1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) listio flags */ 252 int lioj_finished_count; /* (a) listio flags */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of physio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 void aio_init_aioinfo(struct proc *p); 311 static int aio_onceonly(void); 312 static int aio_free_entry(struct kaiocb *job); 313 static void aio_process_rw(struct kaiocb *job); 314 static void aio_process_sync(struct kaiocb *job); 315 static void aio_process_mlock(struct kaiocb *job); 316 static void aio_schedule_fsync(void *context, int pending); 317 static int aio_newproc(int *); 318 int aio_aqueue(struct thread *td, struct aiocb *ujob, 319 struct aioliojob *lio, int type, struct aiocb_ops *ops); 320 static int aio_queue_file(struct file *fp, struct kaiocb *job); 321 static void aio_physwakeup(struct bio *bp); 322 static void aio_proc_rundown(void *arg, struct proc *p); 323 static void aio_proc_rundown_exec(void *arg, struct proc *p, 324 struct image_params *imgp); 325 static int aio_qphysio(struct proc *p, struct kaiocb *job); 326 static void aio_daemon(void *param); 327 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 328 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 329 static int aio_kick(struct proc *userp); 330 static void aio_kick_nowait(struct proc *userp); 331 static void aio_kick_helper(void *context, int pending); 332 static int filt_aioattach(struct knote *kn); 333 static void filt_aiodetach(struct knote *kn); 334 static int filt_aio(struct knote *kn, long hint); 335 static int filt_lioattach(struct knote *kn); 336 static void filt_liodetach(struct knote *kn); 337 static int filt_lio(struct knote *kn, long hint); 338 339 /* 340 * Zones for: 341 * kaio Per process async io info 342 * aiop async io process data 343 * aiocb async io jobs 344 * aiolio list io jobs 345 */ 346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 347 348 /* kqueue filters for aio */ 349 static struct filterops aio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_aioattach, 352 .f_detach = filt_aiodetach, 353 .f_event = filt_aio, 354 }; 355 static struct filterops lio_filtops = { 356 .f_isfd = 0, 357 .f_attach = filt_lioattach, 358 .f_detach = filt_liodetach, 359 .f_event = filt_lio 360 }; 361 362 static eventhandler_tag exit_tag, exec_tag; 363 364 TASKQUEUE_DEFINE_THREAD(aiod_kick); 365 366 /* 367 * Main operations function for use as a kernel module. 368 */ 369 static int 370 aio_modload(struct module *module, int cmd, void *arg) 371 { 372 int error = 0; 373 374 switch (cmd) { 375 case MOD_LOAD: 376 aio_onceonly(); 377 break; 378 case MOD_SHUTDOWN: 379 break; 380 default: 381 error = EOPNOTSUPP; 382 break; 383 } 384 return (error); 385 } 386 387 static moduledata_t aio_mod = { 388 "aio", 389 &aio_modload, 390 NULL 391 }; 392 393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 394 MODULE_VERSION(aio, 1); 395 396 /* 397 * Startup initialization 398 */ 399 static int 400 aio_onceonly(void) 401 { 402 403 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 404 EVENTHANDLER_PRI_ANY); 405 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 406 NULL, EVENTHANDLER_PRI_ANY); 407 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 408 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 409 TAILQ_INIT(&aio_freeproc); 410 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 411 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 412 TAILQ_INIT(&aio_jobs); 413 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 414 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 415 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 416 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 417 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 418 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 419 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 420 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 421 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 422 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 423 jobrefid = 1; 424 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 425 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 426 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 427 428 return (0); 429 } 430 431 /* 432 * Init the per-process aioinfo structure. The aioinfo limits are set 433 * per-process for user limit (resource) management. 434 */ 435 void 436 aio_init_aioinfo(struct proc *p) 437 { 438 struct kaioinfo *ki; 439 440 ki = uma_zalloc(kaio_zone, M_WAITOK); 441 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 442 ki->kaio_flags = 0; 443 ki->kaio_active_count = 0; 444 ki->kaio_count = 0; 445 ki->kaio_buffer_count = 0; 446 TAILQ_INIT(&ki->kaio_all); 447 TAILQ_INIT(&ki->kaio_done); 448 TAILQ_INIT(&ki->kaio_jobqueue); 449 TAILQ_INIT(&ki->kaio_liojoblist); 450 TAILQ_INIT(&ki->kaio_syncqueue); 451 TAILQ_INIT(&ki->kaio_syncready); 452 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 453 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 454 PROC_LOCK(p); 455 if (p->p_aioinfo == NULL) { 456 p->p_aioinfo = ki; 457 PROC_UNLOCK(p); 458 } else { 459 PROC_UNLOCK(p); 460 mtx_destroy(&ki->kaio_mtx); 461 uma_zfree(kaio_zone, ki); 462 } 463 464 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 465 aio_newproc(NULL); 466 } 467 468 static int 469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 470 { 471 struct thread *td; 472 int error; 473 474 error = sigev_findtd(p, sigev, &td); 475 if (error) 476 return (error); 477 if (!KSI_ONQ(ksi)) { 478 ksiginfo_set_sigev(ksi, sigev); 479 ksi->ksi_code = SI_ASYNCIO; 480 ksi->ksi_flags |= KSI_EXT | KSI_INS; 481 tdsendsignal(p, td, ksi->ksi_signo, ksi); 482 } 483 PROC_UNLOCK(p); 484 return (error); 485 } 486 487 /* 488 * Free a job entry. Wait for completion if it is currently active, but don't 489 * delay forever. If we delay, we return a flag that says that we have to 490 * restart the queue scan. 491 */ 492 static int 493 aio_free_entry(struct kaiocb *job) 494 { 495 struct kaioinfo *ki; 496 struct aioliojob *lj; 497 struct proc *p; 498 499 p = job->userproc; 500 MPASS(curproc == p); 501 ki = p->p_aioinfo; 502 MPASS(ki != NULL); 503 504 AIO_LOCK_ASSERT(ki, MA_OWNED); 505 MPASS(job->jobflags & KAIOCB_FINISHED); 506 507 atomic_subtract_int(&num_queue_count, 1); 508 509 ki->kaio_count--; 510 MPASS(ki->kaio_count >= 0); 511 512 TAILQ_REMOVE(&ki->kaio_done, job, plist); 513 TAILQ_REMOVE(&ki->kaio_all, job, allist); 514 515 lj = job->lio; 516 if (lj) { 517 lj->lioj_count--; 518 lj->lioj_finished_count--; 519 520 if (lj->lioj_count == 0) { 521 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 522 /* lio is going away, we need to destroy any knotes */ 523 knlist_delete(&lj->klist, curthread, 1); 524 PROC_LOCK(p); 525 sigqueue_take(&lj->lioj_ksi); 526 PROC_UNLOCK(p); 527 uma_zfree(aiolio_zone, lj); 528 } 529 } 530 531 /* job is going away, we need to destroy any knotes */ 532 knlist_delete(&job->klist, curthread, 1); 533 PROC_LOCK(p); 534 sigqueue_take(&job->ksi); 535 PROC_UNLOCK(p); 536 537 AIO_UNLOCK(ki); 538 539 /* 540 * The thread argument here is used to find the owning process 541 * and is also passed to fo_close() which may pass it to various 542 * places such as devsw close() routines. Because of that, we 543 * need a thread pointer from the process owning the job that is 544 * persistent and won't disappear out from under us or move to 545 * another process. 546 * 547 * Currently, all the callers of this function call it to remove 548 * a kaiocb from the current process' job list either via a 549 * syscall or due to the current process calling exit() or 550 * execve(). Thus, we know that p == curproc. We also know that 551 * curthread can't exit since we are curthread. 552 * 553 * Therefore, we use curthread as the thread to pass to 554 * knlist_delete(). This does mean that it is possible for the 555 * thread pointer at close time to differ from the thread pointer 556 * at open time, but this is already true of file descriptors in 557 * a multithreaded process. 558 */ 559 if (job->fd_file) 560 fdrop(job->fd_file, curthread); 561 crfree(job->cred); 562 uma_zfree(aiocb_zone, job); 563 AIO_LOCK(ki); 564 565 return (0); 566 } 567 568 static void 569 aio_proc_rundown_exec(void *arg, struct proc *p, 570 struct image_params *imgp __unused) 571 { 572 aio_proc_rundown(arg, p); 573 } 574 575 static int 576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 577 { 578 aio_cancel_fn_t *func; 579 int cancelled; 580 581 AIO_LOCK_ASSERT(ki, MA_OWNED); 582 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 583 return (0); 584 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 585 job->jobflags |= KAIOCB_CANCELLED; 586 587 func = job->cancel_fn; 588 589 /* 590 * If there is no cancel routine, just leave the job marked as 591 * cancelled. The job should be in active use by a caller who 592 * should complete it normally or when it fails to install a 593 * cancel routine. 