1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/protosw.h> 49 #include <sys/rwlock.h> 50 #include <sys/sema.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/syscall.h> 54 #include <sys/sysent.h> 55 #include <sys/sysctl.h> 56 #include <sys/sx.h> 57 #include <sys/taskqueue.h> 58 #include <sys/vnode.h> 59 #include <sys/conf.h> 60 #include <sys/event.h> 61 #include <sys/mount.h> 62 #include <geom/geom.h> 63 64 #include <machine/atomic.h> 65 66 #include <vm/vm.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_extern.h> 69 #include <vm/pmap.h> 70 #include <vm/vm_map.h> 71 #include <vm/vm_object.h> 72 #include <vm/uma.h> 73 #include <sys/aio.h> 74 75 #include "opt_vfs_aio.h" 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #define JOBST_NULL 0 89 #define JOBST_JOBQSOCK 1 90 #define JOBST_JOBQGLOBAL 2 91 #define JOBST_JOBRUNNING 3 92 #define JOBST_JOBFINISHED 4 93 #define JOBST_JOBQBUF 5 94 #define JOBST_JOBQSYNC 6 95 96 #ifndef MAX_AIO_PER_PROC 97 #define MAX_AIO_PER_PROC 32 98 #endif 99 100 #ifndef MAX_AIO_QUEUE_PER_PROC 101 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 102 #endif 103 104 #ifndef MAX_AIO_PROCS 105 #define MAX_AIO_PROCS 32 106 #endif 107 108 #ifndef MAX_AIO_QUEUE 109 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 110 #endif 111 112 #ifndef TARGET_AIO_PROCS 113 #define TARGET_AIO_PROCS 4 114 #endif 115 116 #ifndef MAX_BUF_AIO 117 #define MAX_BUF_AIO 16 118 #endif 119 120 #ifndef AIOD_LIFETIME_DEFAULT 121 #define AIOD_LIFETIME_DEFAULT (30 * hz) 122 #endif 123 124 FEATURE(aio, "Asynchronous I/O"); 125 126 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 127 128 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 129 "Async IO management"); 130 131 static int max_aio_procs = MAX_AIO_PROCS; 132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 133 "Maximum number of kernel processes to use for handling async IO "); 134 135 static int num_aio_procs = 0; 136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 137 "Number of presently active kernel processes for async IO"); 138 139 /* 140 * The code will adjust the actual number of AIO processes towards this 141 * number when it gets a chance. 142 */ 143 static int target_aio_procs = TARGET_AIO_PROCS; 144 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 145 0, 146 "Preferred number of ready kernel processes for async IO"); 147 148 static int max_queue_count = MAX_AIO_QUEUE; 149 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 150 "Maximum number of aio requests to queue, globally"); 151 152 static int num_queue_count = 0; 153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 154 "Number of queued aio requests"); 155 156 static int num_buf_aio = 0; 157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 158 "Number of aio requests presently handled by the buf subsystem"); 159 160 /* Number of async I/O processes in the process of being started */ 161 /* XXX This should be local to aio_aqueue() */ 162 static int num_aio_resv_start = 0; 163 164 static int aiod_lifetime; 165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 166 "Maximum lifetime for idle aiod"); 167 168 static int unloadable = 0; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0, 170 "Allow unload of aio (not recommended)"); 171 172 173 static int max_aio_per_proc = MAX_AIO_PER_PROC; 174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 175 0, 176 "Maximum active aio requests per process (stored in the process)"); 177 178 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 179 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 180 &max_aio_queue_per_proc, 0, 181 "Maximum queued aio requests per process (stored in the process)"); 182 183 static int max_buf_aio = MAX_BUF_AIO; 184 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 185 "Maximum buf aio requests per process (stored in the process)"); 186 187 typedef struct oaiocb { 188 int aio_fildes; /* File descriptor */ 189 off_t aio_offset; /* File offset for I/O */ 190 volatile void *aio_buf; /* I/O buffer in process space */ 191 size_t aio_nbytes; /* Number of bytes for I/O */ 192 struct osigevent aio_sigevent; /* Signal to deliver */ 193 int aio_lio_opcode; /* LIO opcode */ 194 int aio_reqprio; /* Request priority -- ignored */ 195 struct __aiocb_private _aiocb_private; 196 } oaiocb_t; 197 198 /* 199 * Below is a key of locks used to protect each member of struct kaiocb 200 * aioliojob and kaioinfo and any backends. 201 * 202 * * - need not protected 203 * a - locked by kaioinfo lock 204 * b - locked by backend lock, the backend lock can be null in some cases, 205 * for example, BIO belongs to this type, in this case, proc lock is 206 * reused. 207 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 208 */ 209 210 /* 211 * Current, there is only two backends: BIO and generic file I/O. 212 * socket I/O is served by generic file I/O, this is not a good idea, since 213 * disk file I/O and any other types without O_NONBLOCK flag can block daemon 214 * processes, if there is no thread to serve socket I/O, the socket I/O will be 215 * delayed too long or starved, we should create some processes dedicated to 216 * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O 217 * systems we really need non-blocking interface, fiddling O_NONBLOCK in file 218 * structure is not safe because there is race between userland and aio 219 * daemons. 220 */ 221 222 struct kaiocb { 223 TAILQ_ENTRY(kaiocb) list; /* (b) internal list of for backend */ 224 TAILQ_ENTRY(kaiocb) plist; /* (a) list of jobs for each backend */ 225 TAILQ_ENTRY(kaiocb) allist; /* (a) list of all jobs in proc */ 226 int jobflags; /* (a) job flags */ 227 int jobstate; /* (b) job state */ 228 int inputcharge; /* (*) input blockes */ 229 int outputcharge; /* (*) output blockes */ 230 struct bio *bp; /* (*) BIO backend BIO pointer */ 231 struct buf *pbuf; /* (*) BIO backend buffer pointer */ 232 struct vm_page *pages[btoc(MAXPHYS)+1]; /* BIO backend pages */ 233 int npages; /* BIO backend number of pages */ 234 struct proc *userproc; /* (*) user process */ 235 struct ucred *cred; /* (*) active credential when created */ 236 struct file *fd_file; /* (*) pointer to file structure */ 237 struct aioliojob *lio; /* (*) optional lio job */ 238 struct aiocb *ujob; /* (*) pointer in userspace of aiocb */ 239 struct knlist klist; /* (a) list of knotes */ 240 struct aiocb uaiocb; /* (*) kernel I/O control block */ 241 ksiginfo_t ksi; /* (a) realtime signal info */ 242 uint64_t seqno; /* (*) job number */ 243 int pending; /* (a) number of pending I/O, aio_fsync only */ 244 }; 245 246 /* jobflags */ 247 #define KAIOCB_DONE 0x01 248 #define KAIOCB_BUFDONE 0x02 249 #define KAIOCB_RUNDOWN 0x04 250 #define KAIOCB_CHECKSYNC 0x08 251 252 /* 253 * AIO process info 254 */ 255 #define AIOP_FREE 0x1 /* proc on free queue */ 256 257 struct aioproc { 258 int aioprocflags; /* (c) AIO proc flags */ 259 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 260 struct proc *aioproc; /* (*) the AIO proc */ 261 }; 262 263 /* 264 * data-structure for lio signal management 265 */ 266 struct aioliojob { 267 int lioj_flags; /* (a) listio flags */ 268 int lioj_count; /* (a) listio flags */ 269 int lioj_finished_count; /* (a) listio flags */ 270 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 271 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 272 struct knlist klist; /* (a) list of knotes */ 273 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 274 }; 275 276 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 277 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 278 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 279 280 /* 281 * per process aio data structure 282 */ 283 struct kaioinfo { 284 struct mtx kaio_mtx; /* the lock to protect this struct */ 285 int kaio_flags; /* (a) per process kaio flags */ 286 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 287 int kaio_active_count; /* (c) number of currently used AIOs */ 288 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 289 int kaio_count; /* (a) size of AIO queue */ 290 int kaio_ballowed_count; /* (*) maximum number of buffers */ 291 int kaio_buffer_count; /* (a) number of physio buffers */ 292 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 293 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 294 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 295 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 296 TAILQ_HEAD(,kaiocb) kaio_bufqueue; /* (a) buffer job queue */ 297 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 298 struct task kaio_task; /* (*) task to kick aio processes */ 299 }; 300 301 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 302 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 303 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 304 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 305 306 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 307 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 308 309 /* 310 * Operations used to interact with userland aio control blocks. 311 * Different ABIs provide their own operations. 