1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capability.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/protosw.h> 49 #include <sys/sema.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/syscall.h> 53 #include <sys/sysent.h> 54 #include <sys/sysctl.h> 55 #include <sys/sx.h> 56 #include <sys/taskqueue.h> 57 #include <sys/vnode.h> 58 #include <sys/conf.h> 59 #include <sys/event.h> 60 #include <sys/mount.h> 61 62 #include <machine/atomic.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_extern.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 #include <vm/vm_object.h> 69 #include <vm/uma.h> 70 #include <sys/aio.h> 71 72 #include "opt_vfs_aio.h" 73 74 /* 75 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 76 * overflow. (XXX will be removed soon.) 77 */ 78 static u_long jobrefid; 79 80 /* 81 * Counter for aio_fsync. 82 */ 83 static uint64_t jobseqno; 84 85 #define JOBST_NULL 0 86 #define JOBST_JOBQSOCK 1 87 #define JOBST_JOBQGLOBAL 2 88 #define JOBST_JOBRUNNING 3 89 #define JOBST_JOBFINISHED 4 90 #define JOBST_JOBQBUF 5 91 #define JOBST_JOBQSYNC 6 92 93 #ifndef MAX_AIO_PER_PROC 94 #define MAX_AIO_PER_PROC 32 95 #endif 96 97 #ifndef MAX_AIO_QUEUE_PER_PROC 98 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 99 #endif 100 101 #ifndef MAX_AIO_PROCS 102 #define MAX_AIO_PROCS 32 103 #endif 104 105 #ifndef MAX_AIO_QUEUE 106 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 107 #endif 108 109 #ifndef TARGET_AIO_PROCS 110 #define TARGET_AIO_PROCS 4 111 #endif 112 113 #ifndef MAX_BUF_AIO 114 #define MAX_BUF_AIO 16 115 #endif 116 117 #ifndef AIOD_TIMEOUT_DEFAULT 118 #define AIOD_TIMEOUT_DEFAULT (10 * hz) 119 #endif 120 121 #ifndef AIOD_LIFETIME_DEFAULT 122 #define AIOD_LIFETIME_DEFAULT (30 * hz) 123 #endif 124 125 FEATURE(aio, "Asynchronous I/O"); 126 127 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 128 129 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management"); 130 131 static int max_aio_procs = MAX_AIO_PROCS; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, 133 CTLFLAG_RW, &max_aio_procs, 0, 134 "Maximum number of kernel threads to use for handling async IO "); 135 136 static int num_aio_procs = 0; 137 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, 138 CTLFLAG_RD, &num_aio_procs, 0, 139 "Number of presently active kernel threads for async IO"); 140 141 /* 142 * The code will adjust the actual number of AIO processes towards this 143 * number when it gets a chance. 144 */ 145 static int target_aio_procs = TARGET_AIO_PROCS; 146 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 147 0, "Preferred number of ready kernel threads for async IO"); 148 149 static int max_queue_count = MAX_AIO_QUEUE; 150 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 151 "Maximum number of aio requests to queue, globally"); 152 153 static int num_queue_count = 0; 154 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 155 "Number of queued aio requests"); 156 157 static int num_buf_aio = 0; 158 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 159 "Number of aio requests presently handled by the buf subsystem"); 160 161 /* Number of async I/O thread in the process of being started */ 162 /* XXX This should be local to aio_aqueue() */ 163 static int num_aio_resv_start = 0; 164 165 static int aiod_timeout; 166 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0, 167 "Timeout value for synchronous aio operations"); 168 169 static int aiod_lifetime; 170 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 171 "Maximum lifetime for idle aiod"); 172 173 static int unloadable = 0; 174 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 175 "Allow unload of aio (not recommended)"); 176 177 178 static int max_aio_per_proc = MAX_AIO_PER_PROC; 179 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 180 0, "Maximum active aio requests per process (stored in the process)"); 181 182 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 184 &max_aio_queue_per_proc, 0, 185 "Maximum queued aio requests per process (stored in the process)"); 186 187 static int max_buf_aio = MAX_BUF_AIO; 188 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 189 "Maximum buf aio requests per process (stored in the process)"); 190 191 typedef struct oaiocb { 192 int aio_fildes; /* File descriptor */ 193 off_t aio_offset; /* File offset for I/O */ 194 volatile void *aio_buf; /* I/O buffer in process space */ 195 size_t aio_nbytes; /* Number of bytes for I/O */ 196 struct osigevent aio_sigevent; /* Signal to deliver */ 197 int aio_lio_opcode; /* LIO opcode */ 198 int aio_reqprio; /* Request priority -- ignored */ 199 struct __aiocb_private _aiocb_private; 200 } oaiocb_t; 201 202 /* 203 * Below is a key of locks used to protect each member of struct aiocblist 204 * aioliojob and kaioinfo and any backends. 205 * 206 * * - need not protected 207 * a - locked by kaioinfo lock 208 * b - locked by backend lock, the backend lock can be null in some cases, 209 * for example, BIO belongs to this type, in this case, proc lock is 210 * reused. 211 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 212 */ 213 214 /* 215 * Current, there is only two backends: BIO and generic file I/O. 216 * socket I/O is served by generic file I/O, this is not a good idea, since 217 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 218 * threads, if there is no thread to serve socket I/O, the socket I/O will be 219 * delayed too long or starved, we should create some threads dedicated to 220 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 221 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 222 * structure is not safe because there is race between userland and aio 223 * daemons. 224 */ 225 226 struct aiocblist { 227 TAILQ_ENTRY(aiocblist) list; /* (b) internal list of for backend */ 228 TAILQ_ENTRY(aiocblist) plist; /* (a) list of jobs for each backend */ 229 TAILQ_ENTRY(aiocblist) allist; /* (a) list of all jobs in proc */ 230 int jobflags; /* (a) job flags */ 231 int jobstate; /* (b) job state */ 232 int inputcharge; /* (*) input blockes */ 233 int outputcharge; /* (*) output blockes */ 234 struct buf *bp; /* (*) private to BIO backend, 235 * buffer pointer 236 */ 237 struct proc *userproc; /* (*) user process */ 238 struct ucred *cred; /* (*) active credential when created */ 239 struct file *fd_file; /* (*) pointer to file structure */ 240 struct aioliojob *lio; /* (*) optional lio job */ 241 struct aiocb *uuaiocb; /* (*) pointer in userspace of aiocb */ 242 struct knlist klist; /* (a) list of knotes */ 243 struct aiocb uaiocb; /* (*) kernel I/O control block */ 244 ksiginfo_t ksi; /* (a) realtime signal info */ 245 struct task biotask; /* (*) private to BIO backend */ 246 uint64_t seqno; /* (*) job number */ 247 int pending; /* (a) number of pending I/O, aio_fsync only */ 248 }; 249 250 /* jobflags */ 251 #define AIOCBLIST_DONE 0x01 252 #define AIOCBLIST_BUFDONE 0x02 253 #define AIOCBLIST_RUNDOWN 0x04 254 #define AIOCBLIST_CHECKSYNC 0x08 255 256 /* 257 * AIO process info 258 */ 259 #define AIOP_FREE 0x1 /* proc on free queue */ 260 261 struct aiothreadlist { 262 int aiothreadflags; /* (c) AIO proc flags */ 263 TAILQ_ENTRY(aiothreadlist) list; /* (c) list of processes */ 264 struct thread *aiothread; /* (*) the AIO thread */ 265 }; 266 267 /* 268 * data-structure for lio signal management 269 */ 270 struct aioliojob { 271 int lioj_flags; /* (a) listio flags */ 272 int lioj_count; /* (a) listio flags */ 273 int lioj_finished_count; /* (a) listio flags */ 274 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 275 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 276 struct knlist klist; /* (a) list of knotes */ 277 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 278 }; 279 280 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 281 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 282 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 283 284 /* 285 * per process aio data structure 286 */ 287 struct kaioinfo { 288 struct mtx kaio_mtx; /* the lock to protect this struct */ 289 int kaio_flags; /* (a) per process kaio flags */ 290 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 291 int kaio_active_count; /* (c) number of currently used AIOs */ 292 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 293 int kaio_count; /* (a) size of AIO queue */ 294 int kaio_ballowed_count; /* (*) maximum number of buffers */ 295 int kaio_buffer_count; /* (a) number of physio buffers */ 296 TAILQ_HEAD(,aiocblist) kaio_all; /* (a) all AIOs in the process */ 297 TAILQ_HEAD(,aiocblist) kaio_done; /* (a) done queue for process */ 298 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 299 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* (a) job queue for process */ 300 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* (a) buffer job queue for process */ 301 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* (a) queue for aios waiting on sockets, 302 * NOT USED YET. 303 */ 304 TAILQ_HEAD(,aiocblist) kaio_syncqueue; /* (a) queue for aio_fsync */ 305 struct task kaio_task; /* (*) task to kick aio threads */ 306 }; 307 308 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 309 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 310 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 311 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 312 313 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 314 #define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */ 315 316 /* 317 * Operations used to interact with userland aio control blocks. 318 * Different ABIs provide their own operations. 