xref: /freebsd/sys/kern/uipc_usrreq.c (revision e9ba1fd5eda2c0bc22edafa75b2ef10222bf24e6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 static struct domain localdomain;
109 
110 static uma_zone_t	unp_zone;
111 static unp_gen_t	unp_gencnt;	/* (l) */
112 static u_int		unp_count;	/* (l) Count of local sockets. */
113 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
114 static int		unp_rights;	/* (g) File descriptors in flight. */
115 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
116 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
117 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
118 
119 struct unp_defer {
120 	SLIST_ENTRY(unp_defer) ud_link;
121 	struct file *ud_fp;
122 };
123 static SLIST_HEAD(, unp_defer) unp_defers;
124 static int unp_defers_count;
125 
126 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
127 
128 /*
129  * Garbage collection of cyclic file descriptor/socket references occurs
130  * asynchronously in a taskqueue context in order to avoid recursion and
131  * reentrance in the UNIX domain socket, file descriptor, and socket layer
132  * code.  See unp_gc() for a full description.
133  */
134 static struct timeout_task unp_gc_task;
135 
136 /*
137  * The close of unix domain sockets attached as SCM_RIGHTS is
138  * postponed to the taskqueue, to avoid arbitrary recursion depth.
139  * The attached sockets might have another sockets attached.
140  */
141 static struct task	unp_defer_task;
142 
143 /*
144  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
145  * stream sockets, although the total for sender and receiver is actually
146  * only PIPSIZ.
147  *
148  * Datagram sockets really use the sendspace as the maximum datagram size,
149  * and don't really want to reserve the sendspace.  Their recvspace should be
150  * large enough for at least one max-size datagram plus address.
151  */
152 #ifndef PIPSIZ
153 #define	PIPSIZ	8192
154 #endif
155 static u_long	unpst_sendspace = PIPSIZ;
156 static u_long	unpst_recvspace = PIPSIZ;
157 static u_long	unpdg_maxdgram = 2*1024;
158 static u_long	unpdg_recvspace = 16*1024;	/* support 8KB syslog msgs */
159 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
160 static u_long	unpsp_recvspace = PIPSIZ;
161 
162 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Local domain");
164 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
165     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
166     "SOCK_STREAM");
167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
171     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "SOCK_SEQPACKET");
173 
174 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
175 	   &unpst_sendspace, 0, "Default stream send space.");
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
177 	   &unpst_recvspace, 0, "Default stream receive space.");
178 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
179 	   &unpdg_maxdgram, 0, "Maximum datagram size.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpdg_recvspace, 0, "Default datagram receive space.");
182 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
183 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
186 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
187     "File descriptors in flight.");
188 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
189     &unp_defers_count, 0,
190     "File descriptors deferred to taskqueue for close.");
191 
192 /*
193  * Locking and synchronization:
194  *
195  * Several types of locks exist in the local domain socket implementation:
196  * - a global linkage lock
197  * - a global connection list lock
198  * - the mtxpool lock
199  * - per-unpcb mutexes
200  *
201  * The linkage lock protects the global socket lists, the generation number
202  * counter and garbage collector state.
203  *
204  * The connection list lock protects the list of referring sockets in a datagram
205  * socket PCB.  This lock is also overloaded to protect a global list of
206  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
207  * messages.  To avoid recursion, such references are released by a dedicated
208  * thread.
209  *
210  * The mtxpool lock protects the vnode from being modified while referenced.
211  * Lock ordering rules require that it be acquired before any PCB locks.
212  *
213  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
214  * unpcb.  This includes the unp_conn field, which either links two connected
215  * PCBs together (for connected socket types) or points at the destination
216  * socket (for connectionless socket types).  The operations of creating or
217  * destroying a connection therefore involve locking multiple PCBs.  To avoid
218  * lock order reversals, in some cases this involves dropping a PCB lock and
219  * using a reference counter to maintain liveness.
220  *
221  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
222  * allocated in pr_attach() and freed in pr_detach().  The validity of that
223  * pointer is an invariant, so no lock is required to dereference the so_pcb
224  * pointer if a valid socket reference is held by the caller.  In practice,
225  * this is always true during operations performed on a socket.  Each unpcb
226  * has a back-pointer to its socket, unp_socket, which will be stable under
227  * the same circumstances.
228  *
229  * This pointer may only be safely dereferenced as long as a valid reference
230  * to the unpcb is held.  Typically, this reference will be from the socket,
231  * or from another unpcb when the referring unpcb's lock is held (in order
232  * that the reference not be invalidated during use).  For example, to follow
233  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
234  * that detach is not run clearing unp_socket.
235  *
236  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
237  * protocols, bind() is a non-atomic operation, and connect() requires
238  * potential sleeping in the protocol, due to potentially waiting on local or
239  * distributed file systems.  We try to separate "lookup" operations, which
240  * may sleep, and the IPC operations themselves, which typically can occur
241  * with relative atomicity as locks can be held over the entire operation.
242  *
243  * Another tricky issue is simultaneous multi-threaded or multi-process
244  * access to a single UNIX domain socket.  These are handled by the flags
245  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
246  * binding, both of which involve dropping UNIX domain socket locks in order
247  * to perform namei() and other file system operations.
248  */
249 static struct rwlock	unp_link_rwlock;
250 static struct mtx	unp_defers_lock;
251 
252 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
253 					    "unp_link_rwlock")
254 
255 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
256 					    RA_LOCKED)
257 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
258 					    RA_UNLOCKED)
259 
260 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
261 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
262 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
263 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
265 					    RA_WLOCKED)
266 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
267 
268 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
269 					    "unp_defer", NULL, MTX_DEF)
270 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
271 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
272 
273 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
274 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
275 
276 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
277 					    "unp", "unp",	\
278 					    MTX_DUPOK|MTX_DEF)
279 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
280 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
281 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
282 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
283 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
284 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
285 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
286 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
287 
288 static int	uipc_connect2(struct socket *, struct socket *);
289 static int	uipc_ctloutput(struct socket *, struct sockopt *);
290 static int	unp_connect(struct socket *, struct sockaddr *,
291 		    struct thread *);
292 static int	unp_connectat(int, struct socket *, struct sockaddr *,
293 		    struct thread *, bool);
294 typedef enum { PRU_CONNECT, PRU_CONNECT2 } conn2_how;
295 static void	unp_connect2(struct socket *so, struct socket *so2, conn2_how);
296 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
297 static void	unp_dispose(struct socket *so);
298 static void	unp_shutdown(struct unpcb *);
299 static void	unp_drop(struct unpcb *);
300 static void	unp_gc(__unused void *, int);
301 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
302 static void	unp_discard(struct file *);
303 static void	unp_freerights(struct filedescent **, int);
304 static int	unp_internalize(struct mbuf **, struct thread *,
305 		    struct mbuf **, u_int *, u_int *);
306 static void	unp_internalize_fp(struct file *);
307 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
308 static int	unp_externalize_fp(struct file *);
309 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *,
310 		    int, struct mbuf **, u_int *, u_int *);
311 static void	unp_process_defers(void * __unused, int);
312 
313 static void
314 unp_pcb_hold(struct unpcb *unp)
315 {
316 	u_int old __unused;
317 
318 	old = refcount_acquire(&unp->unp_refcount);
319 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
320 }
321 
322 static __result_use_check bool
323 unp_pcb_rele(struct unpcb *unp)
324 {
325 	bool ret;
326 
327 	UNP_PCB_LOCK_ASSERT(unp);
328 
329 	if ((ret = refcount_release(&unp->unp_refcount))) {
330 		UNP_PCB_UNLOCK(unp);
331 		UNP_PCB_LOCK_DESTROY(unp);
332 		uma_zfree(unp_zone, unp);
333 	}
334 	return (ret);
335 }
336 
337 static void
338 unp_pcb_rele_notlast(struct unpcb *unp)
339 {
340 	bool ret __unused;
341 
342 	ret = refcount_release(&unp->unp_refcount);
343 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
344 }
345 
346 static void
347 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
348 {
349 	UNP_PCB_UNLOCK_ASSERT(unp);
350 	UNP_PCB_UNLOCK_ASSERT(unp2);
351 
352 	if (unp == unp2) {
353 		UNP_PCB_LOCK(unp);
354 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static void
364 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
365 {
366 	UNP_PCB_UNLOCK(unp);
367 	if (unp != unp2)
368 		UNP_PCB_UNLOCK(unp2);
369 }
370 
371 /*
372  * Try to lock the connected peer of an already locked socket.  In some cases
373  * this requires that we unlock the current socket.  The pairbusy counter is
374  * used to block concurrent connection attempts while the lock is dropped.  The
375  * caller must be careful to revalidate PCB state.