312 */ 313 struct aiocb_ops { 314 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 315 long (*fetch_status)(struct aiocb *ujob); 316 long (*fetch_error)(struct aiocb *ujob); 317 int (*store_status)(struct aiocb *ujob, long status); 318 int (*store_error)(struct aiocb *ujob, long error); 319 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 320 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 321 }; 322 323 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 324 static struct sema aio_newproc_sem; 325 static struct mtx aio_job_mtx; 326 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 327 static struct unrhdr *aiod_unr; 328 329 void aio_init_aioinfo(struct proc *p); 330 static int aio_onceonly(void); 331 static int aio_free_entry(struct kaiocb *job); 332 static void aio_process_rw(struct kaiocb *job); 333 static void aio_process_sync(struct kaiocb *job); 334 static void aio_process_mlock(struct kaiocb *job); 335 static int aio_newproc(int *); 336 int aio_aqueue(struct thread *td, struct aiocb *ujob, 337 struct aioliojob *lio, int type, struct aiocb_ops *ops); 338 static void aio_physwakeup(struct bio *bp); 339 static void aio_proc_rundown(void *arg, struct proc *p); 340 static void aio_proc_rundown_exec(void *arg, struct proc *p, 341 struct image_params *imgp); 342 static int aio_qphysio(struct proc *p, struct kaiocb *job); 343 static void aio_daemon(void *param); 344 static void aio_swake_cb(struct socket *, struct sockbuf *); 345 static int aio_unload(void); 346 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job, 347 int type); 348 #define DONE_BUF 1 349 #define DONE_QUEUE 2 350 static int aio_kick(struct proc *userp); 351 static void aio_kick_nowait(struct proc *userp); 352 static void aio_kick_helper(void *context, int pending); 353 static int filt_aioattach(struct knote *kn); 354 static void filt_aiodetach(struct knote *kn); 355 static int filt_aio(struct knote *kn, long hint); 356 static int filt_lioattach(struct knote *kn); 357 static void filt_liodetach(struct knote *kn); 358 static int filt_lio(struct knote *kn, long hint); 359 360 /* 361 * Zones for: 362 * kaio Per process async io info 363 * aiop async io process data 364 * aiocb async io jobs 365 * aiol list io job pointer - internal to aio_suspend XXX 366 * aiolio list io jobs 367 */ 368 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 369 370 /* kqueue filters for aio */ 371 static struct filterops aio_filtops = { 372 .f_isfd = 0, 373 .f_attach = filt_aioattach, 374 .f_detach = filt_aiodetach, 375 .f_event = filt_aio, 376 }; 377 static struct filterops lio_filtops = { 378 .f_isfd = 0, 379 .f_attach = filt_lioattach, 380 .f_detach = filt_liodetach, 381 .f_event = filt_lio 382 }; 383 384 static eventhandler_tag exit_tag, exec_tag; 385 386 TASKQUEUE_DEFINE_THREAD(aiod_kick); 387 388 /* 389 * Main operations function for use as a kernel module. 390 */ 391 static int 392 aio_modload(struct module *module, int cmd, void *arg) 393 { 394 int error = 0; 395 396 switch (cmd) { 397 case MOD_LOAD: 398 aio_onceonly(); 399 break; 400 case MOD_UNLOAD: 401 error = aio_unload(); 402 break; 403 case MOD_SHUTDOWN: 404 break; 405 default: 406 error = EINVAL; 407 break; 408 } 409 return (error); 410 } 411 412 static moduledata_t aio_mod = { 413 "aio", 414 &aio_modload, 415 NULL 416 }; 417 418 static struct syscall_helper_data aio_syscalls[] = { 419 SYSCALL_INIT_HELPER(aio_cancel), 420 SYSCALL_INIT_HELPER(aio_error), 421 SYSCALL_INIT_HELPER(aio_fsync), 422 SYSCALL_INIT_HELPER(aio_mlock), 423 SYSCALL_INIT_HELPER(aio_read), 424 SYSCALL_INIT_HELPER(aio_return), 425 SYSCALL_INIT_HELPER(aio_suspend), 426 SYSCALL_INIT_HELPER(aio_waitcomplete), 427 SYSCALL_INIT_HELPER(aio_write), 428 SYSCALL_INIT_HELPER(lio_listio), 429 SYSCALL_INIT_HELPER(oaio_read), 430 SYSCALL_INIT_HELPER(oaio_write), 431 SYSCALL_INIT_HELPER(olio_listio), 432 SYSCALL_INIT_LAST 433 }; 434 435 #ifdef COMPAT_FREEBSD32 436 #include <sys/mount.h> 437 #include <sys/socket.h> 438 #include <compat/freebsd32/freebsd32.h> 439 #include <compat/freebsd32/freebsd32_proto.h> 440 #include <compat/freebsd32/freebsd32_signal.h> 441 #include <compat/freebsd32/freebsd32_syscall.h> 442 #include <compat/freebsd32/freebsd32_util.h> 443 444 static struct syscall_helper_data aio32_syscalls[] = { 445 SYSCALL32_INIT_HELPER(freebsd32_aio_return), 446 SYSCALL32_INIT_HELPER(freebsd32_aio_suspend), 447 SYSCALL32_INIT_HELPER(freebsd32_aio_cancel), 448 SYSCALL32_INIT_HELPER(freebsd32_aio_error), 449 SYSCALL32_INIT_HELPER(freebsd32_aio_fsync), 450 SYSCALL32_INIT_HELPER(freebsd32_aio_mlock), 451 SYSCALL32_INIT_HELPER(freebsd32_aio_read), 452 SYSCALL32_INIT_HELPER(freebsd32_aio_write), 453 SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete), 454 SYSCALL32_INIT_HELPER(freebsd32_lio_listio), 455 SYSCALL32_INIT_HELPER(freebsd32_oaio_read), 456 SYSCALL32_INIT_HELPER(freebsd32_oaio_write), 457 SYSCALL32_INIT_HELPER(freebsd32_olio_listio), 458 SYSCALL_INIT_LAST 459 }; 460 #endif 461 462 DECLARE_MODULE(aio, aio_mod, 463 SI_SUB_VFS, SI_ORDER_ANY); 464 MODULE_VERSION(aio, 1); 465 466 /* 467 * Startup initialization 468 */ 469 static int 470 aio_onceonly(void) 471 { 472 int error; 473 474 /* XXX: should probably just use so->callback */ 475 aio_swake = &aio_swake_cb; 476 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 477 EVENTHANDLER_PRI_ANY); 478 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 479 NULL, EVENTHANDLER_PRI_ANY); 480 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 481 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 482 TAILQ_INIT(&aio_freeproc); 483 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 484 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 485 TAILQ_INIT(&aio_jobs); 486 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 487 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 488 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 489 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 490 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 491 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 492 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 493 aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL, 494 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 495 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 496 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 497 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 498 jobrefid = 1; 499 async_io_version = _POSIX_VERSION; 500 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX); 501 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 502 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 503 504 error = syscall_helper_register(aio_syscalls, SY_THR_STATIC_KLD); 505 if (error) 506 return (error); 507 #ifdef COMPAT_FREEBSD32 508 error = syscall32_helper_register(aio32_syscalls, SY_THR_STATIC_KLD); 509 if (error) 510 return (error); 511 #endif 512 return (0); 513 } 514 515 /* 516 * Callback for unload of AIO when used as a module. 517 */ 518 static int 519 aio_unload(void) 520 { 521 int error; 522 523 /* 524 * XXX: no unloads by default, it's too dangerous. 525 * perhaps we could do it if locked out callers and then 526 * did an aio_proc_rundown() on each process. 527 * 528 * jhb: aio_proc_rundown() needs to run on curproc though, 529 * so I don't think that would fly. 530 */ 531 if (!unloadable) 532 return (EOPNOTSUPP); 533 534 #ifdef COMPAT_FREEBSD32 535 syscall32_helper_unregister(aio32_syscalls); 536 #endif 537 syscall_helper_unregister(aio_syscalls); 538 539 error = kqueue_del_filteropts(EVFILT_AIO); 540 if (error) 541 return error; 542 error = kqueue_del_filteropts(EVFILT_LIO); 543 if (error) 544 return error; 545 async_io_version = 0; 546 aio_swake = NULL; 547 taskqueue_free(taskqueue_aiod_kick); 548 delete_unrhdr(aiod_unr); 549 uma_zdestroy(kaio_zone); 550 uma_zdestroy(aiop_zone); 551 uma_zdestroy(aiocb_zone); 552 uma_zdestroy(aiol_zone); 553 uma_zdestroy(aiolio_zone); 554 EVENTHANDLER_DEREGISTER(process_exit, exit_tag); 555 EVENTHANDLER_DEREGISTER(process_exec, exec_tag); 556 mtx_destroy(&aio_job_mtx); 557 sema_destroy(&aio_newproc_sem); 558 p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1); 559 p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1); 560 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1); 561 return (0); 562 } 563 564 /* 565 * Init the per-process aioinfo structure. The aioinfo limits are set 566 * per-process for user limit (resource) management. 567 */ 568 void 569 aio_init_aioinfo(struct proc *p) 570 { 571 struct kaioinfo *ki; 572 573 ki = uma_zalloc(kaio_zone, M_WAITOK); 574 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 575 ki->kaio_flags = 0; 576 ki->kaio_maxactive_count = max_aio_per_proc; 577 ki->kaio_active_count = 0; 578 ki->kaio_qallowed_count = max_aio_queue_per_proc; 579 ki->kaio_count = 0; 580 ki->kaio_ballowed_count = max_buf_aio; 581 ki->kaio_buffer_count = 0; 582 TAILQ_INIT(&ki->kaio_all); 583 TAILQ_INIT(&ki->kaio_done); 584 TAILQ_INIT(&ki->kaio_jobqueue); 585 TAILQ_INIT(&ki->kaio_bufqueue); 586 TAILQ_INIT(&ki->kaio_liojoblist); 587 TAILQ_INIT(&ki->kaio_syncqueue); 588 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 589 PROC_LOCK(p); 590 if (p->p_aioinfo == NULL) { 591 p->p_aioinfo = ki; 592 PROC_UNLOCK(p); 593 } else { 594 PROC_UNLOCK(p); 595 mtx_destroy(&ki->kaio_mtx); 596 uma_zfree(kaio_zone, ki); 597 } 598 599 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 600 aio_newproc(NULL); 601 } 602 603 static int 604 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 605 { 606 struct thread *td; 607 int error; 608 609 error = sigev_findtd(p, sigev, &td); 610 if (error) 611 return (error); 612 if (!KSI_ONQ(ksi)) { 613 ksiginfo_set_sigev(ksi, sigev); 614 ksi->ksi_code = SI_ASYNCIO; 615 ksi->ksi_flags |= KSI_EXT | KSI_INS; 616 tdsendsignal(p, td, ksi->ksi_signo, ksi); 617 } 618 PROC_UNLOCK(p); 619 return (error); 620 } 621 622 /* 623 * Free a job entry. Wait for completion if it is currently active, but don't 624 * delay forever. If we delay, we return a flag that says that we have to 625 * restart the queue scan. 626 */ 627 static int 628 aio_free_entry(struct kaiocb *job) 629 { 630 struct kaioinfo *ki; 631 struct aioliojob *lj; 632 struct proc *p; 633 634 p = job->userproc; 635 MPASS(curproc == p); 636 ki = p->p_aioinfo; 637 MPASS(ki != NULL); 638 639 AIO_LOCK_ASSERT(ki, MA_OWNED); 640 MPASS(job->jobstate == JOBST_JOBFINISHED); 641 642 atomic_subtract_int(&num_queue_count, 1); 643 644 ki->kaio_count--; 645 MPASS(ki->kaio_count >= 0); 646 647 TAILQ_REMOVE(&ki->kaio_done, job, plist); 648 TAILQ_REMOVE(&ki->kaio_all, job, allist); 649 650 lj = job->lio; 651 if (lj) { 652 lj->lioj_count--; 653 lj->lioj_finished_count--; 654 655 if (lj->lioj_count == 0) { 656 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 657 /* lio is going away, we need to destroy any knotes */ 658 knlist_delete(&lj->klist, curthread, 1); 659 PROC_LOCK(p); 660 sigqueue_take(&lj->lioj_ksi); 661 PROC_UNLOCK(p); 662 uma_zfree(aiolio_zone, lj); 663 } 664 } 665 666 /* job is going away, we need to destroy any knotes */ 667 knlist_delete(&job->klist, curthread, 1); 668 PROC_LOCK(p); 669 sigqueue_take(&job->ksi); 670 PROC_UNLOCK(p); 671 672 MPASS(job->bp == NULL); 673 job->jobstate = JOBST_NULL; 674 AIO_UNLOCK(ki); 675 676 /* 677 * The thread argument here is used to find the owning process 678 * and is also passed to fo_close() which may pass it to various 679 * places such as devsw close() routines. Because of that, we 680 * need a thread pointer from the process owning the job that is 681 * persistent and won't disappear out from under us or move to 682 * another process. 