1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/sema.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/syscall.h> 54 #include <sys/sysent.h> 55 #include <sys/sysctl.h> 56 #include <sys/syslog.h> 57 #include <sys/sx.h> 58 #include <sys/taskqueue.h> 59 #include <sys/vnode.h> 60 #include <sys/conf.h> 61 #include <sys/event.h> 62 #include <sys/mount.h> 63 #include <geom/geom.h> 64 65 #include <machine/atomic.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_page.h> 69 #include <vm/vm_extern.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_object.h> 73 #include <vm/uma.h> 74 #include <sys/aio.h> 75 76 /* 77 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 78 * overflow. (XXX will be removed soon.) 79 */ 80 static u_long jobrefid; 81 82 /* 83 * Counter for aio_fsync. 84 */ 85 static uint64_t jobseqno; 86 87 #ifndef MAX_AIO_PER_PROC 88 #define MAX_AIO_PER_PROC 32 89 #endif 90 91 #ifndef MAX_AIO_QUEUE_PER_PROC 92 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 93 #endif 94 95 #ifndef MAX_AIO_QUEUE 96 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 97 #endif 98 99 #ifndef MAX_BUF_AIO 100 #define MAX_BUF_AIO 16 101 #endif 102 103 FEATURE(aio, "Asynchronous I/O"); 104 105 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 106 107 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 108 "Async IO management"); 109 110 static int enable_aio_unsafe = 0; 111 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 112 "Permit asynchronous IO on all file types, not just known-safe types"); 113 114 static unsigned int unsafe_warningcnt = 1; 115 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 116 &unsafe_warningcnt, 0, 117 "Warnings that will be triggered upon failed IO requests on unsafe files"); 118 119 static int max_aio_procs = MAX_AIO_PROCS; 120 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 121 "Maximum number of kernel processes to use for handling async IO "); 122 123 static int num_aio_procs = 0; 124 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 125 "Number of presently active kernel processes for async IO"); 126 127 /* 128 * The code will adjust the actual number of AIO processes towards this 129 * number when it gets a chance. 130 */ 131 static int target_aio_procs = TARGET_AIO_PROCS; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 133 0, 134 "Preferred number of ready kernel processes for async IO"); 135 136 static int max_queue_count = MAX_AIO_QUEUE; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 138 "Maximum number of aio requests to queue, globally"); 139 140 static int num_queue_count = 0; 141 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 142 "Number of queued aio requests"); 143 144 static int num_buf_aio = 0; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 146 "Number of aio requests presently handled by the buf subsystem"); 147 148 /* Number of async I/O processes in the process of being started */ 149 /* XXX This should be local to aio_aqueue() */ 150 static int num_aio_resv_start = 0; 151 152 static int aiod_lifetime; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 154 "Maximum lifetime for idle aiod"); 155 156 static int max_aio_per_proc = MAX_AIO_PER_PROC; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 158 0, 159 "Maximum active aio requests per process (stored in the process)"); 160 161 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 163 &max_aio_queue_per_proc, 0, 164 "Maximum queued aio requests per process (stored in the process)"); 165 166 static int max_buf_aio = MAX_BUF_AIO; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 168 "Maximum buf aio requests per process (stored in the process)"); 169 170 #ifdef COMPAT_FREEBSD6 171 typedef struct oaiocb { 172 int aio_fildes; /* File descriptor */ 173 off_t aio_offset; /* File offset for I/O */ 174 volatile void *aio_buf; /* I/O buffer in process space */ 175 size_t aio_nbytes; /* Number of bytes for I/O */ 176 struct osigevent aio_sigevent; /* Signal to deliver */ 177 int aio_lio_opcode; /* LIO opcode */ 178 int aio_reqprio; /* Request priority -- ignored */ 179 struct __aiocb_private _aiocb_private; 180 } oaiocb_t; 181 #endif 182 183 /* 184 * Below is a key of locks used to protect each member of struct kaiocb 185 * aioliojob and kaioinfo and any backends. 186 * 187 * * - need not protected 188 * a - locked by kaioinfo lock 189 * b - locked by backend lock, the backend lock can be null in some cases, 190 * for example, BIO belongs to this type, in this case, proc lock is 191 * reused. 192 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 193 */ 194 195 /* 196 * If the routine that services an AIO request blocks while running in an 197 * AIO kernel process it can starve other I/O requests. BIO requests 198 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 199 * processes at all. Socket I/O requests use a separate pool of 200 * kprocs and also force non-blocking I/O. Other file I/O requests 201 * use the generic fo_read/fo_write operations which can block. The 202 * fsync and mlock operations can also block while executing. Ideally 203 * none of these requests would block while executing. 204 * 205 * Note that the service routines cannot toggle O_NONBLOCK in the file 206 * structure directly while handling a request due to races with 207 * userland threads. 208 */ 209 210 /* jobflags */ 211 #define KAIOCB_QUEUEING 0x01 212 #define KAIOCB_CANCELLED 0x02 213 #define KAIOCB_CANCELLING 0x04 214 #define KAIOCB_CHECKSYNC 0x08 215 #define KAIOCB_CLEARED 0x10 216 #define KAIOCB_FINISHED 0x20 217 218 /* 219 * AIO process info 220 */ 221 #define AIOP_FREE 0x1 /* proc on free queue */ 222 223 struct aioproc { 224 int aioprocflags; /* (c) AIO proc flags */ 225 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 226 struct proc *aioproc; /* (*) the AIO proc */ 227 }; 228 229 /* 230 * data-structure for lio signal management 231 */ 232 struct aioliojob { 233 int lioj_flags; /* (a) listio flags */ 234 int lioj_count; /* (a) listio flags */ 235 int lioj_finished_count; /* (a) listio flags */ 236 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 237 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 238 struct knlist klist; /* (a) list of knotes */ 239 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 240 }; 241 242 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 243 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 244 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 245 246 /* 247 * per process aio data structure 248 */ 249 struct kaioinfo { 250 struct mtx kaio_mtx; /* the lock to protect this struct */ 251 int kaio_flags; /* (a) per process kaio flags */ 252 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 253 int kaio_active_count; /* (c) number of currently used AIOs */ 254 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 255 int kaio_count; /* (a) size of AIO queue */ 256 int kaio_ballowed_count; /* (*) maximum number of buffers */ 257 int kaio_buffer_count; /* (a) number of physio buffers */ 258 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 259 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 260 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 261 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 262 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 263 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 264 struct task kaio_task; /* (*) task to kick aio processes */ 265 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 266 }; 267 268 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 269 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 270 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 271 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 272 273 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 274 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 275 276 /* 277 * Operations used to interact with userland aio control blocks. 278 * Different ABIs provide their own operations. 279 */ 280 struct aiocb_ops { 281 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 282 long (*fetch_status)(struct aiocb *ujob); 283 long (*fetch_error)(struct aiocb *ujob); 284 int (*store_status)(struct aiocb *ujob, long status); 285 int (*store_error)(struct aiocb *ujob, long error); 286 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 287 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 288 }; 289 290 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 291 static struct sema aio_newproc_sem; 292 static struct mtx aio_job_mtx; 293 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 294 static struct unrhdr *aiod_unr; 295 296 void aio_init_aioinfo(struct proc *p); 297 static int aio_onceonly(void); 298 static int aio_free_entry(struct kaiocb *job); 299 static void aio_process_rw(struct kaiocb *job); 300 static void aio_process_sync(struct kaiocb *job); 301 static void aio_process_mlock(struct kaiocb *job); 302 static void aio_schedule_fsync(void *context, int pending); 303 static int aio_newproc(int *); 304 int aio_aqueue(struct thread *td, struct aiocb *ujob, 305 struct aioliojob *lio, int type, struct aiocb_ops *ops); 306 static int aio_queue_file(struct file *fp, struct kaiocb *job); 307 static void aio_physwakeup(struct bio *bp); 308 static void aio_proc_rundown(void *arg, struct proc *p); 309 static void aio_proc_rundown_exec(void *arg, struct proc *p, 310 struct image_params *imgp); 311 static int aio_qphysio(struct proc *p, struct kaiocb *job); 312 static void aio_daemon(void *param); 313 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 314 static int aio_kick(struct proc *userp); 315 static void aio_kick_nowait(struct proc *userp); 316 static void aio_kick_helper(void *context, int pending); 317 static int filt_aioattach(struct knote *kn); 318 static void filt_aiodetach(struct knote *kn); 319 static int filt_aio(struct knote *kn, long hint); 320 static int filt_lioattach(struct knote *kn); 321 static void filt_liodetach(struct knote *kn); 322 static int filt_lio(struct knote *kn, long hint); 323 324 /* 325 * Zones for: 326 * kaio Per process async io info 327 * aiop async io process data 328 * aiocb async io jobs 329 * aiol list io job pointer - internal to aio_suspend XXX 330 * aiolio list io jobs 331 */ 332 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 333 334 /* kqueue filters for aio */ 335 static struct filterops aio_filtops = { 336 .f_isfd = 0, 337 .f_attach = filt_aioattach, 338 .f_detach = filt_aiodetach, 339 .f_event = filt_aio, 340 }; 341 static struct filterops lio_filtops = { 342 .f_isfd = 0, 343 .f_attach = filt_lioattach, 344 .f_detach = filt_liodetach, 345 .f_event = filt_lio 346 }; 347 348 static eventhandler_tag exit_tag, exec_tag; 349 350 TASKQUEUE_DEFINE_THREAD(aiod_kick); 351 352 /* 353 * Main operations function for use as a kernel module. 