319 */ 320 struct aiocb_ops { 321 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 322 long (*fetch_status)(struct aiocb *ujob); 323 long (*fetch_error)(struct aiocb *ujob); 324 int (*store_status)(struct aiocb *ujob, long status); 325 int (*store_error)(struct aiocb *ujob, long error); 326 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 327 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 328 }; 329 330 static TAILQ_HEAD(,aiothreadlist) aio_freeproc; /* (c) Idle daemons */ 331 static struct sema aio_newproc_sem; 332 static struct mtx aio_job_mtx; 333 static struct mtx aio_sock_mtx; 334 static TAILQ_HEAD(,aiocblist) aio_jobs; /* (c) Async job list */ 335 static struct unrhdr *aiod_unr; 336 337 void aio_init_aioinfo(struct proc *p); 338 static int aio_onceonly(void); 339 static int aio_free_entry(struct aiocblist *aiocbe); 340 static void aio_process(struct aiocblist *aiocbe); 341 static int aio_newproc(int *); 342 int aio_aqueue(struct thread *td, struct aiocb *job, 343 struct aioliojob *lio, int type, struct aiocb_ops *ops); 344 static void aio_physwakeup(struct buf *bp); 345 static void aio_proc_rundown(void *arg, struct proc *p); 346 static void aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp); 347 static int aio_qphysio(struct proc *p, struct aiocblist *iocb); 348 static void biohelper(void *, int); 349 static void aio_daemon(void *param); 350 static void aio_swake_cb(struct socket *, struct sockbuf *); 351 static int aio_unload(void); 352 static void aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type); 353 #define DONE_BUF 1 354 #define DONE_QUEUE 2 355 static int aio_kick(struct proc *userp); 356 static void aio_kick_nowait(struct proc *userp); 357 static void aio_kick_helper(void *context, int pending); 358 static int filt_aioattach(struct knote *kn); 359 static void filt_aiodetach(struct knote *kn); 360 static int filt_aio(struct knote *kn, long hint); 361 static int filt_lioattach(struct knote *kn); 362 static void filt_liodetach(struct knote *kn); 363 static int filt_lio(struct knote *kn, long hint); 364 365 /* 366 * Zones for: 367 * kaio Per process async io info 368 * aiop async io thread data 369 * aiocb async io jobs 370 * aiol list io job pointer - internal to aio_suspend XXX 371 * aiolio list io jobs 372 */ 373 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 374 375 /* kqueue filters for aio */ 376 static struct filterops aio_filtops = { 377 .f_isfd = 0, 378 .f_attach = filt_aioattach, 379 .f_detach = filt_aiodetach, 380 .f_event = filt_aio, 381 }; 382 static struct filterops lio_filtops = { 383 .f_isfd = 0, 384 .f_attach = filt_lioattach, 385 .f_detach = filt_liodetach, 386 .f_event = filt_lio 387 }; 388 389 static eventhandler_tag exit_tag, exec_tag; 390 391 TASKQUEUE_DEFINE_THREAD(aiod_bio); 392 393 /* 394 * Main operations function for use as a kernel module. 395 */ 396 static int 397 aio_modload(struct module *module, int cmd, void *arg) 398 { 399 int error = 0; 400 401 switch (cmd) { 402 case MOD_LOAD: 403 aio_onceonly(); 404 break; 405 case MOD_UNLOAD: 406 error = aio_unload(); 407 break; 408 case MOD_SHUTDOWN: 409 break; 410 default: 411 error = EINVAL; 412 break; 413 } 414 return (error); 415 } 416 417 static moduledata_t aio_mod = { 418 "aio", 419 &aio_modload, 420 NULL 421 }; 422 423 static struct syscall_helper_data aio_syscalls[] = { 424 SYSCALL_INIT_HELPER(aio_cancel), 425 SYSCALL_INIT_HELPER(aio_error), 426 SYSCALL_INIT_HELPER(aio_fsync), 427 SYSCALL_INIT_HELPER(aio_read), 428 SYSCALL_INIT_HELPER(aio_return), 429 SYSCALL_INIT_HELPER(aio_suspend), 430 SYSCALL_INIT_HELPER(aio_waitcomplete), 431 SYSCALL_INIT_HELPER(aio_write), 432 SYSCALL_INIT_HELPER(lio_listio), 433 SYSCALL_INIT_HELPER(oaio_read), 434 SYSCALL_INIT_HELPER(oaio_write), 435 SYSCALL_INIT_HELPER(olio_listio), 436 SYSCALL_INIT_LAST 437 }; 438 439 #ifdef COMPAT_FREEBSD32 440 #include <sys/mount.h> 441 #include <sys/socket.h> 442 #include <compat/freebsd32/freebsd32.h> 443 #include <compat/freebsd32/freebsd32_proto.h> 444 #include <compat/freebsd32/freebsd32_signal.h> 445 #include <compat/freebsd32/freebsd32_syscall.h> 446 #include <compat/freebsd32/freebsd32_util.h> 447 448 static struct syscall_helper_data aio32_syscalls[] = { 449 SYSCALL32_INIT_HELPER(freebsd32_aio_return), 450 SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), 451 SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), 452 SYSCALL32_INIT_HELPER(freebsd32_aio_error), 453 SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), 454 SYSCALL32_INIT_HELPER(freebsd32_aio_read), 455 SYSCALL32_INIT_HELPER(freebsd32_aio_write), 456 SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), 457 SYSCALL32_INIT_HELPER(freebsd32_lio_listio), 458 SYSCALL32_INIT_HELPER(freebsd32_oaio_read), 459 SYSCALL32_INIT_HELPER(freebsd32_oaio_write), 460 SYSCALL32_INIT_HELPER(freebsd32_olio_listio), 461 SYSCALL_INIT_LAST 462 }; 463 #endif 464 465 DECLARE_MODULE(aio, aio_mod, 466 SI_SUB_VFS, SI_ORDER_ANY); 467 MODULE_VERSION(aio, 1); 468 469 /* 470 * Startup initialization 471 */ 472 static int 473 aio_onceonly(void) 474 { 475 int error; 476 477 /* XXX: should probably just use so->callback */ 478 aio_swake = &aio_swake_cb; 479 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 480 EVENTHANDLER_PRI_ANY); 481 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL, 482 EVENTHANDLER_PRI_ANY); 483 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 484 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 485 TAILQ_INIT(&aio_freeproc); 486 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 487 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 488 mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF); 489 TAILQ_INIT(&aio_jobs); 490 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 491 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 492 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 493 aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL, 494 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 495 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL, 496 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 497 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 498 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 499 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 500 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 501 aiod_timeout = AIOD_TIMEOUT_DEFAULT; 502 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 503 jobrefid = 1; 504 async_io_version = _POSIX_VERSION; 505 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 506 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 507 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 508 509 error = syscall_helper_register(aio_syscalls); 510 if (error) 511 return (error); 512 #ifdef COMPAT_FREEBSD32 513 error = syscall32_helper_register(aio32_syscalls); 514 if (error) 515 return (error); 516 #endif 517 return (0); 518 } 519 520 /* 521 * Callback for unload of AIO when used as a module. 522 */ 523 static int 524 aio_unload(void) 525 { 526 int error; 527 528 /* 529 * XXX: no unloads by default, it's too dangerous. 530 * perhaps we could do it if locked out callers and then 531 * did an aio_proc_rundown() on each process. 532 * 533 * jhb: aio_proc_rundown() needs to run on curproc though, 534 * so I don't think that would fly. 535 */ 536 if (!unloadable) 537 return (EOPNOTSUPP); 538 539 #ifdef COMPAT_FREEBSD32 540 syscall32_helper_unregister(aio32_syscalls); 541 #endif 542 syscall_helper_unregister(aio_syscalls); 543 544 error = kqueue_del_filteropts(EVFILT_AIO); 545 if (error) 546 return error; 547 error = kqueue_del_filteropts(EVFILT_LIO); 548 if (error) 549 return error; 550 async_io_version = 0; 551 aio_swake = NULL; 552 taskqueue_free(taskqueue_aiod_bio); 553 delete_unrhdr(aiod_unr); 554 uma_zdestroy(kaio_zone); 555 uma_zdestroy(aiop_zone); 556 uma_zdestroy(aiocb_zone); 557 uma_zdestroy(aiol_zone); 558 uma_zdestroy(aiolio_zone); 559 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 560 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 561 mtx_destroy(&aio_job_mtx); 562 mtx_destroy(&aio_sock_mtx); 563 sema_destroy(&aio_newproc_sem); 564 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 565 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 566 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 567 return (0); 568 } 569 570 /* 571 * Init the per-process aioinfo structure. The aioinfo limits are set 572 * per-process for user limit (resource) management. 573 */ 574 void 575 aio_init_aioinfo(struct proc *p) 576 { 577 struct kaioinfo *ki; 578 579 ki = uma_zalloc(kaio_zone, M_WAITOK); 580 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF); 581 ki->kaio_flags = 0; 582 ki->kaio_maxactive_count = max_aio_per_proc; 583 ki->kaio_active_count = 0; 584 ki->kaio_qallowed_count = max_aio_queue_per_proc; 585 ki->kaio_count = 0; 586 ki->kaio_ballowed_count = max_buf_aio; 587 ki->kaio_buffer_count = 0; 588 TAILQ_INIT(&ki->kaio_all); 589 TAILQ_INIT(&ki->kaio_done); 590 TAILQ_INIT(&ki->kaio_jobqueue); 591 TAILQ_INIT(&ki->kaio_bufqueue); 592 TAILQ_INIT(&ki->kaio_liojoblist); 593 TAILQ_INIT(&ki->kaio_sockqueue); 594 TAILQ_INIT(&ki->kaio_syncqueue); 595 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 596 PROC_LOCK(p); 597 if (p->p_aioinfo == NULL) { 598 p->p_aioinfo = ki; 599 PROC_UNLOCK(p); 600 } else { 601 PROC_UNLOCK(p); 602 mtx_destroy(&ki->kaio_mtx); 603 uma_zfree(kaio_zone, ki); 604 } 605 606 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 607 aio_newproc(NULL); 608 } 609 610 static int 611 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 612 { 613 struct thread *td; 614 int error; 615 616 error = sigev_findtd(p, sigev, &td); 617 if (error) 618 return (error); 619 if (!KSI_ONQ(ksi)) { 620 ksiginfo_set_sigev(ksi, sigev); 621 ksi->ksi_code = SI_ASYNCIO; 622 ksi->ksi_flags |= KSI_EXT | KSI_INS; 623 tdsendsignal(p, td, ksi->ksi_signo, ksi); 624 } 625 PROC_UNLOCK(p); 626 return (error); 627 } 628 629 /* 630 * Free a job entry. Wait for completion if it is currently active, but don't 631 * delay forever. If we delay, we return a flag that says that we have to 632 * restart the queue scan. 633 */ 634 static int 635 aio_free_entry(struct aiocblist *aiocbe) 636 { 637 struct kaioinfo *ki; 638 struct aioliojob *lj; 639 struct proc *p; 640 641 p = aiocbe->userproc; 642 MPASS(curproc == p); 643 ki = p->p_aioinfo; 644 MPASS(ki != NULL); 645 646 AIO_LOCK_ASSERT(ki, MA_OWNED); 647 MPASS(aiocbe->jobstate == JOBST_JOBFINISHED); 648 649 atomic_subtract_int(&num_queue_count, 1); 650 651 ki->kaio_count--; 652 MPASS(ki->kaio_count >= 0); 653 654 TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist); 655 TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist); 656 657 lj = aiocbe->lio; 658 if (lj) { 659 lj->lioj_count--; 660 lj->lioj_finished_count--; 661 662 if (lj->lioj_count == 0) { 663 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 664 /* lio is going away, we need to destroy any knotes */ 665 knlist_delete(&lj->klist, curthread, 1); 666 PROC_LOCK(p); 667 sigqueue_take(&lj->lioj_ksi); 668 PROC_UNLOCK(p); 669 uma_zfree(aiolio_zone, lj); 670 } 671 } 672 673 /* aiocbe is going away, we need to destroy any knotes */ 674 knlist_delete(&aiocbe->klist, curthread, 1); 675 PROC_LOCK(p); 676 sigqueue_take(&aiocbe->ksi); 677 PROC_UNLOCK(p); 678 679 MPASS(aiocbe->bp == NULL); 680 aiocbe->jobstate = JOBST_NULL; 681 AIO_UNLOCK(ki); 682 683 /* 684 * The thread argument here is used to find the owning process 685 * and is also passed to fo_close() which may pass it to various 686 * places such as devsw close() routines. Because of that, we 687 * need a thread pointer from the process owning the job that is 688 * persistent and won't disappear out from under us or move to 689 * another process. 