683 * 684 * Currently, all the callers of this function call it to remove 685 * a kaiocb from the current process' job list either via a 686 * syscall or due to the current process calling exit() or 687 * execve(). Thus, we know that p == curproc. We also know that 688 * curthread can't exit since we are curthread. 689 * 690 * Therefore, we use curthread as the thread to pass to 691 * knlist_delete(). This does mean that it is possible for the 692 * thread pointer at close time to differ from the thread pointer 693 * at open time, but this is already true of file descriptors in 694 * a multithreaded process. 695 */ 696 if (job->fd_file) 697 fdrop(job->fd_file, curthread); 698 crfree(job->cred); 699 uma_zfree(aiocb_zone, job); 700 AIO_LOCK(ki); 701 702 return (0); 703 } 704 705 static void 706 aio_proc_rundown_exec(void *arg, struct proc *p, 707 struct image_params *imgp __unused) 708 { 709 aio_proc_rundown(arg, p); 710 } 711 712 /* 713 * Rundown the jobs for a given process. 714 */ 715 static void 716 aio_proc_rundown(void *arg, struct proc *p) 717 { 718 struct kaioinfo *ki; 719 struct aioliojob *lj; 720 struct kaiocb *job, *jobn; 721 struct file *fp; 722 struct socket *so; 723 int remove; 724 725 KASSERT(curthread->td_proc == p, 726 ("%s: called on non-curproc", __func__)); 727 ki = p->p_aioinfo; 728 if (ki == NULL) 729 return; 730 731 AIO_LOCK(ki); 732 ki->kaio_flags |= KAIO_RUNDOWN; 733 734 restart: 735 736 /* 737 * Try to cancel all pending requests. This code simulates 738 * aio_cancel on all pending I/O requests. 739 */ 740 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 741 remove = 0; 742 mtx_lock(&aio_job_mtx); 743 if (job->jobstate == JOBST_JOBQGLOBAL) { 744 TAILQ_REMOVE(&aio_jobs, job, list); 745 remove = 1; 746 } else if (job->jobstate == JOBST_JOBQSOCK) { 747 fp = job->fd_file; 748 MPASS(fp->f_type == DTYPE_SOCKET); 749 so = fp->f_data; 750 TAILQ_REMOVE(&so->so_aiojobq, job, list); 751 remove = 1; 752 } else if (job->jobstate == JOBST_JOBQSYNC) { 753 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 754 remove = 1; 755 } 756 mtx_unlock(&aio_job_mtx); 757 758 if (remove) { 759 job->jobstate = JOBST_JOBFINISHED; 760 job->uaiocb._aiocb_private.status = -1; 761 job->uaiocb._aiocb_private.error = ECANCELED; 762 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 763 aio_bio_done_notify(p, job, DONE_QUEUE); 764 } 765 } 766 767 /* Wait for all running I/O to be finished */ 768 if (TAILQ_FIRST(&ki->kaio_bufqueue) || 769 TAILQ_FIRST(&ki->kaio_jobqueue)) { 770 ki->kaio_flags |= KAIO_WAKEUP; 771 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 772 goto restart; 773 } 774 775 /* Free all completed I/O requests. */ 776 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 777 aio_free_entry(job); 778 779 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 780 if (lj->lioj_count == 0) { 781 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 782 knlist_delete(&lj->klist, curthread, 1); 783 PROC_LOCK(p); 784 sigqueue_take(&lj->lioj_ksi); 785 PROC_UNLOCK(p); 786 uma_zfree(aiolio_zone, lj); 787 } else { 788 panic("LIO job not cleaned up: C:%d, FC:%d\n", 789 lj->lioj_count, lj->lioj_finished_count); 790 } 791 } 792 AIO_UNLOCK(ki); 793 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 794 mtx_destroy(&ki->kaio_mtx); 795 uma_zfree(kaio_zone, ki); 796 p->p_aioinfo = NULL; 797 } 798 799 /* 800 * Select a job to run (called by an AIO daemon). 801 */ 802 static struct kaiocb * 803 aio_selectjob(struct aioproc *aiop) 804 { 805 struct kaiocb *job; 806 struct kaioinfo *ki; 807 struct proc *userp; 808 809 mtx_assert(&aio_job_mtx, MA_OWNED); 810 TAILQ_FOREACH(job, &aio_jobs, list) { 811 userp = job->userproc; 812 ki = userp->p_aioinfo; 813 814 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 815 TAILQ_REMOVE(&aio_jobs, job, list); 816 /* Account for currently active jobs. */ 817 ki->kaio_active_count++; 818 job->jobstate = JOBST_JOBRUNNING; 819 break; 820 } 821 } 822 return (job); 823 } 824 825 /* 826 * Move all data to a permanent storage device. This code 827 * simulates the fsync syscall. 828 */ 829 static int 830 aio_fsync_vnode(struct thread *td, struct vnode *vp) 831 { 832 struct mount *mp; 833 int error; 834 835 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 836 goto drop; 837 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 838 if (vp->v_object != NULL) { 839 VM_OBJECT_WLOCK(vp->v_object); 840 vm_object_page_clean(vp->v_object, 0, 0, 0); 841 VM_OBJECT_WUNLOCK(vp->v_object); 842 } 843 error = VOP_FSYNC(vp, MNT_WAIT, td); 844 845 VOP_UNLOCK(vp, 0); 846 vn_finished_write(mp); 847 drop: 848 return (error); 849 } 850 851 /* 852 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 853 * does the I/O request for the non-physio version of the operations. The 854 * normal vn operations are used, and this code should work in all instances 855 * for every type of file, including pipes, sockets, fifos, and regular files. 856 * 857 * XXX I don't think it works well for socket, pipe, and fifo. 858 */ 859 static void 860 aio_process_rw(struct kaiocb *job) 861 { 862 struct ucred *td_savedcred; 863 struct thread *td; 864 struct aiocb *cb; 865 struct file *fp; 866 struct socket *so; 867 struct uio auio; 868 struct iovec aiov; 869 int cnt; 870 int error; 871 int oublock_st, oublock_end; 872 int inblock_st, inblock_end; 873 874 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 875 job->uaiocb.aio_lio_opcode == LIO_WRITE, 876 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 877 878 td = curthread; 879 td_savedcred = td->td_ucred; 880 td->td_ucred = job->cred; 881 cb = &job->uaiocb; 882 fp = job->fd_file; 883 884 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 885 aiov.iov_len = cb->aio_nbytes; 886 887 auio.uio_iov = &aiov; 888 auio.uio_iovcnt = 1; 889 auio.uio_offset = cb->aio_offset; 890 auio.uio_resid = cb->aio_nbytes; 891 cnt = cb->aio_nbytes; 892 auio.uio_segflg = UIO_USERSPACE; 893 auio.uio_td = td; 894 895 inblock_st = td->td_ru.ru_inblock; 896 oublock_st = td->td_ru.ru_oublock; 897 /* 898 * aio_aqueue() acquires a reference to the file that is 899 * released in aio_free_entry(). 900 */ 901 if (cb->aio_lio_opcode == LIO_READ) { 902 auio.uio_rw = UIO_READ; 903 if (auio.uio_resid == 0) 904 error = 0; 905 else 906 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 907 } else { 908 if (fp->f_type == DTYPE_VNODE) 909 bwillwrite(); 910 auio.uio_rw = UIO_WRITE; 911 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 912 } 913 inblock_end = td->td_ru.ru_inblock; 914 oublock_end = td->td_ru.ru_oublock; 915 916 job->inputcharge = inblock_end - inblock_st; 917 job->outputcharge = oublock_end - oublock_st; 918 919 if ((error) && (auio.uio_resid != cnt)) { 920 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 921 error = 0; 922 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 923 int sigpipe = 1; 924 if (fp->f_type == DTYPE_SOCKET) { 925 so = fp->f_data; 926 if (so->so_options & SO_NOSIGPIPE) 927 sigpipe = 0; 928 } 929 if (sigpipe) { 930 PROC_LOCK(job->userproc); 931 kern_psignal(job->userproc, SIGPIPE); 932 PROC_UNLOCK(job->userproc); 933 } 934 } 935 } 936 937 cnt -= auio.uio_resid; 938 cb->_aiocb_private.error = error; 939 cb->_aiocb_private.status = cnt; 940 td->td_ucred = td_savedcred; 941 } 942 943 static void 944 aio_process_sync(struct kaiocb *job) 945 { 946 struct thread *td = curthread; 947 struct ucred *td_savedcred = td->td_ucred; 948 struct aiocb *cb = &job->uaiocb; 949 struct file *fp = job->fd_file; 950 int error = 0; 951 952 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 953 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 954 955 td->td_ucred = job->cred; 956 if (fp->f_vnode != NULL) 957 error = aio_fsync_vnode(td, fp->f_vnode); 958 cb->_aiocb_private.error = error; 959 cb->_aiocb_private.status = 0; 960 td->td_ucred = td_savedcred; 961 } 962 963 static void 964 aio_process_mlock(struct kaiocb *job) 965 { 966 struct aiocb *cb = &job->uaiocb; 967 int error; 968 969 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 970 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 971 972 error = vm_mlock(job->userproc, job->cred, 973 __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes); 974 cb->_aiocb_private.error = error; 975 cb->_aiocb_private.status = 0; 976 } 977 978 static void 979 aio_bio_done_notify(struct proc *userp, struct kaiocb *job, int type) 980 { 981 struct aioliojob *lj; 982 struct kaioinfo *ki; 983 struct kaiocb *sjob, *sjobn; 984 int lj_done; 985 986 ki = userp->p_aioinfo; 987 AIO_LOCK_ASSERT(ki, MA_OWNED); 988 lj = job->lio; 989 lj_done = 0; 990 if (lj) { 991 lj->lioj_finished_count++; 992 if (lj->lioj_count == lj->lioj_finished_count) 993 lj_done = 1; 994 } 995 if (type == DONE_QUEUE) { 996 job->jobflags |= KAIOCB_DONE; 997 } else { 998 job->jobflags |= KAIOCB_BUFDONE; 999 } 1000 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 1001 job->jobstate = JOBST_JOBFINISHED; 1002 1003 if (ki->kaio_flags & KAIO_RUNDOWN) 1004 goto notification_done; 1005 1006 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1007 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 1008 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 1009 1010 KNOTE_LOCKED(&job->klist, 1); 1011 1012 if (lj_done) { 1013 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 1014 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 1015 KNOTE_LOCKED(&lj->klist, 1); 1016 } 1017 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 1018 == LIOJ_SIGNAL 1019 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 1020 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 1021 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 1022 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 1023 } 1024 } 1025 1026 notification_done: 1027 if (job->jobflags & KAIOCB_CHECKSYNC) { 1028 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 1029 if (job->fd_file == sjob->fd_file && 1030 job->seqno < sjob->seqno) { 1031 if (--sjob->pending == 0) { 1032 mtx_lock(&aio_job_mtx); 1033 sjob->jobstate = JOBST_JOBQGLOBAL; 1034 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, 1035 list); 1036 TAILQ_INSERT_TAIL(&aio_jobs, sjob, list); 1037 aio_kick_nowait(userp); 1038 mtx_unlock(&aio_job_mtx); 1039 } 1040 } 1041 } 1042 } 1043 if (ki->kaio_flags & KAIO_WAKEUP) { 1044 ki->kaio_flags &= ~KAIO_WAKEUP; 1045 wakeup(&userp->p_aioinfo); 1046 } 1047 } 1048 1049 static void 1050 aio_switch_vmspace(struct kaiocb *job) 1051 { 1052 1053 vmspace_switch_aio(job->userproc->p_vmspace); 1054 } 1055 1056 /* 1057 * The AIO daemon, most of the actual work is done in aio_process_*, 1058 * but the setup (and address space mgmt) is done in this routine. 