1 /*- 2 * Copyright (c) 1997 John S. Dyson. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. John S. Dyson's name may not be used to endorse or promote products 10 * derived from this software without specific prior written permission. 11 * 12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything 13 * bad that happens because of using this software isn't the responsibility 14 * of the author. This software is distributed AS-IS. 15 */ 16 17 /* 18 * This file contains support for the POSIX 1003.1B AIO/LIO facility. 19 */ 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 #include "opt_compat.h" 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/malloc.h> 29 #include <sys/bio.h> 30 #include <sys/buf.h> 31 #include <sys/capsicum.h> 32 #include <sys/eventhandler.h> 33 #include <sys/sysproto.h> 34 #include <sys/filedesc.h> 35 #include <sys/kernel.h> 36 #include <sys/module.h> 37 #include <sys/kthread.h> 38 #include <sys/fcntl.h> 39 #include <sys/file.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/unistd.h> 44 #include <sys/posix4.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/protosw.h> 50 #include <sys/rwlock.h> 51 #include <sys/sema.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syscall.h> 55 #include <sys/sysent.h> 56 #include <sys/sysctl.h> 57 #include <sys/syslog.h> 58 #include <sys/sx.h> 59 #include <sys/taskqueue.h> 60 #include <sys/vnode.h> 61 #include <sys/conf.h> 62 #include <sys/event.h> 63 #include <sys/mount.h> 64 #include <geom/geom.h> 65 66 #include <machine/atomic.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_page.h> 70 #include <vm/vm_extern.h> 71 #include <vm/pmap.h> 72 #include <vm/vm_map.h> 73 #include <vm/vm_object.h> 74 #include <vm/uma.h> 75 #include <sys/aio.h> 76 77 /* 78 * Counter for allocating reference ids to new jobs. Wrapped to 1 on 79 * overflow. (XXX will be removed soon.) 80 */ 81 static u_long jobrefid; 82 83 /* 84 * Counter for aio_fsync. 85 */ 86 static uint64_t jobseqno; 87 88 #ifndef MAX_AIO_PER_PROC 89 #define MAX_AIO_PER_PROC 32 90 #endif 91 92 #ifndef MAX_AIO_QUEUE_PER_PROC 93 #define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */ 94 #endif 95 96 #ifndef MAX_AIO_QUEUE 97 #define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */ 98 #endif 99 100 #ifndef MAX_BUF_AIO 101 #define MAX_BUF_AIO 16 102 #endif 103 104 FEATURE(aio, "Asynchronous I/O"); 105 SYSCTL_DECL(_p1003_1b); 106 107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list"); 108 109 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, 110 "Async IO management"); 111 112 static int enable_aio_unsafe = 0; 113 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0, 114 "Permit asynchronous IO on all file types, not just known-safe types"); 115 116 static unsigned int unsafe_warningcnt = 1; 117 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW, 118 &unsafe_warningcnt, 0, 119 "Warnings that will be triggered upon failed IO requests on unsafe files"); 120 121 static int max_aio_procs = MAX_AIO_PROCS; 122 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0, 123 "Maximum number of kernel processes to use for handling async IO "); 124 125 static int num_aio_procs = 0; 126 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0, 127 "Number of presently active kernel processes for async IO"); 128 129 /* 130 * The code will adjust the actual number of AIO processes towards this 131 * number when it gets a chance. 132 */ 133 static int target_aio_procs = TARGET_AIO_PROCS; 134 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs, 135 0, 136 "Preferred number of ready kernel processes for async IO"); 137 138 static int max_queue_count = MAX_AIO_QUEUE; 139 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0, 140 "Maximum number of aio requests to queue, globally"); 141 142 static int num_queue_count = 0; 143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0, 144 "Number of queued aio requests"); 145 146 static int num_buf_aio = 0; 147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0, 148 "Number of aio requests presently handled by the buf subsystem"); 149 150 /* Number of async I/O processes in the process of being started */ 151 /* XXX This should be local to aio_aqueue() */ 152 static int num_aio_resv_start = 0; 153 154 static int aiod_lifetime; 155 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0, 156 "Maximum lifetime for idle aiod"); 157 158 static int max_aio_per_proc = MAX_AIO_PER_PROC; 159 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc, 160 0, 161 "Maximum active aio requests per process (stored in the process)"); 162 163 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC; 164 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW, 165 &max_aio_queue_per_proc, 0, 166 "Maximum queued aio requests per process (stored in the process)"); 167 168 static int max_buf_aio = MAX_BUF_AIO; 169 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0, 170 "Maximum buf aio requests per process (stored in the process)"); 171 172 static int aio_listio_max = AIO_LISTIO_MAX; 173 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max, 174 CTLFLAG_RDTUN | CTLFLAG_CAPRD, &aio_listio_max, 0, 175 "Maximum aio requests for a single lio_listio call"); 176 177 #ifdef COMPAT_FREEBSD6 178 typedef struct oaiocb { 179 int aio_fildes; /* File descriptor */ 180 off_t aio_offset; /* File offset for I/O */ 181 volatile void *aio_buf; /* I/O buffer in process space */ 182 size_t aio_nbytes; /* Number of bytes for I/O */ 183 struct osigevent aio_sigevent; /* Signal to deliver */ 184 int aio_lio_opcode; /* LIO opcode */ 185 int aio_reqprio; /* Request priority -- ignored */ 186 struct __aiocb_private _aiocb_private; 187 } oaiocb_t; 188 #endif 189 190 /* 191 * Below is a key of locks used to protect each member of struct kaiocb 192 * aioliojob and kaioinfo and any backends. 193 * 194 * * - need not protected 195 * a - locked by kaioinfo lock 196 * b - locked by backend lock, the backend lock can be null in some cases, 197 * for example, BIO belongs to this type, in this case, proc lock is 198 * reused. 199 * c - locked by aio_job_mtx, the lock for the generic file I/O backend. 200 */ 201 202 /* 203 * If the routine that services an AIO request blocks while running in an 204 * AIO kernel process it can starve other I/O requests. BIO requests 205 * queued via aio_qphysio() complete in GEOM and do not use AIO kernel 206 * processes at all. Socket I/O requests use a separate pool of 207 * kprocs and also force non-blocking I/O. Other file I/O requests 208 * use the generic fo_read/fo_write operations which can block. The 209 * fsync and mlock operations can also block while executing. Ideally 210 * none of these requests would block while executing. 211 * 212 * Note that the service routines cannot toggle O_NONBLOCK in the file 213 * structure directly while handling a request due to races with 214 * userland threads. 215 */ 216 217 /* jobflags */ 218 #define KAIOCB_QUEUEING 0x01 219 #define KAIOCB_CANCELLED 0x02 220 #define KAIOCB_CANCELLING 0x04 221 #define KAIOCB_CHECKSYNC 0x08 222 #define KAIOCB_CLEARED 0x10 223 #define KAIOCB_FINISHED 0x20 224 225 /* 226 * AIO process info 227 */ 228 #define AIOP_FREE 0x1 /* proc on free queue */ 229 230 struct aioproc { 231 int aioprocflags; /* (c) AIO proc flags */ 232 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */ 233 struct proc *aioproc; /* (*) the AIO proc */ 234 }; 235 236 /* 237 * data-structure for lio signal management 238 */ 239 struct aioliojob { 240 int lioj_flags; /* (a) listio flags */ 241 int lioj_count; /* (a) listio flags */ 242 int lioj_finished_count; /* (a) listio flags */ 243 struct sigevent lioj_signal; /* (a) signal on all I/O done */ 244 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */ 245 struct knlist klist; /* (a) list of knotes */ 246 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */ 247 }; 248 249 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */ 250 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */ 251 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */ 252 253 /* 254 * per process aio data structure 255 */ 256 struct kaioinfo { 257 struct mtx kaio_mtx; /* the lock to protect this struct */ 258 int kaio_flags; /* (a) per process kaio flags */ 259 int kaio_maxactive_count; /* (*) maximum number of AIOs */ 260 int kaio_active_count; /* (c) number of currently used AIOs */ 261 int kaio_qallowed_count; /* (*) maxiumu size of AIO queue */ 262 int kaio_count; /* (a) size of AIO queue */ 263 int kaio_ballowed_count; /* (*) maximum number of buffers */ 264 int kaio_buffer_count; /* (a) number of physio buffers */ 265 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */ 266 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */ 267 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */ 268 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */ 269 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */ 270 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */ 271 struct task kaio_task; /* (*) task to kick aio processes */ 272 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */ 273 }; 274 275 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx) 276 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx) 277 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f)) 278 #define AIO_MTX(ki) (&(ki)->kaio_mtx) 279 280 #define KAIO_RUNDOWN 0x1 /* process is being run down */ 281 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */ 282 283 /* 284 * Operations used to interact with userland aio control blocks. 285 * Different ABIs provide their own operations. 