1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/bio.h> 28 #include <sys/buf.h> 29 #include <sys/eventhandler.h> 30 #include <sys/sysproto.h> 31 #include <sys/filedesc.h> 32 #include <sys/kernel.h> 33 #include <sys/module.h> 34 #include <sys/kthread.h> 35 #include <sys/fcntl.h> 36 #include <sys/file.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/unistd.h> 41 #include <sys/posix4.h> 42 #include <sys/proc.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/protosw.h> 46 #include <sys/sema.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/syscall.h> 50 #include <sys/sysent.h> 51 #include <sys/sysctl.h> 52 #include <sys/sx.h> 53 #include <sys/taskqueue.h> 54 #include <sys/vnode.h> 55 #include <sys/conf.h> 56 #include <sys/event.h> 57 #include <sys/mount.h> 58 59 #include <machine/atomic.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_object.h> 66 #include <vm/uma.h> 67 #include <sys/aio.h> 68 69 #include "opt_vfs_aio.h" 70 71 /* 72 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 73 * overflow. (XXX will be removed soon.) 74 */ 75 static u_long jobrefid; 76 77 /* 78 * Counter for aio_fsync. 79 */ 80 static uint64_t jobseqno; 81 82 #define JOBST_NULL 0 83 #define JOBST_JOBQSOCK 1 84 #define JOBST_JOBQGLOBAL 2 85 #define JOBST_JOBRUNNING 3 86 #define JOBST_JOBFINISHED 4 87 #define JOBST_JOBQBUF 5 88 #define JOBST_JOBQSYNC 6 89 90 #ifndef MAX_AIO_PER_PROC 91 #define MAX_AIO_PER_PROC 32 92 #endif 93 94 #ifndef MAX_AIO_QUEUE_PER_PROC 95 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 96 #endif 97 98 #ifndef MAX_AIO_PROCS 99 #define MAX_AIO_PROCS 32 100 #endif 101 102 #ifndef MAX_AIO_QUEUE 103 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 104 #endif 105 106 #ifndef TARGET_AIO_PROCS 107 #define TARGET_AIO_PROCS 4 108 #endif 109 110 #ifndef MAX_BUF_AIO 111 #define MAX_BUF_AIO 16 112 #endif 113 114 #ifndef AIOD_TIMEOUT_DEFAULT 115 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 116 #endif 117 118 #ifndef AIOD_LIFETIME_DEFAULT 119 #define AIOD_LIFETIME_DEFAULT (30 * hz) 120 #endif 121 122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 123 124 static int max_aio_procs = MAX_AIO_PROCS; 125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 126 CTLFLAG_RW, &max_aio_procs, 0, 127 "Maximum number of kernel threads to use for handling async IO "); 128 129 static int num_aio_procs = 0; 130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 131 CTLFLAG_RD, &num_aio_procs, 0, 132 "Number of presently active kernel threads for async IO"); 133 134 /* 135 * The code will adjust the actual number of AIO processes towards this 136 * number when it gets a chance. 137 */ 138 static int target_aio_procs = TARGET_AIO_PROCS; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 140 0, "Preferred number of ready kernel threads for async IO"); 141 142 static int max_queue_count = MAX_AIO_QUEUE; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 144 "Maximum number of aio requests to queue, globally"); 145 146 static int num_queue_count = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 148 "Number of queued aio requests"); 149 150 static int num_buf_aio = 0; 151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 152 "Number of aio requests presently handled by the buf subsystem"); 153 154 /* Number of async I/O thread in the process of being started */ 155 /* XXX This should be local to aio_aqueue() */ 156 static int num_aio_resv_start = 0; 157 158 static int aiod_timeout; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 160 "Timeout value for synchronous aio operations"); 161 162 static int aiod_lifetime; 163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 164 "Maximum lifetime for idle aiod"); 165 166 static int unloadable = 0; 167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 168 "Allow unload of aio (not recommended)"); 169 170 171 static int max_aio_per_proc = MAX_AIO_PER_PROC; 172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 173 0, "Maximum active aio requests per process (stored in the process)"); 174 175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 177 &max_aio_queue_per_proc, 0, 178 "Maximum queued aio requests per process (stored in the process)"); 179 180 static int max_buf_aio = MAX_BUF_AIO; 181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 182 "Maximum buf aio requests per process (stored in the process)"); 183 184 typedef struct oaiocb { 185 int aio_fildes; /* File descriptor */ 186 off_t aio_offset; /* File offset for I/O */ 187 volatile void *aio_buf; /* I/O buffer in process space */ 188 size_t aio_nbytes; /* Number of bytes for I/O */ 189 struct osigevent aio_sigevent; /* Signal to deliver */ 190 int aio_lio_opcode; /* LIO opcode */ 191 int aio_reqprio; /* Request priority -- ignored */ 192 struct __aiocb_private _aiocb_private; 193 } oaiocb_t; 194 195 /* 196 * Below is a key of locks used to protect each member of struct aiocblist 197 * aioliojob and kaioinfo and any backends. 198 * 199 * * - need not protected 200 * a - locked by kaioinfo lock 201 * b - locked by backend lock, the backend lock can be null in some cases, 202 * for example, BIO belongs to this type, in this case, proc lock is 203 * reused. 204 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 205 */ 206 207 /* 208 * Current, there is only two backends: BIO and generic file I/O. 209 * socket I/O is served by generic file I/O, this is not a good idea, since 210 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 211 * threads, if there is no thread to serve socket I/O, the socket I/O will be 212 * delayed too long or starved, we should create some threads dedicated to 213 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 214 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 215 * structure is not safe because there is race between userland and aio 216 * daemons. 217 */ 218 219 struct aiocblist { 220 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 221 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 222 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 223 int jobflags; /* (a) job flags */ 224 int jobstate; /* (b) job state */ 225 int inputcharge; /* (*) input blockes */ 226 int outputcharge; /* (*) output blockes */ 227 struct buf *bp; /* (*) private to BIO backend, 228 * buffer pointer 229 */ 230 struct proc *userproc; /* (*) user process */ 231 struct ucred *cred; /* (*) active credential when created */ 232 struct file *fd_file; /* (*) pointer to file structure */ 233 struct aioliojob *lio; /* (*) optional lio job */ 234 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 235 struct knlist klist; /* (a) list of knotes */ 236 struct aiocb uaiocb; /* (*) kernel I/O control block */ 237 ksiginfo_t ksi; /* (a) realtime signal info */ 238 struct task biotask; /* (*) private to BIO backend */ 239 uint64_t seqno; /* (*) job number */ 240 int pending; /* (a) number of pending I/O, aio_fsync only */ 241 }; 242 243 /* jobflags */ 244 #define AIOCBLIST_DONE 0x01 245 #define AIOCBLIST_BUFDONE 0x02 246 #define AIOCBLIST_RUNDOWN 0x04 247 #define AIOCBLIST_CHECKSYNC 0x08 248 249 /* 250 * AIO process info 251 */ 252 #define AIOP_FREE 0x1 /* proc on free queue */ 253 254 struct aiothreadlist { 255 int aiothreadflags; /* (c) AIO proc flags */ 256 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 257 struct thread *aiothread; /* (*) the AIO thread */ 258 }; 259 260 /* 261 * data-structure for lio signal management 262 */ 263 struct aioliojob { 264 int lioj_flags; /* (a) listio flags */ 265 int lioj_count; /* (a) listio flags */ 266 int lioj_finished_count; /* (a) listio flags */ 267 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 268 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 269 struct knlist klist; /* (a) list of knotes */ 270 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 271 }; 272 273 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 274 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 275 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 276 277 /* 278 * per process aio data structure 279 */ 280 struct kaioinfo { 281 struct mtx kaio_mtx; /* the lock to protect this struct */ 282 int kaio_flags; /* (a) per