690 * 691 * Currently, all the callers of this function call it to remove 692 * an aiocblist from the current process' job list either via a 693 * syscall or due to the current process calling exit() or 694 * execve(). Thus, we know that p == curproc. We also know that 695 * curthread can't exit since we are curthread. 696 * 697 * Therefore, we use curthread as the thread to pass to 698 * knlist_delete(). This does mean that it is possible for the 699 * thread pointer at close time to differ from the thread pointer 700 * at open time, but this is already true of file descriptors in 701 * a multithreaded process. 702 */ 703 fdrop(aiocbe->fd_file, curthread); 704 crfree(aiocbe->cred); 705 uma_zfree(aiocb_zone, aiocbe); 706 AIO_LOCK(ki); 707 708 return (0); 709 } 710 711 static void 712 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 713 { 714 aio_proc_rundown(arg, p); 715 } 716 717 /* 718 * Rundown the jobs for a given process. 719 */ 720 static void 721 aio_proc_rundown(void *arg, struct proc *p) 722 { 723 struct kaioinfo *ki; 724 struct aioliojob *lj; 725 struct aiocblist *cbe, *cbn; 726 struct file *fp; 727 struct socket *so; 728 int remove; 729 730 KASSERT(curthread->td_proc == p, 731 ("%s: called on non-curproc", __func__)); 732 ki = p->p_aioinfo; 733 if (ki == NULL) 734 return; 735 736 AIO_LOCK(ki); 737 ki->kaio_flags |= KAIO_RUNDOWN; 738 739 restart: 740 741 /* 742 * Try to cancel all pending requests. This code simulates 743 * aio_cancel on all pending I/O requests. 744 */ 745 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 746 remove = 0; 747 mtx_lock(&aio_job_mtx); 748 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 749 TAILQ_REMOVE(&aio_jobs, cbe, list); 750 remove = 1; 751 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 752 fp = cbe->fd_file; 753 MPASS(fp->f_type == DTYPE_SOCKET); 754 so = fp->f_data; 755 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 756 remove = 1; 757 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 758 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 759 remove = 1; 760 } 761 mtx_unlock(&aio_job_mtx); 762 763 if (remove) { 764 cbe->jobstate = JOBST_JOBFINISHED; 765 cbe->uaiocb._aiocb_private.status = -1; 766 cbe->uaiocb._aiocb_private.error = ECANCELED; 767 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 768 aio_bio_done_notify(p, cbe, DONE_QUEUE); 769 } 770 } 771 772 /* Wait for all running I/O to be finished */ 773 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 774 TAILQ_FIRST(&ki->kaio_jobqueue)) { 775 ki->kaio_flags |= KAIO_WAKEUP; 776 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 777 goto restart; 778 } 779 780 /* Free all completed I/O requests. */ 781 while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL) 782 aio_free_entry(cbe); 783 784 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 785 if (lj->lioj_count == 0) { 786 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 787 knlist_delete(&lj->klist, curthread, 1); 788 PROC_LOCK(p); 789 sigqueue_take(&lj->lioj_ksi); 790 PROC_UNLOCK(p); 791 uma_zfree(aiolio_zone, lj); 792 } else { 793 panic("LIO job not cleaned up: C:%d, FC:%d\n", 794 lj->lioj_count, lj->lioj_finished_count); 795 } 796 } 797 AIO_UNLOCK(ki); 798 taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task); 799 mtx_destroy(&ki->kaio_mtx); 800 uma_zfree(kaio_zone, ki); 801 p->p_aioinfo = NULL; 802 } 803 804 /* 805 * Select a job to run (called by an AIO daemon). 806 */ 807 static struct aiocblist * 808 aio_selectjob(struct aiothreadlist *aiop) 809 { 810 struct aiocblist *aiocbe; 811 struct kaioinfo *ki; 812 struct proc *userp; 813 814 mtx_assert(&aio_job_mtx, MA_OWNED); 815 TAILQ_FOREACH(aiocbe, &aio_jobs, list) { 816 userp = aiocbe->userproc; 817 ki = userp->p_aioinfo; 818 819 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 820 TAILQ_REMOVE(&aio_jobs, aiocbe, list); 821 /* Account for currently active jobs. */ 822 ki->kaio_active_count++; 823 aiocbe->jobstate = JOBST_JOBRUNNING; 824 break; 825 } 826 } 827 return (aiocbe); 828 } 829 830 /* 831 * Move all data to a permanent storage device, this code 832 * simulates fsync syscall. 833 */ 834 static int 835 aio_fsync_vnode(struct thread *td, struct vnode *vp) 836 { 837 struct mount *mp; 838 int error; 839 840 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 841 goto drop; 842 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 843 if (vp->v_object != NULL) { 844 VM_OBJECT_LOCK(vp->v_object); 845 vm_object_page_clean(vp->v_object, 0, 0, 0); 846 VM_OBJECT_UNLOCK(vp->v_object); 847 } 848 error = VOP_FSYNC(vp, MNT_WAIT, td); 849 850 VOP_UNLOCK(vp, 0); 851 vn_finished_write(mp); 852 drop: 853 return (error); 854 } 855 856 /* 857 * The AIO processing activity. This is the code that does the I/O request for 858 * the non-physio version of the operations. The normal vn operations are used, 859 * and this code should work in all instances for every type of file, including 860 * pipes, sockets, fifos, and regular files. 861 * 862 * XXX I don't think it works well for socket, pipe, and fifo. 863 */ 864 static void 865 aio_process(struct aiocblist *aiocbe) 866 { 867 struct ucred *td_savedcred; 868 struct thread *td; 869 struct aiocb *cb; 870 struct file *fp; 871 struct socket *so; 872 struct uio auio; 873 struct iovec aiov; 874 int cnt; 875 int error; 876 int oublock_st, oublock_end; 877 int inblock_st, inblock_end; 878 879 td = curthread; 880 td_savedcred = td->td_ucred; 881 td->td_ucred = aiocbe->cred; 882 cb = &aiocbe->uaiocb; 883 fp = aiocbe->fd_file; 884 885 if (cb->aio_lio_opcode == LIO_SYNC) { 886 error = 0; 887 cnt = 0; 888 if (fp->f_vnode != NULL) 889 error = aio_fsync_vnode(td, fp->f_vnode); 890 cb->_aiocb_private.error = error; 891 cb->_aiocb_private.status = 0; 892 td->td_ucred = td_savedcred; 893 return; 894 } 895 896 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 897 aiov.iov_len = cb->aio_nbytes; 898 899 auio.uio_iov = &aiov; 900 auio.uio_iovcnt = 1; 901 auio.uio_offset = cb->aio_offset; 902 auio.uio_resid = cb->aio_nbytes; 903 cnt = cb->aio_nbytes; 904 auio.uio_segflg = UIO_USERSPACE; 905 auio.uio_td = td; 906 907 inblock_st = td->td_ru.ru_inblock; 908 oublock_st = td->td_ru.ru_oublock; 909 /* 910 * aio_aqueue() acquires a reference to the file that is 911 * released in aio_free_entry(). 912 */ 913 if (cb->aio_lio_opcode == LIO_READ) { 914 auio.uio_rw = UIO_READ; 915 if (auio.uio_resid == 0) 916 error = 0; 917 else 918 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 919 } else { 920 if (fp->f_type == DTYPE_VNODE) 921 bwillwrite(); 922 auio.uio_rw = UIO_WRITE; 923 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 924 } 925 inblock_end = td->td_ru.ru_inblock; 926 oublock_end = td->td_ru.ru_oublock; 927 928 aiocbe->inputcharge = inblock_end - inblock_st; 929 aiocbe->outputcharge = oublock_end - oublock_st; 930 931 if ((error) && (auio.uio_resid != cnt)) { 932 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 933 error = 0; 934 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 935 int sigpipe = 1; 936 if (fp->f_type == DTYPE_SOCKET) { 937 so = fp->f_data; 938 if (so->so_options & SO_NOSIGPIPE) 939 sigpipe = 0; 940 } 941 if (sigpipe) { 942 PROC_LOCK(aiocbe->userproc); 943 kern_psignal(aiocbe->userproc, SIGPIPE); 944 PROC_UNLOCK(aiocbe->userproc); 945 } 946 } 947 } 948 949 cnt -= auio.uio_resid; 950 cb->_aiocb_private.error = error; 951 cb->_aiocb_private.status = cnt; 952 td->td_ucred = td_savedcred; 953 } 954 955 static void 956 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type) 957 { 958 struct aioliojob *lj; 959 struct kaioinfo *ki; 960 struct aiocblist *scb, *scbn; 961 int lj_done; 962 963 ki = userp->p_aioinfo; 964 AIO_LOCK_ASSERT(ki, MA_OWNED); 965 lj = aiocbe->lio; 966 lj_done = 0; 967 if (lj) { 968 lj->lioj_finished_count++; 969 if (lj->lioj_count == lj->lioj_finished_count) 970 lj_done = 1; 971 } 972 if (type == DONE_QUEUE) { 973 aiocbe->jobflags |= AIOCBLIST_DONE; 974 } else { 975 aiocbe->jobflags |= AIOCBLIST_BUFDONE; 976 } 977 TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist); 978 aiocbe->jobstate = JOBST_JOBFINISHED; 979 980 if (ki->kaio_flags & KAIO_RUNDOWN) 981 goto notification_done; 982 983 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 984 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 985 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi); 986 987 KNOTE_LOCKED(&aiocbe->klist, 1); 988 989 if (lj_done) { 990 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 991 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 992 KNOTE_LOCKED(&lj->klist, 1); 993 } 994 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 995 == LIOJ_SIGNAL 996 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 997 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 998 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 999 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 1000 } 1001 } 1002 1003 notification_done: 1004 if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) { 1005 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) { 1006 if (aiocbe->fd_file == scb->fd_file && 1007 aiocbe->seqno < scb->seqno) { 1008 if (--scb->pending == 0) { 1009 mtx_lock(&aio_job_mtx); 1010 scb->jobstate = JOBST_JOBQGLOBAL; 1011 TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list); 1012 TAILQ_INSERT_TAIL(&aio_jobs, scb, list); 1013 aio_kick_nowait(userp); 1014 mtx_unlock(&aio_job_mtx); 1015 } 1016 } 1017 } 1018 } 1019 if (ki->kaio_flags & KAIO_WAKEUP) { 1020 ki->kaio_flags &= ~KAIO_WAKEUP; 1021 wakeup(&userp->p_aioinfo); 1022 } 1023 } 1024 1025 /* 1026 * The AIO daemon, most of the actual work is done in aio_process, 1027 * but the setup (and address space mgmt) is done in this routine. 