xref: /freebsd/sys/kern/uipc_usrreq.c (revision fe6060f10f634930ff71b7c50291ddc610da2475)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * See unpcb.h for the locking key.
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_sendspace, 0, "Default datagram send space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pru_attach() and freed in pru_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *);
296 static int	unp_connect2(struct socket *so, struct socket *so2, int);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_dispose_mbuf(struct mbuf *);
300 static void	unp_shutdown(struct unpcb *);
301 static void	unp_drop(struct unpcb *);
302 static void	unp_gc(__unused void *, int);
303 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
304 static void	unp_discard(struct file *);
305 static void	unp_freerights(struct filedescent **, int);
306 static void	unp_init(void);
307 static int	unp_internalize(struct mbuf **, struct thread *);
308 static void	unp_internalize_fp(struct file *);
309 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
310 static int	unp_externalize_fp(struct file *);
311 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *, int);
312 static void	unp_process_defers(void * __unused, int);
313 
314 static void
315 unp_pcb_hold(struct unpcb *unp)
316 {
317 	u_int old __unused;
318 
319 	old = refcount_acquire(&unp->unp_refcount);
320 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
321 }
322 
323 static __result_use_check bool
324 unp_pcb_rele(struct unpcb *unp)
325 {
326 	bool ret;
327 
328 	UNP_PCB_LOCK_ASSERT(unp);
329 
330 	if ((ret = refcount_release(&unp->unp_refcount))) {
331 		UNP_PCB_UNLOCK(unp);
332 		UNP_PCB_LOCK_DESTROY(unp);
333 		uma_zfree(unp_zone, unp);
334 	}
335 	return (ret);
336 }
337 
338 static void
339 unp_pcb_rele_notlast(struct unpcb *unp)
340 {
341 	bool ret __unused;
342 
343 	ret = refcount_release(&unp->unp_refcount);
344 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
345 }
346 
347 static void
348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
349 {
350 	UNP_PCB_UNLOCK_ASSERT(unp);
351 	UNP_PCB_UNLOCK_ASSERT(unp2);
352 
353 	if (unp == unp2) {
354 		UNP_PCB_LOCK(unp);
355 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
356 		UNP_PCB_LOCK(unp);
357 		UNP_PCB_LOCK(unp2);
358 	} else {
359 		UNP_PCB_LOCK(unp2);
360 		UNP_PCB_LOCK(unp);
361 	}
362 }
363 
364 static void
365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
366 {
367 	UNP_PCB_UNLOCK(unp);
368 	if (unp != unp2)
369 		UNP_PCB_UNLOCK(unp2);
370 }
371 
372 /*
373  * Try to lock the connected peer of an already locked socket.  In some cases
374  * this requires that we unlock the current socket.  The pairbusy counter is
375  * used to block concurrent connection attempts while the lock is dropped.  The
376  * caller must be careful to revalidate PCB state.
377  */
378 static struct unpcb *
379 unp_pcb_lock_peer(struct unpcb *unp)
380 {
381 	struct unpcb *unp2;
382 
383 	UNP_PCB_LOCK_ASSERT(unp);
384 	unp2 = unp->unp_conn;
385 	if (unp2 == NULL)
386 		return (NULL);
387 	if (__predict_false(unp == unp2))
388 		return (unp);
389 
390 	UNP_PCB_UNLOCK_ASSERT(unp2);
391 
392 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
393 		return (unp2);
394 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
395 		UNP_PCB_LOCK(unp2);
396 		return (unp2);
397 	}
398 	unp->unp_pairbusy++;
399 	unp_pcb_hold(unp2);
400 	UNP_PCB_UNLOCK(unp);
401 
402 	UNP_PCB_LOCK(unp2);
403 	UNP_PCB_LOCK(unp);
404 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
405 	    ("%s: socket %p was reconnected", __func__, unp));
406 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
407 		unp->unp_flags &= ~UNP_WAITING;
408 		wakeup(unp);
409 	}
410 	if (unp_pcb_rele(unp2)) {
411 		/* unp2 is unlocked. */
412 		return (NULL);
413 	}
414 	if (unp->unp_conn == NULL) {
415 		UNP_PCB_UNLOCK(unp2);
416 		return (NULL);
417 	}
418 	return (unp2);
419 }
420 
421 /*
422  * Definitions of protocols supported in the LOCAL domain.
423  */
424 static struct domain localdomain;
425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
426 static struct pr_usrreqs uipc_usrreqs_seqpacket;
427 static struct protosw localsw[] = {
428 {
429 	.pr_type =		SOCK_STREAM,
430 	.pr_domain =		&localdomain,
431 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
432 				    PR_CAPATTACH,
433 	.pr_ctloutput =		&uipc_ctloutput,
434 	.pr_usrreqs =		&uipc_usrreqs_stream
435 },
436 {
437 	.pr_type =		SOCK_DGRAM,
438 	.pr_domain =		&localdomain,
439 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS|PR_CAPATTACH,
440 	.pr_ctloutput =		&uipc_ctloutput,
441 	.pr_usrreqs =		&uipc_usrreqs_dgram
442 },
443 {
444 	.pr_type =		SOCK_SEQPACKET,
445 	.pr_domain =		&localdomain,
446 
447 	/*
448 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
449 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
450 	 * that supports both atomic record writes and control data.
451 	 */
452 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
453 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
454 	.pr_ctloutput =		&uipc_ctloutput,
455 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
456 },
457 };
458 
459 static struct domain localdomain = {
460 	.dom_family =		AF_LOCAL,
461 	.dom_name =		"local",
462 	.dom_init =		unp_init,
463 	.dom_externalize =	unp_externalize,
464 	.dom_dispose =		unp_dispose,
465 	.dom_protosw =		localsw,
466 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
467 };
468 DOMAIN_SET(local);
469 
470 static void
471 uipc_abort(struct socket *so)
472 {
473 	struct unpcb *unp, *unp2;
474 
475 	unp = sotounpcb(so);
476 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
477 	UNP_PCB_UNLOCK_ASSERT(unp);
478 
479 	UNP_PCB_LOCK(unp);
480 	unp2 = unp->unp_conn;
481 	if (unp2 != NULL) {
482 		unp_pcb_hold(unp2);
483 		UNP_PCB_UNLOCK(unp);
484 		unp_drop(unp2);
485 	} else
486 		UNP_PCB_UNLOCK(unp);
487 }
488 
489 static int
490 uipc_accept(struct socket *so, struct sockaddr **nam)
491 {
492 	struct unpcb *unp, *unp2;
493 	const struct sockaddr *sa;
494 
495 	/*
496 	 * Pass back name of connected socket, if it was bound and we are
497 	 * still connected (our peer may have closed already!).
498 	 */
499 	unp = sotounpcb(so);
500 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
501 
502 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
503 	UNP_PCB_LOCK(unp);
504 	unp2 = unp_pcb_lock_peer(unp);
505 	if (unp2 != NULL && unp2->unp_addr != NULL)
506 		sa = (struct sockaddr *)unp2->unp_addr;
507 	else
508 		sa = &sun_noname;
509 	bcopy(sa, *nam, sa->sa_len);
510 	if (unp2 != NULL)
511 		unp_pcb_unlock_pair(unp, unp2);
512 	else
513 		UNP_PCB_UNLOCK(unp);
514 	return (0);
515 }
516 
517 static int
518 uipc_attach(struct socket *so, int proto, struct thread *td)
519 {
520 	u_long sendspace, recvspace;
521 	struct unpcb *unp;
522 	int error;
523 	bool locked;
524 
525 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
526 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
527 		switch (so->so_type) {
528 		case SOCK_STREAM:
529 			sendspace = unpst_sendspace;
530 			recvspace = unpst_recvspace;
531 			break;
532 
533 		case SOCK_DGRAM:
534 			sendspace = unpdg_sendspace;
535 			recvspace = unpdg_recvspace;
536 			break;
537 
538 		case SOCK_SEQPACKET:
539 			sendspace = unpsp_sendspace;
540 			recvspace = unpsp_recvspace;
541 			break;
542 
543 		default:
544 			panic("uipc_attach");
545 		}
546 		error = soreserve(so, sendspace, recvspace);
547 		if (error)
548 			return (error);
549 	}
550 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
551 	if (unp == NULL)
552 		return (ENOBUFS);
553 	LIST_INIT(&unp->unp_refs);
554 	UNP_PCB_LOCK_INIT(unp);
555 	unp->unp_socket = so;
556 	so->so_pcb = unp;
557 	refcount_init(&unp->unp_refcount, 1);
558 
559 	if ((locked = UNP_LINK_WOWNED()) == false)
560 		UNP_LINK_WLOCK();
561 
562 	unp->unp_gencnt = ++unp_gencnt;
563 	unp->unp_ino = ++unp_ino;
564 	unp_count++;
565 	switch (so->so_type) {
566 	case SOCK_STREAM:
567 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
568 		break;
569 
570 	case SOCK_DGRAM:
571 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
572 		break;
573 
574 	case SOCK_SEQPACKET:
575 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
576 		break;
577 
578 	default:
579 		panic("uipc_attach");
580 	}
581 
582 	if (locked == false)
583 		UNP_LINK_WUNLOCK();
584 
585 	return (0);
586 }
587 
588 static int
589 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
590 {
591 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
592 	struct vattr vattr;
593 	int error, namelen;
594 	struct nameidata nd;
595 	struct unpcb *unp;
596 	struct vnode *vp;
597 	struct mount *mp;
598 	cap_rights_t rights;
599 	char *buf;
600 
601 	if (nam->sa_family != AF_UNIX)
602 		return (EAFNOSUPPORT);
603 
604 	unp = sotounpcb(so);
605 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
606 
607 	if (soun->sun_len > sizeof(struct sockaddr_un))
608 		return (EINVAL);
609 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
610 	if (namelen <= 0)
611 		return (EINVAL);
612 
613 	/*
614 	 * We don't allow simultaneous bind() calls on a single UNIX domain
615 	 * socket, so flag in-progress operations, and return an error if an
616 	 * operation is already in progress.
617 	 *
618 	 * Historically, we have not allowed a socket to be rebound, so this
619 	 * also returns an error.  Not allowing re-binding simplifies the
620 	 * implementation and avoids a great many possible failure modes.