process kaio flags */ 283 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 284 int kaio_active_count; /* (c) number of currently used AIOs */ 285 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 286 int kaio_count; /* (a) size of AIO queue */ 287 int kaio_ballowed_count; /* (*) maximum number of buffers */ 288 int kaio_buffer_count; /* (a) number of physio buffers */ 289 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 290 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 291 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 292 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 293 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 294 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 295 * NOT USED YET. 296 */ 297 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 298 struct task kaio_task; /* (*) task to kick aio threads */ 299 }; 300 301 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 302 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 303 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 304 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 305 306 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 307 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 308 309 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 310 static struct sema aio_newproc_sem; 311 static struct mtx aio_job_mtx; 312 static struct mtx aio_sock_mtx; 313 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 314 static struct unrhdr *aiod_unr; 315 316 void aio_init_aioinfo(struct proc *p); 317 static void aio_onceonly(void); 318 static int aio_free_entry(struct aiocblist *aiocbe); 319 static void aio_process(struct aiocblist *aiocbe); 320 static int aio_newproc(int *); 321 int aio_aqueue(struct thread *td, struct aiocb *job, 322 struct aioliojob *lio, int type, int osigev); 323 static void aio_physwakeup(struct buf *bp); 324 static void aio_proc_rundown(void *arg, struct proc *p); 325 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 326 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 327 static void biohelper(void *, int); 328 static void aio_daemon(void *param); 329 static void aio_swake_cb(struct socket *, struct sockbuf *); 330 static int aio_unload(void); 331 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 332 #define DONE_BUF 1 333 #define DONE_QUEUE 2 334 static int do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev); 335 static int aio_kick(struct proc *userp); 336 static void aio_kick_nowait(struct proc *userp); 337 static void aio_kick_helper(void *context, int pending); 338 static int filt_aioattach(struct knote *kn); 339 static void filt_aiodetach(struct knote *kn); 340 static int filt_aio(struct knote *kn, long hint); 341 static int filt_lioattach(struct knote *kn); 342 static void filt_liodetach(struct knote *kn); 343 static int filt_lio(struct knote *kn, long hint); 344 345 /* 346 * Zones for: 347 * kaio Per process async io info 348 * aiop async io thread data 349 * aiocb async io jobs 350 * aiol list io job pointer - internal to aio_suspend XXX 351 * aiolio list io jobs 352 */ 353 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 354 355 /* kqueue filters for aio */ 356 static struct filterops aio_filtops = 357 { 0, filt_aioattach, filt_aiodetach, filt_aio }; 358 static struct filterops lio_filtops = 359 { 0, filt_lioattach, filt_liodetach, filt_lio }; 360 361 static eventhandler_tag exit_tag, exec_tag; 362 363 TASKQUEUE_DEFINE_THREAD(aiod_bio); 364 365 /* 366 * Main operations function for use as a kernel module. 367 */ 368 static int 369 aio_modload(struct module *module, int cmd, void *arg) 370 { 371 int error = 0; 372 373 switch (cmd) { 374 case MOD_LOAD: 375 aio_onceonly(); 376 break; 377 case MOD_UNLOAD: 378 error = aio_unload(); 379 break; 380 case MOD_SHUTDOWN: 381 break; 382 default: 383 error = EINVAL; 384 break; 385 } 386 return (error); 387 } 388 389 static moduledata_t aio_mod = { 390 "aio", 391 &aio_modload, 392 NULL 393 }; 394 395 SYSCALL_MODULE_HELPER(aio_cancel); 396 SYSCALL_MODULE_HELPER(aio_error); 397 SYSCALL_MODULE_HELPER(aio_fsync); 398 SYSCALL_MODULE_HELPER(aio_read); 399 SYSCALL_MODULE_HELPER(aio_return); 400 SYSCALL_MODULE_HELPER(aio_suspend); 401 SYSCALL_MODULE_HELPER(aio_waitcomplete); 402 SYSCALL_MODULE_HELPER(aio_write); 403 SYSCALL_MODULE_HELPER(lio_listio); 404 SYSCALL_MODULE_HELPER(oaio_read); 405 SYSCALL_MODULE_HELPER(oaio_write); 406 SYSCALL_MODULE_HELPER(olio_listio); 407 408 DECLARE_MODULE(aio, aio_mod, 409 SI_SUB_VFS, SI_ORDER_ANY); 410 MODULE_VERSION(aio, 1); 411 412 /* 413 * Startup initialization 414 */ 415 static void 416 aio_onceonly(void) 417 { 418 419 /* XXX: should probably just use so->callback */ 420 aio_swake = &aio_swake_cb; 421 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 422 EVENTHANDLER_PRI_ANY); 423 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 424 EVENTHANDLER_PRI_ANY); 425 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 426 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 427 TAILQ_INIT(&aio_freeproc); 428 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 429 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 430 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 431 TAILQ_INIT(&aio_jobs); 432 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 433 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 434 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 435 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 436 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 437 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 438 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 439 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 440 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 441 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 442 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 443 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 444 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 445 jobrefid = 1; 446 async_io_version = _POSIX_VERSION; 447 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 448 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 449 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 450 } 451 452 /* 453 * Callback for unload of AIO when used as a module. 454 */ 455 static int 456 aio_unload(void) 457 { 458 int error; 459 460 /* 461 * XXX: no unloads by default, it's too dangerous. 462 * perhaps we could do it if locked out callers and then 463 * did an aio_proc_rundown() on each process. 464 * 465 * jhb: aio_proc_rundown() needs to run on curproc though, 466 * so I don't think that would fly. 467 */ 468 if (!unloadable) 469 return (EOPNOTSUPP); 470 471 error = kqueue_del_filteropts(EVFILT_AIO); 472 if (error) 473 return error; 474 error = kqueue_del_filteropts(EVFILT_LIO); 475 if (error) 476 return error; 477 async_io_version = 0; 478 aio_swake = NULL; 479 taskqueue_free(taskqueue_aiod_bio); 480 delete_unrhdr(aiod_unr); 481 uma_zdestroy(kaio_zone); 482 uma_zdestroy(aiop_zone); 483 uma_zdestroy(aiocb_zone); 484 uma_zdestroy(aiol_zone); 485 uma_zdestroy(aiolio_zone); 486 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 487 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 488 mtx_destroy(&aio_job_mtx); 489 mtx_destroy(&aio_sock_mtx); 490 sema_destroy(&aio_newproc_sem); 491 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 492 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 493 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 494 return (0); 495 } 496 497 /* 498 * Init the per-process aioinfo structure. The aioinfo limits are set 499 * per-process for user limit (resource) management. 