1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997 John S. Dyson. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. John S. Dyson's name may not be used to endorse or promote products 12 * derived from this software without specific prior written permission. 13 * 14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 15 * bad that happens because of using this software isn't the responsibility 16 * of the author. This software is distributed AS-IS. 17 */ 18 19 /* 20 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 21 */ 22 23 #include <sys/cdefs.h> 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/capsicum.h> 30 #include <sys/eventhandler.h> 31 #include <sys/sysproto.h> 32 #include <sys/filedesc.h> 33 #include <sys/kernel.h> 34 #include <sys/module.h> 35 #include <sys/kthread.h> 36 #include <sys/fcntl.h> 37 #include <sys/file.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/unistd.h> 42 #include <sys/posix4.h> 43 #include <sys/proc.h> 44 #include <sys/resourcevar.h> 45 #include <sys/signalvar.h> 46 #include <sys/syscallsubr.h> 47 #include <sys/protosw.h> 48 #include <sys/rwlock.h> 49 #include <sys/sema.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/syscall.h> 53 #include <sys/sysctl.h> 54 #include <sys/syslog.h> 55 #include <sys/sx.h> 56 #include <sys/taskqueue.h> 57 #include <sys/vnode.h> 58 #include <sys/conf.h> 59 #include <sys/event.h> 60 #include <sys/mount.h> 61 #include <geom/geom.h> 62 63 #include <machine/atomic.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_extern.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <vm/vm_object.h> 71 #include <vm/uma.h> 72 #include <sys/aio.h> 73 74 /* 75 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 76 * overflow. (XXX will be removed soon.) 77 */ 78 static u_long jobrefid; 79 80 /* 81 * Counter for aio_fsync. 82 */ 83 static uint64_t jobseqno; 84 85 #ifndef MAX_AIO_PER_PROC 86 #define MAX_AIO_PER_PROC 32 87 #endif 88 89 #ifndef MAX_AIO_QUEUE_PER_PROC 90 #define MAX_AIO_QUEUE_PER_PROC 256 91 #endif 92 93 #ifndef MAX_AIO_QUEUE 94 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */ 95 #endif 96 97 #ifndef MAX_BUF_AIO 98 #define MAX_BUF_AIO 16 99 #endif 100 101 FEATURE(aio, "Asynchronous I/O"); 102 SYSCTL_DECL(_p1003_1b); 103 104 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 105 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O"); 106 107 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 108 "Async IO management"); 109 110 static int enable_aio_unsafe = 0; 111 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 112 "Permit asynchronous IO on all file types, not just known-safe types"); 113 114 static unsigned int unsafe_warningcnt = 1; 115 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 116 &unsafe_warningcnt, 0, 117 "Warnings that will be triggered upon failed IO requests on unsafe files"); 118 119 static int max_aio_procs = MAX_AIO_PROCS; 120 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 121 "Maximum number of kernel processes to use for handling async IO "); 122 123 static int num_aio_procs = 0; 124 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 125 "Number of presently active kernel processes for async IO"); 126 127 /* 128 * The code will adjust the actual number of AIO processes towards this 129 * number when it gets a chance. 130 */ 131 static int target_aio_procs = TARGET_AIO_PROCS; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 133 0, 134 "Preferred number of ready kernel processes for async IO"); 135 136 static int max_queue_count = MAX_AIO_QUEUE; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 138 "Maximum number of aio requests to queue, globally"); 139 140 static int num_queue_count = 0; 141 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 142 "Number of queued aio requests"); 143 144 static int num_buf_aio = 0; 145 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 146 "Number of aio requests presently handled by the buf subsystem"); 147 148 static int num_unmapped_aio = 0; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio, 150 0, 151 "Number of aio requests presently handled by unmapped I/O buffers"); 152 153 /* Number of async I/O processes in the process of being started */ 154 /* XXX This should be local to aio_aqueue() */ 155 static int num_aio_resv_start = 0; 156 157 static int aiod_lifetime; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 159 "Maximum lifetime for idle aiod"); 160 161 static int max_aio_per_proc = MAX_AIO_PER_PROC; 162 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 163 0, 164 "Maximum active aio requests per process"); 165 166 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 168 &max_aio_queue_per_proc, 0, 169 "Maximum queued aio requests per process"); 170 171 static int max_buf_aio = MAX_BUF_AIO; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 173 "Maximum buf aio requests per process"); 174 175 /* 176 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires 177 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with 178 * vfs.aio.aio_listio_max. 179 */ 180 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 181 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc, 182 0, "Maximum aio requests for a single lio_listio call"); 183 184 #ifdef COMPAT_FREEBSD6 185 typedef struct oaiocb { 186 int aio_fildes; /* File descriptor */ 187 off_t aio_offset; /* File offset for I/O */ 188 volatile void *aio_buf; /* I/O buffer in process space */ 189 size_t aio_nbytes; /* Number of bytes for I/O */ 190 struct osigevent aio_sigevent; /* Signal to deliver */ 191 int aio_lio_opcode; /* LIO opcode */ 192 int aio_reqprio; /* Request priority -- ignored */ 193 struct __aiocb_private _aiocb_private; 194 } oaiocb_t; 195 #endif 196 197 /* 198 * Below is a key of locks used to protect each member of struct kaiocb 199 * aioliojob and kaioinfo and any backends. 200 * 201 * * - need not protected 202 * a - locked by kaioinfo lock 203 * b - locked by backend lock, the backend lock can be null in some cases, 204 * for example, BIO belongs to this type, in this case, proc lock is 205 * reused. 206 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 207 */ 208 209 /* 210 * If the routine that services an AIO request blocks while running in an 211 * AIO kernel process it can starve other I/O requests. BIO requests 212 * queued via aio_qbio() complete asynchronously and do not use AIO kernel 213 * processes at all. Socket I/O requests use a separate pool of 214 * kprocs and also force non-blocking I/O. Other file I/O requests 215 * use the generic fo_read/fo_write operations which can block. The 216 * fsync and mlock operations can also block while executing. Ideally 217 * none of these requests would block while executing. 218 * 219 * Note that the service routines cannot toggle O_NONBLOCK in the file 220 * structure directly while handling a request due to races with 221 * userland threads. 222 */ 223 224 /* jobflags */ 225 #define KAIOCB_QUEUEING 0x01 226 #define KAIOCB_CANCELLED 0x02 227 #define KAIOCB_CANCELLING 0x04 228 #define KAIOCB_CHECKSYNC 0x08 229 #define KAIOCB_CLEARED 0x10 230 #define KAIOCB_FINISHED 0x20 231 232 /* 233 * AIO process info 234 */ 235 #define AIOP_FREE 0x1 /* proc on free queue */ 236 237 struct aioproc { 238 int aioprocflags; /* (c) AIO proc flags */ 239 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 240 struct proc *aioproc; /* (*) the AIO proc */ 241 }; 242 243 /* 244 * data-structure for lio signal management 245 */ 246 struct aioliojob { 247 int lioj_flags; /* (a) listio flags */ 248 int lioj_count; /* (a) count of jobs */ 249 int lioj_finished_count; /* (a) count of finished jobs */ 250 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 251 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 252 struct knlist klist; /* (a) list of knotes */ 253 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 254 }; 255 256 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 257 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 258 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 259 260 /* 261 * per process aio data structure 262 */ 263 struct kaioinfo { 264 struct mtx kaio_mtx; /* the lock to protect this struct */ 265 int kaio_flags; /* (a) per process kaio flags */ 266 int kaio_active_count; /* (c) number of currently used AIOs */ 267 int kaio_count; /* (a) size of AIO queue */ 268 int kaio_buffer_count; /* (a) number of bio buffers */ 269 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 270 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 271 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 272 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 273 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 274 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 275 struct task kaio_task; /* (*) task to kick aio processes */ 276 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 277 }; 278 279 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 280 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 281 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 282 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 283 284 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 285 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 286 287 /* 288 * Operations used to interact with userland aio control blocks. 289 * Different ABIs provide their own operations. 