621 	 */
622 	UNP_PCB_LOCK(unp);
623 	if (unp->unp_vnode != NULL) {
624 		UNP_PCB_UNLOCK(unp);
625 		return (EINVAL);
626 	}
627 	if (unp->unp_flags & UNP_BINDING) {
628 		UNP_PCB_UNLOCK(unp);
629 		return (EALREADY);
630 	}
631 	unp->unp_flags |= UNP_BINDING;
632 	UNP_PCB_UNLOCK(unp);
633 
634 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
635 	bcopy(soun->sun_path, buf, namelen);
636 	buf[namelen] = 0;
637 
638 restart:
639 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
640 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT),
641 	    td);
642 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
643 	error = namei(&nd);
644 	if (error)
645 		goto error;
646 	vp = nd.ni_vp;
647 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
648 		NDFREE(&nd, NDF_ONLY_PNBUF);
649 		if (nd.ni_dvp == vp)
650 			vrele(nd.ni_dvp);
651 		else
652 			vput(nd.ni_dvp);
653 		if (vp != NULL) {
654 			vrele(vp);
655 			error = EADDRINUSE;
656 			goto error;
657 		}
658 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
659 		if (error)
660 			goto error;
661 		goto restart;
662 	}
663 	VATTR_NULL(&vattr);
664 	vattr.va_type = VSOCK;
665 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
666 #ifdef MAC
667 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
668 	    &vattr);
669 #endif
670 	if (error == 0)
671 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
672 	NDFREE(&nd, NDF_ONLY_PNBUF);
673 	if (error) {
674 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
675 		vn_finished_write(mp);
676 		if (error == ERELOOKUP)
677 			goto restart;
678 		goto error;
679 	}
680 	vp = nd.ni_vp;
681 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
682 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
683 
684 	UNP_PCB_LOCK(unp);
685 	VOP_UNP_BIND(vp, unp);
686 	unp->unp_vnode = vp;
687 	unp->unp_addr = soun;
688 	unp->unp_flags &= ~UNP_BINDING;
689 	UNP_PCB_UNLOCK(unp);
690 	vref(vp);
691 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
692 	vn_finished_write(mp);
693 	free(buf, M_TEMP);
694 	return (0);
695 
696 error:
697 	UNP_PCB_LOCK(unp);
698 	unp->unp_flags &= ~UNP_BINDING;
699 	UNP_PCB_UNLOCK(unp);
700 	free(buf, M_TEMP);
701 	return (error);
702 }
703 
704 static int
705 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
706 {
707 
708 	return (uipc_bindat(AT_FDCWD, so, nam, td));
709 }
710 
711 static int
712 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
713 {
714 	int error;
715 
716 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
717 	error = unp_connect(so, nam, td);
718 	return (error);
719 }
720 
721 static int
722 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
723     struct thread *td)
724 {
725 	int error;
726 
727 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
728 	error = unp_connectat(fd, so, nam, td);
729 	return (error);
730 }
731 
732 static void
733 uipc_close(struct socket *so)
734 {
735 	struct unpcb *unp, *unp2;
736 	struct vnode *vp = NULL;
737 	struct mtx *vplock;
738 
739 	unp = sotounpcb(so);
740 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
741 
742 	vplock = NULL;
743 	if ((vp = unp->unp_vnode) != NULL) {
744 		vplock = mtx_pool_find(mtxpool_sleep, vp);
745 		mtx_lock(vplock);
746 	}
747 	UNP_PCB_LOCK(unp);
748 	if (vp && unp->unp_vnode == NULL) {
749 		mtx_unlock(vplock);
750 		vp = NULL;
751 	}
752 	if (vp != NULL) {
753 		VOP_UNP_DETACH(vp);
754 		unp->unp_vnode = NULL;
755 	}
756 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
757 		unp_disconnect(unp, unp2);
758 	else
759 		UNP_PCB_UNLOCK(unp);
760 	if (vp) {
761 		mtx_unlock(vplock);
762 		vrele(vp);
763 	}
764 }
765 
766 static int
767 uipc_connect2(struct socket *so1, struct socket *so2)
768 {
769 	struct unpcb *unp, *unp2;
770 	int error;
771 
772 	unp = so1->so_pcb;
773 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
774 	unp2 = so2->so_pcb;
775 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
776 	unp_pcb_lock_pair(unp, unp2);
777 	error = unp_connect2(so1, so2, PRU_CONNECT2);
778 	unp_pcb_unlock_pair(unp, unp2);
779 	return (error);
780 }
781 
782 static void
783 uipc_detach(struct socket *so)
784 {
785 	struct unpcb *unp, *unp2;
786 	struct mtx *vplock;
787 	struct vnode *vp;
788 	int local_unp_rights;
789 
790 	unp = sotounpcb(so);
791 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
792 
793 	vp = NULL;
794 	vplock = NULL;
795 
796 	SOCK_LOCK(so);
797 	if (!SOLISTENING(so)) {
798 		/*
799 		 * Once the socket is removed from the global lists,
800 		 * uipc_ready() will not be able to locate its socket buffer, so
801 		 * clear the buffer now.  At this point internalized rights have
802 		 * already been disposed of.
803 		 */
804 		sbrelease(&so->so_rcv, so);
805 	}
806 	SOCK_UNLOCK(so);
807 
808 	UNP_LINK_WLOCK();
809 	LIST_REMOVE(unp, unp_link);
810 	if (unp->unp_gcflag & UNPGC_DEAD)
811 		LIST_REMOVE(unp, unp_dead);
812 	unp->unp_gencnt = ++unp_gencnt;
813 	--unp_count;
814 	UNP_LINK_WUNLOCK();
815 
816 	UNP_PCB_UNLOCK_ASSERT(unp);
817  restart:
818 	if ((vp = unp->unp_vnode) != NULL) {
819 		vplock = mtx_pool_find(mtxpool_sleep, vp);
820 		mtx_lock(vplock);
821 	}
822 	UNP_PCB_LOCK(unp);
823 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
824 		if (vplock)
825 			mtx_unlock(vplock);
826 		UNP_PCB_UNLOCK(unp);
827 		goto restart;
828 	}
829 	if ((vp = unp->unp_vnode) != NULL) {
830 		VOP_UNP_DETACH(vp);
831 		unp->unp_vnode = NULL;
832 	}
833 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
834 		unp_disconnect(unp, unp2);
835 	else
836 		UNP_PCB_UNLOCK(unp);
837 
838 	UNP_REF_LIST_LOCK();
839 	while (!LIST_EMPTY(&unp->unp_refs)) {
840 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
841 
842 		unp_pcb_hold(ref);
843 		UNP_REF_LIST_UNLOCK();
844 
845 		MPASS(ref != unp);
846 		UNP_PCB_UNLOCK_ASSERT(ref);
847 		unp_drop(ref);
848 		UNP_REF_LIST_LOCK();
849 	}
850 	UNP_REF_LIST_UNLOCK();
851 
852 	UNP_PCB_LOCK(unp);
853 	local_unp_rights = unp_rights;
854 	unp->unp_socket->so_pcb = NULL;
855 	unp->unp_socket = NULL;
856 	free(unp->unp_addr, M_SONAME);
857 	unp->unp_addr = NULL;
858 	if (!unp_pcb_rele(unp))
859 		UNP_PCB_UNLOCK(unp);
860 	if (vp) {
861 		mtx_unlock(vplock);
862 		vrele(vp);
863 	}
864 	if (local_unp_rights)
865 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
866 }
867 
868 static int
869 uipc_disconnect(struct socket *so)
870 {
871 	struct unpcb *unp, *unp2;
872 
873 	unp = sotounpcb(so);
874 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
875 
876 	UNP_PCB_LOCK(unp);
877 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
878 		unp_disconnect(unp, unp2);
879 	else
880 		UNP_PCB_UNLOCK(unp);
881 	return (0);
882 }
883 
884 static int
885 uipc_listen(struct socket *so, int backlog, struct thread *td)
886 {
887 	struct unpcb *unp;
888 	int error;
889 
890 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
891 		return (EOPNOTSUPP);
892 
893 	/*
894 	 * Synchronize with concurrent connection attempts.
895 	 */
896 	error = 0;
897 	unp = sotounpcb(so);
898 	UNP_PCB_LOCK(unp);
899 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
900 		error = EINVAL;
901 	else if (unp->unp_vnode == NULL)
902 		error = EDESTADDRREQ;
903 	if (error != 0) {
904 		UNP_PCB_UNLOCK(unp);
905 		return (error);
906 	}
907 
908 	SOCK_LOCK(so);
909 	error = solisten_proto_check(so);
910 	if (error == 0) {
911 		cru2xt(td, &unp->unp_peercred);
912 		solisten_proto(so, backlog);
913 	}
914 	SOCK_UNLOCK(so);
915 	UNP_PCB_UNLOCK(unp);
916 	return (error);
917 }
918 
919 static int
920 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
921 {
922 	struct unpcb *unp, *unp2;
923 	const struct sockaddr *sa;
924 
925 	unp = sotounpcb(so);
926 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
927 
928 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
929 	UNP_LINK_RLOCK();
930 	/*
931 	 * XXX: It seems that this test always fails even when connection is
932 	 * established.  So, this else clause is added as workaround to
933 	 * return PF_LOCAL sockaddr.
934 	 */
935 	unp2 = unp->unp_conn;
936 	if (unp2 != NULL) {
937 		UNP_PCB_LOCK(unp2);
938 		if (unp2->unp_addr != NULL)
939 			sa = (struct sockaddr *) unp2->unp_addr;
940 		else
941 			sa = &sun_noname;
942 		bcopy(sa, *nam, sa->sa_len);
943 		UNP_PCB_UNLOCK(unp2);
944 	} else {
945 		sa = &sun_noname;
946 		bcopy(sa, *nam, sa->sa_len);
947 	}
948 	UNP_LINK_RUNLOCK();
949 	return (0);
950 }
951 
952 static int
953 uipc_rcvd(struct socket *so, int flags)
954 {
955 	struct unpcb *unp, *unp2;
956 	struct socket *so2;
957 	u_int mbcnt, sbcc;
958 
959 	unp = sotounpcb(so);
960 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
961 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
962 	    ("%s: socktype %d", __func__, so->so_type));
963 
964 	/*
965 	 * Adjust backpressure on sender and wakeup any waiting to write.
966 	 *
967 	 * The unp lock is acquired to maintain the validity of the unp_conn
968 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
969 	 * static as long as we don't permit unp2 to disconnect from unp,
970 	 * which is prevented by the lock on unp.  We cache values from
971 	 * so_rcv to avoid holding the so_rcv lock over the entire
972 	 * transaction on the remote so_snd.
973 	 */
974 	SOCKBUF_LOCK(&so->so_rcv);
975 	mbcnt = so->so_rcv.sb_mbcnt;
976 	sbcc = sbavail(&so->so_rcv);
977 	SOCKBUF_UNLOCK(&so->so_rcv);
978 	/*
979 	 * There is a benign race condition at this point.  If we're planning to
980 	 * clear SB_STOP, but uipc_send is called on the connected socket at
981 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
982 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
983 	 * full.  The race is benign because the only ill effect is to allow the
984 	 * sockbuf to exceed its size limit, and the size limits are not
985 	 * strictly guaranteed anyway.
