1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/protosw.h> 46 #include <sys/sema.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/syscall.h> 50 #include <sys/sysent.h> 51 #include <sys/sysctl.h> 52 #include <sys/sx.h> 53 #include <sys/taskqueue.h> 54 #include <sys/vnode.h> 55 #include <sys/conf.h> 56 #include <sys/event.h> 57 #include <sys/mount.h> 58 59 #include <machine/atomic.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 126 CTLFLAG_RW, &max_aio_procs, 0, 127 "Maximum number of kernel threads to use for handling async IO "); 128 129 static int num_aio_procs = 0; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 131 CTLFLAG_RD, &num_aio_procs, 0, 132 "Number of presently active kernel threads for async IO"); 133 134 /* 135 * The code will adjust the actual number of AIO processes towards this 136 * number when it gets a chance. 137 */ 138 static int target_aio_procs = TARGET_AIO_PROCS; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 140 0, "Preferred number of ready kernel threads for async IO"); 141 142 static int max_queue_count = MAX_AIO_QUEUE; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 144 "Maximum number of aio requests to queue, globally"); 145 146 static int num_queue_count = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 148 "Number of queued aio requests"); 149 150 static int num_buf_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 152 "Number of aio requests presently handled by the buf subsystem"); 153 154 /* Number of async I/O thread in the process of being started */ 155 /* XXX This should be local to aio_aqueue() */ 156 static int num_aio_resv_start = 0; 157 158 static int aiod_timeout; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 160 "Timeout value for synchronous aio operations"); 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int unloadable = 0; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 168 "Allow unload of aio (not recommended)"); 169 170 171 static int max_aio_per_proc = MAX_AIO_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 173 0, "Maximum active aio requests per process (stored in the process)"); 174 175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 177 &max_aio_queue_per_proc, 0, 178 "Maximum queued aio requests per process (stored in the process)"); 179 180 static int max_buf_aio = MAX_BUF_AIO; 181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 182 "Maximum buf aio requests per process (stored in the process)"); 183 184 typedef struct oaiocb { 185 int aio_fildes; /* File descriptor */ 186 off_t aio_offset; /* File offset for I/O */ 187 volatile void *aio_buf; /* I/O buffer in process space */ 188 size_t aio_nbytes; /* Number of bytes for I/O */ 189 struct osigevent aio_sigevent; /* Signal to deliver */ 190 int aio_lio_opcode; /* LIO opcode */ 191 int aio_reqprio; /* Request priority -- ignored */ 192 struct __aiocb_private _aiocb_private; 193 } oaiocb_t; 194 195 /* 196 * Below is a key of locks used to protect each member of struct aiocblist 197 * aioliojob and kaioinfo and any backends. 198 * 199 * * - need not protected 200 * a - locked by kaioinfo lock 201 * b - locked by backend lock, the backend lock can be null in some cases, 202 * for example, BIO belongs to this type, in this case, proc lock is 203 * reused. 204 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 205 */ 206 207 /* 208 * Current, there is only two backends: BIO and generic file I/O. 209 * socket I/O is served by generic file I/O, this is not a good idea, since 210 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 211 * threads, if there is no thread to serve socket I/O, the socket I/O will be 212 * delayed too long or starved, we should create some threads dedicated to 213 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 214 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 215 * structure is not safe because there is race between userland and aio 216 * daemons. 217 */ 218 219 struct aiocblist { 220 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 221 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 222 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 223 int jobflags; /* (a) job flags */ 224 int jobstate; /* (b) job state */ 225 int inputcharge; /* (*) input blockes */ 226 int outputcharge; /* (*) output blockes */ 227 struct buf *bp; /* (*) private to BIO backend, 228 * buffer pointer 229 */ 230 struct proc *userproc; /* (*) user process */ 231 struct ucred *cred; /* (*) active credential when created */ 232 struct file *fd_file; /* (*) pointer to file structure */ 233 struct aioliojob *lio; /* (*) optional lio job */ 234 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 235 struct knlist klist; /* (a) list of knotes */ 236 struct aiocb uaiocb; /* (*) kernel I/O control block */ 237 ksiginfo_t ksi; /* (a) realtime signal info */ 238 struct task biotask; /* (*) private to BIO backend */ 239 uint64_t seqno; /* (*) job number */ 240 int pending; /* (a) number of pending I/O, aio_fsync only */ 241 }; 242 243 /* jobflags */ 244 #define AIOCBLIST_DONE 0x01 245 #define AIOCBLIST_BUFDONE 0x02 246 #define AIOCBLIST_RUNDOWN 0x04 247 #define AIOCBLIST_CHECKSYNC 0x08 248 249 /* 250 * AIO process info 251 */ 252 #define AIOP_FREE 0x1 /* proc on free queue */ 253 254 struct aiothreadlist { 255 int aiothreadflags; /* (c) AIO proc flags */ 256 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 257 struct thread *aiothread; /* (*) the AIO thread */ 258 }; 259 260 /* 261 * data-structure for lio signal management 262 */ 263 struct aioliojob { 264 int lioj_flags; /* (a) listio flags */ 265 int lioj_count; /* (a) listio flags */ 266 int lioj_finished_count; /* (a) listio flags */ 267 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 268 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 269 struct knlist klist; /* (a) list of knotes */ 270 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 271 }; 272 273 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 274 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 275 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 276 277 /* 278 * per process aio data structure 279 */ 280 struct kaioinfo { 281 struct mtx kaio_mtx; /* the lock to protect this struct */ 282 int kaio_flags; /* (a) per process kaio flags */ 283 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 284 int kaio_active_count; /* (c) number of currently used AIOs */ 285 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 286 int kaio_count; /* (a) size of AIO queue */ 287 int kaio_ballowed_count; /* (*) maximum number of buffers */ 288 int kaio_buffer_count; /* (a) number of physio buffers */ 289 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 290 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 291 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 292 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 293 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 294 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 295 * NOT USED YET. 296 */ 297 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 298 struct task kaio_task; /* (*) task to kick aio threads */ 299 }; 300 301 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 302 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 303 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 304 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 305 306 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 307 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 308 309 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 310 static struct sema aio_newproc_sem; 311 static struct mtx aio_job_mtx; 312 static struct mtx aio_sock_mtx; 313 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 314 static struct unrhdr *aiod_unr; 315 316 void aio_init_aioinfo(struct proc *p); 317 static void aio_onceonly(void); 318 static int aio_free_entry(struct aiocblist *aiocbe); 