290 */ 291 struct aiocb_ops { 292 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty); 293 long (*fetch_status)(struct aiocb *ujob); 294 long (*fetch_error)(struct aiocb *ujob); 295 int (*store_status)(struct aiocb *ujob, long status); 296 int (*store_error)(struct aiocb *ujob, long error); 297 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 298 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 299 }; 300 301 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 302 static struct sema aio_newproc_sem; 303 static struct mtx aio_job_mtx; 304 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 305 static struct unrhdr *aiod_unr; 306 307 static void aio_biocleanup(struct bio *bp); 308 void aio_init_aioinfo(struct proc *p); 309 static int aio_onceonly(void); 310 static int aio_free_entry(struct kaiocb *job); 311 static void aio_process_rw(struct kaiocb *job); 312 static void aio_process_sync(struct kaiocb *job); 313 static void aio_process_mlock(struct kaiocb *job); 314 static void aio_schedule_fsync(void *context, int pending); 315 static int aio_newproc(int *); 316 int aio_aqueue(struct thread *td, struct aiocb *ujob, 317 struct aioliojob *lio, int type, struct aiocb_ops *ops); 318 static int aio_queue_file(struct file *fp, struct kaiocb *job); 319 static void aio_biowakeup(struct bio *bp); 320 static void aio_proc_rundown(void *arg, struct proc *p); 321 static void aio_proc_rundown_exec(void *arg, struct proc *p, 322 struct image_params *imgp); 323 static int aio_qbio(struct proc *p, struct kaiocb *job); 324 static void aio_daemon(void *param); 325 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 326 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 327 static int aio_kick(struct proc *userp); 328 static void aio_kick_nowait(struct proc *userp); 329 static void aio_kick_helper(void *context, int pending); 330 static int filt_aioattach(struct knote *kn); 331 static void filt_aiodetach(struct knote *kn); 332 static int filt_aio(struct knote *kn, long hint); 333 static int filt_lioattach(struct knote *kn); 334 static void filt_liodetach(struct knote *kn); 335 static int filt_lio(struct knote *kn, long hint); 336 337 /* 338 * Zones for: 339 * kaio Per process async io info 340 * aiocb async io jobs 341 * aiolio list io jobs 342 */ 343 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone; 344 345 /* kqueue filters for aio */ 346 static struct filterops aio_filtops = { 347 .f_isfd = 0, 348 .f_attach = filt_aioattach, 349 .f_detach = filt_aiodetach, 350 .f_event = filt_aio, 351 }; 352 static struct filterops lio_filtops = { 353 .f_isfd = 0, 354 .f_attach = filt_lioattach, 355 .f_detach = filt_liodetach, 356 .f_event = filt_lio 357 }; 358 359 static eventhandler_tag exit_tag, exec_tag; 360 361 TASKQUEUE_DEFINE_THREAD(aiod_kick); 362 363 /* 364 * Main operations function for use as a kernel module. 365 */ 366 static int 367 aio_modload(struct module *module, int cmd, void *arg) 368 { 369 int error = 0; 370 371 switch (cmd) { 372 case MOD_LOAD: 373 aio_onceonly(); 374 break; 375 case MOD_SHUTDOWN: 376 break; 377 default: 378 error = EOPNOTSUPP; 379 break; 380 } 381 return (error); 382 } 383 384 static moduledata_t aio_mod = { 385 "aio", 386 &aio_modload, 387 NULL 388 }; 389 390 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 391 MODULE_VERSION(aio, 1); 392 393 /* 394 * Startup initialization 395 */ 396 static int 397 aio_onceonly(void) 398 { 399 400 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 401 EVENTHANDLER_PRI_ANY); 402 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 403 NULL, EVENTHANDLER_PRI_ANY); 404 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 405 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 406 TAILQ_INIT(&aio_freeproc); 407 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 408 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 409 TAILQ_INIT(&aio_jobs); 410 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 411 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 412 NULL, NULL, UMA_ALIGN_PTR, 0); 413 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 414 NULL, NULL, UMA_ALIGN_PTR, 0); 415 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 416 NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 417 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 418 jobrefid = 1; 419 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 420 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 421 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 422 423 return (0); 424 } 425 426 /* 427 * Init the per-process aioinfo structure. The aioinfo limits are set 428 * per-process for user limit (resource) management. 429 */ 430 void 431 aio_init_aioinfo(struct proc *p) 432 { 433 struct kaioinfo *ki; 434 435 ki = uma_zalloc(kaio_zone, M_WAITOK); 436 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 437 ki->kaio_flags = 0; 438 ki->kaio_active_count = 0; 439 ki->kaio_count = 0; 440 ki->kaio_buffer_count = 0; 441 TAILQ_INIT(&ki->kaio_all); 442 TAILQ_INIT(&ki->kaio_done); 443 TAILQ_INIT(&ki->kaio_jobqueue); 444 TAILQ_INIT(&ki->kaio_liojoblist); 445 TAILQ_INIT(&ki->kaio_syncqueue); 446 TAILQ_INIT(&ki->kaio_syncready); 447 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 448 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 449 PROC_LOCK(p); 450 if (p->p_aioinfo == NULL) { 451 p->p_aioinfo = ki; 452 PROC_UNLOCK(p); 453 } else { 454 PROC_UNLOCK(p); 455 mtx_destroy(&ki->kaio_mtx); 456 uma_zfree(kaio_zone, ki); 457 } 458 459 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 460 aio_newproc(NULL); 461 } 462 463 static int 464 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext) 465 { 466 struct thread *td; 467 int error; 468 469 error = sigev_findtd(p, sigev, &td); 470 if (error) 471 return (error); 472 if (!KSI_ONQ(ksi)) { 473 ksiginfo_set_sigev(ksi, sigev); 474 ksi->ksi_code = SI_ASYNCIO; 475 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0; 476 tdsendsignal(p, td, ksi->ksi_signo, ksi); 477 } 478 PROC_UNLOCK(p); 479 return (error); 480 } 481 482 /* 483 * Free a job entry. Wait for completion if it is currently active, but don't 484 * delay forever. If we delay, we return a flag that says that we have to 485 * restart the queue scan. 486 */ 487 static int 488 aio_free_entry(struct kaiocb *job) 489 { 490 struct kaioinfo *ki; 491 struct aioliojob *lj; 492 struct proc *p; 493 494 p = job->userproc; 495 MPASS(curproc == p); 496 ki = p->p_aioinfo; 497 MPASS(ki != NULL); 498 499 AIO_LOCK_ASSERT(ki, MA_OWNED); 500 MPASS(job->jobflags & KAIOCB_FINISHED); 501 502 atomic_subtract_int(&num_queue_count, 1); 503 504 ki->kaio_count--; 505 MPASS(ki->kaio_count >= 0); 506 507 TAILQ_REMOVE(&ki->kaio_done, job, plist); 508 TAILQ_REMOVE(&ki->kaio_all, job, allist); 509 510 lj = job->lio; 511 if (lj) { 512 lj->lioj_count--; 513 lj->lioj_finished_count--; 514 515 if (lj->lioj_count == 0) { 516 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 517 /* lio is going away, we need to destroy any knotes */ 518 knlist_delete(&lj->klist, curthread, 1); 519 PROC_LOCK(p); 520 sigqueue_take(&lj->lioj_ksi); 521 PROC_UNLOCK(p); 522 uma_zfree(aiolio_zone, lj); 523 } 524 } 525 526 /* job is going away, we need to destroy any knotes */ 527 knlist_delete(&job->klist, curthread, 1); 528 PROC_LOCK(p); 529 sigqueue_take(&job->ksi); 530 PROC_UNLOCK(p); 531 532 AIO_UNLOCK(ki); 533 534 /* 535 * The thread argument here is used to find the owning process 536 * and is also passed to fo_close() which may pass it to various 537 * places such as devsw close() routines. Because of that, we 538 * need a thread pointer from the process owning the job that is 539 * persistent and won't disappear out from under us or move to 540 * another process. 541 * 542 * Currently, all the callers of this function call it to remove 543 * a kaiocb from the current process' job list either via a 544 * syscall or due to the current process calling exit() or 545 * execve(). Thus, we know that p == curproc. We also know that 546 * curthread can't exit since we are curthread. 547 * 548 * Therefore, we use curthread as the thread to pass to 549 * knlist_delete(). This does mean that it is possible for the 550 * thread pointer at close time to differ from the thread pointer 551 * at open time, but this is already true of file descriptors in 552 * a multithreaded process. 553 */ 554 if (job->fd_file) 555 fdrop(job->fd_file, curthread); 556 crfree(job->cred); 557 if (job->uiop != &job->uio) 558 free(job->uiop, M_IOV); 559 uma_zfree(aiocb_zone, job); 560 AIO_LOCK(ki); 561 562 return (0); 563 } 564 565 static void 566 aio_proc_rundown_exec(void *arg, struct proc *p, 567 struct image_params *imgp __unused) 568 { 569 aio_proc_rundown(arg, p); 570 } 571 572 static int 573 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 574 { 575 aio_cancel_fn_t *func; 576 int cancelled; 577 578 AIO_LOCK_ASSERT(ki, MA_OWNED); 579 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 580 return (0); 581 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 582 job->jobflags |= KAIOCB_CANCELLED; 583 584 func = job->cancel_fn; 585 586 /* 587 * If there is no cancel routine, just leave the job marked as 588 * cancelled. The job should be in active use by a caller who 589 * should complete it normally or when it fails to install a 590 * cancel routine. 591 */ 592 if (func == NULL) 593 return (0); 594 595 /* 596 * Set the CANCELLING flag so that aio_complete() will defer 597 * completions of this job. This prevents the job from being 598 * freed out from under the cancel callback. After the 599 * callback any deferred completion (whether from the callback 600 * or any other source) will be completed. 601 */ 602 job->jobflags |= KAIOCB_CANCELLING; 603 AIO_UNLOCK(ki); 604 func(job); 605 AIO_LOCK(ki); 606 job->jobflags &= ~KAIOCB_CANCELLING; 607 if (job->jobflags & KAIOCB_FINISHED) { 608 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 609 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 610 aio_bio_done_notify(p, job); 611 } else { 612 /* 613 * The cancel callback might have scheduled an 614 * operation to cancel this request, but it is 615 * only counted as cancelled if the request is 616 * cancelled when the callback returns. 617 */ 618 cancelled = 0; 619 } 620 return (cancelled); 621 } 622 623 /* 624 * Rundown the jobs for a given process. 625 */ 626 static void 627 aio_proc_rundown(void *arg, struct proc *p) 628 { 629 struct kaioinfo *ki; 630 struct aioliojob *lj; 631 struct kaiocb *job, *jobn; 632 633 KASSERT(curthread->td_proc == p, 634 ("%s: called on non-curproc", __func__)); 635 ki = p->p_aioinfo; 636 if (ki == NULL) 637 return; 638 639 AIO_LOCK(ki); 640 ki->kaio_flags |= KAIO_RUNDOWN; 641 642 restart: 643 644 /* 645 * Try to cancel all pending requests. This code simulates 646 * aio_cancel on all pending I/O requests. 647 */ 648 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 649 aio_cancel_job(p, ki, job); 650 } 651 652 /* Wait for all running I/O to be finished */ 653 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 654 ki->kaio_flags |= KAIO_WAKEUP; 655 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 656 goto restart; 657 } 658 659 /* Free all completed I/O requests. */ 660 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 661 aio_free_entry(job); 662 663 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 664 if (lj->lioj_count == 0) { 665 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 666 knlist_delete(&lj->klist, curthread, 1); 667 PROC_LOCK(p); 668 sigqueue_take(&lj->lioj_ksi); 669 PROC_UNLOCK(p); 670 uma_zfree(aiolio_zone, lj); 671 } else { 672 panic("LIO job not cleaned up: C:%d, FC:%d\n", 673 lj->lioj_count, lj->lioj_finished_count); 674 } 675 } 676 AIO_UNLOCK(ki); 677 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 678 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 679 mtx_destroy(&ki->kaio_mtx); 680 uma_zfree(kaio_zone, ki); 681 p->p_aioinfo = NULL; 682 } 683 684 /* 685 * Select a job to run (called by an AIO daemon). 