1059 */ 1060 static void 1061 aio_daemon(void *_id) 1062 { 1063 struct kaiocb *job; 1064 struct aioproc *aiop; 1065 struct kaioinfo *ki; 1066 struct proc *p, *userp; 1067 struct vmspace *myvm; 1068 struct thread *td = curthread; 1069 int id = (intptr_t)_id; 1070 1071 /* 1072 * Grab an extra reference on the daemon's vmspace so that it 1073 * doesn't get freed by jobs that switch to a different 1074 * vmspace. 1075 */ 1076 p = td->td_proc; 1077 myvm = vmspace_acquire_ref(p); 1078 1079 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1080 1081 /* 1082 * Allocate and ready the aio control info. There is one aiop structure 1083 * per daemon. 1084 */ 1085 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1086 aiop->aioproc = p; 1087 aiop->aioprocflags = 0; 1088 1089 /* 1090 * Wakeup parent process. (Parent sleeps to keep from blasting away 1091 * and creating too many daemons.) 1092 */ 1093 sema_post(&aio_newproc_sem); 1094 1095 mtx_lock(&aio_job_mtx); 1096 for (;;) { 1097 /* 1098 * Take daemon off of free queue 1099 */ 1100 if (aiop->aioprocflags & AIOP_FREE) { 1101 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1102 aiop->aioprocflags &= ~AIOP_FREE; 1103 } 1104 1105 /* 1106 * Check for jobs. 1107 */ 1108 while ((job = aio_selectjob(aiop)) != NULL) { 1109 mtx_unlock(&aio_job_mtx); 1110 userp = job->userproc; 1111 1112 /* 1113 * Connect to process address space for user program. 1114 */ 1115 aio_switch_vmspace(job); 1116 1117 ki = userp->p_aioinfo; 1118 1119 /* Do the I/O function. */ 1120 switch(job->uaiocb.aio_lio_opcode) { 1121 case LIO_READ: 1122 case LIO_WRITE: 1123 aio_process_rw(job); 1124 break; 1125 case LIO_SYNC: 1126 aio_process_sync(job); 1127 break; 1128 case LIO_MLOCK: 1129 aio_process_mlock(job); 1130 break; 1131 } 1132 1133 mtx_lock(&aio_job_mtx); 1134 /* Decrement the active job count. */ 1135 ki->kaio_active_count--; 1136 mtx_unlock(&aio_job_mtx); 1137 1138 AIO_LOCK(ki); 1139 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1140 aio_bio_done_notify(userp, job, DONE_QUEUE); 1141 AIO_UNLOCK(ki); 1142 1143 mtx_lock(&aio_job_mtx); 1144 } 1145 1146 /* 1147 * Disconnect from user address space. 1148 */ 1149 if (p->p_vmspace != myvm) { 1150 mtx_unlock(&aio_job_mtx); 1151 vmspace_switch_aio(myvm); 1152 mtx_lock(&aio_job_mtx); 1153 /* 1154 * We have to restart to avoid race, we only sleep if 1155 * no job can be selected. 1156 */ 1157 continue; 1158 } 1159 1160 mtx_assert(&aio_job_mtx, MA_OWNED); 1161 1162 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1163 aiop->aioprocflags |= AIOP_FREE; 1164 1165 /* 1166 * If daemon is inactive for a long time, allow it to exit, 1167 * thereby freeing resources. 1168 */ 1169 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1170 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1171 (aiop->aioprocflags & AIOP_FREE) && 1172 num_aio_procs > target_aio_procs) 1173 break; 1174 } 1175 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1176 num_aio_procs--; 1177 mtx_unlock(&aio_job_mtx); 1178 uma_zfree(aiop_zone, aiop); 1179 free_unr(aiod_unr, id); 1180 vmspace_free(myvm); 1181 1182 KASSERT(p->p_vmspace == myvm, 1183 ("AIOD: bad vmspace for exiting daemon")); 1184 KASSERT(myvm->vm_refcnt > 1, 1185 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1186 kproc_exit(0); 1187 } 1188 1189 /* 1190 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1191 * AIO daemon modifies its environment itself. 1192 */ 1193 static int 1194 aio_newproc(int *start) 1195 { 1196 int error; 1197 struct proc *p; 1198 int id; 1199 1200 id = alloc_unr(aiod_unr); 1201 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1202 RFNOWAIT, 0, "aiod%d", id); 1203 if (error == 0) { 1204 /* 1205 * Wait until daemon is started. 1206 */ 1207 sema_wait(&aio_newproc_sem); 1208 mtx_lock(&aio_job_mtx); 1209 num_aio_procs++; 1210 if (start != NULL) 1211 (*start)--; 1212 mtx_unlock(&aio_job_mtx); 1213 } else { 1214 free_unr(aiod_unr, id); 1215 } 1216 return (error); 1217 } 1218 1219 /* 1220 * Try the high-performance, low-overhead physio method for eligible 1221 * VCHR devices. This method doesn't use an aio helper thread, and 1222 * thus has very low overhead. 1223 * 1224 * Assumes that the caller, aio_aqueue(), has incremented the file 1225 * structure's reference count, preventing its deallocation for the 1226 * duration of this call. 1227 */ 1228 static int 1229 aio_qphysio(struct proc *p, struct kaiocb *job) 1230 { 1231 struct aiocb *cb; 1232 struct file *fp; 1233 struct bio *bp; 1234 struct buf *pbuf; 1235 struct vnode *vp; 1236 struct cdevsw *csw; 1237 struct cdev *dev; 1238 struct kaioinfo *ki; 1239 struct aioliojob *lj; 1240 int error, ref, unmap, poff; 1241 vm_prot_t prot; 1242 1243 cb = &job->uaiocb; 1244 fp = job->fd_file; 1245 1246 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1247 return (-1); 1248 1249 vp = fp->f_vnode; 1250 if (vp->v_type != VCHR) 1251 return (-1); 1252 if (vp->v_bufobj.bo_bsize == 0) 1253 return (-1); 1254 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1255 return (-1); 1256 1257 ref = 0; 1258 csw = devvn_refthread(vp, &dev, &ref); 1259 if (csw == NULL) 1260 return (ENXIO); 1261 1262 if ((csw->d_flags & D_DISK) == 0) { 1263 error = -1; 1264 goto unref; 1265 } 1266 if (cb->aio_nbytes > dev->si_iosize_max) { 1267 error = -1; 1268 goto unref; 1269 } 1270 1271 ki = p->p_aioinfo; 1272 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1273 unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed); 1274 if (unmap) { 1275 if (cb->aio_nbytes > MAXPHYS) { 1276 error = -1; 1277 goto unref; 1278 } 1279 } else { 1280 if (cb->aio_nbytes > MAXPHYS - poff) { 1281 error = -1; 1282 goto unref; 1283 } 1284 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1285 error = -1; 1286 goto unref; 1287 } 1288 } 1289 job->bp = bp = g_alloc_bio(); 1290 if (!unmap) { 1291 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1292 BUF_KERNPROC(pbuf); 1293 } 1294 1295 AIO_LOCK(ki); 1296 ki->kaio_count++; 1297 if (!unmap) 1298 ki->kaio_buffer_count++; 1299 lj = job->lio; 1300 if (lj) 1301 lj->lioj_count++; 1302 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, job, plist); 1303 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1304 job->jobstate = JOBST_JOBQBUF; 1305 cb->_aiocb_private.status = cb->aio_nbytes; 1306 AIO_UNLOCK(ki); 1307 1308 bp->bio_length = cb->aio_nbytes; 1309 bp->bio_bcount = cb->aio_nbytes; 1310 bp->bio_done = aio_physwakeup; 1311 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1312 bp->bio_offset = cb->aio_offset; 1313 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1314 bp->bio_dev = dev; 1315 bp->bio_caller1 = (void *)job; 1316 1317 prot = VM_PROT_READ; 1318 if (cb->aio_lio_opcode == LIO_READ) 1319 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1320 if ((job->npages = vm_fault_quick_hold_pages( 1321 &curproc->p_vmspace->vm_map, 1322 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1323 sizeof(job->pages)/sizeof(job->pages[0]))) < 0) { 1324 error = EFAULT; 1325 goto doerror; 1326 } 1327 if (!unmap) { 1328 pmap_qenter((vm_offset_t)pbuf->b_data, 1329 job->pages, job->npages); 1330 bp->bio_data = pbuf->b_data + poff; 1331 } else { 1332 bp->bio_ma = job->pages; 1333 bp->bio_ma_n = job->npages; 1334 bp->bio_ma_offset = poff; 1335 bp->bio_data = unmapped_buf; 1336 bp->bio_flags |= BIO_UNMAPPED; 1337 } 1338 1339 atomic_add_int(&num_queue_count, 1); 1340 if (!unmap) 1341 atomic_add_int(&num_buf_aio, 1); 1342 1343 /* Perform transfer. */ 1344 csw->d_strategy(bp); 1345 dev_relthread(dev, ref); 1346 return (0); 1347 1348 doerror: 1349 AIO_LOCK(ki); 1350 job->jobstate = JOBST_NULL; 1351 TAILQ_REMOVE(&ki->kaio_bufqueue, job, plist); 1352 TAILQ_REMOVE(&ki->kaio_all, job, allist); 1353 ki->kaio_count--; 1354 if (!unmap) 1355 ki->kaio_buffer_count--; 1356 if (lj) 1357 lj->lioj_count--; 1358 AIO_UNLOCK(ki); 1359 if (pbuf) { 1360 relpbuf(pbuf, NULL); 1361 job->pbuf = NULL; 1362 } 1363 g_destroy_bio(bp); 1364 job->bp = NULL; 1365 unref: 1366 dev_relthread(dev, ref); 1367 return (error); 1368 } 1369 1370 /* 1371 * Wake up aio requests that may be serviceable now. 1372 */ 1373 static void 1374 aio_swake_cb(struct socket *so, struct sockbuf *sb) 1375 { 1376 struct kaiocb *job, *jobn; 1377 int opcode; 1378 1379 SOCKBUF_LOCK_ASSERT(sb); 1380 if (sb == &so->so_snd) 1381 opcode = LIO_WRITE; 1382 else 1383 opcode = LIO_READ; 1384 1385 sb->sb_flags &= ~SB_AIO; 1386 mtx_lock(&aio_job_mtx); 1387 TAILQ_FOREACH_SAFE(job, &so->so_aiojobq, list, jobn) { 1388 if (opcode == job->uaiocb.aio_lio_opcode) { 1389 if (job->jobstate != JOBST_JOBQSOCK) 1390 panic("invalid queue value"); 1391 /* XXX 1392 * We don't have actual sockets backend yet, 1393 * so we simply move the requests to the generic 1394 * file I/O backend. 1395 */ 1396 TAILQ_REMOVE(&so->so_aiojobq, job, list); 1397 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1398 aio_kick_nowait(job->userproc); 1399 } 1400 } 1401 mtx_unlock(&aio_job_mtx); 1402 } 1403 1404 static int 1405 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1406 { 1407 1408 /* 1409 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1410 * supported by AIO with the old sigevent structure. 1411 */ 1412 nsig->sigev_notify = osig->sigev_notify; 1413 switch (nsig->sigev_notify) { 1414 case SIGEV_NONE: 1415 break; 1416 case SIGEV_SIGNAL: 1417 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1418 break; 1419 case SIGEV_KEVENT: 1420 nsig->sigev_notify_kqueue = 1421 osig->__sigev_u.