376  */
377 static struct unpcb *
378 unp_pcb_lock_peer(struct unpcb *unp)
379 {
380 	struct unpcb *unp2;
381 
382 	UNP_PCB_LOCK_ASSERT(unp);
383 	unp2 = unp->unp_conn;
384 	if (unp2 == NULL)
385 		return (NULL);
386 	if (__predict_false(unp == unp2))
387 		return (unp);
388 
389 	UNP_PCB_UNLOCK_ASSERT(unp2);
390 
391 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
392 		return (unp2);
393 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
394 		UNP_PCB_LOCK(unp2);
395 		return (unp2);
396 	}
397 	unp->unp_pairbusy++;
398 	unp_pcb_hold(unp2);
399 	UNP_PCB_UNLOCK(unp);
400 
401 	UNP_PCB_LOCK(unp2);
402 	UNP_PCB_LOCK(unp);
403 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
404 	    ("%s: socket %p was reconnected", __func__, unp));
405 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
406 		unp->unp_flags &= ~UNP_WAITING;
407 		wakeup(unp);
408 	}
409 	if (unp_pcb_rele(unp2)) {
410 		/* unp2 is unlocked. */
411 		return (NULL);
412 	}
413 	if (unp->unp_conn == NULL) {
414 		UNP_PCB_UNLOCK(unp2);
415 		return (NULL);
416 	}
417 	return (unp2);
418 }
419 
420 static void
421 uipc_abort(struct socket *so)
422 {
423 	struct unpcb *unp, *unp2;
424 
425 	unp = sotounpcb(so);
426 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
427 	UNP_PCB_UNLOCK_ASSERT(unp);
428 
429 	UNP_PCB_LOCK(unp);
430 	unp2 = unp->unp_conn;
431 	if (unp2 != NULL) {
432 		unp_pcb_hold(unp2);
433 		UNP_PCB_UNLOCK(unp);
434 		unp_drop(unp2);
435 	} else
436 		UNP_PCB_UNLOCK(unp);
437 }
438 
439 static int
440 uipc_accept(struct socket *so, struct sockaddr **nam)
441 {
442 	struct unpcb *unp, *unp2;
443 	const struct sockaddr *sa;
444 
445 	/*
446 	 * Pass back name of connected socket, if it was bound and we are
447 	 * still connected (our peer may have closed already!).
448 	 */
449 	unp = sotounpcb(so);
450 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
451 
452 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
453 	UNP_PCB_LOCK(unp);
454 	unp2 = unp_pcb_lock_peer(unp);
455 	if (unp2 != NULL && unp2->unp_addr != NULL)
456 		sa = (struct sockaddr *)unp2->unp_addr;
457 	else
458 		sa = &sun_noname;
459 	bcopy(sa, *nam, sa->sa_len);
460 	if (unp2 != NULL)
461 		unp_pcb_unlock_pair(unp, unp2);
462 	else
463 		UNP_PCB_UNLOCK(unp);
464 	return (0);
465 }
466 
467 static int
468 uipc_attach(struct socket *so, int proto, struct thread *td)
469 {
470 	u_long sendspace, recvspace;
471 	struct unpcb *unp;
472 	int error;
473 	bool locked;
474 
475 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
476 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
477 		switch (so->so_type) {
478 		case SOCK_STREAM:
479 			sendspace = unpst_sendspace;
480 			recvspace = unpst_recvspace;
481 			break;
482 
483 		case SOCK_DGRAM:
484 			STAILQ_INIT(&so->so_rcv.uxdg_mb);
485 			STAILQ_INIT(&so->so_snd.uxdg_mb);
486 			TAILQ_INIT(&so->so_rcv.uxdg_conns);
487 			/*
488 			 * Since send buffer is either bypassed or is a part
489 			 * of one-to-many receive buffer, we assign both space
490 			 * limits to unpdg_recvspace.
491 			 */
492 			sendspace = recvspace = unpdg_recvspace;
493 			break;
494 
495 		case SOCK_SEQPACKET:
496 			sendspace = unpsp_sendspace;
497 			recvspace = unpsp_recvspace;
498 			break;
499 
500 		default:
501 			panic("uipc_attach");
502 		}
503 		error = soreserve(so, sendspace, recvspace);
504 		if (error)
505 			return (error);
506 	}
507 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
508 	if (unp == NULL)
509 		return (ENOBUFS);
510 	LIST_INIT(&unp->unp_refs);
511 	UNP_PCB_LOCK_INIT(unp);
512 	unp->unp_socket = so;
513 	so->so_pcb = unp;
514 	refcount_init(&unp->unp_refcount, 1);
515 
516 	if ((locked = UNP_LINK_WOWNED()) == false)
517 		UNP_LINK_WLOCK();
518 
519 	unp->unp_gencnt = ++unp_gencnt;
520 	unp->unp_ino = ++unp_ino;
521 	unp_count++;
522 	switch (so->so_type) {
523 	case SOCK_STREAM:
524 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
525 		break;
526 
527 	case SOCK_DGRAM:
528 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
529 		break;
530 
531 	case SOCK_SEQPACKET:
532 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
533 		break;
534 
535 	default:
536 		panic("uipc_attach");
537 	}
538 
539 	if (locked == false)
540 		UNP_LINK_WUNLOCK();
541 
542 	return (0);
543 }
544 
545 static int
546 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
547 {
548 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
549 	struct vattr vattr;
550 	int error, namelen;
551 	struct nameidata nd;
552 	struct unpcb *unp;
553 	struct vnode *vp;
554 	struct mount *mp;
555 	cap_rights_t rights;
556 	char *buf;
557 
558 	if (nam->sa_family != AF_UNIX)
559 		return (EAFNOSUPPORT);
560 
561 	unp = sotounpcb(so);
562 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
563 
564 	if (soun->sun_len > sizeof(struct sockaddr_un))
565 		return (EINVAL);
566 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
567 	if (namelen <= 0)
568 		return (EINVAL);
569 
570 	/*
571 	 * We don't allow simultaneous bind() calls on a single UNIX domain
572 	 * socket, so flag in-progress operations, and return an error if an
573 	 * operation is already in progress.
574 	 *
575 	 * Historically, we have not allowed a socket to be rebound, so this
576 	 * also returns an error.  Not allowing re-binding simplifies the
577 	 * implementation and avoids a great many possible failure modes.