594 */ 595 if (func == NULL) 596 return (0); 597 598 /* 599 * Set the CANCELLING flag so that aio_complete() will defer 600 * completions of this job. This prevents the job from being 601 * freed out from under the cancel callback. After the 602 * callback any deferred completion (whether from the callback 603 * or any other source) will be completed. 604 */ 605 job->jobflags |= KAIOCB_CANCELLING; 606 AIO_UNLOCK(ki); 607 func(job); 608 AIO_LOCK(ki); 609 job->jobflags &= ~KAIOCB_CANCELLING; 610 if (job->jobflags & KAIOCB_FINISHED) { 611 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 612 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 613 aio_bio_done_notify(p, job); 614 } else { 615 /* 616 * The cancel callback might have scheduled an 617 * operation to cancel this request, but it is 618 * only counted as cancelled if the request is 619 * cancelled when the callback returns. 620 */ 621 cancelled = 0; 622 } 623 return (cancelled); 624 } 625 626 /* 627 * Rundown the jobs for a given process. 628 */ 629 static void 630 aio_proc_rundown(void *arg, struct proc *p) 631 { 632 struct kaioinfo *ki; 633 struct aioliojob *lj; 634 struct kaiocb *job, *jobn; 635 636 KASSERT(curthread->td_proc == p, 637 ("%s: called on non-curproc", __func__)); 638 ki = p->p_aioinfo; 639 if (ki == NULL) 640 return; 641 642 AIO_LOCK(ki); 643 ki->kaio_flags |= KAIO_RUNDOWN; 644 645 restart: 646 647 /* 648 * Try to cancel all pending requests. This code simulates 649 * aio_cancel on all pending I/O requests. 650 */ 651 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 652 aio_cancel_job(p, ki, job); 653 } 654 655 /* Wait for all running I/O to be finished */ 656 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 657 ki->kaio_flags |= KAIO_WAKEUP; 658 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 659 goto restart; 660 } 661 662 /* Free all completed I/O requests. */ 663 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 664 aio_free_entry(job); 665 666 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 667 if (lj->lioj_count == 0) { 668 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 669 knlist_delete(&lj->klist, curthread, 1); 670 PROC_LOCK(p); 671 sigqueue_take(&lj->lioj_ksi); 672 PROC_UNLOCK(p); 673 uma_zfree(aiolio_zone, lj); 674 } else { 675 panic("LIO job not cleaned up: C:%d, FC:%d\n", 676 lj->lioj_count, lj->lioj_finished_count); 677 } 678 } 679 AIO_UNLOCK(ki); 680 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 681 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 682 mtx_destroy(&ki->kaio_mtx); 683 uma_zfree(kaio_zone, ki); 684 p->p_aioinfo = NULL; 685 } 686 687 /* 688 * Select a job to run (called by an AIO daemon). 689 */ 690 static struct kaiocb * 691 aio_selectjob(struct aioproc *aiop) 692 { 693 struct kaiocb *job; 694 struct kaioinfo *ki; 695 struct proc *userp; 696 697 mtx_assert(&aio_job_mtx, MA_OWNED); 698 restart: 699 TAILQ_FOREACH(job, &aio_jobs, list) { 700 userp = job->userproc; 701 ki = userp->p_aioinfo; 702 703 if (ki->kaio_active_count < max_aio_per_proc) { 704 TAILQ_REMOVE(&aio_jobs, job, list); 705 if (!aio_clear_cancel_function(job)) 706 goto restart; 707 708 /* Account for currently active jobs. */ 709 ki->kaio_active_count++; 710 break; 711 } 712 } 713 return (job); 714 } 715 716 /* 717 * Move all data to a permanent storage device. This code 718 * simulates the fsync syscall. 719 */ 720 static int 721 aio_fsync_vnode(struct thread *td, struct vnode *vp) 722 { 723 struct mount *mp; 724 int error; 725 726 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 727 goto drop; 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 if (vp->v_object != NULL) { 730 VM_OBJECT_WLOCK(vp->v_object); 731 vm_object_page_clean(vp->v_object, 0, 0, 0); 732 VM_OBJECT_WUNLOCK(vp->v_object); 733 } 734 error = VOP_FSYNC(vp, MNT_WAIT, td); 735 736 VOP_UNLOCK(vp, 0); 737 vn_finished_write(mp); 738 drop: 739 return (error); 740 } 741 742 /* 743 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 744 * does the I/O request for the non-physio version of the operations. The 745 * normal vn operations are used, and this code should work in all instances 746 * for every type of file, including pipes, sockets, fifos, and regular files. 747 * 748 * XXX I don't think it works well for socket, pipe, and fifo. 749 */ 750 static void 751 aio_process_rw(struct kaiocb *job) 752 { 753 struct ucred *td_savedcred; 754 struct thread *td; 755 struct aiocb *cb; 756 struct file *fp; 757 struct uio auio; 758 struct iovec aiov; 759 ssize_t cnt; 760 long msgsnd_st, msgsnd_end; 761 long msgrcv_st, msgrcv_end; 762 long oublock_st, oublock_end; 763 long inblock_st, inblock_end; 764 int error; 765 766 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 767 job->uaiocb.aio_lio_opcode == LIO_WRITE, 768 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 769 770 aio_switch_vmspace(job); 771 td = curthread; 772 td_savedcred = td->td_ucred; 773 td->td_ucred = job->cred; 774 cb = &job->uaiocb; 775 fp = job->fd_file; 776 777 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 778 aiov.iov_len = cb->aio_nbytes; 779 780 auio.uio_iov = &aiov; 781 auio.uio_iovcnt = 1; 782 auio.uio_offset = cb->aio_offset; 783 auio.uio_resid = cb->aio_nbytes; 784 cnt = cb->aio_nbytes; 785 auio.uio_segflg = UIO_USERSPACE; 786 auio.uio_td = td; 787 788 msgrcv_st = td->td_ru.ru_msgrcv; 789 msgsnd_st = td->td_ru.ru_msgsnd; 790 inblock_st = td->td_ru.ru_inblock; 791 oublock_st = td->td_ru.ru_oublock; 792 793 /* 794 * aio_aqueue() acquires a reference to the file that is 795 * released in aio_free_entry(). 796 */ 797 if (cb->aio_lio_opcode == LIO_READ) { 798 auio.uio_rw = UIO_READ; 799 if (auio.uio_resid == 0) 800 error = 0; 801 else 802 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 803 } else { 804 if (fp->f_type == DTYPE_VNODE) 805 bwillwrite(); 806 auio.uio_rw = UIO_WRITE; 807 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 808 } 809 msgrcv_end = td->td_ru.ru_msgrcv; 810 msgsnd_end = td->td_ru.ru_msgsnd; 811 inblock_end = td->td_ru.ru_inblock; 812 oublock_end = td->td_ru.ru_oublock; 813 814 job->msgrcv = msgrcv_end - msgrcv_st; 815 job->msgsnd = msgsnd_end - msgsnd_st; 816 job->inblock = inblock_end - inblock_st; 817 job->outblock = oublock_end - oublock_st; 818 819 if ((error) && (auio.uio_resid != cnt)) { 820 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 821 error = 0; 822 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 823 PROC_LOCK(job->userproc); 824 kern_psignal(job->userproc, SIGPIPE); 825 PROC_UNLOCK(job->userproc); 826 } 827 } 828 829 cnt -= auio.uio_resid; 830 td->td_ucred = td_savedcred; 831 if (error) 832 aio_complete(job, -1, error); 833 else 834 aio_complete(job, cnt, 0); 835 } 836 837 static void 838 aio_process_sync(struct kaiocb *job) 839 { 840 struct thread *td = curthread; 841 struct ucred *td_savedcred = td->td_ucred; 842 struct file *fp = job->fd_file; 843 int error = 0; 844 845 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 846 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 847 848 td->td_ucred = job->cred; 849 if (fp->f_vnode != NULL) 850 error = aio_fsync_vnode(td, fp->f_vnode); 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL 910 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 913 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 914 } 915 } 916 917 notification_done: 918 if (job->jobflags & KAIOCB_CHECKSYNC) { 919 schedule_fsync = false; 920 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 921 if (job->fd_file != sjob->fd_file || 922 job->seqno >= sjob->seqno) 923 continue; 924 if (--sjob->pending > 0) 925 continue; 926 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 927 if (!aio_clear_cancel_function_locked(sjob)) 928 continue; 929 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 930 schedule_fsync = true; 931 } 932 if (schedule_fsync) 933 taskqueue_enqueue(taskqueue_aiod_kick, 934 &ki->kaio_sync_task); 935 } 936 if (ki->kaio_flags & KAIO_WAKEUP) { 937 ki->kaio_flags &= ~KAIO_WAKEUP; 938 wakeup(&userp->p_aioinfo); 939 } 940 } 941 942 static void 943 aio_schedule_fsync(void *context, int pending) 944 { 945 struct kaioinfo *ki; 946 struct kaiocb *job; 947 948 ki = context; 949 AIO_LOCK(ki); 950 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 951 job = TAILQ_FIRST(&ki->kaio_syncready); 952 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 953 AIO_UNLOCK(ki); 954 aio_schedule(job, aio_process_sync); 955 AIO_LOCK(ki); 956 } 957 AIO_UNLOCK(ki); 958 } 959 960 bool 961 aio_cancel_cleared(struct kaiocb *job) 