500 */ 501 void 502 aio_init_aioinfo(struct proc *p) 503 { 504 struct kaioinfo *ki; 505 506 ki = uma_zalloc(kaio_zone, M_WAITOK); 507 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 508 ki->kaio_flags = 0; 509 ki->kaio_maxactive_count = max_aio_per_proc; 510 ki->kaio_active_count = 0; 511 ki->kaio_qallowed_count = max_aio_queue_per_proc; 512 ki->kaio_count = 0; 513 ki->kaio_ballowed_count = max_buf_aio; 514 ki->kaio_buffer_count = 0; 515 TAILQ_INIT(&ki->kaio_all); 516 TAILQ_INIT(&ki->kaio_done); 517 TAILQ_INIT(&ki->kaio_jobqueue); 518 TAILQ_INIT(&ki->kaio_bufqueue); 519 TAILQ_INIT(&ki->kaio_liojoblist); 520 TAILQ_INIT(&ki->kaio_sockqueue); 521 TAILQ_INIT(&ki->kaio_syncqueue); 522 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 523 PROC_LOCK(p); 524 if (p->p_aioinfo == NULL) { 525 p->p_aioinfo = ki; 526 PROC_UNLOCK(p); 527 } else { 528 PROC_UNLOCK(p); 529 mtx_destroy(&ki->kaio_mtx); 530 uma_zfree(kaio_zone, ki); 531 } 532 533 while (num_aio_procs < target_aio_procs) 534 aio_newproc(NULL); 535 } 536 537 static int 538 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 539 { 540 int ret = 0; 541 542 PROC_LOCK(p); 543 if (!KSI_ONQ(ksi)) { 544 ksi->ksi_code = SI_ASYNCIO; 545 ksi->ksi_flags |= KSI_EXT | KSI_INS; 546 ret = psignal_event(p, sigev, ksi); 547 } 548 PROC_UNLOCK(p); 549 return (ret); 550 } 551 552 /* 553 * Free a job entry. Wait for completion if it is currently active, but don't 554 * delay forever. If we delay, we return a flag that says that we have to 555 * restart the queue scan. 556 */ 557 static int 558 aio_free_entry(struct aiocblist *aiocbe) 559 { 560 struct kaioinfo *ki; 561 struct aioliojob *lj; 562 struct proc *p; 563 564 p = aiocbe->userproc; 565 MPASS(curproc == p); 566 ki = p->p_aioinfo; 567 MPASS(ki != NULL); 568 569 AIO_LOCK_ASSERT(ki, MA_OWNED); 570 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 571 572 atomic_subtract_int(&num_queue_count, 1); 573 574 ki->kaio_count--; 575 MPASS(ki->kaio_count >= 0); 576 577 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 578 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 579 580 lj = aiocbe->lio; 581 if (lj) { 582 lj->lioj_count--; 583 lj->lioj_finished_count--; 584 585 if (lj->lioj_count == 0) { 586 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 587 /* lio is going away, we need to destroy any knotes */ 588 knlist_delete(&lj->klist, curthread, 1); 589 PROC_LOCK(p); 590 sigqueue_take(&lj->lioj_ksi); 591 PROC_UNLOCK(p); 592 uma_zfree(aiolio_zone, lj); 593 } 594 } 595 596 /* aiocbe is going away, we need to destroy any knotes */ 597 knlist_delete(&aiocbe->klist, curthread, 1); 598 PROC_LOCK(p); 599 sigqueue_take(&aiocbe->ksi); 600 PROC_UNLOCK(p); 601 602 MPASS(aiocbe->bp == NULL); 603 aiocbe->jobstate = JOBST_NULL; 604 AIO_UNLOCK(ki); 605 606 /* 607 * The thread argument here is used to find the owning process 608 * and is also passed to fo_close() which may pass it to various 609 * places such as devsw close() routines. Because of that, we 610 * need a thread pointer from the process owning the job that is 611 * persistent and won't disappear out from under us or move to 612 * another process. 613 * 614 * Currently, all the callers of this function call it to remove 615 * an aiocblist from the current process' job list either via a 616 * syscall or due to the current process calling exit() or 617 * execve(). Thus, we know that p == curproc. We also know that 618 * curthread can't exit since we are curthread. 619 * 620 * Therefore, we use curthread as the thread to pass to 621 * knlist_delete(). This does mean that it is possible for the 622 * thread pointer at close time to differ from the thread pointer 623 * at open time, but this is already true of file descriptors in 624 * a multithreaded process. 625 */ 626 fdrop(aiocbe->fd_file, curthread); 627 crfree(aiocbe->cred); 628 uma_zfree(aiocb_zone, aiocbe); 629 AIO_LOCK(ki); 630 631 return (0); 632 } 633 634 static void 635 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 636 { 637 aio_proc_rundown(arg, p); 638 } 639 640 /* 641 * Rundown the jobs for a given process. 642 */ 643 static void 644 aio_proc_rundown(void *arg, struct proc *p) 645 { 646 struct kaioinfo *ki; 647 struct aioliojob *lj; 648 struct aiocblist *cbe, *cbn; 649 struct file *fp; 650 struct socket *so; 651 int remove; 652 653 KASSERT(curthread->td_proc == p, 654 ("%s: called on non-curproc", __func__)); 655 ki = p->p_aioinfo; 656 if (ki == NULL) 657 return; 658 659 AIO_LOCK(ki); 660 ki->kaio_flags |= KAIO_RUNDOWN; 661 662 restart: 663 664 /* 665 * Try to cancel all pending requests. This code simulates 666 * aio_cancel on all pending I/O requests. 667 */ 668 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 669 remove = 0; 670 mtx_lock(&aio_job_mtx); 671 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 672 TAILQ_REMOVE(&aio_jobs, cbe, list); 673 remove = 1; 674 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 675 fp = cbe->fd_file; 676 MPASS(fp->f_type == DTYPE_SOCKET); 677 so = fp->f_data; 678 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 679 remove = 1; 680 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 681 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 682 remove = 1; 683 } 684 mtx_unlock(&aio_job_mtx); 685 686 if (remove) { 687 cbe->jobstate = JOBST_JOBFINISHED; 688 cbe->uaiocb._aiocb_private.status = -1; 689 cbe->uaiocb._aiocb_private.error = ECANCELED; 690 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 691 aio_bio_done_notify(p, cbe, DONE_QUEUE); 692 } 693 } 694 695 /* Wait for all running I/O to be finished */ 696 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 697 TAILQ_FIRST(&ki->kaio_jobqueue)) { 698 ki->kaio_flags |= KAIO_WAKEUP; 699 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 700 goto restart; 701 } 702 703 /* Free all completed I/O requests. */ 704 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 705 aio_free_entry(cbe); 706 707 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 708 if (lj->lioj_count == 0) { 709 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 710 knlist_delete(&lj->klist, curthread, 1); 711 PROC_LOCK(p); 712 sigqueue_take(&lj->lioj_ksi); 713 PROC_UNLOCK(p); 714 uma_zfree(aiolio_zone, lj); 715 } else { 716 panic("LIO job not cleaned up: C:%d, FC:%d\n", 717 lj->lioj_count, lj->lioj_finished_count); 718 } 719 } 720 AIO_UNLOCK(ki); 721 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 722 mtx_destroy(&ki->kaio_mtx); 723 uma_zfree(kaio_zone, ki); 724 p->p_aioinfo = NULL; 725 } 726 727 /* 728 * Select a job to run (called by an AIO daemon). 729 */ 730 static struct aiocblist * 731 aio_selectjob(struct aiothreadlist *aiop) 732 { 733 struct aiocblist *aiocbe; 734 struct kaioinfo *ki; 735 struct proc *userp; 736 737 mtx_assert(&aio_job_mtx, MA_OWNED); 738 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 739 userp = aiocbe->userproc; 740 ki = userp->p_aioinfo; 741 742 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 743 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 744 /* Account for currently active jobs. */ 745 ki->kaio_active_count++; 746 aiocbe->jobstate = JOBST_JOBRUNNING; 747 break; 748 } 749 } 750 return (aiocbe); 751 } 752 753 /* 754 * Move all data to a permanent storage device, this code 755 * simulates fsync syscall. 756 */ 757 static int 758 aio_fsync_vnode(struct thread *td, struct vnode *vp) 759 { 760 struct mount *mp; 761 int vfslocked; 762 int error; 763 764 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 765 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 766 goto drop; 767 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 768 if (vp->v_object != NULL) { 769 VM_OBJECT_LOCK(vp->v_object); 770 vm_object_page_clean(vp->v_object, 0, 0, 0); 771 VM_OBJECT_UNLOCK(vp->v_object); 772 } 773 error = VOP_FSYNC(vp, MNT_WAIT, td); 774 775 VOP_UNLOCK(vp, 0); 776 vn_finished_write(mp); 777 drop: 778 VFS_UNLOCK_GIANT(vfslocked); 779 return (error); 780 } 781 782 /* 783 * The AIO processing activity. This is the code that does the I/O request for 784 * the non-physio version of the operations. The normal vn operations are used, 785 * and this code should work in all instances for every type of file, including 786 * pipes, sockets, fifos, and regular files. 