1 /* 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/kthread.h> 34 #include <sys/fcntl.h> 35 #include <sys/file.h> 36 #include <sys/limits.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/unistd.h> 40 #include <sys/proc.h> 41 #include <sys/resourcevar.h> 42 #include <sys/signalvar.h> 43 #include <sys/protosw.h> 44 #include <sys/socketvar.h> 45 #include <sys/syscall.h> 46 #include <sys/sysent.h> 47 #include <sys/sysctl.h> 48 #include <sys/sx.h> 49 #include <sys/vnode.h> 50 #include <sys/conf.h> 51 #include <sys/event.h> 52 53 #include <posix4/posix4.h> 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/uma.h> 59 #include <sys/aio.h> 60 61 #include "opt_vfs_aio.h" 62 63 /* 64 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 65 * overflow. 66 */ 67 static long jobrefid; 68 69 #define JOBST_NULL 0x0 70 #define JOBST_JOBQGLOBAL 0x2 71 #define JOBST_JOBRUNNING 0x3 72 #define JOBST_JOBFINISHED 0x4 73 #define JOBST_JOBQBUF 0x5 74 #define JOBST_JOBBFINISHED 0x6 75 76 #ifndef MAX_AIO_PER_PROC 77 #define MAX_AIO_PER_PROC 32 78 #endif 79 80 #ifndef MAX_AIO_QUEUE_PER_PROC 81 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 82 #endif 83 84 #ifndef MAX_AIO_PROCS 85 #define MAX_AIO_PROCS 32 86 #endif 87 88 #ifndef MAX_AIO_QUEUE 89 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 90 #endif 91 92 #ifndef TARGET_AIO_PROCS 93 #define TARGET_AIO_PROCS 4 94 #endif 95 96 #ifndef MAX_BUF_AIO 97 #define MAX_BUF_AIO 16 98 #endif 99 100 #ifndef AIOD_TIMEOUT_DEFAULT 101 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 102 #endif 103 104 #ifndef AIOD_LIFETIME_DEFAULT 105 #define AIOD_LIFETIME_DEFAULT (30 * hz) 106 #endif 107 108 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 109 110 static int max_aio_procs = MAX_AIO_PROCS; 111 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 112 CTLFLAG_RW, &max_aio_procs, 0, 113 "Maximum number of kernel threads to use for handling async IO "); 114 115 static int num_aio_procs = 0; 116 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 117 CTLFLAG_RD, &num_aio_procs, 0, 118 "Number of presently active kernel threads for async IO"); 119 120 /* 121 * The code will adjust the actual number of AIO processes towards this 122 * number when it gets a chance. 123 */ 124 static int target_aio_procs = TARGET_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 126 0, "Preferred number of ready kernel threads for async IO"); 127 128 static int max_queue_count = MAX_AIO_QUEUE; 129 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 130 "Maximum number of aio requests to queue, globally"); 131 132 static int num_queue_count = 0; 133 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 134 "Number of queued aio requests"); 135 136 static int num_buf_aio = 0; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 138 "Number of aio requests presently handled by the buf subsystem"); 139 140 /* Number of async I/O thread in the process of being started */ 141 /* XXX This should be local to _aio_aqueue() */ 142 static int num_aio_resv_start = 0; 143 144 static int aiod_timeout; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 146 "Timeout value for synchronous aio operations"); 147 148 static int aiod_lifetime; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 150 "Maximum lifetime for idle aiod"); 151 152 static int unloadable = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 154 "Allow unload of aio (not recommended)"); 155 156 157 static int max_aio_per_proc = MAX_AIO_PER_PROC; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 159 0, "Maximum active aio requests per process (stored in the process)"); 160 161 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 163 &max_aio_queue_per_proc, 0, 164 "Maximum queued aio requests per process (stored in the process)"); 165 166 static int max_buf_aio = MAX_BUF_AIO; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 168 "Maximum buf aio requests per process (stored in the process)"); 169 170 struct aiocblist { 171 TAILQ_ENTRY(aiocblist) list; /* List of jobs */ 172 TAILQ_ENTRY(aiocblist) plist; /* List of jobs for proc */ 173 int jobflags; 174 int jobstate; 175 int inputcharge; 176 int outputcharge; 177 struct callout_handle timeouthandle; 178 struct buf *bp; /* Buffer pointer */ 179 struct proc *userproc; /* User process */ /* Not td! */ 180 struct ucred *cred; /* Active credential when created */ 181 struct file *fd_file; /* Pointer to file structure */ 182 struct aio_liojob *lio; /* Optional lio job */ 183 struct aiocb *uuaiocb; /* Pointer in userspace of aiocb */ 184 struct klist klist; /* list of knotes */ 185 struct aiocb uaiocb; /* Kernel I/O control block */ 186 }; 187 188 /* jobflags */ 189 #define AIOCBLIST_RUNDOWN 0x4 190 #define AIOCBLIST_DONE 0x10 191 192 /* 193 * AIO process info 194 */ 195 #define AIOP_FREE 0x1 /* proc on free queue */ 196 #define AIOP_SCHED 0x2 /* proc explicitly scheduled */ 197 198 struct aiothreadlist { 199 int aiothreadflags; /* AIO proc flags */ 200 TAILQ_ENTRY(aiothreadlist) list; /* List of processes */ 201 struct thread *aiothread; /* The AIO thread */ 202 }; 203 204 /* 205 * data-structure for lio signal management 206 */ 207 struct aio_liojob { 208 int lioj_flags; 209 int lioj_buffer_count; 210 int lioj_buffer_finished_count; 211 int lioj_queue_count; 212 int lioj_queue_finished_count; 213 struct sigevent lioj_signal; /* signal on all I/O done */ 214 TAILQ_ENTRY(aio_liojob) lioj_list; 215 struct kaioinfo *lioj_ki; 216 }; 217 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 218 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 219 220 /* 221 * per process aio data structure 222 */ 223 struct kaioinfo { 224 int kaio_flags; /* per process kaio flags */ 225 int kaio_maxactive_count; /* maximum number of AIOs */ 226 int kaio_active_count; /* number of currently used AIOs */ 227 int kaio_qallowed_count; /* maxiumu size of AIO queue */ 228 int kaio_queue_count; /* size of AIO queue */ 229 int kaio_ballowed_count; /* maximum number of buffers */ 230 int kaio_queue_finished_count; /* number of daemon jobs finished */ 231 int kaio_buffer_count; /* number of physio buffers */ 232 int kaio_buffer_finished_count; /* count of I/O done */ 233 struct proc *kaio_p; /* process that uses this kaio block */ 234 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */ 235 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */ 236 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */ 237 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */ 238 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */ 239 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */ 240 }; 241 242 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 243 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 244 245 static TAILQ_HEAD(,aiothreadlist) aio_activeproc; /* Active daemons */ 246 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* Idle daemons */ 247 static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */ 248 static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */ 249 250 static void aio_init_aioinfo(struct proc *p); 251 static void aio_onceonly(void); 252 static int aio_free_entry(struct aiocblist *aiocbe); 253 static void aio_process(struct aiocblist *aiocbe); 254 static int aio_newproc(void); 255 static int aio_aqueue(struct thread *td, struct aiocb *job, int type); 256 static void aio_physwakeup(struct buf *bp); 257 static void aio_proc_rundown(void *arg, struct proc *p); 258 static int aio_fphysio(struct aiocblist *aiocbe); 259 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 260 static void aio_daemon(void *uproc); 261 static void aio_swake_cb(struct socket *, struct sockbuf *); 262 static int aio_unload(void); 263 static void process_signal(void *aioj); 264 static int filt_aioattach(struct knote *kn); 265 static void filt_aiodetach(struct knote *kn); 266 static int filt_aio(struct knote *kn, long hint); 267 268 /* 269 * Zones for: 270 * kaio Per process async io info 271 * aiop async io thread data 272 * aiocb async io jobs 273 * aiol list io job pointer - internal to aio_suspend XXX 274 * aiolio list io jobs 275 */ 276 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 277 278 /* kqueue filters for aio */ 279 static struct filterops aio_filtops = 280 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 281 282 static eventhandler_tag exit_tag, exec_tag; 283 284 /* 285 * Main operations function for use as a kernel module. 