1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 __FBSDID("$FreeBSD$"); 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list"); 109 110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 111 "Async IO management"); 112 113 static int enable_aio_unsafe = 0; 114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 115 "Permit asynchronous IO on all file types, not just known-safe types"); 116 117 static unsigned int unsafe_warningcnt = 1; 118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 119 &unsafe_warningcnt, 0, 120 "Warnings that will be triggered upon failed IO requests on unsafe files"); 121 122 static int max_aio_procs = MAX_AIO_PROCS; 123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 124 "Maximum number of kernel processes to use for handling async IO "); 125 126 static int num_aio_procs = 0; 127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 128 "Number of presently active kernel processes for async IO"); 129 130 /* 131 * The code will adjust the actual number of AIO processes towards this 132 * number when it gets a chance. 133 */ 134 static int target_aio_procs = TARGET_AIO_PROCS; 135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 136 0, 137 "Preferred number of ready kernel processes for async IO"); 138 139 static int max_queue_count = MAX_AIO_QUEUE; 140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 141 "Maximum number of aio requests to queue, globally"); 142 143 static int num_queue_count = 0; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 145 "Number of queued aio requests"); 146 147 static int num_buf_aio = 0; 148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 149 "Number of aio requests presently handled by the buf subsystem"); 150 151 static int num_unmapped_aio = 0; 152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 153 0, 154 "Number of aio requests presently handled by unmapped I/O buffers"); 155 156 /* Number of async I/O processes in the process of being started */ 157 /* XXX This should be local to aio_aqueue() */ 158 static int num_aio_resv_start = 0; 159 160 static int aiod_lifetime; 161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 162 "Maximum lifetime for idle aiod"); 163 164 static int max_aio_per_proc = MAX_AIO_PER_PROC; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 166 0, 167 "Maximum active aio requests per process"); 168 169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 171 &max_aio_queue_per_proc, 0, 172 "Maximum queued aio requests per process"); 173 174 static int max_buf_aio = MAX_BUF_AIO; 175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 176 "Maximum buf aio requests per process"); 177 178 /* 179 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 180 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 181 * vfs.aio.aio_listio_max. 182 */ 183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 184 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 185 0, "Maximum aio requests for a single lio_listio call"); 186 187 #ifdef COMPAT_FREEBSD6 188 typedef struct oaiocb { 189 int aio_fildes; /* File descriptor */ 190 off_t aio_offset; /* File offset for I/O */ 191 volatile void *aio_buf; /* I/O buffer in process space */ 192 size_t aio_nbytes; /* Number of bytes for I/O */ 193 struct osigevent aio_sigevent; /* Signal to deliver */ 194 int aio_lio_opcode; /* LIO opcode */ 195 int aio_reqprio; /* Request priority -- ignored */ 196 struct __aiocb_private _aiocb_private; 197 } oaiocb_t; 198 #endif 199 200 /* 201 * Below is a key of locks used to protect each member of struct kaiocb 202 * aioliojob and kaioinfo and any backends. 203 * 204 * * - need not protected 205 * a - locked by kaioinfo lock 206 * b - locked by backend lock, the backend lock can be null in some cases, 207 * for example, BIO belongs to this type, in this case, proc lock is 208 * reused. 209 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 210 */ 211 212 /* 213 * If the routine that services an AIO request blocks while running in an 214 * AIO kernel process it can starve other I/O requests. BIO requests 215 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 216 * processes at all. Socket I/O requests use a separate pool of 217 * kprocs and also force non-blocking I/O. Other file I/O requests 218 * use the generic fo_read/fo_write operations which can block. The 219 * fsync and mlock operations can also block while executing. Ideally 220 * none of these requests would block while executing. 221 * 222 * Note that the service routines cannot toggle O_NONBLOCK in the file 223 * structure directly while handling a request due to races with 224 * userland threads. 225 */ 226 227 /* jobflags */ 228 #define KAIOCB_QUEUEING 0x01 229 #define KAIOCB_CANCELLED 0x02 230 #define KAIOCB_CANCELLING 0x04 231 #define KAIOCB_CHECKSYNC 0x08 232 #define KAIOCB_CLEARED 0x10 233 #define KAIOCB_FINISHED 0x20 234 235 /* 236 * AIO process info 237 */ 238 #define AIOP_FREE 0x1 /* proc on free queue */ 239 240 struct aioproc { 241 int aioprocflags; /* (c) AIO proc flags */ 242 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 243 struct proc *aioproc; /* (*) the AIO proc */ 244 }; 245 246 /* 247 * data-structure for lio signal management 248 */ 249 struct aioliojob { 250 int lioj_flags; /* (a) listio flags */ 251 int lioj_count; /* (a) count of jobs */ 252 int lioj_finished_count; /* (a) count of finished jobs */ 253 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 254 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 255 struct knlist klist; /* (a) list of knotes */ 256 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 257 }; 258 259 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 260 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 261 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 262 263 /* 264 * per process aio data structure 265 */ 266 struct kaioinfo { 267 struct mtx kaio_mtx; /* the lock to protect this struct */ 268 int kaio_flags; /* (a) per process kaio flags */ 269 int kaio_active_count; /* (c) number of currently used AIOs */ 270 int kaio_count; /* (a) size of AIO queue */ 271 int kaio_buffer_count; /* (a) number of bio buffers */ 272 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 273 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 274 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 275 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 276 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 277 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 278 struct task kaio_task; /* (*) task to kick aio processes */ 279 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 280 }; 281 282 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 283 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 284 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 285 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 286 287 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 288 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 289 290 /* 291 * Operations used to interact with userland aio control blocks. 292 * Different ABIs provide their own operations. 293 */ 294 struct aiocb_ops { 295 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 296 long (*fetch_status)(struct aiocb *ujob); 297 long (*fetch_error)(struct aiocb *ujob); 298 int (*store_status)(struct aiocb *ujob, long status); 299 int (*store_error)(struct aiocb *ujob, long error); 300 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 301 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 302 }; 303 304 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 305 static struct sema aio_newproc_sem; 306 static struct mtx aio_job_mtx; 307 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 308 static struct unrhdr *aiod_unr; 309 310 static void aio_biocleanup(struct bio *bp); 311 void aio_init_aioinfo(struct proc *p); 312 static int aio_onceonly(void); 313 static int aio_free_entry(struct kaiocb *job); 314 static void aio_process_rw(struct kaiocb *job); 315 static void aio_process_sync(struct kaiocb *job); 316 static void aio_process_mlock(struct kaiocb *job); 317 static void aio_schedule_fsync(void *context, int pending); 318 static int aio_newproc(int *); 319 int aio_aqueue(struct thread *td, struct aiocb *ujob, 320 struct aioliojob *lio, int type, struct aiocb_ops *ops); 321 static int aio_queue_file(struct file *fp, struct kaiocb *job); 322 static void aio_biowakeup(struct bio *bp); 323 static void aio_proc_rundown(void *arg, struct proc *p); 324 static void aio_proc_rundown_exec(void *arg, struct proc *p, 325 struct image_params *imgp); 326 static int aio_qbio(struct proc *p, struct kaiocb *job); 327 static void aio_daemon(void *param); 328 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 329 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 330 static int aio_kick(struct proc *userp); 331 static void aio_kick_nowait(struct proc *userp); 332 static void aio_kick_helper(void *context, int pending); 333 static int filt_aioattach(struct knote *kn); 334 static void filt_aiodetach(struct knote *kn); 335 static int filt_aio(struct knote *kn, long hint); 336 static int filt_lioattach(struct knote *kn); 337 static void filt_liodetach(struct knote *kn); 338 static int filt_lio(struct knote *kn, long hint); 339 340 /* 341 * Zones for: 342 * kaio Per process async io info 343 * aiop async io process data 344 * aiocb async io jobs 345 * aiolio list io jobs 346 */ 347 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone; 348 349 /* kqueue filters for aio */ 350 static struct filterops aio_filtops = { 351 .f_isfd = 0, 352 .f_attach = filt_aioattach, 353 .f_detach = filt_aiodetach, 354 .f_event = filt_aio, 355 }; 356 static struct filterops lio_filtops = { 357 .f_isfd = 0, 358 .f_attach = filt_lioattach, 359 .f_detach = filt_liodetach, 360 .f_event = filt_lio 361 }; 362 363 static eventhandler_tag exit_tag, exec_tag; 364 365 TASKQUEUE_DEFINE_THREAD(aiod_kick); 366 367 /* 368 * Main operations function for use as a kernel module. 