1028 */ 1029 static void 1030 aio_daemon(void *_id) 1031 { 1032 struct aiocblist *aiocbe; 1033 struct aiothreadlist *aiop; 1034 struct kaioinfo *ki; 1035 struct proc *curcp, *mycp, *userp; 1036 struct vmspace *myvm, *tmpvm; 1037 struct thread *td = curthread; 1038 int id = (intptr_t)_id; 1039 1040 /* 1041 * Local copies of curproc (cp) and vmspace (myvm) 1042 */ 1043 mycp = td->td_proc; 1044 myvm = mycp->p_vmspace; 1045 1046 KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp")); 1047 1048 /* 1049 * Allocate and ready the aio control info. There is one aiop structure 1050 * per daemon. 1051 */ 1052 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1053 aiop->aiothread = td; 1054 aiop->aiothreadflags = 0; 1055 1056 /* The daemon resides in its own pgrp. */ 1057 sys_setsid(td, NULL); 1058 1059 /* 1060 * Wakeup parent process. (Parent sleeps to keep from blasting away 1061 * and creating too many daemons.) 1062 */ 1063 sema_post(&aio_newproc_sem); 1064 1065 mtx_lock(&aio_job_mtx); 1066 for (;;) { 1067 /* 1068 * curcp is the current daemon process context. 1069 * userp is the current user process context. 1070 */ 1071 curcp = mycp; 1072 1073 /* 1074 * Take daemon off of free queue 1075 */ 1076 if (aiop->aiothreadflags & AIOP_FREE) { 1077 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1078 aiop->aiothreadflags &= ~AIOP_FREE; 1079 } 1080 1081 /* 1082 * Check for jobs. 1083 */ 1084 while ((aiocbe = aio_selectjob(aiop)) != NULL) { 1085 mtx_unlock(&aio_job_mtx); 1086 userp = aiocbe->userproc; 1087 1088 /* 1089 * Connect to process address space for user program. 1090 */ 1091 if (userp != curcp) { 1092 /* 1093 * Save the current address space that we are 1094 * connected to. 1095 */ 1096 tmpvm = mycp->p_vmspace; 1097 1098 /* 1099 * Point to the new user address space, and 1100 * refer to it. 1101 */ 1102 mycp->p_vmspace = userp->p_vmspace; 1103 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1); 1104 1105 /* Activate the new mapping. */ 1106 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1107 1108 /* 1109 * If the old address space wasn't the daemons 1110 * own address space, then we need to remove the 1111 * daemon's reference from the other process 1112 * that it was acting on behalf of. 1113 */ 1114 if (tmpvm != myvm) { 1115 vmspace_free(tmpvm); 1116 } 1117 curcp = userp; 1118 } 1119 1120 ki = userp->p_aioinfo; 1121 1122 /* Do the I/O function. */ 1123 aio_process(aiocbe); 1124 1125 mtx_lock(&aio_job_mtx); 1126 /* Decrement the active job count. */ 1127 ki->kaio_active_count--; 1128 mtx_unlock(&aio_job_mtx); 1129 1130 AIO_LOCK(ki); 1131 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist); 1132 aio_bio_done_notify(userp, aiocbe, DONE_QUEUE); 1133 AIO_UNLOCK(ki); 1134 1135 mtx_lock(&aio_job_mtx); 1136 } 1137 1138 /* 1139 * Disconnect from user address space. 1140 */ 1141 if (curcp != mycp) { 1142 1143 mtx_unlock(&aio_job_mtx); 1144 1145 /* Get the user address space to disconnect from. */ 1146 tmpvm = mycp->p_vmspace; 1147 1148 /* Get original address space for daemon. */ 1149 mycp->p_vmspace = myvm; 1150 1151 /* Activate the daemon's address space. */ 1152 pmap_activate(FIRST_THREAD_IN_PROC(mycp)); 1153 #ifdef DIAGNOSTIC 1154 if (tmpvm == myvm) { 1155 printf("AIOD: vmspace problem -- %d\n", 1156 mycp->p_pid); 1157 } 1158 #endif 1159 /* Remove our vmspace reference. */ 1160 vmspace_free(tmpvm); 1161 1162 curcp = mycp; 1163 1164 mtx_lock(&aio_job_mtx); 1165 /* 1166 * We have to restart to avoid race, we only sleep if 1167 * no job can be selected, that should be 1168 * curcp == mycp. 1169 */ 1170 continue; 1171 } 1172 1173 mtx_assert(&aio_job_mtx, MA_OWNED); 1174 1175 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1176 aiop->aiothreadflags |= AIOP_FREE; 1177 1178 /* 1179 * If daemon is inactive for a long time, allow it to exit, 1180 * thereby freeing resources. 1181 */ 1182 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy", 1183 aiod_lifetime)) { 1184 if (TAILQ_EMPTY(&aio_jobs)) { 1185 if ((aiop->aiothreadflags & AIOP_FREE) && 1186 (num_aio_procs > target_aio_procs)) { 1187 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1188 num_aio_procs--; 1189 mtx_unlock(&aio_job_mtx); 1190 uma_zfree(aiop_zone, aiop); 1191 free_unr(aiod_unr, id); 1192 #ifdef DIAGNOSTIC 1193 if (mycp->p_vmspace->vm_refcnt <= 1) { 1194 printf("AIOD: bad vm refcnt for" 1195 " exiting daemon: %d\n", 1196 mycp->p_vmspace->vm_refcnt); 1197 } 1198 #endif 1199 kproc_exit(0); 1200 } 1201 } 1202 } 1203 } 1204 mtx_unlock(&aio_job_mtx); 1205 panic("shouldn't be here\n"); 1206 } 1207 1208 /* 1209 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1210 * AIO daemon modifies its environment itself. 1211 */ 1212 static int 1213 aio_newproc(int *start) 1214 { 1215 int error; 1216 struct proc *p; 1217 int id; 1218 1219 id = alloc_unr(aiod_unr); 1220 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1221 RFNOWAIT, 0, "aiod%d", id); 1222 if (error == 0) { 1223 /* 1224 * Wait until daemon is started. 1225 */ 1226 sema_wait(&aio_newproc_sem); 1227 mtx_lock(&aio_job_mtx); 1228 num_aio_procs++; 1229 if (start != NULL) 1230 (*start)--; 1231 mtx_unlock(&aio_job_mtx); 1232 } else { 1233 free_unr(aiod_unr, id); 1234 } 1235 return (error); 1236 } 1237 1238 /* 1239 * Try the high-performance, low-overhead physio method for eligible 1240 * VCHR devices. This method doesn't use an aio helper thread, and 1241 * thus has very low overhead. 1242 * 1243 * Assumes that the caller, aio_aqueue(), has incremented the file 1244 * structure's reference count, preventing its deallocation for the 1245 * duration of this call. 1246 */ 1247 static int 1248 aio_qphysio(struct proc *p, struct aiocblist *aiocbe) 1249 { 1250 struct aiocb *cb; 1251 struct file *fp; 1252 struct buf *bp; 1253 struct vnode *vp; 1254 struct kaioinfo *ki; 1255 struct aioliojob *lj; 1256 int error; 1257 1258 cb = &aiocbe->uaiocb; 1259 fp = aiocbe->fd_file; 1260 1261 if (fp->f_type != DTYPE_VNODE) 1262 return (-1); 1263 1264 vp = fp->f_vnode; 1265 1266 /* 1267 * If its not a disk, we don't want to return a positive error. 1268 * It causes the aio code to not fall through to try the thread 1269 * way when you're talking to a regular file. 1270 */ 1271 if (!vn_isdisk(vp, &error)) { 1272 if (error == ENOTBLK) 1273 return (-1); 1274 else 1275 return (error); 1276 } 1277 1278 if (vp->v_bufobj.bo_bsize == 0) 1279 return (-1); 1280 1281 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1282 return (-1); 1283 1284 if (cb->aio_nbytes > vp->v_rdev->si_iosize_max) 1285 return (-1); 1286 1287 if (cb->aio_nbytes > 1288 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK)) 1289 return (-1); 1290 1291 ki = p->p_aioinfo; 1292 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 1293 return (-1); 1294 1295 /* Create and build a buffer header for a transfer. */ 1296 bp = (struct buf *)getpbuf(NULL); 1297 BUF_KERNPROC(bp); 1298 1299 AIO_LOCK(ki); 1300 ki->kaio_count++; 1301 ki->kaio_buffer_count++; 1302 lj = aiocbe->lio; 1303 if (lj) 1304 lj->lioj_count++; 1305 AIO_UNLOCK(ki); 1306 1307 /* 1308 * Get a copy of the kva from the physical buffer. 1309 */ 1310 error = 0; 1311 1312 bp->b_bcount = cb->aio_nbytes; 1313 bp->b_bufsize = cb->aio_nbytes; 1314 bp->b_iodone = aio_physwakeup; 1315 bp->b_saveaddr = bp->b_data; 1316 bp->b_data = (void *)(uintptr_t)cb->aio_buf; 1317 bp->b_offset = cb->aio_offset; 1318 bp->b_iooffset = cb->aio_offset; 1319 bp->b_blkno = btodb(cb->aio_offset); 1320 bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1321 1322 /* 1323 * Bring buffer into kernel space. 1324 */ 1325 if (vmapbuf(bp) < 0) { 1326 error = EFAULT; 1327 goto doerror; 1328 } 1329 1330 AIO_LOCK(ki); 1331 aiocbe->bp = bp; 1332 bp->b_caller1 = (void *)aiocbe; 1333 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist); 1334 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1335 aiocbe->jobstate = JOBST_JOBQBUF; 1336 cb->_aiocb_private.status = cb->aio_nbytes; 1337 AIO_UNLOCK(ki); 1338 1339 atomic_add_int(&num_queue_count, 1); 1340 atomic_add_int(&num_buf_aio, 1); 1341 1342 bp->b_error = 0; 1343 1344 TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe); 1345 1346 /* Perform transfer. */ 1347 dev_strategy(vp->v_rdev, bp); 1348 return (0); 1349 1350 doerror: 1351 AIO_LOCK(ki); 1352 ki->kaio_count--; 1353 ki->kaio_buffer_count--; 1354 if (lj) 1355 lj->lioj_count--; 1356 aiocbe->bp = NULL; 1357 AIO_UNLOCK(ki); 1358 relpbuf(bp, NULL); 1359 return (error); 1360 } 1361 1362 /* 1363 * Wake up aio requests that may be serviceable now. 1364 */ 1365 static void 1366 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1367 { 1368 struct aiocblist *cb, *cbn; 1369 int opcode; 1370 1371 SOCKBUF_LOCK_ASSERT(sb); 1372 if (sb == &so->so_snd) 1373 opcode = LIO_WRITE; 1374 else 1375 opcode = LIO_READ; 1376 1377 sb->sb_flags &= ~SB_AIO; 1378 mtx_lock(&aio_job_mtx); 1379 TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) { 1380 if (opcode == cb->uaiocb.aio_lio_opcode) { 1381 if (cb->jobstate != JOBST_JOBQSOCK) 1382 panic("invalid queue value"); 1383 /* XXX 1384 * We don't have actual sockets backend yet, 1385 * so we simply move the requests to the generic 1386 * file I/O backend. 1387 */ 1388 TAILQ_REMOVE(&so->so_aiojobq, cb, list); 1389 TAILQ_INSERT_TAIL(&aio_jobs, cb, list); 1390 aio_kick_nowait(cb->userproc); 1391 } 1392 } 1393 mtx_unlock(&aio_job_mtx); 1394 } 1395 1396 static int 1397 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1398 { 1399 1400 /* 1401 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1402 * supported by AIO with the old sigevent structure. 1403 */ 1404 nsig->sigev_notify = osig->sigev_notify; 1405 switch (nsig->sigev_notify) { 1406 case SIGEV_NONE: 1407 break; 1408 case SIGEV_SIGNAL: 1409 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1410 break; 1411 case SIGEV_KEVENT: 1412 nsig->sigev_notify_kqueue = 1413 osig->__sigev_u.