286 */ 287 struct aiocb_ops { 288 int (*copyin)(struct aiocb *ujob, struct aiocb *kjob); 289 long (*fetch_status)(struct aiocb *ujob); 290 long (*fetch_error)(struct aiocb *ujob); 291 int (*store_status)(struct aiocb *ujob, long status); 292 int (*store_error)(struct aiocb *ujob, long error); 293 int (*store_kernelinfo)(struct aiocb *ujob, long jobref); 294 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob); 295 }; 296 297 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */ 298 static struct sema aio_newproc_sem; 299 static struct mtx aio_job_mtx; 300 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */ 301 static struct unrhdr *aiod_unr; 302 303 void aio_init_aioinfo(struct proc *p); 304 static int aio_onceonly(void); 305 static int aio_free_entry(struct kaiocb *job); 306 static void aio_process_rw(struct kaiocb *job); 307 static void aio_process_sync(struct kaiocb *job); 308 static void aio_process_mlock(struct kaiocb *job); 309 static void aio_schedule_fsync(void *context, int pending); 310 static int aio_newproc(int *); 311 int aio_aqueue(struct thread *td, struct aiocb *ujob, 312 struct aioliojob *lio, int type, struct aiocb_ops *ops); 313 static int aio_queue_file(struct file *fp, struct kaiocb *job); 314 static void aio_physwakeup(struct bio *bp); 315 static void aio_proc_rundown(void *arg, struct proc *p); 316 static void aio_proc_rundown_exec(void *arg, struct proc *p, 317 struct image_params *imgp); 318 static int aio_qphysio(struct proc *p, struct kaiocb *job); 319 static void aio_daemon(void *param); 320 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job); 321 static bool aio_clear_cancel_function_locked(struct kaiocb *job); 322 static int aio_kick(struct proc *userp); 323 static void aio_kick_nowait(struct proc *userp); 324 static void aio_kick_helper(void *context, int pending); 325 static int filt_aioattach(struct knote *kn); 326 static void filt_aiodetach(struct knote *kn); 327 static int filt_aio(struct knote *kn, long hint); 328 static int filt_lioattach(struct knote *kn); 329 static void filt_liodetach(struct knote *kn); 330 static int filt_lio(struct knote *kn, long hint); 331 332 /* 333 * Zones for: 334 * kaio Per process async io info 335 * aiop async io process data 336 * aiocb async io jobs 337 * aiol list io job pointer - internal to aio_suspend XXX 338 * aiolio list io jobs 339 */ 340 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone; 341 342 /* kqueue filters for aio */ 343 static struct filterops aio_filtops = { 344 .f_isfd = 0, 345 .f_attach = filt_aioattach, 346 .f_detach = filt_aiodetach, 347 .f_event = filt_aio, 348 }; 349 static struct filterops lio_filtops = { 350 .f_isfd = 0, 351 .f_attach = filt_lioattach, 352 .f_detach = filt_liodetach, 353 .f_event = filt_lio 354 }; 355 356 static eventhandler_tag exit_tag, exec_tag; 357 358 TASKQUEUE_DEFINE_THREAD(aiod_kick); 359 360 /* 361 * Main operations function for use as a kernel module. 362 */ 363 static int 364 aio_modload(struct module *module, int cmd, void *arg) 365 { 366 int error = 0; 367 368 switch (cmd) { 369 case MOD_LOAD: 370 aio_onceonly(); 371 break; 372 case MOD_SHUTDOWN: 373 break; 374 default: 375 error = EOPNOTSUPP; 376 break; 377 } 378 return (error); 379 } 380 381 static moduledata_t aio_mod = { 382 "aio", 383 &aio_modload, 384 NULL 385 }; 386 387 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY); 388 MODULE_VERSION(aio, 1); 389 390 /* 391 * Startup initialization 392 */ 393 static int 394 aio_onceonly(void) 395 { 396 397 if (aio_listio_max < AIO_LISTIO_MAX) 398 aio_listio_max = AIO_LISTIO_MAX; 399 if (aio_listio_max > MIN(MAX_AIO_QUEUE_PER_PROC, max_queue_count)) 400 aio_listio_max = MIN(MAX_AIO_QUEUE_PER_PROC, max_queue_count); 401 402 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL, 403 EVENTHANDLER_PRI_ANY); 404 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, 405 NULL, EVENTHANDLER_PRI_ANY); 406 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops); 407 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops); 408 TAILQ_INIT(&aio_freeproc); 409 sema_init(&aio_newproc_sem, 0, "aio_new_proc"); 410 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF); 411 TAILQ_INIT(&aio_jobs); 412 aiod_unr = new_unrhdr(1, INT_MAX, NULL); 413 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL, 414 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 415 aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL, 416 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 417 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL, 418 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 419 aiol_zone = uma_zcreate("AIOL", aio_listio_max * sizeof(intptr_t) , 420 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 421 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL, 422 NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 423 aiod_lifetime = AIOD_LIFETIME_DEFAULT; 424 jobrefid = 1; 425 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO); 426 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE); 427 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0); 428 429 return (0); 430 } 431 432 /* 433 * Init the per-process aioinfo structure. The aioinfo limits are set 434 * per-process for user limit (resource) management. 435 */ 436 void 437 aio_init_aioinfo(struct proc *p) 438 { 439 struct kaioinfo *ki; 440 441 ki = uma_zalloc(kaio_zone, M_WAITOK); 442 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW); 443 ki->kaio_flags = 0; 444 ki->kaio_maxactive_count = max_aio_per_proc; 445 ki->kaio_active_count = 0; 446 ki->kaio_qallowed_count = max_aio_queue_per_proc; 447 ki->kaio_count = 0; 448 ki->kaio_ballowed_count = max_buf_aio; 449 ki->kaio_buffer_count = 0; 450 TAILQ_INIT(&ki->kaio_all); 451 TAILQ_INIT(&ki->kaio_done); 452 TAILQ_INIT(&ki->kaio_jobqueue); 453 TAILQ_INIT(&ki->kaio_liojoblist); 454 TAILQ_INIT(&ki->kaio_syncqueue); 455 TAILQ_INIT(&ki->kaio_syncready); 456 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p); 457 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki); 458 PROC_LOCK(p); 459 if (p->p_aioinfo == NULL) { 460 p->p_aioinfo = ki; 461 PROC_UNLOCK(p); 462 } else { 463 PROC_UNLOCK(p); 464 mtx_destroy(&ki->kaio_mtx); 465 uma_zfree(kaio_zone, ki); 466 } 467 468 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) 469 aio_newproc(NULL); 470 } 471 472 static int 473 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi) 474 { 475 struct thread *td; 476 int error; 477 478 error = sigev_findtd(p, sigev, &td); 479 if (error) 480 return (error); 481 if (!KSI_ONQ(ksi)) { 482 ksiginfo_set_sigev(ksi, sigev); 483 ksi->ksi_code = SI_ASYNCIO; 484 ksi->ksi_flags |= KSI_EXT | KSI_INS; 485 tdsendsignal(p, td, ksi->ksi_signo, ksi); 486 } 487 PROC_UNLOCK(p); 488 return (error); 489 } 490 491 /* 492 * Free a job entry. Wait for completion if it is currently active, but don't 493 * delay forever. If we delay, we return a flag that says that we have to 494 * restart the queue scan. 495 */ 496 static int 497 aio_free_entry(struct kaiocb *job) 498 { 499 struct kaioinfo *ki; 500 struct aioliojob *lj; 501 struct proc *p; 502 503 p = job->userproc; 504 MPASS(curproc == p); 505 ki = p->p_aioinfo; 506 MPASS(ki != NULL); 507 508 AIO_LOCK_ASSERT(ki, MA_OWNED); 509 MPASS(job->jobflags & KAIOCB_FINISHED); 510 511 atomic_subtract_int(&num_queue_count, 1); 512 513 ki->kaio_count--; 514 MPASS(ki->kaio_count >= 0); 515 516 TAILQ_REMOVE(&ki->kaio_done, job, plist); 517 TAILQ_REMOVE(&ki->kaio_all, job, allist); 518 519 lj = job->lio; 520 if (lj) { 521 lj->lioj_count--; 522 lj->lioj_finished_count--; 523 524 if (lj->lioj_count == 0) { 525 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 526 /* lio is going away, we need to destroy any knotes */ 527 knlist_delete(&lj->klist, curthread, 1); 528 PROC_LOCK(p); 529 sigqueue_take(&lj->lioj_ksi); 530 PROC_UNLOCK(p); 531 uma_zfree(aiolio_zone, lj); 532 } 533 } 534 535 /* job is going away, we need to destroy any knotes */ 536 knlist_delete(&job->klist, curthread, 1); 537 PROC_LOCK(p); 538 sigqueue_take(&job->ksi); 539 PROC_UNLOCK(p); 540 541 AIO_UNLOCK(ki); 542 543 /* 544 * The thread argument here is used to find the owning process 545 * and is also passed to fo_close() which may pass it to various 546 * places such as devsw close() routines. Because of that, we 547 * need a thread pointer from the process owning the job that is 548 * persistent and won't disappear out from under us or move to 549 * another process. 550 * 551 * Currently, all the callers of this function call it to remove 552 * a kaiocb from the current process' job list either via a 553 * syscall or due to the current process calling exit() or 554 * execve(). Thus, we know that p == curproc. We also know that 555 * curthread can't exit since we are curthread. 556 * 557 * Therefore, we use curthread as the thread to pass to 558 * knlist_delete(). This does mean that it is possible for the 559 * thread pointer at close time to differ from the thread pointer 560 * at open time, but this is already true of file descriptors in 561 * a multithreaded process. 562 */ 563 if (job->fd_file) 564 fdrop(job->fd_file, curthread); 565 crfree(job->cred); 566 uma_zfree(aiocb_zone, job); 567 AIO_LOCK(ki); 568 569 return (0); 570 } 571 572 static void 573 aio_proc_rundown_exec(void *arg, struct proc *p, 574 struct image_params *imgp __unused) 575 { 576 aio_proc_rundown(arg, p); 577 } 578 579 static int 580 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job) 581 { 582 aio_cancel_fn_t *func; 583 int cancelled; 584 585 AIO_LOCK_ASSERT(ki, MA_OWNED); 586 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED)) 587 return (0); 588 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0); 589 job->jobflags |= KAIOCB_CANCELLED; 590 591 func = job->cancel_fn; 592 593 /* 594 * If there is no cancel routine, just leave the job marked as 595 * cancelled. The job should be in active use by a caller who 596 * should complete it normally or when it fails to install a 597 * cancel routine. 598 */ 599 if (func == NULL) 600 return (0); 601 602 /* 603 * Set the CANCELLING flag so that aio_complete() will defer 604 * completions of this job. This prevents the job from being 605 * freed out from under the cancel callback. After the 606 * callback any deferred completion (whether from the callback 607 * or any other source) will be completed. 608 */ 609 job->jobflags |= KAIOCB_CANCELLING; 610 AIO_UNLOCK(ki); 611 func(job); 612 AIO_LOCK(ki); 613 job->jobflags &= ~KAIOCB_CANCELLING; 614 if (job->jobflags & KAIOCB_FINISHED) { 615 cancelled = job->uaiocb._aiocb_private.error == ECANCELED; 616 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 617 aio_bio_done_notify(p, job); 618 } else { 619 /* 620 * The cancel callback might have scheduled an 621 * operation to cancel this request, but it is 622 * only counted as cancelled if the request is 623 * cancelled when the callback returns. 624 */ 625 cancelled = 0; 626 } 627 return (cancelled); 628 } 629 630 /* 631 * Rundown the jobs for a given process. 