__sigev_notify_kqueue; 1422 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1423 break; 1424 default: 1425 return (EINVAL); 1426 } 1427 return (0); 1428 } 1429 1430 static int 1431 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1432 { 1433 struct oaiocb *ojob; 1434 int error; 1435 1436 bzero(kjob, sizeof(struct aiocb)); 1437 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1438 if (error) 1439 return (error); 1440 ojob = (struct oaiocb *)kjob; 1441 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1442 } 1443 1444 static int 1445 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1446 { 1447 1448 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1449 } 1450 1451 static long 1452 aiocb_fetch_status(struct aiocb *ujob) 1453 { 1454 1455 return (fuword(&ujob->_aiocb_private.status)); 1456 } 1457 1458 static long 1459 aiocb_fetch_error(struct aiocb *ujob) 1460 { 1461 1462 return (fuword(&ujob->_aiocb_private.error)); 1463 } 1464 1465 static int 1466 aiocb_store_status(struct aiocb *ujob, long status) 1467 { 1468 1469 return (suword(&ujob->_aiocb_private.status, status)); 1470 } 1471 1472 static int 1473 aiocb_store_error(struct aiocb *ujob, long error) 1474 { 1475 1476 return (suword(&ujob->_aiocb_private.error, error)); 1477 } 1478 1479 static int 1480 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1481 { 1482 1483 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1484 } 1485 1486 static int 1487 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1488 { 1489 1490 return (suword(ujobp, (long)ujob)); 1491 } 1492 1493 static struct aiocb_ops aiocb_ops = { 1494 .copyin = aiocb_copyin, 1495 .fetch_status = aiocb_fetch_status, 1496 .fetch_error = aiocb_fetch_error, 1497 .store_status = aiocb_store_status, 1498 .store_error = aiocb_store_error, 1499 .store_kernelinfo = aiocb_store_kernelinfo, 1500 .store_aiocb = aiocb_store_aiocb, 1501 }; 1502 1503 static struct aiocb_ops aiocb_ops_osigevent = { 1504 .copyin = aiocb_copyin_old_sigevent, 1505 .fetch_status = aiocb_fetch_status, 1506 .fetch_error = aiocb_fetch_error, 1507 .store_status = aiocb_store_status, 1508 .store_error = aiocb_store_error, 1509 .store_kernelinfo = aiocb_store_kernelinfo, 1510 .store_aiocb = aiocb_store_aiocb, 1511 }; 1512 1513 /* 1514 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1515 * technique is done in this code. 1516 */ 1517 int 1518 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1519 int type, struct aiocb_ops *ops) 1520 { 1521 struct proc *p = td->td_proc; 1522 cap_rights_t rights; 1523 struct file *fp; 1524 struct socket *so; 1525 struct kaiocb *job, *job2; 1526 struct kaioinfo *ki; 1527 struct kevent kev; 1528 struct sockbuf *sb; 1529 int opcode; 1530 int error; 1531 int fd, kqfd; 1532 int jid; 1533 u_short evflags; 1534 1535 if (p->p_aioinfo == NULL) 1536 aio_init_aioinfo(p); 1537 1538 ki = p->p_aioinfo; 1539 1540 ops->store_status(ujob, -1); 1541 ops->store_error(ujob, 0); 1542 ops->store_kernelinfo(ujob, -1); 1543 1544 if (num_queue_count >= max_queue_count || 1545 ki->kaio_count >= ki->kaio_qallowed_count) { 1546 ops->store_error(ujob, EAGAIN); 1547 return (EAGAIN); 1548 } 1549 1550 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1551 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1552 1553 error = ops->copyin(ujob, &job->uaiocb); 1554 if (error) { 1555 ops->store_error(ujob, error); 1556 uma_zfree(aiocb_zone, job); 1557 return (error); 1558 } 1559 1560 /* XXX: aio_nbytes is later casted to signed types. */ 1561 if (job->uaiocb.aio_nbytes > INT_MAX) { 1562 uma_zfree(aiocb_zone, job); 1563 return (EINVAL); 1564 } 1565 1566 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1567 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1568 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1569 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1570 ops->store_error(ujob, EINVAL); 1571 uma_zfree(aiocb_zone, job); 1572 return (EINVAL); 1573 } 1574 1575 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1576 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1577 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1578 uma_zfree(aiocb_zone, job); 1579 return (EINVAL); 1580 } 1581 1582 ksiginfo_init(&job->ksi); 1583 1584 /* Save userspace address of the job info. */ 1585 job->ujob = ujob; 1586 1587 /* Get the opcode. */ 1588 if (type != LIO_NOP) 1589 job->uaiocb.aio_lio_opcode = type; 1590 opcode = job->uaiocb.aio_lio_opcode; 1591 1592 /* 1593 * Validate the opcode and fetch the file object for the specified 1594 * file descriptor. 1595 * 1596 * XXXRW: Moved the opcode validation up here so that we don't 1597 * retrieve a file descriptor without knowing what the capabiltity 1598 * should be. 1599 */ 1600 fd = job->uaiocb.aio_fildes; 1601 switch (opcode) { 1602 case LIO_WRITE: 1603 error = fget_write(td, fd, 1604 cap_rights_init(&rights, CAP_PWRITE), &fp); 1605 break; 1606 case LIO_READ: 1607 error = fget_read(td, fd, 1608 cap_rights_init(&rights, CAP_PREAD), &fp); 1609 break; 1610 case LIO_SYNC: 1611 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1612 break; 1613 case LIO_MLOCK: 1614 fp = NULL; 1615 break; 1616 case LIO_NOP: 1617 error = fget(td, fd, cap_rights_init(&rights), &fp); 1618 break; 1619 default: 1620 error = EINVAL; 1621 } 1622 if (error) { 1623 uma_zfree(aiocb_zone, job); 1624 ops->store_error(ujob, error); 1625 return (error); 1626 } 1627 1628 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1629 error = EINVAL; 1630 goto aqueue_fail; 1631 } 1632 1633 if (opcode != LIO_SYNC && job->uaiocb.aio_offset == -1LL) { 1634 error = EINVAL; 1635 goto aqueue_fail; 1636 } 1637 1638 job->fd_file = fp; 1639 1640 mtx_lock(&aio_job_mtx); 1641 jid = jobrefid++; 1642 job->seqno = jobseqno++; 1643 mtx_unlock(&aio_job_mtx); 1644 error = ops->store_kernelinfo(ujob, jid); 1645 if (error) { 1646 error = EINVAL; 1647 goto aqueue_fail; 1648 } 1649 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1650 1651 if (opcode == LIO_NOP) { 1652 fdrop(fp, td); 1653 uma_zfree(aiocb_zone, job); 1654 return (0); 1655 } 1656 1657 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1658 goto no_kqueue; 1659 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1660 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1661 error = EINVAL; 1662 goto aqueue_fail; 1663 } 1664 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1665 kev.ident = (uintptr_t)job->ujob; 1666 kev.filter = EVFILT_AIO; 1667 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1668 kev.data = (intptr_t)job; 1669 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1670 error = kqfd_register(kqfd, &kev, td, 1); 1671 aqueue_fail: 1672 if (error) { 1673 if (fp) 1674 fdrop(fp, td); 1675 uma_zfree(aiocb_zone, job); 1676 ops->store_error(ujob, error); 1677 goto done; 1678 } 1679 no_kqueue: 1680 1681 ops->store_error(ujob, EINPROGRESS); 1682 job->uaiocb._aiocb_private.error = EINPROGRESS; 1683 job->userproc = p; 1684 job->cred = crhold(td->td_ucred); 1685 job->jobflags = 0; 1686 job->lio = lj; 1687 1688 if (opcode == LIO_SYNC) 1689 goto queueit; 1690 1691 if (fp && fp->f_type == DTYPE_SOCKET) { 1692 /* 1693 * Alternate queueing for socket ops: Reach down into the 1694 * descriptor to get the socket data. Then check to see if the 1695 * socket is ready to be read or written (based on the requested 1696 * operation). 1697 * 1698 * If it is not ready for io, then queue the job on the 1699 * socket, and set the flags so we get a call when sbnotify() 1700 * happens. 1701 * 1702 * Note if opcode is neither LIO_WRITE nor LIO_READ we lock 1703 * and unlock the snd sockbuf for no reason. 1704 */ 1705 so = fp->f_data; 1706 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd; 1707 SOCKBUF_LOCK(sb); 1708 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode == 1709 LIO_WRITE) && (!sowriteable(so)))) { 1710 sb->sb_flags |= SB_AIO; 1711 1712 mtx_lock(&aio_job_mtx); 1713 TAILQ_INSERT_TAIL(&so->so_aiojobq, job, list); 1714 mtx_unlock(&aio_job_mtx); 1715 1716 AIO_LOCK(ki); 1717 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1718 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1719 job->jobstate = JOBST_JOBQSOCK; 1720 ki->kaio_count++; 1721 if (lj) 1722 lj->lioj_count++; 1723 AIO_UNLOCK(ki); 1724 SOCKBUF_UNLOCK(sb); 1725 atomic_add_int(&num_queue_count, 1); 1726 error = 0; 1727 goto done; 1728 } 1729 SOCKBUF_UNLOCK(sb); 1730 } 1731 1732 if ((error = aio_qphysio(p, job)) == 0) 1733 goto done; 1734 #if 0 1735 if (error > 0) { 1736 job->uaiocb._aiocb_private.error = error; 1737 ops->store_error(ujob, error); 1738 goto done; 1739 } 1740 #endif 1741 queueit: 1742 atomic_add_int(&num_queue_count, 1); 1743 1744 AIO_LOCK(ki); 1745 ki->kaio_count++; 1746 if (lj) 1747 lj->lioj_count++; 1748 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1749 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1750 if (opcode == LIO_SYNC) { 1751 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1752 if (job2->fd_file == job->fd_file && 1753 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1754 job2->seqno < job->seqno) { 1755 job2->jobflags |= KAIOCB_CHECKSYNC; 1756 job->pending++; 1757 } 1758 } 1759 TAILQ_FOREACH(job2, &ki->kaio_bufqueue, plist) { 1760 if (job2->fd_file == job->fd_file && 1761 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1762 job2->seqno < job->seqno) { 1763 job2->jobflags |= KAIOCB_CHECKSYNC; 1764 job->pending++; 1765 } 1766 } 1767 if (job->pending != 0) { 1768 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1769 job->jobstate = JOBST_JOBQSYNC; 1770 AIO_UNLOCK(ki); 1771 goto done; 1772 } 1773 } 1774 mtx_lock(&aio_job_mtx); 1775 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1776 job->jobstate = JOBST_JOBQGLOBAL; 1777 aio_kick_nowait(p); 1778 mtx_unlock(&aio_job_mtx); 1779 AIO_UNLOCK(ki); 1780 error = 0; 1781 done: 1782 return (error); 1783 } 1784 1785 static void 1786 aio_kick_nowait(struct proc *userp) 1787 { 1788 struct kaioinfo *ki = userp->p_aioinfo; 1789 struct aioproc *aiop; 1790 1791 mtx_assert(&aio_job_mtx, MA_OWNED); 1792 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1793 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1794 aiop->aioprocflags &= ~AIOP_FREE; 1795 wakeup(aiop->aioproc); 1796 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1797 ki->kaio_active_count + num_aio_resv_start < 1798 ki->kaio_maxactive_count) { 1799 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1800 } 1801 } 1802 1803 static int 1804 aio_kick(struct proc *userp) 1805 { 1806 struct kaioinfo *ki = userp->p_aioinfo; 1807 struct aioproc *aiop; 1808 int error, ret = 0; 1809 1810 mtx_assert(&aio_job_mtx, MA_OWNED); 1811 retryproc: 1812 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1813 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1814 aiop->aioprocflags &= ~AIOP_FREE; 1815 wakeup(aiop->aioproc); 1816 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1817 ki->kaio_active_count + num_aio_resv_start < 1818 ki->kaio_maxactive_count) { 1819 num_aio_resv_start++; 1820 mtx_unlock(&aio_job_mtx); 1821 error = aio_newproc(&num_aio_resv_start); 1822 mtx_lock(&aio_job_mtx); 1823 if (error) { 1824 num_aio_resv_start--; 1825 goto retryproc; 1826 } 1827 } else { 1828 ret = -1; 1829 } 1830 return (ret); 1831 } 1832 1833 static void 1834 aio_kick_helper(void *context, int pending) 1835 { 1836 struct proc *userp = context; 1837 1838 mtx_lock(&aio_job_mtx); 1839 while (--pending >= 0) { 1840 if (aio_kick(userp)) 1841 break; 1842 } 1843 mtx_unlock(&aio_job_mtx); 1844 } 1845 1846 /* 1847 * Support the aio_return system call, as a side-effect, kernel resources are 1848 * released. 