__sigev_notify_kqueue; 1414 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1415 break; 1416 default: 1417 return (EINVAL); 1418 } 1419 return (0); 1420 } 1421 1422 static int 1423 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1424 { 1425 struct oaiocb *ojob; 1426 int error; 1427 1428 bzero(kjob, sizeof(struct aiocb)); 1429 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1430 if (error) 1431 return (error); 1432 ojob = (struct oaiocb *)kjob; 1433 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1434 } 1435 1436 static int 1437 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1438 { 1439 1440 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1441 } 1442 1443 static long 1444 aiocb_fetch_status(struct aiocb *ujob) 1445 { 1446 1447 return (fuword(&ujob->_aiocb_private.status)); 1448 } 1449 1450 static long 1451 aiocb_fetch_error(struct aiocb *ujob) 1452 { 1453 1454 return (fuword(&ujob->_aiocb_private.error)); 1455 } 1456 1457 static int 1458 aiocb_store_status(struct aiocb *ujob, long status) 1459 { 1460 1461 return (suword(&ujob->_aiocb_private.status, status)); 1462 } 1463 1464 static int 1465 aiocb_store_error(struct aiocb *ujob, long error) 1466 { 1467 1468 return (suword(&ujob->_aiocb_private.error, error)); 1469 } 1470 1471 static int 1472 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1473 { 1474 1475 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1476 } 1477 1478 static int 1479 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1480 { 1481 1482 return (suword(ujobp, (long)ujob)); 1483 } 1484 1485 static struct aiocb_ops aiocb_ops = { 1486 .copyin = aiocb_copyin, 1487 .fetch_status = aiocb_fetch_status, 1488 .fetch_error = aiocb_fetch_error, 1489 .store_status = aiocb_store_status, 1490 .store_error = aiocb_store_error, 1491 .store_kernelinfo = aiocb_store_kernelinfo, 1492 .store_aiocb = aiocb_store_aiocb, 1493 }; 1494 1495 static struct aiocb_ops aiocb_ops_osigevent = { 1496 .copyin = aiocb_copyin_old_sigevent, 1497 .fetch_status = aiocb_fetch_status, 1498 .fetch_error = aiocb_fetch_error, 1499 .store_status = aiocb_store_status, 1500 .store_error = aiocb_store_error, 1501 .store_kernelinfo = aiocb_store_kernelinfo, 1502 .store_aiocb = aiocb_store_aiocb, 1503 }; 1504 1505 /* 1506 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1507 * technique is done in this code. 1508 */ 1509 int 1510 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj, 1511 int type, struct aiocb_ops *ops) 1512 { 1513 struct proc *p = td->td_proc; 1514 struct file *fp; 1515 struct socket *so; 1516 struct aiocblist *aiocbe, *cb; 1517 struct kaioinfo *ki; 1518 struct kevent kev; 1519 struct sockbuf *sb; 1520 int opcode; 1521 int error; 1522 int fd, kqfd; 1523 int jid; 1524 u_short evflags; 1525 1526 if (p->p_aioinfo == NULL) 1527 aio_init_aioinfo(p); 1528 1529 ki = p->p_aioinfo; 1530 1531 ops->store_status(job, -1); 1532 ops->store_error(job, 0); 1533 ops->store_kernelinfo(job, -1); 1534 1535 if (num_queue_count >= max_queue_count || 1536 ki->kaio_count >= ki->kaio_qallowed_count) { 1537 ops->store_error(job, EAGAIN); 1538 return (EAGAIN); 1539 } 1540 1541 aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1542 aiocbe->inputcharge = 0; 1543 aiocbe->outputcharge = 0; 1544 knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki)); 1545 1546 error = ops->copyin(job, &aiocbe->uaiocb); 1547 if (error) { 1548 ops->store_error(job, error); 1549 uma_zfree(aiocb_zone, aiocbe); 1550 return (error); 1551 } 1552 1553 /* XXX: aio_nbytes is later casted to signed types. */ 1554 if (aiocbe->uaiocb.aio_nbytes > INT_MAX) { 1555 uma_zfree(aiocb_zone, aiocbe); 1556 return (EINVAL); 1557 } 1558 1559 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1560 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1561 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1562 aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1563 ops->store_error(job, EINVAL); 1564 uma_zfree(aiocb_zone, aiocbe); 1565 return (EINVAL); 1566 } 1567 1568 if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1569 aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1570 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) { 1571 uma_zfree(aiocb_zone, aiocbe); 1572 return (EINVAL); 1573 } 1574 1575 ksiginfo_init(&aiocbe->ksi); 1576 1577 /* Save userspace address of the job info. */ 1578 aiocbe->uuaiocb = job; 1579 1580 /* Get the opcode. */ 1581 if (type != LIO_NOP) 1582 aiocbe->uaiocb.aio_lio_opcode = type; 1583 opcode = aiocbe->uaiocb.aio_lio_opcode; 1584 1585 /* 1586 * Validate the opcode and fetch the file object for the specified 1587 * file descriptor. 1588 * 1589 * XXXRW: Moved the opcode validation up here so that we don't 1590 * retrieve a file descriptor without knowing what the capabiltity 1591 * should be. 1592 */ 1593 fd = aiocbe->uaiocb.aio_fildes; 1594 switch (opcode) { 1595 case LIO_WRITE: 1596 error = fget_write(td, fd, CAP_WRITE | CAP_SEEK, &fp); 1597 break; 1598 case LIO_READ: 1599 error = fget_read(td, fd, CAP_READ | CAP_SEEK, &fp); 1600 break; 1601 case LIO_SYNC: 1602 error = fget(td, fd, CAP_FSYNC, &fp); 1603 break; 1604 case LIO_NOP: 1605 error = fget(td, fd, 0, &fp); 1606 break; 1607 default: 1608 error = EINVAL; 1609 } 1610 if (error) { 1611 uma_zfree(aiocb_zone, aiocbe); 1612 ops->store_error(job, error); 1613 return (error); 1614 } 1615 1616 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1617 error = EINVAL; 1618 goto aqueue_fail; 1619 } 1620 1621 if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) { 1622 error = EINVAL; 1623 goto aqueue_fail; 1624 } 1625 1626 aiocbe->fd_file = fp; 1627 1628 mtx_lock(&aio_job_mtx); 1629 jid = jobrefid++; 1630 aiocbe->seqno = jobseqno++; 1631 mtx_unlock(&aio_job_mtx); 1632 error = ops->store_kernelinfo(job, jid); 1633 if (error) { 1634 error = EINVAL; 1635 goto aqueue_fail; 1636 } 1637 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1638 1639 if (opcode == LIO_NOP) { 1640 fdrop(fp, td); 1641 uma_zfree(aiocb_zone, aiocbe); 1642 return (0); 1643 } 1644 1645 if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1646 goto no_kqueue; 1647 evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1648 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1649 error = EINVAL; 1650 goto aqueue_fail; 1651 } 1652 kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue; 1653 kev.ident = (uintptr_t)aiocbe->uuaiocb; 1654 kev.filter = EVFILT_AIO; 1655 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1656 kev.data = (intptr_t)aiocbe; 1657 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1658 error = kqfd_register(kqfd, &kev, td, 1); 1659 aqueue_fail: 1660 if (error) { 1661 fdrop(fp, td); 1662 uma_zfree(aiocb_zone, aiocbe); 1663 ops->store_error(job, error); 1664 goto done; 1665 } 1666 no_kqueue: 1667 1668 ops->store_error(job, EINPROGRESS); 1669 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS; 1670 aiocbe->userproc = p; 1671 aiocbe->cred = crhold(td->td_ucred); 1672 aiocbe->jobflags = 0; 1673 aiocbe->lio = lj; 1674 1675 if (opcode == LIO_SYNC) 1676 goto queueit; 1677 1678 if (fp->f_type == DTYPE_SOCKET) { 1679 /* 1680 * Alternate queueing for socket ops: Reach down into the 1681 * descriptor to get the socket data. Then check to see if the 1682 * socket is ready to be read or written (based on the requested 1683 * operation). 1684 * 1685 * If it is not ready for io, then queue the aiocbe on the 1686 * socket, and set the flags so we get a call when sbnotify() 1687 * happens. 1688 * 1689 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1690 * and unlock the snd sockbuf for no reason. 1691 */ 1692 so = fp->f_data; 1693 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1694 SOCKBUF_LOCK(sb); 1695 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1696 LIO_WRITE) && (!sowriteable(so)))) { 1697 sb->sb_flags |= SB_AIO; 1698 1699 mtx_lock(&aio_job_mtx); 1700 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list); 1701 mtx_unlock(&aio_job_mtx); 1702 1703 AIO_LOCK(ki); 1704 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1705 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1706 aiocbe->jobstate = JOBST_JOBQSOCK; 1707 ki->kaio_count++; 1708 if (lj) 1709 lj->lioj_count++; 1710 AIO_UNLOCK(ki); 1711 SOCKBUF_UNLOCK(sb); 1712 atomic_add_int(&num_queue_count, 1); 1713 error = 0; 1714 goto done; 1715 } 1716 SOCKBUF_UNLOCK(sb); 1717 } 1718 1719 if ((error = aio_qphysio(p, aiocbe)) == 0) 1720 goto done; 1721 #if 0 1722 if (error > 0) { 1723 aiocbe->uaiocb._aiocb_private.error = error; 1724 ops->store_error(job, error); 1725 goto done; 1726 } 1727 #endif 1728 queueit: 1729 /* No buffer for daemon I/O. */ 1730 aiocbe->bp = NULL; 1731 atomic_add_int(&num_queue_count, 1); 1732 1733 AIO_LOCK(ki); 1734 ki->kaio_count++; 1735 if (lj) 1736 lj->lioj_count++; 1737 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist); 1738 TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist); 1739 if (opcode == LIO_SYNC) { 1740 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) { 1741 if (cb->fd_file == aiocbe->fd_file && 1742 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1743 cb->seqno < aiocbe->seqno) { 1744 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1745 aiocbe->pending++; 1746 } 1747 } 1748 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) { 1749 if (cb->fd_file == aiocbe->fd_file && 1750 cb->uaiocb.aio_lio_opcode != LIO_SYNC && 1751 cb->seqno < aiocbe->seqno) { 1752 cb->jobflags |= AIOCBLIST_CHECKSYNC; 1753 aiocbe->pending++; 1754 } 1755 } 1756 if (aiocbe->pending != 0) { 1757 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list); 1758 aiocbe->jobstate = JOBST_JOBQSYNC; 1759 AIO_UNLOCK(ki); 1760 goto done; 1761 } 1762 } 1763 mtx_lock(&aio_job_mtx); 1764 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list); 1765 aiocbe->jobstate = JOBST_JOBQGLOBAL; 1766 aio_kick_nowait(p); 1767 mtx_unlock(&aio_job_mtx); 1768 AIO_UNLOCK(ki); 1769 error = 0; 1770 done: 1771 return (error); 1772 } 1773 1774 static void 1775 aio_kick_nowait(struct proc *userp) 1776 { 1777 struct kaioinfo *ki = userp->p_aioinfo; 1778 struct aiothreadlist *aiop; 1779 1780 mtx_assert(&aio_job_mtx, MA_OWNED); 1781 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1782 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1783 aiop->aiothreadflags &= ~AIOP_FREE; 1784 wakeup(aiop->aiothread); 1785 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1786 ((ki->kaio_active_count + num_aio_resv_start) < 1787 ki->kaio_maxactive_count)) { 1788 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task); 1789 } 1790 } 1791 1792 static int 1793 aio_kick(struct proc *userp) 1794 { 1795 struct kaioinfo *ki = userp->p_aioinfo; 1796 struct aiothreadlist *aiop; 1797 int error, ret = 0; 1798 1799 mtx_assert(&aio_job_mtx, MA_OWNED); 1800 retryproc: 1801 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1802 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1803 aiop->aiothreadflags &= ~AIOP_FREE; 1804 wakeup(aiop->aiothread); 1805 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) && 1806 ((ki->kaio_active_count + num_aio_resv_start) < 1807 ki->kaio_maxactive_count)) { 1808 num_aio_resv_start++; 1809 mtx_unlock(&aio_job_mtx); 1810 error = aio_newproc(&num_aio_resv_start); 1811 mtx_lock(&aio_job_mtx); 1812 if (error) { 1813 num_aio_resv_start--; 1814 goto retryproc; 1815 } 1816 } else { 1817 ret = -1; 1818 } 1819 return (ret); 1820 } 1821 1822 static void 1823 aio_kick_helper(void *context, int pending) 1824 { 1825 struct proc *userp = context; 1826 1827 mtx_lock(&aio_job_mtx); 1828 while (--pending >= 0) { 1829 if (aio_kick(userp)) 1830 break; 1831 } 1832 mtx_unlock(&aio_job_mtx); 1833 } 1834 1835 /* 1836 * Support the aio_return system call, as a side-effect, kernel resources are 1837 * released. 