632 */ 633 static void 634 aio_proc_rundown(void *arg, struct proc *p) 635 { 636 struct kaioinfo *ki; 637 struct aioliojob *lj; 638 struct kaiocb *job, *jobn; 639 640 KASSERT(curthread->td_proc == p, 641 ("%s: called on non-curproc", __func__)); 642 ki = p->p_aioinfo; 643 if (ki == NULL) 644 return; 645 646 AIO_LOCK(ki); 647 ki->kaio_flags |= KAIO_RUNDOWN; 648 649 restart: 650 651 /* 652 * Try to cancel all pending requests. This code simulates 653 * aio_cancel on all pending I/O requests. 654 */ 655 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 656 aio_cancel_job(p, ki, job); 657 } 658 659 /* Wait for all running I/O to be finished */ 660 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) { 661 ki->kaio_flags |= KAIO_WAKEUP; 662 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz); 663 goto restart; 664 } 665 666 /* Free all completed I/O requests. */ 667 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL) 668 aio_free_entry(job); 669 670 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) { 671 if (lj->lioj_count == 0) { 672 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 673 knlist_delete(&lj->klist, curthread, 1); 674 PROC_LOCK(p); 675 sigqueue_take(&lj->lioj_ksi); 676 PROC_UNLOCK(p); 677 uma_zfree(aiolio_zone, lj); 678 } else { 679 panic("LIO job not cleaned up: C:%d, FC:%d\n", 680 lj->lioj_count, lj->lioj_finished_count); 681 } 682 } 683 AIO_UNLOCK(ki); 684 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task); 685 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task); 686 mtx_destroy(&ki->kaio_mtx); 687 uma_zfree(kaio_zone, ki); 688 p->p_aioinfo = NULL; 689 } 690 691 /* 692 * Select a job to run (called by an AIO daemon). 693 */ 694 static struct kaiocb * 695 aio_selectjob(struct aioproc *aiop) 696 { 697 struct kaiocb *job; 698 struct kaioinfo *ki; 699 struct proc *userp; 700 701 mtx_assert(&aio_job_mtx, MA_OWNED); 702 restart: 703 TAILQ_FOREACH(job, &aio_jobs, list) { 704 userp = job->userproc; 705 ki = userp->p_aioinfo; 706 707 if (ki->kaio_active_count < ki->kaio_maxactive_count) { 708 TAILQ_REMOVE(&aio_jobs, job, list); 709 if (!aio_clear_cancel_function(job)) 710 goto restart; 711 712 /* Account for currently active jobs. */ 713 ki->kaio_active_count++; 714 break; 715 } 716 } 717 return (job); 718 } 719 720 /* 721 * Move all data to a permanent storage device. This code 722 * simulates the fsync syscall. 723 */ 724 static int 725 aio_fsync_vnode(struct thread *td, struct vnode *vp) 726 { 727 struct mount *mp; 728 int error; 729 730 if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 731 goto drop; 732 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 733 if (vp->v_object != NULL) { 734 VM_OBJECT_WLOCK(vp->v_object); 735 vm_object_page_clean(vp->v_object, 0, 0, 0); 736 VM_OBJECT_WUNLOCK(vp->v_object); 737 } 738 error = VOP_FSYNC(vp, MNT_WAIT, td); 739 740 VOP_UNLOCK(vp, 0); 741 vn_finished_write(mp); 742 drop: 743 return (error); 744 } 745 746 /* 747 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that 748 * does the I/O request for the non-physio version of the operations. The 749 * normal vn operations are used, and this code should work in all instances 750 * for every type of file, including pipes, sockets, fifos, and regular files. 751 * 752 * XXX I don't think it works well for socket, pipe, and fifo. 753 */ 754 static void 755 aio_process_rw(struct kaiocb *job) 756 { 757 struct ucred *td_savedcred; 758 struct thread *td; 759 struct aiocb *cb; 760 struct file *fp; 761 struct uio auio; 762 struct iovec aiov; 763 ssize_t cnt; 764 long msgsnd_st, msgsnd_end; 765 long msgrcv_st, msgrcv_end; 766 long oublock_st, oublock_end; 767 long inblock_st, inblock_end; 768 int error; 769 770 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ || 771 job->uaiocb.aio_lio_opcode == LIO_WRITE, 772 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 773 774 aio_switch_vmspace(job); 775 td = curthread; 776 td_savedcred = td->td_ucred; 777 td->td_ucred = job->cred; 778 cb = &job->uaiocb; 779 fp = job->fd_file; 780 781 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf; 782 aiov.iov_len = cb->aio_nbytes; 783 784 auio.uio_iov = &aiov; 785 auio.uio_iovcnt = 1; 786 auio.uio_offset = cb->aio_offset; 787 auio.uio_resid = cb->aio_nbytes; 788 cnt = cb->aio_nbytes; 789 auio.uio_segflg = UIO_USERSPACE; 790 auio.uio_td = td; 791 792 msgrcv_st = td->td_ru.ru_msgrcv; 793 msgsnd_st = td->td_ru.ru_msgsnd; 794 inblock_st = td->td_ru.ru_inblock; 795 oublock_st = td->td_ru.ru_oublock; 796 797 /* 798 * aio_aqueue() acquires a reference to the file that is 799 * released in aio_free_entry(). 800 */ 801 if (cb->aio_lio_opcode == LIO_READ) { 802 auio.uio_rw = UIO_READ; 803 if (auio.uio_resid == 0) 804 error = 0; 805 else 806 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td); 807 } else { 808 if (fp->f_type == DTYPE_VNODE) 809 bwillwrite(); 810 auio.uio_rw = UIO_WRITE; 811 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td); 812 } 813 msgrcv_end = td->td_ru.ru_msgrcv; 814 msgsnd_end = td->td_ru.ru_msgsnd; 815 inblock_end = td->td_ru.ru_inblock; 816 oublock_end = td->td_ru.ru_oublock; 817 818 job->msgrcv = msgrcv_end - msgrcv_st; 819 job->msgsnd = msgsnd_end - msgsnd_st; 820 job->inblock = inblock_end - inblock_st; 821 job->outblock = oublock_end - oublock_st; 822 823 if ((error) && (auio.uio_resid != cnt)) { 824 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK) 825 error = 0; 826 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) { 827 PROC_LOCK(job->userproc); 828 kern_psignal(job->userproc, SIGPIPE); 829 PROC_UNLOCK(job->userproc); 830 } 831 } 832 833 cnt -= auio.uio_resid; 834 td->td_ucred = td_savedcred; 835 if (error) 836 aio_complete(job, -1, error); 837 else 838 aio_complete(job, cnt, 0); 839 } 840 841 static void 842 aio_process_sync(struct kaiocb *job) 843 { 844 struct thread *td = curthread; 845 struct ucred *td_savedcred = td->td_ucred; 846 struct file *fp = job->fd_file; 847 int error = 0; 848 849 KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC, 850 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 851 852 td->td_ucred = job->cred; 853 if (fp->f_vnode != NULL) 854 error = aio_fsync_vnode(td, fp->f_vnode); 855 td->td_ucred = td_savedcred; 856 if (error) 857 aio_complete(job, -1, error); 858 else 859 aio_complete(job, 0, 0); 860 } 861 862 static void 863 aio_process_mlock(struct kaiocb *job) 864 { 865 struct aiocb *cb = &job->uaiocb; 866 int error; 867 868 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK, 869 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode)); 870 871 aio_switch_vmspace(job); 872 error = kern_mlock(job->userproc, job->cred, 873 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes); 874 aio_complete(job, error != 0 ? -1 : 0, error); 875 } 876 877 static void 878 aio_bio_done_notify(struct proc *userp, struct kaiocb *job) 879 { 880 struct aioliojob *lj; 881 struct kaioinfo *ki; 882 struct kaiocb *sjob, *sjobn; 883 int lj_done; 884 bool schedule_fsync; 885 886 ki = userp->p_aioinfo; 887 AIO_LOCK_ASSERT(ki, MA_OWNED); 888 lj = job->lio; 889 lj_done = 0; 890 if (lj) { 891 lj->lioj_finished_count++; 892 if (lj->lioj_count == lj->lioj_finished_count) 893 lj_done = 1; 894 } 895 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist); 896 MPASS(job->jobflags & KAIOCB_FINISHED); 897 898 if (ki->kaio_flags & KAIO_RUNDOWN) 899 goto notification_done; 900 901 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 902 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) 903 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi); 904 905 KNOTE_LOCKED(&job->klist, 1); 906 907 if (lj_done) { 908 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 909 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 910 KNOTE_LOCKED(&lj->klist, 1); 911 } 912 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 913 == LIOJ_SIGNAL 914 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 915 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 916 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi); 917 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 918 } 919 } 920 921 notification_done: 922 if (job->jobflags & KAIOCB_CHECKSYNC) { 923 schedule_fsync = false; 924 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) { 925 if (job->fd_file != sjob->fd_file || 926 job->seqno >= sjob->seqno) 927 continue; 928 if (--sjob->pending > 0) 929 continue; 930 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list); 931 if (!aio_clear_cancel_function_locked(sjob)) 932 continue; 933 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list); 934 schedule_fsync = true; 935 } 936 if (schedule_fsync) 937 taskqueue_enqueue(taskqueue_aiod_kick, 938 &ki->kaio_sync_task); 939 } 940 if (ki->kaio_flags & KAIO_WAKEUP) { 941 ki->kaio_flags &= ~KAIO_WAKEUP; 942 wakeup(&userp->p_aioinfo); 943 } 944 } 945 946 static void 947 aio_schedule_fsync(void *context, int pending) 948 { 949 struct kaioinfo *ki; 950 struct kaiocb *job; 951 952 ki = context; 953 AIO_LOCK(ki); 954 while (!TAILQ_EMPTY(&ki->kaio_syncready)) { 955 job = TAILQ_FIRST(&ki->kaio_syncready); 956 TAILQ_REMOVE(&ki->kaio_syncready, job, list); 957 AIO_UNLOCK(ki); 958 aio_schedule(job, aio_process_sync); 959 AIO_LOCK(ki); 960 } 961 AIO_UNLOCK(ki); 962 } 963 964 bool 965 aio_cancel_cleared(struct kaiocb *job) 966 { 967 struct kaioinfo *ki; 968 969 /* 970 * The caller should hold the same queue lock held when 971 * aio_clear_cancel_function() was called and set this flag 972 * ensuring this check sees an up-to-date value. However, 973 * there is no way to assert that. 974 */ 975 ki = job->userproc->p_aioinfo; 976 return ((job->jobflags & KAIOCB_CLEARED) != 0); 977 } 978 979 static bool 980 aio_clear_cancel_function_locked(struct kaiocb *job) 981 { 982 983 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 984 MPASS(job->cancel_fn != NULL); 985 if (job->jobflags & KAIOCB_CANCELLING) { 986 job->jobflags |= KAIOCB_CLEARED; 987 return (false); 988 } 989 job->cancel_fn = NULL; 990 return (true); 991 } 992 993 bool 994 aio_clear_cancel_function(struct kaiocb *job) 995 { 996 struct kaioinfo *ki; 997 bool ret; 998 999 ki = job->userproc->p_aioinfo; 1000 AIO_LOCK(ki); 1001 ret = aio_clear_cancel_function_locked(job); 1002 AIO_UNLOCK(ki); 1003 return (ret); 1004 } 1005 1006 static bool 1007 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func) 1008 { 1009 1010 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED); 1011 if (job->jobflags & KAIOCB_CANCELLED) 1012 return (false); 1013 job->cancel_fn = func; 1014 return (true); 1015 } 1016 1017 bool 1018 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func) 1019 { 1020 struct kaioinfo *ki; 1021 bool ret; 1022 1023 ki = job->userproc->p_aioinfo; 1024 AIO_LOCK(ki); 1025 ret = aio_set_cancel_function_locked(job, func); 1026 AIO_UNLOCK(ki); 1027 return (ret); 1028 } 1029 1030 void 1031 aio_complete(struct kaiocb *job, long status, int error) 1032 { 1033 struct kaioinfo *ki; 1034 struct proc *userp; 1035 1036 job->uaiocb._aiocb_private.error = error; 1037 job->uaiocb._aiocb_private.status = status; 1038 1039 userp = job->userproc; 1040 ki = userp->p_aioinfo; 1041 1042 AIO_LOCK(ki); 1043 KASSERT(!