578 	 */
579 	UNP_PCB_LOCK(unp);
580 	if (unp->unp_vnode != NULL) {
581 		UNP_PCB_UNLOCK(unp);
582 		return (EINVAL);
583 	}
584 	if (unp->unp_flags & UNP_BINDING) {
585 		UNP_PCB_UNLOCK(unp);
586 		return (EALREADY);
587 	}
588 	unp->unp_flags |= UNP_BINDING;
589 	UNP_PCB_UNLOCK(unp);
590 
591 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
592 	bcopy(soun->sun_path, buf, namelen);
593 	buf[namelen] = 0;
594 
595 restart:
596 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
597 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_BINDAT));
598 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
599 	error = namei(&nd);
600 	if (error)
601 		goto error;
602 	vp = nd.ni_vp;
603 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
604 		NDFREE_PNBUF(&nd);
605 		if (nd.ni_dvp == vp)
606 			vrele(nd.ni_dvp);
607 		else
608 			vput(nd.ni_dvp);
609 		if (vp != NULL) {
610 			vrele(vp);
611 			error = EADDRINUSE;
612 			goto error;
613 		}
614 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
615 		if (error)
616 			goto error;
617 		goto restart;
618 	}
619 	VATTR_NULL(&vattr);
620 	vattr.va_type = VSOCK;
621 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
622 #ifdef MAC
623 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
624 	    &vattr);
625 #endif
626 	if (error == 0)
627 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
628 	NDFREE_PNBUF(&nd);
629 	if (error) {
630 		VOP_VPUT_PAIR(nd.ni_dvp, NULL, true);
631 		vn_finished_write(mp);
632 		if (error == ERELOOKUP)
633 			goto restart;
634 		goto error;
635 	}
636 	vp = nd.ni_vp;
637 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
638 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
639 
640 	UNP_PCB_LOCK(unp);
641 	VOP_UNP_BIND(vp, unp);
642 	unp->unp_vnode = vp;
643 	unp->unp_addr = soun;
644 	unp->unp_flags &= ~UNP_BINDING;
645 	UNP_PCB_UNLOCK(unp);
646 	vref(vp);
647 	VOP_VPUT_PAIR(nd.ni_dvp, &vp, true);
648 	vn_finished_write(mp);
649 	free(buf, M_TEMP);
650 	return (0);
651 
652 error:
653 	UNP_PCB_LOCK(unp);
654 	unp->unp_flags &= ~UNP_BINDING;
655 	UNP_PCB_UNLOCK(unp);
656 	free(buf, M_TEMP);
657 	return (error);
658 }
659 
660 static int
661 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
662 {
663 
664 	return (uipc_bindat(AT_FDCWD, so, nam, td));
665 }
666 
667 static int
668 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
669 {
670 	int error;
671 
672 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
673 	error = unp_connect(so, nam, td);
674 	return (error);
675 }
676 
677 static int
678 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
679     struct thread *td)
680 {
681 	int error;
682 
683 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
684 	error = unp_connectat(fd, so, nam, td, false);
685 	return (error);
686 }
687 
688 static void
689 uipc_close(struct socket *so)
690 {
691 	struct unpcb *unp, *unp2;
692 	struct vnode *vp = NULL;
693 	struct mtx *vplock;
694 
695 	unp = sotounpcb(so);
696 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
697 
698 	vplock = NULL;
699 	if ((vp = unp->unp_vnode) != NULL) {
700 		vplock = mtx_pool_find(mtxpool_sleep, vp);
701 		mtx_lock(vplock);
702 	}
703 	UNP_PCB_LOCK(unp);
704 	if (vp && unp->unp_vnode == NULL) {
705 		mtx_unlock(vplock);
706 		vp = NULL;
707 	}
708 	if (vp != NULL) {
709 		VOP_UNP_DETACH(vp);
710 		unp->unp_vnode = NULL;
711 	}
712 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
713 		unp_disconnect(unp, unp2);
714 	else
715 		UNP_PCB_UNLOCK(unp);
716 	if (vp) {
717 		mtx_unlock(vplock);
718 		vrele(vp);
719 	}
720 }
721 
722 static int
723 uipc_connect2(struct socket *so1, struct socket *so2)
724 {
725 	struct unpcb *unp, *unp2;
726 
727 	if (so1->so_type != so2->so_type)
728 		return (EPROTOTYPE);
729 
730 	unp = so1->so_pcb;
731 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
732 	unp2 = so2->so_pcb;
733 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
734 	unp_pcb_lock_pair(unp, unp2);
735 	unp_connect2(so1, so2, PRU_CONNECT2);
736 	unp_pcb_unlock_pair(unp, unp2);
737 
738 	return (0);
739 }
740 
741 static void
742 uipc_detach(struct socket *so)
743 {
744 	struct unpcb *unp, *unp2;
745 	struct mtx *vplock;
746 	struct vnode *vp;
747 	int local_unp_rights;
748 
749 	unp = sotounpcb(so);
750 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
751 
752 	vp = NULL;
753 	vplock = NULL;
754 
755 	UNP_LINK_WLOCK();
756 	LIST_REMOVE(unp, unp_link);
757 	if (unp->unp_gcflag & UNPGC_DEAD)
758 		LIST_REMOVE(unp, unp_dead);
759 	unp->unp_gencnt = ++unp_gencnt;
760 	--unp_count;
761 	UNP_LINK_WUNLOCK();
762 
763 	UNP_PCB_UNLOCK_ASSERT(unp);
764  restart:
765 	if ((vp = unp->unp_vnode) != NULL) {
766 		vplock = mtx_pool_find(mtxpool_sleep, vp);
767 		mtx_lock(vplock);
768 	}
769 	UNP_PCB_LOCK(unp);
770 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
771 		if (vplock)
772 			mtx_unlock(vplock);
773 		UNP_PCB_UNLOCK(unp);
774 		goto restart;
775 	}
776 	if ((vp = unp->unp_vnode) != NULL) {
777 		VOP_UNP_DETACH(vp);
778 		unp->unp_vnode = NULL;
779 	}
780 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
781 		unp_disconnect(unp, unp2);
782 	else
783 		UNP_PCB_UNLOCK(unp);
784 
785 	UNP_REF_LIST_LOCK();
786 	while (!LIST_EMPTY(&unp->unp_refs)) {
787 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
788 
789 		unp_pcb_hold(ref);
790 		UNP_REF_LIST_UNLOCK();
791 
792 		MPASS(ref != unp);
793 		UNP_PCB_UNLOCK_ASSERT(ref);
794 		unp_drop(ref);
795 		UNP_REF_LIST_LOCK();
796 	}
797 	UNP_REF_LIST_UNLOCK();
798 
799 	UNP_PCB_LOCK(unp);
800 	local_unp_rights = unp_rights;
801 	unp->unp_socket->so_pcb = NULL;
802 	unp->unp_socket = NULL;
803 	free(unp->unp_addr, M_SONAME);
804 	unp->unp_addr = NULL;
805 	if (!unp_pcb_rele(unp))
806 		UNP_PCB_UNLOCK(unp);
807 	if (vp) {
808 		mtx_unlock(vplock);
809 		vrele(vp);
810 	}
811 	if (local_unp_rights)
812 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
813 
814 	switch (so->so_type) {
815 	case SOCK_DGRAM:
816 		/*
817 		 * Everything should have been unlinked/freed by unp_dispose()
818 		 * and/or unp_disconnect().
819 		 */
820 		MPASS(so->so_rcv.uxdg_peeked == NULL);
821 		MPASS(STAILQ_EMPTY(&so->so_rcv.uxdg_mb));
822 		MPASS(TAILQ_EMPTY(&so->so_rcv.uxdg_conns));
823 		MPASS(STAILQ_EMPTY(&so->so_snd.uxdg_mb));
824 	}
825 }
826 
827 static int
828 uipc_disconnect(struct socket *so)
829 {
830 	struct unpcb *unp, *unp2;
831 
832 	unp = sotounpcb(so);
833 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
834 
835 	UNP_PCB_LOCK(unp);
836 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
837 		unp_disconnect(unp, unp2);
838 	else
839 		UNP_PCB_UNLOCK(unp);
840 	return (0);
841 }
842 
843 static int
844 uipc_listen(struct socket *so, int backlog, struct thread *td)
845 {
846 	struct unpcb *unp;
847 	int error;
848 
849 	MPASS(so->so_type != SOCK_DGRAM);
850 
851 	/*
852 	 * Synchronize with concurrent connection attempts.