1838 */ 1839 static int 1840 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops) 1841 { 1842 struct proc *p = td->td_proc; 1843 struct aiocblist *cb; 1844 struct kaioinfo *ki; 1845 int status, error; 1846 1847 ki = p->p_aioinfo; 1848 if (ki == NULL) 1849 return (EINVAL); 1850 AIO_LOCK(ki); 1851 TAILQ_FOREACH(cb, &ki->kaio_done, plist) { 1852 if (cb->uuaiocb == uaiocb) 1853 break; 1854 } 1855 if (cb != NULL) { 1856 MPASS(cb->jobstate == JOBST_JOBFINISHED); 1857 status = cb->uaiocb._aiocb_private.status; 1858 error = cb->uaiocb._aiocb_private.error; 1859 td->td_retval[0] = status; 1860 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 1861 td->td_ru.ru_oublock += cb->outputcharge; 1862 cb->outputcharge = 0; 1863 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 1864 td->td_ru.ru_inblock += cb->inputcharge; 1865 cb->inputcharge = 0; 1866 } 1867 aio_free_entry(cb); 1868 AIO_UNLOCK(ki); 1869 ops->store_error(uaiocb, error); 1870 ops->store_status(uaiocb, status); 1871 } else { 1872 error = EINVAL; 1873 AIO_UNLOCK(ki); 1874 } 1875 return (error); 1876 } 1877 1878 int 1879 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1880 { 1881 1882 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1883 } 1884 1885 /* 1886 * Allow a process to wakeup when any of the I/O requests are completed. 1887 */ 1888 static int 1889 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1890 struct timespec *ts) 1891 { 1892 struct proc *p = td->td_proc; 1893 struct timeval atv; 1894 struct kaioinfo *ki; 1895 struct aiocblist *cb, *cbfirst; 1896 int error, i, timo; 1897 1898 timo = 0; 1899 if (ts) { 1900 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1901 return (EINVAL); 1902 1903 TIMESPEC_TO_TIMEVAL(&atv, ts); 1904 if (itimerfix(&atv)) 1905 return (EINVAL); 1906 timo = tvtohz(&atv); 1907 } 1908 1909 ki = p->p_aioinfo; 1910 if (ki == NULL) 1911 return (EAGAIN); 1912 1913 if (njoblist == 0) 1914 return (0); 1915 1916 AIO_LOCK(ki); 1917 for (;;) { 1918 cbfirst = NULL; 1919 error = 0; 1920 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 1921 for (i = 0; i < njoblist; i++) { 1922 if (cb->uuaiocb == ujoblist[i]) { 1923 if (cbfirst == NULL) 1924 cbfirst = cb; 1925 if (cb->jobstate == JOBST_JOBFINISHED) 1926 goto RETURN; 1927 } 1928 } 1929 } 1930 /* All tasks were finished. */ 1931 if (cbfirst == NULL) 1932 break; 1933 1934 ki->kaio_flags |= KAIO_WAKEUP; 1935 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1936 "aiospn", timo); 1937 if (error == ERESTART) 1938 error = EINTR; 1939 if (error) 1940 break; 1941 } 1942 RETURN: 1943 AIO_UNLOCK(ki); 1944 return (error); 1945 } 1946 1947 int 1948 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1949 { 1950 struct timespec ts, *tsp; 1951 struct aiocb **ujoblist; 1952 int error; 1953 1954 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1955 return (EINVAL); 1956 1957 if (uap->timeout) { 1958 /* Get timespec struct. */ 1959 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1960 return (error); 1961 tsp = &ts; 1962 } else 1963 tsp = NULL; 1964 1965 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1966 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1967 if (error == 0) 1968 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1969 uma_zfree(aiol_zone, ujoblist); 1970 return (error); 1971 } 1972 1973 /* 1974 * aio_cancel cancels any non-physio aio operations not currently in 1975 * progress. 1976 */ 1977 int 1978 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1979 { 1980 struct proc *p = td->td_proc; 1981 struct kaioinfo *ki; 1982 struct aiocblist *cbe, *cbn; 1983 struct file *fp; 1984 struct socket *so; 1985 int error; 1986 int remove; 1987 int cancelled = 0; 1988 int notcancelled = 0; 1989 struct vnode *vp; 1990 1991 /* Lookup file object. */ 1992 error = fget(td, uap->fd, 0, &fp); 1993 if (error) 1994 return (error); 1995 1996 ki = p->p_aioinfo; 1997 if (ki == NULL) 1998 goto done; 1999 2000 if (fp->f_type == DTYPE_VNODE) { 2001 vp = fp->f_vnode; 2002 if (vn_isdisk(vp, &error)) { 2003 fdrop(fp, td); 2004 td->td_retval[0] = AIO_NOTCANCELED; 2005 return (0); 2006 } 2007 } 2008 2009 AIO_LOCK(ki); 2010 TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) { 2011 if ((uap->fd == cbe->uaiocb.aio_fildes) && 2012 ((uap->aiocbp == NULL) || 2013 (uap->aiocbp == cbe->uuaiocb))) { 2014 remove = 0; 2015 2016 mtx_lock(&aio_job_mtx); 2017 if (cbe->jobstate == JOBST_JOBQGLOBAL) { 2018 TAILQ_REMOVE(&aio_jobs, cbe, list); 2019 remove = 1; 2020 } else if (cbe->jobstate == JOBST_JOBQSOCK) { 2021 MPASS(fp->f_type == DTYPE_SOCKET); 2022 so = fp->f_data; 2023 TAILQ_REMOVE(&so->so_aiojobq, cbe, list); 2024 remove = 1; 2025 } else if (cbe->jobstate == JOBST_JOBQSYNC) { 2026 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list); 2027 remove = 1; 2028 } 2029 mtx_unlock(&aio_job_mtx); 2030 2031 if (remove) { 2032 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist); 2033 cbe->uaiocb._aiocb_private.status = -1; 2034 cbe->uaiocb._aiocb_private.error = ECANCELED; 2035 aio_bio_done_notify(p, cbe, DONE_QUEUE); 2036 cancelled++; 2037 } else { 2038 notcancelled++; 2039 } 2040 if (uap->aiocbp != NULL) 2041 break; 2042 } 2043 } 2044 AIO_UNLOCK(ki); 2045 2046 done: 2047 fdrop(fp, td); 2048 2049 if (uap->aiocbp != NULL) { 2050 if (cancelled) { 2051 td->td_retval[0] = AIO_CANCELED; 2052 return (0); 2053 } 2054 } 2055 2056 if (notcancelled) { 2057 td->td_retval[0] = AIO_NOTCANCELED; 2058 return (0); 2059 } 2060 2061 if (cancelled) { 2062 td->td_retval[0] = AIO_CANCELED; 2063 return (0); 2064 } 2065 2066 td->td_retval[0] = AIO_ALLDONE; 2067 2068 return (0); 2069 } 2070 2071 /* 2072 * aio_error is implemented in the kernel level for compatibility purposes 2073 * only. For a user mode async implementation, it would be best to do it in 2074 * a userland subroutine. 2075 */ 2076 static int 2077 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops) 2078 { 2079 struct proc *p = td->td_proc; 2080 struct aiocblist *cb; 2081 struct kaioinfo *ki; 2082 int status; 2083 2084 ki = p->p_aioinfo; 2085 if (ki == NULL) { 2086 td->td_retval[0] = EINVAL; 2087 return (0); 2088 } 2089 2090 AIO_LOCK(ki); 2091 TAILQ_FOREACH(cb, &ki->kaio_all, allist) { 2092 if (cb->uuaiocb == aiocbp) { 2093 if (cb->jobstate == JOBST_JOBFINISHED) 2094 td->td_retval[0] = 2095 cb->uaiocb._aiocb_private.error; 2096 else 2097 td->td_retval[0] = EINPROGRESS; 2098 AIO_UNLOCK(ki); 2099 return (0); 2100 } 2101 } 2102 AIO_UNLOCK(ki); 2103 2104 /* 2105 * Hack for failure of aio_aqueue. 2106 */ 2107 status = ops->fetch_status(aiocbp); 2108 if (status == -1) { 2109 td->td_retval[0] = ops->fetch_error(aiocbp); 2110 return (0); 2111 } 2112 2113 td->td_retval[0] = EINVAL; 2114 return (0); 2115 } 2116 2117 int 2118 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2119 { 2120 2121 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2122 } 2123 2124 /* syscall - asynchronous read from a file (REALTIME) */ 2125 int 2126 sys_oaio_read(struct thread *td, struct oaio_read_args *uap) 2127 { 2128 2129 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2130 &aiocb_ops_osigevent)); 2131 } 2132 2133 int 2134 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2135 { 2136 2137 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2138 } 2139 2140 /* syscall - asynchronous write to a file (REALTIME) */ 2141 int 2142 sys_oaio_write(struct thread *td, struct oaio_write_args *uap) 2143 { 2144 2145 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2146 &aiocb_ops_osigevent)); 2147 } 2148 2149 int 2150 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2151 { 2152 2153 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2154 } 2155 2156 static int 2157 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2158 struct aiocb **acb_list, int nent, struct sigevent *sig, 2159 struct aiocb_ops *ops) 2160 { 2161 struct proc *p = td->td_proc; 2162 struct aiocb *iocb; 2163 struct kaioinfo *ki; 2164 struct aioliojob *lj; 2165 struct kevent kev; 2166 int error; 2167 int nerror; 2168 int i; 2169 2170 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2171 return (EINVAL); 2172 2173 if (nent < 0 || nent > AIO_LISTIO_MAX) 2174 return (EINVAL); 2175 2176 if (p->p_aioinfo == NULL) 2177 aio_init_aioinfo(p); 2178 2179 ki = p->p_aioinfo; 2180 2181 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2182 lj->lioj_flags = 0; 2183 lj->lioj_count = 0; 2184 lj->lioj_finished_count = 0; 2185 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2186 ksiginfo_init(&lj->lioj_ksi); 2187 2188 /* 2189 * Setup signal. 2190 */ 2191 if (sig && (mode == LIO_NOWAIT)) { 2192 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2193 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2194 /* Assume only new style KEVENT */ 2195 kev.filter = EVFILT_LIO; 2196 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2197 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2198 kev.data = (intptr_t)lj; 2199 /* pass user defined sigval data */ 2200 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2201 error = kqfd_register( 2202 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2203 if (error) { 2204 uma_zfree(aiolio_zone, lj); 2205 return (error); 2206 } 2207 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2208 ; 2209 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2210 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2211 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2212 uma_zfree(aiolio_zone, lj); 2213 return EINVAL; 2214 } 2215 lj->lioj_flags |= LIOJ_SIGNAL; 2216 } else { 2217 uma_zfree(aiolio_zone, lj); 2218 return EINVAL; 2219 } 2220 } 2221 2222 AIO_LOCK(ki); 2223 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2224 /* 2225 * Add extra aiocb count to avoid the lio to be freed 2226 * by other threads doing aio_waitcomplete or aio_return, 2227 * and prevent event from being sent until we have queued 2228 * all tasks. 2229 */ 2230 lj->lioj_count = 1; 2231 AIO_UNLOCK(ki); 2232 2233 /* 2234 * Get pointers to the list of I/O requests. 