(job->jobflags & KAIOCB_FINISHED), 1044 ("duplicate aio_complete")); 1045 job->jobflags |= KAIOCB_FINISHED; 1046 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) { 1047 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist); 1048 aio_bio_done_notify(userp, job); 1049 } 1050 AIO_UNLOCK(ki); 1051 } 1052 1053 void 1054 aio_cancel(struct kaiocb *job) 1055 { 1056 1057 aio_complete(job, -1, ECANCELED); 1058 } 1059 1060 void 1061 aio_switch_vmspace(struct kaiocb *job) 1062 { 1063 1064 vmspace_switch_aio(job->userproc->p_vmspace); 1065 } 1066 1067 /* 1068 * The AIO daemon, most of the actual work is done in aio_process_*, 1069 * but the setup (and address space mgmt) is done in this routine. 1070 */ 1071 static void 1072 aio_daemon(void *_id) 1073 { 1074 struct kaiocb *job; 1075 struct aioproc *aiop; 1076 struct kaioinfo *ki; 1077 struct proc *p; 1078 struct vmspace *myvm; 1079 struct thread *td = curthread; 1080 int id = (intptr_t)_id; 1081 1082 /* 1083 * Grab an extra reference on the daemon's vmspace so that it 1084 * doesn't get freed by jobs that switch to a different 1085 * vmspace. 1086 */ 1087 p = td->td_proc; 1088 myvm = vmspace_acquire_ref(p); 1089 1090 KASSERT(p->p_textvp == NULL, ("kthread has a textvp")); 1091 1092 /* 1093 * Allocate and ready the aio control info. There is one aiop structure 1094 * per daemon. 1095 */ 1096 aiop = uma_zalloc(aiop_zone, M_WAITOK); 1097 aiop->aioproc = p; 1098 aiop->aioprocflags = 0; 1099 1100 /* 1101 * Wakeup parent process. (Parent sleeps to keep from blasting away 1102 * and creating too many daemons.) 1103 */ 1104 sema_post(&aio_newproc_sem); 1105 1106 mtx_lock(&aio_job_mtx); 1107 for (;;) { 1108 /* 1109 * Take daemon off of free queue 1110 */ 1111 if (aiop->aioprocflags & AIOP_FREE) { 1112 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1113 aiop->aioprocflags &= ~AIOP_FREE; 1114 } 1115 1116 /* 1117 * Check for jobs. 1118 */ 1119 while ((job = aio_selectjob(aiop)) != NULL) { 1120 mtx_unlock(&aio_job_mtx); 1121 1122 ki = job->userproc->p_aioinfo; 1123 job->handle_fn(job); 1124 1125 mtx_lock(&aio_job_mtx); 1126 /* Decrement the active job count. */ 1127 ki->kaio_active_count--; 1128 } 1129 1130 /* 1131 * Disconnect from user address space. 1132 */ 1133 if (p->p_vmspace != myvm) { 1134 mtx_unlock(&aio_job_mtx); 1135 vmspace_switch_aio(myvm); 1136 mtx_lock(&aio_job_mtx); 1137 /* 1138 * We have to restart to avoid race, we only sleep if 1139 * no job can be selected. 1140 */ 1141 continue; 1142 } 1143 1144 mtx_assert(&aio_job_mtx, MA_OWNED); 1145 1146 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list); 1147 aiop->aioprocflags |= AIOP_FREE; 1148 1149 /* 1150 * If daemon is inactive for a long time, allow it to exit, 1151 * thereby freeing resources. 1152 */ 1153 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy", 1154 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) && 1155 (aiop->aioprocflags & AIOP_FREE) && 1156 num_aio_procs > target_aio_procs) 1157 break; 1158 } 1159 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1160 num_aio_procs--; 1161 mtx_unlock(&aio_job_mtx); 1162 uma_zfree(aiop_zone, aiop); 1163 free_unr(aiod_unr, id); 1164 vmspace_free(myvm); 1165 1166 KASSERT(p->p_vmspace == myvm, 1167 ("AIOD: bad vmspace for exiting daemon")); 1168 KASSERT(myvm->vm_refcnt > 1, 1169 ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt)); 1170 kproc_exit(0); 1171 } 1172 1173 /* 1174 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The 1175 * AIO daemon modifies its environment itself. 1176 */ 1177 static int 1178 aio_newproc(int *start) 1179 { 1180 int error; 1181 struct proc *p; 1182 int id; 1183 1184 id = alloc_unr(aiod_unr); 1185 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p, 1186 RFNOWAIT, 0, "aiod%d", id); 1187 if (error == 0) { 1188 /* 1189 * Wait until daemon is started. 1190 */ 1191 sema_wait(&aio_newproc_sem); 1192 mtx_lock(&aio_job_mtx); 1193 num_aio_procs++; 1194 if (start != NULL) 1195 (*start)--; 1196 mtx_unlock(&aio_job_mtx); 1197 } else { 1198 free_unr(aiod_unr, id); 1199 } 1200 return (error); 1201 } 1202 1203 /* 1204 * Try the high-performance, low-overhead physio method for eligible 1205 * VCHR devices. This method doesn't use an aio helper thread, and 1206 * thus has very low overhead. 1207 * 1208 * Assumes that the caller, aio_aqueue(), has incremented the file 1209 * structure's reference count, preventing its deallocation for the 1210 * duration of this call. 1211 */ 1212 static int 1213 aio_qphysio(struct proc *p, struct kaiocb *job) 1214 { 1215 struct aiocb *cb; 1216 struct file *fp; 1217 struct bio *bp; 1218 struct buf *pbuf; 1219 struct vnode *vp; 1220 struct cdevsw *csw; 1221 struct cdev *dev; 1222 struct kaioinfo *ki; 1223 int error, ref, poff; 1224 vm_prot_t prot; 1225 1226 cb = &job->uaiocb; 1227 fp = job->fd_file; 1228 1229 if (fp == NULL || fp->f_type != DTYPE_VNODE) 1230 return (-1); 1231 1232 vp = fp->f_vnode; 1233 if (vp->v_type != VCHR) 1234 return (-1); 1235 if (vp->v_bufobj.bo_bsize == 0) 1236 return (-1); 1237 if (cb->aio_nbytes % vp->v_bufobj.bo_bsize) 1238 return (-1); 1239 1240 ref = 0; 1241 csw = devvn_refthread(vp, &dev, &ref); 1242 if (csw == NULL) 1243 return (ENXIO); 1244 1245 if ((csw->d_flags & D_DISK) == 0) { 1246 error = -1; 1247 goto unref; 1248 } 1249 if (cb->aio_nbytes > dev->si_iosize_max) { 1250 error = -1; 1251 goto unref; 1252 } 1253 1254 ki = p->p_aioinfo; 1255 poff = (vm_offset_t)cb->aio_buf & PAGE_MASK; 1256 if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) { 1257 if (cb->aio_nbytes > MAXPHYS) { 1258 error = -1; 1259 goto unref; 1260 } 1261 1262 pbuf = NULL; 1263 } else { 1264 if (cb->aio_nbytes > MAXPHYS - poff) { 1265 error = -1; 1266 goto unref; 1267 } 1268 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) { 1269 error = -1; 1270 goto unref; 1271 } 1272 1273 job->pbuf = pbuf = (struct buf *)getpbuf(NULL); 1274 BUF_KERNPROC(pbuf); 1275 AIO_LOCK(ki); 1276 ki->kaio_buffer_count++; 1277 AIO_UNLOCK(ki); 1278 } 1279 job->bp = bp = g_alloc_bio(); 1280 1281 bp->bio_length = cb->aio_nbytes; 1282 bp->bio_bcount = cb->aio_nbytes; 1283 bp->bio_done = aio_physwakeup; 1284 bp->bio_data = (void *)(uintptr_t)cb->aio_buf; 1285 bp->bio_offset = cb->aio_offset; 1286 bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ; 1287 bp->bio_dev = dev; 1288 bp->bio_caller1 = (void *)job; 1289 1290 prot = VM_PROT_READ; 1291 if (cb->aio_lio_opcode == LIO_READ) 1292 prot |= VM_PROT_WRITE; /* Less backwards than it looks */ 1293 job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map, 1294 (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages, 1295 nitems(job->pages)); 1296 if (job->npages < 0) { 1297 error = EFAULT; 1298 goto doerror; 1299 } 1300 if (pbuf != NULL) { 1301 pmap_qenter((vm_offset_t)pbuf->b_data, 1302 job->pages, job->npages); 1303 bp->bio_data = pbuf->b_data + poff; 1304 atomic_add_int(&num_buf_aio, 1); 1305 } else { 1306 bp->bio_ma = job->pages; 1307 bp->bio_ma_n = job->npages; 1308 bp->bio_ma_offset = poff; 1309 bp->bio_data = unmapped_buf; 1310 bp->bio_flags |= BIO_UNMAPPED; 1311 } 1312 1313 /* Perform transfer. */ 1314 csw->d_strategy(bp); 1315 dev_relthread(dev, ref); 1316 return (0); 1317 1318 doerror: 1319 if (pbuf != NULL) { 1320 AIO_LOCK(ki); 1321 ki->kaio_buffer_count--; 1322 AIO_UNLOCK(ki); 1323 relpbuf(pbuf, NULL); 1324 job->pbuf = NULL; 1325 } 1326 g_destroy_bio(bp); 1327 job->bp = NULL; 1328 unref: 1329 dev_relthread(dev, ref); 1330 return (error); 1331 } 1332 1333 #ifdef COMPAT_FREEBSD6 1334 static int 1335 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig) 1336 { 1337 1338 /* 1339 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 1340 * supported by AIO with the old sigevent structure. 1341 */ 1342 nsig->sigev_notify = osig->sigev_notify; 1343 switch (nsig->sigev_notify) { 1344 case SIGEV_NONE: 1345 break; 1346 case SIGEV_SIGNAL: 1347 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 1348 break; 1349 case SIGEV_KEVENT: 1350 nsig->sigev_notify_kqueue = 1351 osig->__sigev_u.__sigev_notify_kqueue; 1352 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr; 1353 break; 1354 default: 1355 return (EINVAL); 1356 } 1357 return (0); 1358 } 1359 1360 static int 1361 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 1362 { 1363 struct oaiocb *ojob; 1364 int error; 1365 1366 bzero(kjob, sizeof(struct aiocb)); 1367 error = copyin(ujob, kjob, sizeof(struct oaiocb)); 1368 if (error) 1369 return (error); 1370 ojob = (struct oaiocb *)kjob; 1371 return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent)); 1372 } 1373 #endif 1374 1375 static int 1376 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob) 1377 { 1378 1379 return (copyin(ujob, kjob, sizeof(struct aiocb))); 1380 } 1381 1382 static long 1383 aiocb_fetch_status(struct aiocb *ujob) 1384 { 1385 1386 return (fuword(&ujob->_aiocb_private.status)); 1387 } 1388 1389 static long 1390 aiocb_fetch_error(struct aiocb *ujob) 1391 { 1392 1393 return (fuword(&ujob->_aiocb_private.error)); 1394 } 1395 1396 static int 1397 aiocb_store_status(struct aiocb *ujob, long status) 1398 { 1399 1400 return (suword(&ujob->_aiocb_private.status, status)); 1401 } 1402 1403 static int 1404 aiocb_store_error(struct aiocb *ujob, long error) 1405 { 1406 1407 return (suword(&ujob->_aiocb_private.error, error)); 1408 } 1409 1410 static int 1411 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref) 1412 { 1413 1414 return (suword(&ujob->_aiocb_private.kernelinfo, jobref)); 1415 } 1416 1417 static int 1418 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 1419 { 1420 1421 return (suword(ujobp, (long)ujob)); 1422 } 1423 1424 static struct aiocb_ops aiocb_ops = { 1425 .copyin = aiocb_copyin, 1426 .fetch_status = aiocb_fetch_status, 1427 .fetch_error = aiocb_fetch_error, 1428 .store_status = aiocb_store_status, 1429 .store_error = aiocb_store_error, 1430 .store_kernelinfo = aiocb_store_kernelinfo, 1431 .store_aiocb = aiocb_store_aiocb, 1432 }; 1433 1434 #ifdef COMPAT_FREEBSD6 1435 static struct aiocb_ops aiocb_ops_osigevent = { 1436 .copyin = aiocb_copyin_old_sigevent, 1437 .fetch_status = aiocb_fetch_status, 1438 .fetch_error = aiocb_fetch_error, 1439 .store_status = aiocb_store_status, 1440 .store_error = aiocb_store_error, 1441 .store_kernelinfo = aiocb_store_kernelinfo, 1442 .store_aiocb = aiocb_store_aiocb, 1443 }; 1444 #endif 1445 1446 /* 1447 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR 1448 * technique is done in this code. 1449 */ 1450 int 1451 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj, 1452 int type, struct aiocb_ops *ops) 1453 { 1454 struct proc *p = td->td_proc; 1455 cap_rights_t rights; 1456 struct file *fp; 1457 struct kaiocb *job; 1458 struct kaioinfo *ki; 1459 struct kevent kev; 1460 int opcode; 1461 int error; 1462 int fd, kqfd; 1463 int jid; 1464 u_short evflags; 1465 1466 if (p->p_aioinfo == NULL) 1467 aio_init_aioinfo(p); 1468 1469 ki = p->p_aioinfo; 1470 1471 ops->store_status(ujob, -1); 1472 ops->store_error(ujob, 0); 1473 ops->store_kernelinfo(ujob, -1); 1474 1475 if (num_queue_count >= max_queue_count || 1476 ki->kaio_count >= ki->kaio_qallowed_count) { 1477 ops->store_error(ujob, EAGAIN); 1478 return (EAGAIN); 1479 } 1480 1481 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO); 1482 knlist_init_mtx(&job->klist, AIO_MTX(ki)); 1483 1484 error = ops->copyin(ujob, &job->uaiocb); 1485 if (error) { 1486 ops->store_error(ujob, error); 1487 uma_zfree(aiocb_zone, job); 1488 return (error); 1489 } 1490 1491 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) { 1492 uma_zfree(aiocb_zone, job); 1493 return (EINVAL); 1494 } 1495 1496 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT && 1497 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL && 1498 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID && 1499 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) { 1500 ops->store_error(ujob, EINVAL); 1501 uma_zfree(aiocb_zone, job); 1502 return (EINVAL); 1503 } 1504 1505 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL || 1506 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) && 1507 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) { 1508 uma_zfree(aiocb_zone, job); 1509 return (EINVAL); 1510 } 1511 1512 ksiginfo_init(&job->ksi); 1513 1514 /* Save userspace address of the job info. */ 1515 job->ujob = ujob; 1516 1517 /* Get the opcode. */ 1518 if (type != LIO_NOP) 1519 job->uaiocb.aio_lio_opcode = type; 1520 opcode = job->uaiocb.aio_lio_opcode; 1521 1522 /* 1523 * Validate the opcode and fetch the file object for the specified 1524 * file descriptor. 1525 * 1526 * XXXRW: Moved the opcode validation up here so that we don't 1527 * retrieve a file descriptor without knowing what the capabiltity 1528 * should be. 1529 */ 1530 fd = job->uaiocb.aio_fildes; 1531 switch (opcode) { 1532 case LIO_WRITE: 1533 error = fget_write(td, fd, 1534 cap_rights_init(&rights, CAP_PWRITE), &fp); 1535 break; 1536 case LIO_READ: 1537 error = fget_read(td, fd, 1538 cap_rights_init(&rights, CAP_PREAD), &fp); 1539 break; 1540 case LIO_SYNC: 1541 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp); 1542 break; 1543 case LIO_MLOCK: 1544 fp = NULL; 1545 break; 1546 case LIO_NOP: 1547 error = fget(td, fd, cap_rights_init(&rights), &fp); 1548 break; 1549 default: 1550 error = EINVAL; 1551 } 1552 if (error) { 1553 uma_zfree(aiocb_zone, job); 1554 ops->store_error(ujob, error); 1555 return (error); 1556 } 1557 1558 if (opcode == LIO_SYNC && fp->f_vnode == NULL) { 1559 error = EINVAL; 1560 goto aqueue_fail; 1561 } 1562 1563 if ((opcode == LIO_READ || opcode == LIO_WRITE) && 1564 job->uaiocb.aio_offset < 0 && 1565 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) { 1566 error = EINVAL; 1567 goto aqueue_fail; 1568 } 1569 1570 job->fd_file = fp; 1571 1572 mtx_lock(&aio_job_mtx); 1573 jid = jobrefid++; 1574 job->seqno = jobseqno++; 1575 mtx_unlock(&aio_job_mtx); 1576 error = ops->store_kernelinfo(ujob, jid); 1577 if (error) { 1578 error = EINVAL; 1579 goto aqueue_fail; 1580 } 1581 job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid; 1582 1583 if (opcode == LIO_NOP) { 1584 fdrop(fp, td); 1585 uma_zfree(aiocb_zone, job); 1586 return (0); 1587 } 1588 1589 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT) 1590 goto no_kqueue; 1591 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags; 1592 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) { 1593 error = EINVAL; 1594 goto aqueue_fail; 1595 } 1596 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue; 1597 kev.ident = (uintptr_t)job->ujob; 1598 kev.filter = EVFILT_AIO; 1599 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags; 1600 kev.data = (intptr_t)job; 1601 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr; 1602 error = kqfd_register(kqfd, &kev, td, 1); 1603 if (error) 1604 goto aqueue_fail; 1605 1606 no_kqueue: 1607 1608 ops->store_error(ujob, EINPROGRESS); 1609 job->uaiocb._aiocb_private.error = EINPROGRESS; 1610 job->userproc = p; 1611 job->cred = crhold(td->td_ucred); 1612 job->jobflags = KAIOCB_QUEUEING; 1613 job->lio = lj; 1614 1615 if (opcode == LIO_MLOCK) { 1616 aio_schedule(job, aio_process_mlock); 1617 error = 0; 1618 } else if (fp->f_ops->fo_aio_queue == NULL) 1619 error = aio_queue_file(fp, job); 1620 else 1621 error = fo_aio_queue(fp, job); 1622 if (error) 1623 goto aqueue_fail; 1624 1625 AIO_LOCK(ki); 1626 job->jobflags &= ~KAIOCB_QUEUEING; 1627 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist); 1628 ki->kaio_count++; 1629 if (lj) 1630 lj->lioj_count++; 1631 atomic_add_int(&num_queue_count, 1); 1632 if (job->jobflags & KAIOCB_FINISHED) { 1633 /* 1634 * The queue callback completed the request synchronously. 1635 * The bulk of the completion is deferred in that case 1636 * until this point. 1637 */ 1638 aio_bio_done_notify(p, job); 1639 } else 1640 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist); 1641 AIO_UNLOCK(ki); 1642 return (0); 1643 1644 aqueue_fail: 1645 knlist_delete(&job->klist, curthread, 0); 1646 if (fp) 1647 fdrop(fp, td); 1648 uma_zfree(aiocb_zone, job); 1649 ops->store_error(ujob, error); 1650 return (error); 1651 } 1652 1653 static void 1654 aio_cancel_daemon_job(struct kaiocb *job) 1655 { 1656 1657 mtx_lock(&aio_job_mtx); 1658 if (!aio_cancel_cleared(job)) 1659 TAILQ_REMOVE(&aio_jobs, job, list); 1660 mtx_unlock(&aio_job_mtx); 1661 aio_cancel(job); 1662 } 1663 1664 void 1665 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func) 1666 { 1667 1668 mtx_lock(&aio_job_mtx); 1669 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) { 1670 mtx_unlock(&aio_job_mtx); 1671 aio_cancel(job); 1672 return; 1673 } 1674 job->handle_fn = func; 1675 TAILQ_INSERT_TAIL(&aio_jobs, job, list); 1676 aio_kick_nowait(job->userproc); 1677 mtx_unlock(&aio_job_mtx); 1678 } 1679 1680 static void 1681 aio_cancel_sync(struct kaiocb *job) 1682 { 1683 struct kaioinfo *ki; 1684 1685 ki = job->userproc->p_aioinfo; 1686 AIO_LOCK(ki); 1687 if (!aio_cancel_cleared(job)) 1688 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list); 1689 AIO_UNLOCK(ki); 1690 aio_cancel(job); 1691 } 1692 1693 int 1694 aio_queue_file(struct file *fp, struct kaiocb *job) 1695 { 1696 struct aioliojob *lj; 1697 struct kaioinfo *ki; 1698 struct kaiocb *job2; 1699 struct vnode *vp; 1700 struct mount *mp; 1701 int error, opcode; 1702 bool safe; 1703 1704 lj = job->lio; 1705 ki = job->userproc->p_aioinfo; 1706 opcode = job->uaiocb.aio_lio_opcode; 1707 if (opcode == LIO_SYNC) 1708 goto queueit; 1709 1710 if ((error = aio_qphysio(job->userproc, job)) == 0) 1711 goto done; 1712 #if 0 1713 /* 1714 * XXX: This means qphysio() failed with EFAULT. The current 1715 * behavior is to retry the operation via fo_read/fo_write. 1716 * Wouldn't it be better to just complete the request with an 1717 * error here? 1718 */ 1719 if (error > 0) 1720 goto done; 1721 #endif 1722 queueit: 1723 safe = false; 1724 if (fp->f_type == DTYPE_VNODE) { 1725 vp = fp->f_vnode; 1726 if (vp->v_type == VREG || vp->v_type == VDIR) { 1727 mp = fp->f_vnode->v_mount; 1728 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0) 1729 safe = true; 1730 } 1731 } 1732 if (!(safe || enable_aio_unsafe)) { 1733 counted_warning(&unsafe_warningcnt, 1734 "is attempting to use unsafe AIO requests"); 1735 return (EOPNOTSUPP); 1736 } 1737 1738 if (opcode == LIO_SYNC) { 1739 AIO_LOCK(ki); 1740 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) { 1741 if (job2->fd_file == job->fd_file && 1742 job2->uaiocb.aio_lio_opcode != LIO_SYNC && 1743 job2->seqno < job->seqno) { 1744 job2->jobflags |= KAIOCB_CHECKSYNC; 1745 job->pending++; 1746 } 1747 } 1748 if (job->pending != 0) { 1749 if (!aio_set_cancel_function_locked(job, 1750 aio_cancel_sync)) { 1751 AIO_UNLOCK(ki); 1752 aio_cancel(job); 1753 return (0); 1754 } 1755 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list); 1756 AIO_UNLOCK(ki); 1757 return (0); 1758 } 1759 AIO_UNLOCK(ki); 1760 } 1761 1762 switch (opcode) { 1763 case LIO_READ: 1764 case LIO_WRITE: 1765 aio_schedule(job, aio_process_rw); 1766 error = 0; 1767 break; 1768 case LIO_SYNC: 1769 aio_schedule(job, aio_process_sync); 1770 error = 0; 1771 break; 1772 default: 1773 error = EINVAL; 1774 } 1775 done: 1776 return (error); 1777 } 1778 1779 static void 1780 aio_kick_nowait(struct proc *userp) 1781 { 1782 struct kaioinfo *ki = userp->p_aioinfo; 1783 struct aioproc *aiop; 1784 1785 mtx_assert(&aio_job_mtx, MA_OWNED); 1786 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1787 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1788 aiop->aioprocflags &= ~AIOP_FREE; 1789 wakeup(aiop->aioproc); 1790 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1791 ki->kaio_active_count + num_aio_resv_start < 1792 ki->kaio_maxactive_count) { 1793 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task); 1794 } 1795 } 1796 1797 static int 1798 aio_kick(struct proc *userp) 1799 { 1800 struct kaioinfo *ki = userp->p_aioinfo; 1801 struct aioproc *aiop; 1802 int error, ret = 0; 1803 1804 mtx_assert(&aio_job_mtx, MA_OWNED); 1805 retryproc: 1806 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) { 1807 TAILQ_REMOVE(&aio_freeproc, aiop, list); 1808 aiop->aioprocflags &= ~AIOP_FREE; 1809 wakeup(aiop->aioproc); 1810 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs && 1811 ki->kaio_active_count + num_aio_resv_start < 1812 ki->kaio_maxactive_count) { 1813 num_aio_resv_start++; 1814 mtx_unlock(&aio_job_mtx); 1815 error = aio_newproc(&num_aio_resv_start); 1816 mtx_lock(&aio_job_mtx); 1817 if (error) { 1818 num_aio_resv_start--; 1819 goto retryproc; 1820 } 1821 } else { 1822 ret = -1; 1823 } 1824 return (ret); 1825 } 1826 1827 static void 1828 aio_kick_helper(void *context, int pending) 1829 { 1830 struct proc *userp = context; 1831 1832 mtx_lock(&aio_job_mtx); 1833 while (--pending >= 0) { 1834 if (aio_kick(userp)) 1835 break; 1836 } 1837 mtx_unlock(&aio_job_mtx); 1838 } 1839 1840 /* 1841 * Support the aio_return system call, as a side-effect, kernel resources are 1842 * released. 