319 static void aio_process(struct aiocblist *aiocbe); 320 static int aio_newproc(int *); 321 int aio_aqueue(struct thread *td, struct aiocb *job, 322 struct aioliojob *lio, int type, int osigev); 323 static void aio_physwakeup(struct buf *bp); 324 static void aio_proc_rundown(void *arg, struct proc *p); 325 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 326 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 327 static void biohelper(void *, int); 328 static void aio_daemon(void *param); 329 static void aio_swake_cb(struct socket *, struct sockbuf *); 330 static int aio_unload(void); 331 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 332 #define DONE_BUF 1 333 #define DONE_QUEUE 2 334 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 335 static int aio_kick(struct proc *userp); 336 static void aio_kick_nowait(struct proc *userp); 337 static void aio_kick_helper(void *context, int pending); 338 static int filt_aioattach(struct knote *kn); 339 static void filt_aiodetach(struct knote *kn); 340 static int filt_aio(struct knote *kn, long hint); 341 static int filt_lioattach(struct knote *kn); 342 static void filt_liodetach(struct knote *kn); 343 static int filt_lio(struct knote *kn, long hint); 344 345 /* 346 * Zones for: 347 * kaio Per process async io info 348 * aiop async io thread data 349 * aiocb async io jobs 350 * aiol list io job pointer - internal to aio_suspend XXX 351 * aiolio list io jobs 352 */ 353 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 354 355 /* kqueue filters for aio */ 356 static struct filterops aio_filtops = 357 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 358 static struct filterops lio_filtops = 359 { 0, filt_lioattach, filt_liodetach, filt_lio }; 360 361 static eventhandler_tag exit_tag, exec_tag; 362 363 TASKQUEUE_DEFINE_THREAD(aiod_bio); 364 365 /* 366 * Main operations function for use as a kernel module. 367 */ 368 static int 369 aio_modload(struct module *module, int cmd, void *arg) 370 { 371 int error = 0; 372 373 switch (cmd) { 374 case MOD_LOAD: 375 aio_onceonly(); 376 break; 377 case MOD_UNLOAD: 378 error = aio_unload(); 379 break; 380 case MOD_SHUTDOWN: 381 break; 382 default: 383 error = EINVAL; 384 break; 385 } 386 return (error); 387 } 388 389 static moduledata_t aio_mod = { 390 "aio", 391 &aio_modload, 392 NULL 393 }; 394 395 SYSCALL_MODULE_HELPER(aio_cancel); 396 SYSCALL_MODULE_HELPER(aio_error); 397 SYSCALL_MODULE_HELPER(aio_fsync); 398 SYSCALL_MODULE_HELPER(aio_read); 399 SYSCALL_MODULE_HELPER(aio_return); 400 SYSCALL_MODULE_HELPER(aio_suspend); 401 SYSCALL_MODULE_HELPER(aio_waitcomplete); 402 SYSCALL_MODULE_HELPER(aio_write); 403 SYSCALL_MODULE_HELPER(lio_listio); 404 SYSCALL_MODULE_HELPER(oaio_read); 405 SYSCALL_MODULE_HELPER(oaio_write); 406 SYSCALL_MODULE_HELPER(olio_listio); 407 408 DECLARE_MODULE(aio, aio_mod, 409 SI_SUB_VFS, SI_ORDER_ANY); 410 MODULE_VERSION(aio, 1); 411 412 /* 413 * Startup initialization 414 */ 415 static void 416 aio_onceonly(void) 417 { 418 419 /* XXX: should probably just use so->callback */ 420 aio_swake = &aio_swake_cb; 421 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 422 EVENTHANDLER_PRI_ANY); 423 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 424 EVENTHANDLER_PRI_ANY); 425 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 426 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 427 TAILQ_INIT(&aio_freeproc); 428 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 429 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 430 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 431 TAILQ_INIT(&aio_jobs); 432 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 433 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 434 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 435 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 436 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 437 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 438 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 439 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 440 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 441 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 442 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 443 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 444 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 445 jobrefid = 1; 446 async_io_version = _POSIX_VERSION; 447 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 448 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 449 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 450 } 451 452 /* 453 * Callback for unload of AIO when used as a module. 454 */ 455 static int 456 aio_unload(void) 457 { 458 int error; 459 460 /* 461 * XXX: no unloads by default, it's too dangerous. 462 * perhaps we could do it if locked out callers and then 463 * did an aio_proc_rundown() on each process. 464 * 465 * jhb: aio_proc_rundown() needs to run on curproc though, 466 * so I don't think that would fly. 467 */ 468 if (!unloadable) 469 return (EOPNOTSUPP); 470 471 error = kqueue_del_filteropts(EVFILT_AIO); 472 if (error) 473 return error; 474 error = kqueue_del_filteropts(EVFILT_LIO); 475 if (error) 476 return error; 477 async_io_version = 0; 478 aio_swake = NULL; 479 taskqueue_free(taskqueue_aiod_bio); 480 delete_unrhdr(aiod_unr); 481 uma_zdestroy(kaio_zone); 482 uma_zdestroy(aiop_zone); 483 uma_zdestroy(aiocb_zone); 484 uma_zdestroy(aiol_zone); 485 uma_zdestroy(aiolio_zone); 486 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 487 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 488 mtx_destroy(&aio_job_mtx); 489 mtx_destroy(&aio_sock_mtx); 490 sema_destroy(&aio_newproc_sem); 491 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 492 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 493 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 494 return (0); 495 } 496 497 /* 498 * Init the per-process aioinfo structure. The aioinfo limits are set 499 * per-process for user limit (resource) management. 500 */ 501 void 502 aio_init_aioinfo(struct proc *p) 503 { 504 struct kaioinfo *ki; 505 506 ki = uma_zalloc(kaio_zone, M_WAITOK); 507 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 508 ki->kaio_flags = 0; 509 ki->kaio_maxactive_count = max_aio_per_proc; 510 ki->kaio_active_count = 0; 511 ki->kaio_qallowed_count = max_aio_queue_per_proc; 512 ki->kaio_count = 0; 513 ki->kaio_ballowed_count = max_buf_aio; 514 ki->kaio_buffer_count = 0; 515 TAILQ_INIT(&ki->kaio_all); 516 TAILQ_INIT(&ki->kaio_done); 517 TAILQ_INIT(&ki->kaio_jobqueue); 518 TAILQ_INIT(&ki->kaio_bufqueue); 519 TAILQ_INIT(&ki->kaio_liojoblist); 520 TAILQ_INIT(&ki->kaio_sockqueue); 521 TAILQ_INIT(&ki->kaio_syncqueue); 522 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 523 PROC_LOCK(p); 524 if (p->p_aioinfo == NULL) { 525 p->p_aioinfo = ki; 526 PROC_UNLOCK(p); 527 } else { 528 PROC_UNLOCK(p); 529 mtx_destroy(&ki->kaio_mtx); 530 uma_zfree(kaio_zone, ki); 531 } 532 533 while (num_aio_procs < target_aio_procs) 534 aio_newproc(NULL); 535 } 536 537 static int 538 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 539 { 540 int ret = 0; 541 542 PROC_LOCK(p); 543 if (!KSI_ONQ(ksi)) { 544 ksi->ksi_code = SI_ASYNCIO; 545 ksi->ksi_flags |= KSI_EXT | KSI_INS; 546 ret = psignal_event(p, sigev, ksi); 547 } 548 PROC_UNLOCK(p); 549 return (ret); 550 } 551 552 /* 553 * Free a job entry. Wait for completion if it is currently active, but don't 554 * delay forever. If we delay, we return a flag that says that we have to 555 * restart the queue scan. 556 */ 557 static int 558 aio_free_entry(struct aiocblist *aiocbe) 559 { 560 struct kaioinfo *ki; 561 struct aioliojob *lj; 562 struct proc *p; 563 564 p = aiocbe->userproc; 565 MPASS(curproc == p); 566 ki = p->p_aioinfo; 567 MPASS(ki != NULL); 568 569 AIO_LOCK_ASSERT(ki, MA_OWNED); 570 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 571 572 