2070 goto done; 2071 2072 if (fp->f_type == DTYPE_VNODE) { 2073 vp = fp->f_vnode; 2074 if (vn_isdisk(vp)) { 2075 fdrop(fp, td); 2076 td->td_retval[0] = AIO_NOTCANCELED; 2077 return (0); 2078 } 2079 } 2080 2081 AIO_LOCK(ki); 2082 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2083 if ((uap->fd == job->uaiocb.aio_fildes) && 2084 ((uap->aiocbp == NULL) || 2085 (uap->aiocbp == job->ujob))) { 2086 if (aio_cancel_job(p, ki, job)) { 2087 cancelled++; 2088 } else { 2089 notcancelled++; 2090 } 2091 if (uap->aiocbp != NULL) 2092 break; 2093 } 2094 } 2095 AIO_UNLOCK(ki); 2096 2097 done: 2098 fdrop(fp, td); 2099 2100 if (uap->aiocbp != NULL) { 2101 if (cancelled) { 2102 td->td_retval[0] = AIO_CANCELED; 2103 return (0); 2104 } 2105 } 2106 2107 if (notcancelled) { 2108 td->td_retval[0] = AIO_NOTCANCELED; 2109 return (0); 2110 } 2111 2112 if (cancelled) { 2113 td->td_retval[0] = AIO_CANCELED; 2114 return (0); 2115 } 2116 2117 td->td_retval[0] = AIO_ALLDONE; 2118 2119 return (0); 2120 } 2121 2122 /* 2123 * aio_error is implemented in the kernel level for compatibility purposes 2124 * only. For a user mode async implementation, it would be best to do it in 2125 * a userland subroutine. 2126 */ 2127 static int 2128 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2129 { 2130 struct proc *p = td->td_proc; 2131 struct kaiocb *job; 2132 struct kaioinfo *ki; 2133 int status; 2134 2135 ki = p->p_aioinfo; 2136 if (ki == NULL) { 2137 td->td_retval[0] = EINVAL; 2138 return (0); 2139 } 2140 2141 AIO_LOCK(ki); 2142 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2143 if (job->ujob == ujob) { 2144 if (job->jobflags & KAIOCB_FINISHED) 2145 td->td_retval[0] = 2146 job->uaiocb._aiocb_private.error; 2147 else 2148 td->td_retval[0] = EINPROGRESS; 2149 AIO_UNLOCK(ki); 2150 return (0); 2151 } 2152 } 2153 AIO_UNLOCK(ki); 2154 2155 /* 2156 * Hack for failure of aio_aqueue. 2157 */ 2158 status = ops->fetch_status(ujob); 2159 if (status == -1) { 2160 td->td_retval[0] = ops->fetch_error(ujob); 2161 return (0); 2162 } 2163 2164 td->td_retval[0] = EINVAL; 2165 return (0); 2166 } 2167 2168 int 2169 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2170 { 2171 2172 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2173 } 2174 2175 /* syscall - asynchronous read from a file (REALTIME) */ 2176 #ifdef COMPAT_FREEBSD6 2177 int 2178 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2179 { 2180 2181 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2182 &aiocb_ops_osigevent)); 2183 } 2184 #endif 2185 2186 int 2187 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2188 { 2189 2190 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2191 } 2192 2193 int 2194 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2195 { 2196 2197 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2198 } 2199 2200 /* syscall - asynchronous write to a file (REALTIME) */ 2201 #ifdef COMPAT_FREEBSD6 2202 int 2203 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2204 { 2205 2206 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2207 &aiocb_ops_osigevent)); 2208 } 2209 #endif 2210 2211 int 2212 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2213 { 2214 2215 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2216 } 2217 2218 int 2219 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2220 { 2221 2222 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2223 } 2224 2225 int 2226 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2227 { 2228 2229 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2230 } 2231 2232 static int 2233 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2234 