286 */ 287 static int 288 aio_modload(struct module *module, int cmd, void *arg) 289 { 290 int error = 0; 291 292 switch (cmd) { 293 case MOD_LOAD: 294 aio_onceonly(); 295 break; 296 case MOD_UNLOAD: 297 error = aio_unload(); 298 break; 299 case MOD_SHUTDOWN: 300 break; 301 default: 302 error = EINVAL; 303 break; 304 } 305 return (error); 306 } 307 308 static moduledata_t aio_mod = { 309 "aio", 310 &aio_modload, 311 NULL 312 }; 313 314 SYSCALL_MODULE_HELPER(aio_return); 315 SYSCALL_MODULE_HELPER(aio_suspend); 316 SYSCALL_MODULE_HELPER(aio_cancel); 317 SYSCALL_MODULE_HELPER(aio_error); 318 SYSCALL_MODULE_HELPER(aio_read); 319 SYSCALL_MODULE_HELPER(aio_write); 320 SYSCALL_MODULE_HELPER(aio_waitcomplete); 321 SYSCALL_MODULE_HELPER(lio_listio); 322 323 DECLARE_MODULE(aio, aio_mod, 324 SI_SUB_VFS, SI_ORDER_ANY); 325 MODULE_VERSION(aio, 1); 326 327 /* 328 * Startup initialization 329 */ 330 static void 331 aio_onceonly(void) 332 { 333 334 /* XXX: should probably just use so->callback */ 335 aio_swake = &aio_swake_cb; 336 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 337 EVENTHANDLER_PRI_ANY); 338 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown, NULL, 339 EVENTHANDLER_PRI_ANY); 340 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 341 TAILQ_INIT(&aio_freeproc); 342 TAILQ_INIT(&aio_activeproc); 343 TAILQ_INIT(&aio_jobs); 344 TAILQ_INIT(&aio_bufjobs); 345 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 346 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 347 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 348 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 349 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 350 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 351 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 352 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 353 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL, 354 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 355 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 356 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 357 jobrefid = 1; 358 async_io_version = _POSIX_VERSION; 359 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 360 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 361 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 362 } 363 364 /* 365 * Callback for unload of AIO when used as a module. 366 */ 367 static int 368 aio_unload(void) 369 { 370 371 /* 372 * XXX: no unloads by default, it's too dangerous. 373 * perhaps we could do it if locked out callers and then 374 * did an aio_proc_rundown() on each process. 375 */ 376 if (!unloadable) 377 return (EOPNOTSUPP); 378 379 async_io_version = 0; 380 aio_swake = NULL; 381 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 382 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 383 kqueue_del_filteropts(EVFILT_AIO); 384 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 385 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 386 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 387 return (0); 388 } 389 390 /* 391 * Init the per-process aioinfo structure. The aioinfo limits are set 392 * per-process for user limit (resource) management. 393 */ 394 static void 395 aio_init_aioinfo(struct proc *p) 396 { 397 struct kaioinfo *ki; 398 399 if (p->p_aioinfo == NULL) { 400 ki = uma_zalloc(kaio_zone, M_WAITOK); 401 p->p_aioinfo = ki; 402 ki->kaio_flags = 0; 403 ki->kaio_maxactive_count = max_aio_per_proc; 404 ki->kaio_active_count = 0; 405 ki->kaio_qallowed_count = max_aio_queue_per_proc; 406 ki->kaio_queue_count = 0; 407 ki->kaio_ballowed_count = max_buf_aio; 408 ki->kaio_buffer_count = 0; 409 ki->kaio_buffer_finished_count = 0; 410 ki->kaio_p = p; 411 TAILQ_INIT(&ki->kaio_jobdone); 412 TAILQ_INIT(&ki->kaio_jobqueue); 413 TAILQ_INIT(&ki->kaio_bufdone); 414 TAILQ_INIT(&ki->kaio_bufqueue); 415 TAILQ_INIT(&ki->kaio_liojoblist); 416 TAILQ_INIT(&ki->kaio_sockqueue); 417 } 418 419 while (num_aio_procs < target_aio_procs) 420 aio_newproc(); 421 } 422 423 /* 424 * Free a job entry. Wait for completion if it is currently active, but don't 425 * delay forever. If we delay, we return a flag that says that we have to 426 * restart the queue scan. 427 */ 428 static int 429 aio_free_entry(struct aiocblist *aiocbe) 430 { 431 struct kaioinfo *ki; 432 struct aio_liojob *lj; 433 struct proc *p; 434 int error; 435 int s; 436 437 if (aiocbe->jobstate == JOBST_NULL) 438 panic("aio_free_entry: freeing already free job"); 439 440 p = aiocbe->userproc; 441 ki = p->p_aioinfo; 442 lj = aiocbe->lio; 443 if (ki == NULL) 444 panic("aio_free_entry: missing p->p_aioinfo"); 445 446 while (aiocbe->jobstate == JOBST_JOBRUNNING) { 447 aiocbe->jobflags |= AIOCBLIST_RUNDOWN; 448 tsleep(aiocbe, PRIBIO, "jobwai", 0); 449 } 450 if (aiocbe->bp == NULL) { 451 if (ki->kaio_queue_count <= 0) 452 panic("aio_free_entry: process queue size <= 0"); 453 if (num_queue_count <= 0) 454 panic("aio_free_entry: system wide queue size <= 0"); 455 456 if (lj) { 457 lj->lioj_queue_count--; 458 if (aiocbe->jobflags & AIOCBLIST_DONE) 459 lj->lioj_queue_finished_count--; 460 } 461 ki->kaio_queue_count--; 462 if (aiocbe->jobflags & AIOCBLIST_DONE) 463 ki->kaio_queue_finished_count--; 464 num_queue_count--; 465 } else { 466 if (lj) { 467 lj->lioj_buffer_count--; 468 if (aiocbe->jobflags & AIOCBLIST_DONE) 469 lj->lioj_buffer_finished_count--; 470 } 471 if (aiocbe->jobflags & AIOCBLIST_DONE) 472 ki->kaio_buffer_finished_count--; 473 ki->kaio_buffer_count--; 474 num_buf_aio--; 475 } 476 477 /* aiocbe is going away, we need to destroy any knotes */ 478 /* XXXKSE Note the thread here is used to eventually find the 479 * owning process again, but it is also used to do a fo_close 480 * and that requires the thread. (but does it require the 481 * OWNING thread? (or maybe the running thread?) 482 * There is a semantic problem here... 483 */ 484 knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */ 485 486 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN) 487 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) { 488 ki->kaio_flags &= ~KAIO_WAKEUP; 489 wakeup(p); 490 } 491 492 if (aiocbe->jobstate == JOBST_JOBQBUF) { 493 if ((error = aio_fphysio(aiocbe)) != 0) 494 return (error); 495 if (aiocbe->jobstate != JOBST_JOBBFINISHED) 496 panic("aio_free_entry: invalid physio finish-up state"); 497 s = splbio(); 498 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 499 splx(s); 500 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) { 501 s = splnet(); 502 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 503 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 504 splx(s); 505 } else if (aiocbe->jobstate == JOBST_JOBFINISHED) 506 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist); 507 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) { 508 s = splbio(); 509 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist); 510 splx(s); 511 if (aiocbe->bp) { 512 vunmapbuf(aiocbe->bp); 513 relpbuf(aiocbe->bp, NULL); 514 aiocbe->bp = NULL; 515 } 516 } 517 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) { 518 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 519 uma_zfree(aiolio_zone, lj); 520 } 521 aiocbe->jobstate = JOBST_NULL; 522 untimeout(process_signal, aiocbe, aiocbe->timeouthandle); 523 fdrop(aiocbe->fd_file, curthread); 524 crfree(aiocbe->cred); 525 uma_zfree(aiocb_zone, aiocbe); 526 return (0); 527 } 528 529 /* 530 * Rundown the jobs for a given process. 