853 	 */
854 	error = 0;
855 	unp = sotounpcb(so);
856 	UNP_PCB_LOCK(unp);
857 	if (unp->unp_conn != NULL || (unp->unp_flags & UNP_CONNECTING) != 0)
858 		error = EINVAL;
859 	else if (unp->unp_vnode == NULL)
860 		error = EDESTADDRREQ;
861 	if (error != 0) {
862 		UNP_PCB_UNLOCK(unp);
863 		return (error);
864 	}
865 
866 	SOCK_LOCK(so);
867 	error = solisten_proto_check(so);
868 	if (error == 0) {
869 		cru2xt(td, &unp->unp_peercred);
870 		solisten_proto(so, backlog);
871 	}
872 	SOCK_UNLOCK(so);
873 	UNP_PCB_UNLOCK(unp);
874 	return (error);
875 }
876 
877 static int
878 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
879 {
880 	struct unpcb *unp, *unp2;
881 	const struct sockaddr *sa;
882 
883 	unp = sotounpcb(so);
884 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
885 
886 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
887 	UNP_LINK_RLOCK();
888 	/*
889 	 * XXX: It seems that this test always fails even when connection is
890 	 * established.  So, this else clause is added as workaround to
891 	 * return PF_LOCAL sockaddr.
892 	 */
893 	unp2 = unp->unp_conn;
894 	if (unp2 != NULL) {
895 		UNP_PCB_LOCK(unp2);
896 		if (unp2->unp_addr != NULL)
897 			sa = (struct sockaddr *) unp2->unp_addr;
898 		else
899 			sa = &sun_noname;
900 		bcopy(sa, *nam, sa->sa_len);
901 		UNP_PCB_UNLOCK(unp2);
902 	} else {
903 		sa = &sun_noname;
904 		bcopy(sa, *nam, sa->sa_len);
905 	}
906 	UNP_LINK_RUNLOCK();
907 	return (0);
908 }
909 
910 static int
911 uipc_rcvd(struct socket *so, int flags)
912 {
913 	struct unpcb *unp, *unp2;
914 	struct socket *so2;
915 	u_int mbcnt, sbcc;
916 
917 	unp = sotounpcb(so);
918 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
919 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
920 	    ("%s: socktype %d", __func__, so->so_type));
921 
922 	/*
923 	 * Adjust backpressure on sender and wakeup any waiting to write.
924 	 *
925 	 * The unp lock is acquired to maintain the validity of the unp_conn
926 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
927 	 * static as long as we don't permit unp2 to disconnect from unp,
928 	 * which is prevented by the lock on unp.  We cache values from
929 	 * so_rcv to avoid holding the so_rcv lock over the entire
930 	 * transaction on the remote so_snd.
931 	 */
932 	SOCKBUF_LOCK(&so->so_rcv);
933 	mbcnt = so->so_rcv.sb_mbcnt;
934 	sbcc = sbavail(&so->so_rcv);
935 	SOCKBUF_UNLOCK(&so->so_rcv);
936 	/*
937 	 * There is a benign race condition at this point.  If we're planning to
938 	 * clear SB_STOP, but uipc_send is called on the connected socket at
939 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
940 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
941 	 * full.  The race is benign because the only ill effect is to allow the
942 	 * sockbuf to exceed its size limit, and the size limits are not
943 	 * strictly guaranteed anyway.
944 	 */
945 	UNP_PCB_LOCK(unp);
946 	unp2 = unp->unp_conn;
947 	if (unp2 == NULL) {
948 		UNP_PCB_UNLOCK(unp);
949 		return (0);
950 	}
951 	so2 = unp2->unp_socket;
952 	SOCKBUF_LOCK(&so2->so_snd);
953 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
954 		so2->so_snd.sb_flags &= ~SB_STOP;
955 	sowwakeup_locked(so2);
956 	UNP_PCB_UNLOCK(unp);
957 	return (0);
958 }
959 
960 static int
961 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
962     struct mbuf *control, struct thread *td)
963 {
964 	struct unpcb *unp, *unp2;
965 	struct socket *so2;
966 	u_int mbcnt, sbcc;
967 	int error;
968 
969 	unp = sotounpcb(so);
970 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
971 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
972 	    ("%s: socktype %d", __func__, so->so_type));
973 
974 	error = 0;
975 	if (flags & PRUS_OOB) {
976 		error = EOPNOTSUPP;
977 		goto release;
978 	}
979 	if (control != NULL &&
980 	    (error = unp_internalize(&control, td, NULL, NULL, NULL)))
981 		goto release;
982 
983 	unp2 = NULL;
984 	if ((so->so_state & SS_ISCONNECTED) == 0) {
985 		if (nam != NULL) {
986 			if ((error = unp_connect(so, nam, td)) != 0)
987 				goto out;
988 		} else {
989 			error = ENOTCONN;
990 			goto out;
991 		}
992 	}
993 
994 	UNP_PCB_LOCK(unp);
995 	if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
996 		UNP_PCB_UNLOCK(unp);
997 		error = ENOTCONN;
998 		goto out;
999 	} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1000 		unp_pcb_unlock_pair(unp, unp2);
1001 		error = EPIPE;
1002 		goto out;
1003 	}
1004 	UNP_PCB_UNLOCK(unp);
1005 	if ((so2 = unp2->unp_socket) == NULL) {
1006 		UNP_PCB_UNLOCK(unp2);
1007 		error = ENOTCONN;
1008 		goto out;
1009 	}
1010 	SOCKBUF_LOCK(&so2->so_rcv);
1011 	if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1012 		/*
1013 		 * Credentials are passed only once on SOCK_STREAM and
1014 		 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1015 		 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1016 		 */
1017 		control = unp_addsockcred(td, control, unp2->unp_flags, NULL,
1018 		    NULL, NULL);
1019 		unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1020 	}
1021 
1022 	/*
1023 	 * Send to paired receive port and wake up readers.  Don't
1024 	 * check for space available in the receive buffer if we're
1025 	 * attaching ancillary data; Unix domain sockets only check
1026 	 * for space in the sending sockbuf, and that check is
1027 	 * performed one level up the stack.  At that level we cannot
1028 	 * precisely account for the amount of buffer space used
1029 	 * (e.g., because control messages are not yet internalized).
1030 	 */
1031 	switch (so->so_type) {
1032 	case SOCK_STREAM:
1033 		if (control != NULL) {
1034 			sbappendcontrol_locked(&so2->so_rcv, m,
1035 			    control, flags);
1036 			control = NULL;
1037 		} else
1038 			sbappend_locked(&so2->so_rcv, m, flags);
1039 		break;
1040 
1041 	case SOCK_SEQPACKET:
1042 		if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1043 		    &sun_noname, m, control))
1044 			control = NULL;
1045 		break;
1046 	}
1047 
1048 	mbcnt = so2->so_rcv.sb_mbcnt;
1049 	sbcc = sbavail(&so2->so_rcv);
1050 	if (sbcc)
1051 		sorwakeup_locked(so2);
1052 	else
1053 		SOCKBUF_UNLOCK(&so2->so_rcv);
1054 
1055 	/*
1056 	 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1057 	 * it would be possible for uipc_rcvd to be called at this
1058 	 * point, drain the receiving sockbuf, clear SB_STOP, and then
1059 	 * we would set SB_STOP below.  That could lead to an empty
1060 	 * sockbuf having SB_STOP set
1061 	 */
1062 	SOCKBUF_LOCK(&so->so_snd);
1063 	if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1064 		so->so_snd.sb_flags |= SB_STOP;
1065 	SOCKBUF_UNLOCK(&so->so_snd);
1066 	UNP_PCB_UNLOCK(unp2);
1067 	m = NULL;
1068 out:
1069 	/*
1070 	 * PRUS_EOF is equivalent to pr_send followed by pr_shutdown.