struct aiocb **acb_list, int nent, struct sigevent *sig, 2235 struct aiocb_ops *ops) 2236 { 2237 struct proc *p = td->td_proc; 2238 struct aiocb *job; 2239 struct kaioinfo *ki; 2240 struct aioliojob *lj; 2241 struct kevent kev; 2242 int error; 2243 int nagain, nerror; 2244 int i; 2245 2246 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2247 return (EINVAL); 2248 2249 if (nent < 0 || nent > max_aio_queue_per_proc) 2250 return (EINVAL); 2251 2252 if (p->p_aioinfo == NULL) 2253 aio_init_aioinfo(p); 2254 2255 ki = p->p_aioinfo; 2256 2257 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2258 lj->lioj_flags = 0; 2259 lj->lioj_count = 0; 2260 lj->lioj_finished_count = 0; 2261 lj->lioj_signal.sigev_notify = SIGEV_NONE; 2262 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2263 ksiginfo_init(&lj->lioj_ksi); 2264 2265 /* 2266 * Setup signal. 2267 */ 2268 if (sig && (mode == LIO_NOWAIT)) { 2269 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2270 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2271 /* Assume only new style KEVENT */ 2272 memset(&kev, 0, sizeof(kev)); 2273 kev.filter = EVFILT_LIO; 2274 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2275 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2276 kev.data = (intptr_t)lj; 2277 /* pass user defined sigval data */ 2278 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2279 error = kqfd_register( 2280 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2281 M_WAITOK); 2282 if (error) { 2283 uma_zfree(aiolio_zone, lj); 2284 return (error); 2285 } 2286 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2287 ; 2288 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2289 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2290 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2291 uma_zfree(aiolio_zone, lj); 2292 return EINVAL; 2293 } 2294 lj->lioj_flags |= LIOJ_SIGNAL; 2295 } else { 2296 uma_zfree(aiolio_zone, lj); 2297 return EINVAL; 2298 } 2299 } 2300 2301 AIO_LOCK(ki); 2302 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2303 /* 2304 * Add extra aiocb count to avoid the lio to be freed 2305 * by other threads doing aio_waitcomplete or aio_return, 2306 * and prevent event from being sent until we have queued 2307 * all tasks. 2308 */ 2309 lj->lioj_count = 1; 2310 AIO_UNLOCK(ki); 2311 2312 /* 2313 * Get pointers to the list of I/O requests. 2314 */ 2315 nagain = 0; 2316 nerror = 0; 2317 for (i = 0; i < nent; i++) { 2318 job = acb_list[i]; 2319 if (job != NULL) { 2320 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2321 if (error == EAGAIN) 2322 nagain++; 2323 else if (error != 0) 2324 nerror++; 2325 } 2326 } 2327 2328 error = 0; 2329 AIO_LOCK(ki); 2330 if (mode == LIO_WAIT) { 2331 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2332 ki->kaio_flags |= KAIO_WAKEUP; 2333 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2334 PRIBIO | PCATCH, "aiospn", 0); 2335 if (error == ERESTART) 2336 error = EINTR; 2337 if (error) 2338 break; 2339 } 2340 } else { 2341 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2342 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2343 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2344 KNOTE_LOCKED(&lj->klist, 1); 2345 } 2346 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2347 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2348 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2349 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2350 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2351 lj->lioj_count != 1); 2352 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2353 } 2354 } 2355 } 2356 lj->lioj_count--; 2357 if (lj->lioj_count == 0) { 2358 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2359 knlist_delete(&lj->klist, curthread, 1); 2360 PROC_LOCK(p); 2361 sigqueue_take(&lj->lioj_ksi); 2362 PROC_UNLOCK(p); 2363 AIO_UNLOCK(ki); 2364 uma_zfree(aiolio_zone, lj); 2365 } else 2366 AIO_UNLOCK(ki); 2367 2368 if (nerror) 2369 return (EIO); 2370 else if (nagain) 2371 return (EAGAIN); 2372 else 2373 return (error); 2374 } 2375 2376 /* syscall - list directed I/O (REALTIME) */ 2377 #ifdef COMPAT_FREEBSD6 2378 int 2379 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2380 { 2381 struct aiocb **acb_list; 2382 struct sigevent *sigp, sig; 2383 struct osigevent osig; 2384 int error, nent; 2385 2386 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2387 return (EINVAL); 2388 2389 nent = uap->nent; 2390 if (nent < 0 || nent > max_aio_queue_per_proc) 2391 return (EINVAL); 2392 2393 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2394 error = copyin(uap->sig, &osig, sizeof(osig)); 2395 if (error) 2396 return (error); 2397 error = convert_old_sigevent(&osig, &sig); 2398 if (error) 2399 return (error); 2400 sigp = &sig; 2401 } else 2402 sigp = NULL; 2403 2404 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2405 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2406 if (error == 0) 2407 error = kern_lio_listio(td, uap->mode, 2408 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2409 &aiocb_ops_osigevent); 2410 free(acb_list, M_LIO); 2411 return (error); 2412 } 2413 #endif 2414 2415 /* syscall - list directed I/O (REALTIME) */ 2416 int 2417 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2418 { 2419 struct aiocb **acb_list; 2420 struct sigevent *sigp, sig; 2421 int error, nent; 2422 2423 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2424 return (EINVAL); 2425 2426 nent = uap->nent; 2427 if (nent < 0 || nent > max_aio_queue_per_proc) 2428 return (EINVAL); 2429 2430 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2431 error = copyin(uap->sig, &sig, sizeof(sig)); 2432 if (error) 2433 return (error); 2434 sigp = &sig; 2435 } else 2436 sigp = NULL; 2437 2438 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2439 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2440 if (error == 0) 2441 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2442 nent, sigp, &aiocb_ops); 2443 free(acb_list, M_LIO); 2444 return (error); 2445 } 2446 2447 static void 2448 aio_biocleanup(struct bio *bp) 2449 { 2450 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2451 struct kaioinfo *ki; 2452 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2453 2454 /* Release mapping into kernel space. */ 2455 if (pbuf != NULL) { 2456 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2457 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2458 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2459 uma_zfree(pbuf_zone, pbuf); 2460 atomic_subtract_int(&num_buf_aio, 1); 2461 ki = job->userproc->p_aioinfo; 2462 AIO_LOCK(ki); 2463 ki->kaio_buffer_count--; 2464 AIO_UNLOCK(ki); 2465 } else { 2466 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2467 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2468 free(bp->bio_ma, M_TEMP); 2469 atomic_subtract_int(&num_unmapped_aio, 1); 2470 } 2471 g_destroy_bio(bp); 2472 } 2473 2474 static void 2475 aio_biowakeup(struct bio *bp) 2476 { 2477 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2478 size_t nbytes; 2479 long bcount = bp->bio_bcount; 2480 long resid = bp->bio_resid; 2481 int error, opcode, nblks; 2482 int bio_error = bp->bio_error; 2483 uint16_t flags = bp->bio_flags; 2484 2485 opcode = job->uaiocb.aio_lio_opcode; 2486 2487 aio_biocleanup(bp); 2488 2489 nbytes =bcount - resid; 2490 atomic_add_acq_long(&job->nbytes, nbytes); 2491 nblks = btodb(nbytes); 2492 error = 0; 2493 /* 2494 * If multiple bios experienced an error, the job will reflect the 2495 * error of whichever failed bio completed last. 2496 */ 2497 if (flags & BIO_ERROR) 2498 atomic_set_int(&job->error, bio_error); 2499 if (opcode & LIO_WRITE) 2500 atomic_add_int(&job->outblock, nblks); 2501 else 2502 atomic_add_int(&job->inblock, nblks); 2503 atomic_subtract_int(&job->nbio, 1); 2504 2505 2506 if (atomic_load_int(&job->nbio) == 0) { 2507 if (atomic_load_int(&job->error)) 2508 aio_complete(job, -1, job->error); 2509 else 2510 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2511 } 2512 } 2513 2514 /* syscall - wait for the next completion of an aio request */ 2515 static int 2516 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2517 struct timespec *ts, struct aiocb_ops *ops) 2518 { 2519 struct proc *p = td->td_proc; 2520 struct timeval atv; 2521 struct kaioinfo *ki; 2522 struct kaiocb *job; 2523 struct aiocb *ujob; 2524 long error, status; 2525 int timo; 2526 2527 ops->store_aiocb(ujobp, NULL); 2528 2529 if (ts == NULL) { 2530 timo = 0; 2531 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2532 timo = -1; 2533 } else { 2534 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2535 return (EINVAL); 2536 2537 TIMESPEC_TO_TIMEVAL(&atv, ts); 2538 if (itimerfix(&atv)) 2539 return (EINVAL); 2540 timo = tvtohz(&atv); 2541 } 2542 2543 if (p->p_aioinfo == NULL) 2544 aio_init_aioinfo(p); 2545 ki = p->p_aioinfo; 2546 2547 error = 0; 2548 job = NULL; 2549 AIO_LOCK(ki); 2550 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2551 if (timo == -1) { 2552 error = EWOULDBLOCK; 2553 break; 2554 } 2555 ki->kaio_flags |= KAIO_WAKEUP; 2556 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2557 "aiowc", timo); 2558 if (timo && error == ERESTART) 2559 error = EINTR; 2560 if (error) 2561 break; 2562 } 2563 2564 if (job != NULL) { 2565 MPASS(job->jobflags & KAIOCB_FINISHED); 2566 ujob = job->ujob; 2567 status = job->uaiocb._aiocb_private.status; 2568 error = job->uaiocb._aiocb_private.error; 2569 td->td_retval[0] = status; 2570 td->td_ru.ru_oublock += job->outblock; 2571 td->td_ru.ru_inblock += job->inblock; 2572 td->td_ru.ru_msgsnd += job->msgsnd; 2573 td->td_ru.ru_msgrcv += job->msgrcv; 2574 aio_free_entry(job); 2575 AIO_UNLOCK(ki); 2576 ops->store_aiocb(ujobp, ujob); 2577 ops->store_error(ujob, error); 2578 ops->store_status(ujob, status); 2579 } else 2580 AIO_UNLOCK(ki); 2581 2582 return (error); 2583 } 2584 2585 int 2586 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2587 { 2588 struct timespec ts, *tsp; 2589 int error; 2590 2591 if (uap->timeout) { 2592 /* Get timespec struct. */ 2593 error = copyin(uap->timeout, &ts, sizeof(ts)); 2594 if (error) 2595 return (error); 2596 tsp = &ts; 2597 } else 2598 tsp = NULL; 2599 2600 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2601 } 2602 2603 static int 2604 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2605 struct aiocb_ops *ops) 2606 { 2607 int listop; 2608 2609 switch (op) { 2610 case O_SYNC: 2611 listop = LIO_SYNC; 2612 break; 2613 case O_DSYNC: 2614 listop = LIO_DSYNC; 2615 break; 2616 default: 2617 return (EINVAL); 2618 } 2619 2620 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2621 } 2622 2623 int 2624 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2625 { 2626 2627 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2628 } 2629 2630 /* kqueue attach function */ 2631 static int 2632 filt_aioattach(struct knote *kn) 2633 { 2634 struct kaiocb *job; 2635 2636 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2637 2638 /* 2639 * The job pointer must be validated before using it, so 2640 * registration is restricted to the kernel; the user cannot 2641 * set EV_FLAG1. 