686 */ 687 static struct kaiocb * 688 aio_selectjob(struct aioproc *aiop) 689 { 690 struct kaiocb *job; 691 struct kaioinfo *ki; 692 struct proc *userp; 693 694 mtx_assert(&aio_job_mtx, MA_OWNED); 695 restart: 696 TAILQ_FOREACH(job, &aio_jobs, list) { 697 userp = job->userproc; 698 ki = userp->p_aioinfo; 699 700 if (ki->kaio_active_count < max_aio_per_proc) { 701 TAILQ_REMOVE(&aio_jobs, job, list); 702 if (!aio_clear_cancel_function(job)) 703 goto restart; 704 705 /* Account for currently active jobs. */ 706 ki->kaio_active_count++; 707 break; 708 } 709 } 710 return (job); 711 } 712 713 /* 714 * Move all data to a permanent storage device. This code 715 * simulates the fsync and fdatasync syscalls. 716 */ 717 static int 718 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op) 719 { 720 struct mount *mp; 721 vm_object_t obj; 722 int error; 723 724 for (;;) { 725 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 726 if (error != 0) 727 break; 728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 729 obj = vp->v_object; 730 if (obj != NULL) { 731 VM_OBJECT_WLOCK(obj); 732 vm_object_page_clean(obj, 0, 0, 0); 733 VM_OBJECT_WUNLOCK(obj); 734 } 735 if (op == LIO_DSYNC) 736 error = VOP_FDATASYNC(vp, td); 737 else 738 error = VOP_FSYNC(vp, MNT_WAIT, td); 739 740 VOP_UNLOCK(vp); 741 vn_finished_write(mp); 742 if (error != ERELOOKUP) 743 break; 744 } 745 return (error); 746 } 747 748 /* 749 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 750 * does the I/O request for the non-bio version of the operations. The normal 751 * vn operations are used, and this code should work in all instances for every 752 * type of file, including pipes, sockets, fifos, and regular files. 753 * 754 * XXX I don't think it works well for socket, pipe, and fifo. 755 */ 756 static void 757 aio_process_rw(struct kaiocb *job) 758 { 759 struct ucred *td_savedcred; 760 struct thread *td; 761 struct file *fp; 762 ssize_t cnt; 763 long msgsnd_st, msgsnd_end; 764 long msgrcv_st, msgrcv_end; 765 long oublock_st, oublock_end; 766 long inblock_st, inblock_end; 767 int error, opcode; 768 769 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 770 job->uaiocb.aio_lio_opcode == LIO_READV || 771 job->uaiocb.aio_lio_opcode == LIO_WRITE || 772 job->uaiocb.aio_lio_opcode == LIO_WRITEV, 773 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 774 775 aio_switch_vmspace(job); 776 td = curthread; 777 td_savedcred = td->td_ucred; 778 td->td_ucred = job->cred; 779 job->uiop->uio_td = td; 780 fp = job->fd_file; 781 782 opcode = job->uaiocb.aio_lio_opcode; 783 cnt = job->uiop->uio_resid; 784 785 msgrcv_st = td->td_ru.ru_msgrcv; 786 msgsnd_st = td->td_ru.ru_msgsnd; 787 inblock_st = td->td_ru.ru_inblock; 788 oublock_st = td->td_ru.ru_oublock; 789 790 /* 791 * aio_aqueue() acquires a reference to the file that is 792 * released in aio_free_entry(). 793 */ 794 if (opcode == LIO_READ || opcode == LIO_READV) { 795 if (job->uiop->uio_resid == 0) 796 error = 0; 797 else 798 error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET, 799 td); 800 } else { 801 if (fp->f_type == DTYPE_VNODE) 802 bwillwrite(); 803 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td); 804 } 805 msgrcv_end = td->td_ru.ru_msgrcv; 806 msgsnd_end = td->td_ru.ru_msgsnd; 807 inblock_end = td->td_ru.ru_inblock; 808 oublock_end = td->td_ru.ru_oublock; 809 810 job->msgrcv = msgrcv_end - msgrcv_st; 811 job->msgsnd = msgsnd_end - msgsnd_st; 812 job->inblock = inblock_end - inblock_st; 813 job->outblock = oublock_end - oublock_st; 814 815 if (error != 0 && job->uiop->uio_resid != cnt) { 816 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 817 error = 0; 818 if (error == EPIPE && (opcode & LIO_WRITE)) { 819 PROC_LOCK(job->userproc); 820 kern_psignal(job->userproc, SIGPIPE); 821 PROC_UNLOCK(job->userproc); 822 } 823 } 824 825 cnt -= job->uiop->uio_resid; 826 td->td_ucred = td_savedcred; 827 if (error) 828 aio_complete(job, -1, error); 829 else 830 aio_complete(job, cnt, 0); 831 } 832 833 static void 834 aio_process_sync(struct kaiocb *job) 835 { 836 struct thread *td = curthread; 837 struct ucred *td_savedcred = td->td_ucred; 838 struct file *fp = job->fd_file; 839 int error = 0; 840 841 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC, 842 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 843 844 td->td_ucred = job->cred; 845 if (fp->f_vnode != NULL) { 846 error = aio_fsync_vnode(td, fp->f_vnode, 847 job->uaiocb.aio_lio_opcode); 848 } 849 td->td_ucred = td_savedcred; 850 if (error) 851 aio_complete(job, -1, error); 852 else 853 aio_complete(job, 0, 0); 854 } 855 856 static void 857 aio_process_mlock(struct kaiocb *job) 858 { 859 struct aiocb *cb = &job->uaiocb; 860 int error; 861 862 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 863 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 864 865 aio_switch_vmspace(job); 866 error = kern_mlock(job->userproc, job->cred, 867 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 868 aio_complete(job, error != 0 ? -1 : 0, error); 869 } 870 871 static void 872 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 873 { 874 struct aioliojob *lj; 875 struct kaioinfo *ki; 876 struct kaiocb *sjob, *sjobn; 877 int lj_done; 878 bool schedule_fsync; 879 880 ki = userp->p_aioinfo; 881 AIO_LOCK_ASSERT(ki, MA_OWNED); 882 lj = job->lio; 883 lj_done = 0; 884 if (lj) { 885 lj->lioj_finished_count++; 886 if (lj->lioj_count == lj->lioj_finished_count) 887 lj_done = 1; 888 } 889 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 890 MPASS(job->jobflags & KAIOCB_FINISHED); 891 892 if (ki->kaio_flags & KAIO_RUNDOWN) 893 goto notification_done; 894 895 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 896 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 897 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true); 898 899 KNOTE_LOCKED(&job->klist, 1); 900 901 if (lj_done) { 902 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 903 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 904 KNOTE_LOCKED(&lj->klist, 1); 905 } 906 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED)) 907 == LIOJ_SIGNAL && 908 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 909 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 910 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi, 911 true); 912 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 913 } 914 } 915 916 notification_done: 917 if (job->jobflags & KAIOCB_CHECKSYNC) { 918 schedule_fsync = false; 919 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 920 if (job->fd_file != sjob->fd_file || 921 job->seqno >= sjob->seqno) 922 continue; 923 if (--sjob->pending > 0) 924 continue; 925 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 926 if (!aio_clear_cancel_function_locked(sjob)) 927 continue; 928 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 929 schedule_fsync = true; 930 } 931 if (schedule_fsync) 932 taskqueue_enqueue(taskqueue_aiod_kick, 933 &ki->kaio_sync_task); 934 } 935 if (ki->kaio_flags & KAIO_WAKEUP) { 936 ki->kaio_flags &= ~KAIO_WAKEUP; 937 wakeup(&userp->p_aioinfo); 938 } 939 } 940 941 static void 942 aio_schedule_fsync(void *context, int pending) 943 { 944 struct kaioinfo *ki; 945 struct kaiocb *job; 946 947 ki = context; 948 AIO_LOCK(ki); 949 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 950 job = TAILQ_FIRST(&ki->kaio_syncready); 951 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 952 AIO_UNLOCK(ki); 953 aio_schedule(job, aio_process_sync); 954 AIO_LOCK(ki); 955 } 956 AIO_UNLOCK(ki); 957 } 958 959 bool 960 aio_cancel_cleared(struct kaiocb *job) 961 { 962 963 /* 964 * The caller should hold the same queue lock held when 965 * aio_clear_cancel_function() was called and set this flag 966 * ensuring this check sees an up-to-date value. However, 967 * there is no way to assert that. 968 */ 969 return ((job->jobflags & KAIOCB_CLEARED) != 0); 970 } 971 972 static bool 973 aio_clear_cancel_function_locked(struct kaiocb *job) 974 { 975 976 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 977 MPASS(job->cancel_fn != NULL); 978 if (job->jobflags & KAIOCB_CANCELLING) { 979 job->jobflags |= KAIOCB_CLEARED; 980 return (false); 981 } 982 job->cancel_fn = NULL; 983 return (true); 984 } 985 986 bool 987 aio_clear_cancel_function(struct kaiocb *job) 988 { 989 struct kaioinfo *ki; 990 bool ret; 991 992 ki = job->userproc->p_aioinfo; 993 AIO_LOCK(ki); 994 ret = aio_clear_cancel_function_locked(job); 995 AIO_UNLOCK(ki); 996 return (ret); 997 } 998 999 static bool 1000 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1001 { 1002 1003 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1004 if (job->jobflags & KAIOCB_CANCELLED) 1005 return (false); 1006 job->cancel_fn = func; 1007 return (true); 1008 } 1009 1010 bool 1011 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1012 { 1013 struct kaioinfo *ki; 1014 bool ret; 1015 1016 ki = job->userproc->p_aioinfo; 1017 AIO_LOCK(ki); 1018 ret = aio_set_cancel_function_locked(job, func); 1019 AIO_UNLOCK(ki); 1020 return (ret); 1021 } 1022 1023 void 1024 aio_complete(struct kaiocb *job, long status, int error) 1025 { 1026 struct kaioinfo *ki; 1027 struct proc *userp; 1028 1029 job->uaiocb._aiocb_private.error = error; 1030 job->uaiocb._aiocb_private.status = status; 1031 1032 userp = job->userproc; 1033 ki = userp->p_aioinfo; 1034 1035 AIO_LOCK(ki); 1036 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1037 ("duplicate aio_complete")); 1038 job->jobflags |= KAIOCB_FINISHED; 1039 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1040 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1041 aio_bio_done_notify(userp, job); 1042 } 1043 AIO_UNLOCK(ki); 1044 } 1045 1046 void 1047 aio_cancel(struct kaiocb *job) 1048 { 1049 1050 aio_complete(job, -1, ECANCELED); 1051 } 1052 1053 void 1054 aio_switch_vmspace(struct kaiocb *job) 1055 { 1056 1057 vmspace_switch_aio(job->userproc->p_vmspace); 1058 } 1059 1060 /* 1061 * The AIO daemon, most of the actual work is done in aio_process_*, 1062 * but the setup (and address space mgmt) is done in this routine. 1063 */ 1064 static void 1065 aio_daemon(void *_id) 1066 { 1067 struct kaiocb *job; 1068 struct aioproc *aiop; 1069 struct kaioinfo *ki; 1070 struct proc *p; 1071 struct vmspace *myvm; 1072 struct thread *td = curthread; 1073 int id = (intptr_t)_id; 1074 1075 /* 1076 * Grab an extra reference on the daemon's vmspace so that it 1077 * doesn't get freed by jobs that switch to a different 1078 * vmspace. 1079 */ 1080 p = td->td_proc; 1081 myvm = vmspace_acquire_ref(p); 1082 1083 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1084 1085 /* 1086 * Allocate and ready the aio control info. There is one aiop structure 1087 * per daemon. 1088 */ 1089 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK); 1090 aiop->aioproc = p; 1091 aiop->aioprocflags = 0; 1092 1093 /* 1094 * Wakeup parent process. (Parent sleeps to keep from blasting away 1095 * and creating too many daemons.) 