369 */ 370 static int 371 aio_modload(struct module *module, int cmd, void *arg) 372 { 373 int error = 0; 374 375 switch (cmd) { 376 case MOD_LOAD: 377 aio_onceonly(); 378 break; 379 case MOD_SHUTDOWN: 380 break; 381 default: 382 error = EOPNOTSUPP; 383 break; 384 } 385 return (error); 386 } 387 388 static moduledata_t aio_mod = { 389 "aio", 390 &aio_modload, 391 NULL 392 }; 393 394 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 395 MODULE_VERSION(aio, 1); 396 397 /* 398 * Startup initialization 399 */ 400 static int 401 aio_onceonly(void) 402 { 403 404 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 405 EVENTHANDLER_PRI_ANY); 406 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 407 NULL, EVENTHANDLER_PRI_ANY); 408 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 409 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 410 TAILQ_INIT(&aio_freeproc); 411 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 412 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 413 TAILQ_INIT(&aio_jobs); 414 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 415 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 416 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 417 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 418 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 419 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 420 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 421 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 422 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 423 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 424 jobrefid = 1; 425 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 426 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 427 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 428 429 return (0); 430 } 431 432 /* 433 * Init the per-process aioinfo structure. The aioinfo limits are set 434 * per-process for user limit (resource) management. 435 */ 436 void 437 aio_init_aioinfo(struct proc *p) 438 { 439 struct kaioinfo *ki; 440 441 ki = uma_zalloc(kaio_zone, M_WAITOK); 442 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 443 ki->kaio_flags = 0; 444 ki->kaio_active_count = 0; 445 ki->kaio_count = 0; 446 ki->kaio_buffer_count = 0; 447 TAILQ_INIT(&ki->kaio_all); 448 TAILQ_INIT(&ki->kaio_done); 449 TAILQ_INIT(&ki->kaio_jobqueue); 450 TAILQ_INIT(&ki->kaio_liojoblist); 451 TAILQ_INIT(&ki->kaio_syncqueue); 452 TAILQ_INIT(&ki->kaio_syncready); 453 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 454 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 455 PROC_LOCK(p); 456 if (p->p_aioinfo == NULL) { 457 p->p_aioinfo = ki; 458 PROC_UNLOCK(p); 459 } else { 460 PROC_UNLOCK(p); 461 mtx_destroy(&ki->kaio_mtx); 462 uma_zfree(kaio_zone, ki); 463 } 464 465 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 466 aio_newproc(NULL); 467 } 468 469 static int 470 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 471 { 472 struct thread *td; 473 int error; 474 475 error = sigev_findtd(p, sigev, &td); 476 if (error) 477 return (error); 478 if (!KSI_ONQ(ksi)) { 479 ksiginfo_set_sigev(ksi, sigev); 480 ksi->ksi_code = SI_ASYNCIO; 481 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 482 tdsendsignal(p, td, ksi->ksi_signo, ksi); 483 } 484 PROC_UNLOCK(p); 485 return (error); 486 } 487 488 /* 489 * Free a job entry. Wait for completion if it is currently active, but don't 490 * delay forever. If we delay, we return a flag that says that we have to 491 * restart the queue scan. 492 */ 493 static int 494 aio_free_entry(struct kaiocb *job) 495 { 496 struct kaioinfo *ki; 497 struct aioliojob *lj; 498 struct proc *p; 499 500 p = job->userproc; 501 MPASS(curproc == p); 502 ki = p->p_aioinfo; 503 MPASS(ki != NULL); 504 505 AIO_LOCK_ASSERT(ki, MA_OWNED); 506 MPASS(job->jobflags & KAIOCB_FINISHED); 507 508 atomic_subtract_int(&num_queue_count, 1); 509 510 ki->kaio_count--; 511 MPASS(ki->kaio_count >= 0); 512 513 TAILQ_REMOVE(&ki->kaio_done, job, plist); 514 TAILQ_REMOVE(&ki->kaio_all, job, allist); 515 516 lj = job->lio; 517 if (lj) { 518 lj->lioj_count--; 519 lj->lioj_finished_count--; 520 521 if (lj->lioj_count == 0) { 522 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 523 /* lio is going away, we need to destroy any knotes */ 524 knlist_delete(&lj->klist, curthread, 1); 525 PROC_LOCK(p); 526 sigqueue_take(&lj->lioj_ksi); 527 PROC_UNLOCK(p); 528 uma_zfree(aiolio_zone, lj); 529 } 530 } 531 532 /* job is going away, we need to destroy any knotes */ 533 knlist_delete(&job->klist, curthread, 1); 534 PROC_LOCK(p); 535 sigqueue_take(&job->ksi); 536 PROC_UNLOCK(p); 537 538 AIO_UNLOCK(ki); 539 540 /* 541 * The thread argument here is used to find the owning process 542 * and is also passed to fo_close() which may pass it to various 543 * places such as devsw close() routines. Because of that, we 544 * need a thread pointer from the process owning the job that is 545 * persistent and won't disappear out from under us or move to 546 * another process. 547 * 548 * Currently, all the callers of this function call it to remove 549 * a kaiocb from the current process' job list either via a 550 * syscall or due to the current process calling exit() or 551 * execve(). Thus, we know that p == curproc. We also know that 552 * curthread can't exit since we are curthread. 553 * 554 * Therefore, we use curthread as the thread to pass to 555 * knlist_delete(). This does mean that it is possible for the 556 * thread pointer at close time to differ from the thread pointer 557 * at open time, but this is already true of file descriptors in 558 * a multithreaded process. 559 */ 560 if (job->fd_file) 561 fdrop(job->fd_file, curthread); 562 crfree(job->cred); 563 if (job->uiop != &job->uio) 564 free(job->uiop, M_IOV); 565 uma_zfree(aiocb_zone, job); 566 AIO_LOCK(ki); 567 568 return (0); 569 } 570 571 static void 572 aio_proc_rundown_exec(void *arg, struct proc *p, 573 struct image_params *imgp __unused) 574 { 575 aio_proc_rundown(arg, p); 576 } 577 578 static int 579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 580 { 581 aio_cancel_fn_t *func; 582 int cancelled; 583 584 AIO_LOCK_ASSERT(ki, MA_OWNED); 585 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 586 return (0); 587 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 588 job->jobflags |= KAIOCB_CANCELLED; 589 590 func = job->cancel_fn; 591 592 /* 593 * If there is no cancel routine, just leave the job marked as 594 * cancelled. The job should be in active use by a caller who 595 * should complete it normally or when it fails to install a 596 * cancel routine. 597 */ 598 if (func == NULL) 599 return (0); 600 601 /* 602 * Set the CANCELLING flag so that aio_complete() will defer 603 * completions of this job. This prevents the job from being 604 * freed out from under the cancel callback. After the 605 * callback any deferred completion (whether from the callback 606 * or any other source) will be completed. 607 */ 608 job->jobflags |= KAIOCB_CANCELLING; 609 AIO_UNLOCK(ki); 610 func(job); 611 AIO_LOCK(ki); 612 job->jobflags &= ~KAIOCB_CANCELLING; 613 if (job->jobflags & KAIOCB_FINISHED) { 614 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 615 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 616 aio_bio_done_notify(p, job); 617 } else { 618 /* 619 * The cancel callback might have scheduled an 620 * operation to cancel this request, but it is 621 * only counted as cancelled if the request is 622 * cancelled when the callback returns. 623 */ 624 cancelled = 0; 625 } 626 return (cancelled); 627 } 628 629 /* 630 * Rundown the jobs for a given process. 631 */ 632 static void 633 aio_proc_rundown(void *arg, struct proc *p) 634 { 635 struct kaioinfo *ki; 636 struct aioliojob *lj; 637 struct kaiocb *job, *jobn; 638 639 KASSERT(curthread->td_proc == p, 640 ("%s: called on non-curproc", __func__)); 641 ki = p->p_aioinfo; 642 if (ki == NULL) 643 return; 644 645 AIO_LOCK(ki); 646 ki->kaio_flags |= KAIO_RUNDOWN; 647 648 restart: 649 650 /* 651 * Try to cancel all pending requests. This code simulates 652 * aio_cancel on all pending I/O requests. 653 */ 654 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 655 aio_cancel_job(p, ki, job); 656 } 657 658 /* Wait for all running I/O to be finished */ 659 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 660 ki->kaio_flags |= KAIO_WAKEUP; 661 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 662 goto restart; 663 } 664 665 /* Free all completed I/O requests. */ 666 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 667 aio_free_entry(job); 668 669 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 670 if (lj->lioj_count == 0) { 671 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 672 knlist_delete(&lj->klist, curthread, 1); 673 PROC_LOCK(p); 674 sigqueue_take(&lj->lioj_ksi); 675 PROC_UNLOCK(p); 676 uma_zfree(aiolio_zone, lj); 677 } else { 678 panic("LIO job not cleaned up: C:%d, FC:%d\n", 679 lj->lioj_count, lj->lioj_finished_count); 680 } 681 } 682 AIO_UNLOCK(ki); 683 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 684 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 685 mtx_destroy(&ki->kaio_mtx); 686 uma_zfree(kaio_zone, ki); 687 p->p_aioinfo = NULL; 688 } 689 690 /* 691 * Select a job to run (called by an AIO daemon). 692 */ 693 static struct kaiocb * 694 aio_selectjob(struct aioproc *aiop) 695 { 696 struct kaiocb *job; 697 struct kaioinfo *ki; 698 struct proc *userp; 699 700 mtx_assert(&aio_job_mtx, MA_OWNED); 701 restart: 702 TAILQ_FOREACH(job, &aio_jobs, list) { 703 userp = job->userproc; 704 ki = userp->p_aioinfo; 705 706 if (ki->kaio_active_count < max_aio_per_proc) { 707 TAILQ_REMOVE(&aio_jobs, job, list); 708 if (!aio_clear_cancel_function(job)) 709 goto restart; 710 711 /* Account for currently active jobs. */ 712 ki->kaio_active_count++; 713 break; 714 } 715 } 716 return (job); 717 } 718 719 /* 720 * Move all data to a permanent storage device. This code 721 * simulates the fsync and fdatasync syscalls. 722 */ 723 static int 724 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 725 { 726 struct mount *mp; 727 int error; 728 729 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 730 goto drop; 731 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 732 if (vp->v_object != NULL) { 733 VM_OBJECT_WLOCK(vp->v_object); 734 vm_object_page_clean(vp->v_object, 0, 0, 0); 735 VM_OBJECT_WUNLOCK(vp->v_object); 736 } 737 if (op == LIO_DSYNC) 738 error = VOP_FDATASYNC(vp, td); 739 else 740 error = VOP_FSYNC(vp, MNT_WAIT, td); 741 742 VOP_UNLOCK(vp); 743 vn_finished_write(mp); 744 drop: 745 return (error); 746 } 747 748 /* 749 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 750 * does the I/O request for the non-bio version of the operations. The normal 751 * vn operations are used, and this code should work in all instances for every 752 * type of file, including pipes, sockets, fifos, and regular files. 