1849 */ 1850 static int 1851 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1852 { 1853 struct proc *p = td->td_proc; 1854 struct kaiocb *job; 1855 struct kaioinfo *ki; 1856 int status, error; 1857 1858 ki = p->p_aioinfo; 1859 if (ki == NULL) 1860 return (EINVAL); 1861 AIO_LOCK(ki); 1862 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1863 if (job->ujob == ujob) 1864 break; 1865 } 1866 if (job != NULL) { 1867 MPASS(job->jobstate == JOBST_JOBFINISHED); 1868 status = job->uaiocb._aiocb_private.status; 1869 error = job->uaiocb._aiocb_private.error; 1870 td->td_retval[0] = status; 1871 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) { 1872 td->td_ru.ru_oublock += job->outputcharge; 1873 job->outputcharge = 0; 1874 } else if (job->uaiocb.aio_lio_opcode == LIO_READ) { 1875 td->td_ru.ru_inblock += job->inputcharge; 1876 job->inputcharge = 0; 1877 } 1878 aio_free_entry(job); 1879 AIO_UNLOCK(ki); 1880 ops->store_error(ujob, error); 1881 ops->store_status(ujob, status); 1882 } else { 1883 error = EINVAL; 1884 AIO_UNLOCK(ki); 1885 } 1886 return (error); 1887 } 1888 1889 int 1890 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1891 { 1892 1893 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1894 } 1895 1896 /* 1897 * Allow a process to wakeup when any of the I/O requests are completed. 1898 */ 1899 static int 1900 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1901 struct timespec *ts) 1902 { 1903 struct proc *p = td->td_proc; 1904 struct timeval atv; 1905 struct kaioinfo *ki; 1906 struct kaiocb *firstjob, *job; 1907 int error, i, timo; 1908 1909 timo = 0; 1910 if (ts) { 1911 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1912 return (EINVAL); 1913 1914 TIMESPEC_TO_TIMEVAL(&atv, ts); 1915 if (itimerfix(&atv)) 1916 return (EINVAL); 1917 timo = tvtohz(&atv); 1918 } 1919 1920 ki = p->p_aioinfo; 1921 if (ki == NULL) 1922 return (EAGAIN); 1923 1924 if (njoblist == 0) 1925 return (0); 1926 1927 AIO_LOCK(ki); 1928 for (;;) { 1929 firstjob = NULL; 1930 error = 0; 1931 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1932 for (i = 0; i < njoblist; i++) { 1933 if (job->ujob == ujoblist[i]) { 1934 if (firstjob == NULL) 1935 firstjob = job; 1936 if (job->jobstate == JOBST_JOBFINISHED) 1937 goto RETURN; 1938 } 1939 } 1940 } 1941 /* All tasks were finished. */ 1942 if (firstjob == NULL) 1943 break; 1944 1945 ki->kaio_flags |= KAIO_WAKEUP; 1946 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1947 "aiospn", timo); 1948 if (error == ERESTART) 1949 error = EINTR; 1950 if (error) 1951 break; 1952 } 1953 RETURN: 1954 AIO_UNLOCK(ki); 1955 return (error); 1956 } 1957 1958 int 1959 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1960 { 1961 struct timespec ts, *tsp; 1962 struct aiocb **ujoblist; 1963 int error; 1964 1965 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 1966 return (EINVAL); 1967 1968 if (uap->timeout) { 1969 /* Get timespec struct. */ 1970 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1971 return (error); 1972 tsp = &ts; 1973 } else 1974 tsp = NULL; 1975 1976 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1977 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1978 if (error == 0) 1979 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1980 uma_zfree(aiol_zone, ujoblist); 1981 return (error); 1982 } 1983 1984 /* 1985 * aio_cancel cancels any non-physio aio operations not currently in 1986 * progress. 1987 */ 1988 int 1989 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1990 { 1991 struct proc *p = td->td_proc; 1992 struct kaioinfo *ki; 1993 struct kaiocb *job, *jobn; 1994 struct file *fp; 1995 struct socket *so; 1996 cap_rights_t rights; 1997 int error; 1998 int remove; 1999 int cancelled = 0; 2000 int notcancelled = 0; 2001 struct vnode *vp; 2002 2003 /* Lookup file object. */ 2004 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 2005 if (error) 2006 return (error); 2007 2008 ki = p->p_aioinfo; 2009 if (ki == NULL) 2010 goto done; 2011 2012 if (fp->f_type == DTYPE_VNODE) { 2013 vp = fp->f_vnode; 2014 if (vn_isdisk(vp, &error)) { 2015 fdrop(fp, td); 2016 td->td_retval[0] = AIO_NOTCANCELED; 2017 return (0); 2018 } 2019 } 2020 2021 AIO_LOCK(ki); 2022 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2023 if ((uap->fd == job->uaiocb.aio_fildes) && 2024 ((uap->aiocbp == NULL) || 2025 (uap->aiocbp == job->ujob))) { 2026 remove = 0; 2027 2028 mtx_lock(&aio_job_mtx); 2029 if (job->jobstate == JOBST_JOBQGLOBAL) { 2030 TAILQ_REMOVE(&aio_jobs, job, list); 2031 remove = 1; 2032 } else if (job->jobstate == JOBST_JOBQSOCK) { 2033 MPASS(fp->f_type == DTYPE_SOCKET); 2034 so = fp->f_data; 2035 TAILQ_REMOVE(&so->so_aiojobq, job, list); 2036 remove = 1; 2037 } else if (job->jobstate == JOBST_JOBQSYNC) { 2038 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 2039 remove = 1; 2040 } 2041 mtx_unlock(&aio_job_mtx); 2042 2043 if (remove) { 2044 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 2045 job->uaiocb._aiocb_private.status = -1; 2046 job->uaiocb._aiocb_private.error = ECANCELED; 2047 aio_bio_done_notify(p, job, DONE_QUEUE); 2048 cancelled++; 2049 } else { 2050 notcancelled++; 2051 } 2052 if (uap->aiocbp != NULL) 2053 break; 2054 } 2055 } 2056 AIO_UNLOCK(ki); 2057 2058 done: 2059 fdrop(fp, td); 2060 2061 if (uap->aiocbp != NULL) { 2062 if (cancelled) { 2063 td->td_retval[0] = AIO_CANCELED; 2064 return (0); 2065 } 2066 } 2067 2068 if (notcancelled) { 2069 td->td_retval[0] = AIO_NOTCANCELED; 2070 return (0); 2071 } 2072 2073 if (cancelled) { 2074 td->td_retval[0] = AIO_CANCELED; 2075 return (0); 2076 } 2077 2078 td->td_retval[0] = AIO_ALLDONE; 2079 2080 return (0); 2081 } 2082 2083 /* 2084 * aio_error is implemented in the kernel level for compatibility purposes 2085 * only. For a user mode async implementation, it would be best to do it in 2086 * a userland subroutine. 2087 */ 2088 static int 2089 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2090 { 2091 struct proc *p = td->td_proc; 2092 struct kaiocb *job; 2093 struct kaioinfo *ki; 2094 int status; 2095 2096 ki = p->p_aioinfo; 2097 if (ki == NULL) { 2098 td->td_retval[0] = EINVAL; 2099 return (0); 2100 } 2101 2102 AIO_LOCK(ki); 2103 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2104 if (job->ujob == ujob) { 2105 if (job->jobstate == JOBST_JOBFINISHED) 2106 td->td_retval[0] = 2107 job->uaiocb._aiocb_private.error; 2108 else 2109 td->td_retval[0] = EINPROGRESS; 2110 AIO_UNLOCK(ki); 2111 return (0); 2112 } 2113 } 2114 AIO_UNLOCK(ki); 2115 2116 /* 2117 * Hack for failure of aio_aqueue. 2118 */ 2119 status = ops->fetch_status(ujob); 2120 if (status == -1) { 2121 td->td_retval[0] = ops->fetch_error(ujob); 2122 return (0); 2123 } 2124 2125 td->td_retval[0] = EINVAL; 2126 return (0); 2127 } 2128 2129 int 2130 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2131 { 2132 2133 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2134 } 2135 2136 /* syscall - asynchronous read from a file (REALTIME) */ 2137 int 2138 sys_oaio_read(struct thread *td, struct oaio_read_args *uap) 2139 { 2140 2141 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2142 &aiocb_ops_osigevent)); 2143 } 2144 2145 int 2146 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2147 { 2148 2149 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2150 } 2151 2152 /* syscall - asynchronous write to a file (REALTIME) */ 2153 int 2154 sys_oaio_write(struct thread *td, struct oaio_write_args *uap) 2155 { 2156 2157 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2158 &aiocb_ops_osigevent)); 2159 } 2160 2161 int 2162 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2163 { 2164 2165 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2166 } 2167 2168 int 2169 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2170 { 2171 2172 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2173 } 2174 2175 static int 2176 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2177 struct aiocb **acb_list, int nent, struct sigevent *sig, 2178 struct aiocb_ops *ops) 2179 { 2180 struct proc *p = td->td_proc; 2181 struct aiocb *job; 2182 struct kaioinfo *ki; 2183 struct aioliojob *lj; 2184 struct kevent kev; 2185 int error; 2186 int nerror; 2187 int i; 2188 2189 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2190 return (EINVAL); 2191 2192 if (nent < 0 || nent > AIO_LISTIO_MAX) 2193 return (EINVAL); 2194 2195 if (p->p_aioinfo == NULL) 2196 aio_init_aioinfo(p); 2197 2198 ki = p->p_aioinfo; 2199 2200 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2201 lj->lioj_flags = 0; 2202 lj->lioj_count = 0; 2203 lj->lioj_finished_count = 0; 2204 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2205 ksiginfo_init(&lj->lioj_ksi); 2206 2207 /* 2208 * Setup signal. 2209 */ 2210 if (sig && (mode == LIO_NOWAIT)) { 2211 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2212 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2213 /* Assume only new style KEVENT */ 2214 kev.filter = EVFILT_LIO; 2215 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2216 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2217 kev.data = (intptr_t)lj; 2218 /* pass user defined sigval data */ 2219 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2220 error = kqfd_register( 2221 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2222 if (error) { 2223 uma_zfree(aiolio_zone, lj); 2224 return (error); 2225 } 2226 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2227 ; 2228 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2229 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2230 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2231 uma_zfree(aiolio_zone, lj); 2232 return EINVAL; 2233 } 2234 lj->lioj_flags |= LIOJ_SIGNAL; 2235 } else { 2236 uma_zfree(aiolio_zone, lj); 2237 return EINVAL; 2238 } 2239 } 2240 2241 AIO_LOCK(ki); 2242 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2243 /* 2244 * Add extra aiocb count to avoid the lio to be freed 2245 * by other threads doing aio_waitcomplete or aio_return, 2246 * and prevent event from being sent until we have queued 2247 * all tasks. 