962 { 963 964 /* 965 * The caller should hold the same queue lock held when 966 * aio_clear_cancel_function() was called and set this flag 967 * ensuring this check sees an up-to-date value. However, 968 * there is no way to assert that. 969 */ 970 return ((job->jobflags & KAIOCB_CLEARED) != 0); 971 } 972 973 static bool 974 aio_clear_cancel_function_locked(struct kaiocb *job) 975 { 976 977 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 978 MPASS(job->cancel_fn != NULL); 979 if (job->jobflags & KAIOCB_CANCELLING) { 980 job->jobflags |= KAIOCB_CLEARED; 981 return (false); 982 } 983 job->cancel_fn = NULL; 984 return (true); 985 } 986 987 bool 988 aio_clear_cancel_function(struct kaiocb *job) 989 { 990 struct kaioinfo *ki; 991 bool ret; 992 993 ki = job->userproc->p_aioinfo; 994 AIO_LOCK(ki); 995 ret = aio_clear_cancel_function_locked(job); 996 AIO_UNLOCK(ki); 997 return (ret); 998 } 999 1000 static bool 1001 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1002 { 1003 1004 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1005 if (job->jobflags & KAIOCB_CANCELLED) 1006 return (false); 1007 job->cancel_fn = func; 1008 return (true); 1009 } 1010 1011 bool 1012 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1013 { 1014 struct kaioinfo *ki; 1015 bool ret; 1016 1017 ki = job->userproc->p_aioinfo; 1018 AIO_LOCK(ki); 1019 ret = aio_set_cancel_function_locked(job, func); 1020 AIO_UNLOCK(ki); 1021 return (ret); 1022 } 1023 1024 void 1025 aio_complete(struct kaiocb *job, long status, int error) 1026 { 1027 struct kaioinfo *ki; 1028 struct proc *userp; 1029 1030 job->uaiocb._aiocb_private.error = error; 1031 job->uaiocb._aiocb_private.status = status; 1032 1033 userp = job->userproc; 1034 ki = userp->p_aioinfo; 1035 1036 AIO_LOCK(ki); 1037 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1038 ("duplicate aio_complete")); 1039 job->jobflags |= KAIOCB_FINISHED; 1040 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1041 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1042 aio_bio_done_notify(userp, job); 1043 } 1044 AIO_UNLOCK(ki); 1045 } 1046 1047 void 1048 aio_cancel(struct kaiocb *job) 1049 { 1050 1051 aio_complete(job, -1, ECANCELED); 1052 } 1053 1054 void 1055 aio_switch_vmspace(struct kaiocb *job) 1056 { 1057 1058 vmspace_switch_aio(job->userproc->p_vmspace); 1059 } 1060 1061 /* 1062 * The AIO daemon, most of the actual work is done in aio_process_*, 1063 * but the setup (and address space mgmt) is done in this routine. 1064 */ 1065 static void 1066 aio_daemon(void *_id) 1067 { 1068 struct kaiocb *job; 1069 struct aioproc *aiop; 1070 struct kaioinfo *ki; 1071 struct proc *p; 1072 struct vmspace *myvm; 1073 struct thread *td = curthread; 1074 int id = (intptr_t)_id; 1075 1076 /* 1077 * Grab an extra reference on the daemon's vmspace so that it 1078 * doesn't get freed by jobs that switch to a different 1079 * vmspace. 1080 */ 1081 p = td->td_proc; 1082 myvm = vmspace_acquire_ref(p); 1083 1084 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1085 1086 /* 1087 * Allocate and ready the aio control info. There is one aiop structure 1088 * per daemon. 1089 */ 1090 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1091 aiop->aioproc = p; 1092 aiop->aioprocflags = 0; 1093 1094 /* 1095 * Wakeup parent process. (Parent sleeps to keep from blasting away 1096 * and creating too many daemons.) 1097 */ 1098 sema_post(&aio_newproc_sem); 1099 1100 mtx_lock(&aio_job_mtx); 1101 for (;;) { 1102 /* 1103 * Take daemon off of free queue 1104 */ 1105 if (aiop->aioprocflags & AIOP_FREE) { 1106 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1107 aiop->aioprocflags &= ~AIOP_FREE; 1108 } 1109 1110 /* 1111 * Check for jobs. 1112 */ 1113 while ((job = aio_selectjob(aiop)) != NULL) { 1114 mtx_unlock(&aio_job_mtx); 1115 1116 ki = job->userproc->p_aioinfo; 1117 job->handle_fn(job); 1118 1119 mtx_lock(&aio_job_mtx); 1120 /* Decrement the active job count. */ 1121 ki->kaio_active_count--; 1122 } 1123 1124 /* 1125 * Disconnect from user address space. 1126 */ 1127 if (p->p_vmspace != myvm) { 1128 mtx_unlock(&aio_job_mtx); 1129 vmspace_switch_aio(myvm); 1130 mtx_lock(&aio_job_mtx); 1131 /* 1132 * We have to restart to avoid race, we only sleep if 1133 * no job can be selected. 1134 */ 1135 continue; 1136 } 1137 1138 mtx_assert(&aio_job_mtx, MA_OWNED); 1139 1140 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1141 aiop->aioprocflags |= AIOP_FREE; 1142 1143 /* 1144 * If daemon is inactive for a long time, allow it to exit, 1145 * thereby freeing resources. 1146 */ 1147 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1148 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1149 (aiop->aioprocflags & AIOP_FREE) && 1150 num_aio_procs > target_aio_procs) 1151 break; 1152 } 1153 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1154 num_aio_procs--; 1155 mtx_unlock(&aio_job_mtx); 1156 uma_zfree(aiop_zone, aiop); 1157 free_unr(aiod_unr, id); 1158 vmspace_free(myvm); 1159 1160 KASSERT(p->p_vmspace == myvm, 1161 ("AIOD: bad vmspace for exiting daemon")); 1162 KASSERT(myvm->vm_refcnt > 1, 1163 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1164 kproc_exit(0); 1165 } 1166 1167 /* 1168 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1169 * AIO daemon modifies its environment itself. 1170 */ 1171 static int 1172 aio_newproc(int *start) 1173 { 1174 int error; 1175 struct proc *p; 1176 int id; 1177 1178 id = alloc_unr(aiod_unr); 1179 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1180 RFNOWAIT, 0, "aiod%d", id); 1181 if (error == 0) { 1182 /* 1183 * Wait until daemon is started. 1184 */ 1185 sema_wait(&aio_newproc_sem); 1186 mtx_lock(&aio_job_mtx); 1187 num_aio_procs++; 1188 if (start != NULL) 1189 (*start)--; 1190 mtx_unlock(&aio_job_mtx); 1191 } else { 1192 free_unr(aiod_unr, id); 1193 } 1194 return (error); 1195 } 1196 1197 /* 1198 * Try the high-performance, low-overhead physio method for eligible 1199 * VCHR devices. This method doesn't use an aio helper thread, and 1200 * thus has very low overhead. 1201 * 1202 * Assumes that the caller, aio_aqueue(), has incremented the file 1203 * structure's reference count, preventing its deallocation for the 1204 * duration of this call. 1205 */ 1206 static int 1207 aio_qphysio(struct proc *p, struct kaiocb *job) 1208 { 1209 struct aiocb *cb; 1210 struct file *fp; 1211 struct bio *bp; 1212 struct buf *pbuf; 1213 struct vnode *vp; 1214 struct cdevsw *csw; 1215 struct cdev *dev; 1216 struct kaioinfo *ki; 1217 int error, ref, poff; 1218 vm_prot_t prot; 1219 1220 cb = &job->uaiocb; 1221 fp = job->fd_file; 1222 1223 if (!(cb->aio_lio_opcode == LIO_WRITE || 1224 cb->aio_lio_opcode == LIO_READ)) 1225 return (-1); 1226 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1227 return (-1); 1228 1229 vp = fp->f_vnode; 1230 if (vp->v_type != VCHR) 1231 return (-1); 1232 if (vp->v_bufobj.bo_bsize == 0) 1233 return (-1); 1234 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1235 return (-1); 1236 1237 ref = 0; 1238 csw = devvn_refthread(vp, &dev, &ref); 1239 if (csw == NULL) 1240 return (ENXIO); 1241 1242 if ((csw->d_flags & D_DISK) == 0) { 1243 error = -1; 1244 goto unref; 1245 } 1246 if (cb->aio_nbytes > dev->si_iosize_max) { 1247 error = -1; 1248 goto unref; 1249 } 1250 1251 ki = p->p_aioinfo; 1252 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1253 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1254 if (cb->aio_nbytes > MAXPHYS) { 1255 error = -1; 1256 goto unref; 1257 } 1258 1259 pbuf = NULL; 1260 } else { 1261 if (cb->aio_nbytes > MAXPHYS - poff) { 1262 error = -1; 1263 goto unref; 1264 } 1265 if (ki->kaio_buffer_count >= max_buf_aio) { 1266 error = EAGAIN; 1267 goto unref; 1268 } 1269 1270 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1271 BUF_KERNPROC(pbuf); 1272 AIO_LOCK(ki); 1273 ki->kaio_buffer_count++; 1274 AIO_UNLOCK(ki); 1275 } 1276 job->bp = bp = g_alloc_bio(); 1277 1278 bp->bio_length = cb->aio_nbytes; 1279 bp->bio_bcount = cb->aio_nbytes; 1280 bp->bio_done = aio_physwakeup; 1281 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1282 bp->bio_offset = cb->aio_offset; 1283 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1284 bp->bio_dev = dev; 1285 bp->bio_caller1 = (void *)job; 1286 1287 prot = VM_PROT_READ; 1288 if (cb->aio_lio_opcode == LIO_READ) 1289 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1290 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1291 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1292 nitems(job->pages)); 1293 if (job->npages < 0) { 1294 error = EFAULT; 1295 goto doerror; 1296 } 1297 if (pbuf != NULL) { 1298 pmap_qenter((vm_offset_t)pbuf->b_data, 1299 job->pages, job->npages); 1300 bp->bio_data = pbuf->b_data + poff; 1301 atomic_add_int(&num_buf_aio, 1); 1302 } else { 1303 bp->bio_ma = job->pages; 1304 bp->bio_ma_n = job->npages; 1305 bp->bio_ma_offset = poff; 1306 bp->bio_data = unmapped_buf; 1307 bp->bio_flags |= BIO_UNMAPPED; 1308 atomic_add_int(&num_unmapped_aio, 1); 1309 } 1310 1311 /* Perform transfer. */ 1312 csw->d_strategy(bp); 1313 dev_relthread(dev, ref); 1314 return (0); 1315 1316 doerror: 1317 if (pbuf != NULL) { 1318 AIO_LOCK(ki); 1319 ki->kaio_buffer_count--; 1320 AIO_UNLOCK(ki); 1321 relpbuf(pbuf, NULL); 1322 job->pbuf = NULL; 1323 } 1324 g_destroy_bio(bp); 1325 job->bp = NULL; 1326 unref: 1327 dev_relthread(dev, ref); 1328 return (error); 1329 } 1330 1331 #ifdef COMPAT_FREEBSD6 1332 static int 1333 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1334 { 1335 1336 /* 1337 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1338 * supported by AIO with the old sigevent structure. 