atomic_subtract_int(&num_queue_count, 1); 573 574 ki->kaio_count--; 575 MPASS(ki->kaio_count >= 0); 576 577 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 578 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 579 580 lj = aiocbe->lio; 581 if (lj) { 582 lj->lioj_count--; 583 lj->lioj_finished_count--; 584 585 if (lj->lioj_count == 0) { 586 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 587 /* lio is going away, we need to destroy any knotes */ 588 knlist_delete(&lj->klist, curthread, 1); 589 PROC_LOCK(p); 590 sigqueue_take(&lj->lioj_ksi); 591 PROC_UNLOCK(p); 592 uma_zfree(aiolio_zone, lj); 593 } 594 } 595 596 /* aiocbe is going away, we need to destroy any knotes */ 597 knlist_delete(&aiocbe->klist, curthread, 1); 598 PROC_LOCK(p); 599 sigqueue_take(&aiocbe->ksi); 600 PROC_UNLOCK(p); 601 602 MPASS(aiocbe->bp == NULL); 603 aiocbe->jobstate = JOBST_NULL; 604 AIO_UNLOCK(ki); 605 606 /* 607 * The thread argument here is used to find the owning process 608 * and is also passed to fo_close() which may pass it to various 609 * places such as devsw close() routines. Because of that, we 610 * need a thread pointer from the process owning the job that is 611 * persistent and won't disappear out from under us or move to 612 * another process. 613 * 614 * Currently, all the callers of this function call it to remove 615 * an aiocblist from the current process' job list either via a 616 * syscall or due to the current process calling exit() or 617 * execve(). Thus, we know that p == curproc. We also know that 618 * curthread can't exit since we are curthread. 619 * 620 * Therefore, we use curthread as the thread to pass to 621 * knlist_delete(). This does mean that it is possible for the 622 * thread pointer at close time to differ from the thread pointer 623 * at open time, but this is already true of file descriptors in 624 * a multithreaded process. 625 */ 626 fdrop(aiocbe->fd_file, curthread); 627 crfree(aiocbe->cred); 628 uma_zfree(aiocb_zone, aiocbe); 629 AIO_LOCK(ki); 630 631 return (0); 632 } 633 634 static void 635 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 636 { 637 aio_proc_rundown(arg, p); 638 } 639 640 /* 641 * Rundown the jobs for a given process. 642 */ 643 static void 644 aio_proc_rundown(void *arg, struct proc *p) 645 { 646 struct kaioinfo *ki; 647 struct aioliojob *lj; 648 struct aiocblist *cbe, *cbn; 649 struct file *fp; 650 struct socket *so; 651 int remove; 652 653 KASSERT(curthread->td_proc == p, 654 ("%s: called on non-curproc", __func__)); 655 ki = p->p_aioinfo; 656 if (ki == NULL) 657 return; 658 659 AIO_LOCK(ki); 660 ki->kaio_flags |= KAIO_RUNDOWN; 661 662 restart: 663 664 /* 665 * Try to cancel all pending requests. This code simulates 666 * aio_cancel on all pending I/O requests. 667 */ 668 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 669 remove = 0; 670 mtx_lock(&aio_job_mtx); 671 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 672 TAILQ_REMOVE(&aio_jobs, cbe, list); 673 remove = 1; 674 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 675 fp = cbe->fd_file; 676 MPASS(fp->f_type == DTYPE_SOCKET); 677 so = fp->f_data; 678 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 679 remove = 1; 680 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 681 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 682 remove = 1; 683 } 684 mtx_unlock(&aio_job_mtx); 685 686 if (remove) { 687 cbe->jobstate = JOBST_JOBFINISHED; 688 cbe->uaiocb._aiocb_private.status = -1; 689 cbe->uaiocb._aiocb_private.error = ECANCELED; 690 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 691 aio_bio_done_notify(p, cbe, DONE_QUEUE); 692 } 693 } 694 695 /* Wait for all running I/O to be finished */ 696 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 697 TAILQ_FIRST(&ki->kaio_jobqueue)) { 698 ki->kaio_flags |= KAIO_WAKEUP; 699 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 700 goto restart; 701 } 702 703 /* Free all completed I/O requests. */ 704 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 705 aio_free_entry(cbe); 706 707 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 708 if (lj->lioj_count == 0) { 709 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 710 knlist_delete(&lj->klist, curthread, 1); 711 PROC_LOCK(p); 712 sigqueue_take(&lj->lioj_ksi); 713 PROC_UNLOCK(p); 714 uma_zfree(aiolio_zone, lj); 715 } else { 716 panic("LIO job not cleaned up: C:%d, FC:%d\n", 717 lj->lioj_count, lj->lioj_finished_count); 718 } 719 } 720 AIO_UNLOCK(ki); 721 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 722 uma_zfree(kaio_zone, ki); 723 p->p_aioinfo = NULL; 724 } 725 726 /* 727 * Select a job to run (called by an AIO daemon). 728 */ 729 static struct aiocblist * 730 aio_selectjob(struct aiothreadlist *aiop) 731 { 732 struct aiocblist *aiocbe; 733 struct kaioinfo *ki; 734 struct proc *userp; 735 736 mtx_assert(&aio_job_mtx, MA_OWNED); 737 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 738 userp = aiocbe->userproc; 739 ki = userp->p_aioinfo; 740 741 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 742 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 743 /* Account for currently active jobs. */ 744 ki->kaio_active_count++; 745 aiocbe->jobstate = JOBST_JOBRUNNING; 746 break; 747 } 748 } 749 return (aiocbe); 750 } 751 752 /* 753 * Move all data to a permanent storage device, this code 754 * simulates fsync syscall. 755 */ 756 static int 757 aio_fsync_vnode(struct thread *td, struct vnode *vp) 758 { 759 struct mount *mp; 760 int vfslocked; 761 int error; 762 763 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 764 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 765 goto drop; 766 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 767 if (vp->v_object != NULL) { 768 VM_OBJECT_LOCK(vp->v_object); 769 vm_object_page_clean(vp->v_object, 0, 0, 0); 770 VM_OBJECT_UNLOCK(vp->v_object); 771 } 772 error = VOP_FSYNC(vp, MNT_WAIT, td); 773 774 VOP_UNLOCK(vp, 0, td); 775 vn_finished_write(mp); 776 drop: 777 VFS_UNLOCK_GIANT(vfslocked); 778 return (error); 779 } 780 781 /* 782 * The AIO processing activity. This is the code that does the I/O request for 783 * the non-physio version of the operations. The normal vn operations are used, 784 * and this code should work in all instances for every type of file, including 785 * pipes, sockets, fifos, and regular files. 786 * 787 * XXX I don't think it works well for socket, pipe, and fifo. 788 */ 789 static void 790 aio_process(struct aiocblist *aiocbe) 791 { 792 struct ucred *td_savedcred; 793 struct thread *td; 794 struct aiocb *cb; 795 struct file *fp; 796 struct socket *so; 797 struct uio auio; 798 struct iovec aiov; 799 int cnt; 800 int error; 801 int oublock_st, oublock_end; 802 int inblock_st, inblock_end; 803 804 td = curthread; 805 td_savedcred = td->td_ucred; 806 td->td_ucred = aiocbe->cred; 807 cb = &aiocbe->uaiocb; 808 fp = aiocbe->fd_file; 809 810 if (cb->aio_lio_opcode == LIO_SYNC) { 811 error = 0; 812 cnt = 0; 813 if (fp->f_vnode != NULL) 814 error = aio_fsync_vnode(td, fp->f_vnode); 815 cb->_aiocb_private.error = error; 816 cb->_aiocb_private.status = 0; 817 td->td_ucred = td_savedcred; 818 return; 819 } 820 821 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 822 aiov.iov_len = cb->aio_nbytes; 823 824 auio.uio_iov = &aiov; 825 auio.uio_iovcnt = 1; 826 auio.uio_offset = cb->aio_offset; 827 auio.uio_resid = cb->aio_nbytes; 828 cnt = cb->aio_nbytes; 829 auio.uio_segflg = UIO_USERSPACE; 830 auio.uio_td = td; 831 832 inblock_st = td->td_ru.ru_inblock; 833 oublock_st = td->td_ru.ru_oublock; 834 /* 835 * aio_aqueue() acquires a reference to the file that is 836 * released in aio_free_entry(). 