1096 */ 1097 sema_post(&aio_newproc_sem); 1098 1099 mtx_lock(&aio_job_mtx); 1100 for (;;) { 1101 /* 1102 * Take daemon off of free queue 1103 */ 1104 if (aiop->aioprocflags & AIOP_FREE) { 1105 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1106 aiop->aioprocflags &= ~AIOP_FREE; 1107 } 1108 1109 /* 1110 * Check for jobs. 1111 */ 1112 while ((job = aio_selectjob(aiop)) != NULL) { 1113 mtx_unlock(&aio_job_mtx); 1114 1115 ki = job->userproc->p_aioinfo; 1116 job->handle_fn(job); 1117 1118 mtx_lock(&aio_job_mtx); 1119 /* Decrement the active job count. */ 1120 ki->kaio_active_count--; 1121 } 1122 1123 /* 1124 * Disconnect from user address space. 1125 */ 1126 if (p->p_vmspace != myvm) { 1127 mtx_unlock(&aio_job_mtx); 1128 vmspace_switch_aio(myvm); 1129 mtx_lock(&aio_job_mtx); 1130 /* 1131 * We have to restart to avoid race, we only sleep if 1132 * no job can be selected. 1133 */ 1134 continue; 1135 } 1136 1137 mtx_assert(&aio_job_mtx, MA_OWNED); 1138 1139 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1140 aiop->aioprocflags |= AIOP_FREE; 1141 1142 /* 1143 * If daemon is inactive for a long time, allow it to exit, 1144 * thereby freeing resources. 1145 */ 1146 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1147 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1148 (aiop->aioprocflags & AIOP_FREE) && 1149 num_aio_procs > target_aio_procs) 1150 break; 1151 } 1152 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1153 num_aio_procs--; 1154 mtx_unlock(&aio_job_mtx); 1155 free(aiop, M_AIO); 1156 free_unr(aiod_unr, id); 1157 vmspace_free(myvm); 1158 1159 KASSERT(p->p_vmspace == myvm, 1160 ("AIOD: bad vmspace for exiting daemon")); 1161 KASSERT(refcount_load(&myvm->vm_refcnt) > 1, 1162 ("AIOD: bad vm refcnt for exiting daemon: %d", 1163 refcount_load(&myvm->vm_refcnt))); 1164 kproc_exit(0); 1165 } 1166 1167 /* 1168 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1169 * AIO daemon modifies its environment itself. 1170 */ 1171 static int 1172 aio_newproc(int *start) 1173 { 1174 int error; 1175 struct proc *p; 1176 int id; 1177 1178 id = alloc_unr(aiod_unr); 1179 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1180 RFNOWAIT, 0, "aiod%d", id); 1181 if (error == 0) { 1182 /* 1183 * Wait until daemon is started. 1184 */ 1185 sema_wait(&aio_newproc_sem); 1186 mtx_lock(&aio_job_mtx); 1187 num_aio_procs++; 1188 if (start != NULL) 1189 (*start)--; 1190 mtx_unlock(&aio_job_mtx); 1191 } else { 1192 free_unr(aiod_unr, id); 1193 } 1194 return (error); 1195 } 1196 1197 /* 1198 * Try the high-performance, low-overhead bio method for eligible 1199 * VCHR devices. This method doesn't use an aio helper thread, and 1200 * thus has very low overhead. 1201 * 1202 * Assumes that the caller, aio_aqueue(), has incremented the file 1203 * structure's reference count, preventing its deallocation for the 1204 * duration of this call. 1205 */ 1206 static int 1207 aio_qbio(struct proc *p, struct kaiocb *job) 1208 { 1209 struct aiocb *cb; 1210 struct file *fp; 1211 struct buf *pbuf; 1212 struct vnode *vp; 1213 struct cdevsw *csw; 1214 struct cdev *dev; 1215 struct kaioinfo *ki; 1216 struct bio **bios = NULL; 1217 off_t offset; 1218 int bio_cmd, error, i, iovcnt, opcode, poff, ref; 1219 vm_prot_t prot; 1220 bool use_unmapped; 1221 1222 cb = &job->uaiocb; 1223 fp = job->fd_file; 1224 opcode = cb->aio_lio_opcode; 1225 1226 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV || 1227 opcode == LIO_READ || opcode == LIO_READV)) 1228 return (-1); 1229 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1230 return (-1); 1231 1232 vp = fp->f_vnode; 1233 if (vp->v_type != VCHR) 1234 return (-1); 1235 if (vp->v_bufobj.bo_bsize == 0) 1236 return (-1); 1237 1238 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ; 1239 iovcnt = job->uiop->uio_iovcnt; 1240 if (iovcnt > max_buf_aio) 1241 return (-1); 1242 for (i = 0; i < iovcnt; i++) { 1243 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0) 1244 return (-1); 1245 if (job->uiop->uio_iov[i].iov_len > maxphys) { 1246 error = -1; 1247 return (-1); 1248 } 1249 } 1250 offset = cb->aio_offset; 1251 1252 ref = 0; 1253 csw = devvn_refthread(vp, &dev, &ref); 1254 if (csw == NULL) 1255 return (ENXIO); 1256 1257 if ((csw->d_flags & D_DISK) == 0) { 1258 error = -1; 1259 goto unref; 1260 } 1261 if (job->uiop->uio_resid > dev->si_iosize_max) { 1262 error = -1; 1263 goto unref; 1264 } 1265 1266 ki = p->p_aioinfo; 1267 job->error = 0; 1268 1269 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed; 1270 if (!use_unmapped) { 1271 AIO_LOCK(ki); 1272 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) { 1273 AIO_UNLOCK(ki); 1274 error = EAGAIN; 1275 goto unref; 1276 } 1277 ki->kaio_buffer_count += iovcnt; 1278 AIO_UNLOCK(ki); 1279 } 1280 1281 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK); 1282 refcount_init(&job->nbio, iovcnt); 1283 for (i = 0; i < iovcnt; i++) { 1284 struct vm_page** pages; 1285 struct bio *bp; 1286 void *buf; 1287 size_t nbytes; 1288 int npages; 1289 1290 buf = job->uiop->uio_iov[i].iov_base; 1291 nbytes = job->uiop->uio_iov[i].iov_len; 1292 1293 bios[i] = g_alloc_bio(); 1294 bp = bios[i]; 1295 1296 poff = (vm_offset_t)buf & PAGE_MASK; 1297 if (use_unmapped) { 1298 pbuf = NULL; 1299 pages = malloc(sizeof(vm_page_t) * (atop(round_page( 1300 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO); 1301 } else { 1302 pbuf = uma_zalloc(pbuf_zone, M_WAITOK); 1303 BUF_KERNPROC(pbuf); 1304 pages = pbuf->b_pages; 1305 } 1306 1307 bp->bio_length = nbytes; 1308 bp->bio_bcount = nbytes; 1309 bp->bio_done = aio_biowakeup; 1310 bp->bio_offset = offset; 1311 bp->bio_cmd = bio_cmd; 1312 bp->bio_dev = dev; 1313 bp->bio_caller1 = job; 1314 bp->bio_caller2 = pbuf; 1315 1316 prot = VM_PROT_READ; 1317 if (opcode == LIO_READ || opcode == LIO_READV) 1318 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1319 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1320 (vm_offset_t)buf, bp->bio_length, prot, pages, 1321 atop(maxphys) + 1); 1322 if (npages < 0) { 1323 if (pbuf != NULL) 1324 uma_zfree(pbuf_zone, pbuf); 1325 else 1326 free(pages, M_TEMP); 1327 error = EFAULT; 1328 g_destroy_bio(bp); 1329 i--; 1330 goto destroy_bios; 1331 } 1332 if (pbuf != NULL) { 1333 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages); 1334 bp->bio_data = pbuf->b_data + poff; 1335 pbuf->b_npages = npages; 1336 atomic_add_int(&num_buf_aio, 1); 1337 } else { 1338 bp->bio_ma = pages; 1339 bp->bio_ma_n = npages; 1340 bp->bio_ma_offset = poff; 1341 bp->bio_data = unmapped_buf; 1342 bp->bio_flags |= BIO_UNMAPPED; 1343 atomic_add_int(&num_unmapped_aio, 1); 1344 } 1345 1346 offset += nbytes; 1347 } 1348 1349 /* Perform transfer. */ 1350 for (i = 0; i < iovcnt; i++) 1351 csw->d_strategy(bios[i]); 1352 free(bios, M_TEMP); 1353 1354 dev_relthread(dev, ref); 1355 return (0); 1356 1357 destroy_bios: 1358 for (; i >= 0; i--) 1359 aio_biocleanup(bios[i]); 1360 free(bios, M_TEMP); 1361 unref: 1362 dev_relthread(dev, ref); 1363 return (error); 1364 } 1365 1366 #ifdef COMPAT_FREEBSD6 1367 static int 1368 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1369 { 1370 1371 /* 1372 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1373 * supported by AIO with the old sigevent structure. 1374 */ 1375 nsig->sigev_notify = osig->sigev_notify; 1376 switch (nsig->sigev_notify) { 1377 case SIGEV_NONE: 1378 break; 1379 case SIGEV_SIGNAL: 1380 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1381 break; 1382 case SIGEV_KEVENT: 1383 nsig->sigev_notify_kqueue = 1384 osig->__sigev_u.__sigev_notify_kqueue; 1385 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1386 break; 1387 default: 1388 return (EINVAL); 1389 } 1390 return (0); 1391 } 1392 1393 static int 1394 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 1395 int type __unused) 1396 { 1397 struct oaiocb *ojob; 1398 struct aiocb *kcb = &kjob->uaiocb; 1399 int error; 1400 1401 bzero(kcb, sizeof(struct aiocb)); 1402 error = copyin(ujob, kcb, sizeof(struct oaiocb)); 1403 if (error) 1404 return (error); 1405 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 1406 ojob = (struct oaiocb *)kcb; 1407 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent)); 1408 } 1409 #endif 1410 1411 static int 1412 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 1413 { 1414 struct aiocb *kcb = &kjob->uaiocb; 1415 int error; 1416 1417 error = copyin(ujob, kcb, sizeof(struct aiocb)); 1418 if (error) 1419 return (error); 1420 if (type == LIO_NOP) 1421 type = kcb->aio_lio_opcode; 1422 if (type & LIO_VECTORED) { 1423 /* malloc a uio and copy in the iovec */ 1424 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov), 1425 kcb->aio_iovcnt, &kjob->uiop); 1426 } 1427 1428 return (error); 1429 } 1430 1431 static long 1432 aiocb_fetch_status(struct aiocb *ujob) 1433 { 1434 1435 return (fuword(&ujob->_aiocb_private.status)); 1436 } 1437 1438 static long 1439 aiocb_fetch_error(struct aiocb *ujob) 1440 { 1441 1442 return (fuword(&ujob->_aiocb_private.error)); 1443 } 1444 1445 static int 1446 aiocb_store_status(struct aiocb *ujob, long status) 1447 { 1448 1449 return (suword(&ujob->_aiocb_private.status, status)); 1450 } 1451 1452 static int 1453 aiocb_store_error(struct aiocb *ujob, long error) 1454 { 1455 1456 return (suword(&ujob->_aiocb_private.error, error)); 1457 } 1458 1459 static int 1460 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1461 { 1462 1463 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1464 } 1465 1466 static int 1467 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1468 { 1469 1470 return (suword(ujobp, (long)ujob)); 1471 } 1472 1473 static struct aiocb_ops aiocb_ops = { 1474 .aio_copyin = aiocb_copyin, 1475 .fetch_status = aiocb_fetch_status, 1476 .fetch_error = aiocb_fetch_error, 1477 .store_status = aiocb_store_status, 1478 .store_error = aiocb_store_error, 1479 .store_kernelinfo = aiocb_store_kernelinfo, 1480 .store_aiocb = aiocb_store_aiocb, 1481 }; 1482 1483 #ifdef COMPAT_FREEBSD6 1484 static struct aiocb_ops aiocb_ops_osigevent = { 1485 .aio_copyin = aiocb_copyin_old_sigevent, 1486 .fetch_status = aiocb_fetch_status, 1487 .fetch_error = aiocb_fetch_error, 1488 .store_status = aiocb_store_status, 1489 .store_error = aiocb_store_error, 1490 .store_kernelinfo = aiocb_store_kernelinfo, 1491 .store_aiocb = aiocb_store_aiocb, 1492 }; 1493 #endif 1494 1495 /* 1496 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR 1497 * technique is done in this code. 1498 */ 1499 int 1500 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1501 int type, struct aiocb_ops *ops) 1502 { 1503 struct proc *p = td->td_proc; 1504 struct file *fp = NULL; 1505 struct kaiocb *job; 1506 struct kaioinfo *ki; 1507 struct kevent kev; 1508 int opcode; 1509 int error; 1510 int fd, kqfd; 1511 int jid; 1512 u_short evflags; 1513 1514 if (p->p_aioinfo == NULL) 1515 aio_init_aioinfo(p); 1516 1517 ki = p->p_aioinfo; 1518 1519 ops->store_status(ujob, -1); 1520 ops->store_error(ujob, 0); 1521 ops->store_kernelinfo(ujob, -1); 1522 1523 if (num_queue_count >= max_queue_count || 1524 ki->kaio_count >= max_aio_queue_per_proc) { 1525 error = EAGAIN; 1526 goto err1; 1527 } 1528 1529 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1530 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1531 1532 error = ops->aio_copyin(ujob, job, type); 1533 if (error) 1534 goto err2; 1535 1536 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1537 error = EINVAL; 1538 goto err2; 1539 } 1540 1541 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1542 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1543 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1544 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1545 error = EINVAL; 1546 goto err2; 1547 } 1548 1549 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1550 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1551 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1552 error = EINVAL; 1553 goto err2; 1554 } 1555 1556 /* Get the opcode. */ 1557 if (type == LIO_NOP) { 1558 switch (job->uaiocb.aio_lio_opcode) { 1559 case LIO_WRITE: 1560 case LIO_WRITEV: 1561 case LIO_NOP: 1562 case LIO_READ: 1563 case LIO_READV: 1564 opcode = job->uaiocb.aio_lio_opcode; 1565 break; 1566 default: 1567 error = EINVAL; 1568 goto err2; 1569 } 1570 } else 1571 opcode = job->uaiocb.aio_lio_opcode = type; 1572 1573 ksiginfo_init(&job->ksi); 1574 1575 /* Save userspace address of the job info. */ 1576 job->ujob = ujob; 1577 1578 /* 1579 * Validate the opcode and fetch the file object for the specified 1580 * file descriptor. 1581 * 1582 * XXXRW: Moved the opcode validation up here so that we don't 1583 * retrieve a file descriptor without knowing what the capabiltity 1584 * should be. 1585 */ 1586 fd = job->uaiocb.aio_fildes; 1587 switch (opcode) { 1588 case LIO_WRITE: 1589 case LIO_WRITEV: 1590 error = fget_write(td, fd, &cap_pwrite_rights, &fp); 1591 break; 1592 case LIO_READ: 1593 case LIO_READV: 1594 error = fget_read(td, fd, &cap_pread_rights, &fp); 1595 break; 1596 case LIO_SYNC: 1597 case LIO_DSYNC: 1598 error = fget(td, fd, &cap_fsync_rights, &fp); 1599 break; 1600 case LIO_MLOCK: 1601 break; 1602 case LIO_NOP: 1603 error = fget(td, fd, &cap_no_rights, &fp); 1604 break; 1605 default: 1606 error = EINVAL; 1607 } 1608 if (error) 1609 goto err3; 1610 1611 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) { 1612 error = EINVAL; 1613 goto err3; 1614 } 1615 1616 if ((opcode == LIO_READ || opcode == LIO_READV || 1617 opcode == LIO_WRITE || opcode == LIO_WRITEV) && 1618 job->uaiocb.aio_offset < 0 && 1619 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1620 error = EINVAL; 1621 goto err3; 1622 } 1623 1624 if (fp != NULL && fp->f_ops == &path_fileops) { 1625 error = EBADF; 1626 goto err3; 1627 } 1628 1629 job->fd_file = fp; 1630 1631 mtx_lock(&aio_job_mtx); 1632 jid = jobrefid++; 1633 job->seqno = jobseqno++; 1634 mtx_unlock(&aio_job_mtx); 1635 error = ops->store_kernelinfo(ujob, jid); 1636 if (error) { 1637 error = EINVAL; 1638 goto err3; 1639 } 1640 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1641 1642 if (opcode == LIO_NOP) { 1643 fdrop(fp, td); 1644 MPASS(job->uiop == &job->uio || job->uiop == NULL); 1645 uma_zfree(aiocb_zone, job); 1646 return (0); 1647 } 1648 1649 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1650 goto no_kqueue; 1651 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1652 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1653 error = EINVAL; 1654 goto err3; 1655 } 1656 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1657 memset(&kev, 0, sizeof(kev)); 1658 kev.ident = (uintptr_t)job->ujob; 1659 kev.filter = EVFILT_AIO; 1660 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1661 kev.data = (intptr_t)job; 1662 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1663 error = kqfd_register(kqfd, &kev, td, M_WAITOK); 1664 if (error) 1665 goto err3; 1666 1667 no_kqueue: 1668 1669 ops->store_error(ujob, EINPROGRESS); 1670 job->uaiocb._aiocb_private.error = EINPROGRESS; 1671 job->userproc = p; 1672 job->cred = crhold(td->td_ucred); 1673 job->jobflags = KAIOCB_QUEUEING; 1674 job->lio = lj; 1675 1676 if (opcode & LIO_VECTORED) { 1677 /* Use the uio copied in by aio_copyin */ 1678 MPASS(job->uiop != &job->uio && job->uiop != NULL); 1679 } else { 1680 /* Setup the inline uio */ 1681 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf; 1682 job->iov[0].iov_len = job->uaiocb.aio_nbytes; 1683 job->uio.uio_iov = job->iov; 1684 job->uio.uio_iovcnt = 1; 1685 job->uio.uio_resid = job->uaiocb.aio_nbytes; 1686 job->uio.uio_segflg = UIO_USERSPACE; 1687 job->uiop = &job->uio; 1688 } 1689 switch (opcode & (LIO_READ | LIO_WRITE)) { 1690 case LIO_READ: 1691 job->uiop->uio_rw = UIO_READ; 1692 break; 1693 case LIO_WRITE: 1694 job->uiop->uio_rw = UIO_WRITE; 1695 break; 1696 } 1697 job->uiop->uio_offset = job->uaiocb.aio_offset; 1698 job->uiop->uio_td = td; 1699 1700 if (opcode == LIO_MLOCK) { 1701 aio_schedule(job, aio_process_mlock); 1702 error = 0; 1703 } else if (fp->f_ops->fo_aio_queue == NULL) 1704 error = aio_queue_file(fp, job); 1705 else 1706 error = fo_aio_queue(fp, job); 1707 if (error) 1708 goto err4; 1709 1710 AIO_LOCK(ki); 1711 job->jobflags &= ~KAIOCB_QUEUEING; 1712 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1713 ki->kaio_count++; 1714 if (lj) 1715 lj->lioj_count++; 1716 atomic_add_int(&num_queue_count, 1); 1717 if (job->jobflags & KAIOCB_FINISHED) { 1718 /* 1719 * The queue callback completed the request synchronously. 1720 * The bulk of the completion is deferred in that case 1721 * until this point. 1722 */ 1723 aio_bio_done_notify(p, job); 1724 } else 1725 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1726 AIO_UNLOCK(ki); 1727 return (0); 1728 1729 err4: 1730 crfree(job->cred); 1731 err3: 1732 if (fp) 1733 fdrop(fp, td); 1734 knlist_delete(&job->klist, curthread, 0); 1735 err2: 1736 if (job->uiop != &job->uio) 1737 free(job->uiop, M_IOV); 1738 uma_zfree(aiocb_zone, job); 1739 err1: 1740 ops->store_error(ujob, error); 1741 return (error); 1742 } 1743 1744 static void 1745 aio_cancel_daemon_job(struct kaiocb *job) 1746 { 1747 1748 mtx_lock(&aio_job_mtx); 1749 if (!aio_cancel_cleared(job)) 1750 TAILQ_REMOVE(&aio_jobs, job, list); 1751 mtx_unlock(&aio_job_mtx); 1752 aio_cancel(job); 1753 } 1754 1755 void 1756 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1757 { 1758 1759 mtx_lock(&aio_job_mtx); 1760 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1761 mtx_unlock(&aio_job_mtx); 1762 aio_cancel(job); 1763 return; 1764 } 1765 job->handle_fn = func; 1766 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1767 aio_kick_nowait(job->userproc); 1768 mtx_unlock(&aio_job_mtx); 1769 } 1770 1771 static void 1772 aio_cancel_sync(struct kaiocb *job) 1773 { 1774 struct kaioinfo *ki; 1775 1776 ki = job->userproc->p_aioinfo; 1777 AIO_LOCK(ki); 1778 if (!aio_cancel_cleared(job)) 1779 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1780 AIO_UNLOCK(ki); 1781 aio_cancel(job); 1782 } 1783 1784 int 1785 aio_queue_file(struct file *fp, struct kaiocb *job) 1786 { 1787 struct kaioinfo *ki; 1788 struct kaiocb *job2; 1789 struct vnode *vp; 1790 struct mount *mp; 1791 int error; 1792 bool safe; 1793 1794 ki = job->userproc->p_aioinfo; 1795 error = aio_qbio(job->userproc, job); 1796 if (error >= 0) 1797 return (error); 1798 safe = false; 1799 if (fp->f_type == DTYPE_VNODE) { 1800 vp = fp->f_vnode; 1801 if (vp->v_type == VREG || vp->v_type == VDIR) { 1802 mp = fp->f_vnode->v_mount; 1803 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1804 safe = true; 1805 } 1806 } 1807 if (!(safe || enable_aio_unsafe)) { 1808 counted_warning(&unsafe_warningcnt, 1809 "is attempting to use unsafe AIO requests"); 1810 return (EOPNOTSUPP); 1811 } 1812 1813 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) { 1814 aio_schedule(job, aio_process_rw); 1815 error = 0; 1816 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) { 1817 AIO_LOCK(ki); 1818 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1819 if (job2->fd_file == job->fd_file && 1820 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) && 1821 job2->seqno < job->seqno) { 1822 job2->jobflags |= KAIOCB_CHECKSYNC; 1823 job->pending++; 1824 } 1825 } 1826 if (job->pending != 0) { 1827 if (!aio_set_cancel_function_locked(job, 1828 aio_cancel_sync)) { 1829 AIO_UNLOCK(ki); 1830 aio_cancel(job); 1831 return (0); 1832 } 1833 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1834 AIO_UNLOCK(ki); 1835 return (0); 1836 } 1837 AIO_UNLOCK(ki); 1838 aio_schedule(job, aio_process_sync); 1839 error = 0; 1840 } else { 1841 error = EINVAL; 1842 } 1843 return (error); 1844 } 1845 1846 static void 1847 aio_kick_nowait(struct proc *userp) 1848 { 1849 struct kaioinfo *ki = userp->p_aioinfo; 1850 struct aioproc *aiop; 1851 1852 mtx_assert(&aio_job_mtx, MA_OWNED); 1853 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1854 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1855 aiop->aioprocflags &= ~AIOP_FREE; 1856 wakeup(aiop->aioproc); 1857 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1858 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1859 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1860 } 1861 } 1862 1863 static int 1864 aio_kick(struct proc *userp) 1865 { 1866 struct kaioinfo *ki = userp->p_aioinfo; 1867 struct aioproc *aiop; 1868 int error, ret = 0; 1869 1870 mtx_assert(&aio_job_mtx, MA_OWNED); 1871 retryproc: 1872 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1873 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1874 aiop->aioprocflags &= ~AIOP_FREE; 1875 wakeup(aiop->aioproc); 1876 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1877 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) { 1878 num_aio_resv_start++; 1879 mtx_unlock(&aio_job_mtx); 1880 error = aio_newproc(&num_aio_resv_start); 1881 mtx_lock(&aio_job_mtx); 1882 if (error) { 1883 num_aio_resv_start--; 1884 goto retryproc; 1885 } 1886 } else { 1887 ret = -1; 1888 } 1889 return (ret); 1890 } 1891 1892 static void 1893 aio_kick_helper(void *context, int pending) 1894 { 1895 struct proc *userp = context; 1896 1897 mtx_lock(&aio_job_mtx); 1898 while (--pending >= 0) { 1899 if (aio_kick(userp)) 1900 break; 1901 } 1902 mtx_unlock(&aio_job_mtx); 1903 } 1904 1905 /* 1906 * Support the aio_return system call, as a side-effect, kernel resources are 1907 * released. 