2235 */ 2236 nerror = 0; 2237 for (i = 0; i < nent; i++) { 2238 iocb = acb_list[i]; 2239 if (iocb != NULL) { 2240 error = aio_aqueue(td, iocb, lj, LIO_NOP, ops); 2241 if (error != 0) 2242 nerror++; 2243 } 2244 } 2245 2246 error = 0; 2247 AIO_LOCK(ki); 2248 if (mode == LIO_WAIT) { 2249 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2250 ki->kaio_flags |= KAIO_WAKEUP; 2251 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2252 PRIBIO | PCATCH, "aiospn", 0); 2253 if (error == ERESTART) 2254 error = EINTR; 2255 if (error) 2256 break; 2257 } 2258 } else { 2259 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2260 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2261 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2262 KNOTE_LOCKED(&lj->klist, 1); 2263 } 2264 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2265 == LIOJ_SIGNAL 2266 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2267 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2268 aio_sendsig(p, &lj->lioj_signal, 2269 &lj->lioj_ksi); 2270 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2271 } 2272 } 2273 } 2274 lj->lioj_count--; 2275 if (lj->lioj_count == 0) { 2276 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2277 knlist_delete(&lj->klist, curthread, 1); 2278 PROC_LOCK(p); 2279 sigqueue_take(&lj->lioj_ksi); 2280 PROC_UNLOCK(p); 2281 AIO_UNLOCK(ki); 2282 uma_zfree(aiolio_zone, lj); 2283 } else 2284 AIO_UNLOCK(ki); 2285 2286 if (nerror) 2287 return (EIO); 2288 return (error); 2289 } 2290 2291 /* syscall - list directed I/O (REALTIME) */ 2292 int 2293 sys_olio_listio(struct thread *td, struct olio_listio_args *uap) 2294 { 2295 struct aiocb **acb_list; 2296 struct sigevent *sigp, sig; 2297 struct osigevent osig; 2298 int error, nent; 2299 2300 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2301 return (EINVAL); 2302 2303 nent = uap->nent; 2304 if (nent < 0 || nent > AIO_LISTIO_MAX) 2305 return (EINVAL); 2306 2307 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2308 error = copyin(uap->sig, &osig, sizeof(osig)); 2309 if (error) 2310 return (error); 2311 error = convert_old_sigevent(&osig, &sig); 2312 if (error) 2313 return (error); 2314 sigp = &sig; 2315 } else 2316 sigp = NULL; 2317 2318 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2319 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2320 if (error == 0) 2321 error = kern_lio_listio(td, uap->mode, 2322 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2323 &aiocb_ops_osigevent); 2324 free(acb_list, M_LIO); 2325 return (error); 2326 } 2327 2328 /* syscall - list directed I/O (REALTIME) */ 2329 int 2330 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2331 { 2332 struct aiocb **acb_list; 2333 struct sigevent *sigp, sig; 2334 int error, nent; 2335 2336 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2337 return (EINVAL); 2338 2339 nent = uap->nent; 2340 if (nent < 0 || nent > AIO_LISTIO_MAX) 2341 return (EINVAL); 2342 2343 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2344 error = copyin(uap->sig, &sig, sizeof(sig)); 2345 if (error) 2346 return (error); 2347 sigp = &sig; 2348 } else 2349 sigp = NULL; 2350 2351 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2352 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2353 if (error == 0) 2354 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2355 nent, sigp, &aiocb_ops); 2356 free(acb_list, M_LIO); 2357 return (error); 2358 } 2359 2360 /* 2361 * Called from interrupt thread for physio, we should return as fast 2362 * as possible, so we schedule a biohelper task. 2363 */ 2364 static void 2365 aio_physwakeup(struct buf *bp) 2366 { 2367 struct aiocblist *aiocbe; 2368 2369 aiocbe = (struct aiocblist *)bp->b_caller1; 2370 taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask); 2371 } 2372 2373 /* 2374 * Task routine to perform heavy tasks, process wakeup, and signals. 2375 */ 2376 static void 2377 biohelper(void *context, int pending) 2378 { 2379 struct aiocblist *aiocbe = context; 2380 struct buf *bp; 2381 struct proc *userp; 2382 struct kaioinfo *ki; 2383 int nblks; 2384 2385 bp = aiocbe->bp; 2386 userp = aiocbe->userproc; 2387 ki = userp->p_aioinfo; 2388 AIO_LOCK(ki); 2389 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid; 2390 aiocbe->uaiocb._aiocb_private.error = 0; 2391 if (bp->b_ioflags & BIO_ERROR) 2392 aiocbe->uaiocb._aiocb_private.error = bp->b_error; 2393 nblks = btodb(aiocbe->uaiocb.aio_nbytes); 2394 if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE) 2395 aiocbe->outputcharge += nblks; 2396 else 2397 aiocbe->inputcharge += nblks; 2398 aiocbe->bp = NULL; 2399 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist); 2400 ki->kaio_buffer_count--; 2401 aio_bio_done_notify(userp, aiocbe, DONE_BUF); 2402 AIO_UNLOCK(ki); 2403 2404 /* Release mapping into kernel space. */ 2405 vunmapbuf(bp); 2406 relpbuf(bp, NULL); 2407 atomic_subtract_int(&num_buf_aio, 1); 2408 } 2409 2410 /* syscall - wait for the next completion of an aio request */ 2411 static int 2412 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp, 2413 struct timespec *ts, struct aiocb_ops *ops) 2414 { 2415 struct proc *p = td->td_proc; 2416 struct timeval atv; 2417 struct kaioinfo *ki; 2418 struct aiocblist *cb; 2419 struct aiocb *uuaiocb; 2420 int error, status, timo; 2421 2422 ops->store_aiocb(aiocbp, NULL); 2423 2424 timo = 0; 2425 if (ts) { 2426 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2427 return (EINVAL); 2428 2429 TIMESPEC_TO_TIMEVAL(&atv, ts); 2430 if (itimerfix(&atv)) 2431 return (EINVAL); 2432 timo = tvtohz(&atv); 2433 } 2434 2435 if (p->p_aioinfo == NULL) 2436 aio_init_aioinfo(p); 2437 ki = p->p_aioinfo; 2438 2439 error = 0; 2440 cb = NULL; 2441 AIO_LOCK(ki); 2442 while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2443 ki->kaio_flags |= KAIO_WAKEUP; 2444 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2445 "aiowc", timo); 2446 if (timo && error == ERESTART) 2447 error = EINTR; 2448 if (error) 2449 break; 2450 } 2451 2452 if (cb != NULL) { 2453 MPASS(cb->jobstate == JOBST_JOBFINISHED); 2454 uuaiocb = cb->uuaiocb; 2455 status = cb->uaiocb._aiocb_private.status; 2456 error = cb->uaiocb._aiocb_private.error; 2457 td->td_retval[0] = status; 2458 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) { 2459 td->td_ru.ru_oublock += cb->outputcharge; 2460 cb->outputcharge = 0; 2461 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) { 2462 td->td_ru.ru_inblock += cb->inputcharge; 2463 cb->inputcharge = 0; 2464 } 2465 aio_free_entry(cb); 2466 AIO_UNLOCK(ki); 2467 ops->store_aiocb(aiocbp, uuaiocb); 2468 ops->store_error(uuaiocb, error); 2469 ops->store_status(uuaiocb, status); 2470 } else 2471 AIO_UNLOCK(ki); 2472 2473 return (error); 2474 } 2475 2476 int 2477 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2478 { 2479 struct timespec ts, *tsp; 2480 int error; 2481 2482 if (uap->timeout) { 2483 /* Get timespec struct. */ 2484 error = copyin(uap->timeout, &ts, sizeof(ts)); 2485 if (error) 2486 return (error); 2487 tsp = &ts; 2488 } else 2489 tsp = NULL; 2490 2491 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2492 } 2493 2494 static int 2495 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp, 2496 struct aiocb_ops *ops) 2497 { 2498 struct proc *p = td->td_proc; 2499 struct kaioinfo *ki; 2500 2501 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2502 return (EINVAL); 2503 ki = p->p_aioinfo; 2504 if (ki == NULL) 2505 aio_init_aioinfo(p); 2506 return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops)); 2507 } 2508 2509 int 2510 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2511 { 2512 2513 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2514 } 2515 2516 /* kqueue attach function */ 2517 static int 2518 filt_aioattach(struct knote *kn) 2519 { 2520 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata; 2521 2522 /* 2523 * The aiocbe pointer must be validated before using it, so 2524 * registration is restricted to the kernel; the user cannot 2525 * set EV_FLAG1. 2526 */ 2527 if ((kn->kn_flags & EV_FLAG1) == 0) 2528 return (EPERM); 2529 kn->kn_ptr.p_aio = aiocbe; 2530 kn->kn_flags &= ~EV_FLAG1; 2531 2532 knlist_add(&aiocbe->klist, kn, 0); 2533 2534 return (0); 2535 } 2536 2537 /* kqueue detach function */ 2538 static void 2539 filt_aiodetach(struct knote *kn) 2540 { 2541 struct knlist *knl; 2542 2543 knl = &kn->kn_ptr.p_aio->klist; 2544 knl->kl_lock(knl->kl_lockarg); 2545 if (!knlist_empty(knl)) 2546 knlist_remove(knl, kn, 1); 2547 knl->kl_unlock(knl->kl_lockarg); 2548 } 2549 2550 /* kqueue filter function */ 2551 /*ARGSUSED*/ 2552 static int 2553 filt_aio(struct knote *kn, long hint) 2554 { 2555 struct aiocblist *aiocbe = kn->kn_ptr.p_aio; 2556 2557 kn->kn_data = aiocbe->uaiocb._aiocb_private.error; 2558 if (aiocbe->jobstate != JOBST_JOBFINISHED) 2559 return (0); 2560 kn->kn_flags |= EV_EOF; 2561 return (1); 2562 } 2563 2564 /* kqueue attach function */ 2565 static int 2566 filt_lioattach(struct knote *kn) 2567 { 2568 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2569 2570 /* 2571 * The aioliojob pointer must be validated before using it, so 2572 * registration is restricted to the kernel; the user cannot 2573 * set EV_FLAG1. 2574 */ 2575 if ((kn->kn_flags & EV_FLAG1) == 0) 2576 return (EPERM); 2577 kn->kn_ptr.p_lio = lj; 2578 kn->kn_flags &= ~EV_FLAG1; 2579 2580 knlist_add(&lj->klist, kn, 0); 2581 2582 return (0); 2583 } 2584 2585 /* kqueue detach function */ 2586 static void 2587 filt_liodetach(struct knote *kn) 2588 { 2589 struct knlist *knl; 2590 2591 knl = &kn->kn_ptr.p_lio->klist; 2592 knl->kl_lock(knl->kl_lockarg); 2593 if (!knlist_empty(knl)) 2594 knlist_remove(knl, kn, 1); 2595 knl->kl_unlock(knl->kl_lockarg); 2596 } 2597 2598 /* kqueue filter function */ 2599 /*ARGSUSED*/ 2600 static int 2601 filt_lio(struct knote *kn, long hint) 2602 { 2603 struct aioliojob * lj = kn->kn_ptr.p_lio; 2604 2605 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2606 } 2607 2608 #ifdef COMPAT_FREEBSD32 2609 2610 struct __aiocb_private32 { 2611 int32_t status; 2612 int32_t error; 2613 uint32_t kernelinfo; 2614 }; 2615 2616 typedef struct oaiocb32 { 2617 int aio_fildes; /* File descriptor */ 2618 uint64_t aio_offset __packed; /* File offset for I/O */ 2619 uint32_t aio_buf; /* I/O buffer in process space */ 2620 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2621 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2622 int aio_lio_opcode; /* LIO opcode */ 2623 int aio_reqprio; /* Request priority -- ignored */ 2624 struct __aiocb_private32 _aiocb_private; 2625 } oaiocb32_t; 2626 2627 typedef struct aiocb32 { 2628 int32_t aio_fildes; /* File descriptor */ 2629 uint64_t aio_offset __packed; /* File offset for I/O */ 2630 uint32_t aio_buf; /* I/O buffer in process space */ 2631 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2632 int __spare__[2]; 2633 uint32_t __spare2__; 2634 int aio_lio_opcode; /* LIO opcode */ 2635 int aio_reqprio; /* Request priority -- ignored */ 2636 struct __aiocb_private32 _aiocb_private; 2637 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2638 } aiocb32_t; 2639 2640 static int 2641 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2642 { 2643 2644 /* 2645 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2646 * supported by AIO with the old sigevent structure. 