1339 */ 1340 nsig->sigev_notify = osig->sigev_notify; 1341 switch (nsig->sigev_notify) { 1342 case SIGEV_NONE: 1343 break; 1344 case SIGEV_SIGNAL: 1345 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1346 break; 1347 case SIGEV_KEVENT: 1348 nsig->sigev_notify_kqueue = 1349 osig->__sigev_u.__sigev_notify_kqueue; 1350 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1351 break; 1352 default: 1353 return (EINVAL); 1354 } 1355 return (0); 1356 } 1357 1358 static int 1359 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1360 { 1361 struct oaiocb *ojob; 1362 int error; 1363 1364 bzero(kjob, sizeof(struct aiocb)); 1365 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1366 if (error) 1367 return (error); 1368 ojob = (struct oaiocb *)kjob; 1369 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1370 } 1371 #endif 1372 1373 static int 1374 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1375 { 1376 1377 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1378 } 1379 1380 static long 1381 aiocb_fetch_status(struct aiocb *ujob) 1382 { 1383 1384 return (fuword(&ujob->_aiocb_private.status)); 1385 } 1386 1387 static long 1388 aiocb_fetch_error(struct aiocb *ujob) 1389 { 1390 1391 return (fuword(&ujob->_aiocb_private.error)); 1392 } 1393 1394 static int 1395 aiocb_store_status(struct aiocb *ujob, long status) 1396 { 1397 1398 return (suword(&ujob->_aiocb_private.status, status)); 1399 } 1400 1401 static int 1402 aiocb_store_error(struct aiocb *ujob, long error) 1403 { 1404 1405 return (suword(&ujob->_aiocb_private.error, error)); 1406 } 1407 1408 static int 1409 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1410 { 1411 1412 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1413 } 1414 1415 static int 1416 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1417 { 1418 1419 return (suword(ujobp, (long)ujob)); 1420 } 1421 1422 static struct aiocb_ops aiocb_ops = { 1423 .copyin = aiocb_copyin, 1424 .fetch_status = aiocb_fetch_status, 1425 .fetch_error = aiocb_fetch_error, 1426 .store_status = aiocb_store_status, 1427 .store_error = aiocb_store_error, 1428 .store_kernelinfo = aiocb_store_kernelinfo, 1429 .store_aiocb = aiocb_store_aiocb, 1430 }; 1431 1432 #ifdef COMPAT_FREEBSD6 1433 static struct aiocb_ops aiocb_ops_osigevent = { 1434 .copyin = aiocb_copyin_old_sigevent, 1435 .fetch_status = aiocb_fetch_status, 1436 .fetch_error = aiocb_fetch_error, 1437 .store_status = aiocb_store_status, 1438 .store_error = aiocb_store_error, 1439 .store_kernelinfo = aiocb_store_kernelinfo, 1440 .store_aiocb = aiocb_store_aiocb, 1441 }; 1442 #endif 1443 1444 /* 1445 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1446 * technique is done in this code. 1447 */ 1448 int 1449 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1450 int type, struct aiocb_ops *ops) 1451 { 1452 struct proc *p = td->td_proc; 1453 cap_rights_t rights; 1454 struct file *fp; 1455 struct kaiocb *job; 1456 struct kaioinfo *ki; 1457 struct kevent kev; 1458 int opcode; 1459 int error; 1460 int fd, kqfd; 1461 int jid; 1462 u_short evflags; 1463 1464 if (p->p_aioinfo == NULL) 1465 aio_init_aioinfo(p); 1466 1467 ki = p->p_aioinfo; 1468 1469 ops->store_status(ujob, -1); 1470 ops->store_error(ujob, 0); 1471 ops->store_kernelinfo(ujob, -1); 1472 1473 if (num_queue_count >= max_queue_count || 1474 ki->kaio_count >= max_aio_queue_per_proc) { 1475 ops->store_error(ujob, EAGAIN); 1476 return (EAGAIN); 1477 } 1478 1479 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1480 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1481 1482 error = ops->copyin(ujob, &job->uaiocb); 1483 if (error) { 1484 ops->store_error(ujob, error); 1485 uma_zfree(aiocb_zone, job); 1486 return (error); 1487 } 1488 1489 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1490 uma_zfree(aiocb_zone, job); 1491 return (EINVAL); 1492 } 1493 1494 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1495 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1496 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1497 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1498 ops->store_error(ujob, EINVAL); 1499 uma_zfree(aiocb_zone, job); 1500 return (EINVAL); 1501 } 1502 1503 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1504 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1505 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1506 uma_zfree(aiocb_zone, job); 1507 return (EINVAL); 1508 } 1509 1510 ksiginfo_init(&job->ksi); 1511 1512 /* Save userspace address of the job info. */ 1513 job->ujob = ujob; 1514 1515 /* Get the opcode. */ 1516 if (type != LIO_NOP) 1517 job->uaiocb.aio_lio_opcode = type; 1518 opcode = job->uaiocb.aio_lio_opcode; 1519 1520 /* 1521 * Validate the opcode and fetch the file object for the specified 1522 * file descriptor. 1523 * 1524 * XXXRW: Moved the opcode validation up here so that we don't 1525 * retrieve a file descriptor without knowing what the capabiltity 1526 * should be. 1527 */ 1528 fd = job->uaiocb.aio_fildes; 1529 switch (opcode) { 1530 case LIO_WRITE: 1531 error = fget_write(td, fd, 1532 cap_rights_init(&rights, CAP_PWRITE), &fp); 1533 break; 1534 case LIO_READ: 1535 error = fget_read(td, fd, 1536 cap_rights_init(&rights, CAP_PREAD), &fp); 1537 break; 1538 case LIO_SYNC: 1539 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1540 break; 1541 case LIO_MLOCK: 1542 fp = NULL; 1543 break; 1544 case LIO_NOP: 1545 error = fget(td, fd, cap_rights_init(&rights), &fp); 1546 break; 1547 default: 1548 error = EINVAL; 1549 } 1550 if (error) { 1551 uma_zfree(aiocb_zone, job); 1552 ops->store_error(ujob, error); 1553 return (error); 1554 } 1555 1556 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1557 error = EINVAL; 1558 goto aqueue_fail; 1559 } 1560 1561 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1562 job->uaiocb.aio_offset < 0 && 1563 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1564 error = EINVAL; 1565 goto aqueue_fail; 1566 } 1567 1568 job->fd_file = fp; 1569 1570 mtx_lock(&aio_job_mtx); 1571 jid = jobrefid++; 1572 job->seqno = jobseqno++; 1573 mtx_unlock(&aio_job_mtx); 1574 error = ops->store_kernelinfo(ujob, jid); 1575 if (error) { 1576 error = EINVAL; 1577 goto aqueue_fail; 1578 } 1579 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1580 1581 if (opcode == LIO_NOP) { 1582 fdrop(fp, td); 1583 uma_zfree(aiocb_zone, job); 1584 return (0); 1585 } 1586 1587 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1588 goto no_kqueue; 1589 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1590 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1591 error = EINVAL; 1592 goto aqueue_fail; 1593 } 1594 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1595 kev.ident = (uintptr_t)job->ujob; 1596 kev.filter = EVFILT_AIO; 1597 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1598 kev.data = (intptr_t)job; 1599 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1600 error = kqfd_register(kqfd, &kev, td, 1); 1601 if (error) 1602 goto aqueue_fail; 1603 1604 no_kqueue: 1605 1606 ops->store_error(ujob, EINPROGRESS); 1607 job->uaiocb._aiocb_private.error = EINPROGRESS; 1608 job->userproc = p; 1609 job->cred = crhold(td->td_ucred); 1610 job->jobflags = KAIOCB_QUEUEING; 1611 job->lio = lj; 1612 1613 if (opcode == LIO_MLOCK) { 1614 aio_schedule(job, aio_process_mlock); 1615 error = 0; 1616 } else if (fp->f_ops->fo_aio_queue == NULL) 1617 error = aio_queue_file(fp, job); 1618 else 1619 error = fo_aio_queue(fp, job); 1620 if (error) 1621 goto aqueue_fail; 1622 1623 AIO_LOCK(ki); 1624 job->jobflags &= ~KAIOCB_QUEUEING; 1625 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1626 ki->kaio_count++; 1627 if (lj) 1628 lj->lioj_count++; 1629 atomic_add_int(&num_queue_count, 1); 1630 if (job->jobflags & KAIOCB_FINISHED) { 1631 /* 1632 * The queue callback completed the request synchronously. 1633 * The bulk of the completion is deferred in that case 1634 * until this point. 