787 * 788 * XXX I don't think it works well for socket, pipe, and fifo. 789 */ 790 static void 791 aio_process(struct aiocblist *aiocbe) 792 { 793 struct ucred *td_savedcred; 794 struct thread *td; 795 struct aiocb *cb; 796 struct file *fp; 797 struct socket *so; 798 struct uio auio; 799 struct iovec aiov; 800 int cnt; 801 int error; 802 int oublock_st, oublock_end; 803 int inblock_st, inblock_end; 804 805 td = curthread; 806 td_savedcred = td->td_ucred; 807 td->td_ucred = aiocbe->cred; 808 cb = &aiocbe->uaiocb; 809 fp = aiocbe->fd_file; 810 811 if (cb->aio_lio_opcode == LIO_SYNC) { 812 error = 0; 813 cnt = 0; 814 if (fp->f_vnode != NULL) 815 error = aio_fsync_vnode(td, fp->f_vnode); 816 cb->_aiocb_private.error = error; 817 cb->_aiocb_private.status = 0; 818 td->td_ucred = td_savedcred; 819 return; 820 } 821 822 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 823 aiov.iov_len = cb->aio_nbytes; 824 825 auio.uio_iov = &aiov; 826 auio.uio_iovcnt = 1; 827 auio.uio_offset = cb->aio_offset; 828 auio.uio_resid = cb->aio_nbytes; 829 cnt = cb->aio_nbytes; 830 auio.uio_segflg = UIO_USERSPACE; 831 auio.uio_td = td; 832 833 inblock_st = td->td_ru.ru_inblock; 834 oublock_st = td->td_ru.ru_oublock; 835 /* 836 * aio_aqueue() acquires a reference to the file that is 837 * released in aio_free_entry(). 838 */ 839 if (cb->aio_lio_opcode == LIO_READ) { 840 auio.uio_rw = UIO_READ; 841 if (auio.uio_resid == 0) 842 error = 0; 843 else 844 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 845 } else { 846 if (fp->f_type == DTYPE_VNODE) 847 bwillwrite(); 848 auio.uio_rw = UIO_WRITE; 849 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 850 } 851 inblock_end = td->td_ru.ru_inblock; 852 oublock_end = td->td_ru.ru_oublock; 853 854 aiocbe->inputcharge = inblock_end - inblock_st; 855 aiocbe->outputcharge = oublock_end - oublock_st; 856 857 if ((error) && (auio.uio_resid != cnt)) { 858 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 859 error = 0; 860 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 861 int sigpipe = 1; 862 if (fp->f_type == DTYPE_SOCKET) { 863 so = fp->f_data; 864 if (so->so_options & SO_NOSIGPIPE) 865 sigpipe = 0; 866 } 867 if (sigpipe) { 868 PROC_LOCK(aiocbe->userproc); 869 psignal(aiocbe->userproc, SIGPIPE); 870 PROC_UNLOCK(aiocbe->userproc); 871 } 872 } 873 } 874 875 cnt -= auio.uio_resid; 876 cb->_aiocb_private.error = error; 877 cb->_aiocb_private.status = cnt; 878 td->td_ucred = td_savedcred; 879 } 880 881 static void 882 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 883 { 884 struct aioliojob *lj; 885 struct kaioinfo *ki; 886 struct aiocblist *scb, *scbn; 887 int lj_done; 888 889 ki = userp->p_aioinfo; 890 AIO_LOCK_ASSERT(ki, MA_OWNED); 891 lj = aiocbe->lio; 892 lj_done = 0; 893 if (lj) { 894 lj->lioj_finished_count++; 895 if (lj->lioj_count == lj->lioj_finished_count) 896 lj_done = 1; 897 } 898 if (type == DONE_QUEUE) { 899 aiocbe->jobflags |= AIOCBLIST_DONE; 900 } else { 901 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 902 } 903 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 904 aiocbe->jobstate = JOBST_JOBFINISHED; 905 906 if (ki->kaio_flags & KAIO_RUNDOWN) 907 goto notification_done; 908 909 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 910 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 911 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 912 913 KNOTE_LOCKED(&aiocbe->klist, 1); 914 915 if (lj_done) { 916 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 917 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 918 KNOTE_LOCKED(&lj->klist, 1); 919 } 920 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 921 == LIOJ_SIGNAL 922 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 923 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 924 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 925 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 926 } 927 } 928 929 notification_done: 930 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 931 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 932 if (aiocbe->fd_file == scb->fd_file && 933 aiocbe->seqno < scb->seqno) { 934 if (--scb->pending == 0) { 935 mtx_lock(&aio_job_mtx); 936 scb->jobstate = JOBST_JOBQGLOBAL; 937 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 938 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 939 aio_kick_nowait(userp); 940 mtx_unlock(&aio_job_mtx); 941 } 942 } 943 } 944 } 945 if (ki->kaio_flags & KAIO_WAKEUP) { 946 ki->kaio_flags &= ~KAIO_WAKEUP; 947 wakeup(&userp->p_aioinfo); 948 } 949 } 950 951 /* 952 * The AIO daemon, most of the actual work is done in aio_process, 953 * but the setup (and address space mgmt) is done in this routine. 954 */ 955 static void 956 aio_daemon(void *_id) 957 { 958 struct aiocblist *aiocbe; 959 struct aiothreadlist *aiop; 960 struct kaioinfo *ki; 961 struct proc *curcp, *mycp, *userp; 962 struct vmspace *myvm, *tmpvm; 963 struct thread *td = curthread; 964 int id = (intptr_t)_id; 965 966 /* 967 * Local copies of curproc (cp) and vmspace (myvm) 968 */ 969 mycp = td->td_proc; 970 myvm = mycp->p_vmspace; 971 972 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 973 974 /* 975 * Allocate and ready the aio control info. There is one aiop structure 976 * per daemon. 977 */ 978 aiop = uma_zalloc(aiop_zone, M_WAITOK); 979 aiop->aiothread = td; 980 aiop->aiothreadflags = 0; 981 982 /* The daemon resides in its own pgrp. */ 983 setsid(td, NULL); 984 985 /* 986 * Wakeup parent process. (Parent sleeps to keep from blasting away 987 * and creating too many daemons.) 988 */ 989 sema_post(&aio_newproc_sem); 990 991 mtx_lock(&aio_job_mtx); 992 for (;;) { 993 /* 994 * curcp is the current daemon process context. 995 * userp is the current user process context. 996 */ 997 curcp = mycp; 998 999 /* 1000 * Take daemon off of free queue 1001 */ 1002 if (aiop->aiothreadflags & AIOP_FREE) { 1003 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1004 aiop->aiothreadflags &= ~AIOP_FREE; 1005 } 1006 1007 /* 1008 * Check for jobs. 1009 */ 1010 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1011 mtx_unlock(&aio_job_mtx); 1012 userp = aiocbe->userproc; 1013 1014 /* 1015 * Connect to process address space for user program. 1016 */ 1017 if (userp != curcp) { 1018 /* 1019 * Save the current address space that we are 1020 * connected to. 1021 */ 1022 tmpvm = mycp->p_vmspace; 1023 1024 /* 1025 * Point to the new user address space, and 1026 * refer to it. 1027 */ 1028 mycp->p_vmspace = userp->p_vmspace; 1029 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1030 1031 /* Activate the new mapping. */ 1032 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1033 1034 /* 1035 * If the old address space wasn't the daemons 1036 * own address space, then we need to remove the 1037 * daemon's reference from the other process 1038 * that it was acting on behalf of. 1039 */ 1040 if (tmpvm != myvm) { 1041 vmspace_free(tmpvm); 1042 } 1043 curcp = userp; 1044 } 1045 1046 ki = userp->p_aioinfo; 1047 1048 /* Do the I/O function. */ 1049 aio_process(aiocbe); 1050 1051 mtx_lock(&aio_job_mtx); 1052 /* Decrement the active job count. */ 1053 ki->kaio_active_count--; 1054 mtx_unlock(&aio_job_mtx); 1055 1056 AIO_LOCK(ki); 1057 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1058 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1059 AIO_UNLOCK(ki); 1060 1061 mtx_lock(&aio_job_mtx); 1062 } 1063 1064 /* 1065 * Disconnect from user address space. 1066 */ 1067 if (curcp != mycp) { 1068 1069 mtx_unlock(&aio_job_mtx); 1070 1071 /* Get the user address space to disconnect from. */ 1072 tmpvm = mycp->p_vmspace; 1073 1074 /* Get original address space for daemon. */ 1075 mycp->p_vmspace = myvm; 1076 1077 /* Activate the daemon's address space. */ 1078 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1079 #ifdef DIAGNOSTIC 1080 if (tmpvm == myvm) { 1081 printf("AIOD: vmspace problem -- %d\n", 1082 mycp->p_pid); 1083 } 1084 #endif 1085 /* Remove our vmspace reference. */ 1086 vmspace_free(tmpvm); 1087 1088 curcp = mycp; 1089 1090 mtx_lock(&aio_job_mtx); 1091 /* 1092 * We have to restart to avoid race, we only sleep if 1093 * no job can be selected, that should be 1094 * curcp == mycp. 1095 */ 1096 continue; 1097 } 1098 1099 mtx_assert(&aio_job_mtx, MA_OWNED); 1100 1101 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1102 aiop->aiothreadflags |= AIOP_FREE; 1103 1104 /* 1105 * If daemon is inactive for a long time, allow it to exit, 1106 * thereby freeing resources. 