531 */ 532 static void 533 aio_proc_rundown(void *arg, struct proc *p) 534 { 535 int s; 536 struct kaioinfo *ki; 537 struct aio_liojob *lj, *ljn; 538 struct aiocblist *aiocbe, *aiocbn; 539 struct file *fp; 540 struct socket *so; 541 542 ki = p->p_aioinfo; 543 if (ki == NULL) 544 return; 545 546 ki->kaio_flags |= LIOJ_SIGNAL_POSTED; 547 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count > 548 ki->kaio_buffer_finished_count)) { 549 ki->kaio_flags |= KAIO_RUNDOWN; 550 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout)) 551 break; 552 } 553 554 /* 555 * Move any aio ops that are waiting on socket I/O to the normal job 556 * queues so they are cleaned up with any others. 557 */ 558 s = splnet(); 559 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe = 560 aiocbn) { 561 aiocbn = TAILQ_NEXT(aiocbe, plist); 562 fp = aiocbe->fd_file; 563 if (fp != NULL) { 564 so = fp->f_data; 565 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list); 566 if (TAILQ_EMPTY(&so->so_aiojobq)) { 567 so->so_snd.sb_flags &= ~SB_AIO; 568 so->so_rcv.sb_flags &= ~SB_AIO; 569 } 570 } 571 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist); 572 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list); 573 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist); 574 } 575 splx(s); 576 577 restart1: 578 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) { 579 aiocbn = TAILQ_NEXT(aiocbe, plist); 580 if (aio_free_entry(aiocbe)) 581 goto restart1; 582 } 583 584 restart2: 585 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe = 586 aiocbn) { 587 aiocbn = TAILQ_NEXT(aiocbe, plist); 588 if (aio_free_entry(aiocbe)) 589 goto restart2; 590 } 591 592 /* 593 * Note the use of lots of splbio here, trying to avoid splbio for long chains 594 * of I/O. Probably unnecessary. 595 */ 596 restart3: 597 s = splbio(); 598 while (TAILQ_FIRST(&ki->kaio_bufqueue)) { 599 ki->kaio_flags |= KAIO_WAKEUP; 600 tsleep(p, PRIBIO, "aioprn", 0); 601 splx(s); 602 goto restart3; 603 } 604 splx(s); 605 606 restart4: 607 s = splbio(); 608 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) { 609 aiocbn = TAILQ_NEXT(aiocbe, plist); 610 if (aio_free_entry(aiocbe)) { 611 splx(s); 612 goto restart4; 613 } 614 } 615 splx(s); 616 617 /* 618 * If we've slept, jobs might have moved from one queue to another. 619 * Retry rundown if we didn't manage to empty the queues. 620 */ 621 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL || 622 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL || 623 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL || 624 TAILQ_FIRST(&ki->kaio_bufdone) != NULL) 625 goto restart1; 626 627 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) { 628 ljn = TAILQ_NEXT(lj, lioj_list); 629 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 630 0)) { 631 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 632 uma_zfree(aiolio_zone, lj); 633 } else { 634 #ifdef DIAGNOSTIC 635 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, " 636 "QF:%d\n", lj->lioj_buffer_count, 637 lj->lioj_buffer_finished_count, 638 lj->lioj_queue_count, 639 lj->lioj_queue_finished_count); 640 #endif 641 } 642 } 643 644 uma_zfree(kaio_zone, ki); 645 p->p_aioinfo = NULL; 646 } 647 648 /* 649 * Select a job to run (called by an AIO daemon). 650 */ 651 static struct aiocblist * 652 aio_selectjob(struct aiothreadlist *aiop) 653 { 654 int s; 655 struct aiocblist *aiocbe; 656 struct kaioinfo *ki; 657 struct proc *userp; 658 659 s = splnet(); 660 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe = 661 TAILQ_NEXT(aiocbe, list)) { 662 userp = aiocbe->userproc; 663 ki = userp->p_aioinfo; 664 665 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 666 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 667 splx(s); 668 return (aiocbe); 669 } 670 } 671 splx(s); 672 673 return (NULL); 674 } 675 676 /* 677 * The AIO processing activity. This is the code that does the I/O request for 678 * the non-physio version of the operations. The normal vn operations are used, 679 * and this code should work in all instances for every type of file, including 680 * pipes, sockets, fifos, and regular files. 681 */ 682 static void 683 aio_process(struct aiocblist *aiocbe) 684 { 685 struct ucred *td_savedcred; 686 struct thread *td; 687 struct proc *mycp; 688 struct aiocb *cb; 689 struct file *fp; 690 struct uio auio; 691 struct iovec aiov; 692 int cnt; 693 int error; 694 int oublock_st, oublock_end; 695 int inblock_st, inblock_end; 696 697 td = curthread; 698 td_savedcred = td->td_ucred; 699 td->td_ucred = aiocbe->cred; 700 mycp = td->td_proc; 701 cb = &aiocbe->uaiocb; 702 fp = aiocbe->fd_file; 703 704 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 705 aiov.iov_len = cb->aio_nbytes; 706 707 auio.uio_iov = &aiov; 708 auio.uio_iovcnt = 1; 709 auio.uio_offset = cb->aio_offset; 710 auio.uio_resid = cb->aio_nbytes; 711 cnt = cb->aio_nbytes; 712 auio.uio_segflg = UIO_USERSPACE; 713 auio.uio_td = td; 714 715 inblock_st = mycp->p_stats->p_ru.ru_inblock; 716 oublock_st = mycp->p_stats->p_ru.ru_oublock; 717 /* 718 * _aio_aqueue() acquires a reference to the file that is 719 * released in aio_free_entry(). 720 */ 721 if (cb->aio_lio_opcode == LIO_READ) { 722 auio.uio_rw = UIO_READ; 723 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 724 } else { 725 auio.uio_rw = UIO_WRITE; 726 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 727 } 728 inblock_end = mycp->p_stats->p_ru.ru_inblock; 729 oublock_end = mycp->p_stats->p_ru.ru_oublock; 730 731 aiocbe->inputcharge = inblock_end - inblock_st; 732 aiocbe->outputcharge = oublock_end - oublock_st; 733 734 if ((error) && (auio.uio_resid != cnt)) { 735 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 736 error = 0; 737 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 738 PROC_LOCK(aiocbe->userproc); 739 psignal(aiocbe->userproc, SIGPIPE); 740 PROC_UNLOCK(aiocbe->userproc); 741 } 742 } 743 744 cnt -= auio.uio_resid; 745 cb->_aiocb_private.error = error; 746 cb->_aiocb_private.status = cnt; 747 td->td_ucred = td_savedcred; 748 } 749 750 /* 751 * The AIO daemon, most of the actual work is done in aio_process, 752 * but the setup (and address space mgmt) is done in this routine. 753 */ 754 static void 755 aio_daemon(void *uproc) 756 { 757 int s; 758 struct aio_liojob *lj; 759 struct aiocb *cb; 760 struct aiocblist *aiocbe; 761 struct aiothreadlist *aiop; 762 struct kaioinfo *ki; 763 struct proc *curcp, *mycp, *userp; 764 struct vmspace *myvm, *tmpvm; 765 struct thread *td = curthread; 766 struct pgrp *newpgrp; 767 struct session *newsess; 768 769 mtx_lock(&Giant); 770 /* 771 * Local copies of curproc (cp) and vmspace (myvm) 772 */ 773 mycp = td->td_proc; 774 myvm = mycp->p_vmspace; 775 776 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 777 778 /* 779 * Allocate and ready the aio control info. There is one aiop structure 780 * per daemon. 781 */ 782 aiop = uma_zalloc(aiop_zone, M_WAITOK); 783 aiop->aiothread = td; 784 aiop->aiothreadflags |= AIOP_FREE; 785 786 s = splnet(); 787 788 /* 789 * Place thread (lightweight process) onto the AIO free thread list. 790 */ 791 if (TAILQ_EMPTY(&aio_freeproc)) 792 wakeup(&aio_freeproc); 793 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 794 795 splx(s); 796 797 /* 798 * Get rid of our current filedescriptors. AIOD's don't need any 799 * filedescriptors, except as temporarily inherited from the client. 800 */ 801 fdfree(td); 802 803 mtx_unlock(&Giant); 804 /* The daemon resides in its own pgrp. */ 805 MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 806 M_WAITOK | M_ZERO); 807 MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION, 808 M_WAITOK | M_ZERO); 809 810 sx_xlock(&proctree_lock); 811 enterpgrp(mycp, mycp->p_pid, newpgrp, newsess); 812 sx_xunlock(&proctree_lock); 813 mtx_lock(&Giant); 814 815 /* 816 * Wakeup parent process. (Parent sleeps to keep from blasting away 817 * and creating too many daemons.) 