354 */ 355 static int 356 aio_modload(struct module *module, int cmd, void *arg) 357 { 358 int error = 0; 359 360 switch (cmd) { 361 case MOD_LOAD: 362 aio_onceonly(); 363 break; 364 case MOD_SHUTDOWN: 365 break; 366 default: 367 error = EOPNOTSUPP; 368 break; 369 } 370 return (error); 371 } 372 373 static moduledata_t aio_mod = { 374 "aio", 375 &aio_modload, 376 NULL 377 }; 378 379 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 380 MODULE_VERSION(aio, 1); 381 382 /* 383 * Startup initialization 384 */ 385 static int 386 aio_onceonly(void) 387 { 388 389 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 390 EVENTHANDLER_PRI_ANY); 391 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 392 NULL, EVENTHANDLER_PRI_ANY); 393 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 394 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 395 TAILQ_INIT(&aio_freeproc); 396 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 397 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 398 TAILQ_INIT(&aio_jobs); 399 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 400 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 401 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 402 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 403 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 404 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 405 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 406 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 407 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 408 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 409 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 410 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 411 jobrefid = 1; 412 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 413 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 414 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 415 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 416 417 return (0); 418 } 419 420 /* 421 * Init the per-process aioinfo structure. The aioinfo limits are set 422 * per-process for user limit (resource) management. 423 */ 424 void 425 aio_init_aioinfo(struct proc *p) 426 { 427 struct kaioinfo *ki; 428 429 ki = uma_zalloc(kaio_zone, M_WAITOK); 430 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 431 ki->kaio_flags = 0; 432 ki->kaio_maxactive_count = max_aio_per_proc; 433 ki->kaio_active_count = 0; 434 ki->kaio_qallowed_count = max_aio_queue_per_proc; 435 ki->kaio_count = 0; 436 ki->kaio_ballowed_count = max_buf_aio; 437 ki->kaio_buffer_count = 0; 438 TAILQ_INIT(&ki->kaio_all); 439 TAILQ_INIT(&ki->kaio_done); 440 TAILQ_INIT(&ki->kaio_jobqueue); 441 TAILQ_INIT(&ki->kaio_liojoblist); 442 TAILQ_INIT(&ki->kaio_syncqueue); 443 TAILQ_INIT(&ki->kaio_syncready); 444 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 445 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 446 PROC_LOCK(p); 447 if (p->p_aioinfo == NULL) { 448 p->p_aioinfo = ki; 449 PROC_UNLOCK(p); 450 } else { 451 PROC_UNLOCK(p); 452 mtx_destroy(&ki->kaio_mtx); 453 uma_zfree(kaio_zone, ki); 454 } 455 456 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 457 aio_newproc(NULL); 458 } 459 460 static int 461 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 462 { 463 struct thread *td; 464 int error; 465 466 error = sigev_findtd(p, sigev, &td); 467 if (error) 468 return (error); 469 if (!KSI_ONQ(ksi)) { 470 ksiginfo_set_sigev(ksi, sigev); 471 ksi->ksi_code = SI_ASYNCIO; 472 ksi->ksi_flags |= KSI_EXT | KSI_INS; 473 tdsendsignal(p, td, ksi->ksi_signo, ksi); 474 } 475 PROC_UNLOCK(p); 476 return (error); 477 } 478 479 /* 480 * Free a job entry. Wait for completion if it is currently active, but don't 481 * delay forever. If we delay, we return a flag that says that we have to 482 * restart the queue scan. 483 */ 484 static int 485 aio_free_entry(struct kaiocb *job) 486 { 487 struct kaioinfo *ki; 488 struct aioliojob *lj; 489 struct proc *p; 490 491 p = job->userproc; 492 MPASS(curproc == p); 493 ki = p->p_aioinfo; 494 MPASS(ki != NULL); 495 496 AIO_LOCK_ASSERT(ki, MA_OWNED); 497 MPASS(job->jobflags & KAIOCB_FINISHED); 498 499 atomic_subtract_int(&num_queue_count, 1); 500 501 ki->kaio_count--; 502 MPASS(ki->kaio_count >= 0); 503 504 TAILQ_REMOVE(&ki->kaio_done, job, plist); 505 TAILQ_REMOVE(&ki->kaio_all, job, allist); 506 507 lj = job->lio; 508 if (lj) { 509 lj->lioj_count--; 510 lj->lioj_finished_count--; 511 512 if (lj->lioj_count == 0) { 513 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 514 /* lio is going away, we need to destroy any knotes */ 515 knlist_delete(&lj->klist, curthread, 1); 516 PROC_LOCK(p); 517 sigqueue_take(&lj->lioj_ksi); 518 PROC_UNLOCK(p); 519 uma_zfree(aiolio_zone, lj); 520 } 521 } 522 523 /* job is going away, we need to destroy any knotes */ 524 knlist_delete(&job->klist, curthread, 1); 525 PROC_LOCK(p); 526 sigqueue_take(&job->ksi); 527 PROC_UNLOCK(p); 528 529 AIO_UNLOCK(ki); 530 531 /* 532 * The thread argument here is used to find the owning process 533 * and is also passed to fo_close() which may pass it to various 534 * places such as devsw close() routines. Because of that, we 535 * need a thread pointer from the process owning the job that is 536 * persistent and won't disappear out from under us or move to 537 * another process. 538 * 539 * Currently, all the callers of this function call it to remove 540 * a kaiocb from the current process' job list either via a 541 * syscall or due to the current process calling exit() or 542 * execve(). Thus, we know that p == curproc. We also know that 543 * curthread can't exit since we are curthread. 544 * 545 * Therefore, we use curthread as the thread to pass to 546 * knlist_delete(). This does mean that it is possible for the 547 * thread pointer at close time to differ from the thread pointer 548 * at open time, but this is already true of file descriptors in 549 * a multithreaded process. 550 */ 551 if (job->fd_file) 552 fdrop(job->fd_file, curthread); 553 crfree(job->cred); 554 uma_zfree(aiocb_zone, job); 555 AIO_LOCK(ki); 556 557 return (0); 558 } 559 560 static void 561 aio_proc_rundown_exec(void *arg, struct proc *p, 562 struct image_params *imgp __unused) 563 { 564 aio_proc_rundown(arg, p); 565 } 566 567 static int 568 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 569 { 570 aio_cancel_fn_t *func; 571 int cancelled; 572 573 AIO_LOCK_ASSERT(ki, MA_OWNED); 574 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 575 return (0); 576 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 577 job->jobflags |= KAIOCB_CANCELLED; 578 579 func = job->cancel_fn; 580 581 /* 582 * If there is no cancel routine, just leave the job marked as 583 * cancelled. The job should be in active use by a caller who 584 * should complete it normally or when it fails to install a 585 * cancel routine. 586 */ 587 if (func == NULL) 588 return (0); 589 590 /* 591 * Set the CANCELLING flag so that aio_complete() will defer 592 * completions of this job. This prevents the job from being 593 * freed out from under the cancel callback. After the 594 * callback any deferred completion (whether from the callback 595 * or any other source) will be completed. 596 */ 597 job->jobflags |= KAIOCB_CANCELLING; 598 AIO_UNLOCK(ki); 599 func(job); 600 AIO_LOCK(ki); 601 job->jobflags &= ~KAIOCB_CANCELLING; 602 if (job->jobflags & KAIOCB_FINISHED) { 603 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 604 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 605 aio_bio_done_notify(p, job); 606 } else { 607 /* 608 * The cancel callback might have scheduled an 609 * operation to cancel this request, but it is 610 * only counted as cancelled if the request is 611 * cancelled when the callback returns. 612 */ 613 cancelled = 0; 614 } 615 return (cancelled); 616 } 617 618 /* 619 * Rundown the jobs for a given process. 620 */ 621 static void 622 aio_proc_rundown(void *arg, struct proc *p) 623 { 624 struct kaioinfo *ki; 625 struct aioliojob *lj; 626 struct kaiocb *job, *jobn; 627 628 KASSERT(curthread->td_proc == p, 629 ("%s: called on non-curproc", __func__)); 630 ki = p->p_aioinfo; 631 if (ki == NULL) 632 return; 633 634 AIO_LOCK(ki); 635 ki->kaio_flags |= KAIO_RUNDOWN; 636 637 restart: 638 639 /* 640 * Try to cancel all pending requests. This code simulates 641 * aio_cancel on all pending I/O requests. 642 */ 643 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 644 aio_cancel_job(p, ki, job); 645 } 646 647 /* Wait for all running I/O to be finished */ 648 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 649 ki->kaio_flags |= KAIO_WAKEUP; 650 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 651 goto restart; 652 } 653 654 /* Free all completed I/O requests. */ 655 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 656 aio_free_entry(job); 657 658 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 659 if (lj->lioj_count == 0) { 660 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 661 knlist_delete(&lj->klist, curthread, 1); 662 PROC_LOCK(p); 663 sigqueue_take(&lj->lioj_ksi); 664 PROC_UNLOCK(p); 665 uma_zfree(aiolio_zone, lj); 666 } else { 667 panic("LIO job not cleaned up: C:%d, FC:%d\n", 668 lj->lioj_count, lj->lioj_finished_count); 669 } 670 } 671 AIO_UNLOCK(ki); 672 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 673 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 674 mtx_destroy(&ki->kaio_mtx); 675 uma_zfree(kaio_zone, ki); 676 p->p_aioinfo = NULL; 677 } 678 679 /* 680 * Select a job to run (called by an AIO daemon). 