1107 */ 1108 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1109 aiod_lifetime)) { 1110 if (TAILQ_EMPTY(&aio_jobs)) { 1111 if ((aiop->aiothreadflags & AIOP_FREE) && 1112 (num_aio_procs > target_aio_procs)) { 1113 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1114 num_aio_procs--; 1115 mtx_unlock(&aio_job_mtx); 1116 uma_zfree(aiop_zone, aiop); 1117 free_unr(aiod_unr, id); 1118 #ifdef DIAGNOSTIC 1119 if (mycp->p_vmspace->vm_refcnt <= 1) { 1120 printf("AIOD: bad vm refcnt for" 1121 " exiting daemon: %d\n", 1122 mycp->p_vmspace->vm_refcnt); 1123 } 1124 #endif 1125 kproc_exit(0); 1126 } 1127 } 1128 } 1129 } 1130 mtx_unlock(&aio_job_mtx); 1131 panic("shouldn't be here\n"); 1132 } 1133 1134 /* 1135 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1136 * AIO daemon modifies its environment itself. 1137 */ 1138 static int 1139 aio_newproc(int *start) 1140 { 1141 int error; 1142 struct proc *p; 1143 int id; 1144 1145 id = alloc_unr(aiod_unr); 1146 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1147 RFNOWAIT, 0, "aiod%d", id); 1148 if (error == 0) { 1149 /* 1150 * Wait until daemon is started. 1151 */ 1152 sema_wait(&aio_newproc_sem); 1153 mtx_lock(&aio_job_mtx); 1154 num_aio_procs++; 1155 if (start != NULL) 1156 (*start)--; 1157 mtx_unlock(&aio_job_mtx); 1158 } else { 1159 free_unr(aiod_unr, id); 1160 } 1161 return (error); 1162 } 1163 1164 /* 1165 * Try the high-performance, low-overhead physio method for eligible 1166 * VCHR devices. This method doesn't use an aio helper thread, and 1167 * thus has very low overhead. 1168 * 1169 * Assumes that the caller, aio_aqueue(), has incremented the file 1170 * structure's reference count, preventing its deallocation for the 1171 * duration of this call. 1172 */ 1173 static int 1174 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1175 { 1176 struct aiocb *cb; 1177 struct file *fp; 1178 struct buf *bp; 1179 struct vnode *vp; 1180 struct kaioinfo *ki; 1181 struct aioliojob *lj; 1182 int error; 1183 1184 cb = &aiocbe->uaiocb; 1185 fp = aiocbe->fd_file; 1186 1187 if (fp->f_type != DTYPE_VNODE) 1188 return (-1); 1189 1190 vp = fp->f_vnode; 1191 1192 /* 1193 * If its not a disk, we don't want to return a positive error. 1194 * It causes the aio code to not fall through to try the thread 1195 * way when you're talking to a regular file. 1196 */ 1197 if (!vn_isdisk(vp, &error)) { 1198 if (error == ENOTBLK) 1199 return (-1); 1200 else 1201 return (error); 1202 } 1203 1204 if (vp->v_bufobj.bo_bsize == 0) 1205 return (-1); 1206 1207 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1208 return (-1); 1209 1210 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1211 return (-1); 1212 1213 if (cb->aio_nbytes > 1214 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1215 return (-1); 1216 1217 ki = p->p_aioinfo; 1218 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1219 return (-1); 1220 1221 /* Create and build a buffer header for a transfer. */ 1222 bp = (struct buf *)getpbuf(NULL); 1223 BUF_KERNPROC(bp); 1224 1225 AIO_LOCK(ki); 1226 ki->kaio_count++; 1227 ki->kaio_buffer_count++; 1228 lj = aiocbe->lio; 1229 if (lj) 1230 lj->lioj_count++; 1231 AIO_UNLOCK(ki); 1232 1233 /* 1234 * Get a copy of the kva from the physical buffer. 1235 */ 1236 error = 0; 1237 1238 bp->b_bcount = cb->aio_nbytes; 1239 bp->b_bufsize = cb->aio_nbytes; 1240 bp->b_iodone = aio_physwakeup; 1241 bp->b_saveaddr = bp->b_data; 1242 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1243 bp->b_offset = cb->aio_offset; 1244 bp->b_iooffset = cb->aio_offset; 1245 bp->b_blkno = btodb(cb->aio_offset); 1246 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1247 1248 /* 1249 * Bring buffer into kernel space. 1250 */ 1251 if (vmapbuf(bp) < 0) { 1252 error = EFAULT; 1253 goto doerror; 1254 } 1255 1256 AIO_LOCK(ki); 1257 aiocbe->bp = bp; 1258 bp->b_caller1 = (void *)aiocbe; 1259 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1260 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1261 aiocbe->jobstate = JOBST_JOBQBUF; 1262 cb->_aiocb_private.status = cb->aio_nbytes; 1263 AIO_UNLOCK(ki); 1264 1265 atomic_add_int(&num_queue_count, 1); 1266 atomic_add_int(&num_buf_aio, 1); 1267 1268 bp->b_error = 0; 1269 1270 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1271 1272 /* Perform transfer. */ 1273 dev_strategy(vp->v_rdev, bp); 1274 return (0); 1275 1276 doerror: 1277 AIO_LOCK(ki); 1278 ki->kaio_count--; 1279 ki->kaio_buffer_count--; 1280 if (lj) 1281 lj->lioj_count--; 1282 aiocbe->bp = NULL; 1283 AIO_UNLOCK(ki); 1284 relpbuf(bp, NULL); 1285 return (error); 1286 } 1287 1288 /* 1289 * Wake up aio requests that may be serviceable now. 1290 */ 1291 static void 1292 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1293 { 1294 struct aiocblist *cb, *cbn; 1295 int opcode; 1296 1297 if (sb == &so->so_snd) 1298 opcode = LIO_WRITE; 1299 else 1300 opcode = LIO_READ; 1301 1302 SOCKBUF_LOCK(sb); 1303 sb->sb_flags &= ~SB_AIO; 1304 mtx_lock(&aio_job_mtx); 1305 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1306 if (opcode == cb->uaiocb.aio_lio_opcode) { 1307 if (cb->jobstate != JOBST_JOBQSOCK) 1308 panic("invalid queue value"); 1309 /* XXX 1310 * We don't have actual sockets backend yet, 1311 * so we simply move the requests to the generic 1312 * file I/O backend. 1313 */ 1314 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1315 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1316 aio_kick_nowait(cb->userproc); 1317 } 1318 } 1319 mtx_unlock(&aio_job_mtx); 1320 SOCKBUF_UNLOCK(sb); 1321 } 1322 1323 /* 1324 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1325 * technique is done in this code. 1326 */ 1327 int 1328 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1329 int type, int oldsigev) 1330 { 1331 struct proc *p = td->td_proc; 1332 struct file *fp; 1333 struct socket *so; 1334 struct aiocblist *aiocbe, *cb; 1335 struct kaioinfo *ki; 1336 struct kevent kev; 1337 struct sockbuf *sb; 1338 int opcode; 1339 int error; 1340 int fd, kqfd; 1341 int jid; 1342 1343 if (p->p_aioinfo == NULL) 1344 aio_init_aioinfo(p); 1345 1346 ki = p->p_aioinfo; 1347 1348 suword(&job->_aiocb_private.status, -1); 1349 suword(&job->_aiocb_private.error, 0); 1350 suword(&job->_aiocb_private.kernelinfo, -1); 1351 1352 if (num_queue_count >= max_queue_count || 1353 ki->kaio_count >= ki->kaio_qallowed_count) { 1354 suword(&job->_aiocb_private.error, EAGAIN); 1355 return (EAGAIN); 1356 } 1357 1358 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1359 aiocbe->inputcharge = 0; 1360 aiocbe->outputcharge = 0; 1361 knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL); 1362 1363 if (oldsigev) { 1364 bzero(&aiocbe->uaiocb, sizeof(struct aiocb)); 1365 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb)); 1366 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent, 1367 sizeof(struct osigevent)); 1368 } else { 1369 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb)); 1370 } 1371 if (error) { 1372 suword(&job->_aiocb_private.error, error); 1373 uma_zfree(aiocb_zone, aiocbe); 1374 return (error); 1375 } 1376 1377 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1378 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1379 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1380 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1381 suword(&job->_aiocb_private.error, EINVAL); 1382 uma_zfree(aiocb_zone, aiocbe); 1383 return (EINVAL); 1384 } 1385 1386 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1387 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1388 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1389 uma_zfree(aiocb_zone, aiocbe); 1390 return (EINVAL); 1391 } 1392 1393 ksiginfo_init(&aiocbe->ksi); 1394 1395 /* Save userspace address of the job info. */ 1396 aiocbe->uuaiocb = job; 1397 1398 /* Get the opcode. */ 1399 if (type != LIO_NOP) 1400 aiocbe->uaiocb.aio_lio_opcode = type; 1401 opcode = aiocbe->uaiocb.aio_lio_opcode; 1402 1403 /* Fetch the file object for the specified file descriptor. */ 1404 fd = aiocbe->uaiocb.aio_fildes; 1405 switch (opcode) { 1406 case LIO_WRITE: 1407 error = fget_write(td, fd, &fp); 1408 break; 1409 case LIO_READ: 1410 error = fget_read(td, fd, &fp); 1411 break; 1412 default: 1413 error = fget(td, fd, &fp); 1414 } 1415 if (error) { 1416 uma_zfree(aiocb_zone, aiocbe); 1417 suword(&job->_aiocb_private.error, error); 1418 return (error); 1419 } 1420 1421 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1422 error = EINVAL; 1423 goto aqueue_fail; 1424 } 1425 1426 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1427 error = EINVAL; 1428 goto aqueue_fail; 1429 } 1430 1431 aiocbe->fd_file = fp; 1432 1433 mtx_lock(&aio_job_mtx); 1434 jid = jobrefid++; 1435 aiocbe->seqno = jobseqno++; 1436 mtx_unlock(&aio_job_mtx); 1437 error = suword(&job->_aiocb_private.kernelinfo, jid); 1438 if (error) { 1439 error = EINVAL; 1440 goto aqueue_fail; 1441 } 1442 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1443 1444 if (opcode == LIO_NOP) { 1445 fdrop(fp, td); 1446 uma_zfree(aiocb_zone, aiocbe); 1447 return (0); 1448 } 1449 if ((opcode != LIO_READ) && (opcode != LIO_WRITE) && 1450 (opcode != LIO_SYNC)) { 1451 error = EINVAL; 1452 goto aqueue_fail; 1453 } 1454 1455 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1456 goto no_kqueue; 1457 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1458 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1459 kev.filter = EVFILT_AIO; 1460 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 1461 kev.data = (intptr_t)aiocbe; 1462 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1463 error = kqfd_register(kqfd, &kev, td, 1); 1464 aqueue_fail: 1465 if (error) { 1466 fdrop(fp, td); 1467 uma_zfree(aiocb_zone, aiocbe); 1468 suword(&job->_aiocb_private.error, error); 1469 goto done; 1470 } 1471 no_kqueue: 1472 1473 suword(&job->_aiocb_private.error, EINPROGRESS); 1474 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1475 aiocbe->userproc = p; 1476 aiocbe->cred = crhold(td->td_ucred); 1477 aiocbe->jobflags = 0; 1478 aiocbe->lio = lj; 1479 1480 if (opcode == LIO_SYNC) 1481 goto queueit; 1482 1483 if (fp->f_type == DTYPE_SOCKET) { 1484 /* 1485 * Alternate queueing for socket ops: Reach down into the 1486 * descriptor to get the socket data. Then check to see if the 1487 * socket is ready to be read or written (based on the requested 1488 * operation). 1489 * 1490 * If it is not ready for io, then queue the aiocbe on the 1491 * socket, and set the flags so we get a call when sbnotify() 1492 * happens. 1493 * 1494 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1495 * and unlock the snd sockbuf for no reason. 1496 */ 1497 so = fp->f_data; 1498 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1499 SOCKBUF_LOCK(sb); 1500 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1501 LIO_WRITE) && (!sowriteable(so)))) { 1502 sb->sb_flags |= SB_AIO; 1503 1504 mtx_lock(&aio_job_mtx); 1505 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1506 mtx_unlock(&aio_job_mtx); 1507 1508 AIO_LOCK(ki); 1509 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1510 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1511 aiocbe->jobstate = JOBST_JOBQSOCK; 1512 ki->kaio_count++; 1513 if (lj) 1514 lj->lioj_count++; 1515 AIO_UNLOCK(ki); 1516 SOCKBUF_UNLOCK(sb); 1517 atomic_add_int(&num_queue_count, 1); 1518 error = 0; 1519 goto done; 1520 } 1521 SOCKBUF_UNLOCK(sb); 1522 } 1523 1524 if ((error = aio_qphysio(p, aiocbe)) == 0) 1525 goto done; 1526 #if 0 1527 if (error > 0) { 1528 aiocbe->uaiocb._aiocb_private.error = error; 1529 suword(&job->_aiocb_private.error, error); 1530 goto done; 1531 } 1532 #endif 1533 queueit: 1534 /* No buffer for daemon I/O. */ 1535 aiocbe->bp = NULL; 1536 atomic_add_int(&num_queue_count, 1); 1537 1538 AIO_LOCK(ki); 1539 ki->kaio_count++; 1540 if (lj) 1541 lj->lioj_count++; 1542 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1543 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1544 if (opcode == LIO_SYNC) { 1545 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1546 if (cb->fd_file == aiocbe->fd_file && 1547 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1548 cb->seqno < aiocbe->seqno) { 1549 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1550 aiocbe->pending++; 1551 } 1552 } 1553 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1554 if (cb->fd_file == aiocbe->fd_file && 1555 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1556 cb->seqno < aiocbe->seqno) { 1557 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1558 aiocbe->pending++; 1559 } 1560 } 1561 if (aiocbe->pending != 0) { 1562 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1563 aiocbe->jobstate = JOBST_JOBQSYNC; 1564 AIO_UNLOCK(ki); 1565 goto done; 1566 } 1567 } 1568 mtx_lock(&aio_job_mtx); 1569 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1570 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1571 aio_kick_nowait(p); 1572 mtx_unlock(&aio_job_mtx); 1573 AIO_UNLOCK(ki); 1574 error = 0; 1575 done: 1576 return (error); 1577 } 1578 1579 static void 1580 aio_kick_nowait(struct proc *userp) 1581 { 1582 struct kaioinfo *ki = userp->p_aioinfo; 1583 struct aiothreadlist *aiop; 1584 1585 mtx_assert(&aio_job_mtx, MA_OWNED); 1586 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1587 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1588 aiop->aiothreadflags &= ~AIOP_FREE; 1589 wakeup(aiop->aiothread); 1590 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1591 ((ki->kaio_active_count + num_aio_resv_start) < 1592 ki->kaio_maxactive_count)) { 1593 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1594 } 1595 } 1596 1597 static int 1598 aio_kick(struct proc *userp) 1599 { 1600 struct kaioinfo *ki = userp->p_aioinfo; 1601 struct aiothreadlist *aiop; 1602 int error, ret = 0; 1603 1604 mtx_assert(&aio_job_mtx, MA_OWNED); 1605 retryproc: 1606 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1607 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1608 aiop->aiothreadflags &= ~AIOP_FREE; 1609 wakeup(aiop->aiothread); 1610 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1611 ((ki->kaio_active_count + num_aio_resv_start) < 1612 ki->kaio_maxactive_count)) { 1613 num_aio_resv_start++; 1614 mtx_unlock(&aio_job_mtx); 1615 error = aio_newproc(&num_aio_resv_start); 1616 mtx_lock(&aio_job_mtx); 1617 if (error) { 1618 num_aio_resv_start--; 1619 goto retryproc; 1620 } 1621 } else { 1622 ret = -1; 1623 } 1624 return (ret); 1625 } 1626 1627 static void 1628 aio_kick_helper(void *context, int pending) 1629 { 1630 struct proc *userp = context; 1631 1632 mtx_lock(&aio_job_mtx); 1633 while (--pending >= 0) { 1634 if (aio_kick(userp)) 1635 break; 1636 } 1637 mtx_unlock(&aio_job_mtx); 1638 } 1639 1640 /* 1641 * Support the aio_return system call, as a side-effect, kernel resources are 1642 * released. 1643 */ 1644 int 1645 aio_return(struct thread *td, struct aio_return_args *uap) 1646 { 1647 struct proc *p = td->td_proc; 1648 struct aiocblist *cb; 1649 struct aiocb *uaiocb; 1650 struct kaioinfo *ki; 1651 int status, error; 1652 1653 ki = p->p_aioinfo; 1654 if (ki == NULL) 1655 return (EINVAL); 1656 uaiocb = uap->aiocbp; 1657 AIO_LOCK(ki); 1658 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1659 if (cb->uuaiocb == uaiocb) 1660 break; 1661 } 1662 if (cb != NULL) { 1663 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1664 status = cb->uaiocb._aiocb_private.status; 1665 error = cb->uaiocb._aiocb_private.error; 1666 td->td_retval[0] = status; 1667 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1668 td->td_ru.ru_oublock += cb->outputcharge; 1669 cb->outputcharge = 0; 1670 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1671 td->td_ru.ru_inblock += cb->inputcharge; 1672 cb->inputcharge = 0; 1673 } 1674 aio_free_entry(cb); 1675 AIO_UNLOCK(ki); 1676 suword(&uaiocb->_aiocb_private.error, error); 1677 suword(&uaiocb->_aiocb_private.status, status); 1678 } else { 1679 error = EINVAL; 1680 AIO_UNLOCK(ki); 1681 } 1682 return (error); 1683 } 1684 1685 /* 1686 * Allow a process to wakeup when any of the I/O requests are completed. 