818 */ 819 wakeup(mycp); 820 821 for (;;) { 822 /* 823 * curcp is the current daemon process context. 824 * userp is the current user process context. 825 */ 826 curcp = mycp; 827 828 /* 829 * Take daemon off of free queue 830 */ 831 if (aiop->aiothreadflags & AIOP_FREE) { 832 s = splnet(); 833 TAILQ_REMOVE(&aio_freeproc, aiop, list); 834 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 835 aiop->aiothreadflags &= ~AIOP_FREE; 836 splx(s); 837 } 838 aiop->aiothreadflags &= ~AIOP_SCHED; 839 840 /* 841 * Check for jobs. 842 */ 843 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 844 cb = &aiocbe->uaiocb; 845 userp = aiocbe->userproc; 846 847 aiocbe->jobstate = JOBST_JOBRUNNING; 848 849 /* 850 * Connect to process address space for user program. 851 */ 852 if (userp != curcp) { 853 /* 854 * Save the current address space that we are 855 * connected to. 856 */ 857 tmpvm = mycp->p_vmspace; 858 859 /* 860 * Point to the new user address space, and 861 * refer to it. 862 */ 863 mycp->p_vmspace = userp->p_vmspace; 864 mycp->p_vmspace->vm_refcnt++; 865 866 /* Activate the new mapping. */ 867 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 868 869 /* 870 * If the old address space wasn't the daemons 871 * own address space, then we need to remove the 872 * daemon's reference from the other process 873 * that it was acting on behalf of. 874 */ 875 if (tmpvm != myvm) { 876 vmspace_free(tmpvm); 877 } 878 curcp = userp; 879 } 880 881 ki = userp->p_aioinfo; 882 lj = aiocbe->lio; 883 884 /* Account for currently active jobs. */ 885 ki->kaio_active_count++; 886 887 /* Do the I/O function. */ 888 aio_process(aiocbe); 889 890 /* Decrement the active job count. */ 891 ki->kaio_active_count--; 892 893 /* 894 * Increment the completion count for wakeup/signal 895 * comparisons. 896 */ 897 aiocbe->jobflags |= AIOCBLIST_DONE; 898 ki->kaio_queue_finished_count++; 899 if (lj) 900 lj->lioj_queue_finished_count++; 901 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags 902 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) { 903 ki->kaio_flags &= ~KAIO_WAKEUP; 904 wakeup(userp); 905 } 906 907 s = splbio(); 908 if (lj && (lj->lioj_flags & 909 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) { 910 if ((lj->lioj_queue_finished_count == 911 lj->lioj_queue_count) && 912 (lj->lioj_buffer_finished_count == 913 lj->lioj_buffer_count)) { 914 PROC_LOCK(userp); 915 psignal(userp, 916 lj->lioj_signal.sigev_signo); 917 PROC_UNLOCK(userp); 918 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 919 } 920 } 921 splx(s); 922 923 aiocbe->jobstate = JOBST_JOBFINISHED; 924 925 s = splnet(); 926 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 927 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist); 928 splx(s); 929 KNOTE(&aiocbe->klist, 0); 930 931 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) { 932 wakeup(aiocbe); 933 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN; 934 } 935 936 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 937 PROC_LOCK(userp); 938 psignal(userp, cb->aio_sigevent.sigev_signo); 939 PROC_UNLOCK(userp); 940 } 941 } 942 943 /* 944 * Disconnect from user address space. 945 */ 946 if (curcp != mycp) { 947 /* Get the user address space to disconnect from. */ 948 tmpvm = mycp->p_vmspace; 949 950 /* Get original address space for daemon. */ 951 mycp->p_vmspace = myvm; 952 953 /* Activate the daemon's address space. */ 954 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 955 #ifdef DIAGNOSTIC 956 if (tmpvm == myvm) { 957 printf("AIOD: vmspace problem -- %d\n", 958 mycp->p_pid); 959 } 960 #endif 961 /* Remove our vmspace reference. */ 962 vmspace_free(tmpvm); 963 964 curcp = mycp; 965 } 966 967 /* 968 * If we are the first to be put onto the free queue, wakeup 969 * anyone waiting for a daemon. 970 */ 971 s = splnet(); 972 TAILQ_REMOVE(&aio_activeproc, aiop, list); 973 if (TAILQ_EMPTY(&aio_freeproc)) 974 wakeup(&aio_freeproc); 975 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 976 aiop->aiothreadflags |= AIOP_FREE; 977 splx(s); 978 979 /* 980 * If daemon is inactive for a long time, allow it to exit, 981 * thereby freeing resources. 982 */ 983 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 && 984 tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) { 985 s = splnet(); 986 if (TAILQ_EMPTY(&aio_jobs)) { 987 if ((aiop->aiothreadflags & AIOP_FREE) && 988 (num_aio_procs > target_aio_procs)) { 989 TAILQ_REMOVE(&aio_freeproc, aiop, list); 990 splx(s); 991 uma_zfree(aiop_zone, aiop); 992 num_aio_procs--; 993 #ifdef DIAGNOSTIC 994 if (mycp->p_vmspace->vm_refcnt <= 1) { 995 printf("AIOD: bad vm refcnt for" 996 " exiting daemon: %d\n", 997 mycp->p_vmspace->vm_refcnt); 998 } 999 #endif 1000 kthread_exit(0); 1001 } 1002 } 1003 splx(s); 1004 } 1005 } 1006 } 1007 1008 /* 1009 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1010 * AIO daemon modifies its environment itself. 1011 */ 1012 static int 1013 aio_newproc(void) 1014 { 1015 int error; 1016 struct proc *p; 1017 1018 error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d", 1019 num_aio_procs); 1020 if (error) 1021 return (error); 1022 1023 /* 1024 * Wait until daemon is started, but continue on just in case to 1025 * handle error conditions. 1026 */ 1027 error = tsleep(p, PZERO, "aiosta", aiod_timeout); 1028 1029 num_aio_procs++; 1030 1031 return (error); 1032 } 1033 1034 /* 1035 * Try the high-performance, low-overhead physio method for eligible 1036 * VCHR devices. This method doesn't use an aio helper thread, and 1037 * thus has very low overhead. 1038 * 1039 * Assumes that the caller, _aio_aqueue(), has incremented the file 1040 * structure's reference count, preventing its deallocation for the 1041 * duration of this call. 1042 */ 1043 static int 1044 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1045 { 1046 int error; 1047 struct aiocb *cb; 1048 struct file *fp; 1049 struct buf *bp; 1050 struct vnode *vp; 1051 struct kaioinfo *ki; 1052 struct aio_liojob *lj; 1053 int s; 1054 int notify; 1055 1056 cb = &aiocbe->uaiocb; 1057 fp = aiocbe->fd_file; 1058 1059 if (fp->f_type != DTYPE_VNODE) 1060 return (-1); 1061 1062 vp = fp->f_vnode; 1063 1064 /* 1065 * If its not a disk, we don't want to return a positive error. 1066 * It causes the aio code to not fall through to try the thread 1067 * way when you're talking to a regular file. 1068 */ 1069 if (!vn_isdisk(vp, &error)) { 1070 if (error == ENOTBLK) 1071 return (-1); 1072 else 1073 return (error); 1074 } 1075 1076 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys) 1077 return (-1); 1078 1079 if (cb->aio_nbytes > 1080 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1081 return (-1); 1082 1083 ki = p->p_aioinfo; 1084 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1085 return (-1); 1086 1087 ki->kaio_buffer_count++; 1088 1089 lj = aiocbe->lio; 1090 if (lj) 1091 lj->lioj_buffer_count++; 1092 1093 /* Create and build a buffer header for a transfer. */ 1094 bp = (struct buf *)getpbuf(NULL); 1095 BUF_KERNPROC(bp); 1096 1097 /* 1098 * Get a copy of the kva from the physical buffer. 1099 */ 1100 bp->b_dev = vp->v_rdev; 1101 error = 0; 1102 1103 bp->b_bcount = cb->aio_nbytes; 1104 bp->b_bufsize = cb->aio_nbytes; 1105 bp->b_iodone = aio_physwakeup; 1106 bp->b_saveaddr = bp->b_data; 1107 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1108 bp->b_offset = cb->aio_offset; 1109 bp->b_iooffset = cb->aio_offset; 1110 bp->b_blkno = btodb(cb->aio_offset); 1111 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1112 1113 /* 1114 * Bring buffer into kernel space. 