1908 */ 1909 static int 1910 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1911 { 1912 struct proc *p = td->td_proc; 1913 struct kaiocb *job; 1914 struct kaioinfo *ki; 1915 long status, error; 1916 1917 ki = p->p_aioinfo; 1918 if (ki == NULL) 1919 return (EINVAL); 1920 AIO_LOCK(ki); 1921 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1922 if (job->ujob == ujob) 1923 break; 1924 } 1925 if (job != NULL) { 1926 MPASS(job->jobflags & KAIOCB_FINISHED); 1927 status = job->uaiocb._aiocb_private.status; 1928 error = job->uaiocb._aiocb_private.error; 1929 td->td_retval[0] = status; 1930 td->td_ru.ru_oublock += job->outblock; 1931 td->td_ru.ru_inblock += job->inblock; 1932 td->td_ru.ru_msgsnd += job->msgsnd; 1933 td->td_ru.ru_msgrcv += job->msgrcv; 1934 aio_free_entry(job); 1935 AIO_UNLOCK(ki); 1936 ops->store_error(ujob, error); 1937 ops->store_status(ujob, status); 1938 } else { 1939 error = EINVAL; 1940 AIO_UNLOCK(ki); 1941 } 1942 return (error); 1943 } 1944 1945 int 1946 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1947 { 1948 1949 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1950 } 1951 1952 /* 1953 * Allow a process to wakeup when any of the I/O requests are completed. 1954 */ 1955 static int 1956 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1957 struct timespec *ts) 1958 { 1959 struct proc *p = td->td_proc; 1960 struct timeval atv; 1961 struct kaioinfo *ki; 1962 struct kaiocb *firstjob, *job; 1963 int error, i, timo; 1964 1965 timo = 0; 1966 if (ts) { 1967 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1968 return (EINVAL); 1969 1970 TIMESPEC_TO_TIMEVAL(&atv, ts); 1971 if (itimerfix(&atv)) 1972 return (EINVAL); 1973 timo = tvtohz(&atv); 1974 } 1975 1976 ki = p->p_aioinfo; 1977 if (ki == NULL) 1978 return (EAGAIN); 1979 1980 if (njoblist == 0) 1981 return (0); 1982 1983 AIO_LOCK(ki); 1984 for (;;) { 1985 firstjob = NULL; 1986 error = 0; 1987 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1988 for (i = 0; i < njoblist; i++) { 1989 if (job->ujob == ujoblist[i]) { 1990 if (firstjob == NULL) 1991 firstjob = job; 1992 if (job->jobflags & KAIOCB_FINISHED) 1993 goto RETURN; 1994 } 1995 } 1996 } 1997 /* All tasks were finished. */ 1998 if (firstjob == NULL) 1999 break; 2000 2001 ki->kaio_flags |= KAIO_WAKEUP; 2002 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2003 "aiospn", timo); 2004 if (error == ERESTART) 2005 error = EINTR; 2006 if (error) 2007 break; 2008 } 2009 RETURN: 2010 AIO_UNLOCK(ki); 2011 return (error); 2012 } 2013 2014 int 2015 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 2016 { 2017 struct timespec ts, *tsp; 2018 struct aiocb **ujoblist; 2019 int error; 2020 2021 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2022 return (EINVAL); 2023 2024 if (uap->timeout) { 2025 /* Get timespec struct. */ 2026 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 2027 return (error); 2028 tsp = &ts; 2029 } else 2030 tsp = NULL; 2031 2032 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2033 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 2034 if (error == 0) 2035 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2036 free(ujoblist, M_AIO); 2037 return (error); 2038 } 2039 2040 /* 2041 * aio_cancel cancels any non-bio aio operations not currently in progress. 2042 */ 2043 int 2044 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 2045 { 2046 struct proc *p = td->td_proc; 2047 struct kaioinfo *ki; 2048 struct kaiocb *job, *jobn; 2049 struct file *fp; 2050 int error; 2051 int cancelled = 0; 2052 int notcancelled = 0; 2053 struct vnode *vp; 2054 2055 /* Lookup file object. */ 2056 error = fget(td, uap->fd, &cap_no_rights, &fp); 2057 if (error) 2058 return (error); 2059 2060 ki = p->p_aioinfo; 2061 if (ki == NULL) 2062 goto done; 2063 2064 if (fp->f_type == DTYPE_VNODE) { 2065 vp = fp->f_vnode; 2066 if (vn_isdisk(vp)) { 2067 fdrop(fp, td); 2068 td->td_retval[0] = AIO_NOTCANCELED; 2069 return (0); 2070 } 2071 } 2072 2073 AIO_LOCK(ki); 2074 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2075 if ((uap->fd == job->uaiocb.aio_fildes) && 2076 ((uap->aiocbp == NULL) || 2077 (uap->aiocbp == job->ujob))) { 2078 if (aio_cancel_job(p, ki, job)) { 2079 cancelled++; 2080 } else { 2081 notcancelled++; 2082 } 2083 if (uap->aiocbp != NULL) 2084 break; 2085 } 2086 } 2087 AIO_UNLOCK(ki); 2088 2089 done: 2090 fdrop(fp, td); 2091 2092 if (uap->aiocbp != NULL) { 2093 if (cancelled) { 2094 td->td_retval[0] = AIO_CANCELED; 2095 return (0); 2096 } 2097 } 2098 2099 if (notcancelled) { 2100 td->td_retval[0] = AIO_NOTCANCELED; 2101 return (0); 2102 } 2103 2104 if (cancelled) { 2105 td->td_retval[0] = AIO_CANCELED; 2106 return (0); 2107 } 2108 2109 td->td_retval[0] = AIO_ALLDONE; 2110 2111 return (0); 2112 } 2113 2114 /* 2115 * aio_error is implemented in the kernel level for compatibility purposes 2116 * only. For a user mode async implementation, it would be best to do it in 2117 * a userland subroutine. 2118 */ 2119 static int 2120 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2121 { 2122 struct proc *p = td->td_proc; 2123 struct kaiocb *job; 2124 struct kaioinfo *ki; 2125 int status; 2126 2127 ki = p->p_aioinfo; 2128 if (ki == NULL) { 2129 td->td_retval[0] = EINVAL; 2130 return (0); 2131 } 2132 2133 AIO_LOCK(ki); 2134 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2135 if (job->ujob == ujob) { 2136 if (job->jobflags & KAIOCB_FINISHED) 2137 td->td_retval[0] = 2138 job->uaiocb._aiocb_private.error; 2139 else 2140 td->td_retval[0] = EINPROGRESS; 2141 AIO_UNLOCK(ki); 2142 return (0); 2143 } 2144 } 2145 AIO_UNLOCK(ki); 2146 2147 /* 2148 * Hack for failure of aio_aqueue. 2149 */ 2150 status = ops->fetch_status(ujob); 2151 if (status == -1) { 2152 td->td_retval[0] = ops->fetch_error(ujob); 2153 return (0); 2154 } 2155 2156 td->td_retval[0] = EINVAL; 2157 return (0); 2158 } 2159 2160 int 2161 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2162 { 2163 2164 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2165 } 2166 2167 /* syscall - asynchronous read from a file (REALTIME) */ 2168 #ifdef COMPAT_FREEBSD6 2169 int 2170 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2171 { 2172 2173 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2174 &aiocb_ops_osigevent)); 2175 } 2176 #endif 2177 2178 int 2179 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2180 { 2181 2182 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2183 } 2184 2185 int 2186 sys_aio_readv(struct thread *td, struct aio_readv_args *uap) 2187 { 2188 2189 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops)); 2190 } 2191 2192 /* syscall - asynchronous write to a file (REALTIME) */ 2193 #ifdef COMPAT_FREEBSD6 2194 int 2195 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2196 { 2197 2198 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2199 &aiocb_ops_osigevent)); 2200 } 2201 #endif 2202 2203 int 2204 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2205 { 2206 2207 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2208 } 2209 2210 int 2211 sys_aio_writev(struct thread *td, struct aio_writev_args *uap) 2212 { 2213 2214 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops)); 2215 } 2216 2217 int 2218 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2219 { 2220 2221 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2222 } 2223 2224 static int 2225 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2226 struct aiocb **acb_list, int nent, struct sigevent *sig, 2227 struct aiocb_ops *ops) 2228 { 2229 struct proc *p = td->td_proc; 2230 struct aiocb *job; 2231 struct kaioinfo *ki; 2232 struct aioliojob *lj; 2233 struct kevent kev; 2234 int error; 2235 int nagain, nerror; 2236 int i; 2237 2238 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2239 return (EINVAL); 2240 2241 if (nent < 0 || nent > max_aio_queue_per_proc) 2242 return (EINVAL); 2243 2244 if (p->p_aioinfo == NULL) 2245 aio_init_aioinfo(p); 2246 2247 ki = p->p_aioinfo; 2248 2249 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2250 lj->lioj_flags = 0; 2251 lj->lioj_count = 0; 2252 lj->lioj_finished_count = 0; 2253 lj->lioj_signal.sigev_notify = SIGEV_NONE; 2254 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2255 ksiginfo_init(&lj->lioj_ksi); 2256 2257 /* 2258 * Setup signal. 2259 */ 2260 if (sig && (mode == LIO_NOWAIT)) { 2261 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2262 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2263 /* Assume only new style KEVENT */ 2264 memset(&kev, 0, sizeof(kev)); 2265 kev.filter = EVFILT_LIO; 2266 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2267 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2268 kev.data = (intptr_t)lj; 2269 /* pass user defined sigval data */ 2270 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2271 error = kqfd_register( 2272 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 2273 M_WAITOK); 2274 if (error) { 2275 uma_zfree(aiolio_zone, lj); 2276 return (error); 2277 } 2278 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2279 ; 2280 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2281 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2282 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2283 uma_zfree(aiolio_zone, lj); 2284 return EINVAL; 2285 } 2286 lj->lioj_flags |= LIOJ_SIGNAL; 2287 } else { 2288 uma_zfree(aiolio_zone, lj); 2289 return EINVAL; 2290 } 2291 } 2292 2293 AIO_LOCK(ki); 2294 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2295 /* 2296 * Add extra aiocb count to avoid the lio to be freed 2297 * by other threads doing aio_waitcomplete or aio_return, 2298 * and prevent event from being sent until we have queued 2299 * all tasks. 2300 */ 2301 lj->lioj_count = 1; 2302 AIO_UNLOCK(ki); 2303 2304 /* 2305 * Get pointers to the list of I/O requests. 