1687 */ 1688 int 1689 aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1690 { 1691 struct proc *p = td->td_proc; 1692 struct timeval atv; 1693 struct timespec ts; 1694 struct aiocb *const *cbptr, *cbp; 1695 struct kaioinfo *ki; 1696 struct aiocblist *cb, *cbfirst; 1697 struct aiocb **ujoblist; 1698 int njoblist; 1699 int error; 1700 int timo; 1701 int i; 1702 1703 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1704 return (EINVAL); 1705 1706 timo = 0; 1707 if (uap->timeout) { 1708 /* Get timespec struct. */ 1709 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1710 return (error); 1711 1712 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) 1713 return (EINVAL); 1714 1715 TIMESPEC_TO_TIMEVAL(&atv, &ts); 1716 if (itimerfix(&atv)) 1717 return (EINVAL); 1718 timo = tvtohz(&atv); 1719 } 1720 1721 ki = p->p_aioinfo; 1722 if (ki == NULL) 1723 return (EAGAIN); 1724 1725 njoblist = 0; 1726 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1727 cbptr = uap->aiocbp; 1728 1729 for (i = 0; i < uap->nent; i++) { 1730 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 1731 if (cbp == 0) 1732 continue; 1733 ujoblist[njoblist] = cbp; 1734 njoblist++; 1735 } 1736 1737 if (njoblist == 0) { 1738 uma_zfree(aiol_zone, ujoblist); 1739 return (0); 1740 } 1741 1742 AIO_LOCK(ki); 1743 for (;;) { 1744 cbfirst = NULL; 1745 error = 0; 1746 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1747 for (i = 0; i < njoblist; i++) { 1748 if (cb->uuaiocb == ujoblist[i]) { 1749 if (cbfirst == NULL) 1750 cbfirst = cb; 1751 if (cb->jobstate == JOBST_JOBFINISHED) 1752 goto RETURN; 1753 } 1754 } 1755 } 1756 /* All tasks were finished. */ 1757 if (cbfirst == NULL) 1758 break; 1759 1760 ki->kaio_flags |= KAIO_WAKEUP; 1761 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1762 "aiospn", timo); 1763 if (error == ERESTART) 1764 error = EINTR; 1765 if (error) 1766 break; 1767 } 1768 RETURN: 1769 AIO_UNLOCK(ki); 1770 uma_zfree(aiol_zone, ujoblist); 1771 return (error); 1772 } 1773 1774 /* 1775 * aio_cancel cancels any non-physio aio operations not currently in 1776 * progress. 1777 */ 1778 int 1779 aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1780 { 1781 struct proc *p = td->td_proc; 1782 struct kaioinfo *ki; 1783 struct aiocblist *cbe, *cbn; 1784 struct file *fp; 1785 struct socket *so; 1786 int error; 1787 int remove; 1788 int cancelled = 0; 1789 int notcancelled = 0; 1790 struct vnode *vp; 1791 1792 /* Lookup file object. */ 1793 error = fget(td, uap->fd, &fp); 1794 if (error) 1795 return (error); 1796 1797 ki = p->p_aioinfo; 1798 if (ki == NULL) 1799 goto done; 1800 1801 if (fp->f_type == DTYPE_VNODE) { 1802 vp = fp->f_vnode; 1803 if (vn_isdisk(vp, &error)) { 1804 fdrop(fp, td); 1805 td->td_retval[0] = AIO_NOTCANCELED; 1806 return (0); 1807 } 1808 } 1809 1810 AIO_LOCK(ki); 1811 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 1812 if ((uap->fd == cbe->uaiocb.aio_fildes) && 1813 ((uap->aiocbp == NULL) || 1814 (uap->aiocbp == cbe->uuaiocb))) { 1815 remove = 0; 1816 1817 mtx_lock(&aio_job_mtx); 1818 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 1819 TAILQ_REMOVE(&aio_jobs, cbe, list); 1820 remove = 1; 1821 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 1822 MPASS(fp->f_type == DTYPE_SOCKET); 1823 so = fp->f_data; 1824 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 1825 remove = 1; 1826 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 1827 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 1828 remove = 1; 1829 } 1830 mtx_unlock(&aio_job_mtx); 1831 1832 if (remove) { 1833 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 1834 cbe->uaiocb._aiocb_private.status = -1; 1835 cbe->uaiocb._aiocb_private.error = ECANCELED; 1836 aio_bio_done_notify(p, cbe, DONE_QUEUE); 1837 cancelled++; 1838 } else { 1839 notcancelled++; 1840 } 1841 if (uap->aiocbp != NULL) 1842 break; 1843 } 1844 } 1845 AIO_UNLOCK(ki); 1846 1847 done: 1848 fdrop(fp, td); 1849 1850 if (uap->aiocbp != NULL) { 1851 if (cancelled) { 1852 td->td_retval[0] = AIO_CANCELED; 1853 return (0); 1854 } 1855 } 1856 1857 if (notcancelled) { 1858 td->td_retval[0] = AIO_NOTCANCELED; 1859 return (0); 1860 } 1861 1862 if (cancelled) { 1863 td->td_retval[0] = AIO_CANCELED; 1864 return (0); 1865 } 1866 1867 td->td_retval[0] = AIO_ALLDONE; 1868 1869 return (0); 1870 } 1871 1872 /* 1873 * aio_error is implemented in the kernel level for compatibility purposes 1874 * only. For a user mode async implementation, it would be best to do it in 1875 * a userland subroutine. 1876 */ 1877 int 1878 aio_error(struct thread *td, struct aio_error_args *uap) 1879 { 1880 struct proc *p = td->td_proc; 1881 struct aiocblist *cb; 1882 struct kaioinfo *ki; 1883 int status; 1884 1885 ki = p->p_aioinfo; 1886 if (ki == NULL) { 1887 td->td_retval[0] = EINVAL; 1888 return (0); 1889 } 1890 1891 AIO_LOCK(ki); 1892 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1893 if (cb->uuaiocb == uap->aiocbp) { 1894 if (cb->jobstate == JOBST_JOBFINISHED) 1895 td->td_retval[0] = 1896 cb->uaiocb._aiocb_private.error; 1897 else 1898 td->td_retval[0] = EINPROGRESS; 1899 AIO_UNLOCK(ki); 1900 return (0); 1901 } 1902 } 1903 AIO_UNLOCK(ki); 1904 1905 /* 1906 * Hack for failure of aio_aqueue. 1907 */ 1908 status = fuword(&uap->aiocbp->_aiocb_private.status); 1909 if (status == -1) { 1910 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error); 1911 return (0); 1912 } 1913 1914 td->td_retval[0] = EINVAL; 1915 return (0); 1916 } 1917 1918 /* syscall - asynchronous read from a file (REALTIME) */ 1919 int 1920 oaio_read(struct thread *td, struct oaio_read_args *uap) 1921 { 1922 1923 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1); 1924 } 1925 1926 int 1927 aio_read(struct thread *td, struct aio_read_args *uap) 1928 { 1929 1930 return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0); 1931 } 1932 1933 /* syscall - asynchronous write to a file (REALTIME) */ 1934 int 1935 oaio_write(struct thread *td, struct oaio_write_args *uap) 1936 { 1937 1938 return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1); 1939 } 1940 1941 int 1942 aio_write(struct thread *td, struct aio_write_args *uap) 1943 { 1944 1945 return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0); 1946 } 1947 1948 /* syscall - list directed I/O (REALTIME) */ 1949 int 1950 olio_listio(struct thread *td, struct olio_listio_args *uap) 1951 { 1952 return do_lio_listio(td, (struct lio_listio_args *)uap, 1); 1953 } 1954 1955 /* syscall - list directed I/O (REALTIME) */ 1956 int 1957 lio_listio(struct thread *td, struct lio_listio_args *uap) 1958 { 1959 return do_lio_listio(td, uap, 0); 1960 } 1961 1962 static int 1963 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev) 1964 { 1965 struct proc *p = td->td_proc; 1966 struct aiocb *iocb, * const *cbptr; 1967 struct kaioinfo *ki; 1968 struct aioliojob *lj; 1969 struct kevent kev; 1970 int nent; 1971 int error; 1972 int nerror; 1973 int i; 1974 1975 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 1976 return (EINVAL); 1977 1978 nent = uap->nent; 1979 if (nent < 0 || nent > AIO_LISTIO_MAX) 1980 return (EINVAL); 1981 1982 if (p->p_aioinfo == NULL) 1983 aio_init_aioinfo(p); 1984 1985 ki = p->p_aioinfo; 1986 1987 lj = uma_zalloc(aiolio_zone, M_WAITOK); 1988 lj->lioj_flags = 0; 1989 lj->lioj_count = 0; 1990 lj->lioj_finished_count = 0; 1991 knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL); 1992 ksiginfo_init(&lj->lioj_ksi); 1993 1994 /* 1995 * Setup signal. 1996 */ 1997 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 1998 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal)); 1999 error = copyin(uap->sig, &lj->lioj_signal, 2000 oldsigev ? sizeof(struct osigevent) : 2001 sizeof(struct sigevent)); 2002 if (error) { 2003 uma_zfree(aiolio_zone, lj); 2004 return (error); 2005 } 2006 2007 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2008 /* Assume only new style KEVENT */ 2009 kev.filter = EVFILT_LIO; 2010 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2011 kev.ident = (uintptr_t)uap->acb_list; /* something unique */ 2012 kev.data = (intptr_t)lj; 2013 /* pass user defined sigval data */ 2014 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2015 error = kqfd_register( 2016 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2017 if (error) { 2018 uma_zfree(aiolio_zone, lj); 2019 return (error); 2020 } 2021 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2022 ; 2023 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2024 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2025 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2026 uma_zfree(aiolio_zone, lj); 2027 return EINVAL; 2028 } 2029 lj->lioj_flags |= LIOJ_SIGNAL; 2030 } else { 2031 uma_zfree(aiolio_zone, lj); 2032 return EINVAL; 2033 } 2034 } 2035 2036 AIO_LOCK(ki); 2037 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2038 /* 2039 * Add extra aiocb count to avoid the lio to be freed 2040 * by other threads doing aio_waitcomplete or aio_return, 2041 * and prevent event from being sent until we have queued 2042 * all tasks. 