1115 */ 1116 if (vmapbuf(bp) < 0) { 1117 error = EFAULT; 1118 goto doerror; 1119 } 1120 1121 s = splbio(); 1122 aiocbe->bp = bp; 1123 bp->b_caller1 = (void *)aiocbe; 1124 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list); 1125 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1126 aiocbe->jobstate = JOBST_JOBQBUF; 1127 cb->_aiocb_private.status = cb->aio_nbytes; 1128 num_buf_aio++; 1129 bp->b_error = 0; 1130 1131 splx(s); 1132 1133 /* Perform transfer. */ 1134 DEV_STRATEGY(bp); 1135 1136 notify = 0; 1137 s = splbio(); 1138 1139 /* 1140 * If we had an error invoking the request, or an error in processing 1141 * the request before we have returned, we process it as an error in 1142 * transfer. Note that such an I/O error is not indicated immediately, 1143 * but is returned using the aio_error mechanism. In this case, 1144 * aio_suspend will return immediately. 1145 */ 1146 if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) { 1147 struct aiocb *job = aiocbe->uuaiocb; 1148 1149 aiocbe->uaiocb._aiocb_private.status = 0; 1150 suword(&job->_aiocb_private.status, 0); 1151 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 1152 suword(&job->_aiocb_private.error, bp->b_error); 1153 1154 ki->kaio_buffer_finished_count++; 1155 1156 if (aiocbe->jobstate != JOBST_JOBBFINISHED) { 1157 aiocbe->jobstate = JOBST_JOBBFINISHED; 1158 aiocbe->jobflags |= AIOCBLIST_DONE; 1159 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 1160 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 1161 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 1162 notify = 1; 1163 } 1164 } 1165 splx(s); 1166 if (notify) 1167 KNOTE(&aiocbe->klist, 0); 1168 return (0); 1169 1170 doerror: 1171 ki->kaio_buffer_count--; 1172 if (lj) 1173 lj->lioj_buffer_count--; 1174 aiocbe->bp = NULL; 1175 relpbuf(bp, NULL); 1176 return (error); 1177 } 1178 1179 /* 1180 * This waits/tests physio completion. 1181 */ 1182 static int 1183 aio_fphysio(struct aiocblist *iocb) 1184 { 1185 int s; 1186 struct buf *bp; 1187 int error; 1188 1189 bp = iocb->bp; 1190 1191 s = splbio(); 1192 while ((bp->b_flags & B_DONE) == 0) { 1193 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) { 1194 if ((bp->b_flags & B_DONE) == 0) { 1195 splx(s); 1196 return (EINPROGRESS); 1197 } else 1198 break; 1199 } 1200 } 1201 splx(s); 1202 1203 /* Release mapping into kernel space. */ 1204 vunmapbuf(bp); 1205 iocb->bp = 0; 1206 1207 error = 0; 1208 1209 /* Check for an error. */ 1210 if (bp->b_ioflags & BIO_ERROR) 1211 error = bp->b_error; 1212 1213 relpbuf(bp, NULL); 1214 return (error); 1215 } 1216 1217 /* 1218 * Wake up aio requests that may be serviceable now. 1219 */ 1220 static void 1221 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1222 { 1223 struct aiocblist *cb,*cbn; 1224 struct proc *p; 1225 struct kaioinfo *ki = NULL; 1226 int opcode, wakecount = 0; 1227 struct aiothreadlist *aiop; 1228 1229 if (sb == &so->so_snd) { 1230 opcode = LIO_WRITE; 1231 so->so_snd.sb_flags &= ~SB_AIO; 1232 } else { 1233 opcode = LIO_READ; 1234 so->so_rcv.sb_flags &= ~SB_AIO; 1235 } 1236 1237 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) { 1238 cbn = TAILQ_NEXT(cb, list); 1239 if (opcode == cb->uaiocb.aio_lio_opcode) { 1240 p = cb->userproc; 1241 ki = p->p_aioinfo; 1242 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1243 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist); 1244 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1245 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist); 1246 wakecount++; 1247 if (cb->jobstate != JOBST_JOBQGLOBAL) 1248 panic("invalid queue value"); 1249 } 1250 } 1251 1252 while (wakecount--) { 1253 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) { 1254 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1255 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1256 aiop->aiothreadflags &= ~AIOP_FREE; 1257 wakeup(aiop->aiothread); 1258 } 1259 } 1260 } 1261 1262 /* 1263 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1264 * technique is done in this code. 1265 */ 1266 static int 1267 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type) 1268 { 1269 struct proc *p = td->td_proc; 1270 struct filedesc *fdp; 1271 struct file *fp; 1272 unsigned int fd; 1273 struct socket *so; 1274 int s; 1275 int error; 1276 int opcode, user_opcode; 1277 struct aiocblist *aiocbe; 1278 struct aiothreadlist *aiop; 1279 struct kaioinfo *ki; 1280 struct kevent kev; 1281 struct kqueue *kq; 1282 struct file *kq_fp; 1283 1284 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK); 1285 aiocbe->inputcharge = 0; 1286 aiocbe->outputcharge = 0; 1287 callout_handle_init(&aiocbe->timeouthandle); 1288 SLIST_INIT(&aiocbe->klist); 1289 1290 suword(&job->_aiocb_private.status, -1); 1291 suword(&job->_aiocb_private.error, 0); 1292 suword(&job->_aiocb_private.kernelinfo, -1); 1293 1294 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb)); 1295 if (error) { 1296 suword(&job->_aiocb_private.error, error); 1297 uma_zfree(aiocb_zone, aiocbe); 1298 return (error); 1299 } 1300 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL && 1301 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1302 uma_zfree(aiocb_zone, aiocbe); 1303 return (EINVAL); 1304 } 1305 1306 /* Save userspace address of the job info. */ 1307 aiocbe->uuaiocb = job; 1308 1309 /* Get the opcode. */ 1310 user_opcode = aiocbe->uaiocb.aio_lio_opcode; 1311 if (type != LIO_NOP) 1312 aiocbe->uaiocb.aio_lio_opcode = type; 1313 opcode = aiocbe->uaiocb.aio_lio_opcode; 1314 1315 /* Get the fd info for process. */ 1316 fdp = p->p_fd; 1317 1318 /* 1319 * Range check file descriptor. 1320 */ 1321 FILEDESC_LOCK(fdp); 1322 fd = aiocbe->uaiocb.aio_fildes; 1323 if (fd >= fdp->fd_nfiles) { 1324 FILEDESC_UNLOCK(fdp); 1325 uma_zfree(aiocb_zone, aiocbe); 1326 if (type == 0) 1327 suword(&job->_aiocb_private.error, EBADF); 1328 return (EBADF); 1329 } 1330 1331 fp = aiocbe->fd_file = fdp->fd_ofiles[fd]; 1332 if ((fp == NULL) || 1333 ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) == 0)) || 1334 ((opcode == LIO_READ) && ((fp->f_flag & FREAD) == 0))) { 1335 FILEDESC_UNLOCK(fdp); 1336 uma_zfree(aiocb_zone, aiocbe); 1337 if (type == 0) 1338 suword(&job->_aiocb_private.error, EBADF); 1339 return (EBADF); 1340 } 1341 fhold(fp); 1342 FILEDESC_UNLOCK(fdp); 1343 1344 if (aiocbe->uaiocb.aio_offset == -1LL) { 1345 error = EINVAL; 1346 goto aqueue_fail; 1347 } 1348 error = suword(&job->_aiocb_private.kernelinfo, jobrefid); 1349 if (error) { 1350 error = EINVAL; 1351 goto aqueue_fail; 1352 } 1353 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid; 1354 if (jobrefid == LONG_MAX) 1355 jobrefid = 1; 1356 else 1357 jobrefid++; 1358 1359 if (opcode == LIO_NOP) { 1360 fdrop(fp, td); 1361 uma_zfree(aiocb_zone, aiocbe); 1362 if (type == 0) { 1363 suword(&job->_aiocb_private.error, 0); 1364 suword(&job->_aiocb_private.status, 0); 1365 suword(&job->_aiocb_private.kernelinfo, 0); 1366 } 1367 return (0); 1368 } 1369 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) { 1370 if (type == 0) 1371 suword(&job->_aiocb_private.status, 0); 1372 error = EINVAL; 1373 goto aqueue_fail; 1374 } 1375 1376 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) { 1377 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1378 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr; 1379 } 1380 else { 1381 /* 1382 * This method for requesting kevent-based notification won't 1383 * work on the alpha, since we're passing in a pointer 1384 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT- 1385 * based method instead. 