753 * 754 * XXX I don't think it works well for socket, pipe, and fifo. 755 */ 756 static void 757 aio_process_rw(struct kaiocb *job) 758 { 759 struct ucred *td_savedcred; 760 struct thread *td; 761 struct aiocb *cb; 762 struct file *fp; 763 ssize_t cnt; 764 long msgsnd_st, msgsnd_end; 765 long msgrcv_st, msgrcv_end; 766 long oublock_st, oublock_end; 767 long inblock_st, inblock_end; 768 int error, opcode; 769 770 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 771 job->uaiocb.aio_lio_opcode == LIO_READV || 772 job->uaiocb.aio_lio_opcode == LIO_WRITE || 773 job->uaiocb.aio_lio_opcode == LIO_WRITEV, 774 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 775 776 aio_switch_vmspace(job); 777 td = curthread; 778 td_savedcred = td->td_ucred; 779 td->td_ucred = job->cred; 780 job->uiop->uio_td = td; 781 cb = &job->uaiocb; 782 fp = job->fd_file; 783 784 opcode = job->uaiocb.aio_lio_opcode; 785 cnt = job->uiop->uio_resid; 786 787 msgrcv_st = td->td_ru.ru_msgrcv; 788 msgsnd_st = td->td_ru.ru_msgsnd; 789 inblock_st = td->td_ru.ru_inblock; 790 oublock_st = td->td_ru.ru_oublock; 791 792 /* 793 * aio_aqueue() acquires a reference to the file that is 794 * released in aio_free_entry(). 795 */ 796 if (opcode == LIO_READ || opcode == LIO_READV) { 797 if (job->uiop->uio_resid == 0) 798 error = 0; 799 else 800 error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET, 801 td); 802 } else { 803 if (fp->f_type == DTYPE_VNODE) 804 bwillwrite(); 805 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); 806 } 807 msgrcv_end = td->td_ru.ru_msgrcv; 808 msgsnd_end = td->td_ru.ru_msgsnd; 809 inblock_end = td->td_ru.ru_inblock; 810 oublock_end = td->td_ru.ru_oublock; 811 812 job->msgrcv = msgrcv_end - msgrcv_st; 813 job->msgsnd = msgsnd_end - msgsnd_st; 814 job->inblock = inblock_end - inblock_st; 815 job->outblock = oublock_end - oublock_st; 816 817 if (error != 0 && job->uiop->uio_resid != cnt) { 818 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 819 error = 0; 820 if (error == EPIPE && (opcode & LIO_WRITE)) { 821 PROC_LOCK(job->userproc); 822 kern_psignal(job->userproc, SIGPIPE); 823 PROC_UNLOCK(job->userproc); 824 } 825 } 826 827 cnt -= job->uiop->uio_resid; 828 td->td_ucred = td_savedcred; 829 if (error) 830 aio_complete(job, -1, error); 831 else 832 aio_complete(job, cnt, 0); 833 } 834 835 static void 836 aio_process_sync(struct kaiocb *job) 837 { 838 struct thread *td = curthread; 839 struct ucred *td_savedcred = td->td_ucred; 840 struct file *fp = job->fd_file; 841 int error = 0; 842 843 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 844 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 845 846 td->td_ucred = job->cred; 847 if (fp->f_vnode != NULL) { 848 error = aio_fsync_vnode(td, fp->f_vnode, 849 job->uaiocb.aio_lio_opcode); 850 } 851 td->td_ucred = td_savedcred; 852 if (error) 853 aio_complete(job, -1, error); 854 else 855 aio_complete(job, 0, 0); 856 } 857 858 static void 859 aio_process_mlock(struct kaiocb *job) 860 { 861 struct aiocb *cb = &job->uaiocb; 862 int error; 863 864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 866 867 aio_switch_vmspace(job); 868 error = kern_mlock(job->userproc, job->cred, 869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 870 aio_complete(job, error != 0 ? -1 : 0, error); 871 } 872 873 static void 874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 875 { 876 struct aioliojob *lj; 877 struct kaioinfo *ki; 878 struct kaiocb *sjob, *sjobn; 879 int lj_done; 880 bool schedule_fsync; 881 882 ki = userp->p_aioinfo; 883 AIO_LOCK_ASSERT(ki, MA_OWNED); 884 lj = job->lio; 885 lj_done = 0; 886 if (lj) { 887 lj->lioj_finished_count++; 888 if (lj->lioj_count == lj->lioj_finished_count) 889 lj_done = 1; 890 } 891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 892 MPASS(job->jobflags & KAIOCB_FINISHED); 893 894 if (ki->kaio_flags & KAIO_RUNDOWN) 895 goto notification_done; 896 897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 900 901 KNOTE_LOCKED(&job->klist, 1); 902 903 if (lj_done) { 904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 905 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 906 KNOTE_LOCKED(&lj->klist, 1); 907 } 908 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 909 == LIOJ_SIGNAL && 910 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 913 true); 914 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 915 } 916 } 917 918 notification_done: 919 if (job->jobflags & KAIOCB_CHECKSYNC) { 920 schedule_fsync = false; 921 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 922 if (job->fd_file != sjob->fd_file || 923 job->seqno >= sjob->seqno) 924 continue; 925 if (--sjob->pending > 0) 926 continue; 927 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 928 if (!aio_clear_cancel_function_locked(sjob)) 929 continue; 930 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 931 schedule_fsync = true; 932 } 933 if (schedule_fsync) 934 taskqueue_enqueue(taskqueue_aiod_kick, 935 &ki->kaio_sync_task); 936 } 937 if (ki->kaio_flags & KAIO_WAKEUP) { 938 ki->kaio_flags &= ~KAIO_WAKEUP; 939 wakeup(&userp->p_aioinfo); 940 } 941 } 942 943 static void 944 aio_schedule_fsync(void *context, int pending) 945 { 946 struct kaioinfo *ki; 947 struct kaiocb *job; 948 949 ki = context; 950 AIO_LOCK(ki); 951 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 952 job = TAILQ_FIRST(&ki->kaio_syncready); 953 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 954 AIO_UNLOCK(ki); 955 aio_schedule(job, aio_process_sync); 956 AIO_LOCK(ki); 957 } 958 AIO_UNLOCK(ki); 959 } 960 961 bool 962 aio_cancel_cleared(struct kaiocb *job) 963 { 964 965 /* 966 * The caller should hold the same queue lock held when 967 * aio_clear_cancel_function() was called and set this flag 968 * ensuring this check sees an up-to-date value. However, 969 * there is no way to assert that. 970 */ 971 return ((job->jobflags & KAIOCB_CLEARED) != 0); 972 } 973 974 static bool 975 aio_clear_cancel_function_locked(struct kaiocb *job) 976 { 977 978 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 979 MPASS(job->cancel_fn != NULL); 980 if (job->jobflags & KAIOCB_CANCELLING) { 981 job->jobflags |= KAIOCB_CLEARED; 982 return (false); 983 } 984 job->cancel_fn = NULL; 985 return (true); 986 } 987 988 bool 989 aio_clear_cancel_function(struct kaiocb *job) 990 { 991 struct kaioinfo *ki; 992 bool ret; 993 994 ki = job->userproc->p_aioinfo; 995 AIO_LOCK(ki); 996 ret = aio_clear_cancel_function_locked(job); 997 AIO_UNLOCK(ki); 998 return (ret); 999 } 1000 1001 static bool 1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1003 { 1004 1005 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1006 if (job->jobflags & KAIOCB_CANCELLED) 1007 return (false); 1008 job->cancel_fn = func; 1009 return (true); 1010 } 1011 1012 bool 1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1014 { 1015 struct kaioinfo *ki; 1016 bool ret; 1017 1018 ki = job->userproc->p_aioinfo; 1019 AIO_LOCK(ki); 1020 ret = aio_set_cancel_function_locked(job, func); 1021 AIO_UNLOCK(ki); 1022 return (ret); 1023 } 1024 1025 void 1026 aio_complete(struct kaiocb *job, long status, int error) 1027 { 1028 struct kaioinfo *ki; 1029 struct proc *userp; 1030 1031 job->uaiocb._aiocb_private.error = error; 1032 job->uaiocb._aiocb_private.status = status; 1033 1034 userp = job->userproc; 1035 ki = userp->p_aioinfo; 1036 1037 AIO_LOCK(ki); 1038 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1039 ("duplicate aio_complete")); 1040 job->jobflags |= KAIOCB_FINISHED; 1041 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1042 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1043 aio_bio_done_notify(userp, job); 1044 } 1045 AIO_UNLOCK(ki); 1046 } 1047 1048 void 1049 aio_cancel(struct kaiocb *job) 1050 { 1051 1052 aio_complete(job, -1, ECANCELED); 1053 } 1054 1055 void 1056 aio_switch_vmspace(struct kaiocb *job) 1057 { 1058 1059 vmspace_switch_aio(job->userproc->p_vmspace); 1060 } 1061 1062 /* 1063 * The AIO daemon, most of the actual work is done in aio_process_*, 1064 * but the setup (and address space mgmt) is done in this routine. 1065 */ 1066 static void 1067 aio_daemon(void *_id) 1068 { 1069 struct kaiocb *job; 1070 struct aioproc *aiop; 1071 struct kaioinfo *ki; 1072 struct proc *p; 1073 struct vmspace *myvm; 1074 struct thread *td = curthread; 1075 int id = (intptr_t)_id; 1076 1077 /* 1078 * Grab an extra reference on the daemon's vmspace so that it 1079 * doesn't get freed by jobs that switch to a different 1080 * vmspace. 1081 */ 1082 p = td->td_proc; 1083 myvm = vmspace_acquire_ref(p); 1084 1085 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1086 1087 /* 1088 * Allocate and ready the aio control info. There is one aiop structure 1089 * per daemon. 1090 */ 1091 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1092 aiop->aioproc = p; 1093 aiop->aioprocflags = 0; 1094 1095 /* 1096 * Wakeup parent process. (Parent sleeps to keep from blasting away 1097 * and creating too many daemons.) 1098 */ 1099 sema_post(&aio_newproc_sem); 1100 1101 mtx_lock(&aio_job_mtx); 1102 for (;;) { 1103 /* 1104 * Take daemon off of free queue 1105 */ 1106 if (aiop->aioprocflags & AIOP_FREE) { 1107 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1108 aiop->aioprocflags &= ~AIOP_FREE; 1109 } 1110 1111 /* 1112 * Check for jobs. 1113 */ 1114 while ((job = aio_selectjob(aiop)) != NULL) { 1115 mtx_unlock(&aio_job_mtx); 1116 1117 ki = job->userproc->p_aioinfo; 1118 job->handle_fn(job); 1119 1120 mtx_lock(&aio_job_mtx); 1121 /* Decrement the active job count. */ 1122 ki->kaio_active_count--; 1123 } 1124 1125 /* 1126 * Disconnect from user address space. 1127 */ 1128 if (p->p_vmspace != myvm) { 1129 mtx_unlock(&aio_job_mtx); 1130 vmspace_switch_aio(myvm); 1131 mtx_lock(&aio_job_mtx); 1132 /* 1133 * We have to restart to avoid race, we only sleep if 1134 * no job can be selected. 1135 */ 1136 continue; 1137 } 1138 1139 mtx_assert(&aio_job_mtx, MA_OWNED); 1140 1141 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1142 aiop->aioprocflags |= AIOP_FREE; 1143 1144 /* 1145 * If daemon is inactive for a long time, allow it to exit, 1146 * thereby freeing resources. 