2642 */ 2643 if ((kn->kn_flags & EV_FLAG1) == 0) 2644 return (EPERM); 2645 kn->kn_ptr.p_aio = job; 2646 kn->kn_flags &= ~EV_FLAG1; 2647 2648 knlist_add(&job->klist, kn, 0); 2649 2650 return (0); 2651 } 2652 2653 /* kqueue detach function */ 2654 static void 2655 filt_aiodetach(struct knote *kn) 2656 { 2657 struct knlist *knl; 2658 2659 knl = &kn->kn_ptr.p_aio->klist; 2660 knl->kl_lock(knl->kl_lockarg); 2661 if (!knlist_empty(knl)) 2662 knlist_remove(knl, kn, 1); 2663 knl->kl_unlock(knl->kl_lockarg); 2664 } 2665 2666 /* kqueue filter function */ 2667 /*ARGSUSED*/ 2668 static int 2669 filt_aio(struct knote *kn, long hint) 2670 { 2671 struct kaiocb *job = kn->kn_ptr.p_aio; 2672 2673 kn->kn_data = job->uaiocb._aiocb_private.error; 2674 if (!(job->jobflags & KAIOCB_FINISHED)) 2675 return (0); 2676 kn->kn_flags |= EV_EOF; 2677 return (1); 2678 } 2679 2680 /* kqueue attach function */ 2681 static int 2682 filt_lioattach(struct knote *kn) 2683 { 2684 struct aioliojob *lj; 2685 2686 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2687 2688 /* 2689 * The aioliojob pointer must be validated before using it, so 2690 * registration is restricted to the kernel; the user cannot 2691 * set EV_FLAG1. 2692 */ 2693 if ((kn->kn_flags & EV_FLAG1) == 0) 2694 return (EPERM); 2695 kn->kn_ptr.p_lio = lj; 2696 kn->kn_flags &= ~EV_FLAG1; 2697 2698 knlist_add(&lj->klist, kn, 0); 2699 2700 return (0); 2701 } 2702 2703 /* kqueue detach function */ 2704 static void 2705 filt_liodetach(struct knote *kn) 2706 { 2707 struct knlist *knl; 2708 2709 knl = &kn->kn_ptr.p_lio->klist; 2710 knl->kl_lock(knl->kl_lockarg); 2711 if (!knlist_empty(knl)) 2712 knlist_remove(knl, kn, 1); 2713 knl->kl_unlock(knl->kl_lockarg); 2714 } 2715 2716 /* kqueue filter function */ 2717 /*ARGSUSED*/ 2718 static int 2719 filt_lio(struct knote *kn, long hint) 2720 { 2721 struct aioliojob * lj = kn->kn_ptr.p_lio; 2722 2723 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2724 } 2725 2726 #ifdef COMPAT_FREEBSD32 2727 #include <sys/mount.h> 2728 #include <sys/socket.h> 2729 #include <compat/freebsd32/freebsd32.h> 2730 #include <compat/freebsd32/freebsd32_proto.h> 2731 #include <compat/freebsd32/freebsd32_signal.h> 2732 #include <compat/freebsd32/freebsd32_syscall.h> 2733 #include <compat/freebsd32/freebsd32_util.h> 2734 2735 struct __aiocb_private32 { 2736 int32_t status; 2737 int32_t error; 2738 uint32_t kernelinfo; 2739 }; 2740 2741 #ifdef COMPAT_FREEBSD6 2742 typedef struct oaiocb32 { 2743 int aio_fildes; /* File descriptor */ 2744 uint64_t aio_offset __packed; /* File offset for I/O */ 2745 uint32_t aio_buf; /* I/O buffer in process space */ 2746 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2747 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2748 int aio_lio_opcode; /* LIO opcode */ 2749 int aio_reqprio; /* Request priority -- ignored */ 2750 struct __aiocb_private32 _aiocb_private; 2751 } oaiocb32_t; 2752 #endif 2753 2754 typedef struct aiocb32 { 2755 int32_t aio_fildes; /* File descriptor */ 2756 uint64_t aio_offset __packed; /* File offset for I/O */ 2757 uint32_t aio_buf; /* I/O buffer in process space */ 2758 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2759 int __spare__[2]; 2760 uint32_t __spare2__; 2761 int aio_lio_opcode; /* LIO opcode */ 2762 int aio_reqprio; /* Request priority -- ignored */ 2763 struct __aiocb_private32 _aiocb_private; 2764 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2765 } aiocb32_t; 2766 2767 #ifdef COMPAT_FREEBSD6 2768 static int 2769 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2770 { 2771 2772 /* 2773 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2774 * supported by AIO with the old sigevent structure. 