1386 */ 1387 if (user_opcode == LIO_NOP || user_opcode == LIO_READ || 1388 user_opcode == LIO_WRITE) 1389 goto no_kqueue; 1390 1391 error = copyin((struct kevent *)(uintptr_t)user_opcode, 1392 &kev, sizeof(kev)); 1393 if (error) 1394 goto aqueue_fail; 1395 } 1396 if ((u_int)kev.ident >= fdp->fd_nfiles || 1397 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL || 1398 (kq_fp->f_type != DTYPE_KQUEUE)) { 1399 error = EBADF; 1400 goto aqueue_fail; 1401 } 1402 kq = kq_fp->f_data; 1403 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1404 kev.filter = EVFILT_AIO; 1405 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1406 kev.data = (intptr_t)aiocbe; 1407 error = kqueue_register(kq, &kev, td); 1408 aqueue_fail: 1409 if (error) { 1410 fdrop(fp, td); 1411 uma_zfree(aiocb_zone, aiocbe); 1412 if (type == 0) 1413 suword(&job->_aiocb_private.error, error); 1414 goto done; 1415 } 1416 no_kqueue: 1417 1418 suword(&job->_aiocb_private.error, EINPROGRESS); 1419 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1420 aiocbe->userproc = p; 1421 aiocbe->cred = crhold(td->td_ucred); 1422 aiocbe->jobflags = 0; 1423 aiocbe->lio = lj; 1424 ki = p->p_aioinfo; 1425 1426 if (fp->f_type == DTYPE_SOCKET) { 1427 /* 1428 * Alternate queueing for socket ops: Reach down into the 1429 * descriptor to get the socket data. Then check to see if the 1430 * socket is ready to be read or written (based on the requested 1431 * operation). 1432 * 1433 * If it is not ready for io, then queue the aiocbe on the 1434 * socket, and set the flags so we get a call when sbnotify() 1435 * happens. 1436 */ 1437 so = fp->f_data; 1438 s = splnet(); 1439 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1440 LIO_WRITE) && (!sowriteable(so)))) { 1441 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1442 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist); 1443 if (opcode == LIO_READ) 1444 so->so_rcv.sb_flags |= SB_AIO; 1445 else 1446 so->so_snd.sb_flags |= SB_AIO; 1447 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */ 1448 ki->kaio_queue_count++; 1449 num_queue_count++; 1450 splx(s); 1451 error = 0; 1452 goto done; 1453 } 1454 splx(s); 1455 } 1456 1457 if ((error = aio_qphysio(p, aiocbe)) == 0) 1458 goto done; 1459 if (error > 0) { 1460 suword(&job->_aiocb_private.status, 0); 1461 aiocbe->uaiocb._aiocb_private.error = error; 1462 suword(&job->_aiocb_private.error, error); 1463 goto done; 1464 } 1465 1466 /* No buffer for daemon I/O. */ 1467 aiocbe->bp = NULL; 1468 1469 ki->kaio_queue_count++; 1470 if (lj) 1471 lj->lioj_queue_count++; 1472 s = splnet(); 1473 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1474 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1475 splx(s); 1476 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1477 1478 num_queue_count++; 1479 error = 0; 1480 1481 /* 1482 * If we don't have a free AIO process, and we are below our quota, then 1483 * start one. Otherwise, depend on the subsequent I/O completions to 1484 * pick-up this job. If we don't sucessfully create the new process 1485 * (thread) due to resource issues, we return an error for now (EAGAIN), 1486 * which is likely not the correct thing to do. 1487 */ 1488 s = splnet(); 1489 retryproc: 1490 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1491 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1492 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list); 1493 aiop->aiothreadflags &= ~AIOP_FREE; 1494 wakeup(aiop->aiothread); 1495 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1496 ((ki->kaio_active_count + num_aio_resv_start) < 1497 ki->kaio_maxactive_count)) { 1498 num_aio_resv_start++; 1499 if ((error = aio_newproc()) == 0) { 1500 num_aio_resv_start--; 1501 goto retryproc; 1502 } 1503 num_aio_resv_start--; 1504 } 1505 splx(s); 1506 done: 1507 return (error); 1508 } 1509 1510 /* 1511 * This routine queues an AIO request, checking for quotas. 1512 */ 1513 static int 1514 aio_aqueue(struct thread *td, struct aiocb *job, int type) 1515 { 1516 struct proc *p = td->td_proc; 1517 struct kaioinfo *ki; 1518 1519 if (p->p_aioinfo == NULL) 1520 aio_init_aioinfo(p); 1521 1522 if (num_queue_count >= max_queue_count) 1523 return (EAGAIN); 1524 1525 ki = p->p_aioinfo; 1526 if (ki->kaio_queue_count >= ki->kaio_qallowed_count) 1527 return (EAGAIN); 1528 1529 return _aio_aqueue(td, job, NULL, type); 1530 } 1531 1532 /* 1533 * Support the aio_return system call, as a side-effect, kernel resources are 1534 * released. 1535 */ 1536 int 1537 aio_return(struct thread *td, struct aio_return_args *uap) 1538 { 1539 struct proc *p = td->td_proc; 1540 int s; 1541 long jobref; 1542 struct aiocblist *cb, *ncb; 1543 struct aiocb *ujob; 1544 struct kaioinfo *ki; 1545 1546 ujob = uap->aiocbp; 1547 jobref = fuword(&ujob->_aiocb_private.kernelinfo); 1548 if (jobref == -1 || jobref == 0) 1549 return (EINVAL); 1550 1551 ki = p->p_aioinfo; 1552 if (ki == NULL) 1553 return (EINVAL); 1554 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1555 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) == 1556 jobref) { 1557 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1558 p->p_stats->p_ru.ru_oublock += 1559 cb->outputcharge; 1560 cb->outputcharge = 0; 1561 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1562 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 1563 cb->inputcharge = 0; 1564 } 1565 goto done; 1566 } 1567 } 1568 s = splbio(); 1569 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) { 1570 ncb = TAILQ_NEXT(cb, plist); 1571 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) 1572 == jobref) { 1573 break; 1574 } 1575 } 1576 splx(s); 1577 done: 1578 if (cb != NULL) { 1579 if (ujob == cb->uuaiocb) { 1580 td->td_retval[0] = 1581 cb->uaiocb._aiocb_private.status; 1582 } else 1583 td->td_retval[0] = EFAULT; 1584 aio_free_entry(cb); 1585 return (0); 1586 } 1587 return (EINVAL); 1588 } 1589 1590 /* 1591 * Allow a process to wakeup when any of the I/O requests are completed. 1592 */ 1593 int 1594 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1595 { 1596 struct proc *p = td->td_proc; 1597 struct timeval atv; 1598 struct timespec ts; 1599 struct aiocb *const *cbptr, *cbp; 1600 struct kaioinfo *ki; 1601 struct aiocblist *cb; 1602 int i; 1603 int njoblist; 1604 int error, s, timo; 1605 long *ijoblist; 1606 struct aiocb **ujoblist; 1607 1608 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1609 return (EINVAL); 1610 1611 timo = 0; 1612 if (uap->timeout) { 1613 /* Get timespec struct. */ 1614 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1615 return (error); 1616 1617 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1618 return (EINVAL); 1619 1620 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1621 if (itimerfix(&atv)) 1622 return (EINVAL); 1623 timo = tvtohz(&atv); 1624 } 1625 1626 ki = p->p_aioinfo; 1627 if (ki == NULL) 1628 return (EAGAIN); 1629 1630 njoblist = 0; 1631 ijoblist = uma_zalloc(aiol_zone, M_WAITOK); 1632 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1633 cbptr = uap->aiocbp; 1634 1635 for (i = 0; i < uap->nent; i++) { 1636 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1637 if (cbp == 0) 1638 continue; 1639 ujoblist[njoblist] = cbp; 1640 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo); 1641 njoblist++; 1642 } 1643 1644 if (njoblist == 0) { 1645 uma_zfree(aiol_zone, ijoblist); 1646 uma_zfree(aiol_zone, ujoblist); 1647 return (0); 1648 } 1649 1650 error = 0; 1651 for (;;) { 1652 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1653 for (i = 0; i < njoblist; i++) { 1654 if (((intptr_t) 1655 cb->uaiocb._aiocb_private.kernelinfo) == 1656 ijoblist[i]) { 1657 if (ujoblist[i] != cb->uuaiocb) 1658 error = EINVAL; 1659 uma_zfree(aiol_zone, ijoblist); 1660 uma_zfree(aiol_zone, ujoblist); 1661 return (error); 1662 } 1663 } 1664 } 1665 1666 s = splbio(); 1667 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = 1668 TAILQ_NEXT(cb, plist)) { 1669 for (i = 0; i < njoblist; i++) { 1670 if (((intptr_t) 1671 cb->uaiocb._aiocb_private.kernelinfo) == 1672 ijoblist[i]) { 1673 splx(s); 1674 if (ujoblist[i] != cb->uuaiocb) 1675 error = EINVAL; 1676 uma_zfree(aiol_zone, ijoblist); 1677 uma_zfree(aiol_zone, ujoblist); 1678 return (error); 1679 } 1680 } 1681 } 1682 1683 ki->kaio_flags |= KAIO_WAKEUP; 1684 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo); 1685 splx(s); 1686 1687 if (error == ERESTART || error == EINTR) { 1688 uma_zfree(aiol_zone, ijoblist); 1689 uma_zfree(aiol_zone, ujoblist); 1690 return (EINTR); 1691 } else if (error == EWOULDBLOCK) { 1692 uma_zfree(aiol_zone, ijoblist); 1693 uma_zfree(aiol_zone, ujoblist); 1694 return (EAGAIN); 1695 } 1696 } 1697 1698 /* NOTREACHED */ 1699 return (EINVAL); 1700 } 1701 1702 /* 1703 * aio_cancel cancels any non-physio aio operations not currently in 1704 * progress. 