1147 */ 1148 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1149 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1150 (aiop->aioprocflags & AIOP_FREE) && 1151 num_aio_procs > target_aio_procs) 1152 break; 1153 } 1154 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1155 num_aio_procs--; 1156 mtx_unlock(&aio_job_mtx); 1157 uma_zfree(aiop_zone, aiop); 1158 free_unr(aiod_unr, id); 1159 vmspace_free(myvm); 1160 1161 KASSERT(p->p_vmspace == myvm, 1162 ("AIOD: bad vmspace for exiting daemon")); 1163 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1164 ("AIOD: bad vm refcnt for exiting daemon: %d", 1165 refcount_load(&myvm->vm_refcnt))); 1166 kproc_exit(0); 1167 } 1168 1169 /* 1170 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1171 * AIO daemon modifies its environment itself. 1172 */ 1173 static int 1174 aio_newproc(int *start) 1175 { 1176 int error; 1177 struct proc *p; 1178 int id; 1179 1180 id = alloc_unr(aiod_unr); 1181 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1182 RFNOWAIT, 0, "aiod%d", id); 1183 if (error == 0) { 1184 /* 1185 * Wait until daemon is started. 1186 */ 1187 sema_wait(&aio_newproc_sem); 1188 mtx_lock(&aio_job_mtx); 1189 num_aio_procs++; 1190 if (start != NULL) 1191 (*start)--; 1192 mtx_unlock(&aio_job_mtx); 1193 } else { 1194 free_unr(aiod_unr, id); 1195 } 1196 return (error); 1197 } 1198 1199 /* 1200 * Try the high-performance, low-overhead bio method for eligible 1201 * VCHR devices. This method doesn't use an aio helper thread, and 1202 * thus has very low overhead. 1203 * 1204 * Assumes that the caller, aio_aqueue(), has incremented the file 1205 * structure's reference count, preventing its deallocation for the 1206 * duration of this call. 1207 */ 1208 static int 1209 aio_qbio(struct proc *p, struct kaiocb *job) 1210 { 1211 struct aiocb *cb; 1212 struct file *fp; 1213 struct buf *pbuf; 1214 struct vnode *vp; 1215 struct cdevsw *csw; 1216 struct cdev *dev; 1217 struct kaioinfo *ki; 1218 struct bio **bios = NULL; 1219 off_t offset; 1220 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1221 vm_prot_t prot; 1222 bool use_unmapped; 1223 1224 cb = &job->uaiocb; 1225 fp = job->fd_file; 1226 opcode = cb->aio_lio_opcode; 1227 1228 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1229 opcode == LIO_READ || opcode == LIO_READV)) 1230 return (-1); 1231 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1232 return (-1); 1233 1234 vp = fp->f_vnode; 1235 if (vp->v_type != VCHR) 1236 return (-1); 1237 if (vp->v_bufobj.bo_bsize == 0) 1238 return (-1); 1239 1240 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1241 iovcnt = job->uiop->uio_iovcnt; 1242 if (iovcnt > max_buf_aio) 1243 return (-1); 1244 for (i = 0; i < iovcnt; i++) { 1245 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1246 return (-1); 1247 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1248 error = -1; 1249 return (-1); 1250 } 1251 } 1252 offset = cb->aio_offset; 1253 1254 ref = 0; 1255 csw = devvn_refthread(vp, &dev, &ref); 1256 if (csw == NULL) 1257 return (ENXIO); 1258 1259 if ((csw->d_flags & D_DISK) == 0) { 1260 error = -1; 1261 goto unref; 1262 } 1263 if (job->uiop->uio_resid > dev->si_iosize_max) { 1264 error = -1; 1265 goto unref; 1266 } 1267 1268 ki = p->p_aioinfo; 1269 job->error = 0; 1270 1271 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1272 if (!use_unmapped) { 1273 AIO_LOCK(ki); 1274 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1275 AIO_UNLOCK(ki); 1276 error = EAGAIN; 1277 goto unref; 1278 } 1279 ki->kaio_buffer_count += iovcnt; 1280 AIO_UNLOCK(ki); 1281 } 1282 1283 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1284 atomic_store_int(&job->nbio, iovcnt); 1285 for (i = 0; i < iovcnt; i++) { 1286 struct vm_page** pages; 1287 struct bio *bp; 1288 void *buf; 1289 size_t nbytes; 1290 int npages; 1291 1292 buf = job->uiop->uio_iov[i].iov_base; 1293 nbytes = job->uiop->uio_iov[i].iov_len; 1294 1295 bios[i] = g_alloc_bio(); 1296 bp = bios[i]; 1297 1298 poff = (vm_offset_t)buf & PAGE_MASK; 1299 if (use_unmapped) { 1300 pbuf = NULL; 1301 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1302 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1303 } else { 1304 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1305 BUF_KERNPROC(pbuf); 1306 pages = pbuf->b_pages; 1307 } 1308 1309 bp->bio_length = nbytes; 1310 bp->bio_bcount = nbytes; 1311 bp->bio_done = aio_biowakeup; 1312 bp->bio_offset = offset; 1313 bp->bio_cmd = bio_cmd; 1314 bp->bio_dev = dev; 1315 bp->bio_caller1 = job; 1316 bp->bio_caller2 = pbuf; 1317 1318 prot = VM_PROT_READ; 1319 if (opcode == LIO_READ || opcode == LIO_READV) 1320 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1321 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1322 (vm_offset_t)buf, bp->bio_length, prot, pages, 1323 atop(maxphys) + 1); 1324 if (npages < 0) { 1325 if (pbuf != NULL) 1326 uma_zfree(pbuf_zone, pbuf); 1327 else 1328 free(pages, M_TEMP); 1329 error = EFAULT; 1330 g_destroy_bio(bp); 1331 i--; 1332 goto destroy_bios; 1333 } 1334 if (pbuf != NULL) { 1335 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1336 bp->bio_data = pbuf->b_data + poff; 1337 pbuf->b_npages = npages; 1338 atomic_add_int(&num_buf_aio, 1); 1339 } else { 1340 bp->bio_ma = pages; 1341 bp->bio_ma_n = npages; 1342 bp->bio_ma_offset = poff; 1343 bp->bio_data = unmapped_buf; 1344 bp->bio_flags |= BIO_UNMAPPED; 1345 atomic_add_int(&num_unmapped_aio, 1); 1346 } 1347 1348 offset += nbytes; 1349 } 1350 1351 /* Perform transfer. */ 1352 for (i = 0; i < iovcnt; i++) 1353 csw->d_strategy(bios[i]); 1354 free(bios, M_TEMP); 1355 1356 dev_relthread(dev, ref); 1357 return (0); 1358 1359 destroy_bios: 1360 for (; i >= 0; i--) 1361 aio_biocleanup(bios[i]); 1362 free(bios, M_TEMP); 1363 unref: 1364 dev_relthread(dev, ref); 1365 return (error); 1366 } 1367 1368 #ifdef COMPAT_FREEBSD6 1369 static int 1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1371 { 1372 1373 /* 1374 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1375 * supported by AIO with the old sigevent structure. 1376 */ 1377 nsig->sigev_notify = osig->sigev_notify; 1378 switch (nsig->sigev_notify) { 1379 case SIGEV_NONE: 1380 break; 1381 case SIGEV_SIGNAL: 1382 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1383 break; 1384 case SIGEV_KEVENT: 1385 nsig->sigev_notify_kqueue = 1386 osig->__sigev_u.__sigev_notify_kqueue; 1387 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1388 break; 1389 default: 1390 return (EINVAL); 1391 } 1392 return (0); 1393 } 1394 1395 static int 1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1397 int type __unused) 1398 { 1399 struct oaiocb *ojob; 1400 struct aiocb *kcb = &kjob->uaiocb; 1401 int error; 1402 1403 bzero(kcb, sizeof(struct aiocb)); 1404 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1405 if (error) 1406 return (error); 1407 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1408 ojob = (struct oaiocb *)kcb; 1409 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1410 } 1411 #endif 1412 1413 static int 1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1415 { 1416 struct aiocb *kcb = &kjob->uaiocb; 1417 int error; 1418 1419 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1420 if (error) 1421 return (error); 1422 if (type & LIO_VECTORED) { 1423 /* malloc a uio and copy in the iovec */ 1424 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1425 kcb->aio_iovcnt, &kjob->uiop); 1426 } 1427 1428 return (error); 1429 } 1430 1431 static long 1432 aiocb_fetch_status(struct aiocb *ujob) 1433 { 1434 1435 return (fuword(&ujob->_aiocb_private.status)); 1436 } 1437 1438 static long 1439 aiocb_fetch_error(struct aiocb *ujob) 1440 { 1441 1442 return (fuword(&ujob->_aiocb_private.error)); 1443 } 1444 1445 static int 1446 aiocb_store_status(struct aiocb *ujob, long status) 1447 { 1448 1449 return (suword(&ujob->_aiocb_private.status, status)); 1450 } 1451 1452 static int 1453 aiocb_store_error(struct aiocb *ujob, long error) 1454 { 1455 1456 return (suword(&ujob->_aiocb_private.error, error)); 1457 } 1458 1459 static int 1460 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1461 { 1462 1463 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1464 } 1465 1466 static int 1467 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1468 { 1469 1470 return (suword(ujobp, (long)ujob)); 1471 } 1472 1473 static struct aiocb_ops aiocb_ops = { 1474 .aio_copyin = aiocb_copyin, 1475 .fetch_status = aiocb_fetch_status, 1476 .fetch_error = aiocb_fetch_error, 1477 .store_status = aiocb_store_status, 1478 .store_error = aiocb_store_error, 1479 .store_kernelinfo = aiocb_store_kernelinfo, 1480 .store_aiocb = aiocb_store_aiocb, 1481 }; 1482 1483 #ifdef COMPAT_FREEBSD6 1484 static struct aiocb_ops aiocb_ops_osigevent = { 1485 .aio_copyin = aiocb_copyin_old_sigevent, 1486 .fetch_status = aiocb_fetch_status, 1487 .fetch_error = aiocb_fetch_error, 1488 .store_status = aiocb_store_status, 1489 .store_error = aiocb_store_error, 1490 .store_kernelinfo = aiocb_store_kernelinfo, 1491 .store_aiocb = aiocb_store_aiocb, 1492 }; 1493 #endif 1494 1495 /* 1496 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1497 * technique is done in this code. 1498 */ 1499 int 1500 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1501 int type, struct aiocb_ops *ops) 1502 { 1503 struct proc *p = td->td_proc; 1504 struct file *fp = NULL; 1505 struct kaiocb *job; 1506 struct kaioinfo *ki; 1507 struct kevent kev; 1508 int opcode; 1509 int error; 1510 int fd, kqfd; 1511 int jid; 1512 u_short evflags; 1513 1514 if (p->p_aioinfo == NULL) 1515 aio_init_aioinfo(p); 1516 1517 ki = p->p_aioinfo; 1518 1519 ops->store_status(ujob, -1); 1520 ops->store_error(ujob, 0); 1521 ops->store_kernelinfo(ujob, -1); 1522 1523 if (num_queue_count >= max_queue_count || 1524 ki->kaio_count >= max_aio_queue_per_proc) { 1525 error = EAGAIN; 1526 goto err1; 1527 } 1528 1529 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1530 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1531 1532 error = ops->aio_copyin(ujob, job, type); 1533 if (error) 1534 goto err2; 1535 1536 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1537 error = EINVAL; 1538 goto err2; 1539 } 1540 1541 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1542 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1543 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1544 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1545 error = EINVAL; 1546 goto err2; 1547 } 1548 1549 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1550 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1551 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1552 error = EINVAL; 1553 goto err2; 1554 } 1555 1556 /* Get the opcode. */ 1557 if (type == LIO_NOP) { 1558 switch (job->uaiocb.aio_lio_opcode) { 1559 case LIO_WRITE: 1560 case LIO_NOP: 1561 case LIO_READ: 1562 opcode = job->uaiocb.aio_lio_opcode; 1563 break; 1564 default: 1565 error = EINVAL; 1566 goto err2; 1567 } 1568 } else 1569 opcode = job->uaiocb.aio_lio_opcode = type; 1570 1571 ksiginfo_init(&job->ksi); 1572 1573 /* Save userspace address of the job info. */ 1574 job->ujob = ujob; 1575 1576 /* 1577 * Validate the opcode and fetch the file object for the specified 1578 * file descriptor. 