837 */ 838 if (cb->aio_lio_opcode == LIO_READ) { 839 auio.uio_rw = UIO_READ; 840 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 841 } else { 842 if (fp->f_type == DTYPE_VNODE) 843 bwillwrite(); 844 auio.uio_rw = UIO_WRITE; 845 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 846 } 847 inblock_end = td->td_ru.ru_inblock; 848 oublock_end = td->td_ru.ru_oublock; 849 850 aiocbe->inputcharge = inblock_end - inblock_st; 851 aiocbe->outputcharge = oublock_end - oublock_st; 852 853 if ((error) && (auio.uio_resid != cnt)) { 854 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 855 error = 0; 856 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 857 int sigpipe = 1; 858 if (fp->f_type == DTYPE_SOCKET) { 859 so = fp->f_data; 860 if (so->so_options & SO_NOSIGPIPE) 861 sigpipe = 0; 862 } 863 if (sigpipe) { 864 PROC_LOCK(aiocbe->userproc); 865 psignal(aiocbe->userproc, SIGPIPE); 866 PROC_UNLOCK(aiocbe->userproc); 867 } 868 } 869 } 870 871 cnt -= auio.uio_resid; 872 cb->_aiocb_private.error = error; 873 cb->_aiocb_private.status = cnt; 874 td->td_ucred = td_savedcred; 875 } 876 877 static void 878 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 879 { 880 struct aioliojob *lj; 881 struct kaioinfo *ki; 882 struct aiocblist *scb, *scbn; 883 int lj_done; 884 885 ki = userp->p_aioinfo; 886 AIO_LOCK_ASSERT(ki, MA_OWNED); 887 lj = aiocbe->lio; 888 lj_done = 0; 889 if (lj) { 890 lj->lioj_finished_count++; 891 if (lj->lioj_count == lj->lioj_finished_count) 892 lj_done = 1; 893 } 894 if (type == DONE_QUEUE) { 895 aiocbe->jobflags |= AIOCBLIST_DONE; 896 } else { 897 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 898 } 899 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 900 aiocbe->jobstate = JOBST_JOBFINISHED; 901 902 if (ki->kaio_flags & KAIO_RUNDOWN) 903 goto notification_done; 904 905 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 906 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 907 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 908 909 KNOTE_LOCKED(&aiocbe->klist, 1); 910 911 if (lj_done) { 912 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 913 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 914 KNOTE_LOCKED(&lj->klist, 1); 915 } 916 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 917 == LIOJ_SIGNAL 918 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 919 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 920 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 921 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 922 } 923 } 924 925 notification_done: 926 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 927 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 928 if (aiocbe->fd_file == scb->fd_file && 929 aiocbe->seqno < scb->seqno) { 930 if (--scb->pending == 0) { 931 mtx_lock(&aio_job_mtx); 932 scb->jobstate = JOBST_JOBQGLOBAL; 933 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 934 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 935 aio_kick_nowait(userp); 936 mtx_unlock(&aio_job_mtx); 937 } 938 } 939 } 940 } 941 if (ki->kaio_flags & KAIO_WAKEUP) { 942 ki->kaio_flags &= ~KAIO_WAKEUP; 943 wakeup(&userp->p_aioinfo); 944 } 945 } 946 947 /* 948 * The AIO daemon, most of the actual work is done in aio_process, 949 * but the setup (and address space mgmt) is done in this routine. 950 */ 951 static void 952 aio_daemon(void *_id) 953 { 954 struct aiocblist *aiocbe; 955 struct aiothreadlist *aiop; 956 struct kaioinfo *ki; 957 struct proc *curcp, *mycp, *userp; 958 struct vmspace *myvm, *tmpvm; 959 struct thread *td = curthread; 960 int id = (intptr_t)_id; 961 962 /* 963 * Local copies of curproc (cp) and vmspace (myvm) 964 */ 965 mycp = td->td_proc; 966 myvm = mycp->p_vmspace; 967 968 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 969 970 /* 971 * Allocate and ready the aio control info. There is one aiop structure 972 * per daemon. 973 */ 974 aiop = uma_zalloc(aiop_zone, M_WAITOK); 975 aiop->aiothread = td; 976 aiop->aiothreadflags = 0; 977 978 /* The daemon resides in its own pgrp. */ 979 setsid(td, NULL); 980 981 /* 982 * Wakeup parent process. (Parent sleeps to keep from blasting away 983 * and creating too many daemons.) 984 */ 985 sema_post(&aio_newproc_sem); 986 987 mtx_lock(&aio_job_mtx); 988 for (;;) { 989 /* 990 * curcp is the current daemon process context. 991 * userp is the current user process context. 992 */ 993 curcp = mycp; 994 995 /* 996 * Take daemon off of free queue 997 */ 998 if (aiop->aiothreadflags & AIOP_FREE) { 999 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1000 aiop->aiothreadflags &= ~AIOP_FREE; 1001 } 1002 1003 /* 1004 * Check for jobs. 1005 */ 1006 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1007 mtx_unlock(&aio_job_mtx); 1008 userp = aiocbe->userproc; 1009 1010 /* 1011 * Connect to process address space for user program. 1012 */ 1013 if (userp != curcp) { 1014 /* 1015 * Save the current address space that we are 1016 * connected to. 1017 */ 1018 tmpvm = mycp->p_vmspace; 1019 1020 /* 1021 * Point to the new user address space, and 1022 * refer to it. 1023 */ 1024 mycp->p_vmspace = userp->p_vmspace; 1025 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1026 1027 /* Activate the new mapping. */ 1028 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1029 1030 /* 1031 * If the old address space wasn't the daemons 1032 * own address space, then we need to remove the 1033 * daemon's reference from the other process 1034 * that it was acting on behalf of. 1035 */ 1036 if (tmpvm != myvm) { 1037 vmspace_free(tmpvm); 1038 } 1039 curcp = userp; 1040 } 1041 1042 ki = userp->p_aioinfo; 1043 1044 /* Do the I/O function. */ 1045 aio_process(aiocbe); 1046 1047 mtx_lock(&aio_job_mtx); 1048 /* Decrement the active job count. */ 1049 ki->kaio_active_count--; 1050 mtx_unlock(&aio_job_mtx); 1051 1052 AIO_LOCK(ki); 1053 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1054 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1055 AIO_UNLOCK(ki); 1056 1057 mtx_lock(&aio_job_mtx); 1058 } 1059 1060 /* 1061 * Disconnect from user address space. 1062 */ 1063 if (curcp != mycp) { 1064 1065 mtx_unlock(&aio_job_mtx); 1066 1067 /* Get the user address space to disconnect from. */ 1068 tmpvm = mycp->p_vmspace; 1069 1070 /* Get original address space for daemon. */ 1071 mycp->p_vmspace = myvm; 1072 1073 /* Activate the daemon's address space. */ 1074 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1075 #ifdef DIAGNOSTIC 1076 if (tmpvm == myvm) { 1077 printf("AIOD: vmspace problem -- %d\n", 1078 mycp->p_pid); 1079 } 1080 #endif 1081 /* Remove our vmspace reference. */ 1082 vmspace_free(tmpvm); 1083 1084 curcp = mycp; 1085 1086 mtx_lock(&aio_job_mtx); 1087 /* 1088 * We have to restart to avoid race, we only sleep if 1089 * no job can be selected, that should be 1090 * curcp == mycp. 1091 */ 1092 continue; 1093 } 1094 1095 mtx_assert(&aio_job_mtx, MA_OWNED); 1096 1097 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1098 aiop->aiothreadflags |= AIOP_FREE; 1099 1100 /* 1101 * If daemon is inactive for a long time, allow it to exit, 1102 * thereby freeing resources. 1103 */ 1104 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1105 aiod_lifetime)) { 1106 if (TAILQ_EMPTY(&aio_jobs)) { 1107 if ((aiop->aiothreadflags & AIOP_FREE) && 1108 (num_aio_procs > target_aio_procs)) { 1109 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1110 num_aio_procs--; 1111 mtx_unlock(&aio_job_mtx); 1112 uma_zfree(aiop_zone, aiop); 1113 free_unr(aiod_unr, id); 1114 #ifdef DIAGNOSTIC 1115 if (mycp->p_vmspace->vm_refcnt <= 1) { 1116 printf("AIOD: bad vm refcnt for" 1117 " exiting daemon: %d\n", 1118 mycp->p_vmspace->vm_refcnt); 1119 } 1120 #endif 1121 kthread_exit(0); 1122 } 1123 } 1124 } 1125 } 1126 mtx_unlock(&aio_job_mtx); 1127 panic("shouldn't be here\n"); 1128 } 1129 1130 /* 1131 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1132 * AIO daemon modifies its environment itself. 1133 */ 1134 static int 1135 aio_newproc(int *start) 1136 { 1137 int error; 1138 struct proc *p; 1139 int id; 1140 1141 id = alloc_unr(aiod_unr); 1142 error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p, 1143 RFNOWAIT, 0, "aiod%d", id); 1144 if (error == 0) { 1145 /* 1146 * Wait until daemon is started. 