1071 	 */
1072 	if (flags & PRUS_EOF) {
1073 		UNP_PCB_LOCK(unp);
1074 		socantsendmore(so);
1075 		unp_shutdown(unp);
1076 		UNP_PCB_UNLOCK(unp);
1077 	}
1078 	if (control != NULL && error != 0)
1079 		unp_scan(control, unp_freerights);
1080 
1081 release:
1082 	if (control != NULL)
1083 		m_freem(control);
1084 	/*
1085 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1086 	 * for freeing memory.
1087 	 */
1088 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1089 		m_freem(m);
1090 	return (error);
1091 }
1092 
1093 /* PF_UNIX/SOCK_DGRAM version of sbspace() */
1094 static inline bool
1095 uipc_dgram_sbspace(struct sockbuf *sb, u_int cc, u_int mbcnt)
1096 {
1097 	u_int bleft, mleft;
1098 
1099 	MPASS(sb->sb_hiwat >= sb->uxdg_cc);
1100 	MPASS(sb->sb_mbmax >= sb->uxdg_mbcnt);
1101 
1102 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE))
1103 		return (false);
1104 
1105 	bleft = sb->sb_hiwat - sb->uxdg_cc;
1106 	mleft = sb->sb_mbmax - sb->uxdg_mbcnt;
1107 
1108 	return (bleft >= cc && mleft >= mbcnt);
1109 }
1110 
1111 /*
1112  * PF_UNIX/SOCK_DGRAM send
1113  *
1114  * Allocate a record consisting of 3 mbufs in the sequence of
1115  * from -> control -> data and append it to the socket buffer.
1116  *
1117  * The first mbuf carries sender's name and is a pkthdr that stores
1118  * overall length of datagram, its memory consumption and control length.
1119  */
1120 #define	ctllen	PH_loc.thirtytwo[1]
1121 _Static_assert(offsetof(struct pkthdr, memlen) + sizeof(u_int) <=
1122     offsetof(struct pkthdr, ctllen), "unix/dgram can not store ctllen");
1123 static int
1124 uipc_sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
1125     struct mbuf *m, struct mbuf *c, int flags, struct thread *td)
1126 {
1127 	struct unpcb *unp, *unp2;
1128 	const struct sockaddr *from;
1129 	struct socket *so2;
1130 	struct sockbuf *sb;
1131 	struct mbuf *f, *clast;
1132 	u_int cc, ctl, mbcnt;
1133 	u_int dcc __diagused, dctl __diagused, dmbcnt __diagused;
1134 	int error;
1135 
1136 	MPASS((uio != NULL && m == NULL) || (m != NULL && uio == NULL));
1137 
1138 	error = 0;
1139 	f = NULL;
1140 	ctl = 0;
1141 
1142 	if (__predict_false(flags & MSG_OOB)) {
1143 		error = EOPNOTSUPP;
1144 		goto out;
1145 	}
1146 	if (m == NULL) {
1147 		if (__predict_false(uio->uio_resid > unpdg_maxdgram)) {
1148 			error = EMSGSIZE;
1149 			goto out;
1150 		}
1151 		m = m_uiotombuf(uio, M_WAITOK, 0, max_hdr, M_PKTHDR);
1152 		if (__predict_false(m == NULL)) {
1153 			error = EFAULT;
1154 			goto out;
1155 		}
1156 		f = m_gethdr(M_WAITOK, MT_SONAME);
1157 		cc = m->m_pkthdr.len;
1158 		mbcnt = MSIZE + m->m_pkthdr.memlen;
1159 		if (c != NULL &&
1160 		    (error = unp_internalize(&c, td, &clast, &ctl, &mbcnt)))
1161 			goto out;
1162 	} else {
1163 		/* pr_sosend() with mbuf usually is a kernel thread. */
1164 
1165 		M_ASSERTPKTHDR(m);
1166 		if (__predict_false(c != NULL))
1167 			panic("%s: control from a kernel thread", __func__);
1168 
1169 		if (__predict_false(m->m_pkthdr.len > unpdg_maxdgram)) {
1170 			error = EMSGSIZE;
1171 			goto out;
1172 		}
1173 		if ((f = m_gethdr(M_NOWAIT, MT_SONAME)) == NULL) {
1174 			error = ENOBUFS;
1175 			goto out;
1176 		}
1177 		/* Condition the foreign mbuf to our standards. */
1178 		m_clrprotoflags(m);
1179 		m_tag_delete_chain(m, NULL);
1180 		m->m_pkthdr.rcvif = NULL;
1181 		m->m_pkthdr.flowid = 0;
1182 		m->m_pkthdr.csum_flags = 0;
1183 		m->m_pkthdr.fibnum = 0;
1184 		m->m_pkthdr.rsstype = 0;
1185 
1186 		cc = m->m_pkthdr.len;
1187 		mbcnt = MSIZE;
1188 		for (struct mbuf *mb = m; mb != NULL; mb = mb->m_next) {
1189 			mbcnt += MSIZE;
1190 			if (mb->m_flags & M_EXT)
1191 				mbcnt += mb->m_ext.ext_size;
1192 		}
1193 	}
1194 
1195 	unp = sotounpcb(so);
1196 	MPASS(unp);
1197 
1198 	/*
1199 	 * XXXGL: would be cool to fully remove so_snd out of the equation
1200 	 * and avoid this lock, which is not only extraneous, but also being
1201 	 * released, thus still leaving possibility for a race.  We can easily
1202 	 * handle SBS_CANTSENDMORE/SS_ISCONNECTED complement in unpcb, but it
1203 	 * is more difficult to invent something to handle so_error.
1204 	 */
1205 	error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
1206 	if (error)
1207 		goto out2;
1208 	SOCK_SENDBUF_LOCK(so);
1209 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1210 		SOCK_SENDBUF_UNLOCK(so);
1211 		error = EPIPE;
1212 		goto out3;
1213 	}
1214 	if (so->so_error != 0) {
1215 		error = so->so_error;
1216 		so->so_error = 0;
1217 		SOCK_SENDBUF_UNLOCK(so);
1218 		goto out3;
1219 	}
1220 	if (((so->so_state & SS_ISCONNECTED) == 0) && addr == NULL) {
1221 		SOCK_SENDBUF_UNLOCK(so);
1222 		error = EDESTADDRREQ;
1223 		goto out3;
1224 	}
1225 	SOCK_SENDBUF_UNLOCK(so);
1226 
1227 	if (addr != NULL) {
1228 		if ((error = unp_connectat(AT_FDCWD, so, addr, td, true)))
1229 			goto out3;
1230 		UNP_PCB_LOCK_ASSERT(unp);
1231 		unp2 = unp->unp_conn;
1232 		UNP_PCB_LOCK_ASSERT(unp2);
1233 	} else {
1234 		UNP_PCB_LOCK(unp);
1235 		unp2 = unp_pcb_lock_peer(unp);
1236 		if (unp2 == NULL) {
1237 			UNP_PCB_UNLOCK(unp);
1238 			error = ENOTCONN;
1239 			goto out3;
1240 		}
1241 	}
1242 
1243 	if (unp2->unp_flags & UNP_WANTCRED_MASK)
1244 		c = unp_addsockcred(td, c, unp2->unp_flags, &clast, &ctl,
1245 		    &mbcnt);
1246 	if (unp->unp_addr != NULL)
1247 		from = (struct sockaddr *)unp->unp_addr;
1248 	else
1249 		from = &sun_noname;
1250 	f->m_len = from->sa_len;
1251 	MPASS(from->sa_len <= MLEN);
1252 	bcopy(from, mtod(f, void *), from->sa_len);
1253 	ctl += f->m_len;
1254 
1255 	/*
1256 	 * Concatenate mbufs: from -> control -> data.