681 */ 682 static struct kaiocb * 683 aio_selectjob(struct aioproc *aiop) 684 { 685 struct kaiocb *job; 686 struct kaioinfo *ki; 687 struct proc *userp; 688 689 mtx_assert(&aio_job_mtx, MA_OWNED); 690 restart: 691 TAILQ_FOREACH(job, &aio_jobs, list) { 692 userp = job->userproc; 693 ki = userp->p_aioinfo; 694 695 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 696 TAILQ_REMOVE(&aio_jobs, job, list); 697 if (!aio_clear_cancel_function(job)) 698 goto restart; 699 700 /* Account for currently active jobs. */ 701 ki->kaio_active_count++; 702 break; 703 } 704 } 705 return (job); 706 } 707 708 /* 709 * Move all data to a permanent storage device. This code 710 * simulates the fsync syscall. 711 */ 712 static int 713 aio_fsync_vnode(struct thread *td, struct vnode *vp) 714 { 715 struct mount *mp; 716 int error; 717 718 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 719 goto drop; 720 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 721 if (vp->v_object != NULL) { 722 VM_OBJECT_WLOCK(vp->v_object); 723 vm_object_page_clean(vp->v_object, 0, 0, 0); 724 VM_OBJECT_WUNLOCK(vp->v_object); 725 } 726 error = VOP_FSYNC(vp, MNT_WAIT, td); 727 728 VOP_UNLOCK(vp, 0); 729 vn_finished_write(mp); 730 drop: 731 return (error); 732 } 733 734 /* 735 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 736 * does the I/O request for the non-physio version of the operations. The 737 * normal vn operations are used, and this code should work in all instances 738 * for every type of file, including pipes, sockets, fifos, and regular files. 739 * 740 * XXX I don't think it works well for socket, pipe, and fifo. 741 */ 742 static void 743 aio_process_rw(struct kaiocb *job) 744 { 745 struct ucred *td_savedcred; 746 struct thread *td; 747 struct aiocb *cb; 748 struct file *fp; 749 struct uio auio; 750 struct iovec aiov; 751 ssize_t cnt; 752 long msgsnd_st, msgsnd_end; 753 long msgrcv_st, msgrcv_end; 754 long oublock_st, oublock_end; 755 long inblock_st, inblock_end; 756 int error; 757 758 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 759 job->uaiocb.aio_lio_opcode == LIO_WRITE, 760 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 761 762 aio_switch_vmspace(job); 763 td = curthread; 764 td_savedcred = td->td_ucred; 765 td->td_ucred = job->cred; 766 cb = &job->uaiocb; 767 fp = job->fd_file; 768 769 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 770 aiov.iov_len = cb->aio_nbytes; 771 772 auio.uio_iov = &aiov; 773 auio.uio_iovcnt = 1; 774 auio.uio_offset = cb->aio_offset; 775 auio.uio_resid = cb->aio_nbytes; 776 cnt = cb->aio_nbytes; 777 auio.uio_segflg = UIO_USERSPACE; 778 auio.uio_td = td; 779 780 msgrcv_st = td->td_ru.ru_msgrcv; 781 msgsnd_st = td->td_ru.ru_msgsnd; 782 inblock_st = td->td_ru.ru_inblock; 783 oublock_st = td->td_ru.ru_oublock; 784 785 /* 786 * aio_aqueue() acquires a reference to the file that is 787 * released in aio_free_entry(). 788 */ 789 if (cb->aio_lio_opcode == LIO_READ) { 790 auio.uio_rw = UIO_READ; 791 if (auio.uio_resid == 0) 792 error = 0; 793 else 794 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 795 } else { 796 if (fp->f_type == DTYPE_VNODE) 797 bwillwrite(); 798 auio.uio_rw = UIO_WRITE; 799 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 800 } 801 msgrcv_end = td->td_ru.ru_msgrcv; 802 msgsnd_end = td->td_ru.ru_msgsnd; 803 inblock_end = td->td_ru.ru_inblock; 804 oublock_end = td->td_ru.ru_oublock; 805 806 job->msgrcv = msgrcv_end - msgrcv_st; 807 job->msgsnd = msgsnd_end - msgsnd_st; 808 job->inblock = inblock_end - inblock_st; 809 job->outblock = oublock_end - oublock_st; 810 811 if ((error) && (auio.uio_resid != cnt)) { 812 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 813 error = 0; 814 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 815 PROC_LOCK(job->userproc); 816 kern_psignal(job->userproc, SIGPIPE); 817 PROC_UNLOCK(job->userproc); 818 } 819 } 820 821 cnt -= auio.uio_resid; 822 td->td_ucred = td_savedcred; 823 if (error) 824 aio_complete(job, -1, error); 825 else 826 aio_complete(job, cnt, 0); 827 } 828 829 static void 830 aio_process_sync(struct kaiocb *job) 831 { 832 struct thread *td = curthread; 833 struct ucred *td_savedcred = td->td_ucred; 834 struct file *fp = job->fd_file; 835 int error = 0; 836 837 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 838 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 839 840 td->td_ucred = job->cred; 841 if (fp->f_vnode != NULL) 842 error = aio_fsync_vnode(td, fp->f_vnode); 843 td->td_ucred = td_savedcred; 844 if (error) 845 aio_complete(job, -1, error); 846 else 847 aio_complete(job, 0, 0); 848 } 849 850 static void 851 aio_process_mlock(struct kaiocb *job) 852 { 853 struct aiocb *cb = &job->uaiocb; 854 int error; 855 856 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 857 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 858 859 aio_switch_vmspace(job); 860 error = vm_mlock(job->userproc, job->cred, 861 __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes); 862 if (error) 863 aio_complete(job, -1, error); 864 else 865 aio_complete(job, 0, 0); 866 } 867 868 static void 869 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 870 { 871 struct aioliojob *lj; 872 struct kaioinfo *ki; 873 struct kaiocb *sjob, *sjobn; 874 int lj_done; 875 bool schedule_fsync; 876 877 ki = userp->p_aioinfo; 878 AIO_LOCK_ASSERT(ki, MA_OWNED); 879 lj = job->lio; 880 lj_done = 0; 881 if (lj) { 882 lj->lioj_finished_count++; 883 if (lj->lioj_count == lj->lioj_finished_count) 884 lj_done = 1; 885 } 886 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 887 MPASS(job->jobflags & KAIOCB_FINISHED); 888 889 if (ki->kaio_flags & KAIO_RUNDOWN) 890 goto notification_done; 891 892 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 893 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 894 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 895 896 KNOTE_LOCKED(&job->klist, 1); 897 898 if (lj_done) { 899 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 900 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 901 KNOTE_LOCKED(&lj->klist, 1); 902 } 903 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 904 == LIOJ_SIGNAL 905 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 906 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 907 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 908 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 909 } 910 } 911 912 notification_done: 913 if (job->jobflags & KAIOCB_CHECKSYNC) { 914 schedule_fsync = false; 915 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 916 if (job->fd_file == sjob->fd_file && 917 job->seqno < sjob->seqno) { 918 if (--sjob->pending == 0) { 919 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, 920 list); 921 if (!aio_clear_cancel_function(sjob)) 922 continue; 923 TAILQ_INSERT_TAIL(&ki->kaio_syncready, 924 sjob, list); 925 schedule_fsync = true; 926 } 927 } 928 } 929 if (schedule_fsync) 930 taskqueue_enqueue(taskqueue_aiod_kick, 931 &ki->kaio_sync_task); 932 } 933 if (ki->kaio_flags & KAIO_WAKEUP) { 934 ki->kaio_flags &= ~KAIO_WAKEUP; 935 wakeup(&userp->p_aioinfo); 936 } 937 } 938 939 static void 940 aio_schedule_fsync(void *context, int pending) 941 { 942 struct kaioinfo *ki; 943 struct kaiocb *job; 944 945 ki = context; 946 AIO_LOCK(ki); 947 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 948 job = TAILQ_FIRST(&ki->kaio_syncready); 949 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 950 AIO_UNLOCK(ki); 951 aio_schedule(job, aio_process_sync); 952 AIO_LOCK(ki); 953 } 954 AIO_UNLOCK(ki); 955 } 956 957 bool 958 aio_cancel_cleared(struct kaiocb *job) 959 { 960 struct kaioinfo *ki; 961 962 /* 963 * The caller should hold the same queue lock held when 964 * aio_clear_cancel_function() was called and set this flag 965 * ensuring this check sees an up-to-date value. However, 966 * there is no way to assert that. 967 */ 968 ki = job->userproc->p_aioinfo; 969 return ((job->jobflags & KAIOCB_CLEARED) != 0); 970 } 971 972 bool 973 aio_clear_cancel_function(struct kaiocb *job) 974 { 975 struct kaioinfo *ki; 976 977 ki = job->userproc->p_aioinfo; 978 AIO_LOCK(ki); 979 MPASS(job->cancel_fn != NULL); 980 if (job->jobflags & KAIOCB_CANCELLING) { 981 job->jobflags |= KAIOCB_CLEARED; 982 AIO_UNLOCK(ki); 983 return (false); 984 } 985 job->cancel_fn = NULL; 986 AIO_UNLOCK(ki); 987 return (true); 988 } 989 990 bool 991 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 992 { 993 struct kaioinfo *ki; 994 995 ki = job->userproc->p_aioinfo; 996 AIO_LOCK(ki); 997 if (job->jobflags & KAIOCB_CANCELLED) { 998 AIO_UNLOCK(ki); 999 return (false); 1000 } 1001 job->cancel_fn = func; 1002 AIO_UNLOCK(ki); 1003 return (true); 1004 } 1005 1006 void 1007 aio_complete(struct kaiocb *job, long status, int error) 1008 { 1009 struct kaioinfo *ki; 1010 struct proc *userp; 1011 1012 job->uaiocb._aiocb_private.error = error; 1013 job->uaiocb._aiocb_private.status = status; 1014 1015 userp = job->userproc; 1016 ki = userp->p_aioinfo; 1017 1018 AIO_LOCK(ki); 1019 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1020 ("duplicate aio_complete")); 1021 job->jobflags |= KAIOCB_FINISHED; 1022 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1023 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1024 aio_bio_done_notify(userp, job); 1025 } 1026 AIO_UNLOCK(ki); 1027 } 1028 1029 void 1030 aio_cancel(struct kaiocb *job) 1031 { 1032 1033 aio_complete(job, -1, ECANCELED); 1034 } 1035 1036 void 1037 aio_switch_vmspace(struct kaiocb *job) 1038 { 1039 1040 vmspace_switch_aio(job->userproc->p_vmspace); 1041 } 1042 1043 /* 1044 * The AIO daemon, most of the actual work is done in aio_process_*, 1045 * but the setup (and address space mgmt) is done in this routine. 