1579 * 1580 * XXXRW: Moved the opcode validation up here so that we don't 1581 * retrieve a file descriptor without knowing what the capabiltity 1582 * should be. 1583 */ 1584 fd = job->uaiocb.aio_fildes; 1585 switch (opcode) { 1586 case LIO_WRITE: 1587 case LIO_WRITEV: 1588 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1589 break; 1590 case LIO_READ: 1591 case LIO_READV: 1592 error = fget_read(td, fd, &cap_pread_rights, &fp); 1593 break; 1594 case LIO_SYNC: 1595 case LIO_DSYNC: 1596 error = fget(td, fd, &cap_fsync_rights, &fp); 1597 break; 1598 case LIO_MLOCK: 1599 break; 1600 case LIO_NOP: 1601 error = fget(td, fd, &cap_no_rights, &fp); 1602 break; 1603 default: 1604 error = EINVAL; 1605 } 1606 if (error) 1607 goto err3; 1608 1609 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1610 error = EINVAL; 1611 goto err3; 1612 } 1613 1614 if ((opcode == LIO_READ || opcode == LIO_READV || 1615 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1616 job->uaiocb.aio_offset < 0 && 1617 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1618 error = EINVAL; 1619 goto err3; 1620 } 1621 1622 if (fp != NULL && fp->f_ops == &path_fileops) { 1623 error = EBADF; 1624 goto err3; 1625 } 1626 1627 job->fd_file = fp; 1628 1629 mtx_lock(&aio_job_mtx); 1630 jid = jobrefid++; 1631 job->seqno = jobseqno++; 1632 mtx_unlock(&aio_job_mtx); 1633 error = ops->store_kernelinfo(ujob, jid); 1634 if (error) { 1635 error = EINVAL; 1636 goto err3; 1637 } 1638 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1639 1640 if (opcode == LIO_NOP) { 1641 fdrop(fp, td); 1642 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1643 uma_zfree(aiocb_zone, job); 1644 return (0); 1645 } 1646 1647 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1648 goto no_kqueue; 1649 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1650 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1651 error = EINVAL; 1652 goto err3; 1653 } 1654 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1655 memset(&kev, 0, sizeof(kev)); 1656 kev.ident = (uintptr_t)job->ujob; 1657 kev.filter = EVFILT_AIO; 1658 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1659 kev.data = (intptr_t)job; 1660 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1661 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1662 if (error) 1663 goto err3; 1664 1665 no_kqueue: 1666 1667 ops->store_error(ujob, EINPROGRESS); 1668 job->uaiocb._aiocb_private.error = EINPROGRESS; 1669 job->userproc = p; 1670 job->cred = crhold(td->td_ucred); 1671 job->jobflags = KAIOCB_QUEUEING; 1672 job->lio = lj; 1673 1674 if (opcode & LIO_VECTORED) { 1675 /* Use the uio copied in by aio_copyin */ 1676 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1677 } else { 1678 /* Setup the inline uio */ 1679 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1680 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1681 job->uio.uio_iov = job->iov; 1682 job->uio.uio_iovcnt = 1; 1683 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1684 job->uio.uio_segflg = UIO_USERSPACE; 1685 job->uiop = &job->uio; 1686 } 1687 switch (opcode & (LIO_READ | LIO_WRITE)) { 1688 case LIO_READ: 1689 job->uiop->uio_rw = UIO_READ; 1690 break; 1691 case LIO_WRITE: 1692 job->uiop->uio_rw = UIO_WRITE; 1693 break; 1694 } 1695 job->uiop->uio_offset = job->uaiocb.aio_offset; 1696 job->uiop->uio_td = td; 1697 1698 if (opcode == LIO_MLOCK) { 1699 aio_schedule(job, aio_process_mlock); 1700 error = 0; 1701 } else if (fp->f_ops->fo_aio_queue == NULL) 1702 error = aio_queue_file(fp, job); 1703 else 1704 error = fo_aio_queue(fp, job); 1705 if (error) 1706 goto err3; 1707 1708 AIO_LOCK(ki); 1709 job->jobflags &= ~KAIOCB_QUEUEING; 1710 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1711 ki->kaio_count++; 1712 if (lj) 1713 lj->lioj_count++; 1714 atomic_add_int(&num_queue_count, 1); 1715 if (job->jobflags & KAIOCB_FINISHED) { 1716 /* 1717 * The queue callback completed the request synchronously. 1718 * The bulk of the completion is deferred in that case 1719 * until this point. 1720 */ 1721 aio_bio_done_notify(p, job); 1722 } else 1723 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1724 AIO_UNLOCK(ki); 1725 return (0); 1726 1727 err3: 1728 if (fp) 1729 fdrop(fp, td); 1730 knlist_delete(&job->klist, curthread, 0); 1731 err2: 1732 if (job->uiop != &job->uio) 1733 free(job->uiop, M_IOV); 1734 uma_zfree(aiocb_zone, job); 1735 err1: 1736 ops->store_error(ujob, error); 1737 return (error); 1738 } 1739 1740 static void 1741 aio_cancel_daemon_job(struct kaiocb *job) 1742 { 1743 1744 mtx_lock(&aio_job_mtx); 1745 if (!aio_cancel_cleared(job)) 1746 TAILQ_REMOVE(&aio_jobs, job, list); 1747 mtx_unlock(&aio_job_mtx); 1748 aio_cancel(job); 1749 } 1750 1751 void 1752 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1753 { 1754 1755 mtx_lock(&aio_job_mtx); 1756 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1757 mtx_unlock(&aio_job_mtx); 1758 aio_cancel(job); 1759 return; 1760 } 1761 job->handle_fn = func; 1762 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1763 aio_kick_nowait(job->userproc); 1764 mtx_unlock(&aio_job_mtx); 1765 } 1766 1767 static void 1768 aio_cancel_sync(struct kaiocb *job) 1769 { 1770 struct kaioinfo *ki; 1771 1772 ki = job->userproc->p_aioinfo; 1773 AIO_LOCK(ki); 1774 if (!aio_cancel_cleared(job)) 1775 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1776 AIO_UNLOCK(ki); 1777 aio_cancel(job); 1778 } 1779 1780 int 1781 aio_queue_file(struct file *fp, struct kaiocb *job) 1782 { 1783 struct kaioinfo *ki; 1784 struct kaiocb *job2; 1785 struct vnode *vp; 1786 struct mount *mp; 1787 int error; 1788 bool safe; 1789 1790 ki = job->userproc->p_aioinfo; 1791 error = aio_qbio(job->userproc, job); 1792 if (error >= 0) 1793 return (error); 1794 safe = false; 1795 if (fp->f_type == DTYPE_VNODE) { 1796 vp = fp->f_vnode; 1797 if (vp->v_type == VREG || vp->v_type == VDIR) { 1798 mp = fp->f_vnode->v_mount; 1799 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1800 safe = true; 1801 } 1802 } 1803 if (!(safe || enable_aio_unsafe)) { 1804 counted_warning(&unsafe_warningcnt, 1805 "is attempting to use unsafe AIO requests"); 1806 return (EOPNOTSUPP); 1807 } 1808 1809 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1810 aio_schedule(job, aio_process_rw); 1811 error = 0; 1812 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1813 AIO_LOCK(ki); 1814 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1815 if (job2->fd_file == job->fd_file && 1816 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1817 job2->seqno < job->seqno) { 1818 job2->jobflags |= KAIOCB_CHECKSYNC; 1819 job->pending++; 1820 } 1821 } 1822 if (job->pending != 0) { 1823 if (!aio_set_cancel_function_locked(job, 1824 aio_cancel_sync)) { 1825 AIO_UNLOCK(ki); 1826 aio_cancel(job); 1827 return (0); 1828 } 1829 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1830 AIO_UNLOCK(ki); 1831 return (0); 1832 } 1833 AIO_UNLOCK(ki); 1834 aio_schedule(job, aio_process_sync); 1835 error = 0; 1836 } else { 1837 error = EINVAL; 1838 } 1839 return (error); 1840 } 1841 1842 static void 1843 aio_kick_nowait(struct proc *userp) 1844 { 1845 struct kaioinfo *ki = userp->p_aioinfo; 1846 struct aioproc *aiop; 1847 1848 mtx_assert(&aio_job_mtx, MA_OWNED); 1849 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1850 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1851 aiop->aioprocflags &= ~AIOP_FREE; 1852 wakeup(aiop->aioproc); 1853 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1854 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1855 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1856 } 1857 } 1858 1859 static int 1860 aio_kick(struct proc *userp) 1861 { 1862 struct kaioinfo *ki = userp->p_aioinfo; 1863 struct aioproc *aiop; 1864 int error, ret = 0; 1865 1866 mtx_assert(&aio_job_mtx, MA_OWNED); 1867 retryproc: 1868 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1869 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1870 aiop->aioprocflags &= ~AIOP_FREE; 1871 wakeup(aiop->aioproc); 1872 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1873 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1874 num_aio_resv_start++; 1875 mtx_unlock(&aio_job_mtx); 1876 error = aio_newproc(&num_aio_resv_start); 1877 mtx_lock(&aio_job_mtx); 1878 if (error) { 1879 num_aio_resv_start--; 1880 goto retryproc; 1881 } 1882 } else { 1883 ret = -1; 1884 } 1885 return (ret); 1886 } 1887 1888 static void 1889 aio_kick_helper(void *context, int pending) 1890 { 1891 struct proc *userp = context; 1892 1893 mtx_lock(&aio_job_mtx); 1894 while (--pending >= 0) { 1895 if (aio_kick(userp)) 1896 break; 1897 } 1898 mtx_unlock(&aio_job_mtx); 1899 } 1900 1901 /* 1902 * Support the aio_return system call, as a side-effect, kernel resources are 1903 * released. 1904 */ 1905 static int 1906 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1907 { 1908 struct proc *p = td->td_proc; 1909 struct kaiocb *job; 1910 struct kaioinfo *ki; 1911 long status, error; 1912 1913 ki = p->p_aioinfo; 1914 if (ki == NULL) 1915 return (EINVAL); 1916 AIO_LOCK(ki); 1917 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1918 if (job->ujob == ujob) 1919 break; 1920 } 1921 if (job != NULL) { 1922 MPASS(job->jobflags & KAIOCB_FINISHED); 1923 status = job->uaiocb._aiocb_private.status; 1924 error = job->uaiocb._aiocb_private.error; 1925 td->td_retval[0] = status; 1926 td->td_ru.ru_oublock += job->outblock; 1927 td->td_ru.ru_inblock += job->inblock; 1928 td->td_ru.ru_msgsnd += job->msgsnd; 1929 td->td_ru.ru_msgrcv += job->msgrcv; 1930 aio_free_entry(job); 1931 AIO_UNLOCK(ki); 1932 ops->store_error(ujob, error); 1933 ops->store_status(ujob, status); 1934 } else { 1935 error = EINVAL; 1936 AIO_UNLOCK(ki); 1937 } 1938 return (error); 1939 } 1940 1941 int 1942 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1943 { 1944 1945 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1946 } 1947 1948 /* 1949 * Allow a process to wakeup when any of the I/O requests are completed. 