1257 	 * Save overall cc and mbcnt in "from" mbuf.
1258 	 */
1259 	if (c != NULL) {
1260 #ifdef INVARIANTS
1261 		struct mbuf *mc;
1262 
1263 		for (mc = c; mc->m_next != NULL; mc = mc->m_next);
1264 		MPASS(mc == clast);
1265 #endif
1266 		f->m_next = c;
1267 		clast->m_next = m;
1268 		c = NULL;
1269 	} else
1270 		f->m_next = m;
1271 	m = NULL;
1272 #ifdef INVARIANTS
1273 	dcc = dctl = dmbcnt = 0;
1274 	for (struct mbuf *mb = f; mb != NULL; mb = mb->m_next) {
1275 		if (mb->m_type == MT_DATA)
1276 			dcc += mb->m_len;
1277 		else
1278 			dctl += mb->m_len;
1279 		dmbcnt += MSIZE;
1280 		if (mb->m_flags & M_EXT)
1281 			dmbcnt += mb->m_ext.ext_size;
1282 	}
1283 	MPASS(dcc == cc);
1284 	MPASS(dctl == ctl);
1285 	MPASS(dmbcnt == mbcnt);
1286 #endif
1287 	f->m_pkthdr.len = cc + ctl;
1288 	f->m_pkthdr.memlen = mbcnt;
1289 	f->m_pkthdr.ctllen = ctl;
1290 
1291 	/*
1292 	 * Destination socket buffer selection.
1293 	 *
1294 	 * Unconnected sends, when !(so->so_state & SS_ISCONNECTED) and the
1295 	 * destination address is supplied, create a temporary connection for
1296 	 * the run time of the function (see call to unp_connectat() above and
1297 	 * to unp_disconnect() below).  We distinguish them by condition of
1298 	 * (addr != NULL).  We intentionally avoid adding 'bool connected' for
1299 	 * that condition, since, again, through the run time of this code we
1300 	 * are always connected.  For such "unconnected" sends, the destination
1301 	 * buffer would be the receive buffer of destination socket so2.
1302 	 *
1303 	 * For connected sends, data lands on the send buffer of the sender's
1304 	 * socket "so".  Then, if we just added the very first datagram
1305 	 * on this send buffer, we need to add the send buffer on to the
1306 	 * receiving socket's buffer list.  We put ourselves on top of the
1307 	 * list.  Such logic gives infrequent senders priority over frequent
1308 	 * senders.
1309 	 *
1310 	 * Note on byte count management. As long as event methods kevent(2),
1311 	 * select(2) are not protocol specific (yet), we need to maintain
1312 	 * meaningful values on the receive buffer.  So, the receive buffer
1313 	 * would accumulate counters from all connected buffers potentially
1314 	 * having sb_ccc > sb_hiwat or sb_mbcnt > sb_mbmax.
1315 	 */
1316 	so2 = unp2->unp_socket;
1317 	sb = (addr == NULL) ? &so->so_snd : &so2->so_rcv;
1318 	SOCK_RECVBUF_LOCK(so2);
1319 	if (uipc_dgram_sbspace(sb, cc + ctl, mbcnt)) {
1320 		if (addr == NULL && STAILQ_EMPTY(&sb->uxdg_mb))
1321 			TAILQ_INSERT_HEAD(&so2->so_rcv.uxdg_conns, &so->so_snd,
1322 			    uxdg_clist);
1323 		STAILQ_INSERT_TAIL(&sb->uxdg_mb, f, m_stailqpkt);
1324 		sb->uxdg_cc += cc + ctl;
1325 		sb->uxdg_ctl += ctl;
1326 		sb->uxdg_mbcnt += mbcnt;
1327 		so2->so_rcv.sb_acc += cc + ctl;
1328 		so2->so_rcv.sb_ccc += cc + ctl;
1329 		so2->so_rcv.sb_ctl += ctl;
1330 		so2->so_rcv.sb_mbcnt += mbcnt;
1331 		sorwakeup_locked(so2);
1332 		f = NULL;
1333 	} else {
1334 		soroverflow_locked(so2);
1335 		error = (so->so_state & SS_NBIO) ? EAGAIN : ENOBUFS;
1336 	}
1337 
1338 	if (addr != NULL)
1339 		unp_disconnect(unp, unp2);
1340 	else
1341 		unp_pcb_unlock_pair(unp, unp2);
1342 
1343 	td->td_ru.ru_msgsnd++;
1344 
1345 out3:
1346 	SOCK_IO_SEND_UNLOCK(so);
1347 out2:
1348 	if (c)
1349 		unp_scan(c, unp_freerights);
1350 out:
1351 	if (f)
1352 		m_freem(f);
1353 	if (c)
1354 		m_freem(c);
1355 	if (m)
1356 		m_freem(m);
1357 
1358 	return (error);
1359 }
1360 
1361 /*
1362  * PF_UNIX/SOCK_DGRAM receive with MSG_PEEK.
1363  * The mbuf has already been unlinked from the uxdg_mb of socket buffer
1364  * and needs to be linked onto uxdg_peeked of receive socket buffer.
1365  */
1366 static int
1367 uipc_peek_dgram(struct socket *so, struct mbuf *m, struct sockaddr **psa,
1368     struct uio *uio, struct mbuf **controlp, int *flagsp)
1369 {
1370 	ssize_t len = 0;
1371 	int error;
1372 
1373 	so->so_rcv.uxdg_peeked = m;
1374 	so->so_rcv.uxdg_cc += m->m_pkthdr.len;
1375 	so->so_rcv.uxdg_ctl += m->m_pkthdr.ctllen;
1376 	so->so_rcv.uxdg_mbcnt += m->m_pkthdr.memlen;
1377 	SOCK_RECVBUF_UNLOCK(so);
1378 
1379 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1380 	if (psa != NULL)
1381 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1382 
1383 	m = m->m_next;
1384 	KASSERT(m, ("%s: no data or control after soname", __func__));
1385 
1386 	/*
1387 	 * With MSG_PEEK the control isn't executed, just copied.