986 	 */
987 	UNP_PCB_LOCK(unp);
988 	unp2 = unp->unp_conn;
989 	if (unp2 == NULL) {
990 		UNP_PCB_UNLOCK(unp);
991 		return (0);
992 	}
993 	so2 = unp2->unp_socket;
994 	SOCKBUF_LOCK(&so2->so_snd);
995 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
996 		so2->so_snd.sb_flags &= ~SB_STOP;
997 	sowwakeup_locked(so2);
998 	UNP_PCB_UNLOCK(unp);
999 	return (0);
1000 }
1001 
1002 static int
1003 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1004     struct mbuf *control, struct thread *td)
1005 {
1006 	struct unpcb *unp, *unp2;
1007 	struct socket *so2;
1008 	u_int mbcnt, sbcc;
1009 	int freed, error;
1010 
1011 	unp = sotounpcb(so);
1012 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1013 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1014 	    so->so_type == SOCK_SEQPACKET,
1015 	    ("%s: socktype %d", __func__, so->so_type));
1016 
1017 	freed = error = 0;
1018 	if (flags & PRUS_OOB) {
1019 		error = EOPNOTSUPP;
1020 		goto release;
1021 	}
1022 	if (control != NULL && (error = unp_internalize(&control, td)))
1023 		goto release;
1024 
1025 	unp2 = NULL;
1026 	switch (so->so_type) {
1027 	case SOCK_DGRAM:
1028 	{
1029 		const struct sockaddr *from;
1030 
1031 		if (nam != NULL) {
1032 			error = unp_connect(so, nam, td);
1033 			if (error != 0)
1034 				break;
1035 		}
1036 		UNP_PCB_LOCK(unp);
1037 
1038 		/*
1039 		 * Because connect() and send() are non-atomic in a sendto()
1040 		 * with a target address, it's possible that the socket will
1041 		 * have disconnected before the send() can run.  In that case
1042 		 * return the slightly counter-intuitive but otherwise
1043 		 * correct error that the socket is not connected.
1044 		 */
1045 		unp2 = unp_pcb_lock_peer(unp);
1046 		if (unp2 == NULL) {
1047 			UNP_PCB_UNLOCK(unp);
1048 			error = ENOTCONN;
1049 			break;
1050 		}
1051 
1052 		if (unp2->unp_flags & UNP_WANTCRED_MASK)
1053 			control = unp_addsockcred(td, control,
1054 			    unp2->unp_flags);
1055 		if (unp->unp_addr != NULL)
1056 			from = (struct sockaddr *)unp->unp_addr;
1057 		else
1058 			from = &sun_noname;
1059 		so2 = unp2->unp_socket;
1060 		SOCKBUF_LOCK(&so2->so_rcv);
1061 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1062 		    control)) {
1063 			sorwakeup_locked(so2);
1064 			m = NULL;
1065 			control = NULL;
1066 		} else {
1067 			soroverflow_locked(so2);
1068 			error = ENOBUFS;
1069 		}
1070 		if (nam != NULL)
1071 			unp_disconnect(unp, unp2);
1072 		else
1073 			unp_pcb_unlock_pair(unp, unp2);
1074 		break;
1075 	}
1076 
1077 	case SOCK_SEQPACKET:
1078 	case SOCK_STREAM:
1079 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1080 			if (nam != NULL) {
1081 				error = unp_connect(so, nam, td);
1082 				if (error != 0)
1083 					break;
1084 			} else {
1085 				error = ENOTCONN;
1086 				break;
1087 			}
1088 		}
1089 
1090 		UNP_PCB_LOCK(unp);
1091 		if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
1092 			UNP_PCB_UNLOCK(unp);
1093 			error = ENOTCONN;
1094 			break;
1095 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1096 			unp_pcb_unlock_pair(unp, unp2);
1097 			error = EPIPE;
1098 			break;
1099 		}
1100 		UNP_PCB_UNLOCK(unp);
1101 		if ((so2 = unp2->unp_socket) == NULL) {
1102 			UNP_PCB_UNLOCK(unp2);
1103 			error = ENOTCONN;
1104 			break;
1105 		}
1106 		SOCKBUF_LOCK(&so2->so_rcv);
1107 		if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1108 			/*
1109 			 * Credentials are passed only once on SOCK_STREAM and
1110 			 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1111 			 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1112 			 */
1113 			control = unp_addsockcred(td, control, unp2->unp_flags);
1114 			unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1115 		}
1116 
1117 		/*
1118 		 * Send to paired receive port and wake up readers.  Don't
1119 		 * check for space available in the receive buffer if we're
1120 		 * attaching ancillary data; Unix domain sockets only check
1121 		 * for space in the sending sockbuf, and that check is
1122 		 * performed one level up the stack.  At that level we cannot
1123 		 * precisely account for the amount of buffer space used
1124 		 * (e.g., because control messages are not yet internalized).
1125 		 */
1126 		switch (so->so_type) {
1127 		case SOCK_STREAM:
1128 			if (control != NULL) {
1129 				sbappendcontrol_locked(&so2->so_rcv, m,
1130 				    control, flags);
1131 				control = NULL;
1132 			} else
1133 				sbappend_locked(&so2->so_rcv, m, flags);
1134 			break;
1135 
1136 		case SOCK_SEQPACKET:
1137 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1138 			    &sun_noname, m, control))
1139 				control = NULL;
1140 			break;
1141 		}
1142 
1143 		mbcnt = so2->so_rcv.sb_mbcnt;
1144 		sbcc = sbavail(&so2->so_rcv);
1145 		if (sbcc)
1146 			sorwakeup_locked(so2);
1147 		else
1148 			SOCKBUF_UNLOCK(&so2->so_rcv);
1149 
1150 		/*
1151 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1152 		 * it would be possible for uipc_rcvd to be called at this
1153 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1154 		 * we would set SB_STOP below.  That could lead to an empty
1155 		 * sockbuf having SB_STOP set
1156 		 */
1157 		SOCKBUF_LOCK(&so->so_snd);
1158 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1159 			so->so_snd.sb_flags |= SB_STOP;
1160 		SOCKBUF_UNLOCK(&so->so_snd);
1161 		UNP_PCB_UNLOCK(unp2);
1162 		m = NULL;
1163 		break;
1164 	}
1165 
1166 	/*
1167 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1168 	 */
1169 	if (flags & PRUS_EOF) {
1170 		UNP_PCB_LOCK(unp);
1171 		socantsendmore(so);
1172 		unp_shutdown(unp);
1173 		UNP_PCB_UNLOCK(unp);
1174 	}
1175 	if (control != NULL && error != 0)
1176 		unp_dispose_mbuf(control);
1177 
1178 release:
1179 	if (control != NULL)
1180 		m_freem(control);
1181 	/*
1182 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1183 	 * for freeing memory.
1184 	 */
1185 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1186 		m_freem(m);
1187 	return (error);
1188 }
1189 
1190 static bool
1191 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1192 {
1193 	struct mbuf *mb, *n;
1194 	struct sockbuf *sb;
1195 
1196 	SOCK_LOCK(so);
1197 	if (SOLISTENING(so)) {
1198 		SOCK_UNLOCK(so);
1199 		return (false);
1200 	}
1201 	mb = NULL;
1202 	sb = &so->so_rcv;
1203 	SOCKBUF_LOCK(sb);
1204 	if (sb->sb_fnrdy != NULL) {
1205 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1206 			if (mb == m) {
1207 				*errorp = sbready(sb, m, count);
1208 				break;
1209 			}
1210 			mb = mb->m_next;
1211 			if (mb == NULL) {
1212 				mb = n;
1213 				if (mb != NULL)
1214 					n = mb->m_nextpkt;
1215 			}
1216 		}
1217 	}
1218 	SOCKBUF_UNLOCK(sb);
1219 	SOCK_UNLOCK(so);
1220 	return (mb != NULL);
1221 }
1222 
1223 static int
1224 uipc_ready(struct socket *so, struct mbuf *m, int count)
1225 {
1226 	struct unpcb *unp, *unp2;
1227 	struct socket *so2;
1228 	int error, i;
1229 
1230 	unp = sotounpcb(so);
1231 
1232 	KASSERT(so->so_type == SOCK_STREAM,
1233 	    ("%s: unexpected socket type for %p", __func__, so));
1234 
1235 	UNP_PCB_LOCK(unp);
1236 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1237 		UNP_PCB_UNLOCK(unp);
1238 		so2 = unp2->unp_socket;
1239 		SOCKBUF_LOCK(&so2->so_rcv);
1240 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1241 			sorwakeup_locked(so2);
1242 		else
1243 			SOCKBUF_UNLOCK(&so2->so_rcv);
1244 		UNP_PCB_UNLOCK(unp2);
1245 		return (error);
1246 	}
1247 	UNP_PCB_UNLOCK(unp);
1248 
1249 	/*
1250 	 * The receiving socket has been disconnected, but may still be valid.
1251 	 * In this case, the now-ready mbufs are still present in its socket
1252 	 * buffer, so perform an exhaustive search before giving up and freeing
1253 	 * the mbufs.