1950 */ 1951 static int 1952 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1953 struct timespec *ts) 1954 { 1955 struct proc *p = td->td_proc; 1956 struct timeval atv; 1957 struct kaioinfo *ki; 1958 struct kaiocb *firstjob, *job; 1959 int error, i, timo; 1960 1961 timo = 0; 1962 if (ts) { 1963 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1964 return (EINVAL); 1965 1966 TIMESPEC_TO_TIMEVAL(&atv, ts); 1967 if (itimerfix(&atv)) 1968 return (EINVAL); 1969 timo = tvtohz(&atv); 1970 } 1971 1972 ki = p->p_aioinfo; 1973 if (ki == NULL) 1974 return (EAGAIN); 1975 1976 if (njoblist == 0) 1977 return (0); 1978 1979 AIO_LOCK(ki); 1980 for (;;) { 1981 firstjob = NULL; 1982 error = 0; 1983 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1984 for (i = 0; i < njoblist; i++) { 1985 if (job->ujob == ujoblist[i]) { 1986 if (firstjob == NULL) 1987 firstjob = job; 1988 if (job->jobflags & KAIOCB_FINISHED) 1989 goto RETURN; 1990 } 1991 } 1992 } 1993 /* All tasks were finished. */ 1994 if (firstjob == NULL) 1995 break; 1996 1997 ki->kaio_flags |= KAIO_WAKEUP; 1998 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1999 "aiospn", timo); 2000 if (error == ERESTART) 2001 error = EINTR; 2002 if (error) 2003 break; 2004 } 2005 RETURN: 2006 AIO_UNLOCK(ki); 2007 return (error); 2008 } 2009 2010 int 2011 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2012 { 2013 struct timespec ts, *tsp; 2014 struct aiocb **ujoblist; 2015 int error; 2016 2017 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2018 return (EINVAL); 2019 2020 if (uap->timeout) { 2021 /* Get timespec struct. */ 2022 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2023 return (error); 2024 tsp = &ts; 2025 } else 2026 tsp = NULL; 2027 2028 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2029 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2030 if (error == 0) 2031 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2032 free(ujoblist, M_AIOS); 2033 return (error); 2034 } 2035 2036 /* 2037 * aio_cancel cancels any non-bio aio operations not currently in progress. 2038 */ 2039 int 2040 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2041 { 2042 struct proc *p = td->td_proc; 2043 struct kaioinfo *ki; 2044 struct kaiocb *job, *jobn; 2045 struct file *fp; 2046 int error; 2047 int cancelled = 0; 2048 int notcancelled = 0; 2049 struct vnode *vp; 2050 2051 /* Lookup file object. */ 2052 error = fget(td, uap->fd, &cap_no_rights, &fp); 2053 if (error) 2054 return (error); 2055 2056 ki = p->p_aioinfo; 2057 if (ki == NULL) 2058 goto done; 2059 2060 if (fp->f_type == DTYPE_VNODE) { 2061 vp = fp->f_vnode; 2062 if (vn_isdisk(vp)) { 2063 fdrop(fp, td); 2064 td->td_retval[0] = AIO_NOTCANCELED; 2065 return (0); 2066 } 2067 } 2068 2069 AIO_LOCK(ki); 2070 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2071 if ((uap->fd == job->uaiocb.aio_fildes) && 2072 ((uap->aiocbp == NULL) || 2073 (uap->aiocbp == job->ujob))) { 2074 if (aio_cancel_job(p, ki, job)) { 2075 cancelled++; 2076 } else { 2077 notcancelled++; 2078 } 2079 if (uap->aiocbp != NULL) 2080 break; 2081 } 2082 } 2083 AIO_UNLOCK(ki); 2084 2085 done: 2086 fdrop(fp, td); 2087 2088 if (uap->aiocbp != NULL) { 2089 if (cancelled) { 2090 td->td_retval[0] = AIO_CANCELED; 2091 return (0); 2092 } 2093 } 2094 2095 if (notcancelled) { 2096 td->td_retval[0] = AIO_NOTCANCELED; 2097 return (0); 2098 } 2099 2100 if (cancelled) { 2101 td->td_retval[0] = AIO_CANCELED; 2102 return (0); 2103 } 2104 2105 td->td_retval[0] = AIO_ALLDONE; 2106 2107 return (0); 2108 } 2109 2110 /* 2111 * aio_error is implemented in the kernel level for compatibility purposes 2112 * only. For a user mode async implementation, it would be best to do it in 2113 * a userland subroutine. 2114 */ 2115 static int 2116 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2117 { 2118 struct proc *p = td->td_proc; 2119 struct kaiocb *job; 2120 struct kaioinfo *ki; 2121 int status; 2122 2123 ki = p->p_aioinfo; 2124 if (ki == NULL) { 2125 td->td_retval[0] = EINVAL; 2126 return (0); 2127 } 2128 2129 AIO_LOCK(ki); 2130 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2131 if (job->ujob == ujob) { 2132 if (job->jobflags & KAIOCB_FINISHED) 2133 td->td_retval[0] = 2134 job->uaiocb._aiocb_private.error; 2135 else 2136 td->td_retval[0] = EINPROGRESS; 2137 AIO_UNLOCK(ki); 2138 return (0); 2139 } 2140 } 2141 AIO_UNLOCK(ki); 2142 2143 /* 2144 * Hack for failure of aio_aqueue. 2145 */ 2146 status = ops->fetch_status(ujob); 2147 if (status == -1) { 2148 td->td_retval[0] = ops->fetch_error(ujob); 2149 return (0); 2150 } 2151 2152 td->td_retval[0] = EINVAL; 2153 return (0); 2154 } 2155 2156 int 2157 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2158 { 2159 2160 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2161 } 2162 2163 /* syscall - asynchronous read from a file (REALTIME) */ 2164 #ifdef COMPAT_FREEBSD6 2165 int 2166 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2167 { 2168 2169 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2170 &aiocb_ops_osigevent)); 2171 } 2172 #endif 2173 2174 int 2175 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2176 { 2177 2178 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2179 } 2180 2181 int 2182 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2183 { 2184 2185 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2186 } 2187 2188 /* syscall - asynchronous write to a file (REALTIME) */ 2189 #ifdef COMPAT_FREEBSD6 2190 int 2191 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2192 { 2193 2194 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2195 &aiocb_ops_osigevent)); 2196 } 2197 #endif 2198 2199 int 2200 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2201 { 2202 2203 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2204 } 2205 2206 int 2207 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2208 { 2209 2210 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2211 } 2212 2213 int 2214 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2215 { 2216 2217 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2218 } 2219 2220 static int 2221 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2222 struct aiocb **acb_list, int nent, struct sigevent *sig, 2223 struct aiocb_ops *ops) 2224 { 2225 struct proc *p = td->td_proc; 2226 struct aiocb *job; 2227 struct kaioinfo *ki; 2228 struct aioliojob *lj; 2229 struct kevent kev; 2230 int error; 2231 int nagain, nerror; 2232 int i; 2233 2234 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2235 return (EINVAL); 2236 2237 if (nent < 0 || nent > max_aio_queue_per_proc) 2238 return (EINVAL); 2239 2240 if (p->p_aioinfo == NULL) 2241 aio_init_aioinfo(p); 2242 2243 ki = p->p_aioinfo; 2244 2245 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2246 lj->lioj_flags = 0; 2247 lj->lioj_count = 0; 2248 lj->lioj_finished_count = 0; 2249 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2250 ksiginfo_init(&lj->lioj_ksi); 2251 2252 /* 2253 * Setup signal. 2254 */ 2255 if (sig && (mode == LIO_NOWAIT)) { 2256 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2257 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2258 /* Assume only new style KEVENT */ 2259 memset(&kev, 0, sizeof(kev)); 2260 kev.filter = EVFILT_LIO; 2261 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2262 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2263 kev.data = (intptr_t)lj; 2264 /* pass user defined sigval data */ 2265 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2266 error = kqfd_register( 2267 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2268 M_WAITOK); 2269 if (error) { 2270 uma_zfree(aiolio_zone, lj); 2271 return (error); 2272 } 2273 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2274 ; 2275 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2276 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2277 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2278 uma_zfree(aiolio_zone, lj); 2279 return EINVAL; 2280 } 2281 lj->lioj_flags |= LIOJ_SIGNAL; 2282 } else { 2283 uma_zfree(aiolio_zone, lj); 2284 return EINVAL; 2285 } 2286 } 2287 2288 AIO_LOCK(ki); 2289 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2290 /* 2291 * Add extra aiocb count to avoid the lio to be freed 2292 * by other threads doing aio_waitcomplete or aio_return, 2293 * and prevent event from being sent until we have queued 2294 * all tasks. 2295 */ 2296 lj->lioj_count = 1; 2297 AIO_UNLOCK(ki); 2298 2299 /* 2300 * Get pointers to the list of I/O requests. 2301 */ 2302 nagain = 0; 2303 nerror = 0; 2304 for (i = 0; i < nent; i++) { 2305 job = acb_list[i]; 2306 if (job != NULL) { 2307 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2308 if (error == EAGAIN) 2309 nagain++; 2310 else if (error != 0) 2311 nerror++; 2312 } 2313 } 2314 2315 error = 0; 2316 AIO_LOCK(ki); 2317 if (mode == LIO_WAIT) { 2318 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2319 ki->kaio_flags |= KAIO_WAKEUP; 2320 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2321 PRIBIO | PCATCH, "aiospn", 0); 2322 if (error == ERESTART) 2323 error = EINTR; 2324 if (error) 2325 break; 2326 } 2327 } else { 2328 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2329 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2330 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2331 KNOTE_LOCKED(&lj->klist, 1); 2332 } 2333 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2334 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2335 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2336 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2337 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2338 lj->lioj_count != 1); 2339 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2340 } 2341 } 2342 } 2343 lj->lioj_count--; 2344 if (lj->lioj_count == 0) { 2345 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2346 knlist_delete(&lj->klist, curthread, 1); 2347 PROC_LOCK(p); 2348 sigqueue_take(&lj->lioj_ksi); 2349 PROC_UNLOCK(p); 2350 AIO_UNLOCK(ki); 2351 uma_zfree(aiolio_zone, lj); 2352 } else 2353 AIO_UNLOCK(ki); 2354 2355 if (nerror) 2356 return (EIO); 2357 else if (nagain) 2358 return (EAGAIN); 2359 else 2360 return (error); 2361 } 2362 2363 /* syscall - list directed I/O (REALTIME) */ 2364 #ifdef COMPAT_FREEBSD6 2365 int 2366 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2367 { 2368 struct aiocb **acb_list; 2369 struct sigevent *sigp, sig; 2370 struct osigevent osig; 2371 int error, nent; 2372 2373 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2374 return (EINVAL); 2375 2376 nent = uap->nent; 2377 if (nent < 0 || nent > max_aio_queue_per_proc) 2378 return (EINVAL); 2379 2380 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2381 error = copyin(uap->sig, &osig, sizeof(osig)); 2382 if (error) 2383 return (error); 2384 error = convert_old_sigevent(&osig, &sig); 2385 if (error) 2386 return (error); 2387 sigp = &sig; 2388 } else 2389 sigp = NULL; 2390 2391 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2392 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2393 if (error == 0) 2394 error = kern_lio_listio(td, uap->mode, 2395 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2396 &aiocb_ops_osigevent); 2397 free(acb_list, M_LIO); 2398 return (error); 2399 } 2400 #endif 2401 2402 /* syscall - list directed I/O (REALTIME) */ 2403 int 2404 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2405 { 2406 struct aiocb **acb_list; 2407 struct sigevent *sigp, sig; 2408 int error, nent; 2409 2410 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2411 return (EINVAL); 2412 2413 nent = uap->nent; 2414 if (nent < 0 || nent > max_aio_queue_per_proc) 2415 return (EINVAL); 2416 2417 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2418 error = copyin(uap->sig, &sig, sizeof(sig)); 2419 if (error) 2420 return (error); 2421 sigp = &sig; 2422 } else 2423 sigp = NULL; 2424 2425 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2426 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2427 if (error == 0) 2428 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2429 nent, sigp, &aiocb_ops); 2430 free(acb_list, M_LIO); 2431 return (error); 2432 } 2433 2434 static void 2435 aio_biocleanup(struct bio *bp) 2436 { 2437 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2438 struct kaioinfo *ki; 2439 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2440 2441 /* Release mapping into kernel space. */ 2442 if (pbuf != NULL) { 2443 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2444 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2445 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2446 uma_zfree(pbuf_zone, pbuf); 2447 atomic_subtract_int(&num_buf_aio, 1); 2448 ki = job->userproc->p_aioinfo; 2449 AIO_LOCK(ki); 2450 ki->kaio_buffer_count--; 2451 AIO_UNLOCK(ki); 2452 } else { 2453 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2454 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2455 free(bp->bio_ma, M_TEMP); 2456 atomic_subtract_int(&num_unmapped_aio, 1); 2457 } 2458 g_destroy_bio(bp); 2459 } 2460 2461 static void 2462 aio_biowakeup(struct bio *bp) 2463 { 2464 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2465 size_t nbytes; 2466 long bcount = bp->bio_bcount; 2467 long resid = bp->bio_resid; 2468 int error, opcode, nblks; 2469 int bio_error = bp->bio_error; 2470 uint16_t flags = bp->bio_flags; 2471 2472 opcode = job->uaiocb.aio_lio_opcode; 2473 2474 aio_biocleanup(bp); 2475 2476 nbytes =bcount - resid; 2477 atomic_add_acq_long(&job->nbytes, nbytes); 2478 nblks = btodb(nbytes); 2479 error = 0; 2480 /* 2481 * If multiple bios experienced an error, the job will reflect the 2482 * error of whichever failed bio completed last. 2483 */ 2484 if (flags & BIO_ERROR) 2485 atomic_set_int(&job->error, bio_error); 2486 if (opcode & LIO_WRITE) 2487 atomic_add_int(&job->outblock, nblks); 2488 else 2489 atomic_add_int(&job->inblock, nblks); 2490 atomic_subtract_int(&job->nbio, 1); 2491 2492 2493 if (atomic_load_int(&job->nbio) == 0) { 2494 if (atomic_load_int(&job->error)) 2495 aio_complete(job, -1, job->error); 2496 else 2497 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2498 } 2499 } 2500 2501 /* syscall - wait for the next completion of an aio request */ 2502 static int 2503 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2504 struct timespec *ts, struct aiocb_ops *ops) 2505 { 2506 struct proc *p = td->td_proc; 2507 struct timeval atv; 2508 struct kaioinfo *ki; 2509 struct kaiocb *job; 2510 struct aiocb *ujob; 2511 long error, status; 2512 int timo; 2513 2514 ops->store_aiocb(ujobp, NULL); 2515 2516 if (ts == NULL) { 2517 timo = 0; 2518 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2519 timo = -1; 2520 } else { 2521 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2522 return (EINVAL); 2523 2524 TIMESPEC_TO_TIMEVAL(&atv, ts); 2525 if (itimerfix(&atv)) 2526 return (EINVAL); 2527 timo = tvtohz(&atv); 2528 } 2529 2530 if (p->p_aioinfo == NULL) 2531 aio_init_aioinfo(p); 2532 ki = p->p_aioinfo; 2533 2534 error = 0; 2535 job = NULL; 2536 AIO_LOCK(ki); 2537 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2538 if (timo == -1) { 2539 error = EWOULDBLOCK; 2540 break; 2541 } 2542 ki->kaio_flags |= KAIO_WAKEUP; 2543 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2544 "aiowc", timo); 2545 if (timo && error == ERESTART) 2546 error = EINTR; 2547 if (error) 2548 break; 2549 } 2550 2551 if (job != NULL) { 2552 MPASS(job->jobflags & KAIOCB_FINISHED); 2553 ujob = job->ujob; 2554 status = job->uaiocb._aiocb_private.status; 2555 error = job->uaiocb._aiocb_private.error; 2556 td->td_retval[0] = status; 2557 td->td_ru.ru_oublock += job->outblock; 2558 td->td_ru.ru_inblock += job->inblock; 2559 td->td_ru.ru_msgsnd += job->msgsnd; 2560 td->td_ru.ru_msgrcv += job->msgrcv; 2561 aio_free_entry(job); 2562 AIO_UNLOCK(ki); 2563 ops->store_aiocb(ujobp, ujob); 2564 ops->store_error(ujob, error); 2565 ops->store_status(ujob, status); 2566 } else 2567 AIO_UNLOCK(ki); 2568 2569 return (error); 2570 } 2571 2572 int 2573 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2574 { 2575 struct timespec ts, *tsp; 2576 int error; 2577 2578 if (uap->timeout) { 2579 /* Get timespec struct. */ 2580 error = copyin(uap->timeout, &ts, sizeof(ts)); 2581 if (error) 2582 return (error); 2583 tsp = &ts; 2584 } else 2585 tsp = NULL; 2586 2587 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2588 } 2589 2590 static int 2591 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2592 struct aiocb_ops *ops) 2593 { 2594 int listop; 2595 2596 switch (op) { 2597 case O_SYNC: 2598 listop = LIO_SYNC; 2599 break; 2600 case O_DSYNC: 2601 listop = LIO_DSYNC; 2602 break; 2603 default: 2604 return (EINVAL); 2605 } 2606 2607 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2608 } 2609 2610 int 2611 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2612 { 2613 2614 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2615 } 2616 2617 /* kqueue attach function */ 2618 static int 2619 filt_aioattach(struct knote *kn) 2620 { 2621 struct kaiocb *job; 2622 2623 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2624 2625 /* 2626 * The job pointer must be validated before using it, so 2627 * registration is restricted to the kernel; the user cannot 2628 * set EV_FLAG1. 2629 */ 2630 if ((kn->kn_flags & EV_FLAG1) == 0) 2631 return (EPERM); 2632 kn->kn_ptr.p_aio = job; 2633 kn->kn_flags &= ~EV_FLAG1; 2634 2635 knlist_add(&job->klist, kn, 0); 2636 2637 return (0); 2638 } 2639 2640 /* kqueue detach function */ 2641 static void 2642 filt_aiodetach(struct knote *kn) 2643 { 2644 struct knlist *knl; 2645 2646 knl = &kn->kn_ptr.p_aio->klist; 2647 knl->kl_lock(knl->kl_lockarg); 2648 if (!knlist_empty(knl)) 2649 knlist_remove(knl, kn, 1); 2650 knl->kl_unlock(knl->kl_lockarg); 2651 } 2652 2653 /* kqueue filter function */ 2654 /*ARGSUSED*/ 2655 static int 2656 filt_aio(struct knote *kn, long hint) 2657 { 2658 struct kaiocb *job = kn->kn_ptr.p_aio; 2659 2660 kn->kn_data = job->uaiocb._aiocb_private.error; 2661 if (!(job->jobflags & KAIOCB_FINISHED)) 2662 return (0); 2663 kn->kn_flags |= EV_EOF; 2664 return (1); 2665 } 2666 2667 /* kqueue attach function */ 2668 static int 2669 filt_lioattach(struct knote *kn) 2670 { 2671 struct aioliojob *lj; 2672 2673 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2674 2675 /* 2676 * The aioliojob pointer must be validated before using it, so 2677 * registration is restricted to the kernel; the user cannot 2678 * set EV_FLAG1. 2679 */ 2680 if ((kn->kn_flags & EV_FLAG1) == 0) 2681 return (EPERM); 2682 kn->kn_ptr.p_lio = lj; 2683 kn->kn_flags &= ~EV_FLAG1; 2684 2685 knlist_add(&lj->klist, kn, 0); 2686 2687 return (0); 2688 } 2689 2690 /* kqueue detach function */ 2691 static void 2692 filt_liodetach(struct knote *kn) 2693 { 2694 struct knlist *knl; 2695 2696 knl = &kn->kn_ptr.p_lio->klist; 2697 knl->kl_lock(knl->kl_lockarg); 2698 if (!knlist_empty(knl)) 2699 knlist_remove(knl, kn, 1); 2700 knl->kl_unlock(knl->kl_lockarg); 2701 } 2702 2703 /* kqueue filter function */ 2704 /*ARGSUSED*/ 2705 static int 2706 filt_lio(struct knote *kn, long hint) 2707 { 2708 struct aioliojob * lj = kn->kn_ptr.p_lio; 2709 2710 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2711 } 2712 2713 #ifdef COMPAT_FREEBSD32 2714 #include <sys/mount.h> 2715 #include <sys/socket.h> 2716 #include <compat/freebsd32/freebsd32.h> 2717 #include <compat/freebsd32/freebsd32_proto.h> 2718 #include <compat/freebsd32/freebsd32_signal.h> 2719 #include <compat/freebsd32/freebsd32_syscall.h> 2720 #include <compat/freebsd32/freebsd32_util.h> 2721 2722 struct __aiocb_private32 { 2723 int32_t status; 2724 int32_t error; 2725 uint32_t kernelinfo; 2726 }; 2727 2728 #ifdef COMPAT_FREEBSD6 2729 typedef struct oaiocb32 { 2730 int aio_fildes; /* File descriptor */ 2731 uint64_t aio_offset __packed; /* File offset for I/O */ 2732 uint32_t aio_buf; /* I/O buffer in process space */ 2733 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2734 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2735 int aio_lio_opcode; /* LIO opcode */ 2736 int aio_reqprio; /* Request priority -- ignored */ 2737 struct __aiocb_private32 _aiocb_private; 2738 } oaiocb32_t; 2739 #endif 2740 2741 typedef struct aiocb32 { 2742 int32_t aio_fildes; /* File descriptor */ 2743 uint64_t aio_offset __packed; /* File offset for I/O */ 2744 uint32_t aio_buf; /* I/O buffer in process space */ 2745 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2746 int __spare__[2]; 2747 uint32_t __spare2__; 2748 int aio_lio_opcode; /* LIO opcode */ 2749 int aio_reqprio; /* Request priority -- ignored */ 2750 struct __aiocb_private32 _aiocb_private; 2751 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2752 } aiocb32_t; 2753 2754 #ifdef COMPAT_FREEBSD6 2755 static int 2756 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2757 { 2758 2759 /* 2760 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2761 * supported by AIO with the old sigevent structure. 