1635 */ 1636 aio_bio_done_notify(p, job); 1637 } else 1638 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1639 AIO_UNLOCK(ki); 1640 return (0); 1641 1642 aqueue_fail: 1643 knlist_delete(&job->klist, curthread, 0); 1644 if (fp) 1645 fdrop(fp, td); 1646 uma_zfree(aiocb_zone, job); 1647 ops->store_error(ujob, error); 1648 return (error); 1649 } 1650 1651 static void 1652 aio_cancel_daemon_job(struct kaiocb *job) 1653 { 1654 1655 mtx_lock(&aio_job_mtx); 1656 if (!aio_cancel_cleared(job)) 1657 TAILQ_REMOVE(&aio_jobs, job, list); 1658 mtx_unlock(&aio_job_mtx); 1659 aio_cancel(job); 1660 } 1661 1662 void 1663 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1664 { 1665 1666 mtx_lock(&aio_job_mtx); 1667 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1668 mtx_unlock(&aio_job_mtx); 1669 aio_cancel(job); 1670 return; 1671 } 1672 job->handle_fn = func; 1673 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1674 aio_kick_nowait(job->userproc); 1675 mtx_unlock(&aio_job_mtx); 1676 } 1677 1678 static void 1679 aio_cancel_sync(struct kaiocb *job) 1680 { 1681 struct kaioinfo *ki; 1682 1683 ki = job->userproc->p_aioinfo; 1684 AIO_LOCK(ki); 1685 if (!aio_cancel_cleared(job)) 1686 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1687 AIO_UNLOCK(ki); 1688 aio_cancel(job); 1689 } 1690 1691 int 1692 aio_queue_file(struct file *fp, struct kaiocb *job) 1693 { 1694 struct kaioinfo *ki; 1695 struct kaiocb *job2; 1696 struct vnode *vp; 1697 struct mount *mp; 1698 int error; 1699 bool safe; 1700 1701 ki = job->userproc->p_aioinfo; 1702 error = aio_qphysio(job->userproc, job); 1703 if (error >= 0) 1704 return (error); 1705 safe = false; 1706 if (fp->f_type == DTYPE_VNODE) { 1707 vp = fp->f_vnode; 1708 if (vp->v_type == VREG || vp->v_type == VDIR) { 1709 mp = fp->f_vnode->v_mount; 1710 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1711 safe = true; 1712 } 1713 } 1714 if (!(safe || enable_aio_unsafe)) { 1715 counted_warning(&unsafe_warningcnt, 1716 "is attempting to use unsafe AIO requests"); 1717 return (EOPNOTSUPP); 1718 } 1719 1720 switch (job->uaiocb.aio_lio_opcode) { 1721 case LIO_READ: 1722 case LIO_WRITE: 1723 aio_schedule(job, aio_process_rw); 1724 error = 0; 1725 break; 1726 case LIO_SYNC: 1727 AIO_LOCK(ki); 1728 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1729 if (job2->fd_file == job->fd_file && 1730 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1731 job2->seqno < job->seqno) { 1732 job2->jobflags |= KAIOCB_CHECKSYNC; 1733 job->pending++; 1734 } 1735 } 1736 if (job->pending != 0) { 1737 if (!aio_set_cancel_function_locked(job, 1738 aio_cancel_sync)) { 1739 AIO_UNLOCK(ki); 1740 aio_cancel(job); 1741 return (0); 1742 } 1743 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1744 AIO_UNLOCK(ki); 1745 return (0); 1746 } 1747 AIO_UNLOCK(ki); 1748 aio_schedule(job, aio_process_sync); 1749 error = 0; 1750 break; 1751 default: 1752 error = EINVAL; 1753 } 1754 return (error); 1755 } 1756 1757 static void 1758 aio_kick_nowait(struct proc *userp) 1759 { 1760 struct kaioinfo *ki = userp->p_aioinfo; 1761 struct aioproc *aiop; 1762 1763 mtx_assert(&aio_job_mtx, MA_OWNED); 1764 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1765 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1766 aiop->aioprocflags &= ~AIOP_FREE; 1767 wakeup(aiop->aioproc); 1768 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1769 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1770 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1771 } 1772 } 1773 1774 static int 1775 aio_kick(struct proc *userp) 1776 { 1777 struct kaioinfo *ki = userp->p_aioinfo; 1778 struct aioproc *aiop; 1779 int error, ret = 0; 1780 1781 mtx_assert(&aio_job_mtx, MA_OWNED); 1782 retryproc: 1783 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1784 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1785 aiop->aioprocflags &= ~AIOP_FREE; 1786 wakeup(aiop->aioproc); 1787 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1788 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1789 num_aio_resv_start++; 1790 mtx_unlock(&aio_job_mtx); 1791 error = aio_newproc(&num_aio_resv_start); 1792 mtx_lock(&aio_job_mtx); 1793 if (error) { 1794 num_aio_resv_start--; 1795 goto retryproc; 1796 } 1797 } else { 1798 ret = -1; 1799 } 1800 return (ret); 1801 } 1802 1803 static void 1804 aio_kick_helper(void *context, int pending) 1805 { 1806 struct proc *userp = context; 1807 1808 mtx_lock(&aio_job_mtx); 1809 while (--pending >= 0) { 1810 if (aio_kick(userp)) 1811 break; 1812 } 1813 mtx_unlock(&aio_job_mtx); 1814 } 1815 1816 /* 1817 * Support the aio_return system call, as a side-effect, kernel resources are 1818 * released. 1819 */ 1820 static int 1821 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1822 { 1823 struct proc *p = td->td_proc; 1824 struct kaiocb *job; 1825 struct kaioinfo *ki; 1826 long status, error; 1827 1828 ki = p->p_aioinfo; 1829 if (ki == NULL) 1830 return (EINVAL); 1831 AIO_LOCK(ki); 1832 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1833 if (job->ujob == ujob) 1834 break; 1835 } 1836 if (job != NULL) { 1837 MPASS(job->jobflags & KAIOCB_FINISHED); 1838 status = job->uaiocb._aiocb_private.status; 1839 error = job->uaiocb._aiocb_private.error; 1840 td->td_retval[0] = status; 1841 td->td_ru.ru_oublock += job->outblock; 1842 td->td_ru.ru_inblock += job->inblock; 1843 td->td_ru.ru_msgsnd += job->msgsnd; 1844 td->td_ru.ru_msgrcv += job->msgrcv; 1845 aio_free_entry(job); 1846 AIO_UNLOCK(ki); 1847 ops->store_error(ujob, error); 1848 ops->store_status(ujob, status); 1849 } else { 1850 error = EINVAL; 1851 AIO_UNLOCK(ki); 1852 } 1853 return (error); 1854 } 1855 1856 int 1857 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1858 { 1859 1860 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1861 } 1862 1863 /* 1864 * Allow a process to wakeup when any of the I/O requests are completed. 1865 */ 1866 static int 1867 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1868 struct timespec *ts) 1869 { 1870 struct proc *p = td->td_proc; 1871 struct timeval atv; 1872 struct kaioinfo *ki; 1873 struct kaiocb *firstjob, *job; 1874 int error, i, timo; 1875 1876 timo = 0; 1877 if (ts) { 1878 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1879 return (EINVAL); 1880 1881 TIMESPEC_TO_TIMEVAL(&atv, ts); 1882 if (itimerfix(&atv)) 1883 return (EINVAL); 1884 timo = tvtohz(&atv); 1885 } 1886 1887 ki = p->p_aioinfo; 1888 if (ki == NULL) 1889 return (EAGAIN); 1890 1891 if (njoblist == 0) 1892 return (0); 1893 1894 AIO_LOCK(ki); 1895 for (;;) { 1896 firstjob = NULL; 1897 error = 0; 1898 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1899 for (i = 0; i < njoblist; i++) { 1900 if (job->ujob == ujoblist[i]) { 1901 if (firstjob == NULL) 1902 firstjob = job; 1903 if (job->jobflags & KAIOCB_FINISHED) 1904 goto RETURN; 1905 } 1906 } 1907 } 1908 /* All tasks were finished. */ 1909 if (firstjob == NULL) 1910 break; 1911 1912 ki->kaio_flags |= KAIO_WAKEUP; 1913 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1914 "aiospn", timo); 1915 if (error == ERESTART) 1916 error = EINTR; 1917 if (error) 1918 break; 1919 } 1920 RETURN: 1921 AIO_UNLOCK(ki); 1922 return (error); 1923 } 1924 1925 int 1926 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1927 { 1928 struct timespec ts, *tsp; 1929 struct aiocb **ujoblist; 1930 int error; 1931 1932 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 1933 return (EINVAL); 1934 1935 if (uap->timeout) { 1936 /* Get timespec struct. */ 1937 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1938 return (error); 1939 tsp = &ts; 1940 } else 1941 tsp = NULL; 1942 1943 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 1944 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1945 if (error == 0) 1946 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1947 free(ujoblist, M_AIOS); 1948 return (error); 1949 } 1950 1951 /* 1952 * aio_cancel cancels any non-physio aio operations not currently in 1953 * progress. 