1254 	 */
1255 	UNP_LINK_RLOCK();
1256 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1257 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1258 			break;
1259 	}
1260 	UNP_LINK_RUNLOCK();
1261 
1262 	if (unp == NULL) {
1263 		for (i = 0; i < count; i++)
1264 			m = m_free(m);
1265 		error = ECONNRESET;
1266 	}
1267 	return (error);
1268 }
1269 
1270 static int
1271 uipc_sense(struct socket *so, struct stat *sb)
1272 {
1273 	struct unpcb *unp;
1274 
1275 	unp = sotounpcb(so);
1276 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1277 
1278 	sb->st_blksize = so->so_snd.sb_hiwat;
1279 	sb->st_dev = NODEV;
1280 	sb->st_ino = unp->unp_ino;
1281 	return (0);
1282 }
1283 
1284 static int
1285 uipc_shutdown(struct socket *so)
1286 {
1287 	struct unpcb *unp;
1288 
1289 	unp = sotounpcb(so);
1290 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1291 
1292 	UNP_PCB_LOCK(unp);
1293 	socantsendmore(so);
1294 	unp_shutdown(unp);
1295 	UNP_PCB_UNLOCK(unp);
1296 	return (0);
1297 }
1298 
1299 static int
1300 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1301 {
1302 	struct unpcb *unp;
1303 	const struct sockaddr *sa;
1304 
1305 	unp = sotounpcb(so);
1306 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1307 
1308 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1309 	UNP_PCB_LOCK(unp);
1310 	if (unp->unp_addr != NULL)
1311 		sa = (struct sockaddr *) unp->unp_addr;
1312 	else
1313 		sa = &sun_noname;
1314 	bcopy(sa, *nam, sa->sa_len);
1315 	UNP_PCB_UNLOCK(unp);
1316 	return (0);
1317 }
1318 
1319 static struct pr_usrreqs uipc_usrreqs_dgram = {
1320 	.pru_abort = 		uipc_abort,
1321 	.pru_accept =		uipc_accept,
1322 	.pru_attach =		uipc_attach,
1323 	.pru_bind =		uipc_bind,
1324 	.pru_bindat =		uipc_bindat,
1325 	.pru_connect =		uipc_connect,
1326 	.pru_connectat =	uipc_connectat,
1327 	.pru_connect2 =		uipc_connect2,
1328 	.pru_detach =		uipc_detach,
1329 	.pru_disconnect =	uipc_disconnect,
1330 	.pru_listen =		uipc_listen,
1331 	.pru_peeraddr =		uipc_peeraddr,
1332 	.pru_rcvd =		uipc_rcvd,
1333 	.pru_send =		uipc_send,
1334 	.pru_sense =		uipc_sense,
1335 	.pru_shutdown =		uipc_shutdown,
1336 	.pru_sockaddr =		uipc_sockaddr,
1337 	.pru_soreceive =	soreceive_dgram,
1338 	.pru_close =		uipc_close,
1339 };
1340 
1341 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1342 	.pru_abort =		uipc_abort,
1343 	.pru_accept =		uipc_accept,
1344 	.pru_attach =		uipc_attach,
1345 	.pru_bind =		uipc_bind,
1346 	.pru_bindat =		uipc_bindat,
1347 	.pru_connect =		uipc_connect,
1348 	.pru_connectat =	uipc_connectat,
1349 	.pru_connect2 =		uipc_connect2,
1350 	.pru_detach =		uipc_detach,
1351 	.pru_disconnect =	uipc_disconnect,
1352 	.pru_listen =		uipc_listen,
1353 	.pru_peeraddr =		uipc_peeraddr,
1354 	.pru_rcvd =		uipc_rcvd,
1355 	.pru_send =		uipc_send,
1356 	.pru_sense =		uipc_sense,
1357 	.pru_shutdown =		uipc_shutdown,
1358 	.pru_sockaddr =		uipc_sockaddr,
1359 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1360 	.pru_close =		uipc_close,
1361 };
1362 
1363 static struct pr_usrreqs uipc_usrreqs_stream = {
1364 	.pru_abort = 		uipc_abort,
1365 	.pru_accept =		uipc_accept,
1366 	.pru_attach =		uipc_attach,
1367 	.pru_bind =		uipc_bind,
1368 	.pru_bindat =		uipc_bindat,
1369 	.pru_connect =		uipc_connect,
1370 	.pru_connectat =	uipc_connectat,
1371 	.pru_connect2 =		uipc_connect2,
1372 	.pru_detach =		uipc_detach,
1373 	.pru_disconnect =	uipc_disconnect,
1374 	.pru_listen =		uipc_listen,
1375 	.pru_peeraddr =		uipc_peeraddr,
1376 	.pru_rcvd =		uipc_rcvd,
1377 	.pru_send =		uipc_send,
1378 	.pru_ready =		uipc_ready,
1379 	.pru_sense =		uipc_sense,
1380 	.pru_shutdown =		uipc_shutdown,
1381 	.pru_sockaddr =		uipc_sockaddr,
1382 	.pru_soreceive =	soreceive_generic,
1383 	.pru_close =		uipc_close,
1384 };
1385 
1386 static int
1387 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1388 {
1389 	struct unpcb *unp;
1390 	struct xucred xu;
1391 	int error, optval;
1392 
1393 	if (sopt->sopt_level != SOL_LOCAL)
1394 		return (EINVAL);
1395 
1396 	unp = sotounpcb(so);
1397 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1398 	error = 0;
1399 	switch (sopt->sopt_dir) {
1400 	case SOPT_GET:
1401 		switch (sopt->sopt_name) {
1402 		case LOCAL_PEERCRED:
1403 			UNP_PCB_LOCK(unp);
1404 			if (unp->unp_flags & UNP_HAVEPC)
1405 				xu = unp->unp_peercred;
1406 			else {
1407 				if (so->so_type == SOCK_STREAM)
1408 					error = ENOTCONN;
1409 				else
1410 					error = EINVAL;
1411 			}
1412 			UNP_PCB_UNLOCK(unp);
1413 			if (error == 0)
1414 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1415 			break;
1416 
1417 		case LOCAL_CREDS:
1418 			/* Unlocked read. */
1419 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1420 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1421 			break;
1422 
1423 		case LOCAL_CREDS_PERSISTENT:
1424 			/* Unlocked read. */
1425 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1426 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1427 			break;
1428 
1429 		case LOCAL_CONNWAIT:
1430 			/* Unlocked read. */
1431 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1432 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1433 			break;
1434 
1435 		default:
1436 			error = EOPNOTSUPP;
1437 			break;
1438 		}
1439 		break;
1440 
1441 	case SOPT_SET:
1442 		switch (sopt->sopt_name) {
1443 		case LOCAL_CREDS:
1444 		case LOCAL_CREDS_PERSISTENT:
1445 		case LOCAL_CONNWAIT:
1446 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1447 					    sizeof(optval));
1448 			if (error)
1449 				break;
1450 
1451 #define	OPTSET(bit, exclusive) do {					\
1452 	UNP_PCB_LOCK(unp);						\
1453 	if (optval) {							\
1454 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1455 			UNP_PCB_UNLOCK(unp);				\
1456 			error = EINVAL;					\
1457 			break;						\
1458 		}							\
1459 		unp->unp_flags |= (bit);				\
1460 	} else								\
1461 		unp->unp_flags &= ~(bit);				\
1462 	UNP_PCB_UNLOCK(unp);						\
1463 } while (0)
1464 
1465 			switch (sopt->sopt_name) {
1466 			case LOCAL_CREDS:
1467 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1468 				break;
1469 
1470 			case LOCAL_CREDS_PERSISTENT:
1471 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1472 				break;
1473 
1474 			case LOCAL_CONNWAIT:
1475 				OPTSET(UNP_CONNWAIT, 0);
1476 				break;
1477 
1478 			default:
1479 				break;
1480 			}
1481 			break;
1482 #undef	OPTSET
1483 		default:
1484 			error = ENOPROTOOPT;
1485 			break;
1486 		}
1487 		break;
1488 
1489 	default:
1490 		error = EOPNOTSUPP;
1491 		break;
1492 	}
1493 	return (error);
1494 }
1495 
1496 static int
1497 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1498 {
1499 
1500 	return (unp_connectat(AT_FDCWD, so, nam, td));
1501 }
1502 
1503 static int
1504 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1505     struct thread *td)
1506 {
1507 	struct mtx *vplock;
1508 	struct sockaddr_un *soun;
1509 	struct vnode *vp;
1510 	struct socket *so2;
1511 	struct unpcb *unp, *unp2, *unp3;
1512 	struct nameidata nd;
1513 	char buf[SOCK_MAXADDRLEN];
1514 	struct sockaddr *sa;
1515 	cap_rights_t rights;
1516 	int error, len;
1517 	bool connreq;
1518 
1519 	if (nam->sa_family != AF_UNIX)
1520 		return (EAFNOSUPPORT);
1521 	if (nam->sa_len > sizeof(struct sockaddr_un))
1522 		return (EINVAL);
1523 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1524 	if (len <= 0)
1525 		return (EINVAL);
1526 	soun = (struct sockaddr_un *)nam;
1527 	bcopy(soun->sun_path, buf, len);
1528 	buf[len] = 0;
1529 
1530 	error = 0;
1531 	unp = sotounpcb(so);
1532 	UNP_PCB_LOCK(unp);
1533 	for (;;) {
1534 		/*
1535 		 * Wait for connection state to stabilize.  If a connection
1536 		 * already exists, give up.  For datagram sockets, which permit
1537 		 * multiple consecutive connect(2) calls, upper layers are
1538 		 * responsible for disconnecting in advance of a subsequent
1539 		 * connect(2), but this is not synchronized with PCB connection
1540 		 * state.
1541 		 *
1542 		 * Also make sure that no threads are currently attempting to
1543 		 * lock the peer socket, to ensure that unp_conn cannot
1544 		 * transition between two valid sockets while locks are dropped.
1545 		 */
1546 		if (SOLISTENING(so))
1547 			error = EOPNOTSUPP;
1548 		else if (unp->unp_conn != NULL)
1549 			error = EISCONN;
1550 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1551 			error = EALREADY;
1552 		}
1553 		if (error != 0) {
1554 			UNP_PCB_UNLOCK(unp);
1555 			return (error);
1556 		}
1557 		if (unp->unp_pairbusy > 0) {
1558 			unp->unp_flags |= UNP_WAITING;
1559 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1560 			continue;
1561 		}
1562 		break;
1563 	}
1564 	unp->unp_flags |= UNP_CONNECTING;
1565 	UNP_PCB_UNLOCK(unp);
1566 
1567 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1568 	if (connreq)
1569 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1570 	else
1571 		sa = NULL;
1572 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1573 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT),
1574 	    td);
1575 	error = namei(&nd);
1576 	if (error)
1577 		vp = NULL;
1578 	else
1579 		vp = nd.ni_vp;
1580 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1581 	NDFREE_NOTHING(&nd);
1582 	if (error)
1583 		goto bad;
1584 
1585 	if (vp->v_type != VSOCK) {
1586 		error = ENOTSOCK;
1587 		goto bad;
1588 	}
1589 #ifdef MAC
1590 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1591 	if (error)
1592 		goto bad;
1593 #endif
1594 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1595 	if (error)
1596 		goto bad;
1597 
1598 	unp = sotounpcb(so);
1599 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1600 
1601 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1602 	mtx_lock(vplock);
1603 	VOP_UNP_CONNECT(vp, &unp2);
1604 	if (unp2 == NULL) {
1605 		error = ECONNREFUSED;
1606 		goto bad2;
1607 	}
1608 	so2 = unp2->unp_socket;
1609 	if (so->so_type != so2->so_type) {
1610 		error = EPROTOTYPE;
1611 		goto bad2;
1612 	}
1613 	if (connreq) {
1614 		if (SOLISTENING(so2)) {
1615 			CURVNET_SET(so2->so_vnet);
1616 			so2 = sonewconn(so2, 0);
1617 			CURVNET_RESTORE();
1618 		} else
1619 			so2 = NULL;
1620 		if (so2 == NULL) {
1621 			error = ECONNREFUSED;
1622 			goto bad2;
1623 		}
1624 		unp3 = sotounpcb(so2);
1625 		unp_pcb_lock_pair(unp2, unp3);
1626 		if (unp2->unp_addr != NULL) {
1627 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1628 			unp3->unp_addr = (struct sockaddr_un *) sa;
1629 			sa = NULL;
1630 		}
1631 
1632 		unp_copy_peercred(td, unp3, unp, unp2);
1633 
1634 		UNP_PCB_UNLOCK(unp2);
1635 		unp2 = unp3;
1636 
1637 		/*
1638 		 * It is safe to block on the PCB lock here since unp2 is
1639 		 * nascent and cannot be connected to any other sockets.