1147 */ 1148 sema_wait(&aio_newproc_sem); 1149 mtx_lock(&aio_job_mtx); 1150 num_aio_procs++; 1151 if (start != NULL) 1152 (*start)--; 1153 mtx_unlock(&aio_job_mtx); 1154 } else { 1155 free_unr(aiod_unr, id); 1156 } 1157 return (error); 1158 } 1159 1160 /* 1161 * Try the high-performance, low-overhead physio method for eligible 1162 * VCHR devices. This method doesn't use an aio helper thread, and 1163 * thus has very low overhead. 1164 * 1165 * Assumes that the caller, aio_aqueue(), has incremented the file 1166 * structure's reference count, preventing its deallocation for the 1167 * duration of this call. 1168 */ 1169 static int 1170 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1171 { 1172 struct aiocb *cb; 1173 struct file *fp; 1174 struct buf *bp; 1175 struct vnode *vp; 1176 struct kaioinfo *ki; 1177 struct aioliojob *lj; 1178 int error; 1179 1180 cb = &aiocbe->uaiocb; 1181 fp = aiocbe->fd_file; 1182 1183 if (fp->f_type != DTYPE_VNODE) 1184 return (-1); 1185 1186 vp = fp->f_vnode; 1187 1188 /* 1189 * If its not a disk, we don't want to return a positive error. 1190 * It causes the aio code to not fall through to try the thread 1191 * way when you're talking to a regular file. 1192 */ 1193 if (!vn_isdisk(vp, &error)) { 1194 if (error == ENOTBLK) 1195 return (-1); 1196 else 1197 return (error); 1198 } 1199 1200 if (vp->v_bufobj.bo_bsize == 0) 1201 return (-1); 1202 1203 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1204 return (-1); 1205 1206 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1207 return (-1); 1208 1209 if (cb->aio_nbytes > 1210 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1211 return (-1); 1212 1213 ki = p->p_aioinfo; 1214 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1215 return (-1); 1216 1217 /* Create and build a buffer header for a transfer. */ 1218 bp = (struct buf *)getpbuf(NULL); 1219 BUF_KERNPROC(bp); 1220 1221 AIO_LOCK(ki); 1222 ki->kaio_count++; 1223 ki->kaio_buffer_count++; 1224 lj = aiocbe->lio; 1225 if (lj) 1226 lj->lioj_count++; 1227 AIO_UNLOCK(ki); 1228 1229 /* 1230 * Get a copy of the kva from the physical buffer. 1231 */ 1232 error = 0; 1233 1234 bp->b_bcount = cb->aio_nbytes; 1235 bp->b_bufsize = cb->aio_nbytes; 1236 bp->b_iodone = aio_physwakeup; 1237 bp->b_saveaddr = bp->b_data; 1238 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1239 bp->b_offset = cb->aio_offset; 1240 bp->b_iooffset = cb->aio_offset; 1241 bp->b_blkno = btodb(cb->aio_offset); 1242 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1243 1244 /* 1245 * Bring buffer into kernel space. 1246 */ 1247 if (vmapbuf(bp) < 0) { 1248 error = EFAULT; 1249 goto doerror; 1250 } 1251 1252 AIO_LOCK(ki); 1253 aiocbe->bp = bp; 1254 bp->b_caller1 = (void *)aiocbe; 1255 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1256 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1257 aiocbe->jobstate = JOBST_JOBQBUF; 1258 cb->_aiocb_private.status = cb->aio_nbytes; 1259 AIO_UNLOCK(ki); 1260 1261 atomic_add_int(&num_queue_count, 1); 1262 atomic_add_int(&num_buf_aio, 1); 1263 1264 bp->b_error = 0; 1265 1266 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1267 1268 /* Perform transfer. */ 1269 dev_strategy(vp->v_rdev, bp); 1270 return (0); 1271 1272 doerror: 1273 AIO_LOCK(ki); 1274 ki->kaio_count--; 1275 ki->kaio_buffer_count--; 1276 if (lj) 1277 lj->lioj_count--; 1278 aiocbe->bp = NULL; 1279 AIO_UNLOCK(ki); 1280 relpbuf(bp, NULL); 1281 return (error); 1282 } 1283 1284 /* 1285 * Wake up aio requests that may be serviceable now. 1286 */ 1287 static void 1288 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1289 { 1290 struct aiocblist *cb, *cbn; 1291 int opcode; 1292 1293 if (sb == &so->so_snd) 1294 opcode = LIO_WRITE; 1295 else 1296 opcode = LIO_READ; 1297 1298 SOCKBUF_LOCK(sb); 1299 sb->sb_flags &= ~SB_AIO; 1300 mtx_lock(&aio_job_mtx); 1301 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1302 if (opcode == cb->uaiocb.aio_lio_opcode) { 1303 if (cb->jobstate != JOBST_JOBQSOCK) 1304 panic("invalid queue value"); 1305 /* XXX 1306 * We don't have actual sockets backend yet, 1307 * so we simply move the requests to the generic 1308 * file I/O backend. 1309 */ 1310 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1311 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1312 aio_kick_nowait(cb->userproc); 1313 } 1314 } 1315 mtx_unlock(&aio_job_mtx); 1316 SOCKBUF_UNLOCK(sb); 1317 } 1318 1319 /* 1320 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1321 * technique is done in this code. 1322 */ 1323 int 1324 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1325 int type, int oldsigev) 1326 { 1327 struct proc *p = td->td_proc; 1328 struct file *fp; 1329 struct socket *so; 1330 struct aiocblist *aiocbe, *cb; 1331 struct kaioinfo *ki; 1332 struct kevent kev; 1333 struct sockbuf *sb; 1334 int opcode; 1335 int error; 1336 int fd, kqfd; 1337 int jid; 1338 1339 if (p->p_aioinfo == NULL) 1340 aio_init_aioinfo(p); 1341 1342 ki = p->p_aioinfo; 1343 1344 suword(&job->_aiocb_private.status, -1); 1345 suword(&job->_aiocb_private.error, 0); 1346 suword(&job->_aiocb_private.kernelinfo, -1); 1347 1348 if (num_queue_count >= max_queue_count || 1349 ki->kaio_count >= ki->kaio_qallowed_count) { 1350 suword(&job->_aiocb_private.error, EAGAIN); 1351 return (EAGAIN); 1352 } 1353 1354 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1355 aiocbe->inputcharge = 0; 1356 aiocbe->outputcharge = 0; 1357 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1358 1359 if (oldsigev) { 1360 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1361 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1362 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1363 sizeof(struct osigevent)); 1364 } else { 1365 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1366 } 1367 if (error) { 1368 suword(&job->_aiocb_private.error, error); 1369 uma_zfree(aiocb_zone, aiocbe); 1370 return (error); 1371 } 1372 1373 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1374 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1375 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1376 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1377 suword(&job->_aiocb_private.error, EINVAL); 1378 uma_zfree(aiocb_zone, aiocbe); 1379 return (EINVAL); 1380 } 1381 1382 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1383 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1384 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1385 uma_zfree(aiocb_zone, aiocbe); 1386 return (EINVAL); 1387 } 1388 1389 ksiginfo_init(&aiocbe->ksi); 1390 1391 /* Save userspace address of the job info. */ 1392 aiocbe->uuaiocb = job; 1393 1394 /* Get the opcode. */ 1395 if (type != LIO_NOP) 1396 aiocbe->uaiocb.aio_lio_opcode = type; 1397 opcode = aiocbe->uaiocb.aio_lio_opcode; 1398 1399 /* Fetch the file object for the specified file descriptor. */ 1400 fd = aiocbe->uaiocb.aio_fildes; 1401 switch (opcode) { 1402 case LIO_WRITE: 1403 error = fget_write(td, fd, &fp); 1404 break; 1405 case LIO_READ: 1406 error = fget_read(td, fd, &fp); 1407 break; 1408 default: 1409 error = fget(td, fd, &fp); 1410 } 1411 if (error) { 1412 uma_zfree(aiocb_zone, aiocbe); 1413 suword(&job->_aiocb_private.error, error); 1414 return (error); 1415 } 1416 1417 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1418 error = EINVAL; 1419 goto aqueue_fail; 1420 } 1421 1422 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1423 error = EINVAL; 1424 goto aqueue_fail; 1425 } 1426 1427 aiocbe->fd_file = fp; 1428 1429 mtx_lock(&aio_job_mtx); 1430 jid = jobrefid++; 1431 aiocbe->seqno = jobseqno++; 1432 mtx_unlock(&aio_job_mtx); 1433 error = suword(&job->_aiocb_private.kernelinfo, jid); 1434 if (error) { 1435 error = EINVAL; 1436 goto aqueue_fail; 1437 } 1438 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1439 1440 if (opcode == LIO_NOP) { 