2306 */ 2307 nagain = 0; 2308 nerror = 0; 2309 for (i = 0; i < nent; i++) { 2310 job = acb_list[i]; 2311 if (job != NULL) { 2312 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2313 if (error == EAGAIN) 2314 nagain++; 2315 else if (error != 0) 2316 nerror++; 2317 } 2318 } 2319 2320 error = 0; 2321 AIO_LOCK(ki); 2322 if (mode == LIO_WAIT) { 2323 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2324 ki->kaio_flags |= KAIO_WAKEUP; 2325 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2326 PRIBIO | PCATCH, "aiospn", 0); 2327 if (error == ERESTART) 2328 error = EINTR; 2329 if (error) 2330 break; 2331 } 2332 } else { 2333 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2334 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2335 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2336 KNOTE_LOCKED(&lj->klist, 1); 2337 } 2338 if ((lj->lioj_flags & (LIOJ_SIGNAL | 2339 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL && 2340 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2341 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2342 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi, 2343 lj->lioj_count != 1); 2344 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2345 } 2346 } 2347 } 2348 lj->lioj_count--; 2349 if (lj->lioj_count == 0) { 2350 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2351 knlist_delete(&lj->klist, curthread, 1); 2352 PROC_LOCK(p); 2353 sigqueue_take(&lj->lioj_ksi); 2354 PROC_UNLOCK(p); 2355 AIO_UNLOCK(ki); 2356 uma_zfree(aiolio_zone, lj); 2357 } else 2358 AIO_UNLOCK(ki); 2359 2360 if (nerror) 2361 return (EIO); 2362 else if (nagain) 2363 return (EAGAIN); 2364 else 2365 return (error); 2366 } 2367 2368 /* syscall - list directed I/O (REALTIME) */ 2369 #ifdef COMPAT_FREEBSD6 2370 int 2371 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2372 { 2373 struct aiocb **acb_list; 2374 struct sigevent *sigp, sig; 2375 struct osigevent osig; 2376 int error, nent; 2377 2378 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2379 return (EINVAL); 2380 2381 nent = uap->nent; 2382 if (nent < 0 || nent > max_aio_queue_per_proc) 2383 return (EINVAL); 2384 2385 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2386 error = copyin(uap->sig, &osig, sizeof(osig)); 2387 if (error) 2388 return (error); 2389 error = convert_old_sigevent(&osig, &sig); 2390 if (error) 2391 return (error); 2392 sigp = &sig; 2393 } else 2394 sigp = NULL; 2395 2396 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2397 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2398 if (error == 0) 2399 error = kern_lio_listio(td, uap->mode, 2400 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2401 &aiocb_ops_osigevent); 2402 free(acb_list, M_LIO); 2403 return (error); 2404 } 2405 #endif 2406 2407 /* syscall - list directed I/O (REALTIME) */ 2408 int 2409 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2410 { 2411 struct aiocb **acb_list; 2412 struct sigevent *sigp, sig; 2413 int error, nent; 2414 2415 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2416 return (EINVAL); 2417 2418 nent = uap->nent; 2419 if (nent < 0 || nent > max_aio_queue_per_proc) 2420 return (EINVAL); 2421 2422 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2423 error = copyin(uap->sig, &sig, sizeof(sig)); 2424 if (error) 2425 return (error); 2426 sigp = &sig; 2427 } else 2428 sigp = NULL; 2429 2430 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2431 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2432 if (error == 0) 2433 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2434 nent, sigp, &aiocb_ops); 2435 free(acb_list, M_LIO); 2436 return (error); 2437 } 2438 2439 static void 2440 aio_biocleanup(struct bio *bp) 2441 { 2442 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2443 struct kaioinfo *ki; 2444 struct buf *pbuf = (struct buf *)bp->bio_caller2; 2445 2446 /* Release mapping into kernel space. */ 2447 if (pbuf != NULL) { 2448 MPASS(pbuf->b_npages <= atop(maxphys) + 1); 2449 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages); 2450 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages); 2451 uma_zfree(pbuf_zone, pbuf); 2452 atomic_subtract_int(&num_buf_aio, 1); 2453 ki = job->userproc->p_aioinfo; 2454 AIO_LOCK(ki); 2455 ki->kaio_buffer_count--; 2456 AIO_UNLOCK(ki); 2457 } else { 2458 MPASS(bp->bio_ma_n <= atop(maxphys) + 1); 2459 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n); 2460 free(bp->bio_ma, M_TEMP); 2461 atomic_subtract_int(&num_unmapped_aio, 1); 2462 } 2463 g_destroy_bio(bp); 2464 } 2465 2466 static void 2467 aio_biowakeup(struct bio *bp) 2468 { 2469 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2470 size_t nbytes; 2471 long bcount = bp->bio_bcount; 2472 long resid = bp->bio_resid; 2473 int opcode, nblks; 2474 int bio_error = bp->bio_error; 2475 uint16_t flags = bp->bio_flags; 2476 2477 opcode = job->uaiocb.aio_lio_opcode; 2478 2479 aio_biocleanup(bp); 2480 2481 nbytes = bcount - resid; 2482 atomic_add_acq_long(&job->nbytes, nbytes); 2483 nblks = btodb(nbytes); 2484 2485 /* 2486 * If multiple bios experienced an error, the job will reflect the 2487 * error of whichever failed bio completed last. 2488 */ 2489 if (flags & BIO_ERROR) 2490 atomic_store_int(&job->error, bio_error); 2491 if (opcode & LIO_WRITE) 2492 atomic_add_int(&job->outblock, nblks); 2493 else 2494 atomic_add_int(&job->inblock, nblks); 2495 2496 if (refcount_release(&job->nbio)) { 2497 bio_error = atomic_load_int(&job->error); 2498 if (bio_error != 0) 2499 aio_complete(job, -1, bio_error); 2500 else 2501 aio_complete(job, atomic_load_long(&job->nbytes), 0); 2502 } 2503 } 2504 2505 /* syscall - wait for the next completion of an aio request */ 2506 static int 2507 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2508 struct timespec *ts, struct aiocb_ops *ops) 2509 { 2510 struct proc *p = td->td_proc; 2511 struct timeval atv; 2512 struct kaioinfo *ki; 2513 struct kaiocb *job; 2514 struct aiocb *ujob; 2515 long error, status; 2516 int timo; 2517 2518 ops->store_aiocb(ujobp, NULL); 2519 2520 if (ts == NULL) { 2521 timo = 0; 2522 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2523 timo = -1; 2524 } else { 2525 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2526 return (EINVAL); 2527 2528 TIMESPEC_TO_TIMEVAL(&atv, ts); 2529 if (itimerfix(&atv)) 2530 return (EINVAL); 2531 timo = tvtohz(&atv); 2532 } 2533 2534 if (p->p_aioinfo == NULL) 2535 aio_init_aioinfo(p); 2536 ki = p->p_aioinfo; 2537 2538 error = 0; 2539 job = NULL; 2540 AIO_LOCK(ki); 2541 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2542 if (timo == -1) { 2543 error = EWOULDBLOCK; 2544 break; 2545 } 2546 ki->kaio_flags |= KAIO_WAKEUP; 2547 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2548 "aiowc", timo); 2549 if (timo && error == ERESTART) 2550 error = EINTR; 2551 if (error) 2552 break; 2553 } 2554 2555 if (job != NULL) { 2556 MPASS(job->jobflags & KAIOCB_FINISHED); 2557 ujob = job->ujob; 2558 status = job->uaiocb._aiocb_private.status; 2559 error = job->uaiocb._aiocb_private.error; 2560 td->td_retval[0] = status; 2561 td->td_ru.ru_oublock += job->outblock; 2562 td->td_ru.ru_inblock += job->inblock; 2563 td->td_ru.ru_msgsnd += job->msgsnd; 2564 td->td_ru.ru_msgrcv += job->msgrcv; 2565 aio_free_entry(job); 2566 AIO_UNLOCK(ki); 2567 ops->store_aiocb(ujobp, ujob); 2568 ops->store_error(ujob, error); 2569 ops->store_status(ujob, status); 2570 } else 2571 AIO_UNLOCK(ki); 2572 2573 return (error); 2574 } 2575 2576 int 2577 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2578 { 2579 struct timespec ts, *tsp; 2580 int error; 2581 2582 if (uap->timeout) { 2583 /* Get timespec struct. */ 2584 error = copyin(uap->timeout, &ts, sizeof(ts)); 2585 if (error) 2586 return (error); 2587 tsp = &ts; 2588 } else 2589 tsp = NULL; 2590 2591 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2592 } 2593 2594 static int 2595 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2596 struct aiocb_ops *ops) 2597 { 2598 int listop; 2599 2600 switch (op) { 2601 case O_SYNC: 2602 listop = LIO_SYNC; 2603 break; 2604 case O_DSYNC: 2605 listop = LIO_DSYNC; 2606 break; 2607 default: 2608 return (EINVAL); 2609 } 2610 2611 return (aio_aqueue(td, ujob, NULL, listop, ops)); 2612 } 2613 2614 int 2615 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2616 { 2617 2618 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2619 } 2620 2621 /* kqueue attach function */ 2622 static int 2623 filt_aioattach(struct knote *kn) 2624 { 2625 struct kaiocb *job; 2626 2627 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2628 2629 /* 2630 * The job pointer must be validated before using it, so 2631 * registration is restricted to the kernel; the user cannot 2632 * set EV_FLAG1. 2633 */ 2634 if ((kn->kn_flags & EV_FLAG1) == 0) 2635 return (EPERM); 2636 kn->kn_ptr.p_aio = job; 2637 kn->kn_flags &= ~EV_FLAG1; 2638 2639 knlist_add(&job->klist, kn, 0); 2640 2641 return (0); 2642 } 2643 2644 /* kqueue detach function */ 2645 static void 2646 filt_aiodetach(struct knote *kn) 2647 { 2648 struct knlist *knl; 2649 2650 knl = &kn->kn_ptr.p_aio->klist; 2651 knl->kl_lock(knl->kl_lockarg); 2652 if (!knlist_empty(knl)) 2653 knlist_remove(knl, kn, 1); 2654 knl->kl_unlock(knl->kl_lockarg); 2655 } 2656 2657 /* kqueue filter function */ 2658 /*ARGSUSED*/ 2659 static int 2660 filt_aio(struct knote *kn, long hint) 2661 { 2662 struct kaiocb *job = kn->kn_ptr.p_aio; 2663 2664 kn->kn_data = job->uaiocb._aiocb_private.error; 2665 if (!(job->jobflags & KAIOCB_FINISHED)) 2666 return (0); 2667 kn->kn_flags |= EV_EOF; 2668 return (1); 2669 } 2670 2671 /* kqueue attach function */ 2672 static int 2673 filt_lioattach(struct knote *kn) 2674 { 2675 struct aioliojob *lj; 2676 2677 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2678 2679 /* 2680 * The aioliojob pointer must be validated before using it, so 2681 * registration is restricted to the kernel; the user cannot 2682 * set EV_FLAG1. 2683 */ 2684 if ((kn->kn_flags & EV_FLAG1) == 0) 2685 return (EPERM); 2686 kn->kn_ptr.p_lio = lj; 2687 kn->kn_flags &= ~EV_FLAG1; 2688 2689 knlist_add(&lj->klist, kn, 0); 2690 2691 return (0); 2692 } 2693 2694 /* kqueue detach function */ 2695 static void 2696 filt_liodetach(struct knote *kn) 2697 { 2698 struct knlist *knl; 2699 2700 knl = &kn->kn_ptr.p_lio->klist; 2701 knl->kl_lock(knl->kl_lockarg); 2702 if (!knlist_empty(knl)) 2703 knlist_remove(knl, kn, 1); 2704 knl->kl_unlock(knl->kl_lockarg); 2705 } 2706 2707 /* kqueue filter function */ 2708 /*ARGSUSED*/ 2709 static int 2710 filt_lio(struct knote *kn, long hint) 2711 { 2712 struct aioliojob * lj = kn->kn_ptr.p_lio; 2713 2714 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2715 } 2716 2717 #ifdef COMPAT_FREEBSD32 2718 #include <sys/mount.h> 2719 #include <sys/socket.h> 2720 #include <sys/sysent.h> 2721 #include <compat/freebsd32/freebsd32.h> 2722 #include <compat/freebsd32/freebsd32_proto.h> 2723 #include <compat/freebsd32/freebsd32_signal.h> 2724 #include <compat/freebsd32/freebsd32_syscall.h> 2725 #include <compat/freebsd32/freebsd32_util.h> 2726 2727 struct __aiocb_private32 { 2728 int32_t status; 2729 int32_t error; 2730 uint32_t kernelinfo; 2731 }; 2732 2733 #ifdef COMPAT_FREEBSD6 2734 typedef struct oaiocb32 { 2735 int aio_fildes; /* File descriptor */ 2736 uint64_t aio_offset __packed; /* File offset for I/O */ 2737 uint32_t aio_buf; /* I/O buffer in process space */ 2738 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2739 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2740 int aio_lio_opcode; /* LIO opcode */ 2741 int aio_reqprio; /* Request priority -- ignored */ 2742 struct __aiocb_private32 _aiocb_private; 2743 } oaiocb32_t; 2744 #endif 2745 2746 typedef struct aiocb32 { 2747 int32_t aio_fildes; /* File descriptor */ 2748 uint64_t aio_offset __packed; /* File offset for I/O */ 2749 uint32_t aio_buf; /* I/O buffer in process space */ 2750 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2751 int __spare__[2]; 2752 uint32_t __spare2__; 2753 int aio_lio_opcode; /* LIO opcode */ 2754 int aio_reqprio; /* Request priority -- ignored */ 2755 struct __aiocb_private32 _aiocb_private; 2756 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2757 } aiocb32_t; 2758 2759 #ifdef COMPAT_FREEBSD6 2760 static int 2761 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2762 { 2763 2764 /* 2765 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2766 * supported by AIO with the old sigevent structure. 