1046 */ 1047 static void 1048 aio_daemon(void *_id) 1049 { 1050 struct kaiocb *job; 1051 struct aioproc *aiop; 1052 struct kaioinfo *ki; 1053 struct proc *p; 1054 struct vmspace *myvm; 1055 struct thread *td = curthread; 1056 int id = (intptr_t)_id; 1057 1058 /* 1059 * Grab an extra reference on the daemon's vmspace so that it 1060 * doesn't get freed by jobs that switch to a different 1061 * vmspace. 1062 */ 1063 p = td->td_proc; 1064 myvm = vmspace_acquire_ref(p); 1065 1066 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1067 1068 /* 1069 * Allocate and ready the aio control info. There is one aiop structure 1070 * per daemon. 1071 */ 1072 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1073 aiop->aioproc = p; 1074 aiop->aioprocflags = 0; 1075 1076 /* 1077 * Wakeup parent process. (Parent sleeps to keep from blasting away 1078 * and creating too many daemons.) 1079 */ 1080 sema_post(&aio_newproc_sem); 1081 1082 mtx_lock(&aio_job_mtx); 1083 for (;;) { 1084 /* 1085 * Take daemon off of free queue 1086 */ 1087 if (aiop->aioprocflags & AIOP_FREE) { 1088 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1089 aiop->aioprocflags &= ~AIOP_FREE; 1090 } 1091 1092 /* 1093 * Check for jobs. 1094 */ 1095 while ((job = aio_selectjob(aiop)) != NULL) { 1096 mtx_unlock(&aio_job_mtx); 1097 1098 ki = job->userproc->p_aioinfo; 1099 job->handle_fn(job); 1100 1101 mtx_lock(&aio_job_mtx); 1102 /* Decrement the active job count. */ 1103 ki->kaio_active_count--; 1104 } 1105 1106 /* 1107 * Disconnect from user address space. 1108 */ 1109 if (p->p_vmspace != myvm) { 1110 mtx_unlock(&aio_job_mtx); 1111 vmspace_switch_aio(myvm); 1112 mtx_lock(&aio_job_mtx); 1113 /* 1114 * We have to restart to avoid race, we only sleep if 1115 * no job can be selected. 1116 */ 1117 continue; 1118 } 1119 1120 mtx_assert(&aio_job_mtx, MA_OWNED); 1121 1122 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1123 aiop->aioprocflags |= AIOP_FREE; 1124 1125 /* 1126 * If daemon is inactive for a long time, allow it to exit, 1127 * thereby freeing resources. 1128 */ 1129 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1130 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1131 (aiop->aioprocflags & AIOP_FREE) && 1132 num_aio_procs > target_aio_procs) 1133 break; 1134 } 1135 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1136 num_aio_procs--; 1137 mtx_unlock(&aio_job_mtx); 1138 uma_zfree(aiop_zone, aiop); 1139 free_unr(aiod_unr, id); 1140 vmspace_free(myvm); 1141 1142 KASSERT(p->p_vmspace == myvm, 1143 ("AIOD: bad vmspace for exiting daemon")); 1144 KASSERT(myvm->vm_refcnt > 1, 1145 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1146 kproc_exit(0); 1147 } 1148 1149 /* 1150 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1151 * AIO daemon modifies its environment itself. 1152 */ 1153 static int 1154 aio_newproc(int *start) 1155 { 1156 int error; 1157 struct proc *p; 1158 int id; 1159 1160 id = alloc_unr(aiod_unr); 1161 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1162 RFNOWAIT, 0, "aiod%d", id); 1163 if (error == 0) { 1164 /* 1165 * Wait until daemon is started. 1166 */ 1167 sema_wait(&aio_newproc_sem); 1168 mtx_lock(&aio_job_mtx); 1169 num_aio_procs++; 1170 if (start != NULL) 1171 (*start)--; 1172 mtx_unlock(&aio_job_mtx); 1173 } else { 1174 free_unr(aiod_unr, id); 1175 } 1176 return (error); 1177 } 1178 1179 /* 1180 * Try the high-performance, low-overhead physio method for eligible 1181 * VCHR devices. This method doesn't use an aio helper thread, and 1182 * thus has very low overhead. 1183 * 1184 * Assumes that the caller, aio_aqueue(), has incremented the file 1185 * structure's reference count, preventing its deallocation for the 1186 * duration of this call. 1187 */ 1188 static int 1189 aio_qphysio(struct proc *p, struct kaiocb *job) 1190 { 1191 struct aiocb *cb; 1192 struct file *fp; 1193 struct bio *bp; 1194 struct buf *pbuf; 1195 struct vnode *vp; 1196 struct cdevsw *csw; 1197 struct cdev *dev; 1198 struct kaioinfo *ki; 1199 int error, ref, poff; 1200 vm_prot_t prot; 1201 1202 cb = &job->uaiocb; 1203 fp = job->fd_file; 1204 1205 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1206 return (-1); 1207 1208 vp = fp->f_vnode; 1209 if (vp->v_type != VCHR) 1210 return (-1); 1211 if (vp->v_bufobj.bo_bsize == 0) 1212 return (-1); 1213 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1214 return (-1); 1215 1216 ref = 0; 1217 csw = devvn_refthread(vp, &dev, &ref); 1218 if (csw == NULL) 1219 return (ENXIO); 1220 1221 if ((csw->d_flags & D_DISK) == 0) { 1222 error = -1; 1223 goto unref; 1224 } 1225 if (cb->aio_nbytes > dev->si_iosize_max) { 1226 error = -1; 1227 goto unref; 1228 } 1229 1230 ki = p->p_aioinfo; 1231 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1232 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1233 if (cb->aio_nbytes > MAXPHYS) { 1234 error = -1; 1235 goto unref; 1236 } 1237 1238 pbuf = NULL; 1239 } else { 1240 if (cb->aio_nbytes > MAXPHYS - poff) { 1241 error = -1; 1242 goto unref; 1243 } 1244 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1245 error = -1; 1246 goto unref; 1247 } 1248 1249 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1250 BUF_KERNPROC(pbuf); 1251 AIO_LOCK(ki); 1252 ki->kaio_buffer_count++; 1253 AIO_UNLOCK(ki); 1254 } 1255 job->bp = bp = g_alloc_bio(); 1256 1257 bp->bio_length = cb->aio_nbytes; 1258 bp->bio_bcount = cb->aio_nbytes; 1259 bp->bio_done = aio_physwakeup; 1260 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1261 bp->bio_offset = cb->aio_offset; 1262 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1263 bp->bio_dev = dev; 1264 bp->bio_caller1 = (void *)job; 1265 1266 prot = VM_PROT_READ; 1267 if (cb->aio_lio_opcode == LIO_READ) 1268 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1269 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1270 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1271 nitems(job->pages)); 1272 if (job->npages < 0) { 1273 error = EFAULT; 1274 goto doerror; 1275 } 1276 if (pbuf != NULL) { 1277 pmap_qenter((vm_offset_t)pbuf->b_data, 1278 job->pages, job->npages); 1279 bp->bio_data = pbuf->b_data + poff; 1280 atomic_add_int(&num_buf_aio, 1); 1281 } else { 1282 bp->bio_ma = job->pages; 1283 bp->bio_ma_n = job->npages; 1284 bp->bio_ma_offset = poff; 1285 bp->bio_data = unmapped_buf; 1286 bp->bio_flags |= BIO_UNMAPPED; 1287 } 1288 1289 /* Perform transfer. */ 1290 csw->d_strategy(bp); 1291 dev_relthread(dev, ref); 1292 return (0); 1293 1294 doerror: 1295 if (pbuf != NULL) { 1296 AIO_LOCK(ki); 1297 ki->kaio_buffer_count--; 1298 AIO_UNLOCK(ki); 1299 relpbuf(pbuf, NULL); 1300 job->pbuf = NULL; 1301 } 1302 g_destroy_bio(bp); 1303 job->bp = NULL; 1304 unref: 1305 dev_relthread(dev, ref); 1306 return (error); 1307 } 1308 1309 #ifdef COMPAT_FREEBSD6 1310 static int 1311 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1312 { 1313 1314 /* 1315 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1316 * supported by AIO with the old sigevent structure. 1317 */ 1318 nsig->sigev_notify = osig->sigev_notify; 1319 switch (nsig->sigev_notify) { 1320 case SIGEV_NONE: 1321 break; 1322 case SIGEV_SIGNAL: 1323 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1324 break; 1325 case SIGEV_KEVENT: 1326 nsig->sigev_notify_kqueue = 1327 osig->__sigev_u.__sigev_notify_kqueue; 1328 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1329 break; 1330 default: 1331 return (EINVAL); 1332 } 1333 return (0); 1334 } 1335 1336 static int 1337 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1338 { 1339 struct oaiocb *ojob; 1340 int error; 1341 1342 bzero(kjob, sizeof(struct aiocb)); 1343 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1344 if (error) 1345 return (error); 1346 ojob = (struct oaiocb *)kjob; 1347 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1348 } 1349 #endif 1350 1351 static int 1352 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1353 { 1354 1355 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1356 } 1357 1358 static long 1359 aiocb_fetch_status(struct aiocb *ujob) 1360 { 1361 1362 return (fuword(&ujob->_aiocb_private.status)); 1363 } 1364 1365 static long 1366 aiocb_fetch_error(struct aiocb *ujob) 1367 { 1368 1369 return (fuword(&ujob->_aiocb_private.error)); 1370 } 1371 1372 static int 1373 aiocb_store_status(struct aiocb *ujob, long status) 1374 { 1375 1376 return (suword(&ujob->_aiocb_private.status, status)); 1377 } 1378 1379 static int 1380 aiocb_store_error(struct aiocb *ujob, long error) 1381 { 1382 1383 return (suword(&ujob->_aiocb_private.error, error)); 1384 } 1385 1386 static int 1387 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1388 { 1389 1390 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1391 } 1392 1393 static int 1394 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1395 { 1396 1397 return (suword(ujobp, (long)ujob)); 1398 } 1399 1400 static struct aiocb_ops aiocb_ops = { 1401 .copyin = aiocb_copyin, 1402 .fetch_status = aiocb_fetch_status, 1403 .fetch_error = aiocb_fetch_error, 1404 .store_status = aiocb_store_status, 1405 .store_error = aiocb_store_error, 1406 .store_kernelinfo = aiocb_store_kernelinfo, 1407 .store_aiocb = aiocb_store_aiocb, 1408 }; 1409 1410 #ifdef COMPAT_FREEBSD6 1411 static struct aiocb_ops aiocb_ops_osigevent = { 1412 .copyin = aiocb_copyin_old_sigevent, 1413 .fetch_status = aiocb_fetch_status, 1414 .fetch_error = aiocb_fetch_error, 1415 .store_status = aiocb_store_status, 1416 .store_error = aiocb_store_error, 1417 .store_kernelinfo = aiocb_store_kernelinfo, 1418 .store_aiocb = aiocb_store_aiocb, 1419 }; 1420 #endif 1421 1422 /* 1423 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1424 * technique is done in this code. 1425 */ 1426 int 1427 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1428 int type, struct aiocb_ops *ops) 1429 { 1430 struct proc *p = td->td_proc; 1431 cap_rights_t rights; 1432 struct file *fp; 1433 struct kaiocb *job; 1434 struct kaioinfo *ki; 1435 struct kevent kev; 1436 int opcode; 1437 int error; 1438 int fd, kqfd; 1439 int jid; 1440 u_short