1640 		 */
1641 		UNP_PCB_LOCK(unp);
1642 #ifdef MAC
1643 		mac_socketpeer_set_from_socket(so, so2);
1644 		mac_socketpeer_set_from_socket(so2, so);
1645 #endif
1646 	} else {
1647 		unp_pcb_lock_pair(unp, unp2);
1648 	}
1649 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1650 	    sotounpcb(so2) == unp2,
1651 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1652 	error = unp_connect2(so, so2, PRU_CONNECT);
1653 	unp_pcb_unlock_pair(unp, unp2);
1654 bad2:
1655 	mtx_unlock(vplock);
1656 bad:
1657 	if (vp != NULL) {
1658 		vput(vp);
1659 	}
1660 	free(sa, M_SONAME);
1661 	UNP_PCB_LOCK(unp);
1662 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1663 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1664 	unp->unp_flags &= ~UNP_CONNECTING;
1665 	UNP_PCB_UNLOCK(unp);
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Set socket peer credentials at connection time.
1671  *
1672  * The client's PCB credentials are copied from its process structure.  The
1673  * server's PCB credentials are copied from the socket on which it called
1674  * listen(2).  uipc_listen cached that process's credentials at the time.
1675  */
1676 void
1677 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1678     struct unpcb *server_unp, struct unpcb *listen_unp)
1679 {
1680 	cru2xt(td, &client_unp->unp_peercred);
1681 	client_unp->unp_flags |= UNP_HAVEPC;
1682 
1683 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1684 	    sizeof(server_unp->unp_peercred));
1685 	server_unp->unp_flags |= UNP_HAVEPC;
1686 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1687 }
1688 
1689 static int
1690 unp_connect2(struct socket *so, struct socket *so2, int req)
1691 {
1692 	struct unpcb *unp;
1693 	struct unpcb *unp2;
1694 
1695 	unp = sotounpcb(so);
1696 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1697 	unp2 = sotounpcb(so2);
1698 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1699 
1700 	UNP_PCB_LOCK_ASSERT(unp);
1701 	UNP_PCB_LOCK_ASSERT(unp2);
1702 	KASSERT(unp->unp_conn == NULL,
1703 	    ("%s: socket %p is already connected", __func__, unp));
1704 
1705 	if (so2->so_type != so->so_type)
1706 		return (EPROTOTYPE);
1707 	unp->unp_conn = unp2;
1708 	unp_pcb_hold(unp2);
1709 	unp_pcb_hold(unp);
1710 	switch (so->so_type) {
1711 	case SOCK_DGRAM:
1712 		UNP_REF_LIST_LOCK();
1713 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1714 		UNP_REF_LIST_UNLOCK();
1715 		soisconnected(so);
1716 		break;
1717 
1718 	case SOCK_STREAM:
1719 	case SOCK_SEQPACKET:
1720 		KASSERT(unp2->unp_conn == NULL,
1721 		    ("%s: socket %p is already connected", __func__, unp2));
1722 		unp2->unp_conn = unp;
1723 		if (req == PRU_CONNECT &&
1724 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1725 			soisconnecting(so);
1726 		else
1727 			soisconnected(so);
1728 		soisconnected(so2);
1729 		break;
1730 
1731 	default:
1732 		panic("unp_connect2");
1733 	}
1734 	return (0);
1735 }
1736 
1737 static void
1738 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1739 {
1740 	struct socket *so, *so2;
1741 #ifdef INVARIANTS
1742 	struct unpcb *unptmp;
1743 #endif
1744 
1745 	UNP_PCB_LOCK_ASSERT(unp);
1746 	UNP_PCB_LOCK_ASSERT(unp2);
1747 	KASSERT(unp->unp_conn == unp2,
1748 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
1749 
1750 	unp->unp_conn = NULL;
1751 	so = unp->unp_socket;
1752 	so2 = unp2->unp_socket;
1753 	switch (unp->unp_socket->so_type) {
1754 	case SOCK_DGRAM:
1755 		UNP_REF_LIST_LOCK();
1756 #ifdef INVARIANTS
1757 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
1758 			if (unptmp == unp)
1759 				break;
1760 		}
1761 		KASSERT(unptmp != NULL,
1762 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
1763 #endif
1764 		LIST_REMOVE(unp, unp_reflink);
1765 		UNP_REF_LIST_UNLOCK();
1766 		if (so) {
1767 			SOCK_LOCK(so);
1768 			so->so_state &= ~SS_ISCONNECTED;
1769 			SOCK_UNLOCK(so);
1770 		}
1771 		break;
1772 
1773 	case SOCK_STREAM:
1774 	case SOCK_SEQPACKET:
1775 		if (so)
1776 			soisdisconnected(so);
1777 		MPASS(unp2->unp_conn == unp);
1778 		unp2->unp_conn = NULL;
1779 		if (so2)
1780 			soisdisconnected(so2);
1781 		break;
1782 	}
1783 
1784 	if (unp == unp2) {
1785 		unp_pcb_rele_notlast(unp);
1786 		if (!unp_pcb_rele(unp))
1787 			UNP_PCB_UNLOCK(unp);
1788 	} else {
1789 		if (!unp_pcb_rele(unp))
1790 			UNP_PCB_UNLOCK(unp);
1791 		if (!unp_pcb_rele(unp2))
1792 			UNP_PCB_UNLOCK(unp2);
1793 	}
1794 }
1795 
1796 /*
1797  * unp_pcblist() walks the global list of struct unpcb's to generate a
1798  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1799  * sequentially, validating the generation number on each to see if it has
1800  * been detached.  All of this is necessary because copyout() may sleep on
1801  * disk I/O.
1802  */
1803 static int
1804 unp_pcblist(SYSCTL_HANDLER_ARGS)
1805 {
1806 	struct unpcb *unp, **unp_list;
1807 	unp_gen_t gencnt;
1808 	struct xunpgen *xug;
1809 	struct unp_head *head;
1810 	struct xunpcb *xu;
1811 	u_int i;
1812 	int error, n;
1813 
1814 	switch ((intptr_t)arg1) {
1815 	case SOCK_STREAM:
1816 		head = &unp_shead;
1817 		break;
1818 
1819 	case SOCK_DGRAM:
1820 		head = &unp_dhead;
1821 		break;
1822 
1823 	case SOCK_SEQPACKET:
1824 		head = &unp_sphead;
1825 		break;
1826 
1827 	default:
1828 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1829 	}
1830 
1831 	/*
1832 	 * The process of preparing the PCB list is too time-consuming and
1833 	 * resource-intensive to repeat twice on every request.
1834 	 */
1835 	if (req->oldptr == NULL) {
1836 		n = unp_count;
1837 		req->oldidx = 2 * (sizeof *xug)
1838 			+ (n + n/8) * sizeof(struct xunpcb);
1839 		return (0);
1840 	}
1841 
1842 	if (req->newptr != NULL)
1843 		return (EPERM);
1844 
1845 	/*
1846 	 * OK, now we're committed to doing something.
1847 	 */
1848 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1849 	UNP_LINK_RLOCK();
1850 	gencnt = unp_gencnt;
1851 	n = unp_count;
1852 	UNP_LINK_RUNLOCK();
1853 
1854 	xug->xug_len = sizeof *xug;
1855 	xug->xug_count = n;
1856 	xug->xug_gen = gencnt;
1857 	xug->xug_sogen = so_gencnt;
1858 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1859 	if (error) {
1860 		free(xug, M_TEMP);
1861 		return (error);
1862 	}
1863 
1864 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1865 
1866 	UNP_LINK_RLOCK();
1867 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1868 	     unp = LIST_NEXT(unp, unp_link)) {
1869 		UNP_PCB_LOCK(unp);
1870 		if (unp->unp_gencnt <= gencnt) {
1871 			if (cr_cansee(req->td->td_ucred,
1872 			    unp->unp_socket->so_cred)) {
1873 				UNP_PCB_UNLOCK(unp);
1874 				continue;
1875 			}
1876 			unp_list[i++] = unp;
1877 			unp_pcb_hold(unp);
1878 		}
1879 		UNP_PCB_UNLOCK(unp);
1880 	}
1881 	UNP_LINK_RUNLOCK();
1882 	n = i;			/* In case we lost some during malloc. */
1883 
1884 	error = 0;
1885 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1886 	for (i = 0; i < n; i++) {
1887 		unp = unp_list[i];
1888 		UNP_PCB_LOCK(unp);
1889 		if (unp_pcb_rele(unp))
1890 			continue;
1891 
1892 		if (unp->unp_gencnt <= gencnt) {
1893 			xu->xu_len = sizeof *xu;
1894 			xu->xu_unpp = (uintptr_t)unp;
1895 			/*
1896 			 * XXX - need more locking here to protect against
1897 			 * connect/disconnect races for SMP.
1898 			 */
1899 			if (unp->unp_addr != NULL)
1900 				bcopy(unp->unp_addr, &xu->xu_addr,
1901 				      unp->unp_addr->sun_len);
1902 			else
1903 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1904 			if (unp->unp_conn != NULL &&
1905 			    unp->unp_conn->unp_addr != NULL)
1906 				bcopy(unp->unp_conn->unp_addr,
1907 				      &xu->xu_caddr,
1908 				      unp->unp_conn->unp_addr->sun_len);
1909 			else
1910 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1911 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1912 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1913 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1914 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1915 			xu->unp_gencnt = unp->unp_gencnt;
1916 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1917 			UNP_PCB_UNLOCK(unp);
1918 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1919 		} else {
1920 			UNP_PCB_UNLOCK(unp);
1921 		}
1922 	}
1923 	free(xu, M_TEMP);
1924 	if (!error) {
1925 		/*
1926 		 * Give the user an updated idea of our state.  If the
1927 		 * generation differs from what we told her before, she knows
1928 		 * that something happened while we were processing this
1929 		 * request, and it might be necessary to retry.
1930 		 */
1931 		xug->xug_gen = unp_gencnt;
1932 		xug->xug_sogen = so_gencnt;
1933 		xug->xug_count = unp_count;
1934 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1935 	}
1936 	free(unp_list, M_TEMP);
1937 	free(xug, M_TEMP);
1938 	return (error);
1939 }
1940 
1941 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1942     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1943     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1944     "List of active local datagram sockets");
1945 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1946     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1947     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1948     "List of active local stream sockets");
1949 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1950     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1951     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1952     "List of active local seqpacket sockets");
1953 
1954 static void
1955 unp_shutdown(struct unpcb *unp)
1956 {
1957 	struct unpcb *unp2;
1958 	struct socket *so;
1959 
1960 	UNP_PCB_LOCK_ASSERT(unp);
1961 
1962 	unp2 = unp->unp_conn;
1963 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1964 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1965 		so = unp2->unp_socket;
1966 		if (so != NULL)
1967 			socantrcvmore(so);
1968 	}
1969 }
1970 
1971 static void
1972 unp_drop(struct unpcb *unp)
1973 {
1974 	struct socket *so;
1975 	struct unpcb *unp2;
1976 
1977 	/*
1978 	 * Regardless of whether the socket's peer dropped the connection
1979 	 * with this socket by aborting or disconnecting, POSIX requires
1980 	 * that ECONNRESET is returned.