2767 */ 2768 CP(*osig, *nsig, sigev_notify); 2769 switch (nsig->sigev_notify) { 2770 case SIGEV_NONE: 2771 break; 2772 case SIGEV_SIGNAL: 2773 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2774 break; 2775 case SIGEV_KEVENT: 2776 nsig->sigev_notify_kqueue = 2777 osig->__sigev_u.__sigev_notify_kqueue; 2778 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2779 break; 2780 default: 2781 return (EINVAL); 2782 } 2783 return (0); 2784 } 2785 2786 static int 2787 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob, 2788 int type __unused) 2789 { 2790 struct oaiocb32 job32; 2791 struct aiocb *kcb = &kjob->uaiocb; 2792 int error; 2793 2794 bzero(kcb, sizeof(struct aiocb)); 2795 error = copyin(ujob, &job32, sizeof(job32)); 2796 if (error) 2797 return (error); 2798 2799 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */ 2800 2801 CP(job32, *kcb, aio_fildes); 2802 CP(job32, *kcb, aio_offset); 2803 PTRIN_CP(job32, *kcb, aio_buf); 2804 CP(job32, *kcb, aio_nbytes); 2805 CP(job32, *kcb, aio_lio_opcode); 2806 CP(job32, *kcb, aio_reqprio); 2807 CP(job32, *kcb, _aiocb_private.status); 2808 CP(job32, *kcb, _aiocb_private.error); 2809 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2810 return (convert_old_sigevent32(&job32.aio_sigevent, 2811 &kcb->aio_sigevent)); 2812 } 2813 #endif 2814 2815 static int 2816 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type) 2817 { 2818 struct aiocb32 job32; 2819 struct aiocb *kcb = &kjob->uaiocb; 2820 struct iovec32 *iov32; 2821 int error; 2822 2823 error = copyin(ujob, &job32, sizeof(job32)); 2824 if (error) 2825 return (error); 2826 CP(job32, *kcb, aio_fildes); 2827 CP(job32, *kcb, aio_offset); 2828 CP(job32, *kcb, aio_lio_opcode); 2829 if (type == LIO_NOP) 2830 type = kcb->aio_lio_opcode; 2831 if (type & LIO_VECTORED) { 2832 iov32 = PTRIN(job32.aio_iov); 2833 CP(job32, *kcb, aio_iovcnt); 2834 /* malloc a uio and copy in the iovec */ 2835 error = freebsd32_copyinuio(iov32, 2836 kcb->aio_iovcnt, &kjob->uiop); 2837 if (error) 2838 return (error); 2839 } else { 2840 PTRIN_CP(job32, *kcb, aio_buf); 2841 CP(job32, *kcb, aio_nbytes); 2842 } 2843 CP(job32, *kcb, aio_reqprio); 2844 CP(job32, *kcb, _aiocb_private.status); 2845 CP(job32, *kcb, _aiocb_private.error); 2846 PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo); 2847 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent); 2848 2849 return (error); 2850 } 2851 2852 static long 2853 aiocb32_fetch_status(struct aiocb *ujob) 2854 { 2855 struct aiocb32 *ujob32; 2856 2857 ujob32 = (struct aiocb32 *)ujob; 2858 return (fuword32(&ujob32->_aiocb_private.status)); 2859 } 2860 2861 static long 2862 aiocb32_fetch_error(struct aiocb *ujob) 2863 { 2864 struct aiocb32 *ujob32; 2865 2866 ujob32 = (struct aiocb32 *)ujob; 2867 return (fuword32(&ujob32->_aiocb_private.error)); 2868 } 2869 2870 static int 2871 aiocb32_store_status(struct aiocb *ujob, long status) 2872 { 2873 struct aiocb32 *ujob32; 2874 2875 ujob32 = (struct aiocb32 *)ujob; 2876 return (suword32(&ujob32->_aiocb_private.status, status)); 2877 } 2878 2879 static int 2880 aiocb32_store_error(struct aiocb *ujob, long error) 2881 { 2882 struct aiocb32 *ujob32; 2883 2884 ujob32 = (struct aiocb32 *)ujob; 2885 return (suword32(&ujob32->_aiocb_private.error, error)); 2886 } 2887 2888 static int 2889 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2890 { 2891 struct aiocb32 *ujob32; 2892 2893 ujob32 = (struct aiocb32 *)ujob; 2894 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2895 } 2896 2897 static int 2898 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2899 { 2900 2901 return (suword32(ujobp, (long)ujob)); 2902 } 2903 2904 static struct aiocb_ops aiocb32_ops = { 2905 .aio_copyin = aiocb32_copyin, 2906 .fetch_status = aiocb32_fetch_status, 2907 .fetch_error = aiocb32_fetch_error, 2908 .store_status = aiocb32_store_status, 2909 .store_error = aiocb32_store_error, 2910 .store_kernelinfo = aiocb32_store_kernelinfo, 2911 .store_aiocb = aiocb32_store_aiocb, 2912 }; 2913 2914 #ifdef COMPAT_FREEBSD6 2915 static struct aiocb_ops aiocb32_ops_osigevent = { 2916 .aio_copyin = aiocb32_copyin_old_sigevent, 2917 .fetch_status = aiocb32_fetch_status, 2918 .fetch_error = aiocb32_fetch_error, 2919 .store_status = aiocb32_store_status, 2920 .store_error = aiocb32_store_error, 2921 .store_kernelinfo = aiocb32_store_kernelinfo, 2922 .store_aiocb = aiocb32_store_aiocb, 2923 }; 2924 #endif 2925 2926 int 2927 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2928 { 2929 2930 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2931 } 2932 2933 int 2934 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2935 { 2936 struct timespec32 ts32; 2937 struct timespec ts, *tsp; 2938 struct aiocb **ujoblist; 2939 uint32_t *ujoblist32; 2940 int error, i; 2941 2942 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc) 2943 return (EINVAL); 2944 2945 if (uap->timeout) { 2946 /* Get timespec struct. */ 2947 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2948 return (error); 2949 CP(ts32, ts, tv_sec); 2950 CP(ts32, ts, tv_nsec); 2951 tsp = &ts; 2952 } else 2953 tsp = NULL; 2954 2955 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK); 2956 ujoblist32 = (uint32_t *)ujoblist; 2957 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2958 sizeof(ujoblist32[0])); 2959 if (error == 0) { 2960 for (i = uap->nent - 1; i >= 0; i--) 2961 ujoblist[i] = PTRIN(ujoblist32[i]); 2962 2963 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2964 } 2965 free(ujoblist, M_AIO); 2966 return (error); 2967 } 2968 2969 int 2970 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2971 { 2972 2973 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2974 } 2975 2976 #ifdef COMPAT_FREEBSD6 2977 int 2978 freebsd6_freebsd32_aio_read(struct thread *td, 2979 struct freebsd6_freebsd32_aio_read_args *uap) 2980 { 2981 2982 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2983 &aiocb32_ops_osigevent)); 2984 } 2985 #endif 2986 2987 int 2988 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2989 { 2990 2991 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2992 &aiocb32_ops)); 2993 } 2994 2995 int 2996 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap) 2997 { 2998 2999 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV, 3000 &aiocb32_ops)); 3001 } 3002 3003 #ifdef COMPAT_FREEBSD6 3004 int 3005 freebsd6_freebsd32_aio_write(struct thread *td, 3006 struct freebsd6_freebsd32_aio_write_args *uap) 3007 { 3008 3009 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3010 &aiocb32_ops_osigevent)); 3011 } 3012 #endif 3013 3014 int 3015 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 3016 { 3017 3018 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 3019 &aiocb32_ops)); 3020 } 3021 3022 int 3023 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap) 3024 { 3025 3026 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV, 3027 &aiocb32_ops)); 3028 } 3029 3030 int 3031 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 3032 { 3033 3034 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 3035 &aiocb32_ops)); 3036 } 3037 3038 int 3039 freebsd32_aio_waitcomplete(struct thread *td, 3040 struct freebsd32_aio_waitcomplete_args *uap) 3041 { 3042 struct timespec32 ts32; 3043 struct timespec ts, *tsp; 3044 int error; 3045 3046 if (uap->timeout) { 3047 /* Get timespec struct. */ 3048 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 3049 if (error) 3050 return (error); 3051 CP(ts32, ts, tv_sec); 3052 CP(ts32, ts, tv_nsec); 3053 tsp = &ts; 3054 } else 3055 tsp = NULL; 3056 3057 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 3058 &aiocb32_ops)); 3059 } 3060 3061 int 3062 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 3063 { 3064 3065 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 3066 &aiocb32_ops)); 3067 } 3068 3069 #ifdef COMPAT_FREEBSD6 3070 int 3071 freebsd6_freebsd32_lio_listio(struct thread *td, 3072 struct freebsd6_freebsd32_lio_listio_args *uap) 3073 { 3074 struct aiocb **acb_list; 3075 struct sigevent *sigp, sig; 3076 struct osigevent32 osig; 3077 uint32_t *acb_list32; 3078 int error, i, nent; 3079 3080 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3081 return (EINVAL); 3082 3083 nent = uap->nent; 3084 if (nent < 0 || nent > max_aio_queue_per_proc) 3085 return (EINVAL); 3086 3087 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3088 error = copyin(uap->sig, &osig, sizeof(osig)); 3089 if (error) 3090 return (error); 3091 error = convert_old_sigevent32(&osig, &sig); 3092 if (error) 3093 return (error); 3094 sigp = &sig; 3095 } else 3096 sigp = NULL; 3097 3098 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3099 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3100 if (error) { 3101 free(acb_list32, M_LIO); 3102 return (error); 3103 } 3104 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3105 for (i = 0; i < nent; i++) 3106 acb_list[i] = PTRIN(acb_list32[i]); 3107 free(acb_list32, M_LIO); 3108 3109 error = kern_lio_listio(td, uap->mode, 3110 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3111 &aiocb32_ops_osigevent); 3112 free(acb_list, M_LIO); 3113 return (error); 3114 } 3115 #endif 3116 3117 int 3118 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 3119 { 3120 struct aiocb **acb_list; 3121 struct sigevent *sigp, sig; 3122 struct sigevent32 sig32; 3123 uint32_t *acb_list32; 3124 int error, i, nent; 3125 3126 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 3127 return (EINVAL); 3128 3129 nent = uap->nent; 3130 if (nent < 0 || nent > max_aio_queue_per_proc) 3131 return (EINVAL); 3132 3133 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 3134 error = copyin(uap->sig, &sig32, sizeof(sig32)); 3135 if (error) 3136 return (error); 3137 error = convert_sigevent32(&sig32, &sig); 3138 if (error) 3139 return (error); 3140 sigp = &sig; 3141 } else 3142 sigp = NULL; 3143 3144 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3145 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3146 if (error) { 3147 free(acb_list32, M_LIO); 3148 return (error); 3149 } 3150 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3151 for (i = 0; i < nent; i++) 3152 acb_list[i] = PTRIN(acb_list32[i]); 3153 free(acb_list32, M_LIO); 3154 3155 error = kern_lio_listio(td, uap->mode, 3156 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3157 &aiocb32_ops); 3158 free(acb_list, M_LIO); 3159 return (error); 3160 } 3161 3162 #endif 3163