evflags; 1441 1442 if (p->p_aioinfo == NULL) 1443 aio_init_aioinfo(p); 1444 1445 ki = p->p_aioinfo; 1446 1447 ops->store_status(ujob, -1); 1448 ops->store_error(ujob, 0); 1449 ops->store_kernelinfo(ujob, -1); 1450 1451 if (num_queue_count >= max_queue_count || 1452 ki->kaio_count >= ki->kaio_qallowed_count) { 1453 ops->store_error(ujob, EAGAIN); 1454 return (EAGAIN); 1455 } 1456 1457 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1458 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1459 1460 error = ops->copyin(ujob, &job->uaiocb); 1461 if (error) { 1462 ops->store_error(ujob, error); 1463 uma_zfree(aiocb_zone, job); 1464 return (error); 1465 } 1466 1467 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1468 uma_zfree(aiocb_zone, job); 1469 return (EINVAL); 1470 } 1471 1472 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1473 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1474 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1475 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1476 ops->store_error(ujob, EINVAL); 1477 uma_zfree(aiocb_zone, job); 1478 return (EINVAL); 1479 } 1480 1481 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1482 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1483 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1484 uma_zfree(aiocb_zone, job); 1485 return (EINVAL); 1486 } 1487 1488 ksiginfo_init(&job->ksi); 1489 1490 /* Save userspace address of the job info. */ 1491 job->ujob = ujob; 1492 1493 /* Get the opcode. */ 1494 if (type != LIO_NOP) 1495 job->uaiocb.aio_lio_opcode = type; 1496 opcode = job->uaiocb.aio_lio_opcode; 1497 1498 /* 1499 * Validate the opcode and fetch the file object for the specified 1500 * file descriptor. 1501 * 1502 * XXXRW: Moved the opcode validation up here so that we don't 1503 * retrieve a file descriptor without knowing what the capabiltity 1504 * should be. 1505 */ 1506 fd = job->uaiocb.aio_fildes; 1507 switch (opcode) { 1508 case LIO_WRITE: 1509 error = fget_write(td, fd, 1510 cap_rights_init(&rights, CAP_PWRITE), &fp); 1511 break; 1512 case LIO_READ: 1513 error = fget_read(td, fd, 1514 cap_rights_init(&rights, CAP_PREAD), &fp); 1515 break; 1516 case LIO_SYNC: 1517 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1518 break; 1519 case LIO_MLOCK: 1520 fp = NULL; 1521 break; 1522 case LIO_NOP: 1523 error = fget(td, fd, cap_rights_init(&rights), &fp); 1524 break; 1525 default: 1526 error = EINVAL; 1527 } 1528 if (error) { 1529 uma_zfree(aiocb_zone, job); 1530 ops->store_error(ujob, error); 1531 return (error); 1532 } 1533 1534 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1535 error = EINVAL; 1536 goto aqueue_fail; 1537 } 1538 1539 if (opcode != LIO_SYNC && job->uaiocb.aio_offset == -1LL) { 1540 error = EINVAL; 1541 goto aqueue_fail; 1542 } 1543 1544 job->fd_file = fp; 1545 1546 mtx_lock(&aio_job_mtx); 1547 jid = jobrefid++; 1548 job->seqno = jobseqno++; 1549 mtx_unlock(&aio_job_mtx); 1550 error = ops->store_kernelinfo(ujob, jid); 1551 if (error) { 1552 error = EINVAL; 1553 goto aqueue_fail; 1554 } 1555 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1556 1557 if (opcode == LIO_NOP) { 1558 fdrop(fp, td); 1559 uma_zfree(aiocb_zone, job); 1560 return (0); 1561 } 1562 1563 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1564 goto no_kqueue; 1565 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1566 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1567 error = EINVAL; 1568 goto aqueue_fail; 1569 } 1570 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1571 kev.ident = (uintptr_t)job->ujob; 1572 kev.filter = EVFILT_AIO; 1573 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1574 kev.data = (intptr_t)job; 1575 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1576 error = kqfd_register(kqfd, &kev, td, 1); 1577 if (error) 1578 goto aqueue_fail; 1579 1580 no_kqueue: 1581 1582 ops->store_error(ujob, EINPROGRESS); 1583 job->uaiocb._aiocb_private.error = EINPROGRESS; 1584 job->userproc = p; 1585 job->cred = crhold(td->td_ucred); 1586 job->jobflags = KAIOCB_QUEUEING; 1587 job->lio = lj; 1588 1589 if (opcode == LIO_MLOCK) { 1590 aio_schedule(job, aio_process_mlock); 1591 error = 0; 1592 } else if (fp->f_ops->fo_aio_queue == NULL) 1593 error = aio_queue_file(fp, job); 1594 else 1595 error = fo_aio_queue(fp, job); 1596 if (error) 1597 goto aqueue_fail; 1598 1599 AIO_LOCK(ki); 1600 job->jobflags &= ~KAIOCB_QUEUEING; 1601 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1602 ki->kaio_count++; 1603 if (lj) 1604 lj->lioj_count++; 1605 atomic_add_int(&num_queue_count, 1); 1606 if (job->jobflags & KAIOCB_FINISHED) { 1607 /* 1608 * The queue callback completed the request synchronously. 1609 * The bulk of the completion is deferred in that case 1610 * until this point. 1611 */ 1612 aio_bio_done_notify(p, job); 1613 } else 1614 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1615 AIO_UNLOCK(ki); 1616 return (0); 1617 1618 aqueue_fail: 1619 knlist_delete(&job->klist, curthread, 0); 1620 if (fp) 1621 fdrop(fp, td); 1622 uma_zfree(aiocb_zone, job); 1623 ops->store_error(ujob, error); 1624 return (error); 1625 } 1626 1627 static void 1628 aio_cancel_daemon_job(struct kaiocb *job) 1629 { 1630 1631 mtx_lock(&aio_job_mtx); 1632 if (!aio_cancel_cleared(job)) 1633 TAILQ_REMOVE(&aio_jobs, job, list); 1634 mtx_unlock(&aio_job_mtx); 1635 aio_cancel(job); 1636 } 1637 1638 void 1639 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1640 { 1641 1642 mtx_lock(&aio_job_mtx); 1643 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1644 mtx_unlock(&aio_job_mtx); 1645 aio_cancel(job); 1646 return; 1647 } 1648 job->handle_fn = func; 1649 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1650 aio_kick_nowait(job->userproc); 1651 mtx_unlock(&aio_job_mtx); 1652 } 1653 1654 static void 1655 aio_cancel_sync(struct kaiocb *job) 1656 { 1657 struct kaioinfo *ki; 1658 1659 ki = job->userproc->p_aioinfo; 1660 mtx_lock(&aio_job_mtx); 1661 if (!aio_cancel_cleared(job)) 1662 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1663 mtx_unlock(&aio_job_mtx); 1664 aio_cancel(job); 1665 } 1666 1667 int 1668 aio_queue_file(struct file *fp, struct kaiocb *job) 1669 { 1670 struct aioliojob *lj; 1671 struct kaioinfo *ki; 1672 struct kaiocb *job2; 1673 struct vnode *vp; 1674 struct mount *mp; 1675 int error, opcode; 1676 bool safe; 1677 1678 lj = job->lio; 1679 ki = job->userproc->p_aioinfo; 1680 opcode = job->uaiocb.aio_lio_opcode; 1681 if (opcode == LIO_SYNC) 1682 goto queueit; 1683 1684 if ((error = aio_qphysio(job->userproc, job)) == 0) 1685 goto done; 1686 #if 0 1687 /* 1688 * XXX: This means qphysio() failed with EFAULT. The current 1689 * behavior is to retry the operation via fo_read/fo_write. 1690 * Wouldn't it be better to just complete the request with an 1691 * error here? 1692 */ 1693 if (error > 0) 1694 goto done; 1695 #endif 1696 queueit: 1697 safe = false; 1698 if (fp->f_type == DTYPE_VNODE) { 1699 vp = fp->f_vnode; 1700 if (vp->v_type == VREG || vp->v_type == VDIR) { 1701 mp = fp->f_vnode->v_mount; 1702 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1703 safe = true; 1704 } 1705 } 1706 if (!(safe || enable_aio_unsafe)) { 1707 counted_warning(&unsafe_warningcnt, 1708 "is attempting to use unsafe AIO requests"); 1709 return (EOPNOTSUPP); 1710 } 1711 1712 if (opcode == LIO_SYNC) { 1713 AIO_LOCK(ki); 1714 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1715 if (job2->fd_file == job->fd_file && 1716 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1717 job2->seqno < job->seqno) { 1718 job2->jobflags |= KAIOCB_CHECKSYNC; 1719 job->pending++; 1720 } 1721 } 1722 if (job->pending != 0) { 1723 if (!aio_set_cancel_function(job, aio_cancel_sync)) { 1724 AIO_UNLOCK(ki); 1725 aio_cancel(job); 1726 return (0); 1727 } 1728 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1729 AIO_UNLOCK(ki); 1730 return (0); 1731 } 1732 AIO_UNLOCK(ki); 1733 } 1734 1735 switch (opcode) { 1736 case LIO_READ: 1737 case LIO_WRITE: 1738 aio_schedule(job, aio_process_rw); 1739 error = 0; 1740 break; 1741 case LIO_SYNC: 1742 aio_schedule(job, aio_process_sync); 1743 error = 0; 1744 break; 1745 default: 1746 error = EINVAL; 1747 } 1748 done: 1749 return (error); 1750 } 1751 1752 static void 1753 aio_kick_nowait(struct proc *userp) 1754 { 1755 struct kaioinfo *ki = userp->p_aioinfo; 1756 struct aioproc *aiop; 1757 1758 mtx_assert(&aio_job_mtx, MA_OWNED); 1759 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1760 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1761 aiop->aioprocflags &= ~AIOP_FREE; 1762 wakeup(aiop->aioproc); 1763 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1764 ki->kaio_active_count + num_aio_resv_start < 1765 ki->kaio_maxactive_count) { 1766 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1767 } 1768 } 1769 1770 static int 1771 aio_kick(struct proc *userp) 1772 { 1773 struct kaioinfo *ki = userp->p_aioinfo; 1774 struct aioproc *aiop; 1775 int error, ret = 0; 1776 1777 mtx_assert(&aio_job_mtx, MA_OWNED); 1778 retryproc: 1779 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1780 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1781 aiop->aioprocflags &= ~AIOP_FREE; 1782 wakeup(aiop->aioproc); 1783 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1784 ki->kaio_active_count + num_aio_resv_start < 1785 ki->kaio_maxactive_count) { 1786 num_aio_resv_start++; 1787 mtx_unlock(&aio_job_mtx); 1788 error = aio_newproc(&num_aio_resv_start); 1789 mtx_lock(&aio_job_mtx); 1790 if (error) { 1791 num_aio_resv_start--; 1792 goto retryproc; 1793 } 1794 } else { 1795 ret = -1; 1796 } 1797 return (ret); 1798 } 1799 1800 static void 1801 aio_kick_helper(void *context, int pending) 1802 { 1803 struct proc *userp = context; 1804 1805 mtx_lock(&aio_job_mtx); 1806 while (--pending >= 0) { 1807 if (aio_kick(userp)) 1808 break; 1809 } 1810 mtx_unlock(&aio_job_mtx); 1811 } 1812 1813 /* 1814 * Support the aio_return system call, as a side-effect, kernel resources are 1815 * released. 