1981 	 */
1982 
1983 	UNP_PCB_LOCK(unp);
1984 	so = unp->unp_socket;
1985 	if (so)
1986 		so->so_error = ECONNRESET;
1987 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1988 		/* Last reference dropped in unp_disconnect(). */
1989 		unp_pcb_rele_notlast(unp);
1990 		unp_disconnect(unp, unp2);
1991 	} else if (!unp_pcb_rele(unp)) {
1992 		UNP_PCB_UNLOCK(unp);
1993 	}
1994 }
1995 
1996 static void
1997 unp_freerights(struct filedescent **fdep, int fdcount)
1998 {
1999 	struct file *fp;
2000 	int i;
2001 
2002 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2003 
2004 	for (i = 0; i < fdcount; i++) {
2005 		fp = fdep[i]->fde_file;
2006 		filecaps_free(&fdep[i]->fde_caps);
2007 		unp_discard(fp);
2008 	}
2009 	free(fdep[0], M_FILECAPS);
2010 }
2011 
2012 static int
2013 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2014 {
2015 	struct thread *td = curthread;		/* XXX */
2016 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2017 	int i;
2018 	int *fdp;
2019 	struct filedesc *fdesc = td->td_proc->p_fd;
2020 	struct filedescent **fdep;
2021 	void *data;
2022 	socklen_t clen = control->m_len, datalen;
2023 	int error, newfds;
2024 	u_int newlen;
2025 
2026 	UNP_LINK_UNLOCK_ASSERT();
2027 
2028 	error = 0;
2029 	if (controlp != NULL) /* controlp == NULL => free control messages */
2030 		*controlp = NULL;
2031 	while (cm != NULL) {
2032 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2033 			error = EINVAL;
2034 			break;
2035 		}
2036 		data = CMSG_DATA(cm);
2037 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2038 		if (cm->cmsg_level == SOL_SOCKET
2039 		    && cm->cmsg_type == SCM_RIGHTS) {
2040 			newfds = datalen / sizeof(*fdep);
2041 			if (newfds == 0)
2042 				goto next;
2043 			fdep = data;
2044 
2045 			/* If we're not outputting the descriptors free them. */
2046 			if (error || controlp == NULL) {
2047 				unp_freerights(fdep, newfds);
2048 				goto next;
2049 			}
2050 			FILEDESC_XLOCK(fdesc);
2051 
2052 			/*
2053 			 * Now change each pointer to an fd in the global
2054 			 * table to an integer that is the index to the local
2055 			 * fd table entry that we set up to point to the
2056 			 * global one we are transferring.
2057 			 */
2058 			newlen = newfds * sizeof(int);
2059 			*controlp = sbcreatecontrol(NULL, newlen,
2060 			    SCM_RIGHTS, SOL_SOCKET);
2061 			if (*controlp == NULL) {
2062 				FILEDESC_XUNLOCK(fdesc);
2063 				error = E2BIG;
2064 				unp_freerights(fdep, newfds);
2065 				goto next;
2066 			}
2067 
2068 			fdp = (int *)
2069 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2070 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2071 				FILEDESC_XUNLOCK(fdesc);
2072 				error = EMSGSIZE;
2073 				unp_freerights(fdep, newfds);
2074 				m_freem(*controlp);
2075 				*controlp = NULL;
2076 				goto next;
2077 			}
2078 			for (i = 0; i < newfds; i++, fdp++) {
2079 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2080 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2081 				    &fdep[i]->fde_caps);
2082 				unp_externalize_fp(fdep[i]->fde_file);
2083 			}
2084 
2085 			/*
2086 			 * The new type indicates that the mbuf data refers to
2087 			 * kernel resources that may need to be released before
2088 			 * the mbuf is freed.
2089 			 */
2090 			m_chtype(*controlp, MT_EXTCONTROL);
2091 			FILEDESC_XUNLOCK(fdesc);
2092 			free(fdep[0], M_FILECAPS);
2093 		} else {
2094 			/* We can just copy anything else across. */
2095 			if (error || controlp == NULL)
2096 				goto next;
2097 			*controlp = sbcreatecontrol(NULL, datalen,
2098 			    cm->cmsg_type, cm->cmsg_level);
2099 			if (*controlp == NULL) {
2100 				error = ENOBUFS;
2101 				goto next;
2102 			}
2103 			bcopy(data,
2104 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2105 			    datalen);
2106 		}
2107 		controlp = &(*controlp)->m_next;
2108 
2109 next:
2110 		if (CMSG_SPACE(datalen) < clen) {
2111 			clen -= CMSG_SPACE(datalen);
2112 			cm = (struct cmsghdr *)
2113 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2114 		} else {
2115 			clen = 0;
2116 			cm = NULL;
2117 		}
2118 	}
2119 
2120 	m_freem(control);
2121 	return (error);
2122 }
2123 
2124 static void
2125 unp_zone_change(void *tag)
2126 {
2127 
2128 	uma_zone_set_max(unp_zone, maxsockets);
2129 }
2130 
2131 #ifdef INVARIANTS
2132 static void
2133 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2134 {
2135 	struct unpcb *unp;
2136 
2137 	unp = mem;
2138 
2139 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2140 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2141 	KASSERT(unp->unp_socket == NULL,
2142 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2143 	KASSERT(unp->unp_vnode == NULL,
2144 	    ("%s: unpcb %p has vnode references", __func__, unp));
2145 	KASSERT(unp->unp_conn == NULL,
2146 	    ("%s: unpcb %p is still connected", __func__, unp));
2147 	KASSERT(unp->unp_addr == NULL,
2148 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2149 }
2150 #endif
2151 
2152 static void
2153 unp_init(void)
2154 {
2155 	uma_dtor dtor;
2156 
2157 #ifdef VIMAGE
2158 	if (!IS_DEFAULT_VNET(curvnet))
2159 		return;
2160 #endif
2161 
2162 #ifdef INVARIANTS
2163 	dtor = unp_zdtor;
2164 #else
2165 	dtor = NULL;
2166 #endif
2167 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2168 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2169 	uma_zone_set_max(unp_zone, maxsockets);
2170 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2171 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2172 	    NULL, EVENTHANDLER_PRI_ANY);
2173 	LIST_INIT(&unp_dhead);
2174 	LIST_INIT(&unp_shead);
2175 	LIST_INIT(&unp_sphead);
2176 	SLIST_INIT(&unp_defers);
2177 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2178 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2179 	UNP_LINK_LOCK_INIT();
2180 	UNP_DEFERRED_LOCK_INIT();
2181 }
2182 
2183 static void
2184 unp_internalize_cleanup_rights(struct mbuf *control)
2185 {
2186 	struct cmsghdr *cp;
2187 	struct mbuf *m;
2188 	void *data;
2189 	socklen_t datalen;
2190 
2191 	for (m = control; m != NULL; m = m->m_next) {
2192 		cp = mtod(m, struct cmsghdr *);
2193 		if (cp->cmsg_level != SOL_SOCKET ||
2194 		    cp->cmsg_type != SCM_RIGHTS)
2195 			continue;
2196 		data = CMSG_DATA(cp);
2197 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2198 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2199 	}
2200 }
2201 
2202 static int
2203 unp_internalize(struct mbuf **controlp, struct thread *td)
2204 {
2205 	struct mbuf *control, **initial_controlp;
2206 	struct proc *p;
2207 	struct filedesc *fdesc;
2208 	struct bintime *bt;
2209 	struct cmsghdr *cm;
2210 	struct cmsgcred *cmcred;
2211 	struct filedescent *fde, **fdep, *fdev;
2212 	struct file *fp;
2213 	struct timeval *tv;
2214 	struct timespec *ts;
2215 	void *data;
2216 	socklen_t clen, datalen;
2217 	int i, j, error, *fdp, oldfds;
2218 	u_int newlen;
2219 
2220 	UNP_LINK_UNLOCK_ASSERT();
2221 
2222 	p = td->td_proc;
2223 	fdesc = p->p_fd;
2224 	error = 0;
2225 	control = *controlp;
2226 	clen = control->m_len;
2227 	*controlp = NULL;
2228 	initial_controlp = controlp;
2229 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2230 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2231 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2232 			error = EINVAL;
2233 			goto out;
2234 		}
2235 		data = CMSG_DATA(cm);
2236 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2237 
2238 		switch (cm->cmsg_type) {
2239 		/*
2240 		 * Fill in credential information.
2241 		 */
2242 		case SCM_CREDS:
2243 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2244 			    SCM_CREDS, SOL_SOCKET);
2245 			if (*controlp == NULL) {
2246 				error = ENOBUFS;
2247 				goto out;
2248 			}
2249 			cmcred = (struct cmsgcred *)
2250 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2251 			cmcred->cmcred_pid = p->p_pid;
2252 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2253 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2254 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2255 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2256 			    CMGROUP_MAX);
2257 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2258 				cmcred->cmcred_groups[i] =
2259 				    td->td_ucred->cr_groups[i];
2260 			break;
2261 
2262 		case SCM_RIGHTS:
2263 			oldfds = datalen / sizeof (int);
2264 			if (oldfds == 0)
2265 				break;
2266 			/*
2267 			 * Check that all the FDs passed in refer to legal
2268 			 * files.  If not, reject the entire operation.
2269 			 */
2270 			fdp = data;
2271 			FILEDESC_SLOCK(fdesc);
2272 			for (i = 0; i < oldfds; i++, fdp++) {
2273 				fp = fget_locked(fdesc, *fdp);
2274 				if (fp == NULL) {
2275 					FILEDESC_SUNLOCK(fdesc);
2276 					error = EBADF;
2277 					goto out;
2278 				}
2279 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2280 					FILEDESC_SUNLOCK(fdesc);
2281 					error = EOPNOTSUPP;
2282 					goto out;
2283 				}
2284 			}
2285 
2286 			/*
2287 			 * Now replace the integer FDs with pointers to the
2288 			 * file structure and capability rights.
2289 			 */
2290 			newlen = oldfds * sizeof(fdep[0]);
2291 			*controlp = sbcreatecontrol(NULL, newlen,
2292 			    SCM_RIGHTS, SOL_SOCKET);
2293 			if (*controlp == NULL) {
2294 				FILEDESC_SUNLOCK(fdesc);
2295 				error = E2BIG;
2296 				goto out;
2297 			}
2298 			fdp = data;
2299 			for (i = 0; i < oldfds; i++, fdp++) {
2300 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2301 					fdp = data;
2302 					for (j = 0; j < i; j++, fdp++) {
2303 						fdrop(fdesc->fd_ofiles[*fdp].