1705 */ 1706 int 1707 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1708 { 1709 struct proc *p = td->td_proc; 1710 struct kaioinfo *ki; 1711 struct aiocblist *cbe, *cbn; 1712 struct file *fp; 1713 struct filedesc *fdp; 1714 struct socket *so; 1715 struct proc *po; 1716 int s,error; 1717 int cancelled=0; 1718 int notcancelled=0; 1719 struct vnode *vp; 1720 1721 fdp = p->p_fd; 1722 if ((u_int)uap->fd >= fdp->fd_nfiles || 1723 (fp = fdp->fd_ofiles[uap->fd]) == NULL) 1724 return (EBADF); 1725 1726 if (fp->f_type == DTYPE_VNODE) { 1727 vp = fp->f_vnode; 1728 1729 if (vn_isdisk(vp,&error)) { 1730 td->td_retval[0] = AIO_NOTCANCELED; 1731 return (0); 1732 } 1733 } else if (fp->f_type == DTYPE_SOCKET) { 1734 so = fp->f_data; 1735 1736 s = splnet(); 1737 1738 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) { 1739 cbn = TAILQ_NEXT(cbe, list); 1740 if ((uap->aiocbp == NULL) || 1741 (uap->aiocbp == cbe->uuaiocb) ) { 1742 po = cbe->userproc; 1743 ki = po->p_aioinfo; 1744 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1745 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist); 1746 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist); 1747 if (ki->kaio_flags & KAIO_WAKEUP) { 1748 wakeup(po); 1749 } 1750 cbe->jobstate = JOBST_JOBFINISHED; 1751 cbe->uaiocb._aiocb_private.status=-1; 1752 cbe->uaiocb._aiocb_private.error=ECANCELED; 1753 cancelled++; 1754 /* XXX cancelled, knote? */ 1755 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1756 SIGEV_SIGNAL) { 1757 PROC_LOCK(cbe->userproc); 1758 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1759 PROC_UNLOCK(cbe->userproc); 1760 } 1761 if (uap->aiocbp) 1762 break; 1763 } 1764 } 1765 splx(s); 1766 1767 if ((cancelled) && (uap->aiocbp)) { 1768 td->td_retval[0] = AIO_CANCELED; 1769 return (0); 1770 } 1771 } 1772 ki=p->p_aioinfo; 1773 if (ki == NULL) 1774 goto done; 1775 s = splnet(); 1776 1777 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) { 1778 cbn = TAILQ_NEXT(cbe, plist); 1779 1780 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1781 ((uap->aiocbp == NULL ) || 1782 (uap->aiocbp == cbe->uuaiocb))) { 1783 1784 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1785 TAILQ_REMOVE(&aio_jobs, cbe, list); 1786 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1787 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, 1788 plist); 1789 cancelled++; 1790 ki->kaio_queue_finished_count++; 1791 cbe->jobstate = JOBST_JOBFINISHED; 1792 cbe->uaiocb._aiocb_private.status = -1; 1793 cbe->uaiocb._aiocb_private.error = ECANCELED; 1794 /* XXX cancelled, knote? */ 1795 if (cbe->uaiocb.aio_sigevent.sigev_notify == 1796 SIGEV_SIGNAL) { 1797 PROC_LOCK(cbe->userproc); 1798 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo); 1799 PROC_UNLOCK(cbe->userproc); 1800 } 1801 } else { 1802 notcancelled++; 1803 } 1804 } 1805 } 1806 splx(s); 1807 done: 1808 if (notcancelled) { 1809 td->td_retval[0] = AIO_NOTCANCELED; 1810 return (0); 1811 } 1812 if (cancelled) { 1813 td->td_retval[0] = AIO_CANCELED; 1814 return (0); 1815 } 1816 td->td_retval[0] = AIO_ALLDONE; 1817 1818 return (0); 1819 } 1820 1821 /* 1822 * aio_error is implemented in the kernel level for compatibility purposes only. 1823 * For a user mode async implementation, it would be best to do it in a userland 1824 * subroutine. 1825 */ 1826 int 1827 aio_error(struct thread *td, struct aio_error_args *uap) 1828 { 1829 struct proc *p = td->td_proc; 1830 int s; 1831 struct aiocblist *cb; 1832 struct kaioinfo *ki; 1833 long jobref; 1834 1835 ki = p->p_aioinfo; 1836 if (ki == NULL) 1837 return (EINVAL); 1838 1839 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo); 1840 if ((jobref == -1) || (jobref == 0)) 1841 return (EINVAL); 1842 1843 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 1844 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1845 jobref) { 1846 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1847 return (0); 1848 } 1849 } 1850 1851 s = splnet(); 1852 1853 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb, 1854 plist)) { 1855 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1856 jobref) { 1857 td->td_retval[0] = EINPROGRESS; 1858 splx(s); 1859 return (0); 1860 } 1861 } 1862 1863 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb, 1864 plist)) { 1865 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1866 jobref) { 1867 td->td_retval[0] = EINPROGRESS; 1868 splx(s); 1869 return (0); 1870 } 1871 } 1872 splx(s); 1873 1874 s = splbio(); 1875 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb, 1876 plist)) { 1877 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1878 jobref) { 1879 td->td_retval[0] = cb->uaiocb._aiocb_private.error; 1880 splx(s); 1881 return (0); 1882 } 1883 } 1884 1885 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb, 1886 plist)) { 1887 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) == 1888 jobref) { 1889 td->td_retval[0] = EINPROGRESS; 1890 splx(s); 1891 return (0); 1892 } 1893 } 1894 splx(s); 1895 1896 #if (0) 1897 /* 1898 * Hack for lio. 1899 */ 1900 status = fuword(&uap->aiocbp->_aiocb_private.status); 1901 if (status == -1) 1902 return fuword(&uap->aiocbp->_aiocb_private.error); 1903 #endif 1904 return (EINVAL); 1905 } 1906 1907 /* syscall - asynchronous read from a file (REALTIME) */ 1908 int 1909 aio_read(struct thread *td, struct aio_read_args *uap) 1910 { 1911 1912 return aio_aqueue(td, uap->aiocbp, LIO_READ); 1913 } 1914 1915 /* syscall - asynchronous write to a file (REALTIME) */ 1916 int 1917 aio_write(struct thread *td, struct aio_write_args *uap) 1918 { 1919 1920 return aio_aqueue(td, uap->aiocbp, LIO_WRITE); 1921 } 1922 1923 /* syscall - list directed I/O (REALTIME) */ 1924 int 1925 lio_listio(struct thread *td, struct lio_listio_args *uap) 1926 { 1927 struct proc *p = td->td_proc; 1928 int nent, nentqueued; 1929 struct aiocb *iocb, * const *cbptr; 1930 struct aiocblist *cb; 1931 struct kaioinfo *ki; 1932 struct aio_liojob *lj; 1933 int error, runningcode; 1934 int nerror; 1935 int i; 1936 int s; 1937 1938 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1939 return (EINVAL); 1940 1941 nent = uap->nent; 1942 if (nent < 0 || nent > AIO_LISTIO_MAX) 1943 return (EINVAL); 1944 1945 if (p->p_aioinfo == NULL) 1946 aio_init_aioinfo(p); 1947 1948 if ((nent + num_queue_count) > max_queue_count) 1949 return (EAGAIN); 1950 1951 ki = p->p_aioinfo; 1952 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count) 1953 return (EAGAIN); 1954 1955 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1956 if (!lj) 1957 return (EAGAIN); 1958 1959 lj->lioj_flags = 0; 1960 lj->lioj_buffer_count = 0; 1961 lj->lioj_buffer_finished_count = 0; 1962 lj->lioj_queue_count = 0; 1963 lj->lioj_queue_finished_count = 0; 1964 lj->lioj_ki = ki; 1965 1966 /* 1967 * Setup signal. 1968 */ 1969 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1970 error = copyin(uap->sig, &lj->lioj_signal, 1971 sizeof(lj->lioj_signal)); 1972 if (error) { 1973 uma_zfree(aiolio_zone, lj); 1974 return (error); 1975 } 1976 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 1977 uma_zfree(aiolio_zone, lj); 1978 return (EINVAL); 1979 } 1980 lj->lioj_flags |= LIOJ_SIGNAL; 1981 } 1982 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 1983 /* 1984 * Get pointers to the list of I/O requests. 1985 */ 1986 nerror = 0; 1987 nentqueued = 0; 1988 cbptr = uap->acb_list; 1989 for (i = 0; i < uap->nent; i++) { 1990 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1991 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 1992 error = _aio_aqueue(td, iocb, lj, 0); 1993 if (error == 0) 1994 nentqueued++; 1995 else 1996 nerror++; 1997 } 1998 } 1999 2000 /* 2001 * If we haven't queued any, then just return error. 