1816 */ 1817 static int 1818 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1819 { 1820 struct proc *p = td->td_proc; 1821 struct kaiocb *job; 1822 struct kaioinfo *ki; 1823 long status, error; 1824 1825 ki = p->p_aioinfo; 1826 if (ki == NULL) 1827 return (EINVAL); 1828 AIO_LOCK(ki); 1829 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1830 if (job->ujob == ujob) 1831 break; 1832 } 1833 if (job != NULL) { 1834 MPASS(job->jobflags & KAIOCB_FINISHED); 1835 status = job->uaiocb._aiocb_private.status; 1836 error = job->uaiocb._aiocb_private.error; 1837 td->td_retval[0] = status; 1838 td->td_ru.ru_oublock += job->outblock; 1839 td->td_ru.ru_inblock += job->inblock; 1840 td->td_ru.ru_msgsnd += job->msgsnd; 1841 td->td_ru.ru_msgrcv += job->msgrcv; 1842 aio_free_entry(job); 1843 AIO_UNLOCK(ki); 1844 ops->store_error(ujob, error); 1845 ops->store_status(ujob, status); 1846 } else { 1847 error = EINVAL; 1848 AIO_UNLOCK(ki); 1849 } 1850 return (error); 1851 } 1852 1853 int 1854 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1855 { 1856 1857 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1858 } 1859 1860 /* 1861 * Allow a process to wakeup when any of the I/O requests are completed. 1862 */ 1863 static int 1864 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1865 struct timespec *ts) 1866 { 1867 struct proc *p = td->td_proc; 1868 struct timeval atv; 1869 struct kaioinfo *ki; 1870 struct kaiocb *firstjob, *job; 1871 int error, i, timo; 1872 1873 timo = 0; 1874 if (ts) { 1875 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1876 return (EINVAL); 1877 1878 TIMESPEC_TO_TIMEVAL(&atv, ts); 1879 if (itimerfix(&atv)) 1880 return (EINVAL); 1881 timo = tvtohz(&atv); 1882 } 1883 1884 ki = p->p_aioinfo; 1885 if (ki == NULL) 1886 return (EAGAIN); 1887 1888 if (njoblist == 0) 1889 return (0); 1890 1891 AIO_LOCK(ki); 1892 for (;;) { 1893 firstjob = NULL; 1894 error = 0; 1895 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1896 for (i = 0; i < njoblist; i++) { 1897 if (job->ujob == ujoblist[i]) { 1898 if (firstjob == NULL) 1899 firstjob = job; 1900 if (job->jobflags & KAIOCB_FINISHED) 1901 goto RETURN; 1902 } 1903 } 1904 } 1905 /* All tasks were finished. */ 1906 if (firstjob == NULL) 1907 break; 1908 1909 ki->kaio_flags |= KAIO_WAKEUP; 1910 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1911 "aiospn", timo); 1912 if (error == ERESTART) 1913 error = EINTR; 1914 if (error) 1915 break; 1916 } 1917 RETURN: 1918 AIO_UNLOCK(ki); 1919 return (error); 1920 } 1921 1922 int 1923 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1924 { 1925 struct timespec ts, *tsp; 1926 struct aiocb **ujoblist; 1927 int error; 1928 1929 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1930 return (EINVAL); 1931 1932 if (uap->timeout) { 1933 /* Get timespec struct. */ 1934 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1935 return (error); 1936 tsp = &ts; 1937 } else 1938 tsp = NULL; 1939 1940 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1941 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1942 if (error == 0) 1943 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1944 uma_zfree(aiol_zone, ujoblist); 1945 return (error); 1946 } 1947 1948 /* 1949 * aio_cancel cancels any non-physio aio operations not currently in 1950 * progress. 1951 */ 1952 int 1953 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1954 { 1955 struct proc *p = td->td_proc; 1956 struct kaioinfo *ki; 1957 struct kaiocb *job, *jobn; 1958 struct file *fp; 1959 cap_rights_t rights; 1960 int error; 1961 int cancelled = 0; 1962 int notcancelled = 0; 1963 struct vnode *vp; 1964 1965 /* Lookup file object. */ 1966 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1967 if (error) 1968 return (error); 1969 1970 ki = p->p_aioinfo; 1971 if (ki == NULL) 1972 goto done; 1973 1974 if (fp->f_type == DTYPE_VNODE) { 1975 vp = fp->f_vnode; 1976 if (vn_isdisk(vp, &error)) { 1977 fdrop(fp, td); 1978 td->td_retval[0] = AIO_NOTCANCELED; 1979 return (0); 1980 } 1981 } 1982 1983 AIO_LOCK(ki); 1984 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1985 if ((uap->fd == job->uaiocb.aio_fildes) && 1986 ((uap->aiocbp == NULL) || 1987 (uap->aiocbp == job->ujob))) { 1988 if (aio_cancel_job(p, ki, job)) { 1989 cancelled++; 1990 } else { 1991 notcancelled++; 1992 } 1993 if (uap->aiocbp != NULL) 1994 break; 1995 } 1996 } 1997 AIO_UNLOCK(ki); 1998 1999 done: 2000 fdrop(fp, td); 2001 2002 if (uap->aiocbp != NULL) { 2003 if (cancelled) { 2004 td->td_retval[0] = AIO_CANCELED; 2005 return (0); 2006 } 2007 } 2008 2009 if (notcancelled) { 2010 td->td_retval[0] = AIO_NOTCANCELED; 2011 return (0); 2012 } 2013 2014 if (cancelled) { 2015 td->td_retval[0] = AIO_CANCELED; 2016 return (0); 2017 } 2018 2019 td->td_retval[0] = AIO_ALLDONE; 2020 2021 return (0); 2022 } 2023 2024 /* 2025 * aio_error is implemented in the kernel level for compatibility purposes 2026 * only. For a user mode async implementation, it would be best to do it in 2027 * a userland subroutine. 2028 */ 2029 static int 2030 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2031 { 2032 struct proc *p = td->td_proc; 2033 struct kaiocb *job; 2034 struct kaioinfo *ki; 2035 int status; 2036 2037 ki = p->p_aioinfo; 2038 if (ki == NULL) { 2039 td->td_retval[0] = EINVAL; 2040 return (0); 2041 } 2042 2043 AIO_LOCK(ki); 2044 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2045 if (job->ujob == ujob) { 2046 if (job->jobflags & KAIOCB_FINISHED) 2047 td->td_retval[0] = 2048 job->uaiocb._aiocb_private.error; 2049 else 2050 td->td_retval[0] = EINPROGRESS; 2051 AIO_UNLOCK(ki); 2052 return (0); 2053 } 2054 } 2055 AIO_UNLOCK(ki); 2056 2057 /* 2058 * Hack for failure of aio_aqueue. 2059 */ 2060 status = ops->fetch_status(ujob); 2061 if (status == -1) { 2062 td->td_retval[0] = ops->fetch_error(ujob); 2063 return (0); 2064 } 2065 2066 td->td_retval[0] = EINVAL; 2067 return (0); 2068 } 2069 2070 int 2071 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2072 { 2073 2074 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2075 } 2076 2077 /* syscall - asynchronous read from a file (REALTIME) */ 2078 #ifdef COMPAT_FREEBSD6 2079 int 2080 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2081 { 2082 2083 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2084 &aiocb_ops_osigevent)); 2085 } 2086 #endif 2087 2088 int 2089 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2090 { 2091 2092 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2093 } 2094 2095 /* syscall - asynchronous write to a file (REALTIME) */ 2096 #ifdef COMPAT_FREEBSD6 2097 int 2098 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2099 { 2100 2101 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2102 &aiocb_ops_osigevent)); 2103 } 2104 #endif 2105 2106 int 2107 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2108 { 2109 2110 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2111 } 2112 2113 int 2114 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2115 { 2116 2117 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2118 } 2119 2120 static int 2121 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2122 struct aiocb **acb_list, int nent, struct sigevent *sig, 2123 struct aiocb_ops *ops) 2124 { 2125 struct proc *p = td->td_proc; 2126 struct aiocb *job; 2127 struct kaioinfo *ki; 2128 struct aioliojob *lj; 2129 struct kevent kev; 2130 int error; 2131 int nerror; 2132 int i; 2133 2134 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2135 return (EINVAL); 2136 2137 if (nent < 0 || nent > AIO_LISTIO_MAX) 2138 return (EINVAL); 2139 2140 if (p->p_aioinfo == NULL) 2141 aio_init_aioinfo(p); 2142 2143 ki = p->p_aioinfo; 2144 2145 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2146 lj->lioj_flags = 0; 2147 lj->lioj_count = 0; 2148 lj->lioj_finished_count = 0; 2149 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2150 ksiginfo_init(&lj->lioj_ksi); 2151 2152 /* 2153 * Setup signal. 2154 */ 2155 if (sig && (mode == LIO_NOWAIT)) { 2156 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2157 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2158 /* Assume only new style KEVENT */ 2159 kev.filter = EVFILT_LIO; 2160 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2161 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2162 kev.data = (intptr_t)lj; 2163 /* pass user defined sigval data */ 2164 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2165 error = kqfd_register( 2166 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2167 if (error) { 2168 uma_zfree(aiolio_zone, lj); 2169 return (error); 2170 } 2171 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2172 ; 2173 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2174 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2175 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2176 uma_zfree(aiolio_zone, lj); 2177 return EINVAL; 2178 } 2179 lj->lioj_flags |= LIOJ_SIGNAL; 2180 } else { 2181 uma_zfree(aiolio_zone, lj); 2182 return EINVAL; 2183 } 2184 } 2185 2186 AIO_LOCK(ki); 2187 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2188 /* 2189 * Add extra aiocb count to avoid the lio to be freed 2190 * by other threads doing aio_waitcomplete or aio_return, 2191 * and prevent event from being sent until we have queued 2192 * all tasks. 2193 */ 2194 lj->lioj_count = 1; 2195 AIO_UNLOCK(ki); 2196 2197 /* 2198 * Get pointers to the list of I/O requests. 