2304 						    fde_file, td);
2305 					}
2306 					FILEDESC_SUNLOCK(fdesc);
2307 					error = EBADF;
2308 					goto out;
2309 				}
2310 			}
2311 			fdp = data;
2312 			fdep = (struct filedescent **)
2313 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2314 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2315 			    M_WAITOK);
2316 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2317 				fde = &fdesc->fd_ofiles[*fdp];
2318 				fdep[i] = fdev;
2319 				fdep[i]->fde_file = fde->fde_file;
2320 				filecaps_copy(&fde->fde_caps,
2321 				    &fdep[i]->fde_caps, true);
2322 				unp_internalize_fp(fdep[i]->fde_file);
2323 			}
2324 			FILEDESC_SUNLOCK(fdesc);
2325 			break;
2326 
2327 		case SCM_TIMESTAMP:
2328 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2329 			    SCM_TIMESTAMP, SOL_SOCKET);
2330 			if (*controlp == NULL) {
2331 				error = ENOBUFS;
2332 				goto out;
2333 			}
2334 			tv = (struct timeval *)
2335 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2336 			microtime(tv);
2337 			break;
2338 
2339 		case SCM_BINTIME:
2340 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2341 			    SCM_BINTIME, SOL_SOCKET);
2342 			if (*controlp == NULL) {
2343 				error = ENOBUFS;
2344 				goto out;
2345 			}
2346 			bt = (struct bintime *)
2347 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2348 			bintime(bt);
2349 			break;
2350 
2351 		case SCM_REALTIME:
2352 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2353 			    SCM_REALTIME, SOL_SOCKET);
2354 			if (*controlp == NULL) {
2355 				error = ENOBUFS;
2356 				goto out;
2357 			}
2358 			ts = (struct timespec *)
2359 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2360 			nanotime(ts);
2361 			break;
2362 
2363 		case SCM_MONOTONIC:
2364 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2365 			    SCM_MONOTONIC, SOL_SOCKET);
2366 			if (*controlp == NULL) {
2367 				error = ENOBUFS;
2368 				goto out;
2369 			}
2370 			ts = (struct timespec *)
2371 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2372 			nanouptime(ts);
2373 			break;
2374 
2375 		default:
2376 			error = EINVAL;
2377 			goto out;
2378 		}
2379 
2380 		if (*controlp != NULL)
2381 			controlp = &(*controlp)->m_next;
2382 		if (CMSG_SPACE(datalen) < clen) {
2383 			clen -= CMSG_SPACE(datalen);
2384 			cm = (struct cmsghdr *)
2385 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2386 		} else {
2387 			clen = 0;
2388 			cm = NULL;
2389 		}
2390 	}
2391 
2392 out:
2393 	if (error != 0 && initial_controlp != NULL)
2394 		unp_internalize_cleanup_rights(*initial_controlp);
2395 	m_freem(control);
2396 	return (error);
2397 }
2398 
2399 static struct mbuf *
2400 unp_addsockcred(struct thread *td, struct mbuf *control, int mode)
2401 {
2402 	struct mbuf *m, *n, *n_prev;
2403 	const struct cmsghdr *cm;
2404 	int ngroups, i, cmsgtype;
2405 	size_t ctrlsz;
2406 
2407 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2408 	if (mode & UNP_WANTCRED_ALWAYS) {
2409 		ctrlsz = SOCKCRED2SIZE(ngroups);
2410 		cmsgtype = SCM_CREDS2;
2411 	} else {
2412 		ctrlsz = SOCKCREDSIZE(ngroups);
2413 		cmsgtype = SCM_CREDS;
2414 	}
2415 
2416 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET);
2417 	if (m == NULL)
2418 		return (control);
2419 
2420 	if (mode & UNP_WANTCRED_ALWAYS) {
2421 		struct sockcred2 *sc;
2422 
2423 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2424 		sc->sc_version = 0;
2425 		sc->sc_pid = td->td_proc->p_pid;
2426 		sc->sc_uid = td->td_ucred->cr_ruid;
2427 		sc->sc_euid = td->td_ucred->cr_uid;
2428 		sc->sc_gid = td->td_ucred->cr_rgid;
2429 		sc->sc_egid = td->td_ucred->cr_gid;
2430 		sc->sc_ngroups = ngroups;
2431 		for (i = 0; i < sc->sc_ngroups; i++)
2432 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2433 	} else {
2434 		struct sockcred *sc;
2435 
2436 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2437 		sc->sc_uid = td->td_ucred->cr_ruid;
2438 		sc->sc_euid = td->td_ucred->cr_uid;
2439 		sc->sc_gid = td->td_ucred->cr_rgid;
2440 		sc->sc_egid = td->td_ucred->cr_gid;
2441 		sc->sc_ngroups = ngroups;
2442 		for (i = 0; i < sc->sc_ngroups; i++)
2443 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2444 	}
2445 
2446 	/*
2447 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2448 	 * created SCM_CREDS control message (struct sockcred) has another
2449 	 * format.
2450 	 */
2451 	if (control != NULL && cmsgtype == SCM_CREDS)
2452 		for (n = control, n_prev = NULL; n != NULL;) {
2453 			cm = mtod(n, struct cmsghdr *);
2454     			if (cm->cmsg_level == SOL_SOCKET &&
2455 			    cm->cmsg_type == SCM_CREDS) {
2456     				if (n_prev == NULL)
2457 					control = n->m_next;
2458 				else
2459 					n_prev->m_next = n->m_next;
2460 				n = m_free(n);
2461 			} else {
2462 				n_prev = n;
2463 				n = n->m_next;
2464 			}
2465 		}
2466 
2467 	/* Prepend it to the head. */
2468 	m->m_next = control;
2469 	return (m);
2470 }
2471 
2472 static struct unpcb *
2473 fptounp(struct file *fp)
2474 {
2475 	struct socket *so;
2476 
2477 	if (fp->f_type != DTYPE_SOCKET)
2478 		return (NULL);
2479 	if ((so = fp->f_data) == NULL)
2480 		return (NULL);
2481 	if (so->so_proto->pr_domain != &localdomain)
2482 		return (NULL);
2483 	return sotounpcb(so);
2484 }
2485 
2486 static void
2487 unp_discard(struct file *fp)
2488 {
2489 	struct unp_defer *dr;
2490 
2491 	if (unp_externalize_fp(fp)) {
2492 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2493 		dr->ud_fp = fp;
2494 		UNP_DEFERRED_LOCK();
2495 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2496 		UNP_DEFERRED_UNLOCK();
2497 		atomic_add_int(&unp_defers_count, 1);
2498 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2499 	} else
2500 		closef_nothread(fp);
2501 }
2502 
2503 static void
2504 unp_process_defers(void *arg __unused, int pending)
2505 {
2506 	struct unp_defer *dr;
2507 	SLIST_HEAD(, unp_defer) drl;
2508 	int count;
2509 
2510 	SLIST_INIT(&drl);
2511 	for (;;) {
2512 		UNP_DEFERRED_LOCK();
2513 		if (SLIST_FIRST(&unp_defers) == NULL) {
2514 			UNP_DEFERRED_UNLOCK();
2515 			break;
2516 		}
2517 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2518 		UNP_DEFERRED_UNLOCK();
2519 		count = 0;
2520 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2521 			SLIST_REMOVE_HEAD(&drl, ud_link);
2522 			closef_nothread(dr->ud_fp);
2523 			free(dr, M_TEMP);
2524 			count++;
2525 		}
2526 		atomic_add_int(&unp_defers_count, -count);
2527 	}
2528 }
2529 
2530 static void
2531 unp_internalize_fp(struct file *fp)
2532 {
2533 	struct unpcb *unp;
2534 
2535 	UNP_LINK_WLOCK();
2536 	if ((unp = fptounp(fp)) != NULL) {
2537 		unp->unp_file = fp;
2538 		unp->unp_msgcount++;
2539 	}
2540 	unp_rights++;
2541 	UNP_LINK_WUNLOCK();
2542 }
2543 
2544 static int
2545 unp_externalize_fp(struct file *fp)
2546 {
2547 	struct unpcb *unp;
2548 	int ret;
2549 
2550 	UNP_LINK_WLOCK();
2551 	if ((unp = fptounp(fp)) != NULL) {
2552 		unp->unp_msgcount--;
2553 		ret = 1;
2554 	} else
2555 		ret = 0;
2556 	unp_rights--;
2557 	UNP_LINK_WUNLOCK();
2558 	return (ret);
2559 }
2560 
2561 /*
2562  * unp_defer indicates whether additional work has been defered for a future
2563  * pass through unp_gc().  It is thread local and does not require explicit
2564  * synchronization.
2565  */
2566 static int	unp_marked;
2567 
2568 static void
2569 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2570 {
2571 	struct unpcb *unp;
2572 	struct file *fp;
2573 	int i;
2574 
2575 	/*
2576 	 * This function can only be called from the gc task.
2577 	 */
2578 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2579 	    ("%s: not on gc callout", __func__));
2580 	UNP_LINK_LOCK_ASSERT();
2581 
2582 	for (i = 0; i < fdcount; i++) {
2583 		fp = fdep[i]->fde_file;
2584 		if ((unp = fptounp(fp)) == NULL)
2585 			continue;
2586 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2587 			continue;
2588 		unp->unp_gcrefs--;
2589 	}
2590 }
2591 
2592 static void
2593 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2594 {
2595 	struct unpcb *unp;
2596 	struct file *fp;
2597 	int i;
2598 
2599 	/*
2600 	 * This function can only be called from the gc task.
2601 	 */
2602 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2603 	    ("%s: not on gc callout", __func__));
2604 	UNP_LINK_LOCK_ASSERT();
2605 
2606 	for (i = 0; i < fdcount; i++) {
2607 		fp = fdep[i]->fde_file;
2608 		if ((unp = fptounp(fp)) == NULL)
2609 			continue;
2610 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2611 			continue;
2612 		unp->unp_gcrefs++;
2613 		unp_marked++;
2614 	}
2615 }
2616 
2617 static void
2618 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2619 {
2620 	struct socket *so, *soa;
2621 
2622 	so = unp->unp_socket;
2623 	SOCK_LOCK(so);
2624 	if (SOLISTENING(so)) {
2625 		/*
2626 		 * Mark all sockets in our accept queue.
2627 		 */
2628 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2629 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2630 				continue;
2631 			SOCKBUF_LOCK(&soa->so_rcv);
2632 			unp_scan(soa->so_rcv.sb_mb, op);
2633 			SOCKBUF_UNLOCK(&soa->so_rcv);
2634 		}
2635 	} else {
2636 		/*
2637 		 * Mark all sockets we reference with RIGHTS.