2248 */ 2249 lj->lioj_count = 1; 2250 AIO_UNLOCK(ki); 2251 2252 /* 2253 * Get pointers to the list of I/O requests. 2254 */ 2255 nerror = 0; 2256 for (i = 0; i < nent; i++) { 2257 job = acb_list[i]; 2258 if (job != NULL) { 2259 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2260 if (error != 0) 2261 nerror++; 2262 } 2263 } 2264 2265 error = 0; 2266 AIO_LOCK(ki); 2267 if (mode == LIO_WAIT) { 2268 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2269 ki->kaio_flags |= KAIO_WAKEUP; 2270 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2271 PRIBIO | PCATCH, "aiospn", 0); 2272 if (error == ERESTART) 2273 error = EINTR; 2274 if (error) 2275 break; 2276 } 2277 } else { 2278 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2279 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2280 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2281 KNOTE_LOCKED(&lj->klist, 1); 2282 } 2283 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2284 == LIOJ_SIGNAL 2285 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2286 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2287 aio_sendsig(p, &lj->lioj_signal, 2288 &lj->lioj_ksi); 2289 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2290 } 2291 } 2292 } 2293 lj->lioj_count--; 2294 if (lj->lioj_count == 0) { 2295 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2296 knlist_delete(&lj->klist, curthread, 1); 2297 PROC_LOCK(p); 2298 sigqueue_take(&lj->lioj_ksi); 2299 PROC_UNLOCK(p); 2300 AIO_UNLOCK(ki); 2301 uma_zfree(aiolio_zone, lj); 2302 } else 2303 AIO_UNLOCK(ki); 2304 2305 if (nerror) 2306 return (EIO); 2307 return (error); 2308 } 2309 2310 /* syscall - list directed I/O (REALTIME) */ 2311 int 2312 sys_olio_listio(struct thread *td, struct olio_listio_args *uap) 2313 { 2314 struct aiocb **acb_list; 2315 struct sigevent *sigp, sig; 2316 struct osigevent osig; 2317 int error, nent; 2318 2319 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2320 return (EINVAL); 2321 2322 nent = uap->nent; 2323 if (nent < 0 || nent > AIO_LISTIO_MAX) 2324 return (EINVAL); 2325 2326 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2327 error = copyin(uap->sig, &osig, sizeof(osig)); 2328 if (error) 2329 return (error); 2330 error = convert_old_sigevent(&osig, &sig); 2331 if (error) 2332 return (error); 2333 sigp = &sig; 2334 } else 2335 sigp = NULL; 2336 2337 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2338 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2339 if (error == 0) 2340 error = kern_lio_listio(td, uap->mode, 2341 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2342 &aiocb_ops_osigevent); 2343 free(acb_list, M_LIO); 2344 return (error); 2345 } 2346 2347 /* syscall - list directed I/O (REALTIME) */ 2348 int 2349 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2350 { 2351 struct aiocb **acb_list; 2352 struct sigevent *sigp, sig; 2353 int error, nent; 2354 2355 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2356 return (EINVAL); 2357 2358 nent = uap->nent; 2359 if (nent < 0 || nent > AIO_LISTIO_MAX) 2360 return (EINVAL); 2361 2362 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2363 error = copyin(uap->sig, &sig, sizeof(sig)); 2364 if (error) 2365 return (error); 2366 sigp = &sig; 2367 } else 2368 sigp = NULL; 2369 2370 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2371 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2372 if (error == 0) 2373 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2374 nent, sigp, &aiocb_ops); 2375 free(acb_list, M_LIO); 2376 return (error); 2377 } 2378 2379 static void 2380 aio_physwakeup(struct bio *bp) 2381 { 2382 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2383 struct proc *userp; 2384 struct kaioinfo *ki; 2385 int nblks; 2386 2387 /* Release mapping into kernel space. */ 2388 if (job->pbuf) { 2389 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2390 relpbuf(job->pbuf, NULL); 2391 job->pbuf = NULL; 2392 atomic_subtract_int(&num_buf_aio, 1); 2393 } 2394 vm_page_unhold_pages(job->pages, job->npages); 2395 2396 bp = job->bp; 2397 job->bp = NULL; 2398 userp = job->userproc; 2399 ki = userp->p_aioinfo; 2400 AIO_LOCK(ki); 2401 job->uaiocb._aiocb_private.status -= bp->bio_resid; 2402 job->uaiocb._aiocb_private.error = 0; 2403 if (bp->bio_flags & BIO_ERROR) 2404 job->uaiocb._aiocb_private.error = bp->bio_error; 2405 nblks = btodb(job->uaiocb.aio_nbytes); 2406 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2407 job->outputcharge += nblks; 2408 else 2409 job->inputcharge += nblks; 2410 TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, job, plist); 2411 ki->kaio_buffer_count--; 2412 aio_bio_done_notify(userp, job, DONE_BUF); 2413 AIO_UNLOCK(ki); 2414 2415 g_destroy_bio(bp); 2416 } 2417 2418 /* syscall - wait for the next completion of an aio request */ 2419 static int 2420 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2421 struct timespec *ts, struct aiocb_ops *ops) 2422 { 2423 struct proc *p = td->td_proc; 2424 struct timeval atv; 2425 struct kaioinfo *ki; 2426 struct kaiocb *job; 2427 struct aiocb *ujob; 2428 int error, status, timo; 2429 2430 ops->store_aiocb(ujobp, NULL); 2431 2432 if (ts == NULL) { 2433 timo = 0; 2434 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2435 timo = -1; 2436 } else { 2437 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2438 return (EINVAL); 2439 2440 TIMESPEC_TO_TIMEVAL(&atv, ts); 2441 if (itimerfix(&atv)) 2442 return (EINVAL); 2443 timo = tvtohz(&atv); 2444 } 2445 2446 if (p->p_aioinfo == NULL) 2447 aio_init_aioinfo(p); 2448 ki = p->p_aioinfo; 2449 2450 error = 0; 2451 job = NULL; 2452 AIO_LOCK(ki); 2453 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2454 if (timo == -1) { 2455 error = EWOULDBLOCK; 2456 break; 2457 } 2458 ki->kaio_flags |= KAIO_WAKEUP; 2459 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2460 "aiowc", timo); 2461 if (timo && error == ERESTART) 2462 error = EINTR; 2463 if (error) 2464 break; 2465 } 2466 2467 if (job != NULL) { 2468 MPASS(job->jobstate == JOBST_JOBFINISHED); 2469 ujob = job->ujob; 2470 status = job->uaiocb._aiocb_private.status; 2471 error = job->uaiocb._aiocb_private.error; 2472 td->td_retval[0] = status; 2473 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) { 2474 td->td_ru.ru_oublock += job->outputcharge; 2475 job->outputcharge = 0; 2476 } else if (job->uaiocb.aio_lio_opcode == LIO_READ) { 2477 td->td_ru.ru_inblock += job->inputcharge; 2478 job->inputcharge = 0; 2479 } 2480 aio_free_entry(job); 2481 AIO_UNLOCK(ki); 2482 ops->store_aiocb(ujobp, ujob); 2483 ops->store_error(ujob, error); 2484 ops->store_status(ujob, status); 2485 } else 2486 AIO_UNLOCK(ki); 2487 2488 return (error); 2489 } 2490 2491 int 2492 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2493 { 2494 struct timespec ts, *tsp; 2495 int error; 2496 2497 if (uap->timeout) { 2498 /* Get timespec struct. */ 2499 error = copyin(uap->timeout, &ts, sizeof(ts)); 2500 if (error) 2501 return (error); 2502 tsp = &ts; 2503 } else 2504 tsp = NULL; 2505 2506 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2507 } 2508 2509 static int 2510 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2511 struct aiocb_ops *ops) 2512 { 2513 struct proc *p = td->td_proc; 2514 struct kaioinfo *ki; 2515 2516 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2517 return (EINVAL); 2518 ki = p->p_aioinfo; 2519 if (ki == NULL) 2520 aio_init_aioinfo(p); 2521 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2522 } 2523 2524 int 2525 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2526 { 2527 2528 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2529 } 2530 2531 /* kqueue attach function */ 2532 static int 2533 filt_aioattach(struct knote *kn) 2534 { 2535 struct kaiocb *job = (struct kaiocb *)kn->kn_sdata; 2536 2537 /* 2538 * The job pointer must be validated before using it, so 2539 * registration is restricted to the kernel; the user cannot 2540 * set EV_FLAG1. 2541 */ 2542 if ((kn->kn_flags & EV_FLAG1) == 0) 2543 return (EPERM); 2544 kn->kn_ptr.p_aio = job; 2545 kn->kn_flags &= ~EV_FLAG1; 2546 2547 knlist_add(&job->klist, kn, 0); 2548 2549 return (0); 2550 } 2551 2552 /* kqueue detach function */ 2553 static void 2554 filt_aiodetach(struct knote *kn) 2555 { 2556 struct knlist *knl; 2557 2558 knl = &kn->kn_ptr.p_aio->klist; 2559 knl->kl_lock(knl->kl_lockarg); 2560 if (!knlist_empty(knl)) 2561 knlist_remove(knl, kn, 1); 2562 knl->kl_unlock(knl->kl_lockarg); 2563 } 2564 2565 /* kqueue filter function */ 2566 /*ARGSUSED*/ 2567 static int 2568 filt_aio(struct knote *kn, long hint) 2569 { 2570 struct kaiocb *job = kn->kn_ptr.p_aio; 2571 2572 kn->kn_data = job->uaiocb._aiocb_private.error; 2573 if (job->jobstate != JOBST_JOBFINISHED) 2574 return (0); 2575 kn->kn_flags |= EV_EOF; 2576 return (1); 2577 } 2578 2579 /* kqueue attach function */ 2580 static int 2581 filt_lioattach(struct knote *kn) 2582 { 2583 struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata; 2584 2585 /* 2586 * The aioliojob pointer must be validated before using it, so 2587 * registration is restricted to the kernel; the user cannot 2588 * set EV_FLAG1. 