1843 */ 1844 static int 1845 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 1846 { 1847 struct proc *p = td->td_proc; 1848 struct kaiocb *job; 1849 struct kaioinfo *ki; 1850 long status, error; 1851 1852 ki = p->p_aioinfo; 1853 if (ki == NULL) 1854 return (EINVAL); 1855 AIO_LOCK(ki); 1856 TAILQ_FOREACH(job, &ki->kaio_done, plist) { 1857 if (job->ujob == ujob) 1858 break; 1859 } 1860 if (job != NULL) { 1861 MPASS(job->jobflags & KAIOCB_FINISHED); 1862 status = job->uaiocb._aiocb_private.status; 1863 error = job->uaiocb._aiocb_private.error; 1864 td->td_retval[0] = status; 1865 td->td_ru.ru_oublock += job->outblock; 1866 td->td_ru.ru_inblock += job->inblock; 1867 td->td_ru.ru_msgsnd += job->msgsnd; 1868 td->td_ru.ru_msgrcv += job->msgrcv; 1869 aio_free_entry(job); 1870 AIO_UNLOCK(ki); 1871 ops->store_error(ujob, error); 1872 ops->store_status(ujob, status); 1873 } else { 1874 error = EINVAL; 1875 AIO_UNLOCK(ki); 1876 } 1877 return (error); 1878 } 1879 1880 int 1881 sys_aio_return(struct thread *td, struct aio_return_args *uap) 1882 { 1883 1884 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops)); 1885 } 1886 1887 /* 1888 * Allow a process to wakeup when any of the I/O requests are completed. 1889 */ 1890 static int 1891 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist, 1892 struct timespec *ts) 1893 { 1894 struct proc *p = td->td_proc; 1895 struct timeval atv; 1896 struct kaioinfo *ki; 1897 struct kaiocb *firstjob, *job; 1898 int error, i, timo; 1899 1900 timo = 0; 1901 if (ts) { 1902 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1903 return (EINVAL); 1904 1905 TIMESPEC_TO_TIMEVAL(&atv, ts); 1906 if (itimerfix(&atv)) 1907 return (EINVAL); 1908 timo = tvtohz(&atv); 1909 } 1910 1911 ki = p->p_aioinfo; 1912 if (ki == NULL) 1913 return (EAGAIN); 1914 1915 if (njoblist == 0) 1916 return (0); 1917 1918 AIO_LOCK(ki); 1919 for (;;) { 1920 firstjob = NULL; 1921 error = 0; 1922 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 1923 for (i = 0; i < njoblist; i++) { 1924 if (job->ujob == ujoblist[i]) { 1925 if (firstjob == NULL) 1926 firstjob = job; 1927 if (job->jobflags & KAIOCB_FINISHED) 1928 goto RETURN; 1929 } 1930 } 1931 } 1932 /* All tasks were finished. */ 1933 if (firstjob == NULL) 1934 break; 1935 1936 ki->kaio_flags |= KAIO_WAKEUP; 1937 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 1938 "aiospn", timo); 1939 if (error == ERESTART) 1940 error = EINTR; 1941 if (error) 1942 break; 1943 } 1944 RETURN: 1945 AIO_UNLOCK(ki); 1946 return (error); 1947 } 1948 1949 int 1950 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap) 1951 { 1952 struct timespec ts, *tsp; 1953 struct aiocb **ujoblist; 1954 int error; 1955 1956 if (uap->nent < 0 || uap->nent > aio_listio_max) 1957 return (EINVAL); 1958 1959 if (uap->timeout) { 1960 /* Get timespec struct. */ 1961 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0) 1962 return (error); 1963 tsp = &ts; 1964 } else 1965 tsp = NULL; 1966 1967 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 1968 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0])); 1969 if (error == 0) 1970 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 1971 uma_zfree(aiol_zone, ujoblist); 1972 return (error); 1973 } 1974 1975 /* 1976 * aio_cancel cancels any non-physio aio operations not currently in 1977 * progress. 1978 */ 1979 int 1980 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap) 1981 { 1982 struct proc *p = td->td_proc; 1983 struct kaioinfo *ki; 1984 struct kaiocb *job, *jobn; 1985 struct file *fp; 1986 cap_rights_t rights; 1987 int error; 1988 int cancelled = 0; 1989 int notcancelled = 0; 1990 struct vnode *vp; 1991 1992 /* Lookup file object. */ 1993 error = fget(td, uap->fd, cap_rights_init(&rights), &fp); 1994 if (error) 1995 return (error); 1996 1997 ki = p->p_aioinfo; 1998 if (ki == NULL) 1999 goto done; 2000 2001 if (fp->f_type == DTYPE_VNODE) { 2002 vp = fp->f_vnode; 2003 if (vn_isdisk(vp, &error)) { 2004 fdrop(fp, td); 2005 td->td_retval[0] = AIO_NOTCANCELED; 2006 return (0); 2007 } 2008 } 2009 2010 AIO_LOCK(ki); 2011 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) { 2012 if ((uap->fd == job->uaiocb.aio_fildes) && 2013 ((uap->aiocbp == NULL) || 2014 (uap->aiocbp == job->ujob))) { 2015 if (aio_cancel_job(p, ki, job)) { 2016 cancelled++; 2017 } else { 2018 notcancelled++; 2019 } 2020 if (uap->aiocbp != NULL) 2021 break; 2022 } 2023 } 2024 AIO_UNLOCK(ki); 2025 2026 done: 2027 fdrop(fp, td); 2028 2029 if (uap->aiocbp != NULL) { 2030 if (cancelled) { 2031 td->td_retval[0] = AIO_CANCELED; 2032 return (0); 2033 } 2034 } 2035 2036 if (notcancelled) { 2037 td->td_retval[0] = AIO_NOTCANCELED; 2038 return (0); 2039 } 2040 2041 if (cancelled) { 2042 td->td_retval[0] = AIO_CANCELED; 2043 return (0); 2044 } 2045 2046 td->td_retval[0] = AIO_ALLDONE; 2047 2048 return (0); 2049 } 2050 2051 /* 2052 * aio_error is implemented in the kernel level for compatibility purposes 2053 * only. For a user mode async implementation, it would be best to do it in 2054 * a userland subroutine. 2055 */ 2056 static int 2057 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops) 2058 { 2059 struct proc *p = td->td_proc; 2060 struct kaiocb *job; 2061 struct kaioinfo *ki; 2062 int status; 2063 2064 ki = p->p_aioinfo; 2065 if (ki == NULL) { 2066 td->td_retval[0] = EINVAL; 2067 return (0); 2068 } 2069 2070 AIO_LOCK(ki); 2071 TAILQ_FOREACH(job, &ki->kaio_all, allist) { 2072 if (job->ujob == ujob) { 2073 if (job->jobflags & KAIOCB_FINISHED) 2074 td->td_retval[0] = 2075 job->uaiocb._aiocb_private.error; 2076 else 2077 td->td_retval[0] = EINPROGRESS; 2078 AIO_UNLOCK(ki); 2079 return (0); 2080 } 2081 } 2082 AIO_UNLOCK(ki); 2083 2084 /* 2085 * Hack for failure of aio_aqueue. 2086 */ 2087 status = ops->fetch_status(ujob); 2088 if (status == -1) { 2089 td->td_retval[0] = ops->fetch_error(ujob); 2090 return (0); 2091 } 2092 2093 td->td_retval[0] = EINVAL; 2094 return (0); 2095 } 2096 2097 int 2098 sys_aio_error(struct thread *td, struct aio_error_args *uap) 2099 { 2100 2101 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops)); 2102 } 2103 2104 /* syscall - asynchronous read from a file (REALTIME) */ 2105 #ifdef COMPAT_FREEBSD6 2106 int 2107 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap) 2108 { 2109 2110 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2111 &aiocb_ops_osigevent)); 2112 } 2113 #endif 2114 2115 int 2116 sys_aio_read(struct thread *td, struct aio_read_args *uap) 2117 { 2118 2119 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops)); 2120 } 2121 2122 /* syscall - asynchronous write to a file (REALTIME) */ 2123 #ifdef COMPAT_FREEBSD6 2124 int 2125 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap) 2126 { 2127 2128 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2129 &aiocb_ops_osigevent)); 2130 } 2131 #endif 2132 2133 int 2134 sys_aio_write(struct thread *td, struct aio_write_args *uap) 2135 { 2136 2137 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops)); 2138 } 2139 2140 int 2141 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap) 2142 { 2143 2144 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops)); 2145 } 2146 2147 static int 2148 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list, 2149 struct aiocb **acb_list, int nent, struct sigevent *sig, 2150 struct aiocb_ops *ops) 2151 { 2152 struct proc *p = td->td_proc; 2153 struct aiocb *job; 2154 struct kaioinfo *ki; 2155 struct aioliojob *lj; 2156 struct kevent kev; 2157 int error; 2158 int nerror; 2159 int i; 2160 2161 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT)) 2162 return (EINVAL); 2163 2164 if (nent < 0 || nent > aio_listio_max) 2165 return (EINVAL); 2166 2167 if (p->p_aioinfo == NULL) 2168 aio_init_aioinfo(p); 2169 2170 ki = p->p_aioinfo; 2171 2172 lj = uma_zalloc(aiolio_zone, M_WAITOK); 2173 lj->lioj_flags = 0; 2174 lj->lioj_count = 0; 2175 lj->lioj_finished_count = 0; 2176 knlist_init_mtx(&lj->klist, AIO_MTX(ki)); 2177 ksiginfo_init(&lj->lioj_ksi); 2178 2179 /* 2180 * Setup signal. 2181 */ 2182 if (sig && (mode == LIO_NOWAIT)) { 2183 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal)); 2184 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2185 /* Assume only new style KEVENT */ 2186 kev.filter = EVFILT_LIO; 2187 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1; 2188 kev.ident = (uintptr_t)uacb_list; /* something unique */ 2189 kev.data = (intptr_t)lj; 2190 /* pass user defined sigval data */ 2191 kev.udata = lj->lioj_signal.sigev_value.sival_ptr; 2192 error = kqfd_register( 2193 lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1); 2194 if (error) { 2195 uma_zfree(aiolio_zone, lj); 2196 return (error); 2197 } 2198 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) { 2199 ; 2200 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2201 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) { 2202 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) { 2203 uma_zfree(aiolio_zone, lj); 2204 return EINVAL; 2205 } 2206 lj->lioj_flags |= LIOJ_SIGNAL; 2207 } else { 2208 uma_zfree(aiolio_zone, lj); 2209 return EINVAL; 2210 } 2211 } 2212 2213 AIO_LOCK(ki); 2214 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list); 2215 /* 2216 * Add extra aiocb count to avoid the lio to be freed 2217 * by other threads doing aio_waitcomplete or aio_return, 2218 * and prevent event from being sent until we have queued 2219 * all tasks. 2220 */ 2221 lj->lioj_count = 1; 2222 AIO_UNLOCK(ki); 2223 2224 /* 2225 * Get pointers to the list of I/O requests. 