2638 		 */
2639 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2640 			SOCKBUF_LOCK(&so->so_rcv);
2641 			unp_scan(so->so_rcv.sb_mb, op);
2642 			SOCKBUF_UNLOCK(&so->so_rcv);
2643 		}
2644 	}
2645 	SOCK_UNLOCK(so);
2646 }
2647 
2648 static int unp_recycled;
2649 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2650     "Number of unreachable sockets claimed by the garbage collector.");
2651 
2652 static int unp_taskcount;
2653 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2654     "Number of times the garbage collector has run.");
2655 
2656 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2657     "Number of active local sockets.");
2658 
2659 static void
2660 unp_gc(__unused void *arg, int pending)
2661 {
2662 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2663 				    NULL };
2664 	struct unp_head **head;
2665 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2666 	struct file *f, **unref;
2667 	struct unpcb *unp, *unptmp;
2668 	int i, total, unp_unreachable;
2669 
2670 	LIST_INIT(&unp_deadhead);
2671 	unp_taskcount++;
2672 	UNP_LINK_RLOCK();
2673 	/*
2674 	 * First determine which sockets may be in cycles.
2675 	 */
2676 	unp_unreachable = 0;
2677 
2678 	for (head = heads; *head != NULL; head++)
2679 		LIST_FOREACH(unp, *head, unp_link) {
2680 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2681 			    ("%s: unp %p has unexpected gc flags 0x%x",
2682 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2683 
2684 			f = unp->unp_file;
2685 
2686 			/*
2687 			 * Check for an unreachable socket potentially in a
2688 			 * cycle.  It must be in a queue as indicated by
2689 			 * msgcount, and this must equal the file reference
2690 			 * count.  Note that when msgcount is 0 the file is
2691 			 * NULL.
2692 			 */
2693 			if (f != NULL && unp->unp_msgcount != 0 &&
2694 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
2695 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2696 				unp->unp_gcflag |= UNPGC_DEAD;
2697 				unp->unp_gcrefs = unp->unp_msgcount;
2698 				unp_unreachable++;
2699 			}
2700 		}
2701 
2702 	/*
2703 	 * Scan all sockets previously marked as potentially being in a cycle
2704 	 * and remove the references each socket holds on any UNPGC_DEAD
2705 	 * sockets in its queue.  After this step, all remaining references on
2706 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2707 	 */
2708 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2709 		unp_gc_scan(unp, unp_remove_dead_ref);
2710 
2711 	/*
2712 	 * If a socket still has a non-negative refcount, it cannot be in a
2713 	 * cycle.  In this case increment refcount of all children iteratively.
2714 	 * Stop the scan once we do a complete loop without discovering
2715 	 * a new reachable socket.
2716 	 */
2717 	do {
2718 		unp_marked = 0;
2719 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2720 			if (unp->unp_gcrefs > 0) {
2721 				unp->unp_gcflag &= ~UNPGC_DEAD;
2722 				LIST_REMOVE(unp, unp_dead);
2723 				KASSERT(unp_unreachable > 0,
2724 				    ("%s: unp_unreachable underflow.",
2725 				    __func__));
2726 				unp_unreachable--;
2727 				unp_gc_scan(unp, unp_restore_undead_ref);
2728 			}
2729 	} while (unp_marked);
2730 
2731 	UNP_LINK_RUNLOCK();
2732 
2733 	if (unp_unreachable == 0)
2734 		return;
2735 
2736 	/*
2737 	 * Allocate space for a local array of dead unpcbs.
2738 	 * TODO: can this path be simplified by instead using the local
2739 	 * dead list at unp_deadhead, after taking out references
2740 	 * on the file object and/or unpcb and dropping the link lock?
2741 	 */
2742 	unref = malloc(unp_unreachable * sizeof(struct file *),
2743 	    M_TEMP, M_WAITOK);
2744 
2745 	/*
2746 	 * Iterate looking for sockets which have been specifically marked
2747 	 * as unreachable and store them locally.
2748 	 */
2749 	UNP_LINK_RLOCK();
2750 	total = 0;
2751 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2752 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2753 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2754 		unp->unp_gcflag &= ~UNPGC_DEAD;
2755 		f = unp->unp_file;
2756 		if (unp->unp_msgcount == 0 || f == NULL ||
2757 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
2758 		    !fhold(f))
2759 			continue;
2760 		unref[total++] = f;
2761 		KASSERT(total <= unp_unreachable,
2762 		    ("%s: incorrect unreachable count.", __func__));
2763 	}
2764 	UNP_LINK_RUNLOCK();
2765 
2766 	/*
2767 	 * Now flush all sockets, free'ing rights.  This will free the
2768 	 * struct files associated with these sockets but leave each socket
2769 	 * with one remaining ref.
2770 	 */
2771 	for (i = 0; i < total; i++) {
2772 		struct socket *so;
2773 
2774 		so = unref[i]->f_data;
2775 		CURVNET_SET(so->so_vnet);
2776 		sorflush(so);
2777 		CURVNET_RESTORE();
2778 	}
2779 
2780 	/*
2781 	 * And finally release the sockets so they can be reclaimed.
2782 	 */
2783 	for (i = 0; i < total; i++)
2784 		fdrop(unref[i], NULL);
2785 	unp_recycled += total;
2786 	free(unref, M_TEMP);
2787 }
2788 
2789 static void
2790 unp_dispose_mbuf(struct mbuf *m)
2791 {
2792 
2793 	if (m)
2794 		unp_scan(m, unp_freerights);
2795 }
2796 
2797 /*
2798  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2799  */
2800 static void
2801 unp_dispose(struct socket *so)
2802 {
2803 	struct unpcb *unp;
2804 
2805 	unp = sotounpcb(so);
2806 	UNP_LINK_WLOCK();
2807 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2808 	UNP_LINK_WUNLOCK();
2809 	if (!SOLISTENING(so))
2810 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2811 }
2812 
2813 static void
2814 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2815 {
2816 	struct mbuf *m;
2817 	struct cmsghdr *cm;
2818 	void *data;
2819 	socklen_t clen, datalen;
2820 
2821 	while (m0 != NULL) {
2822 		for (m = m0; m; m = m->m_next) {
2823 			if (m->m_type != MT_CONTROL)
2824 				continue;
2825 
2826 			cm = mtod(m, struct cmsghdr *);
2827 			clen = m->m_len;
2828 
2829 			while (cm != NULL) {
2830 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2831 					break;
2832 
2833 				data = CMSG_DATA(cm);
2834 				datalen = (caddr_t)cm + cm->cmsg_len
2835 				    - (caddr_t)data;
2836 
2837 				if (cm->cmsg_level == SOL_SOCKET &&
2838 				    cm->cmsg_type == SCM_RIGHTS) {
2839 					(*op)(data, datalen /
2840 					    sizeof(struct filedescent *));
2841 				}
2842 
2843 				if (CMSG_SPACE(datalen) < clen) {
2844 					clen -= CMSG_SPACE(datalen);
2845 					cm = (struct cmsghdr *)
2846 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2847 				} else {
2848 					clen = 0;
2849 					cm = NULL;
2850 				}
2851 			}
2852 		}
2853 		m0 = m0->m_nextpkt;
2854 	}
2855 }
2856 
2857 /*
2858  * A helper function called by VFS before socket-type vnode reclamation.
2859  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2860  * use count.
2861  */
2862 void
2863 vfs_unp_reclaim(struct vnode *vp)
2864 {
2865 	struct unpcb *unp;
2866 	int active;
2867 	struct mtx *vplock;
2868 
2869 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2870 	KASSERT(vp->v_type == VSOCK,
2871 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2872 
2873 	active = 0;
2874 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2875 	mtx_lock(vplock);
2876 	VOP_UNP_CONNECT(vp, &unp);
2877 	if (unp == NULL)
2878 		goto done;
2879 	UNP_PCB_LOCK(unp);
2880 	if (unp->unp_vnode == vp) {
2881 		VOP_UNP_DETACH(vp);
2882 		unp->unp_vnode = NULL;
2883 		active = 1;
2884 	}
2885 	UNP_PCB_UNLOCK(unp);
2886  done:
2887 	mtx_unlock(vplock);
2888 	if (active)
2889 		vunref(vp);
2890 }
2891 
2892 #ifdef DDB
2893 static void
2894 db_print_indent(int indent)
2895 {
2896 	int i;
2897 
2898 	for (i = 0; i < indent; i++)
2899 		db_printf(" ");
2900 }
2901 
2902 static void
2903 db_print_unpflags(int unp_flags)
2904 {
2905 	int comma;
2906 
2907 	comma = 0;
2908 	if (unp_flags & UNP_HAVEPC) {
2909 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2910 		comma = 1;
2911 	}
2912 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
2913 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
2914 		comma = 1;
2915 	}
2916 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
2917 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
2918 		comma = 1;
2919 	}
2920 	if (unp_flags & UNP_CONNWAIT) {
2921 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2922 		comma = 1;
2923 	}
2924 	if (unp_flags & UNP_CONNECTING) {
2925 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2926 		comma = 1;
2927 	}
2928 	if (unp_flags & UNP_BINDING) {
2929 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2930 		comma = 1;
2931 	}
2932 }
2933 
2934 static void
2935 db_print_xucred(int indent, struct xucred *xu)
2936 {
2937 	int comma, i;
2938 
2939 	db_print_indent(indent);
2940 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2941 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2942 	db_print_indent(indent);
2943 	db_printf("cr_groups: ");
2944 	comma = 0;
2945 	for (i = 0; i < xu->cr_ngroups; i++) {
2946 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2947 		comma = 1;
2948 	}
2949 	db_printf("\n");
2950 }
2951 
2952 static void
2953 db_print_unprefs(int indent, struct unp_head *uh)
2954 {
2955 	struct unpcb *unp;
2956 	int counter;
2957 
2958 	counter = 0;
2959 	LIST_FOREACH(unp, uh, unp_reflink) {
2960 		if (counter % 4 == 0)
2961 			db_print_indent(indent);
2962 		db_printf("%p  ", unp);
2963 		if (counter % 4 == 3)
2964 			db_printf("\n");
2965 		counter++;
2966 	}
2967 	if (counter != 0 && counter % 4 != 0)
2968 		db_printf("\n");
2969 }
2970 
2971 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2972 {
2973 	struct unpcb *unp;
2974 
2975         if (!have_addr) {
2976                 db_printf("usage: show unpcb <addr>\n");
2977                 return;
2978         }
2979         unp = (struct unpcb *)addr;
2980 
2981 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2982 	    unp->unp_vnode);
2983 
2984 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2985 	    unp->unp_conn);
2986 
2987 	db_printf("unp_refs:\n");
2988 	db_print_unprefs(2, &unp->unp_refs);
2989 
2990 	/* XXXRW: Would be nice to print the full address, if any. */
2991 	db_printf("unp_addr: %p\n", unp->unp_addr);
2992 
2993 	db_printf("unp_gencnt: %llu\n",
2994 	    (unsigned long long)unp->unp_gencnt);
2995 
2996 	db_printf("unp_flags: %x (", unp->unp_flags);
2997 	db_print_unpflags(unp->unp_flags);
2998 	db_printf(")\n");
2999 
3000 	db_printf("unp_peercred:\n");
3001 	db_print_xucred(2, &unp->unp_peercred);
3002 
3003 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3004 }
3005 #endif
3006