1441 fdrop(fp, td); 1442 uma_zfree(aiocb_zone, aiocbe); 1443 return (0); 1444 } 1445 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1446 (opcode != LIO_SYNC)) { 1447 error = EINVAL; 1448 goto aqueue_fail; 1449 } 1450 1451 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1452 goto no_kqueue; 1453 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1454 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1455 kev.filter = EVFILT_AIO; 1456 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1457 kev.data = (intptr_t)aiocbe; 1458 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1459 error = kqfd_register(kqfd, &kev, td, 1); 1460 aqueue_fail: 1461 if (error) { 1462 fdrop(fp, td); 1463 uma_zfree(aiocb_zone, aiocbe); 1464 suword(&job->_aiocb_private.error, error); 1465 goto done; 1466 } 1467 no_kqueue: 1468 1469 suword(&job->_aiocb_private.error, EINPROGRESS); 1470 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1471 aiocbe->userproc = p; 1472 aiocbe->cred = crhold(td->td_ucred); 1473 aiocbe->jobflags = 0; 1474 aiocbe->lio = lj; 1475 1476 if (opcode == LIO_SYNC) 1477 goto queueit; 1478 1479 if (fp->f_type == DTYPE_SOCKET) { 1480 /* 1481 * Alternate queueing for socket ops: Reach down into the 1482 * descriptor to get the socket data. Then check to see if the 1483 * socket is ready to be read or written (based on the requested 1484 * operation). 1485 * 1486 * If it is not ready for io, then queue the aiocbe on the 1487 * socket, and set the flags so we get a call when sbnotify() 1488 * happens. 1489 * 1490 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1491 * and unlock the snd sockbuf for no reason. 1492 */ 1493 so = fp->f_data; 1494 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1495 SOCKBUF_LOCK(sb); 1496 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1497 LIO_WRITE) && (!sowriteable(so)))) { 1498 sb->sb_flags |= SB_AIO; 1499 1500 mtx_lock(&aio_job_mtx); 1501 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1502 mtx_unlock(&aio_job_mtx); 1503 1504 AIO_LOCK(ki); 1505 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1506 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1507 aiocbe->jobstate = JOBST_JOBQSOCK; 1508 ki->kaio_count++; 1509 if (lj) 1510 lj->lioj_count++; 1511 AIO_UNLOCK(ki); 1512 SOCKBUF_UNLOCK(sb); 1513 atomic_add_int(&num_queue_count, 1); 1514 error = 0; 1515 goto done; 1516 } 1517 SOCKBUF_UNLOCK(sb); 1518 } 1519 1520 if ((error = aio_qphysio(p, aiocbe)) == 0) 1521 goto done; 1522 #if 0 1523 if (error > 0) { 1524 aiocbe->uaiocb._aiocb_private.error = error; 1525 suword(&job->_aiocb_private.error, error); 1526 goto done; 1527 } 1528 #endif 1529 queueit: 1530 /* No buffer for daemon I/O. */ 1531 aiocbe->bp = NULL; 1532 atomic_add_int(&num_queue_count, 1); 1533 1534 AIO_LOCK(ki); 1535 ki->kaio_count++; 1536 if (lj) 1537 lj->lioj_count++; 1538 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1539 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1540 if (opcode == LIO_SYNC) { 1541 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1542 if (cb->fd_file == aiocbe->fd_file && 1543 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1544 cb->seqno < aiocbe->seqno) { 1545 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1546 aiocbe->pending++; 1547 } 1548 } 1549 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1550 if (cb->fd_file == aiocbe->fd_file && 1551 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1552 cb->seqno < aiocbe->seqno) { 1553 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1554 aiocbe->pending++; 1555 } 1556 } 1557 if (aiocbe->pending != 0) { 1558 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1559 aiocbe->jobstate = JOBST_JOBQSYNC; 1560 AIO_UNLOCK(ki); 1561 goto done; 1562 } 1563 } 1564 mtx_lock(&aio_job_mtx); 1565 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1566 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1567 aio_kick_nowait(p); 1568 mtx_unlock(&aio_job_mtx); 1569 AIO_UNLOCK(ki); 1570 error = 0; 1571 done: 1572 return (error); 1573 } 1574 1575 static void 1576 aio_kick_nowait(struct proc *userp) 1577 { 1578 struct kaioinfo *ki = userp->p_aioinfo; 1579 struct aiothreadlist *aiop; 1580 1581 mtx_assert(&aio_job_mtx, MA_OWNED); 1582 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1583 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1584 aiop->aiothreadflags &= ~AIOP_FREE; 1585 wakeup(aiop->aiothread); 1586 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1587 ((ki->kaio_active_count + num_aio_resv_start) < 1588 ki->kaio_maxactive_count)) { 1589 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1590 } 1591 } 1592 1593 static int 1594 aio_kick(struct proc *userp) 1595 { 1596 struct kaioinfo *ki = userp->p_aioinfo; 1597 struct aiothreadlist *aiop; 1598 int error, ret = 0; 1599 1600 mtx_assert(&aio_job_mtx, MA_OWNED); 1601 retryproc: 1602 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1603 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1604 aiop->aiothreadflags &= ~AIOP_FREE; 1605 wakeup(aiop->aiothread); 1606 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1607 ((ki->kaio_active_count + num_aio_resv_start) < 1608 ki->kaio_maxactive_count)) { 1609 num_aio_resv_start++; 1610 mtx_unlock(&aio_job_mtx); 1611 error = aio_newproc(&num_aio_resv_start); 1612 mtx_lock(&aio_job_mtx); 1613 if (error) { 1614 num_aio_resv_start--; 1615 goto retryproc; 1616 } 1617 } else { 1618 ret = -1; 1619 } 1620 return (ret); 1621 } 1622 1623 static void 1624 aio_kick_helper(void *context, int pending) 1625 { 1626 struct proc *userp = context; 1627 1628 mtx_lock(&aio_job_mtx); 1629 while (--pending >= 0) { 1630 if (aio_kick(userp)) 1631 break; 1632 } 1633 mtx_unlock(&aio_job_mtx); 1634 } 1635 1636 /* 1637 * Support the aio_return system call, as a side-effect, kernel resources are 1638 * released. 1639 */ 1640 int 1641 aio_return(struct thread *td, struct aio_return_args *uap) 1642 { 1643 struct proc *p = td->td_proc; 1644 struct aiocblist *cb; 1645 struct aiocb *uaiocb; 1646 struct kaioinfo *ki; 1647 int status, error; 1648 1649 ki = p->p_aioinfo; 1650 if (ki == NULL) 1651 return (EINVAL); 1652 uaiocb = uap->aiocbp; 1653 AIO_LOCK(ki); 1654 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1655 if (cb->uuaiocb == uaiocb) 1656 break; 1657 } 1658 if (cb != NULL) { 1659 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1660 status = cb->uaiocb._aiocb_private.status; 1661 error = cb->uaiocb._aiocb_private.error; 1662 td->td_retval[0] = status; 1663 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1664 td->td_ru.ru_oublock += cb->outputcharge; 1665 cb->outputcharge = 0; 1666 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1667 td->td_ru.ru_inblock += cb->inputcharge; 1668 cb->inputcharge = 0; 1669 } 1670 aio_free_entry(cb); 1671 AIO_UNLOCK(ki); 1672 suword(&uaiocb->_aiocb_private.error, error); 1673 suword(&uaiocb->_aiocb_private.status, status); 1674 } else { 1675 error = EINVAL; 1676 AIO_UNLOCK(ki); 1677 } 1678 return (error); 1679 } 1680 1681 /* 1682 * Allow a process to wakeup when any of the I/O requests are completed. 