1954 */ 1955 int 1956 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1957 { 1958 struct proc *p = td->td_proc; 1959 struct kaioinfo *ki; 1960 struct kaiocb *job, *jobn; 1961 struct file *fp; 1962 cap_rights_t rights; 1963 int error; 1964 int cancelled = 0; 1965 int notcancelled = 0; 1966 struct vnode *vp; 1967 1968 /* Lookup file object. */ 1969 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1970 if (error) 1971 return (error); 1972 1973 ki = p->p_aioinfo; 1974 if (ki == NULL) 1975 goto done; 1976 1977 if (fp->f_type == DTYPE_VNODE) { 1978 vp = fp->f_vnode; 1979 if (vn_isdisk(vp, &error)) { 1980 fdrop(fp, td); 1981 td->td_retval[0] = AIO_NOTCANCELED; 1982 return (0); 1983 } 1984 } 1985 1986 AIO_LOCK(ki); 1987 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 1988 if ((uap->fd == job->uaiocb.aio_fildes) && 1989 ((uap->aiocbp == NULL) || 1990 (uap->aiocbp == job->ujob))) { 1991 if (aio_cancel_job(p, ki, job)) { 1992 cancelled++; 1993 } else { 1994 notcancelled++; 1995 } 1996 if (uap->aiocbp != NULL) 1997 break; 1998 } 1999 } 2000 AIO_UNLOCK(ki); 2001 2002 done: 2003 fdrop(fp, td); 2004 2005 if (uap->aiocbp != NULL) { 2006 if (cancelled) { 2007 td->td_retval[0] = AIO_CANCELED; 2008 return (0); 2009 } 2010 } 2011 2012 if (notcancelled) { 2013 td->td_retval[0] = AIO_NOTCANCELED; 2014 return (0); 2015 } 2016 2017 if (cancelled) { 2018 td->td_retval[0] = AIO_CANCELED; 2019 return (0); 2020 } 2021 2022 td->td_retval[0] = AIO_ALLDONE; 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * aio_error is implemented in the kernel level for compatibility purposes 2029 * only. For a user mode async implementation, it would be best to do it in 2030 * a userland subroutine. 2031 */ 2032 static int 2033 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2034 { 2035 struct proc *p = td->td_proc; 2036 struct kaiocb *job; 2037 struct kaioinfo *ki; 2038 int status; 2039 2040 ki = p->p_aioinfo; 2041 if (ki == NULL) { 2042 td->td_retval[0] = EINVAL; 2043 return (0); 2044 } 2045 2046 AIO_LOCK(ki); 2047 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2048 if (job->ujob == ujob) { 2049 if (job->jobflags & KAIOCB_FINISHED) 2050 td->td_retval[0] = 2051 job->uaiocb._aiocb_private.error; 2052 else 2053 td->td_retval[0] = EINPROGRESS; 2054 AIO_UNLOCK(ki); 2055 return (0); 2056 } 2057 } 2058 AIO_UNLOCK(ki); 2059 2060 /* 2061 * Hack for failure of aio_aqueue. 2062 */ 2063 status = ops->fetch_status(ujob); 2064 if (status == -1) { 2065 td->td_retval[0] = ops->fetch_error(ujob); 2066 return (0); 2067 } 2068 2069 td->td_retval[0] = EINVAL; 2070 return (0); 2071 } 2072 2073 int 2074 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2075 { 2076 2077 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2078 } 2079 2080 /* syscall - asynchronous read from a file (REALTIME) */ 2081 #ifdef COMPAT_FREEBSD6 2082 int 2083 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2084 { 2085 2086 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2087 &aiocb_ops_osigevent)); 2088 } 2089 #endif 2090 2091 int 2092 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2093 { 2094 2095 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2096 } 2097 2098 /* syscall - asynchronous write to a file (REALTIME) */ 2099 #ifdef COMPAT_FREEBSD6 2100 int 2101 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2102 { 2103 2104 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2105 &aiocb_ops_osigevent)); 2106 } 2107 #endif 2108 2109 int 2110 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2111 { 2112 2113 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2114 } 2115 2116 int 2117 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2118 { 2119 2120 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2121 } 2122 2123 static int 2124 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2125 struct aiocb **acb_list, int nent, struct sigevent *sig, 2126 struct aiocb_ops *ops) 2127 { 2128 struct proc *p = td->td_proc; 2129 struct aiocb *job; 2130 struct kaioinfo *ki; 2131 struct aioliojob *lj; 2132 struct kevent kev; 2133 int error; 2134 int nagain, nerror; 2135 int i; 2136 2137 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2138 return (EINVAL); 2139 2140 if (nent < 0 || nent > max_aio_queue_per_proc) 2141 return (EINVAL); 2142 2143 if (p->p_aioinfo == NULL) 2144 aio_init_aioinfo(p); 2145 2146 ki = p->p_aioinfo; 2147 2148 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2149 lj->lioj_flags = 0; 2150 lj->lioj_count = 0; 2151 lj->lioj_finished_count = 0; 2152 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2153 ksiginfo_init(&lj->lioj_ksi); 2154 2155 /* 2156 * Setup signal. 2157 */ 2158 if (sig && (mode == LIO_NOWAIT)) { 2159 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2160 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2161 /* Assume only new style KEVENT */ 2162 kev.filter = EVFILT_LIO; 2163 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2164 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2165 kev.data = (intptr_t)lj; 2166 /* pass user defined sigval data */ 2167 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2168 error = kqfd_register( 2169 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2170 if (error) { 2171 uma_zfree(aiolio_zone, lj); 2172 return (error); 2173 } 2174 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2175 ; 2176 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2177 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2178 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2179 uma_zfree(aiolio_zone, lj); 2180 return EINVAL; 2181 } 2182 lj->lioj_flags |= LIOJ_SIGNAL; 2183 } else { 2184 uma_zfree(aiolio_zone, lj); 2185 return EINVAL; 2186 } 2187 } 2188 2189 AIO_LOCK(ki); 2190 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2191 /* 2192 * Add extra aiocb count to avoid the lio to be freed 2193 * by other threads doing aio_waitcomplete or aio_return, 2194 * and prevent event from being sent until we have queued 2195 * all tasks. 2196 */ 2197 lj->lioj_count = 1; 2198 AIO_UNLOCK(ki); 2199 2200 /* 2201 * Get pointers to the list of I/O requests. 2202 */ 2203 nagain = 0; 2204 nerror = 0; 2205 for (i = 0; i < nent; i++) { 2206 job = acb_list[i]; 2207 if (job != NULL) { 2208 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2209 if (error == EAGAIN) 2210 nagain++; 2211 else if (error != 0) 2212 nerror++; 2213 } 2214 } 2215 2216 error = 0; 2217 AIO_LOCK(ki); 2218 if (mode == LIO_WAIT) { 2219 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2220 ki->kaio_flags |= KAIO_WAKEUP; 2221 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2222 PRIBIO | PCATCH, "aiospn", 0); 2223 if (error == ERESTART) 2224 error = EINTR; 2225 if (error) 2226 break; 2227 } 2228 } else { 2229 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2230 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2231 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2232 KNOTE_LOCKED(&lj->klist, 1); 2233 } 2234 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2235 == LIOJ_SIGNAL 2236 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2237 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2238 aio_sendsig(p, &lj->lioj_signal, 2239 &lj->lioj_ksi); 2240 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2241 } 2242 } 2243 } 2244 lj->lioj_count--; 2245 if (lj->lioj_count == 0) { 2246 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2247 knlist_delete(&lj->klist, curthread, 1); 2248 PROC_LOCK(p); 2249 sigqueue_take(&lj->lioj_ksi); 2250 PROC_UNLOCK(p); 2251 AIO_UNLOCK(ki); 2252 uma_zfree(aiolio_zone, lj); 2253 } else 2254 AIO_UNLOCK(ki); 2255 2256 if (nerror) 2257 return (EIO); 2258 else if (nagain) 2259 return (EAGAIN); 2260 else 2261 return (error); 2262 } 2263 2264 /* syscall - list directed I/O (REALTIME) */ 2265 #ifdef COMPAT_FREEBSD6 2266 int 2267 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2268 { 2269 struct aiocb **acb_list; 2270 struct sigevent *sigp, sig; 2271 struct osigevent osig; 2272 int error, nent; 2273 2274 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2275 return (EINVAL); 2276 2277 nent = uap->nent; 2278 if (nent < 0 || nent > max_aio_queue_per_proc) 2279 return (EINVAL); 2280 2281 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2282 error = copyin(uap->sig, &osig, sizeof(osig)); 2283 if (error) 2284 return (error); 2285 error = convert_old_sigevent(&osig, &sig); 2286 if (error) 2287 return (error); 2288 sigp = &sig; 2289 } else 2290 sigp = NULL; 2291 2292 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2293 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2294 if (error == 0) 2295 error = kern_lio_listio(td, uap->mode, 2296 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2297 &aiocb_ops_osigevent); 2298 free(acb_list, M_LIO); 2299 return (error); 2300 } 2301 #endif 2302 2303 /* syscall - list directed I/O (REALTIME) */ 2304 int 2305 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2306 { 2307 struct aiocb **acb_list; 2308 struct sigevent *sigp, sig; 2309 int error, nent; 2310 2311 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2312 return (EINVAL); 2313 2314 nent = uap->nent; 2315 if (nent < 0 || nent > max_aio_queue_per_proc) 2316 return (EINVAL); 2317 2318 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2319 error = copyin(uap->sig, &sig, sizeof(sig)); 2320 if (error) 2321 return (error); 2322 sigp = &sig; 2323 } else 2324 sigp = NULL; 2325 2326 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2327 