2199 */ 2200 nerror = 0; 2201 for (i = 0; i < nent; i++) { 2202 job = acb_list[i]; 2203 if (job != NULL) { 2204 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2205 if (error != 0) 2206 nerror++; 2207 } 2208 } 2209 2210 error = 0; 2211 AIO_LOCK(ki); 2212 if (mode == LIO_WAIT) { 2213 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2214 ki->kaio_flags |= KAIO_WAKEUP; 2215 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2216 PRIBIO | PCATCH, "aiospn", 0); 2217 if (error == ERESTART) 2218 error = EINTR; 2219 if (error) 2220 break; 2221 } 2222 } else { 2223 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2224 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2225 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2226 KNOTE_LOCKED(&lj->klist, 1); 2227 } 2228 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2229 == LIOJ_SIGNAL 2230 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2231 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2232 aio_sendsig(p, &lj->lioj_signal, 2233 &lj->lioj_ksi); 2234 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2235 } 2236 } 2237 } 2238 lj->lioj_count--; 2239 if (lj->lioj_count == 0) { 2240 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2241 knlist_delete(&lj->klist, curthread, 1); 2242 PROC_LOCK(p); 2243 sigqueue_take(&lj->lioj_ksi); 2244 PROC_UNLOCK(p); 2245 AIO_UNLOCK(ki); 2246 uma_zfree(aiolio_zone, lj); 2247 } else 2248 AIO_UNLOCK(ki); 2249 2250 if (nerror) 2251 return (EIO); 2252 return (error); 2253 } 2254 2255 /* syscall - list directed I/O (REALTIME) */ 2256 #ifdef COMPAT_FREEBSD6 2257 int 2258 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2259 { 2260 struct aiocb **acb_list; 2261 struct sigevent *sigp, sig; 2262 struct osigevent osig; 2263 int error, nent; 2264 2265 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2266 return (EINVAL); 2267 2268 nent = uap->nent; 2269 if (nent < 0 || nent > AIO_LISTIO_MAX) 2270 return (EINVAL); 2271 2272 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2273 error = copyin(uap->sig, &osig, sizeof(osig)); 2274 if (error) 2275 return (error); 2276 error = convert_old_sigevent(&osig, &sig); 2277 if (error) 2278 return (error); 2279 sigp = &sig; 2280 } else 2281 sigp = NULL; 2282 2283 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2284 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2285 if (error == 0) 2286 error = kern_lio_listio(td, uap->mode, 2287 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2288 &aiocb_ops_osigevent); 2289 free(acb_list, M_LIO); 2290 return (error); 2291 } 2292 #endif 2293 2294 /* syscall - list directed I/O (REALTIME) */ 2295 int 2296 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2297 { 2298 struct aiocb **acb_list; 2299 struct sigevent *sigp, sig; 2300 int error, nent; 2301 2302 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2303 return (EINVAL); 2304 2305 nent = uap->nent; 2306 if (nent < 0 || nent > AIO_LISTIO_MAX) 2307 return (EINVAL); 2308 2309 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2310 error = copyin(uap->sig, &sig, sizeof(sig)); 2311 if (error) 2312 return (error); 2313 sigp = &sig; 2314 } else 2315 sigp = NULL; 2316 2317 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2318 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2319 if (error == 0) 2320 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2321 nent, sigp, &aiocb_ops); 2322 free(acb_list, M_LIO); 2323 return (error); 2324 } 2325 2326 static void 2327 aio_physwakeup(struct bio *bp) 2328 { 2329 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2330 struct proc *userp; 2331 struct kaioinfo *ki; 2332 size_t nbytes; 2333 int error, nblks; 2334 2335 /* Release mapping into kernel space. */ 2336 userp = job->userproc; 2337 ki = userp->p_aioinfo; 2338 if (job->pbuf) { 2339 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2340 relpbuf(job->pbuf, NULL); 2341 job->pbuf = NULL; 2342 atomic_subtract_int(&num_buf_aio, 1); 2343 AIO_LOCK(ki); 2344 ki->kaio_buffer_count--; 2345 AIO_UNLOCK(ki); 2346 } 2347 vm_page_unhold_pages(job->pages, job->npages); 2348 2349 bp = job->bp; 2350 job->bp = NULL; 2351 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2352 error = 0; 2353 if (bp->bio_flags & BIO_ERROR) 2354 error = bp->bio_error; 2355 nblks = btodb(nbytes); 2356 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2357 job->outblock += nblks; 2358 else 2359 job->inblock += nblks; 2360 2361 if (error) 2362 aio_complete(job, -1, error); 2363 else 2364 aio_complete(job, nbytes, 0); 2365 2366 g_destroy_bio(bp); 2367 } 2368 2369 /* syscall - wait for the next completion of an aio request */ 2370 static int 2371 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2372 struct timespec *ts, struct aiocb_ops *ops) 2373 { 2374 struct proc *p = td->td_proc; 2375 struct timeval atv; 2376 struct kaioinfo *ki; 2377 struct kaiocb *job; 2378 struct aiocb *ujob; 2379 long error, status; 2380 int timo; 2381 2382 ops->store_aiocb(ujobp, NULL); 2383 2384 if (ts == NULL) { 2385 timo = 0; 2386 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2387 timo = -1; 2388 } else { 2389 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2390 return (EINVAL); 2391 2392 TIMESPEC_TO_TIMEVAL(&atv, ts); 2393 if (itimerfix(&atv)) 2394 return (EINVAL); 2395 timo = tvtohz(&atv); 2396 } 2397 2398 if (p->p_aioinfo == NULL) 2399 aio_init_aioinfo(p); 2400 ki = p->p_aioinfo; 2401 2402 error = 0; 2403 job = NULL; 2404 AIO_LOCK(ki); 2405 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2406 if (timo == -1) { 2407 error = EWOULDBLOCK; 2408 break; 2409 } 2410 ki->kaio_flags |= KAIO_WAKEUP; 2411 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2412 "aiowc", timo); 2413 if (timo && error == ERESTART) 2414 error = EINTR; 2415 if (error) 2416 break; 2417 } 2418 2419 if (job != NULL) { 2420 MPASS(job->jobflags & KAIOCB_FINISHED); 2421 ujob = job->ujob; 2422 status = job->uaiocb._aiocb_private.status; 2423 error = job->uaiocb._aiocb_private.error; 2424 td->td_retval[0] = status; 2425 td->td_ru.ru_oublock += job->outblock; 2426 td->td_ru.ru_inblock += job->inblock; 2427 td->td_ru.ru_msgsnd += job->msgsnd; 2428 td->td_ru.ru_msgrcv += job->msgrcv; 2429 aio_free_entry(job); 2430 AIO_UNLOCK(ki); 2431 ops->store_aiocb(ujobp, ujob); 2432 ops->store_error(ujob, error); 2433 ops->store_status(ujob, status); 2434 } else 2435 AIO_UNLOCK(ki); 2436 2437 return (error); 2438 } 2439 2440 int 2441 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2442 { 2443 struct timespec ts, *tsp; 2444 int error; 2445 2446 if (uap->timeout) { 2447 /* Get timespec struct. */ 2448 error = copyin(uap->timeout, &ts, sizeof(ts)); 2449 if (error) 2450 return (error); 2451 tsp = &ts; 2452 } else 2453 tsp = NULL; 2454 2455 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2456 } 2457 2458 static int 2459 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2460 struct aiocb_ops *ops) 2461 { 2462 struct proc *p = td->td_proc; 2463 struct kaioinfo *ki; 2464 2465 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2466 return (EINVAL); 2467 ki = p->p_aioinfo; 2468 if (ki == NULL) 2469 aio_init_aioinfo(p); 2470 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2471 } 2472 2473 int 2474 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2475 { 2476 2477 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2478 } 2479 2480 /* kqueue attach function */ 2481 static int 2482 filt_aioattach(struct knote *kn) 2483 { 2484 struct kaiocb *job = (struct kaiocb *)kn->kn_sdata; 2485 2486 /* 2487 * The job pointer must be validated before using it, so 2488 * registration is restricted to the kernel; the user cannot 2489 * set EV_FLAG1. 2490 */ 2491 if ((kn->kn_flags & EV_FLAG1) == 0) 2492 return (EPERM); 2493 kn->kn_ptr.p_aio = job; 2494 kn->kn_flags &= ~EV_FLAG1; 2495 2496 knlist_add(&job->klist, kn, 0); 2497 2498 return (0); 2499 } 2500 2501 /* kqueue detach function */ 2502 static void 2503 filt_aiodetach(struct knote *kn) 2504 { 2505 struct knlist *knl; 2506 2507 knl = &kn->kn_ptr.p_aio->klist; 2508 knl->kl_lock(knl->kl_lockarg); 2509 if (!knlist_empty(knl)) 2510 knlist_remove(knl, kn, 1); 2511 knl->kl_unlock(knl->kl_lockarg); 2512 } 2513 2514 /* kqueue filter function */ 2515 /*ARGSUSED*/ 2516 static int 2517 filt_aio(struct knote *kn, long hint) 2518 { 2519 struct kaiocb *job = kn->kn_ptr.p_aio; 2520 2521 kn->kn_data = job->uaiocb._aiocb_private.error; 2522 if (!(job->jobflags & KAIOCB_FINISHED)) 2523 return (0); 2524 kn->kn_flags |= EV_EOF; 2525 return (1); 2526 } 2527 2528 /* kqueue attach function */ 2529 static int 2530 filt_lioattach(struct knote *kn) 2531 { 2532 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2533 2534 /* 2535 * The aioliojob pointer must be validated before using it, so 2536 * registration is restricted to the kernel; the user cannot 2537 * set EV_FLAG1. 2538 */ 2539 if ((kn->kn_flags & EV_FLAG1) == 0) 2540 return (EPERM); 2541 kn->kn_ptr.p_lio = lj; 2542 kn->kn_flags &= ~EV_FLAG1; 2543 2544 knlist_add(&lj->klist, kn, 0); 2545 2546 return (0); 2547 } 2548 2549 /* kqueue detach function */ 2550 static void 2551 filt_liodetach(struct knote *kn) 2552 { 2553 struct knlist *knl; 2554 2555 knl = &kn->kn_ptr.p_lio->klist; 2556 knl->kl_lock(knl->kl_lockarg); 2557 if (!knlist_empty(knl)) 2558 knlist_remove(knl, kn, 1); 2559 knl->kl_unlock(knl->kl_lockarg); 2560 } 2561 2562 /* kqueue filter function */ 2563 /*ARGSUSED*/ 2564 static int 2565 filt_lio(struct knote *kn, long hint) 2566 { 2567 struct aioliojob * lj = kn->kn_ptr.p_lio; 2568 2569 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2570 } 2571 2572 #ifdef COMPAT_FREEBSD32 2573 #include <sys/mount.h> 2574 #include <sys/socket.h> 2575 #include <compat/freebsd32/freebsd32.h> 2576 #include <compat/freebsd32/freebsd32_proto.h> 2577 #include <compat/freebsd32/freebsd32_signal.h> 2578 #include <compat/freebsd32/freebsd32_syscall.h> 2579 #include <compat/freebsd32/freebsd32_util.h> 2580 2581 struct __aiocb_private32 { 2582 int32_t status; 2583 int32_t error; 2584 uint32_t kernelinfo; 2585 }; 2586 2587 #ifdef COMPAT_FREEBSD6 2588 typedef struct oaiocb32 { 2589 int aio_fildes; /* File descriptor */ 2590 uint64_t aio_offset __packed; /* File offset for I/O */ 2591 uint32_t aio_buf; /* I/O buffer in process space */ 2592 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2593 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2594 int aio_lio_opcode; /* LIO opcode */ 2595 int aio_reqprio; /* Request priority -- ignored */ 2596 struct __aiocb_private32 _aiocb_private; 2597 } oaiocb32_t; 2598 #endif 2599 2600 typedef struct aiocb32 { 2601 int32_t aio_fildes; /* File descriptor */ 2602 uint64_t aio_offset __packed; /* File offset for I/O */ 2603 uint32_t aio_buf; /* I/O buffer in process space */ 2604 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2605 int __spare__[2]; 2606 uint32_t __spare2__; 2607 int aio_lio_opcode; /* LIO opcode */ 2608 int aio_reqprio; /* Request priority -- ignored */ 2609 struct __aiocb_private32 _aiocb_private; 2610 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2611 } aiocb32_t; 2612 2613 #ifdef COMPAT_FREEBSD6 2614 static int 2615 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2616 { 2617 2618 /* 2619 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2620 * supported by AIO with the old sigevent structure. 