2002 */ 2003 if (nentqueued == 0) 2004 return (0); 2005 2006 /* 2007 * Calculate the appropriate error return. 2008 */ 2009 runningcode = 0; 2010 if (nerror) 2011 runningcode = EIO; 2012 2013 if (uap->mode == LIO_WAIT) { 2014 int command, found, jobref; 2015 2016 for (;;) { 2017 found = 0; 2018 for (i = 0; i < uap->nent; i++) { 2019 /* 2020 * Fetch address of the control buf pointer in 2021 * user space. 2022 */ 2023 iocb = (struct aiocb *) 2024 (intptr_t)fuword(&cbptr[i]); 2025 if (((intptr_t)iocb == -1) || ((intptr_t)iocb 2026 == 0)) 2027 continue; 2028 2029 /* 2030 * Fetch the associated command from user space. 2031 */ 2032 command = fuword(&iocb->aio_lio_opcode); 2033 if (command == LIO_NOP) { 2034 found++; 2035 continue; 2036 } 2037 2038 jobref = 2039 fuword(&iocb->_aiocb_private.kernelinfo); 2040 2041 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) { 2042 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2043 == jobref) { 2044 if (cb->uaiocb.aio_lio_opcode 2045 == LIO_WRITE) { 2046 p->p_stats->p_ru.ru_oublock 2047 += 2048 cb->outputcharge; 2049 cb->outputcharge = 0; 2050 } else if (cb->uaiocb.aio_lio_opcode 2051 == LIO_READ) { 2052 p->p_stats->p_ru.ru_inblock 2053 += cb->inputcharge; 2054 cb->inputcharge = 0; 2055 } 2056 found++; 2057 break; 2058 } 2059 } 2060 2061 s = splbio(); 2062 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) { 2063 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) 2064 == jobref) { 2065 found++; 2066 break; 2067 } 2068 } 2069 splx(s); 2070 } 2071 2072 /* 2073 * If all I/Os have been disposed of, then we can 2074 * return. 2075 */ 2076 if (found == nentqueued) 2077 return (runningcode); 2078 2079 ki->kaio_flags |= KAIO_WAKEUP; 2080 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0); 2081 2082 if (error == EINTR) 2083 return (EINTR); 2084 else if (error == EWOULDBLOCK) 2085 return (EAGAIN); 2086 } 2087 } 2088 2089 return (runningcode); 2090 } 2091 2092 /* 2093 * This is a weird hack so that we can post a signal. It is safe to do so from 2094 * a timeout routine, but *not* from an interrupt routine. 2095 */ 2096 static void 2097 process_signal(void *aioj) 2098 { 2099 struct aiocblist *aiocbe = aioj; 2100 struct aio_liojob *lj = aiocbe->lio; 2101 struct aiocb *cb = &aiocbe->uaiocb; 2102 2103 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) && 2104 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) { 2105 PROC_LOCK(lj->lioj_ki->kaio_p); 2106 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo); 2107 PROC_UNLOCK(lj->lioj_ki->kaio_p); 2108 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2109 } 2110 2111 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) { 2112 PROC_LOCK(aiocbe->userproc); 2113 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo); 2114 PROC_UNLOCK(aiocbe->userproc); 2115 } 2116 } 2117 2118 /* 2119 * Interrupt handler for physio, performs the necessary process wakeups, and 2120 * signals. 2121 */ 2122 static void 2123 aio_physwakeup(struct buf *bp) 2124 { 2125 struct aiocblist *aiocbe; 2126 struct proc *p; 2127 struct kaioinfo *ki; 2128 struct aio_liojob *lj; 2129 2130 wakeup(bp); 2131 2132 aiocbe = (struct aiocblist *)bp->b_caller1; 2133 if (aiocbe) { 2134 p = aiocbe->userproc; 2135 2136 aiocbe->jobstate = JOBST_JOBBFINISHED; 2137 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2138 aiocbe->uaiocb._aiocb_private.error = 0; 2139 aiocbe->jobflags |= AIOCBLIST_DONE; 2140 2141 if (bp->b_ioflags & BIO_ERROR) 2142 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2143 2144 lj = aiocbe->lio; 2145 if (lj) { 2146 lj->lioj_buffer_finished_count++; 2147 2148 /* 2149 * wakeup/signal if all of the interrupt jobs are done. 2150 */ 2151 if (lj->lioj_buffer_finished_count == 2152 lj->lioj_buffer_count) { 2153 /* 2154 * Post a signal if it is called for. 2155 */ 2156 if ((lj->lioj_flags & 2157 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == 2158 LIOJ_SIGNAL) { 2159 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2160 aiocbe->timeouthandle = 2161 timeout(process_signal, 2162 aiocbe, 0); 2163 } 2164 } 2165 } 2166 2167 ki = p->p_aioinfo; 2168 if (ki) { 2169 ki->kaio_buffer_finished_count++; 2170 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list); 2171 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist); 2172 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist); 2173 2174 KNOTE(&aiocbe->klist, 0); 2175 /* Do the wakeup. */ 2176 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) { 2177 ki->kaio_flags &= ~KAIO_WAKEUP; 2178 wakeup(p); 2179 } 2180 } 2181 2182 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL) 2183 aiocbe->timeouthandle = 2184 timeout(process_signal, aiocbe, 0); 2185 } 2186 } 2187 2188 /* syscall - wait for the next completion of an aio request */ 2189 int 2190 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2191 { 2192 struct proc *p = td->td_proc; 2193 struct timeval atv; 2194 struct timespec ts; 2195 struct kaioinfo *ki; 2196 struct aiocblist *cb = NULL; 2197 int error, s, timo; 2198 2199 suword(uap->aiocbp, (int)NULL); 2200 2201 timo = 0; 2202 if (uap->timeout) { 2203 /* Get timespec struct. */ 2204 error = copyin(uap->timeout, &ts, sizeof(ts)); 2205 if (error) 2206 return (error); 2207 2208 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2209 return (EINVAL); 2210 2211 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2212 if (itimerfix(&atv)) 2213 return (EINVAL); 2214 timo = tvtohz(&atv); 2215 } 2216 2217 ki = p->p_aioinfo; 2218 if (ki == NULL) 2219 return (EAGAIN); 2220 2221 for (;;) { 2222 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) { 2223 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2224 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2225 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2226 p->p_stats->p_ru.ru_oublock += 2227 cb->outputcharge; 2228 cb->outputcharge = 0; 2229 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2230 p->p_stats->p_ru.ru_inblock += cb->inputcharge; 2231 cb->inputcharge = 0; 2232 } 2233 aio_free_entry(cb); 2234 return (cb->uaiocb._aiocb_private.error); 2235 } 2236 2237 s = splbio(); 2238 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) { 2239 splx(s); 2240 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb); 2241 td->td_retval[0] = cb->uaiocb._aiocb_private.status; 2242 aio_free_entry(cb); 2243 return (cb->uaiocb._aiocb_private.error); 2244 } 2245 2246 ki->kaio_flags |= KAIO_WAKEUP; 2247 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo); 2248 splx(s); 2249 2250 if (error == ERESTART) 2251 return (EINTR); 2252 else if (error < 0) 2253 return (error); 2254 else if (error == EINTR) 2255 return (EINTR); 2256 else if (error == EWOULDBLOCK) 2257 return (EAGAIN); 2258 } 2259 } 2260 2261 /* kqueue attach function */ 2262 static int 2263 filt_aioattach(struct knote *kn) 2264 { 2265 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2266 2267 /* 2268 * The aiocbe pointer must be validated before using it, so 2269 * registration is restricted to the kernel; the user cannot 2270 * set EV_FLAG1. 2271 */ 2272 if ((kn->kn_flags & EV_FLAG1) == 0) 2273 return (EPERM); 2274 kn->kn_flags &= ~EV_FLAG1; 2275 2276 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext); 2277 2278 return (0); 2279 } 2280 2281 /* kqueue detach function */ 2282 static void 2283 filt_aiodetach(struct knote *kn) 2284 { 2285 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2286 2287 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext); 2288 } 2289 2290 /* kqueue filter function */ 2291 /*ARGSUSED*/ 2292 static int 2293 filt_aio(struct knote *kn, long hint) 2294 { 2295 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2296 2297 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2298 if (aiocbe->jobstate != JOBST_JOBFINISHED && 2299 aiocbe->jobstate != JOBST_JOBBFINISHED) 2300 return (0); 2301 kn->kn_flags |= EV_EOF; 2302 return (1); 2303 } 2304