2775 */ 2776 CP(*osig, *nsig, sigev_notify); 2777 switch (nsig->sigev_notify) { 2778 case SIGEV_NONE: 2779 break; 2780 case SIGEV_SIGNAL: 2781 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2782 break; 2783 case SIGEV_KEVENT: 2784 nsig->sigev_notify_kqueue = 2785 osig->__sigev_u.__sigev_notify_kqueue; 2786 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2787 break; 2788 default: 2789 return (EINVAL); 2790 } 2791 return (0); 2792 } 2793 2794 static int 2795 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2796 int type __unused) 2797 { 2798 struct oaiocb32 job32; 2799 struct aiocb *kcb = &kjob->uaiocb; 2800 int error; 2801 2802 bzero(kcb, sizeof(struct aiocb)); 2803 error = copyin(ujob, &job32, sizeof(job32)); 2804 if (error) 2805 return (error); 2806 2807 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2808 2809 CP(job32, *kcb, aio_fildes); 2810 CP(job32, *kcb, aio_offset); 2811 PTRIN_CP(job32, *kcb, aio_buf); 2812 CP(job32, *kcb, aio_nbytes); 2813 CP(job32, *kcb, aio_lio_opcode); 2814 CP(job32, *kcb, aio_reqprio); 2815 CP(job32, *kcb, _aiocb_private.status); 2816 CP(job32, *kcb, _aiocb_private.error); 2817 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2818 return (convert_old_sigevent32(&job32.aio_sigevent, 2819 &kcb->aio_sigevent)); 2820 } 2821 #endif 2822 2823 static int 2824 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2825 { 2826 struct aiocb32 job32; 2827 struct aiocb *kcb = &kjob->uaiocb; 2828 struct iovec32 *iov32; 2829 int error; 2830 2831 error = copyin(ujob, &job32, sizeof(job32)); 2832 if (error) 2833 return (error); 2834 CP(job32, *kcb, aio_fildes); 2835 CP(job32, *kcb, aio_offset); 2836 CP(job32, *kcb, aio_lio_opcode); 2837 if (type == LIO_NOP) 2838 type = kcb->aio_lio_opcode; 2839 if (type & LIO_VECTORED) { 2840 iov32 = PTRIN(job32.aio_iov); 2841 CP(job32, *kcb, aio_iovcnt); 2842 /* malloc a uio and copy in the iovec */ 2843 error = freebsd32_copyinuio(iov32, 2844 kcb->aio_iovcnt, &kjob->uiop); 2845 if (error) 2846 return (error); 2847 } else { 2848 PTRIN_CP(job32, *kcb, aio_buf); 2849 CP(job32, *kcb, aio_nbytes); 2850 } 2851 CP(job32, *kcb, aio_reqprio); 2852 CP(job32, *kcb, _aiocb_private.status); 2853 CP(job32, *kcb, _aiocb_private.error); 2854 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2855 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2856 2857 return (error); 2858 } 2859 2860 static long 2861 aiocb32_fetch_status(struct aiocb *ujob) 2862 { 2863 struct aiocb32 *ujob32; 2864 2865 ujob32 = (struct aiocb32 *)ujob; 2866 return (fuword32(&ujob32->_aiocb_private.status)); 2867 } 2868 2869 static long 2870 aiocb32_fetch_error(struct aiocb *ujob) 2871 { 2872 struct aiocb32 *ujob32; 2873 2874 ujob32 = (struct aiocb32 *)ujob; 2875 return (fuword32(&ujob32->_aiocb_private.error)); 2876 } 2877 2878 static int 2879 aiocb32_store_status(struct aiocb *ujob, long status) 2880 { 2881 struct aiocb32 *ujob32; 2882 2883 ujob32 = (struct aiocb32 *)ujob; 2884 return (suword32(&ujob32->_aiocb_private.status, status)); 2885 } 2886 2887 static int 2888 aiocb32_store_error(struct aiocb *ujob, long error) 2889 { 2890 struct aiocb32 *ujob32; 2891 