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2328 if (error == 0) 2329 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2330 nent, sigp, &aiocb_ops); 2331 free(acb_list, M_LIO); 2332 return (error); 2333 } 2334 2335 static void 2336 aio_physwakeup(struct bio *bp) 2337 { 2338 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2339 struct proc *userp; 2340 struct kaioinfo *ki; 2341 size_t nbytes; 2342 int error, nblks; 2343 2344 /* Release mapping into kernel space. */ 2345 userp = job->userproc; 2346 ki = userp->p_aioinfo; 2347 if (job->pbuf) { 2348 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2349 relpbuf(job->pbuf, NULL); 2350 job->pbuf = NULL; 2351 atomic_subtract_int(&num_buf_aio, 1); 2352 AIO_LOCK(ki); 2353 ki->kaio_buffer_count--; 2354 AIO_UNLOCK(ki); 2355 } else 2356 atomic_subtract_int(&num_unmapped_aio, 1); 2357 vm_page_unhold_pages(job->pages, job->npages); 2358 2359 bp = job->bp; 2360 job->bp = NULL; 2361 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2362 error = 0; 2363 if (bp->bio_flags & BIO_ERROR) 2364 error = bp->bio_error; 2365 nblks = btodb(nbytes); 2366 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2367 job->outblock += nblks; 2368 else 2369 job->inblock += nblks; 2370 2371 if (error) 2372 aio_complete(job, -1, error); 2373 else 2374 aio_complete(job, nbytes, 0); 2375 2376 g_destroy_bio(bp); 2377 } 2378 2379 /* syscall - wait for the next completion of an aio request */ 2380 static int 2381 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2382 struct timespec *ts, struct aiocb_ops *ops) 2383 { 2384 struct proc *p = td->td_proc; 2385 struct timeval atv; 2386 struct kaioinfo *ki; 2387 struct kaiocb *job; 2388 struct aiocb *ujob; 2389 long error, status; 2390 int timo; 2391 2392 ops->store_aiocb(ujobp, NULL); 2393 2394 if (ts == NULL) { 2395 timo = 0; 2396 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2397 timo = -1; 2398 } else { 2399 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2400 return (EINVAL); 2401 2402 TIMESPEC_TO_TIMEVAL(&atv, ts); 2403 if (itimerfix(&atv)) 2404 return (EINVAL); 2405 timo = tvtohz(&atv); 2406 } 2407 2408 if (p->p_aioinfo == NULL) 2409 aio_init_aioinfo(p); 2410 ki = p->p_aioinfo; 2411 2412 error = 0; 2413 job = NULL; 2414 AIO_LOCK(ki); 2415 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2416 if (timo == -1) { 2417 error = EWOULDBLOCK; 2418 break; 2419 } 2420 ki->kaio_flags |= KAIO_WAKEUP; 2421 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2422 "aiowc", timo); 2423 if (timo && error == ERESTART) 2424 error = EINTR; 2425 if (error) 2426 break; 2427 } 2428 2429 if (job != NULL) { 2430 MPASS(job->jobflags & KAIOCB_FINISHED); 2431 ujob = job->ujob; 2432 status = job->uaiocb._aiocb_private.status; 2433 error = job->uaiocb._aiocb_private.error; 2434 td->td_retval[0] = status; 2435 td->td_ru.ru_oublock += job->outblock; 2436 td->td_ru.ru_inblock += job->inblock; 2437 td->td_ru.ru_msgsnd += job->msgsnd; 2438 td->td_ru.ru_msgrcv += job->msgrcv; 2439 aio_free_entry(job); 2440 AIO_UNLOCK(ki); 2441 ops->store_aiocb(ujobp, ujob); 2442 ops->store_error(ujob, error); 2443 ops->store_status(ujob, status); 2444 } else 2445 AIO_UNLOCK(ki); 2446 2447 return (error); 2448 } 2449 2450 int 2451 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2452 { 2453 struct timespec ts, *tsp; 2454 int error; 2455 2456 if (uap->timeout) { 2457 /* Get timespec struct. */ 2458 error = copyin(uap->timeout, &ts, sizeof(ts)); 2459 if (error) 2460 return (error); 2461 tsp = &ts; 2462 } else 2463 tsp = NULL; 2464 2465 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2466 } 2467 2468 static int 2469 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2470 struct aiocb_ops *ops) 2471 { 2472 2473 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2474 return (EINVAL); 2475 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2476 } 2477 2478 int 2479 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2480 { 2481 2482 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2483 } 2484 2485 /* kqueue attach function */ 2486 static int 2487 filt_aioattach(struct knote *kn) 2488 { 2489 struct kaiocb *job; 2490 2491 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2492 2493 /* 2494 * The job pointer must be validated before using it, so 2495 * registration is restricted to the kernel; the user cannot 2496 * set EV_FLAG1. 2497 */ 2498 if ((kn->kn_flags & EV_FLAG1) == 0) 2499 return (EPERM); 2500 kn->kn_ptr.p_aio = job; 2501 kn->kn_flags &= ~EV_FLAG1; 2502 2503 knlist_add(&job->klist, kn, 0); 2504 2505 return (0); 2506 } 2507 2508 /* kqueue detach function */ 2509 static void 2510 filt_aiodetach(struct knote *kn) 2511 { 2512 struct knlist *knl; 2513 2514 knl = &kn->kn_ptr.p_aio->klist; 2515 knl->kl_lock(knl->kl_lockarg); 2516 if (!knlist_empty(knl)) 2517 knlist_remove(knl, kn, 1); 2518 knl->kl_unlock(knl->kl_lockarg); 2519 } 2520 2521 /* kqueue filter function */ 2522 /*ARGSUSED*/ 2523 static int 2524 filt_aio(struct knote *kn, long hint) 2525 { 2526 struct kaiocb *job = kn->kn_ptr.p_aio; 2527 2528 kn->kn_data = job->uaiocb._aiocb_private.error; 2529 if (!(job->jobflags & KAIOCB_FINISHED)) 2530 return (0); 2531 kn->kn_flags |= EV_EOF; 2532 return (1); 2533 } 2534 2535 /* kqueue attach function */ 2536 static int 2537 filt_lioattach(struct knote *kn) 2538 { 2539 struct aioliojob *lj; 2540 2541 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2542 2543 /* 2544 * The aioliojob pointer must be validated before using it, so 2545 * registration is restricted to the kernel; the user cannot 2546 * set EV_FLAG1. 2547 */ 2548 if ((kn->kn_flags & EV_FLAG1) == 0) 2549 return (EPERM); 2550 kn->kn_ptr.p_lio = lj; 2551 kn->kn_flags &= ~EV_FLAG1; 2552 2553 knlist_add(&lj->klist, kn, 0); 2554 2555 return (0); 2556 } 2557 2558 /* kqueue detach function */ 2559 static void 2560 filt_liodetach(struct knote *kn) 2561 { 2562 struct knlist *knl; 2563 2564 knl = &kn->kn_ptr.p_lio->klist; 2565 knl->kl_lock(knl->kl_lockarg); 2566 if (!knlist_empty(knl)) 2567 knlist_remove(knl, kn, 1); 2568 knl->kl_unlock(knl->kl_lockarg); 2569 } 2570 2571 /* kqueue filter function */ 2572 /*ARGSUSED*/ 2573 static int 2574 filt_lio(struct knote *kn, long hint) 2575 { 2576 struct aioliojob * lj = kn->kn_ptr.p_lio; 2577 2578 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2579 } 2580 2581 #ifdef COMPAT_FREEBSD32 2582 #include <sys/mount.h> 2583 #include <sys/socket.h> 2584 #include <compat/freebsd32/freebsd32.h> 2585 #include <compat/freebsd32/freebsd32_proto.h> 2586 #include <compat/freebsd32/freebsd32_signal.h> 2587 #include <compat/freebsd32/freebsd32_syscall.h> 2588 #include <compat/freebsd32/freebsd32_util.h> 2589 2590 struct __aiocb_private32 { 2591 int32_t status; 2592 int32_t error; 2593 uint32_t kernelinfo; 2594 }; 2595 2596 #ifdef COMPAT_FREEBSD6 2597 typedef struct oaiocb32 { 2598 int aio_fildes; /* File descriptor */ 2599 uint64_t aio_offset __packed; /* File offset for I/O */ 2600 uint32_t aio_buf; /* I/O buffer in process space */ 2601 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2602 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2603 int aio_lio_opcode; /* LIO opcode */ 2604 int aio_reqprio; /* Request priority -- ignored */ 2605 struct __aiocb_private32 _aiocb_private; 2606 } oaiocb32_t; 2607 #endif 2608 2609 typedef struct aiocb32 { 2610 int32_t aio_fildes; /* File descriptor */ 2611 uint64_t aio_offset __packed; /* File offset for I/O */ 2612 uint32_t aio_buf; /* I/O buffer in process space */ 2613 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2614 int __spare__[2]; 2615 uint32_t __spare2__; 2616 int aio_lio_opcode; /* LIO opcode */ 2617 int aio_reqprio; /* Request priority -- ignored */ 2618 struct __aiocb_private32 _aiocb_private; 2619 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2620 } aiocb32_t; 2621 2622 #ifdef COMPAT_FREEBSD6 2623 static int 2624 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2625 { 2626 2627 /* 2628 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2629 * supported by AIO with the old sigevent structure. 2630 */ 2631 CP(*osig, *nsig, sigev_notify); 2632 switch (nsig->sigev_notify) { 2633 case SIGEV_NONE: 2634 break; 2635 case SIGEV_SIGNAL: 2636 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2637 break; 2638 case SIGEV_KEVENT: 2639 nsig->sigev_notify_kqueue = 2640 osig->__sigev_u.