1683 */ 1684 int 1685 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1686 { 1687 struct proc *p = td->td_proc; 1688 struct timeval atv; 1689 struct timespec ts; 1690 struct aiocb *const *cbptr, *cbp; 1691 struct kaioinfo *ki; 1692 struct aiocblist *cb, *cbfirst; 1693 struct aiocb **ujoblist; 1694 int njoblist; 1695 int error; 1696 int timo; 1697 int i; 1698 1699 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1700 return (EINVAL); 1701 1702 timo = 0; 1703 if (uap->timeout) { 1704 /* Get timespec struct. */ 1705 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1706 return (error); 1707 1708 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1709 return (EINVAL); 1710 1711 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1712 if (itimerfix(&atv)) 1713 return (EINVAL); 1714 timo = tvtohz(&atv); 1715 } 1716 1717 ki = p->p_aioinfo; 1718 if (ki == NULL) 1719 return (EAGAIN); 1720 1721 njoblist = 0; 1722 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1723 cbptr = uap->aiocbp; 1724 1725 for (i = 0; i < uap->nent; i++) { 1726 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1727 if (cbp == 0) 1728 continue; 1729 ujoblist[njoblist] = cbp; 1730 njoblist++; 1731 } 1732 1733 if (njoblist == 0) { 1734 uma_zfree(aiol_zone, ujoblist); 1735 return (0); 1736 } 1737 1738 AIO_LOCK(ki); 1739 for (;;) { 1740 cbfirst = NULL; 1741 error = 0; 1742 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1743 for (i = 0; i < njoblist; i++) { 1744 if (cb->uuaiocb == ujoblist[i]) { 1745 if (cbfirst == NULL) 1746 cbfirst = cb; 1747 if (cb->jobstate == JOBST_JOBFINISHED) 1748 goto RETURN; 1749 } 1750 } 1751 } 1752 /* All tasks were finished. */ 1753 if (cbfirst == NULL) 1754 break; 1755 1756 ki->kaio_flags |= KAIO_WAKEUP; 1757 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1758 "aiospn", timo); 1759 if (error == ERESTART) 1760 error = EINTR; 1761 if (error) 1762 break; 1763 } 1764 RETURN: 1765 AIO_UNLOCK(ki); 1766 uma_zfree(aiol_zone, ujoblist); 1767 return (error); 1768 } 1769 1770 /* 1771 * aio_cancel cancels any non-physio aio operations not currently in 1772 * progress. 1773 */ 1774 int 1775 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1776 { 1777 struct proc *p = td->td_proc; 1778 struct kaioinfo *ki; 1779 struct aiocblist *cbe, *cbn; 1780 struct file *fp; 1781 struct socket *so; 1782 int error; 1783 int remove; 1784 int cancelled = 0; 1785 int notcancelled = 0; 1786 struct vnode *vp; 1787 1788 /* Lookup file object. */ 1789 error = fget(td, uap->fd, &fp); 1790 if (error) 1791 return (error); 1792 1793 ki = p->p_aioinfo; 1794 if (ki == NULL) 1795 goto done; 1796 1797 if (fp->f_type == DTYPE_VNODE) { 1798 vp = fp->f_vnode; 1799 if (vn_isdisk(vp, &error)) { 1800 fdrop(fp, td); 1801 td->td_retval[0] = AIO_NOTCANCELED; 1802 return (0); 1803 } 1804 } 1805 1806 AIO_LOCK(ki); 1807 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1808 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1809 ((uap->aiocbp == NULL) || 1810 (uap->aiocbp == cbe->uuaiocb))) { 1811 remove = 0; 1812 1813 mtx_lock(&aio_job_mtx); 1814 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1815 TAILQ_REMOVE(&aio_jobs, cbe, list); 1816 remove = 1; 1817 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1818 MPASS(fp->f_type == DTYPE_SOCKET); 1819 so = fp->f_data; 1820 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1821 remove = 1; 1822 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1823 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1824 remove = 1; 1825 } 1826 mtx_unlock(&aio_job_mtx); 1827 1828 if (remove) { 1829 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1830 cbe->uaiocb._aiocb_private.status = -1; 1831 cbe->uaiocb._aiocb_private.error = ECANCELED; 1832 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1833 cancelled++; 1834 } else { 1835 notcancelled++; 1836 } 1837 if (uap->aiocbp != NULL) 1838 break; 1839 } 1840 } 1841 AIO_UNLOCK(ki); 1842 1843 done: 1844 fdrop(fp, td); 1845 1846 if (uap->aiocbp != NULL) { 1847 if (cancelled) { 1848 td->td_retval[0] = AIO_CANCELED; 1849 return (0); 1850 } 1851 } 1852 1853 if (notcancelled) { 1854 td->td_retval[0] = AIO_NOTCANCELED; 1855 return (0); 1856 } 1857 1858 if (cancelled) { 1859 td->td_retval[0] = AIO_CANCELED; 1860 return (0); 1861 } 1862 1863 td->td_retval[0] = AIO_ALLDONE; 1864 1865 return (0); 1866 } 1867 1868 /* 1869 * aio_error is implemented in the kernel level for compatibility purposes 1870 * only. For a user mode async implementation, it would be best to do it in 1871 * a userland subroutine. 1872 */ 1873 int 1874 aio_error(struct thread *td, struct aio_error_args *uap) 1875 { 1876 struct proc *p = td->td_proc; 1877 struct aiocblist *cb; 1878 struct kaioinfo *ki; 1879 int status; 1880 1881 ki = p->p_aioinfo; 1882 if (ki == NULL) { 1883 td->td_retval[0] = EINVAL; 1884 return (0); 1885 } 1886 1887 AIO_LOCK(ki); 1888 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1889 if (cb->uuaiocb == uap->aiocbp) { 1890 if (cb->jobstate == JOBST_JOBFINISHED) 1891 td->td_retval[0] = 1892 cb->uaiocb._aiocb_private.error; 1893 else 1894 td->td_retval[0] = EINPROGRESS; 1895 AIO_UNLOCK(ki); 1896 return (0); 1897 } 1898 } 1899 AIO_UNLOCK(ki); 1900 1901 /* 1902 * Hack for failure of aio_aqueue. 1903 */ 1904 status = fuword(&uap->aiocbp->_aiocb_private.status); 1905 if (status == -1) { 1906 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1907 return (0); 1908 } 1909 1910 td->td_retval[0] = EINVAL; 1911 return (0); 1912 } 1913 1914 /* syscall - asynchronous read from a file (REALTIME) */ 1915 int 1916 oaio_read(struct thread *td, struct oaio_read_args *uap) 1917 { 1918 1919 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1920 } 1921 1922 int 1923 aio_read(struct thread *td, struct aio_read_args *uap) 1924 { 1925 1926 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1927 } 1928 1929 /* syscall - asynchronous write to a file (REALTIME) */ 1930 int 1931 oaio_write(struct thread *td, struct oaio_write_args *uap) 1932 { 1933 1934 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1935 } 1936 1937 int 1938 aio_write(struct thread *td, struct aio_write_args *uap) 1939 { 1940 1941 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1942 } 1943 1944 /* syscall - list directed I/O (REALTIME) */ 1945 int 1946 olio_listio(struct thread *td, struct olio_listio_args *uap) 1947 { 1948 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1949 } 1950 1951 /* syscall - list directed I/O (REALTIME) */ 1952 int 1953 lio_listio(struct thread *td, struct lio_listio_args *uap) 1954 { 1955 return do_lio_listio(td, uap, 0); 1956 } 1957 1958 static int 1959 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1960 { 1961 struct proc *p = td->td_proc; 1962 struct aiocb *iocb, * const *cbptr; 1963 struct kaioinfo *ki; 1964 struct aioliojob *lj; 1965 struct kevent kev; 1966 int nent; 1967 int error; 1968 int nerror; 1969 int i; 1970 1971 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1972 return (EINVAL); 1973 1974 nent = uap->nent; 1975 if (nent < 0 || nent > AIO_LISTIO_MAX) 1976 return (EINVAL); 1977 1978 if (p->p_aioinfo == NULL) 1979 aio_init_aioinfo(p); 1980 1981 ki = p->p_aioinfo; 1982 1983 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1984 lj->lioj_flags = 0; 1985 lj->lioj_count = 0; 1986 lj->lioj_finished_count = 0; 1987 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 1988 ksiginfo_init(&lj->lioj_ksi); 1989 1990 /* 1991 * Setup signal. 1992 */ 1993 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1994 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 1995 error = copyin(uap->sig, &lj->lioj_signal, 1996 oldsigev ? sizeof(struct osigevent) : 1997 sizeof(struct sigevent)); 1998 if (error) { 1999 uma_zfree(aiolio_zone, lj); 2000 return (error); 2001 } 2002 2003 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2004 /* Assume only new style KEVENT */ 2005 kev.filter = EVFILT_LIO; 2006 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2007 kev.ident = (uintptr_t)uap->acb_list; /* something unique */ 2008 kev.data = (intptr_t)lj; 2009 /* pass user defined sigval data */ 2010 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2011 error = kqfd_register( 2012 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2013 if (error) { 2014 uma_zfree(aiolio_zone, lj); 2015 return (error); 2016 } 2017 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2018 ; 2019 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2020 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2021 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2022 uma_zfree(aiolio_zone, lj); 2023 return EINVAL; 2024 } 2025 lj->lioj_flags |= LIOJ_SIGNAL; 2026 } else { 2027 uma_zfree(aiolio_zone, lj); 2028 return EINVAL; 2029 } 2030 } 2031 2032 AIO_LOCK(ki); 2033 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2034 /* 2035 * Add extra aiocb count to avoid the lio to be freed 2036 * by other threads doing aio_waitcomplete or aio_return, 2037 * and prevent event from being sent until we have queued 2038 * all tasks. 