2647 */ 2648 CP(*osig, *nsig, sigev_notify); 2649 switch (nsig->sigev_notify) { 2650 case SIGEV_NONE: 2651 break; 2652 case SIGEV_SIGNAL: 2653 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2654 break; 2655 case SIGEV_KEVENT: 2656 nsig->sigev_notify_kqueue = 2657 osig->__sigev_u.__sigev_notify_kqueue; 2658 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2659 break; 2660 default: 2661 return (EINVAL); 2662 } 2663 return (0); 2664 } 2665 2666 static int 2667 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2668 { 2669 struct oaiocb32 job32; 2670 int error; 2671 2672 bzero(kjob, sizeof(struct aiocb)); 2673 error = copyin(ujob, &job32, sizeof(job32)); 2674 if (error) 2675 return (error); 2676 2677 CP(job32, *kjob, aio_fildes); 2678 CP(job32, *kjob, aio_offset); 2679 PTRIN_CP(job32, *kjob, aio_buf); 2680 CP(job32, *kjob, aio_nbytes); 2681 CP(job32, *kjob, aio_lio_opcode); 2682 CP(job32, *kjob, aio_reqprio); 2683 CP(job32, *kjob, _aiocb_private.status); 2684 CP(job32, *kjob, _aiocb_private.error); 2685 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2686 return (convert_old_sigevent32(&job32.aio_sigevent, 2687 &kjob->aio_sigevent)); 2688 } 2689 2690 static int 2691 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) 2692 { 2693 2694 CP(*sig32, *sig, sigev_notify); 2695 switch (sig->sigev_notify) { 2696 case SIGEV_NONE: 2697 break; 2698 case SIGEV_THREAD_ID: 2699 CP(*sig32, *sig, sigev_notify_thread_id); 2700 /* FALLTHROUGH */ 2701 case SIGEV_SIGNAL: 2702 CP(*sig32, *sig, sigev_signo); 2703 break; 2704 case SIGEV_KEVENT: 2705 CP(*sig32, *sig, sigev_notify_kqueue); 2706 CP(*sig32, *sig, sigev_notify_kevent_flags); 2707 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); 2708 break; 2709 default: 2710 return (EINVAL); 2711 } 2712 return (0); 2713 } 2714 2715 static int 2716 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2717 { 2718 struct aiocb32 job32; 2719 int error; 2720 2721 error = copyin(ujob, &job32, sizeof(job32)); 2722 if (error) 2723 return (error); 2724 CP(job32, *kjob, aio_fildes); 2725 CP(job32, *kjob, aio_offset); 2726 PTRIN_CP(job32, *kjob, aio_buf); 2727 CP(job32, *kjob, aio_nbytes); 2728 CP(job32, *kjob, aio_lio_opcode); 2729 CP(job32, *kjob, aio_reqprio); 2730 CP(job32, *kjob, _aiocb_private.status); 2731 CP(job32, *kjob, _aiocb_private.error); 2732 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2733 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2734 } 2735 2736 static long 2737 aiocb32_fetch_status(struct aiocb *ujob) 2738 { 2739 struct aiocb32 *ujob32; 2740 2741 ujob32 = (struct aiocb32 *)ujob; 2742 return (fuword32(&ujob32->_aiocb_private.status)); 2743 } 2744 2745 static long 2746 aiocb32_fetch_error(struct aiocb *ujob) 2747 { 2748 struct aiocb32 *ujob32; 2749 2750 ujob32 = (struct aiocb32 *)ujob; 2751 return (fuword32(&ujob32->_aiocb_private.error)); 2752 } 2753 2754 static int 2755 aiocb32_store_status(struct aiocb *ujob, long status) 2756 { 2757 struct aiocb32 *ujob32; 2758 2759 ujob32 = (struct aiocb32 *)ujob; 2760 return (suword32(&ujob32->_aiocb_private.status, status)); 2761 } 2762 2763 static int 2764 aiocb32_store_error(struct aiocb *ujob, long error) 2765 { 2766 struct aiocb32 *ujob32; 2767 2768 ujob32 = (struct aiocb32 *)ujob; 2769 return (suword32(&ujob32->_aiocb_private.error, error)); 2770 } 2771 2772 static int 2773 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2774 { 2775 struct aiocb32 *ujob32; 2776 2777 ujob32 = (struct aiocb32 *)ujob; 2778 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2779 } 2780 2781 static int 2782 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2783 { 2784 2785 return (suword32(ujobp, (long)ujob)); 2786 } 2787 2788 static struct aiocb_ops aiocb32_ops = { 2789 .copyin = aiocb32_copyin, 2790 .fetch_status = aiocb32_fetch_status, 2791 .fetch_error = aiocb32_fetch_error, 2792 .store_status = aiocb32_store_status, 2793 .store_error = aiocb32_store_error, 2794 .store_kernelinfo = aiocb32_store_kernelinfo, 2795 .store_aiocb = aiocb32_store_aiocb, 2796 }; 2797 2798 static struct aiocb_ops aiocb32_ops_osigevent = { 2799 .copyin = aiocb32_copyin_old_sigevent, 2800 .fetch_status = aiocb32_fetch_status, 2801 .fetch_error = aiocb32_fetch_error, 2802 .store_status = aiocb32_store_status, 2803 .store_error = aiocb32_store_error, 2804 .store_kernelinfo = aiocb32_store_kernelinfo, 2805 .store_aiocb = aiocb32_store_aiocb, 2806 }; 2807 2808 int 2809 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2810 { 2811 2812 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2813 } 2814 2815 int 2816 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2817 { 2818 struct timespec32 ts32; 2819 struct timespec ts, *tsp; 2820 struct aiocb **ujoblist; 2821 uint32_t *ujoblist32; 2822 int error, i; 2823 2824 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2825 return (EINVAL); 2826 2827 if (uap->timeout) { 2828 /* Get timespec struct. */ 2829 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2830 return (error); 2831 CP(ts32, ts, tv_sec); 2832 CP(ts32, ts, tv_nsec); 2833 tsp = &ts; 2834 } else 2835 tsp = NULL; 2836 2837 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2838 ujoblist32 = (uint32_t *)ujoblist; 2839 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2840 sizeof(ujoblist32[0])); 2841 if (error == 0) { 2842 for (i = uap->nent; i > 0; i--) 2843 ujoblist[i] = PTRIN(ujoblist32[i]); 2844 2845 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2846 } 2847 uma_zfree(aiol_zone, ujoblist); 2848 return (error); 2849 } 2850 2851 int 2852 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2853 { 2854 2855 return (sys_aio_cancel(td, (struct aio_cancel_args *)uap)); 2856 } 2857 2858 int 2859 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2860 { 2861 2862 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2863 } 2864 2865 int 2866 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2867 { 2868 2869 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2870 &aiocb32_ops_osigevent)); 2871 } 2872 2873 int 2874 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2875 { 2876 2877 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2878 &aiocb32_ops)); 2879 } 2880 2881 int 2882 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2883 { 2884 2885 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2886 &aiocb32_ops_osigevent)); 2887 } 2888 2889 int 2890 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2891 { 2892 2893 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2894 &aiocb32_ops)); 2895 } 2896 2897 int 2898 freebsd32_aio_waitcomplete(struct thread *td, 2899 struct freebsd32_aio_waitcomplete_args *uap) 2900 { 2901 struct timespec32 ts32; 2902 struct timespec ts, *tsp; 2903 int error; 2904 2905 if (uap->timeout) { 2906 /* Get timespec struct. */ 2907 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2908 if (error) 2909 return (error); 2910 CP(ts32, ts, tv_sec); 2911 CP(ts32, ts, tv_nsec); 2912 tsp = &ts; 2913 } else 2914 tsp = NULL; 2915 2916 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2917 &aiocb32_ops)); 2918 } 2919 2920 int 2921 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2922 { 2923 2924 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2925 &aiocb32_ops)); 2926 } 2927 2928 int 2929 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2930 { 2931 struct aiocb **acb_list; 2932 struct sigevent *sigp, sig; 2933 struct osigevent32 osig; 2934 uint32_t *acb_list32; 2935 int error, i, nent; 2936 2937 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2938 return (EINVAL); 2939 2940 nent = uap->nent; 2941 if (nent < 0 || nent > AIO_LISTIO_MAX) 2942 return (EINVAL); 2943 2944 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2945 error = copyin(uap->sig, &osig, sizeof(osig)); 2946 if (error) 2947 return (error); 2948 error = convert_old_sigevent32(&osig, &sig); 2949 if (error) 2950 return (error); 2951 sigp = &sig; 2952 } else 2953 sigp = NULL; 2954 2955 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2956 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2957 if (error) { 2958 free(acb_list32, M_LIO); 2959 return (error); 2960 } 2961 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2962 for (i = 0; i < nent; i++) 2963 acb_list[i] = PTRIN(acb_list32[i]); 2964 free(acb_list32, M_LIO); 2965 2966 error = kern_lio_listio(td, uap->mode, 2967 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2968 &aiocb32_ops_osigevent); 2969 free(acb_list, M_LIO); 2970 return (error); 2971 } 2972 2973 int 2974 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2975 { 2976 struct aiocb **acb_list; 2977 struct sigevent *sigp, sig; 2978 struct sigevent32 sig32; 2979 uint32_t *acb_list32; 2980 int error, i, nent; 2981 2982 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2983 return (EINVAL); 2984 2985 nent = uap->nent; 2986 if (nent < 0 || nent > AIO_LISTIO_MAX) 2987 return (EINVAL); 2988 2989 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2990 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2991 if (error) 2992 return (error); 2993 error = convert_sigevent32(&sig32, &sig); 2994 if (error) 2995 return (error); 2996 sigp = &sig; 2997 } else 2998 sigp = NULL; 2999 3000 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 3001 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3002 if (error) { 3003 free(acb_list32, M_LIO); 3004 return (error); 3005 } 3006 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3007 for (i = 0; i < nent; i++) 3008 acb_list[i] = PTRIN(acb_list32[i]); 3009 free(acb_list32, M_LIO); 3010 3011 error = kern_lio_listio(td, uap->mode, 3012 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3013 &aiocb32_ops); 3014 free(acb_list, M_LIO); 3015 return (error); 3016 } 3017 3018 #endif 3019