2621 */ 2622 CP(*osig, *nsig, sigev_notify); 2623 switch (nsig->sigev_notify) { 2624 case SIGEV_NONE: 2625 break; 2626 case SIGEV_SIGNAL: 2627 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2628 break; 2629 case SIGEV_KEVENT: 2630 nsig->sigev_notify_kqueue = 2631 osig->__sigev_u.__sigev_notify_kqueue; 2632 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2633 break; 2634 default: 2635 return (EINVAL); 2636 } 2637 return (0); 2638 } 2639 2640 static int 2641 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2642 { 2643 struct oaiocb32 job32; 2644 int error; 2645 2646 bzero(kjob, sizeof(struct aiocb)); 2647 error = copyin(ujob, &job32, sizeof(job32)); 2648 if (error) 2649 return (error); 2650 2651 CP(job32, *kjob, aio_fildes); 2652 CP(job32, *kjob, aio_offset); 2653 PTRIN_CP(job32, *kjob, aio_buf); 2654 CP(job32, *kjob, aio_nbytes); 2655 CP(job32, *kjob, aio_lio_opcode); 2656 CP(job32, *kjob, aio_reqprio); 2657 CP(job32, *kjob, _aiocb_private.status); 2658 CP(job32, *kjob, _aiocb_private.error); 2659 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2660 return (convert_old_sigevent32(&job32.aio_sigevent, 2661 &kjob->aio_sigevent)); 2662 } 2663 #endif 2664 2665 static int 2666 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2667 { 2668 struct aiocb32 job32; 2669 int error; 2670 2671 error = copyin(ujob, &job32, sizeof(job32)); 2672 if (error) 2673 return (error); 2674 CP(job32, *kjob, aio_fildes); 2675 CP(job32, *kjob, aio_offset); 2676 PTRIN_CP(job32, *kjob, aio_buf); 2677 CP(job32, *kjob, aio_nbytes); 2678 CP(job32, *kjob, aio_lio_opcode); 2679 CP(job32, *kjob, aio_reqprio); 2680 CP(job32, *kjob, _aiocb_private.status); 2681 CP(job32, *kjob, _aiocb_private.error); 2682 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2683 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2684 } 2685 2686 static long 2687 aiocb32_fetch_status(struct aiocb *ujob) 2688 { 2689 struct aiocb32 *ujob32; 2690 2691 ujob32 = (struct aiocb32 *)ujob; 2692 return (fuword32(&ujob32->_aiocb_private.status)); 2693 } 2694 2695 static long 2696 aiocb32_fetch_error(struct aiocb *ujob) 2697 { 2698 struct aiocb32 *ujob32; 2699 2700 ujob32 = (struct aiocb32 *)ujob; 2701 return (fuword32(&ujob32->_aiocb_private.error)); 2702 } 2703 2704 static int 2705 aiocb32_store_status(struct aiocb *ujob, long status) 2706 { 2707 struct aiocb32 *ujob32; 2708 2709 ujob32 = (struct aiocb32 *)ujob; 2710 return (suword32(&ujob32->_aiocb_private.status, status)); 2711 } 2712 2713 static int 2714 aiocb32_store_error(struct aiocb *ujob, long error) 2715 { 2716 struct aiocb32 *ujob32; 2717 2718 ujob32 = (struct aiocb32 *)ujob; 2719 return (suword32(&ujob32->_aiocb_private.error, error)); 2720 } 2721 2722 static int 2723 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2724 { 2725 struct aiocb32 *ujob32; 2726 2727 ujob32 = (struct aiocb32 *)ujob; 2728 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2729 } 2730 2731 static int 2732 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2733 { 2734 2735 return (suword32(ujobp, (long)ujob)); 2736 } 2737 2738 static struct aiocb_ops aiocb32_ops = { 2739 .copyin = aiocb32_copyin, 2740 .fetch_status = aiocb32_fetch_status, 2741 .fetch_error = aiocb32_fetch_error, 2742 .store_status = aiocb32_store_status, 2743 .store_error = aiocb32_store_error, 2744 .store_kernelinfo = aiocb32_store_kernelinfo, 2745 .store_aiocb = aiocb32_store_aiocb, 2746 }; 2747 2748 #ifdef COMPAT_FREEBSD6 2749 static struct aiocb_ops aiocb32_ops_osigevent = { 2750 .copyin = aiocb32_copyin_old_sigevent, 2751 .fetch_status = aiocb32_fetch_status, 2752 .fetch_error = aiocb32_fetch_error, 2753 .store_status = aiocb32_store_status, 2754 .store_error = aiocb32_store_error, 2755 .store_kernelinfo = aiocb32_store_kernelinfo, 2756 .store_aiocb = aiocb32_store_aiocb, 2757 }; 2758 #endif 2759 2760 int 2761 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2762 { 2763 2764 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2765 } 2766 2767 int 2768 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2769 { 2770 struct timespec32 ts32; 2771 struct timespec ts, *tsp; 2772 struct aiocb **ujoblist; 2773 uint32_t *ujoblist32; 2774 int error, i; 2775 2776 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2777 return (EINVAL); 2778 2779 if (uap->timeout) { 2780 /* Get timespec struct. */ 2781 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2782 return (error); 2783 CP(ts32, ts, tv_sec); 2784 CP(ts32, ts, tv_nsec); 2785 tsp = &ts; 2786 } else 2787 tsp = NULL; 2788 2789 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2790 ujoblist32 = (uint32_t *)ujoblist; 2791 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2792 sizeof(ujoblist32[0])); 2793 if (error == 0) { 2794 for (i = uap->nent; i > 0; i--) 2795 ujoblist[i] = PTRIN(ujoblist32[i]); 2796 2797 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2798 } 2799 uma_zfree(aiol_zone, ujoblist); 2800 return (error); 2801 } 2802 2803 int 2804 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2805 { 2806 2807 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2808 } 2809 2810 #ifdef COMPAT_FREEBSD6 2811 int 2812 freebsd6_freebsd32_aio_read(struct thread *td, 2813 struct freebsd6_freebsd32_aio_read_args *uap) 2814 { 2815 2816 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2817 &aiocb32_ops_osigevent)); 2818 } 2819 #endif 2820 2821 int 2822 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2823 { 2824 2825 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2826 &aiocb32_ops)); 2827 } 2828 2829 #ifdef COMPAT_FREEBSD6 2830 int 2831 freebsd6_freebsd32_aio_write(struct thread *td, 2832 struct freebsd6_freebsd32_aio_write_args *uap) 2833 { 2834 2835 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2836 &aiocb32_ops_osigevent)); 2837 } 2838 #endif 2839 2840 int 2841 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2842 { 2843 2844 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2845 &aiocb32_ops)); 2846 } 2847 2848 int 2849 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2850 { 2851 2852 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2853 &aiocb32_ops)); 2854 } 2855 2856 int 2857 freebsd32_aio_waitcomplete(struct thread *td, 2858 struct freebsd32_aio_waitcomplete_args *uap) 2859 { 2860 struct timespec32 ts32; 2861 struct timespec ts, *tsp; 2862 int error; 2863 2864 if (uap->timeout) { 2865 /* Get timespec struct. */ 2866 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2867 if (error) 2868 return (error); 2869 CP(ts32, ts, tv_sec); 2870 CP(ts32, ts, tv_nsec); 2871 tsp = &ts; 2872 } else 2873 tsp = NULL; 2874 2875 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2876 &aiocb32_ops)); 2877 } 2878 2879 int 2880 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2881 { 2882 2883 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2884 &aiocb32_ops)); 2885 } 2886 2887 #ifdef COMPAT_FREEBSD6 2888 int 2889 freebsd6_freebsd32_lio_listio(struct thread *td, 2890 struct freebsd6_freebsd32_lio_listio_args *uap) 2891 { 2892 struct aiocb **acb_list; 2893 struct sigevent *sigp, sig; 2894 struct osigevent32 osig; 2895 uint32_t *acb_list32; 2896 int error, i, nent; 2897 2898 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2899 return (EINVAL); 2900 2901 nent = uap->nent; 2902 if (nent < 0 || nent > AIO_LISTIO_MAX) 2903 return (EINVAL); 2904 2905 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2906 error = copyin(uap->sig, &osig, sizeof(osig)); 2907 if (error) 2908 return (error); 2909 error = convert_old_sigevent32(&osig, &sig); 2910 if (error) 2911 return (error); 2912 sigp = &sig; 2913 } else 2914 sigp = NULL; 2915 2916 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2917 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2918 if (error) { 2919 free(acb_list32, M_LIO); 2920 return (error); 2921 } 2922 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2923 for (i = 0; i < nent; i++) 2924 acb_list[i] = PTRIN(acb_list32[i]); 2925 free(acb_list32, M_LIO); 2926 2927 error = kern_lio_listio(td, uap->mode, 2928 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2929 &aiocb32_ops_osigevent); 2930 free(acb_list, M_LIO); 2931 return (error); 2932 } 2933 #endif 2934 2935 int 2936 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2937 { 2938 struct aiocb **acb_list; 2939 struct sigevent *sigp, sig; 2940 struct sigevent32 sig32; 2941 uint32_t *acb_list32; 2942 int error, i, nent; 2943 2944 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2945 return (EINVAL); 2946 2947 nent = uap->nent; 2948 if (nent < 0 || nent > AIO_LISTIO_MAX) 2949 return (EINVAL); 2950 2951 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2952 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2953 if (error) 2954 return (error); 2955 error = convert_sigevent32(&sig32, &sig); 2956 if (error) 2957 return (error); 2958 sigp = &sig; 2959 } else 2960 sigp = NULL; 2961 2962 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2963 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2964 if (error) { 2965 free(acb_list32, M_LIO); 2966 return (error); 2967 } 2968 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2969 for (i = 0; i < nent; i++) 2970 acb_list[i] = PTRIN(acb_list32[i]); 2971 free(acb_list32, M_LIO); 2972 2973 error = kern_lio_listio(td, uap->mode, 2974 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2975 &aiocb32_ops); 2976 free(acb_list, M_LIO); 2977 return (error); 2978 } 2979 2980 #endif 2981