1388 	 */
1389 	while (m != NULL && m->m_type == MT_CONTROL) {
1390 		if (controlp != NULL) {
1391 			*controlp = m_copym(m, 0, m->m_len, M_WAITOK);
1392 			controlp = &(*controlp)->m_next;
1393 		}
1394 		m = m->m_next;
1395 	}
1396 	KASSERT(m == NULL || m->m_type == MT_DATA,
1397 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1398 	while (m != NULL && uio->uio_resid > 0) {
1399 		len = uio->uio_resid;
1400 		if (len > m->m_len)
1401 			len = m->m_len;
1402 		error = uiomove(mtod(m, char *), (int)len, uio);
1403 		if (error) {
1404 			SOCK_IO_RECV_UNLOCK(so);
1405 			return (error);
1406 		}
1407 		if (len == m->m_len)
1408 			m = m->m_next;
1409 	}
1410 	SOCK_IO_RECV_UNLOCK(so);
1411 
1412 	if (flagsp != NULL) {
1413 		if (m != NULL) {
1414 			if (*flagsp & MSG_TRUNC) {
1415 				/* Report real length of the packet */
1416 				uio->uio_resid -= m_length(m, NULL) - len;
1417 			}
1418 			*flagsp |= MSG_TRUNC;
1419 		} else
1420 			*flagsp &= ~MSG_TRUNC;
1421 	}
1422 
1423 	return (0);
1424 }
1425 
1426 /*
1427  * PF_UNIX/SOCK_DGRAM receive
1428  */
1429 static int
1430 uipc_soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
1431     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1432 {
1433 	struct sockbuf *sb = NULL;
1434 	struct mbuf *m;
1435 	int flags, error;
1436 	ssize_t len = 0;
1437 	bool nonblock;
1438 
1439 	MPASS(mp0 == NULL);
1440 
1441 	if (psa != NULL)
1442 		*psa = NULL;
1443 	if (controlp != NULL)
1444 		*controlp = NULL;
1445 
1446 	flags = flagsp != NULL ? *flagsp : 0;
1447 	nonblock = (so->so_state & SS_NBIO) ||
1448 	    (flags & (MSG_DONTWAIT | MSG_NBIO));
1449 
1450 	error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
1451 	if (__predict_false(error))
1452 		return (error);
1453 
1454 	/*
1455 	 * Loop blocking while waiting for a datagram.  Prioritize connected
1456 	 * peers over unconnected sends.  Set sb to selected socket buffer
1457 	 * containing an mbuf on exit from the wait loop.  A datagram that
1458 	 * had already been peeked at has top priority.
1459 	 */
1460 	SOCK_RECVBUF_LOCK(so);
1461 	while ((m = so->so_rcv.uxdg_peeked) == NULL &&
1462 	    (sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) == NULL &&
1463 	    (m = STAILQ_FIRST(&so->so_rcv.uxdg_mb)) == NULL) {
1464 		if (so->so_error) {
1465 			error = so->so_error;
1466 			so->so_error = 0;
1467 			SOCK_RECVBUF_UNLOCK(so);
1468 			SOCK_IO_RECV_UNLOCK(so);
1469 			return (error);
1470 		}
1471 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
1472 		    uio->uio_resid == 0) {
1473 			SOCK_RECVBUF_UNLOCK(so);
1474 			SOCK_IO_RECV_UNLOCK(so);
1475 			return (0);
1476 		}
1477 		if (nonblock) {
1478 			SOCK_RECVBUF_UNLOCK(so);
1479 			SOCK_IO_RECV_UNLOCK(so);
1480 			return (EWOULDBLOCK);
1481 		}
1482 		error = sbwait(so, SO_RCV);
1483 		if (error) {
1484 			SOCK_RECVBUF_UNLOCK(so);
1485 			SOCK_IO_RECV_UNLOCK(so);
1486 			return (error);
1487 		}
1488 	}
1489 
1490 	if (sb == NULL)
1491 		sb = &so->so_rcv;
1492 	else if (m == NULL)
1493 		m = STAILQ_FIRST(&sb->uxdg_mb);
1494 	else
1495 		MPASS(m == so->so_rcv.uxdg_peeked);
1496 
1497 	MPASS(sb->uxdg_cc > 0);
1498 	M_ASSERTPKTHDR(m);
1499 	KASSERT(m->m_type == MT_SONAME, ("m->m_type == %d", m->m_type));
1500 
1501 	if (uio->uio_td)
1502 		uio->uio_td->td_ru.ru_msgrcv++;
1503 
1504 	if (__predict_true(m != so->so_rcv.uxdg_peeked)) {
1505 		STAILQ_REMOVE_HEAD(&sb->uxdg_mb, m_stailqpkt);
1506 		if (STAILQ_EMPTY(&sb->uxdg_mb) && sb != &so->so_rcv)
1507 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
1508 	} else
1509 		so->so_rcv.uxdg_peeked = NULL;
1510 
1511 	sb->uxdg_cc -= m->m_pkthdr.len;
1512 	sb->uxdg_ctl -= m->m_pkthdr.ctllen;
1513 	sb->uxdg_mbcnt -= m->m_pkthdr.memlen;
1514 
1515 	if (__predict_false(flags & MSG_PEEK))
1516 		return (uipc_peek_dgram(so, m, psa, uio, controlp, flagsp));
1517 
1518 	so->so_rcv.sb_acc -= m->m_pkthdr.len;
1519 	so->so_rcv.sb_ccc -= m->m_pkthdr.len;
1520 	so->so_rcv.sb_ctl -= m->m_pkthdr.ctllen;
1521 	so->so_rcv.sb_mbcnt -= m->m_pkthdr.memlen;
1522 	SOCK_RECVBUF_UNLOCK(so);
1523 
1524 	if (psa != NULL)
1525 		*psa = sodupsockaddr(mtod(m, struct sockaddr *), M_WAITOK);
1526 	m = m_free(m);
1527 	KASSERT(m, ("%s: no data or control after soname", __func__));
1528 
1529 	/*
1530 	 * Packet to copyout() is now in 'm' and it is disconnected from the
1531 	 * queue.
1532 	 *
1533 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1534 	 * in the first mbuf chain on the socket buffer.  We call into the
1535 	 * unp_externalize() to perform externalization (or freeing if
1536 	 * controlp == NULL). In some cases there can be only MT_CONTROL mbufs
1537 	 * without MT_DATA mbufs.
1538 	 */
1539 	while (m != NULL && m->m_type == MT_CONTROL) {
1540 		struct mbuf *cm;
1541 
1542 		/* XXXGL: unp_externalize() is also dom_externalize() KBI and
1543 		 * it frees whole chain, so we must disconnect the mbuf.
1544 		 */
1545 		cm = m; m = m->m_next; cm->m_next = NULL;
1546 		error = unp_externalize(cm, controlp, flags);
1547 		if (error != 0) {
1548 			SOCK_IO_RECV_UNLOCK(so);
1549 			unp_scan(m, unp_freerights);
1550 			m_freem(m);
1551 			return (error);
1552 		}
1553 		if (controlp != NULL) {
1554 			while (*controlp != NULL)
1555 				controlp = &(*controlp)->m_next;
1556 		}
1557 	}
1558 	KASSERT(m == NULL || m->m_type == MT_DATA,
1559 	    ("%s: not MT_DATA mbuf %p", __func__, m));
1560 	while (m != NULL && uio->uio_resid > 0) {
1561 		len = uio->uio_resid;
1562 		if (len > m->m_len)
1563 			len = m->m_len;
1564 		error = uiomove(mtod(m, char *), (int)len, uio);
1565 		if (error) {
1566 			SOCK_IO_RECV_UNLOCK(so);
1567 			m_freem(m);
1568 			return (error);
1569 		}
1570 		if (len == m->m_len)
1571 			m = m_free(m);
1572 		else {
1573 			m->m_data += len;
1574 			m->m_len -= len;
1575 		}
1576 	}
1577 	SOCK_IO_RECV_UNLOCK(so);
1578 
1579 	if (m != NULL) {
1580 		if (flagsp != NULL) {
1581 			if (flags & MSG_TRUNC) {
1582 				/* Report real length of the packet */
1583 				uio->uio_resid -= m_length(m, NULL);
1584 			}
1585 			*flagsp |= MSG_TRUNC;
1586 		}
1587 		m_freem(m);
1588 	} else if (flagsp != NULL)
1589 		*flagsp &= ~MSG_TRUNC;
1590 
1591 	return (0);
1592 }
1593 
1594 static bool
1595 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1596 {
1597 	struct mbuf *mb, *n;
1598 	struct sockbuf *sb;
1599 
1600 	SOCK_LOCK(so);
1601 	if (SOLISTENING(so)) {
1602 		SOCK_UNLOCK(so);
1603 		return (false);
1604 	}
1605 	mb = NULL;
1606 	sb = &so->so_rcv;
1607 	SOCKBUF_LOCK(sb);
1608 	if (sb->sb_fnrdy != NULL) {
1609 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1610 			if (mb == m) {
1611 				*errorp = sbready(sb, m, count);
1612 				break;
1613 			}
1614 			mb = mb->m_next;
1615 			if (mb == NULL) {
1616 				mb = n;
1617 				if (mb != NULL)
1618 					n = mb->m_nextpkt;
1619 			}
1620 		}
1621 	}
1622 	SOCKBUF_UNLOCK(sb);
1623 	SOCK_UNLOCK(so);
1624 	return (mb != NULL);
1625 }
1626 
1627 static int
1628 uipc_ready(struct socket *so, struct mbuf *m, int count)
1629 {
1630 	struct unpcb *unp, *unp2;
1631 	struct socket *so2;
1632 	int error, i;
1633 
1634 	unp = sotounpcb(so);
1635 
1636 	KASSERT(so->so_type == SOCK_STREAM,
1637 	    ("%s: unexpected socket type for %p", __func__, so));
1638 
1639 	UNP_PCB_LOCK(unp);
1640 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1641 		UNP_PCB_UNLOCK(unp);
1642 		so2 = unp2->unp_socket;
1643 		SOCKBUF_LOCK(&so2->so_rcv);
1644 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1645 			sorwakeup_locked(so2);
1646 		else
1647 			SOCKBUF_UNLOCK(&so2->so_rcv);
1648 		UNP_PCB_UNLOCK(unp2);
1649 		return (error);
1650 	}
1651 	UNP_PCB_UNLOCK(unp);
1652 
1653 	/*
1654 	 * The receiving socket has been disconnected, but may still be valid.