2039 */ 2040 lj->lioj_count = 1; 2041 AIO_UNLOCK(ki); 2042 2043 /* 2044 * Get pointers to the list of I/O requests. 2045 */ 2046 nerror = 0; 2047 cbptr = uap->acb_list; 2048 for (i = 0; i < uap->nent; i++) { 2049 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2050 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2051 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2052 if (error != 0) 2053 nerror++; 2054 } 2055 } 2056 2057 error = 0; 2058 AIO_LOCK(ki); 2059 if (uap->mode == LIO_WAIT) { 2060 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2061 ki->kaio_flags |= KAIO_WAKEUP; 2062 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2063 PRIBIO | PCATCH, "aiospn", 0); 2064 if (error == ERESTART) 2065 error = EINTR; 2066 if (error) 2067 break; 2068 } 2069 } else { 2070 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2071 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2072 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2073 KNOTE_LOCKED(&lj->klist, 1); 2074 } 2075 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2076 == LIOJ_SIGNAL 2077 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2078 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2079 aio_sendsig(p, &lj->lioj_signal, 2080 &lj->lioj_ksi); 2081 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2082 } 2083 } 2084 } 2085 lj->lioj_count--; 2086 if (lj->lioj_count == 0) { 2087 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2088 knlist_delete(&lj->klist, curthread, 1); 2089 PROC_LOCK(p); 2090 sigqueue_take(&lj->lioj_ksi); 2091 PROC_UNLOCK(p); 2092 AIO_UNLOCK(ki); 2093 uma_zfree(aiolio_zone, lj); 2094 } else 2095 AIO_UNLOCK(ki); 2096 2097 if (nerror) 2098 return (EIO); 2099 return (error); 2100 } 2101 2102 /* 2103 * Called from interrupt thread for physio, we should return as fast 2104 * as possible, so we schedule a biohelper task. 2105 */ 2106 static void 2107 aio_physwakeup(struct buf *bp) 2108 { 2109 struct aiocblist *aiocbe; 2110 2111 aiocbe = (struct aiocblist *)bp->b_caller1; 2112 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2113 } 2114 2115 /* 2116 * Task routine to perform heavy tasks, process wakeup, and signals. 2117 */ 2118 static void 2119 biohelper(void *context, int pending) 2120 { 2121 struct aiocblist *aiocbe = context; 2122 struct buf *bp; 2123 struct proc *userp; 2124 struct kaioinfo *ki; 2125 int nblks; 2126 2127 bp = aiocbe->bp; 2128 userp = aiocbe->userproc; 2129 ki = userp->p_aioinfo; 2130 AIO_LOCK(ki); 2131 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2132 aiocbe->uaiocb._aiocb_private.error = 0; 2133 if (bp->b_ioflags & BIO_ERROR) 2134 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2135 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2136 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2137 aiocbe->outputcharge += nblks; 2138 else 2139 aiocbe->inputcharge += nblks; 2140 aiocbe->bp = NULL; 2141 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2142 ki->kaio_buffer_count--; 2143 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2144 AIO_UNLOCK(ki); 2145 2146 /* Release mapping into kernel space. */ 2147 vunmapbuf(bp); 2148 relpbuf(bp, NULL); 2149 atomic_subtract_int(&num_buf_aio, 1); 2150 } 2151 2152 /* syscall - wait for the next completion of an aio request */ 2153 int 2154 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2155 { 2156 struct proc *p = td->td_proc; 2157 struct timeval atv; 2158 struct timespec ts; 2159 struct kaioinfo *ki; 2160 struct aiocblist *cb; 2161 struct aiocb *uuaiocb; 2162 int error, status, timo; 2163 2164 suword(uap->aiocbp, (long)NULL); 2165 2166 timo = 0; 2167 if (uap->timeout) { 2168 /* Get timespec struct. */ 2169 error = copyin(uap->timeout, &ts, sizeof(ts)); 2170 if (error) 2171 return (error); 2172 2173 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2174 return (EINVAL); 2175 2176 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2177 if (itimerfix(&atv)) 2178 return (EINVAL); 2179 timo = tvtohz(&atv); 2180 } 2181 2182 if (p->p_aioinfo == NULL) 2183 aio_init_aioinfo(p); 2184 ki = p->p_aioinfo; 2185 2186 error = 0; 2187 cb = NULL; 2188 AIO_LOCK(ki); 2189 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2190 ki->kaio_flags |= KAIO_WAKEUP; 2191 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2192 "aiowc", timo); 2193 if (timo && error == ERESTART) 2194 error = EINTR; 2195 if (error) 2196 break; 2197 } 2198 2199 if (cb != NULL) { 2200 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2201 uuaiocb = cb->uuaiocb; 2202 status = cb->uaiocb._aiocb_private.status; 2203 error = cb->uaiocb._aiocb_private.error; 2204 td->td_retval[0] = status; 2205 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2206 td->td_ru.ru_oublock += cb->outputcharge; 2207 cb->outputcharge = 0; 2208 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2209 td->td_ru.ru_inblock += cb->inputcharge; 2210 cb->inputcharge = 0; 2211 } 2212 aio_free_entry(cb); 2213 AIO_UNLOCK(ki); 2214 suword(uap->aiocbp, (long)uuaiocb); 2215 suword(&uuaiocb->_aiocb_private.error, error); 2216 suword(&uuaiocb->_aiocb_private.status, status); 2217 } else 2218 AIO_UNLOCK(ki); 2219 2220 return (error); 2221 } 2222 2223 int 2224 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2225 { 2226 struct proc *p = td->td_proc; 2227 struct kaioinfo *ki; 2228 2229 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2230 return (EINVAL); 2231 ki = p->p_aioinfo; 2232 if (ki == NULL) 2233 aio_init_aioinfo(p); 2234 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2235 } 2236 2237 /* kqueue attach function */ 2238 static int 2239 filt_aioattach(struct knote *kn) 2240 { 2241 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2242 2243 /* 2244 * The aiocbe pointer must be validated before using it, so 2245 * registration is restricted to the kernel; the user cannot 2246 * set EV_FLAG1. 2247 */ 2248 if ((kn->kn_flags & EV_FLAG1) == 0) 2249 return (EPERM); 2250 kn->kn_flags &= ~EV_FLAG1; 2251 2252 knlist_add(&aiocbe->klist, kn, 0); 2253 2254 return (0); 2255 } 2256 2257 /* kqueue detach function */ 2258 static void 2259 filt_aiodetach(struct knote *kn) 2260 { 2261 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2262 2263 if (!knlist_empty(&aiocbe->klist)) 2264 knlist_remove(&aiocbe->klist, kn, 0); 2265 } 2266 2267 /* kqueue filter function */ 2268 /*ARGSUSED*/ 2269 static int 2270 filt_aio(struct knote *kn, long hint) 2271 { 2272 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2273 2274 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2275 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2276 return (0); 2277 kn->kn_flags |= EV_EOF; 2278 return (1); 2279 } 2280 2281 /* kqueue attach function */ 2282 static int 2283 filt_lioattach(struct knote *kn) 2284 { 2285 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2286 2287 /* 2288 * The aioliojob pointer must be validated before using it, so 2289 * registration is restricted to the kernel; the user cannot 2290 * set EV_FLAG1. 2291 */ 2292 if ((kn->kn_flags & EV_FLAG1) == 0) 2293 return (EPERM); 2294 kn->kn_flags &= ~EV_FLAG1; 2295 2296 knlist_add(&lj->klist, kn, 0); 2297 2298 return (0); 2299 } 2300 2301 /* kqueue detach function */ 2302 static void 2303 filt_liodetach(struct knote *kn) 2304 { 2305 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2306 2307 if (!knlist_empty(&lj->klist)) 2308 knlist_remove(&lj->klist, kn, 0); 2309 } 2310 2311 /* kqueue filter function */ 2312 /*ARGSUSED*/ 2313 static int 2314 filt_lio(struct knote *kn, long hint) 2315 { 2316 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2317 2318 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2319 } 2320