2043 */ 2044 lj->lioj_count = 1; 2045 AIO_UNLOCK(ki); 2046 2047 /* 2048 * Get pointers to the list of I/O requests. 2049 */ 2050 nerror = 0; 2051 cbptr = uap->acb_list; 2052 for (i = 0; i < uap->nent; i++) { 2053 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]); 2054 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) { 2055 error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev); 2056 if (error != 0) 2057 nerror++; 2058 } 2059 } 2060 2061 error = 0; 2062 AIO_LOCK(ki); 2063 if (uap->mode == LIO_WAIT) { 2064 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2065 ki->kaio_flags |= KAIO_WAKEUP; 2066 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2067 PRIBIO | PCATCH, "aiospn", 0); 2068 if (error == ERESTART) 2069 error = EINTR; 2070 if (error) 2071 break; 2072 } 2073 } else { 2074 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2075 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2076 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2077 KNOTE_LOCKED(&lj->klist, 1); 2078 } 2079 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2080 == LIOJ_SIGNAL 2081 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2082 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2083 aio_sendsig(p, &lj->lioj_signal, 2084 &lj->lioj_ksi); 2085 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2086 } 2087 } 2088 } 2089 lj->lioj_count--; 2090 if (lj->lioj_count == 0) { 2091 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2092 knlist_delete(&lj->klist, curthread, 1); 2093 PROC_LOCK(p); 2094 sigqueue_take(&lj->lioj_ksi); 2095 PROC_UNLOCK(p); 2096 AIO_UNLOCK(ki); 2097 uma_zfree(aiolio_zone, lj); 2098 } else 2099 AIO_UNLOCK(ki); 2100 2101 if (nerror) 2102 return (EIO); 2103 return (error); 2104 } 2105 2106 /* 2107 * Called from interrupt thread for physio, we should return as fast 2108 * as possible, so we schedule a biohelper task. 2109 */ 2110 static void 2111 aio_physwakeup(struct buf *bp) 2112 { 2113 struct aiocblist *aiocbe; 2114 2115 aiocbe = (struct aiocblist *)bp->b_caller1; 2116 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2117 } 2118 2119 /* 2120 * Task routine to perform heavy tasks, process wakeup, and signals. 2121 */ 2122 static void 2123 biohelper(void *context, int pending) 2124 { 2125 struct aiocblist *aiocbe = context; 2126 struct buf *bp; 2127 struct proc *userp; 2128 struct kaioinfo *ki; 2129 int nblks; 2130 2131 bp = aiocbe->bp; 2132 userp = aiocbe->userproc; 2133 ki = userp->p_aioinfo; 2134 AIO_LOCK(ki); 2135 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2136 aiocbe->uaiocb._aiocb_private.error = 0; 2137 if (bp->b_ioflags & BIO_ERROR) 2138 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2139 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2140 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2141 aiocbe->outputcharge += nblks; 2142 else 2143 aiocbe->inputcharge += nblks; 2144 aiocbe->bp = NULL; 2145 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2146 ki->kaio_buffer_count--; 2147 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2148 AIO_UNLOCK(ki); 2149 2150 /* Release mapping into kernel space. */ 2151 vunmapbuf(bp); 2152 relpbuf(bp, NULL); 2153 atomic_subtract_int(&num_buf_aio, 1); 2154 } 2155 2156 /* syscall - wait for the next completion of an aio request */ 2157 int 2158 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2159 { 2160 struct proc *p = td->td_proc; 2161 struct timeval atv; 2162 struct timespec ts; 2163 struct kaioinfo *ki; 2164 struct aiocblist *cb; 2165 struct aiocb *uuaiocb; 2166 int error, status, timo; 2167 2168 suword(uap->aiocbp, (long)NULL); 2169 2170 timo = 0; 2171 if (uap->timeout) { 2172 /* Get timespec struct. */ 2173 error = copyin(uap->timeout, &ts, sizeof(ts)); 2174 if (error) 2175 return (error); 2176 2177 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000)) 2178 return (EINVAL); 2179 2180 TIMESPEC_TO_TIMEVAL(&atv, &ts); 2181 if (itimerfix(&atv)) 2182 return (EINVAL); 2183 timo = tvtohz(&atv); 2184 } 2185 2186 if (p->p_aioinfo == NULL) 2187 aio_init_aioinfo(p); 2188 ki = p->p_aioinfo; 2189 2190 error = 0; 2191 cb = NULL; 2192 AIO_LOCK(ki); 2193 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2194 ki->kaio_flags |= KAIO_WAKEUP; 2195 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2196 "aiowc", timo); 2197 if (timo && error == ERESTART) 2198 error = EINTR; 2199 if (error) 2200 break; 2201 } 2202 2203 if (cb != NULL) { 2204 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2205 uuaiocb = cb->uuaiocb; 2206 status = cb->uaiocb._aiocb_private.status; 2207 error = cb->uaiocb._aiocb_private.error; 2208 td->td_retval[0] = status; 2209 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2210 td->td_ru.ru_oublock += cb->outputcharge; 2211 cb->outputcharge = 0; 2212 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2213 td->td_ru.ru_inblock += cb->inputcharge; 2214 cb->inputcharge = 0; 2215 } 2216 aio_free_entry(cb); 2217 AIO_UNLOCK(ki); 2218 suword(uap->aiocbp, (long)uuaiocb); 2219 suword(&uuaiocb->_aiocb_private.error, error); 2220 suword(&uuaiocb->_aiocb_private.status, status); 2221 } else 2222 AIO_UNLOCK(ki); 2223 2224 return (error); 2225 } 2226 2227 int 2228 aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2229 { 2230 struct proc *p = td->td_proc; 2231 struct kaioinfo *ki; 2232 2233 if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */ 2234 return (EINVAL); 2235 ki = p->p_aioinfo; 2236 if (ki == NULL) 2237 aio_init_aioinfo(p); 2238 return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0); 2239 } 2240 2241 /* kqueue attach function */ 2242 static int 2243 filt_aioattach(struct knote *kn) 2244 { 2245 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2246 2247 /* 2248 * The aiocbe pointer must be validated before using it, so 2249 * registration is restricted to the kernel; the user cannot 2250 * set EV_FLAG1. 2251 */ 2252 if ((kn->kn_flags & EV_FLAG1) == 0) 2253 return (EPERM); 2254 kn->kn_flags &= ~EV_FLAG1; 2255 2256 knlist_add(&aiocbe->klist, kn, 0); 2257 2258 return (0); 2259 } 2260 2261 /* kqueue detach function */ 2262 static void 2263 filt_aiodetach(struct knote *kn) 2264 { 2265 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2266 2267 if (!knlist_empty(&aiocbe->klist)) 2268 knlist_remove(&aiocbe->klist, kn, 0); 2269 } 2270 2271 /* kqueue filter function */ 2272 /*ARGSUSED*/ 2273 static int 2274 filt_aio(struct knote *kn, long hint) 2275 { 2276 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2277 2278 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2279 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2280 return (0); 2281 kn->kn_flags |= EV_EOF; 2282 return (1); 2283 } 2284 2285 /* kqueue attach function */ 2286 static int 2287 filt_lioattach(struct knote *kn) 2288 { 2289 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2290 2291 /* 2292 * The aioliojob pointer must be validated before using it, so 2293 * registration is restricted to the kernel; the user cannot 2294 * set EV_FLAG1. 2295 */ 2296 if ((kn->kn_flags & EV_FLAG1) == 0) 2297 return (EPERM); 2298 kn->kn_flags &= ~EV_FLAG1; 2299 2300 knlist_add(&lj->klist, kn, 0); 2301 2302 return (0); 2303 } 2304 2305 /* kqueue detach function */ 2306 static void 2307 filt_liodetach(struct knote *kn) 2308 { 2309 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2310 2311 if (!knlist_empty(&lj->klist)) 2312 knlist_remove(&lj->klist, kn, 0); 2313 } 2314 2315 /* kqueue filter function */ 2316 /*ARGSUSED*/ 2317 static int 2318 filt_lio(struct knote *kn, long hint) 2319 { 2320 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2321 2322 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2323 } 2324