2226 */ 2227 nerror = 0; 2228 for (i = 0; i < nent; i++) { 2229 job = acb_list[i]; 2230 if (job != NULL) { 2231 error = aio_aqueue(td, job, lj, LIO_NOP, ops); 2232 if (error != 0) 2233 nerror++; 2234 } 2235 } 2236 2237 error = 0; 2238 AIO_LOCK(ki); 2239 if (mode == LIO_WAIT) { 2240 while (lj->lioj_count - 1 != lj->lioj_finished_count) { 2241 ki->kaio_flags |= KAIO_WAKEUP; 2242 error = msleep(&p->p_aioinfo, AIO_MTX(ki), 2243 PRIBIO | PCATCH, "aiospn", 0); 2244 if (error == ERESTART) 2245 error = EINTR; 2246 if (error) 2247 break; 2248 } 2249 } else { 2250 if (lj->lioj_count - 1 == lj->lioj_finished_count) { 2251 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) { 2252 lj->lioj_flags |= LIOJ_KEVENT_POSTED; 2253 KNOTE_LOCKED(&lj->klist, 1); 2254 } 2255 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) 2256 == LIOJ_SIGNAL 2257 && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL || 2258 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) { 2259 aio_sendsig(p, &lj->lioj_signal, 2260 &lj->lioj_ksi); 2261 lj->lioj_flags |= LIOJ_SIGNAL_POSTED; 2262 } 2263 } 2264 } 2265 lj->lioj_count--; 2266 if (lj->lioj_count == 0) { 2267 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list); 2268 knlist_delete(&lj->klist, curthread, 1); 2269 PROC_LOCK(p); 2270 sigqueue_take(&lj->lioj_ksi); 2271 PROC_UNLOCK(p); 2272 AIO_UNLOCK(ki); 2273 uma_zfree(aiolio_zone, lj); 2274 } else 2275 AIO_UNLOCK(ki); 2276 2277 if (nerror) 2278 return (EIO); 2279 return (error); 2280 } 2281 2282 /* syscall - list directed I/O (REALTIME) */ 2283 #ifdef COMPAT_FREEBSD6 2284 int 2285 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap) 2286 { 2287 struct aiocb **acb_list; 2288 struct sigevent *sigp, sig; 2289 struct osigevent osig; 2290 int error, nent; 2291 2292 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2293 return (EINVAL); 2294 2295 nent = uap->nent; 2296 if (nent < 0 || nent > aio_listio_max) 2297 return (EINVAL); 2298 2299 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2300 error = copyin(uap->sig, &osig, sizeof(osig)); 2301 if (error) 2302 return (error); 2303 error = convert_old_sigevent(&osig, &sig); 2304 if (error) 2305 return (error); 2306 sigp = &sig; 2307 } else 2308 sigp = NULL; 2309 2310 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2311 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2312 if (error == 0) 2313 error = kern_lio_listio(td, uap->mode, 2314 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2315 &aiocb_ops_osigevent); 2316 free(acb_list, M_LIO); 2317 return (error); 2318 } 2319 #endif 2320 2321 /* syscall - list directed I/O (REALTIME) */ 2322 int 2323 sys_lio_listio(struct thread *td, struct lio_listio_args *uap) 2324 { 2325 struct aiocb **acb_list; 2326 struct sigevent *sigp, sig; 2327 int error, nent; 2328 2329 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2330 return (EINVAL); 2331 2332 nent = uap->nent; 2333 if (nent < 0 || nent > aio_listio_max) 2334 return (EINVAL); 2335 2336 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2337 error = copyin(uap->sig, &sig, sizeof(sig)); 2338 if (error) 2339 return (error); 2340 sigp = &sig; 2341 } else 2342 sigp = NULL; 2343 2344 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2345 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0])); 2346 if (error == 0) 2347 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list, 2348 nent, sigp, &aiocb_ops); 2349 free(acb_list, M_LIO); 2350 return (error); 2351 } 2352 2353 static void 2354 aio_physwakeup(struct bio *bp) 2355 { 2356 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1; 2357 struct proc *userp; 2358 struct kaioinfo *ki; 2359 size_t nbytes; 2360 int error, nblks; 2361 2362 /* Release mapping into kernel space. */ 2363 userp = job->userproc; 2364 ki = userp->p_aioinfo; 2365 if (job->pbuf) { 2366 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages); 2367 relpbuf(job->pbuf, NULL); 2368 job->pbuf = NULL; 2369 atomic_subtract_int(&num_buf_aio, 1); 2370 AIO_LOCK(ki); 2371 ki->kaio_buffer_count--; 2372 AIO_UNLOCK(ki); 2373 } 2374 vm_page_unhold_pages(job->pages, job->npages); 2375 2376 bp = job->bp; 2377 job->bp = NULL; 2378 nbytes = job->uaiocb.aio_nbytes - bp->bio_resid; 2379 error = 0; 2380 if (bp->bio_flags & BIO_ERROR) 2381 error = bp->bio_error; 2382 nblks = btodb(nbytes); 2383 if (job->uaiocb.aio_lio_opcode == LIO_WRITE) 2384 job->outblock += nblks; 2385 else 2386 job->inblock += nblks; 2387 2388 if (error) 2389 aio_complete(job, -1, error); 2390 else 2391 aio_complete(job, nbytes, 0); 2392 2393 g_destroy_bio(bp); 2394 } 2395 2396 /* syscall - wait for the next completion of an aio request */ 2397 static int 2398 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp, 2399 struct timespec *ts, struct aiocb_ops *ops) 2400 { 2401 struct proc *p = td->td_proc; 2402 struct timeval atv; 2403 struct kaioinfo *ki; 2404 struct kaiocb *job; 2405 struct aiocb *ujob; 2406 long error, status; 2407 int timo; 2408 2409 ops->store_aiocb(ujobp, NULL); 2410 2411 if (ts == NULL) { 2412 timo = 0; 2413 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) { 2414 timo = -1; 2415 } else { 2416 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000)) 2417 return (EINVAL); 2418 2419 TIMESPEC_TO_TIMEVAL(&atv, ts); 2420 if (itimerfix(&atv)) 2421 return (EINVAL); 2422 timo = tvtohz(&atv); 2423 } 2424 2425 if (p->p_aioinfo == NULL) 2426 aio_init_aioinfo(p); 2427 ki = p->p_aioinfo; 2428 2429 error = 0; 2430 job = NULL; 2431 AIO_LOCK(ki); 2432 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) { 2433 if (timo == -1) { 2434 error = EWOULDBLOCK; 2435 break; 2436 } 2437 ki->kaio_flags |= KAIO_WAKEUP; 2438 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH, 2439 "aiowc", timo); 2440 if (timo && error == ERESTART) 2441 error = EINTR; 2442 if (error) 2443 break; 2444 } 2445 2446 if (job != NULL) { 2447 MPASS(job->jobflags & KAIOCB_FINISHED); 2448 ujob = job->ujob; 2449 status = job->uaiocb._aiocb_private.status; 2450 error = job->uaiocb._aiocb_private.error; 2451 td->td_retval[0] = status; 2452 td->td_ru.ru_oublock += job->outblock; 2453 td->td_ru.ru_inblock += job->inblock; 2454 td->td_ru.ru_msgsnd += job->msgsnd; 2455 td->td_ru.ru_msgrcv += job->msgrcv; 2456 aio_free_entry(job); 2457 AIO_UNLOCK(ki); 2458 ops->store_aiocb(ujobp, ujob); 2459 ops->store_error(ujob, error); 2460 ops->store_status(ujob, status); 2461 } else 2462 AIO_UNLOCK(ki); 2463 2464 return (error); 2465 } 2466 2467 int 2468 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap) 2469 { 2470 struct timespec ts, *tsp; 2471 int error; 2472 2473 if (uap->timeout) { 2474 /* Get timespec struct. */ 2475 error = copyin(uap->timeout, &ts, sizeof(ts)); 2476 if (error) 2477 return (error); 2478 tsp = &ts; 2479 } else 2480 tsp = NULL; 2481 2482 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops)); 2483 } 2484 2485 static int 2486 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob, 2487 struct aiocb_ops *ops) 2488 { 2489 2490 if (op != O_SYNC) /* XXX lack of O_DSYNC */ 2491 return (EINVAL); 2492 return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops)); 2493 } 2494 2495 int 2496 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap) 2497 { 2498 2499 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops)); 2500 } 2501 2502 /* kqueue attach function */ 2503 static int 2504 filt_aioattach(struct knote *kn) 2505 { 2506 struct kaiocb *job; 2507 2508 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata; 2509 2510 /* 2511 * The job pointer must be validated before using it, so 2512 * registration is restricted to the kernel; the user cannot 2513 * set EV_FLAG1. 2514 */ 2515 if ((kn->kn_flags & EV_FLAG1) == 0) 2516 return (EPERM); 2517 kn->kn_ptr.p_aio = job; 2518 kn->kn_flags &= ~EV_FLAG1; 2519 2520 knlist_add(&job->klist, kn, 0); 2521 2522 return (0); 2523 } 2524 2525 /* kqueue detach function */ 2526 static void 2527 filt_aiodetach(struct knote *kn) 2528 { 2529 struct knlist *knl; 2530 2531 knl = &kn->kn_ptr.p_aio->klist; 2532 knl->kl_lock(knl->kl_lockarg); 2533 if (!knlist_empty(knl)) 2534 knlist_remove(knl, kn, 1); 2535 knl->kl_unlock(knl->kl_lockarg); 2536 } 2537 2538 /* kqueue filter function */ 2539 /*ARGSUSED*/ 2540 static int 2541 filt_aio(struct knote *kn, long hint) 2542 { 2543 struct kaiocb *job = kn->kn_ptr.p_aio; 2544 2545 kn->kn_data = job->uaiocb._aiocb_private.error; 2546 if (!(job->jobflags & KAIOCB_FINISHED)) 2547 return (0); 2548 kn->kn_flags |= EV_EOF; 2549 return (1); 2550 } 2551 2552 /* kqueue attach function */ 2553 static int 2554 filt_lioattach(struct knote *kn) 2555 { 2556 struct aioliojob *lj; 2557 2558 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata; 2559 2560 /* 2561 * The aioliojob pointer must be validated before using it, so 2562 * registration is restricted to the kernel; the user cannot 2563 * set EV_FLAG1. 2564 */ 2565 if ((kn->kn_flags & EV_FLAG1) == 0) 2566 return (EPERM); 2567 kn->kn_ptr.p_lio = lj; 2568 kn->kn_flags &= ~EV_FLAG1; 2569 2570 knlist_add(&lj->klist, kn, 0); 2571 2572 return (0); 2573 } 2574 2575 /* kqueue detach function */ 2576 static void 2577 filt_liodetach(struct knote *kn) 2578 { 2579 struct knlist *knl; 2580 2581 knl = &kn->kn_ptr.p_lio->klist; 2582 knl->kl_lock(knl->kl_lockarg); 2583 if (!knlist_empty(knl)) 2584 knlist_remove(knl, kn, 1); 2585 knl->kl_unlock(knl->kl_lockarg); 2586 } 2587 2588 /* kqueue filter function */ 2589 /*ARGSUSED*/ 2590 static int 2591 filt_lio(struct knote *kn, long hint) 2592 { 2593 struct aioliojob * lj = kn->kn_ptr.p_lio; 2594 2595 return (lj->lioj_flags & LIOJ_KEVENT_POSTED); 2596 } 2597 2598 #ifdef COMPAT_FREEBSD32 2599 #include <sys/mount.h> 2600 #include <sys/socket.h> 2601 #include <compat/freebsd32/freebsd32.h> 2602 #include <compat/freebsd32/freebsd32_proto.h> 2603 #include <compat/freebsd32/freebsd32_signal.h> 2604 #include <compat/freebsd32/freebsd32_syscall.h> 2605 #include <compat/freebsd32/freebsd32_util.h> 2606 2607 struct __aiocb_private32 { 2608 int32_t status; 2609 int32_t error; 2610 uint32_t kernelinfo; 2611 }; 2612 2613 #ifdef COMPAT_FREEBSD6 2614 typedef struct oaiocb32 { 2615 int aio_fildes; /* File descriptor */ 2616 uint64_t aio_offset __packed; /* File offset for I/O */ 2617 uint32_t aio_buf; /* I/O buffer in process space */ 2618 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2619 struct osigevent32 aio_sigevent; /* Signal to deliver */ 2620 int aio_lio_opcode; /* LIO opcode */ 2621 int aio_reqprio; /* Request priority -- ignored */ 2622 struct __aiocb_private32 _aiocb_private; 2623 } oaiocb32_t; 2624 #endif 2625 2626 typedef struct aiocb32 { 2627 int32_t aio_fildes; /* File descriptor */ 2628 uint64_t aio_offset __packed; /* File offset for I/O */ 2629 uint32_t aio_buf; /* I/O buffer in process space */ 2630 uint32_t aio_nbytes; /* Number of bytes for I/O */ 2631 int __spare__[2]; 2632 uint32_t __spare2__; 2633 int aio_lio_opcode; /* LIO opcode */ 2634 int aio_reqprio; /* Request priority -- ignored */ 2635 struct __aiocb_private32 _aiocb_private; 2636 struct sigevent32 aio_sigevent; /* Signal to deliver */ 2637 } aiocb32_t; 2638 2639 #ifdef COMPAT_FREEBSD6 2640 static int 2641 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig) 2642 { 2643 2644 /* 2645 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are 2646 * supported by AIO with the old sigevent structure. 