__sigev_notify_kqueue; 2641 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2642 break; 2643 default: 2644 return (EINVAL); 2645 } 2646 return (0); 2647 } 2648 2649 static int 2650 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2651 { 2652 struct oaiocb32 job32; 2653 int error; 2654 2655 bzero(kjob, sizeof(struct aiocb)); 2656 error = copyin(ujob, &job32, sizeof(job32)); 2657 if (error) 2658 return (error); 2659 2660 CP(job32, *kjob, aio_fildes); 2661 CP(job32, *kjob, aio_offset); 2662 PTRIN_CP(job32, *kjob, aio_buf); 2663 CP(job32, *kjob, aio_nbytes); 2664 CP(job32, *kjob, aio_lio_opcode); 2665 CP(job32, *kjob, aio_reqprio); 2666 CP(job32, *kjob, _aiocb_private.status); 2667 CP(job32, *kjob, _aiocb_private.error); 2668 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2669 return (convert_old_sigevent32(&job32.aio_sigevent, 2670 &kjob->aio_sigevent)); 2671 } 2672 #endif 2673 2674 static int 2675 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2676 { 2677 struct aiocb32 job32; 2678 int error; 2679 2680 error = copyin(ujob, &job32, sizeof(job32)); 2681 if (error) 2682 return (error); 2683 CP(job32, *kjob, aio_fildes); 2684 CP(job32, *kjob, aio_offset); 2685 PTRIN_CP(job32, *kjob, aio_buf); 2686 CP(job32, *kjob, aio_nbytes); 2687 CP(job32, *kjob, aio_lio_opcode); 2688 CP(job32, *kjob, aio_reqprio); 2689 CP(job32, *kjob, _aiocb_private.status); 2690 CP(job32, *kjob, _aiocb_private.error); 2691 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2692 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2693 } 2694 2695 static long 2696 aiocb32_fetch_status(struct aiocb *ujob) 2697 { 2698 struct aiocb32 *ujob32; 2699 2700 ujob32 = (struct aiocb32 *)ujob; 2701 return (fuword32(&ujob32->_aiocb_private.status)); 2702 } 2703 2704 static long 2705 aiocb32_fetch_error(struct aiocb *ujob) 2706 { 2707 struct aiocb32 *ujob32; 2708 2709 ujob32 = (struct aiocb32 *)ujob; 2710 return (fuword32(&ujob32->_aiocb_private.error)); 2711 } 2712 2713 static int 2714 aiocb32_store_status(struct aiocb *ujob, long status) 2715 { 2716 struct aiocb32 *ujob32; 2717 2718 ujob32 = (struct aiocb32 *)ujob; 2719 return (suword32(&ujob32->_aiocb_private.status, status)); 2720 } 2721 2722 static int 2723 aiocb32_store_error(struct aiocb *ujob, long error) 2724 { 2725 struct aiocb32 *ujob32; 2726 2727 ujob32 = (struct aiocb32 *)ujob; 2728 return (suword32(&ujob32->_aiocb_private.error, error)); 2729 } 2730 2731 static int 2732 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2733 { 2734 struct aiocb32 *ujob32; 2735 2736 ujob32 = (struct aiocb32 *)ujob; 2737 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2738 } 2739 2740 static int 2741 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2742 { 2743 2744 return (suword32(ujobp, (long)ujob)); 2745 } 2746 2747 static struct aiocb_ops aiocb32_ops = { 2748 .copyin = aiocb32_copyin, 2749 .fetch_status = aiocb32_fetch_status, 2750 .fetch_error = aiocb32_fetch_error, 2751 .store_status = aiocb32_store_status, 2752 .store_error = aiocb32_store_error, 2753 .store_kernelinfo = aiocb32_store_kernelinfo, 2754 .store_aiocb = aiocb32_store_aiocb, 2755 }; 2756 2757 #ifdef COMPAT_FREEBSD6 2758 static struct aiocb_ops aiocb32_ops_osigevent = { 2759 .copyin = aiocb32_copyin_old_sigevent, 2760 .fetch_status = aiocb32_fetch_status, 2761 .fetch_error = aiocb32_fetch_error, 2762 .store_status = aiocb32_store_status, 2763 .store_error = aiocb32_store_error, 2764 .store_kernelinfo = aiocb32_store_kernelinfo, 2765 .store_aiocb = aiocb32_store_aiocb, 2766 }; 2767 #endif 2768 2769 int 2770 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2771 { 2772 2773 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2774 } 2775 2776 int 2777 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2778 { 2779 struct timespec32 ts32; 2780 struct timespec ts, *tsp; 2781 struct aiocb **ujoblist; 2782 uint32_t *ujoblist32; 2783 int error, i; 2784 2785 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2786 return (EINVAL); 2787 2788 if (uap->timeout) { 2789 /* Get timespec struct. */ 2790 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2791 return (error); 2792 CP(ts32, ts, tv_sec); 2793 CP(ts32, ts, tv_nsec); 2794 tsp = &ts; 2795 } else 2796 tsp = NULL; 2797 2798 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2799 ujoblist32 = (uint32_t *)ujoblist; 2800 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2801 sizeof(ujoblist32[0])); 2802 if (error == 0) { 2803 for (i = uap->nent - 1; i >= 0; i--) 2804 ujoblist[i] = PTRIN(ujoblist32[i]); 2805 2806 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2807 } 2808 free(ujoblist, M_AIOS); 2809 return (error); 2810 } 2811 2812 int 2813 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2814 { 2815 2816 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2817 } 2818 2819 #ifdef COMPAT_FREEBSD6 2820 int 2821 freebsd6_freebsd32_aio_read(struct thread *td, 2822 struct freebsd6_freebsd32_aio_read_args *uap) 2823 { 2824 2825 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2826 &aiocb32_ops_osigevent)); 2827 } 2828 #endif 2829 2830 int 2831 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2832 { 2833 2834 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2835 &aiocb32_ops)); 2836 } 2837 2838 #ifdef COMPAT_FREEBSD6 2839 int 2840 freebsd6_freebsd32_aio_write(struct thread *td, 2841 struct freebsd6_freebsd32_aio_write_args *uap) 2842 { 2843 2844 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2845 &aiocb32_ops_osigevent)); 2846 } 2847 #endif 2848 2849 int 2850 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2851 { 2852 2853 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2854 &aiocb32_ops)); 2855 } 2856 2857 int 2858 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2859 { 2860 2861 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2862 &aiocb32_ops)); 2863 } 2864 2865 int 2866 freebsd32_aio_waitcomplete(struct thread *td, 2867 struct freebsd32_aio_waitcomplete_args *uap) 2868 { 2869 struct timespec32 ts32; 2870 struct timespec ts, *tsp; 2871 int error; 2872 2873 if (uap->timeout) { 2874 /* Get timespec struct. */ 2875 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2876 if (error) 2877 return (error); 2878 CP(ts32, ts, tv_sec); 2879 CP(ts32, ts, tv_nsec); 2880 tsp = &ts; 2881 } else 2882 tsp = NULL; 2883 2884 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2885 &aiocb32_ops)); 2886 } 2887 2888 int 2889 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2890 { 2891 2892 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2893 &aiocb32_ops)); 2894 } 2895 2896 #ifdef COMPAT_FREEBSD6 2897 int 2898 freebsd6_freebsd32_lio_listio(struct thread *td, 2899 struct freebsd6_freebsd32_lio_listio_args *uap) 2900 { 2901 struct aiocb **acb_list; 2902 struct sigevent *sigp, sig; 2903 struct osigevent32 osig; 2904 uint32_t *acb_list32; 2905 int error, i, nent; 2906 2907 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2908 return (EINVAL); 2909 2910 nent = uap->nent; 2911 if (nent < 0 || nent > max_aio_queue_per_proc) 2912 return (EINVAL); 2913 2914 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2915 error = copyin(uap->sig, &osig, sizeof(osig)); 2916 if (error) 2917 return (error); 2918 error = convert_old_sigevent32(&osig, &sig); 2919 if (error) 2920 return (error); 2921 sigp = &sig; 2922 } else 2923 sigp = NULL; 2924 2925 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2926 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2927 if (error) { 2928 free(acb_list32, M_LIO); 2929 return (error); 2930 } 2931 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2932 for (i = 0; i < nent; i++) 2933 acb_list[i] = PTRIN(acb_list32[i]); 2934 free(acb_list32, M_LIO); 2935 2936 error = kern_lio_listio(td, uap->mode, 2937 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2938 &aiocb32_ops_osigevent); 2939 free(acb_list, M_LIO); 2940 return (error); 2941 } 2942 #endif 2943 2944 int 2945 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2946 { 2947 struct aiocb **acb_list; 2948 struct sigevent *sigp, sig; 2949 struct sigevent32 sig32; 2950 uint32_t *acb_list32; 2951 int error, i, nent; 2952 2953 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2954 return (EINVAL); 2955 2956 nent = uap->nent; 2957 if (nent < 0 || nent > max_aio_queue_per_proc) 2958 return (EINVAL); 2959 2960 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2961 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2962 if (error) 2963 return (error); 2964 error = convert_sigevent32(&sig32, &sig); 2965 if (error) 2966 return (error); 2967 sigp = &sig; 2968 } else 2969 sigp = NULL; 2970 2971 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2972 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2973 if (error) { 2974 free(acb_list32, M_LIO); 2975 return (error); 2976 } 2977 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2978 for (i = 0; i < nent; i++) 2979 acb_list[i] = PTRIN(acb_list32[i]); 2980 free(acb_list32, M_LIO); 2981 2982 error = kern_lio_listio(td, uap->mode, 2983 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2984 &aiocb32_ops); 2985 free(acb_list, M_LIO); 2986 return (error); 2987 } 2988 2989 #endif 2990