2892 ujob32 = (struct aiocb32 *)ujob; 2893 return (suword32(&ujob32->_aiocb_private.error, error)); 2894 } 2895 2896 static int 2897 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2898 { 2899 struct aiocb32 *ujob32; 2900 2901 ujob32 = (struct aiocb32 *)ujob; 2902 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2903 } 2904 2905 static int 2906 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2907 { 2908 2909 return (suword32(ujobp, (long)ujob)); 2910 } 2911 2912 static struct aiocb_ops aiocb32_ops = { 2913 .aio_copyin = aiocb32_copyin, 2914 .fetch_status = aiocb32_fetch_status, 2915 .fetch_error = aiocb32_fetch_error, 2916 .store_status = aiocb32_store_status, 2917 .store_error = aiocb32_store_error, 2918 .store_kernelinfo = aiocb32_store_kernelinfo, 2919 .store_aiocb = aiocb32_store_aiocb, 2920 }; 2921 2922 #ifdef COMPAT_FREEBSD6 2923 static struct aiocb_ops aiocb32_ops_osigevent = { 2924 .aio_copyin = aiocb32_copyin_old_sigevent, 2925 .fetch_status = aiocb32_fetch_status, 2926 .fetch_error = aiocb32_fetch_error, 2927 .store_status = aiocb32_store_status, 2928 .store_error = aiocb32_store_error, 2929 .store_kernelinfo = aiocb32_store_kernelinfo, 2930 .store_aiocb = aiocb32_store_aiocb, 2931 }; 2932 #endif 2933 2934 int 2935 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2936 { 2937 2938 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2939 } 2940 2941 int 2942 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2943 { 2944 struct timespec32 ts32; 2945 struct timespec ts, *tsp; 2946 struct aiocb **ujoblist; 2947 uint32_t *ujoblist32; 2948 int error, i; 2949 2950 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2951 return (EINVAL); 2952 2953 if (uap->timeout) { 2954 /* Get timespec struct. */ 2955 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2956 return (error); 2957 CP(ts32, ts, tv_sec); 2958 CP(ts32, ts, tv_nsec); 2959 tsp = &ts; 2960 } else 2961 tsp = NULL; 2962 2963 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2964 ujoblist32 = (uint32_t *)ujoblist; 2965 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2966 sizeof(ujoblist32[0])); 2967 if (error == 0) { 2968 for (i = uap->nent - 1; i >= 0; i--) 2969 ujoblist[i] = PTRIN(ujoblist32[i]); 2970 2971 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2972 } 2973 free(ujoblist, M_AIOS); 2974 return (error); 2975 } 2976 2977 int 2978 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2979 { 2980 2981 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2982 } 2983 2984 #ifdef COMPAT_FREEBSD6 2985 int 2986 freebsd6_freebsd32_aio_read(struct thread *td, 2987 struct freebsd6_freebsd32_aio_read_args *uap) 2988 { 2989 2990 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2991 &aiocb32_ops_osigevent)); 2992 } 2993 #endif 2994 2995 int 2996 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2997 { 2998 2999 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 3000 &aiocb32_ops)); 3001 } 3002 3003 int 3004 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 3005 { 3006 3007 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 3008 &aiocb32_ops)); 3009 } 3010 3011 #ifdef COMPAT_FREEBSD6 3012 int 3013 freebsd6_freebsd32_aio_write(struct thread *td, 3014 struct freebsd6_freebsd32_aio_write_args *uap) 3015 { 3016 3017 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3018 &aiocb32_ops_osigevent)); 3019 } 3020 #endif 3021 3022 int 3023 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3024 { 3025 3026 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3027 &aiocb32_ops)); 3028 } 3029 3030 int 3031 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3032 { 3033 3034 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3035 &aiocb32_ops)); 3036 } 3037 3038 int 3039 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3040 { 3041 3042 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3043 &aiocb32_ops)); 3044 } 3045 3046 int 3047 freebsd32_aio_waitcomplete(struct thread *td, 3048 struct freebsd32_aio_waitcomplete_args *uap) 3049 { 3050 struct timespec32 ts32; 3051 struct timespec ts, *tsp; 3052 int error; 3053 3054 if (uap->timeout) { 3055 /* Get timespec struct. */ 3056 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3057 if (error) 3058 return (error); 3059 CP(ts32, ts, tv_sec); 3060 CP(ts32, ts, tv_nsec); 3061 tsp = &ts; 3062 } else 3063 tsp = NULL; 3064 3065 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3066 &aiocb32_ops)); 3067 } 3068 3069 int 3070 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3071 { 3072 3073 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3074 &aiocb32_ops)); 3075 } 3076 3077 #ifdef COMPAT_FREEBSD6 3078 int 3079 freebsd6_freebsd32_lio_listio(struct thread *td, 3080 struct freebsd6_freebsd32_lio_listio_args *uap) 3081 { 3082 struct aiocb **acb_list; 3083 struct sigevent *sigp, sig; 3084 struct osigevent32 osig; 3085 uint32_t *acb_list32; 3086 int error, i, nent; 3087 3088 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3089 return (EINVAL); 3090 3091 nent = uap->nent; 3092 if (nent < 0 || nent > max_aio_queue_per_proc) 3093 return (EINVAL); 3094 3095 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3096 error = copyin(uap->sig, &osig, sizeof(osig)); 3097 if (error) 3098 return (error); 3099 error = convert_old_sigevent32(&osig, &sig); 3100 if (error) 3101 return (error); 3102 sigp = &sig; 3103 } else 3104 sigp = NULL; 3105 3106 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3107 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3108 if (error) { 3109 free(acb_list32, M_LIO); 3110 return (error); 3111 } 3112 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3113 for (i = 0; i < nent; i++) 3114 acb_list[i] = PTRIN(acb_list32[i]); 3115 free(acb_list32, M_LIO); 3116 3117 error = kern_lio_listio(td, uap->mode, 3118 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3119 &aiocb32_ops_osigevent); 3120 free(acb_list, M_LIO); 3121 return (error); 3122 } 3123 #endif 3124 3125 int 3126 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3127 { 3128 struct aiocb **acb_list; 3129 struct sigevent *sigp, sig; 3130 struct sigevent32 sig32; 3131 uint32_t *acb_list32; 3132 int error, i, nent; 3133 3134 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3135 return (EINVAL); 3136 3137 nent = uap->nent; 3138 if (nent < 0 || nent > max_aio_queue_per_proc) 3139 return (EINVAL); 3140 3141 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3142 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3143 if (error) 3144 return (error); 3145 error = convert_sigevent32(&sig32, &sig); 3146 if (error) 3147 return (error); 3148 sigp = &sig; 3149 } else 3150 sigp = NULL; 3151 3152 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3153 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3154 if (error) { 3155 free(acb_list32, M_LIO); 3156 return (error); 3157 } 3158 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3159 for (i = 0; i < nent; i++) 3160 acb_list[i] = PTRIN(acb_list32[i]); 3161 free(acb_list32, M_LIO); 3162 3163 error = kern_lio_listio(td, uap->mode, 3164 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3165 &aiocb32_ops); 3166 free(acb_list, M_LIO); 3167 return (error); 3168 } 3169 3170 #endif 3171