2647 */ 2648 CP(*osig, *nsig, sigev_notify); 2649 switch (nsig->sigev_notify) { 2650 case SIGEV_NONE: 2651 break; 2652 case SIGEV_SIGNAL: 2653 nsig->sigev_signo = osig->__sigev_u.__sigev_signo; 2654 break; 2655 case SIGEV_KEVENT: 2656 nsig->sigev_notify_kqueue = 2657 osig->__sigev_u.__sigev_notify_kqueue; 2658 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr); 2659 break; 2660 default: 2661 return (EINVAL); 2662 } 2663 return (0); 2664 } 2665 2666 static int 2667 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob) 2668 { 2669 struct oaiocb32 job32; 2670 int error; 2671 2672 bzero(kjob, sizeof(struct aiocb)); 2673 error = copyin(ujob, &job32, sizeof(job32)); 2674 if (error) 2675 return (error); 2676 2677 CP(job32, *kjob, aio_fildes); 2678 CP(job32, *kjob, aio_offset); 2679 PTRIN_CP(job32, *kjob, aio_buf); 2680 CP(job32, *kjob, aio_nbytes); 2681 CP(job32, *kjob, aio_lio_opcode); 2682 CP(job32, *kjob, aio_reqprio); 2683 CP(job32, *kjob, _aiocb_private.status); 2684 CP(job32, *kjob, _aiocb_private.error); 2685 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2686 return (convert_old_sigevent32(&job32.aio_sigevent, 2687 &kjob->aio_sigevent)); 2688 } 2689 #endif 2690 2691 static int 2692 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob) 2693 { 2694 struct aiocb32 job32; 2695 int error; 2696 2697 error = copyin(ujob, &job32, sizeof(job32)); 2698 if (error) 2699 return (error); 2700 CP(job32, *kjob, aio_fildes); 2701 CP(job32, *kjob, aio_offset); 2702 PTRIN_CP(job32, *kjob, aio_buf); 2703 CP(job32, *kjob, aio_nbytes); 2704 CP(job32, *kjob, aio_lio_opcode); 2705 CP(job32, *kjob, aio_reqprio); 2706 CP(job32, *kjob, _aiocb_private.status); 2707 CP(job32, *kjob, _aiocb_private.error); 2708 PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo); 2709 return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent)); 2710 } 2711 2712 static long 2713 aiocb32_fetch_status(struct aiocb *ujob) 2714 { 2715 struct aiocb32 *ujob32; 2716 2717 ujob32 = (struct aiocb32 *)ujob; 2718 return (fuword32(&ujob32->_aiocb_private.status)); 2719 } 2720 2721 static long 2722 aiocb32_fetch_error(struct aiocb *ujob) 2723 { 2724 struct aiocb32 *ujob32; 2725 2726 ujob32 = (struct aiocb32 *)ujob; 2727 return (fuword32(&ujob32->_aiocb_private.error)); 2728 } 2729 2730 static int 2731 aiocb32_store_status(struct aiocb *ujob, long status) 2732 { 2733 struct aiocb32 *ujob32; 2734 2735 ujob32 = (struct aiocb32 *)ujob; 2736 return (suword32(&ujob32->_aiocb_private.status, status)); 2737 } 2738 2739 static int 2740 aiocb32_store_error(struct aiocb *ujob, long error) 2741 { 2742 struct aiocb32 *ujob32; 2743 2744 ujob32 = (struct aiocb32 *)ujob; 2745 return (suword32(&ujob32->_aiocb_private.error, error)); 2746 } 2747 2748 static int 2749 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref) 2750 { 2751 struct aiocb32 *ujob32; 2752 2753 ujob32 = (struct aiocb32 *)ujob; 2754 return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref)); 2755 } 2756 2757 static int 2758 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob) 2759 { 2760 2761 return (suword32(ujobp, (long)ujob)); 2762 } 2763 2764 static struct aiocb_ops aiocb32_ops = { 2765 .copyin = aiocb32_copyin, 2766 .fetch_status = aiocb32_fetch_status, 2767 .fetch_error = aiocb32_fetch_error, 2768 .store_status = aiocb32_store_status, 2769 .store_error = aiocb32_store_error, 2770 .store_kernelinfo = aiocb32_store_kernelinfo, 2771 .store_aiocb = aiocb32_store_aiocb, 2772 }; 2773 2774 #ifdef COMPAT_FREEBSD6 2775 static struct aiocb_ops aiocb32_ops_osigevent = { 2776 .copyin = aiocb32_copyin_old_sigevent, 2777 .fetch_status = aiocb32_fetch_status, 2778 .fetch_error = aiocb32_fetch_error, 2779 .store_status = aiocb32_store_status, 2780 .store_error = aiocb32_store_error, 2781 .store_kernelinfo = aiocb32_store_kernelinfo, 2782 .store_aiocb = aiocb32_store_aiocb, 2783 }; 2784 #endif 2785 2786 int 2787 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap) 2788 { 2789 2790 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2791 } 2792 2793 int 2794 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap) 2795 { 2796 struct timespec32 ts32; 2797 struct timespec ts, *tsp; 2798 struct aiocb **ujoblist; 2799 uint32_t *ujoblist32; 2800 int error, i; 2801 2802 if (uap->nent < 0 || uap->nent > aio_listio_max) 2803 return (EINVAL); 2804 2805 if (uap->timeout) { 2806 /* Get timespec struct. */ 2807 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0) 2808 return (error); 2809 CP(ts32, ts, tv_sec); 2810 CP(ts32, ts, tv_nsec); 2811 tsp = &ts; 2812 } else 2813 tsp = NULL; 2814 2815 ujoblist = uma_zalloc(aiol_zone, M_WAITOK); 2816 ujoblist32 = (uint32_t *)ujoblist; 2817 error = copyin(uap->aiocbp, ujoblist32, uap->nent * 2818 sizeof(ujoblist32[0])); 2819 if (error == 0) { 2820 for (i = uap->nent; i > 0; i--) 2821 ujoblist[i] = PTRIN(ujoblist32[i]); 2822 2823 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp); 2824 } 2825 uma_zfree(aiol_zone, ujoblist); 2826 return (error); 2827 } 2828 2829 int 2830 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap) 2831 { 2832 2833 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops)); 2834 } 2835 2836 #ifdef COMPAT_FREEBSD6 2837 int 2838 freebsd6_freebsd32_aio_read(struct thread *td, 2839 struct freebsd6_freebsd32_aio_read_args *uap) 2840 { 2841 2842 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2843 &aiocb32_ops_osigevent)); 2844 } 2845 #endif 2846 2847 int 2848 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap) 2849 { 2850 2851 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 2852 &aiocb32_ops)); 2853 } 2854 2855 #ifdef COMPAT_FREEBSD6 2856 int 2857 freebsd6_freebsd32_aio_write(struct thread *td, 2858 struct freebsd6_freebsd32_aio_write_args *uap) 2859 { 2860 2861 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2862 &aiocb32_ops_osigevent)); 2863 } 2864 #endif 2865 2866 int 2867 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap) 2868 { 2869 2870 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 2871 &aiocb32_ops)); 2872 } 2873 2874 int 2875 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap) 2876 { 2877 2878 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK, 2879 &aiocb32_ops)); 2880 } 2881 2882 int 2883 freebsd32_aio_waitcomplete(struct thread *td, 2884 struct freebsd32_aio_waitcomplete_args *uap) 2885 { 2886 struct timespec32 ts32; 2887 struct timespec ts, *tsp; 2888 int error; 2889 2890 if (uap->timeout) { 2891 /* Get timespec struct. */ 2892 error = copyin(uap->timeout, &ts32, sizeof(ts32)); 2893 if (error) 2894 return (error); 2895 CP(ts32, ts, tv_sec); 2896 CP(ts32, ts, tv_nsec); 2897 tsp = &ts; 2898 } else 2899 tsp = NULL; 2900 2901 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp, 2902 &aiocb32_ops)); 2903 } 2904 2905 int 2906 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap) 2907 { 2908 2909 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp, 2910 &aiocb32_ops)); 2911 } 2912 2913 #ifdef COMPAT_FREEBSD6 2914 int 2915 freebsd6_freebsd32_lio_listio(struct thread *td, 2916 struct freebsd6_freebsd32_lio_listio_args *uap) 2917 { 2918 struct aiocb **acb_list; 2919 struct sigevent *sigp, sig; 2920 struct osigevent32 osig; 2921 uint32_t *acb_list32; 2922 int error, i, nent; 2923 2924 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2925 return (EINVAL); 2926 2927 nent = uap->nent; 2928 if (nent < 0 || nent > aio_listio_max) 2929 return (EINVAL); 2930 2931 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2932 error = copyin(uap->sig, &osig, sizeof(osig)); 2933 if (error) 2934 return (error); 2935 error = convert_old_sigevent32(&osig, &sig); 2936 if (error) 2937 return (error); 2938 sigp = &sig; 2939 } else 2940 sigp = NULL; 2941 2942 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2943 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2944 if (error) { 2945 free(acb_list32, M_LIO); 2946 return (error); 2947 } 2948 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2949 for (i = 0; i < nent; i++) 2950 acb_list[i] = PTRIN(acb_list32[i]); 2951 free(acb_list32, M_LIO); 2952 2953 error = kern_lio_listio(td, uap->mode, 2954 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 2955 &aiocb32_ops_osigevent); 2956 free(acb_list, M_LIO); 2957 return (error); 2958 } 2959 #endif 2960 2961 int 2962 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap) 2963 { 2964 struct aiocb **acb_list; 2965 struct sigevent *sigp, sig; 2966 struct sigevent32 sig32; 2967 uint32_t *acb_list32; 2968 int error, i, nent; 2969 2970 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT)) 2971 return (EINVAL); 2972 2973 nent = uap->nent; 2974 if (nent < 0 || nent > aio_listio_max) 2975 return (EINVAL); 2976 2977 if (uap->sig && (uap->mode == LIO_NOWAIT)) { 2978 error = copyin(uap->sig, &sig32, sizeof(sig32)); 2979 if (error) 2980 return (error); 2981 error = convert_sigevent32(&sig32, &sig); 2982 if (error) 2983 return (error); 2984 sigp = &sig; 2985 } else 2986 sigp = NULL; 2987 2988 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK); 2989 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t)); 2990 if (error) { 2991 free(acb_list32, M_LIO); 2992 return (error); 2993 } 2994 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK); 2995 for (i = 0; i < nent; i++) 2996 acb_list[i] = PTRIN(acb_list32[i]); 2997 free(acb_list32, M_LIO); 2998 2999 error = kern_lio_listio(td, uap->mode, 3000 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp, 3001 &aiocb32_ops); 3002 free(acb_list, M_LIO); 3003 return (error); 3004 } 3005 3006 #endif 3007