2762 */ 2763 CP(*osig, *nsig, sigev_notify); 2764 switch (nsig->sigev_notify) { 2765 case SIGEV_NONE: 2766 break; 2767 case SIGEV_SIGNAL: 2768 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2769 break; 2770 case SIGEV_KEVENT: 2771 nsig->sigev_notify_kqueue = 2772 osig->__sigev_u.__sigev_notify_kqueue; 2773 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2774 break; 2775 default: 2776 return (EINVAL); 2777 } 2778 return (0); 2779 } 2780 2781 static int 2782 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2783 int type __unused) 2784 { 2785 struct oaiocb32 job32; 2786 struct aiocb *kcb = &kjob->uaiocb; 2787 int error; 2788 2789 bzero(kcb, sizeof(struct aiocb)); 2790 error = copyin(ujob, &job32, sizeof(job32)); 2791 if (error) 2792 return (error); 2793 2794 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2795 2796 CP(job32, *kcb, aio_fildes); 2797 CP(job32, *kcb, aio_offset); 2798 PTRIN_CP(job32, *kcb, aio_buf); 2799 CP(job32, *kcb, aio_nbytes); 2800 CP(job32, *kcb, aio_lio_opcode); 2801 CP(job32, *kcb, aio_reqprio); 2802 CP(job32, *kcb, _aiocb_private.status); 2803 CP(job32, *kcb, _aiocb_private.error); 2804 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2805 return (convert_old_sigevent32(&job32.aio_sigevent, 2806 &kcb->aio_sigevent)); 2807 } 2808 #endif 2809 2810 static int 2811 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2812 { 2813 struct aiocb32 job32; 2814 struct aiocb *kcb = &kjob->uaiocb; 2815 struct iovec32 *iov32; 2816 int error; 2817 2818 error = copyin(ujob, &job32, sizeof(job32)); 2819 if (error) 2820 return (error); 2821 CP(job32, *kcb, aio_fildes); 2822 CP(job32, *kcb, aio_offset); 2823 CP(job32, *kcb, aio_lio_opcode); 2824 if (type & LIO_VECTORED) { 2825 iov32 = PTRIN(job32.aio_iov); 2826 CP(job32, *kcb, aio_iovcnt); 2827 /* malloc a uio and copy in the iovec */ 2828 error = freebsd32_copyinuio(iov32, 2829 kcb->aio_iovcnt, &kjob->uiop); 2830 if (error) 2831 return (error); 2832 } else { 2833 PTRIN_CP(job32, *kcb, aio_buf); 2834 CP(job32, *kcb, aio_nbytes); 2835 } 2836 CP(job32, *kcb, aio_reqprio); 2837 CP(job32, *kcb, _aiocb_private.status); 2838 CP(job32, *kcb, _aiocb_private.error); 2839 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2840 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2841 2842 return (error); 2843 } 2844 2845 static long 2846 aiocb32_fetch_status(struct aiocb *ujob) 2847 { 2848 struct aiocb32 *ujob32; 2849 2850 ujob32 = (struct aiocb32 *)ujob; 2851 return (fuword32(&ujob32->_aiocb_private.status)); 2852 } 2853 2854 static long 2855 aiocb32_fetch_error(struct aiocb *ujob) 2856 { 2857 struct aiocb32 *ujob32; 2858 2859 ujob32 = (struct aiocb32 *)ujob; 2860 return (fuword32(&ujob32->_aiocb_private.error)); 2861 } 2862 2863 static int 2864 aiocb32_store_status(struct aiocb *ujob, long status) 2865 { 2866 struct aiocb32 *ujob32; 2867 2868 ujob32 = (struct aiocb32 *)ujob; 2869 return (suword32(&ujob32->_aiocb_private.status, status)); 2870 } 2871 2872 static int 2873 aiocb32_store_error(struct aiocb *ujob, long error) 2874 { 2875 struct aiocb32 *ujob32; 2876 2877 ujob32 = (struct aiocb32 *)ujob; 2878 return (suword32(&ujob32->_aiocb_private.error, error)); 2879 } 2880 2881 static int 2882 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2883 { 2884 struct aiocb32 *ujob32; 2885 2886 ujob32 = (struct aiocb32 *)ujob; 2887 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2888 } 2889 2890 static int 2891 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2892 { 2893 2894 return (suword32(ujobp, (long)ujob)); 2895 } 2896 2897 static struct aiocb_ops aiocb32_ops = { 2898 .aio_copyin = aiocb32_copyin, 2899 .fetch_status = aiocb32_fetch_status, 2900 .fetch_error = aiocb32_fetch_error, 2901 .store_status = aiocb32_store_status, 2902 .store_error = aiocb32_store_error, 2903 .store_kernelinfo = aiocb32_store_kernelinfo, 2904 .store_aiocb = aiocb32_store_aiocb, 2905 }; 2906 2907 #ifdef COMPAT_FREEBSD6 2908 static struct aiocb_ops aiocb32_ops_osigevent = { 2909 .aio_copyin = aiocb32_copyin_old_sigevent, 2910 .fetch_status = aiocb32_fetch_status, 2911 .fetch_error = aiocb32_fetch_error, 2912 .store_status = aiocb32_store_status, 2913 .store_error = aiocb32_store_error, 2914 .store_kernelinfo = aiocb32_store_kernelinfo, 2915 .store_aiocb = aiocb32_store_aiocb, 2916 }; 2917 #endif 2918 2919 int 2920 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2921 { 2922 2923 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2924 } 2925 2926 int 2927 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2928 { 2929 struct timespec32 ts32; 2930 struct timespec ts, *tsp; 2931 struct aiocb **ujoblist; 2932 uint32_t *ujoblist32; 2933 int error, i; 2934 2935 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2936 return (EINVAL); 2937 2938 if (uap->timeout) { 2939 /* Get timespec struct. */ 2940 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2941 return (error); 2942 CP(ts32, ts, tv_sec); 2943 CP(ts32, ts, tv_nsec); 2944 tsp = &ts; 2945 } else 2946 tsp = NULL; 2947 2948 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK); 2949 ujoblist32 = (uint32_t *)ujoblist; 2950 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2951 sizeof(ujoblist32[0])); 2952 if (error == 0) { 2953 for (i = uap->nent - 1; i >= 0; i--) 2954 ujoblist[i] = PTRIN(ujoblist32[i]); 2955 2956 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2957 } 2958 free(ujoblist, M_AIOS); 2959 return (error); 2960 } 2961 2962 int 2963 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2964 { 2965 2966 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2967 } 2968 2969 #ifdef COMPAT_FREEBSD6 2970 int 2971 freebsd6_freebsd32_aio_read(struct thread *td, 2972 struct freebsd6_freebsd32_aio_read_args *uap) 2973 { 2974 2975 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2976 &aiocb32_ops_osigevent)); 2977 } 2978 #endif 2979 2980 int 2981 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2982 { 2983 2984 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2985 &aiocb32_ops)); 2986 } 2987 2988 int 2989 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 2990 { 2991 2992 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 2993 &aiocb32_ops)); 2994 } 2995 2996 #ifdef COMPAT_FREEBSD6 2997 int 2998 freebsd6_freebsd32_aio_write(struct thread *td, 2999 struct freebsd6_freebsd32_aio_write_args *uap) 3000 { 3001 3002 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3003 &aiocb32_ops_osigevent)); 3004 } 3005 #endif 3006 3007 int 3008 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3009 { 3010 3011 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3012 &aiocb32_ops)); 3013 } 3014 3015 int 3016 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3017 { 3018 3019 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3020 &aiocb32_ops)); 3021 } 3022 3023 int 3024 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3025 { 3026 3027 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3028 &aiocb32_ops)); 3029 } 3030 3031 int 3032 freebsd32_aio_waitcomplete(struct thread *td, 3033 struct freebsd32_aio_waitcomplete_args *uap) 3034 { 3035 struct timespec32 ts32; 3036 struct timespec ts, *tsp; 3037 int error; 3038 3039 if (uap->timeout) { 3040 /* Get timespec struct. */ 3041 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3042 if (error) 3043 return (error); 3044 CP(ts32, ts, tv_sec); 3045 CP(ts32, ts, tv_nsec); 3046 tsp = &ts; 3047 } else 3048 tsp = NULL; 3049 3050 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3051 &aiocb32_ops)); 3052 } 3053 3054 int 3055 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3056 { 3057 3058 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3059 &aiocb32_ops)); 3060 } 3061 3062 #ifdef COMPAT_FREEBSD6 3063 int 3064 freebsd6_freebsd32_lio_listio(struct thread *td, 3065 struct freebsd6_freebsd32_lio_listio_args *uap) 3066 { 3067 struct aiocb **acb_list; 3068 struct sigevent *sigp, sig; 3069 struct osigevent32 osig; 3070 uint32_t *acb_list32; 3071 int error, i, nent; 3072 3073 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3074 return (EINVAL); 3075 3076 nent = uap->nent; 3077 if (nent < 0 || nent > max_aio_queue_per_proc) 3078 return (EINVAL); 3079 3080 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3081 error = copyin(uap->sig, &osig, sizeof(osig)); 3082 if (error) 3083 return (error); 3084 error = convert_old_sigevent32(&osig, &sig); 3085 if (error) 3086 return (error); 3087 sigp = &sig; 3088 } else 3089 sigp = NULL; 3090 3091 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3092 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3093 if (error) { 3094 free(acb_list32, M_LIO); 3095 return (error); 3096 } 3097 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3098 for (i = 0; i < nent; i++) 3099 acb_list[i] = PTRIN(acb_list32[i]); 3100 free(acb_list32, M_LIO); 3101 3102 error = kern_lio_listio(td, uap->mode, 3103 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3104 &aiocb32_ops_osigevent); 3105 free(acb_list, M_LIO); 3106 return (error); 3107 } 3108 #endif 3109 3110 int 3111 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3112 { 3113 struct aiocb **acb_list; 3114 struct sigevent *sigp, sig; 3115 struct sigevent32 sig32; 3116 uint32_t *acb_list32; 3117 int error, i, nent; 3118 3119 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3120 return (EINVAL); 3121 3122 nent = uap->nent; 3123 if (nent < 0 || nent > max_aio_queue_per_proc) 3124 return (EINVAL); 3125 3126 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3127 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3128 if (error) 3129 return (error); 3130 error = convert_sigevent32(&sig32, &sig); 3131 if (error) 3132 return (error); 3133 sigp = &sig; 3134 } else 3135 sigp = NULL; 3136 3137 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3138 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3139 if (error) { 3140 free(acb_list32, M_LIO); 3141 return (error); 3142 } 3143 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3144 for (i = 0; i < nent; i++) 3145 acb_list[i] = PTRIN(acb_list32[i]); 3146 free(acb_list32, M_LIO); 3147 3148 error = kern_lio_listio(td, uap->mode, 3149 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3150 &aiocb32_ops); 3151 free(acb_list, M_LIO); 3152 return (error); 3153 } 3154 3155 #endif 3156