2589 */ 2590 if ((kn->kn_flags & EV_FLAG1) == 0) 2591 return (EPERM); 2592 kn->kn_ptr.p_lio = lj; 2593 kn->kn_flags &= ~EV_FLAG1; 2594 2595 knlist_add(&lj->klist, kn, 0); 2596 2597 return (0); 2598 } 2599 2600 /* kqueue detach function */ 2601 static void 2602 filt_liodetach(struct knote *kn) 2603 { 2604 struct knlist *knl; 2605 2606 knl = &kn->kn_ptr.p_lio->klist; 2607 knl->kl_lock(knl->kl_lockarg); 2608 if (!knlist_empty(knl)) 2609 knlist_remove(knl, kn, 1); 2610 knl->kl_unlock(knl->kl_lockarg); 2611 } 2612 2613 /* kqueue filter function */ 2614 /*ARGSUSED*/ 2615 static int 2616 filt_lio(struct knote *kn, long hint) 2617 { 2618 struct aioliojob * lj = kn->kn_ptr.p_lio; 2619 2620 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2621 } 2622 2623 #ifdef COMPAT_FREEBSD32 2624 2625 struct __aiocb_private32 { 2626 int32_t status; 2627 int32_t error; 2628 uint32_t kernelinfo; 2629 }; 2630 2631 typedef struct oaiocb32 { 2632 int aio_fildes; /* File descriptor */ 2633 uint64_t aio_offset __packed; /* File offset for I/O */ 2634 uint32_t aio_buf; /* I/O buffer in process space */ 2635 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2636 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2637 int aio_lio_opcode; /* LIO opcode */ 2638 int aio_reqprio; /* Request priority -- ignored */ 2639 struct __aiocb_private32 _aiocb_private; 2640 } oaiocb32_t; 2641 2642 typedef struct aiocb32 { 2643 int32_t aio_fildes; /* File descriptor */ 2644 uint64_t aio_offset __packed; /* File offset for I/O */ 2645 uint32_t aio_buf; /* I/O buffer in process space */ 2646 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2647 int __spare__[2]; 2648 uint32_t __spare2__; 2649 int aio_lio_opcode; /* LIO opcode */ 2650 int aio_reqprio; /* Request priority -- ignored */ 2651 struct __aiocb_private32 _aiocb_private; 2652 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2653 } aiocb32_t; 2654 2655 static int 2656 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2657 { 2658 2659 /* 2660 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2661 * supported by AIO with the old sigevent structure. 2662 */ 2663 CP(*osig, *nsig, sigev_notify); 2664 switch (nsig->sigev_notify) { 2665 case SIGEV_NONE: 2666 break; 2667 case SIGEV_SIGNAL: 2668 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2669 break; 2670 case SIGEV_KEVENT: 2671 nsig->sigev_notify_kqueue = 2672 osig->__sigev_u.__sigev_notify_kqueue; 2673 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2674 break; 2675 default: 2676 return (EINVAL); 2677 } 2678 return (0); 2679 } 2680 2681 static int 2682 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2683 { 2684 struct oaiocb32 job32; 2685 int error; 2686 2687 bzero(kjob, sizeof(struct aiocb)); 2688 error = copyin(ujob, &job32, sizeof(job32)); 2689 if (error) 2690 return (error); 2691 2692 CP(job32, *kjob, aio_fildes); 2693 CP(job32, *kjob, aio_offset); 2694 PTRIN_CP(job32, *kjob, aio_buf); 2695 CP(job32, *kjob, aio_nbytes); 2696 CP(job32, *kjob, aio_lio_opcode); 2697 CP(job32, *kjob, aio_reqprio); 2698 CP(job32, *kjob, _aiocb_private.status); 2699 CP(job32, *kjob, _aiocb_private.error); 2700 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2701 return (convert_old_sigevent32(&job32.aio_sigevent, 2702 &kjob->aio_sigevent)); 2703 } 2704 2705 static int 2706 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2707 { 2708 struct aiocb32 job32; 2709 int error; 2710 2711 error = copyin(ujob, &job32, sizeof(job32)); 2712 if (error) 2713 return (error); 2714 CP(job32, *kjob, aio_fildes); 2715 CP(job32, *kjob, aio_offset); 2716 PTRIN_CP(job32, *kjob, aio_buf); 2717 CP(job32, *kjob, aio_nbytes); 2718 CP(job32, *kjob, aio_lio_opcode); 2719 CP(job32, *kjob, aio_reqprio); 2720 CP(job32, *kjob, _aiocb_private.status); 2721 CP(job32, *kjob, _aiocb_private.error); 2722 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2723 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2724 } 2725 2726 static long 2727 aiocb32_fetch_status(struct aiocb *ujob) 2728 { 2729 struct aiocb32 *ujob32; 2730 2731 ujob32 = (struct aiocb32 *)ujob; 2732 return (fuword32(&ujob32->_aiocb_private.status)); 2733 } 2734 2735 static long 2736 aiocb32_fetch_error(struct aiocb *ujob) 2737 { 2738 struct aiocb32 *ujob32; 2739 2740 ujob32 = (struct aiocb32 *)ujob; 2741 return (fuword32(&ujob32->_aiocb_private.error)); 2742 } 2743 2744 static int 2745 aiocb32_store_status(struct aiocb *ujob, long status) 2746 { 2747 struct aiocb32 *ujob32; 2748 2749 ujob32 = (struct aiocb32 *)ujob; 2750 return (suword32(&ujob32->_aiocb_private.status, status)); 2751 } 2752 2753 static int 2754 aiocb32_store_error(struct aiocb *ujob, long error) 2755 { 2756 struct aiocb32 *ujob32; 2757 2758 ujob32 = (struct aiocb32 *)ujob; 2759 return (suword32(&ujob32->_aiocb_private.error, error)); 2760 } 2761 2762 static int 2763 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2764 { 2765 struct aiocb32 *ujob32; 2766 2767 ujob32 = (struct aiocb32 *)ujob; 2768 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2769 } 2770 2771 static int 2772 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2773 { 2774 2775 return (suword32(ujobp, (long)ujob)); 2776 } 2777 2778 static struct aiocb_ops aiocb32_ops = { 2779 .copyin = aiocb32_copyin, 2780 .fetch_status = aiocb32_fetch_status, 2781 .fetch_error = aiocb32_fetch_error, 2782 .store_status = aiocb32_store_status, 2783 .store_error = aiocb32_store_error, 2784 .store_kernelinfo = aiocb32_store_kernelinfo, 2785 .store_aiocb = aiocb32_store_aiocb, 2786 }; 2787 2788 static struct aiocb_ops aiocb32_ops_osigevent = { 2789 .copyin = aiocb32_copyin_old_sigevent, 2790 .fetch_status = aiocb32_fetch_status, 2791 .fetch_error = aiocb32_fetch_error, 2792 .store_status = aiocb32_store_status, 2793 .store_error = aiocb32_store_error, 2794 .store_kernelinfo = aiocb32_store_kernelinfo, 2795 .store_aiocb = aiocb32_store_aiocb, 2796 }; 2797 2798 int 2799 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2800 { 2801 2802 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2803 } 2804 2805 int 2806 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2807 { 2808 struct timespec32 ts32; 2809 struct timespec ts, *tsp; 2810 struct aiocb **ujoblist; 2811 uint32_t *ujoblist32; 2812 int error, i; 2813 2814 if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX) 2815 return (EINVAL); 2816 2817 if (uap->timeout) { 2818 /* Get timespec struct. */ 2819 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2820 return (error); 2821 CP(ts32, ts, tv_sec); 2822 CP(ts32, ts, tv_nsec); 2823 tsp = &ts; 2824 } else 2825 tsp = NULL; 2826 2827 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2828 ujoblist32 = (uint32_t *)ujoblist; 2829 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2830 sizeof(ujoblist32[0])); 2831 if (error == 0) { 2832 for (i = uap->nent; i > 0; i--) 2833 ujoblist[i] = PTRIN(ujoblist32[i]); 2834 2835 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2836 } 2837 uma_zfree(aiol_zone, ujoblist); 2838 return (error); 2839 } 2840 2841 int 2842 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap) 2843 { 2844 2845 return (sys_aio_cancel(td, (struct aio_cancel_args *)uap)); 2846 } 2847 2848 int 2849 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2850 { 2851 2852 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2853 } 2854 2855 int 2856 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap) 2857 { 2858 2859 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2860 &aiocb32_ops_osigevent)); 2861 } 2862 2863 int 2864 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2865 { 2866 2867 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2868 &aiocb32_ops)); 2869 } 2870 2871 int 2872 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap) 2873 { 2874 2875 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2876 &aiocb32_ops_osigevent)); 2877 } 2878 2879 int 2880 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2881 { 2882 2883 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2884 &aiocb32_ops)); 2885 } 2886 2887 int 2888 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2889 { 2890 2891 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2892 &aiocb32_ops)); 2893 } 2894 2895 int 2896 freebsd32_aio_waitcomplete(struct thread *td, 2897 struct freebsd32_aio_waitcomplete_args *uap) 2898 { 2899 struct timespec32 ts32; 2900 struct timespec ts, *tsp; 2901 int error; 2902 2903 if (uap->timeout) { 2904 /* Get timespec struct. */ 2905 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2906 if (error) 2907 return (error); 2908 CP(ts32, ts, tv_sec); 2909 CP(ts32, ts, tv_nsec); 2910 tsp = &ts; 2911 } else 2912 tsp = NULL; 2913 2914 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2915 &aiocb32_ops)); 2916 } 2917 2918 int 2919 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2920 { 2921 2922 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2923 &aiocb32_ops)); 2924 } 2925 2926 int 2927 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap) 2928 { 2929 struct aiocb **acb_list; 2930 struct sigevent *sigp, sig; 2931 struct osigevent32 osig; 2932 uint32_t *acb_list32; 2933 int error, i, nent; 2934 2935 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2936 return (EINVAL); 2937 2938 nent = uap->nent; 2939 if (nent < 0 || nent > AIO_LISTIO_MAX) 2940 return (EINVAL); 2941 2942 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2943 error = copyin(uap->sig, &osig, sizeof(osig)); 2944 if (error) 2945 return (error); 2946 error = convert_old_sigevent32(&osig, &sig); 2947 if (error) 2948 return (error); 2949 sigp = &sig; 2950 } else 2951 sigp = NULL; 2952 2953 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2954 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2955 if (error) { 2956 free(acb_list32, M_LIO); 2957 return (error); 2958 } 2959 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2960 for (i = 0; i < nent; i++) 2961 acb_list[i] = PTRIN(acb_list32[i]); 2962 free(acb_list32, M_LIO); 2963 2964 error = kern_lio_listio(td, uap->mode, 2965 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2966 &aiocb32_ops_osigevent); 2967 free(acb_list, M_LIO); 2968 return (error); 2969 } 2970 2971 int 2972 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2973 { 2974 struct aiocb **acb_list; 2975 struct sigevent *sigp, sig; 2976 struct sigevent32 sig32; 2977 uint32_t *acb_list32; 2978 int error, i, nent; 2979 2980 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2981 return (EINVAL); 2982 2983 nent = uap->nent; 2984 if (nent < 0 || nent > AIO_LISTIO_MAX) 2985 return (EINVAL); 2986 2987 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2988 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2989 if (error) 2990 return (error); 2991 error = convert_sigevent32(&sig32, &sig); 2992 if (error) 2993 return (error); 2994 sigp = &sig; 2995 } else 2996 sigp = NULL; 2997 2998 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2999 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 3000 if (error) { 3001 free(acb_list32, M_LIO); 3002 return (error); 3003 } 3004 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 3005 for (i = 0; i < nent; i++) 3006 acb_list[i] = PTRIN(acb_list32[i]); 3007 free(acb_list32, M_LIO); 3008 3009 error = kern_lio_listio(td, uap->mode, 3010 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3011 &aiocb32_ops); 3012 free(acb_list, M_LIO); 3013 return (error); 3014 } 3015 3016 #endif 3017