1655 	 * In this case, the now-ready mbufs are still present in its socket
1656 	 * buffer, so perform an exhaustive search before giving up and freeing
1657 	 * the mbufs.
1658 	 */
1659 	UNP_LINK_RLOCK();
1660 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1661 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1662 			break;
1663 	}
1664 	UNP_LINK_RUNLOCK();
1665 
1666 	if (unp == NULL) {
1667 		for (i = 0; i < count; i++)
1668 			m = m_free(m);
1669 		error = ECONNRESET;
1670 	}
1671 	return (error);
1672 }
1673 
1674 static int
1675 uipc_sense(struct socket *so, struct stat *sb)
1676 {
1677 	struct unpcb *unp;
1678 
1679 	unp = sotounpcb(so);
1680 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1681 
1682 	sb->st_blksize = so->so_snd.sb_hiwat;
1683 	sb->st_dev = NODEV;
1684 	sb->st_ino = unp->unp_ino;
1685 	return (0);
1686 }
1687 
1688 static int
1689 uipc_shutdown(struct socket *so)
1690 {
1691 	struct unpcb *unp;
1692 
1693 	unp = sotounpcb(so);
1694 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1695 
1696 	UNP_PCB_LOCK(unp);
1697 	socantsendmore(so);
1698 	unp_shutdown(unp);
1699 	UNP_PCB_UNLOCK(unp);
1700 	return (0);
1701 }
1702 
1703 static int
1704 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1705 {
1706 	struct unpcb *unp;
1707 	const struct sockaddr *sa;
1708 
1709 	unp = sotounpcb(so);
1710 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1711 
1712 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1713 	UNP_PCB_LOCK(unp);
1714 	if (unp->unp_addr != NULL)
1715 		sa = (struct sockaddr *) unp->unp_addr;
1716 	else
1717 		sa = &sun_noname;
1718 	bcopy(sa, *nam, sa->sa_len);
1719 	UNP_PCB_UNLOCK(unp);
1720 	return (0);
1721 }
1722 
1723 static int
1724 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1725 {
1726 	struct unpcb *unp;
1727 	struct xucred xu;
1728 	int error, optval;
1729 
1730 	if (sopt->sopt_level != SOL_LOCAL)
1731 		return (EINVAL);
1732 
1733 	unp = sotounpcb(so);
1734 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1735 	error = 0;
1736 	switch (sopt->sopt_dir) {
1737 	case SOPT_GET:
1738 		switch (sopt->sopt_name) {
1739 		case LOCAL_PEERCRED:
1740 			UNP_PCB_LOCK(unp);
1741 			if (unp->unp_flags & UNP_HAVEPC)
1742 				xu = unp->unp_peercred;
1743 			else {
1744 				if (so->so_type == SOCK_STREAM)
1745 					error = ENOTCONN;
1746 				else
1747 					error = EINVAL;
1748 			}
1749 			UNP_PCB_UNLOCK(unp);
1750 			if (error == 0)
1751 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1752 			break;
1753 
1754 		case LOCAL_CREDS:
1755 			/* Unlocked read. */
1756 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1757 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1758 			break;
1759 
1760 		case LOCAL_CREDS_PERSISTENT:
1761 			/* Unlocked read. */
1762 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1763 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1764 			break;
1765 
1766 		case LOCAL_CONNWAIT:
1767 			/* Unlocked read. */
1768 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1769 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1770 			break;
1771 
1772 		default:
1773 			error = EOPNOTSUPP;
1774 			break;
1775 		}
1776 		break;
1777 
1778 	case SOPT_SET:
1779 		switch (sopt->sopt_name) {
1780 		case LOCAL_CREDS:
1781 		case LOCAL_CREDS_PERSISTENT:
1782 		case LOCAL_CONNWAIT:
1783 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1784 					    sizeof(optval));
1785 			if (error)
1786 				break;
1787 
1788 #define	OPTSET(bit, exclusive) do {					\
1789 	UNP_PCB_LOCK(unp);						\
1790 	if (optval) {							\
1791 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1792 			UNP_PCB_UNLOCK(unp);				\
1793 			error = EINVAL;					\
1794 			break;						\
1795 		}							\
1796 		unp->unp_flags |= (bit);				\
1797 	} else								\
1798 		unp->unp_flags &= ~(bit);				\
1799 	UNP_PCB_UNLOCK(unp);						\
1800 } while (0)
1801 
1802 			switch (sopt->sopt_name) {
1803 			case LOCAL_CREDS:
1804 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1805 				break;
1806 
1807 			case LOCAL_CREDS_PERSISTENT:
1808 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1809 				break;
1810 
1811 			case LOCAL_CONNWAIT:
1812 				OPTSET(UNP_CONNWAIT, 0);
1813 				break;
1814 
1815 			default:
1816 				break;
1817 			}
1818 			break;
1819 #undef	OPTSET
1820 		default:
1821 			error = ENOPROTOOPT;
1822 			break;
1823 		}
1824 		break;
1825 
1826 	default:
1827 		error = EOPNOTSUPP;
1828 		break;
1829 	}
1830 	return (error);
1831 }
1832 
1833 static int
1834 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1835 {
1836 
1837 	return (unp_connectat(AT_FDCWD, so, nam, td, false));
1838 }
1839 
1840 static int
1841 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1842     struct thread *td, bool return_locked)
1843 {
1844 	struct mtx *vplock;
1845 	struct sockaddr_un *soun;
1846 	struct vnode *vp;
1847 	struct socket *so2;
1848 	struct unpcb *unp, *unp2, *unp3;
1849 	struct nameidata nd;
1850 	char buf[SOCK_MAXADDRLEN];
1851 	struct sockaddr *sa;
1852 	cap_rights_t rights;
1853 	int error, len;
1854 	bool connreq;
1855 
1856 	if (nam->sa_family != AF_UNIX)
1857 		return (EAFNOSUPPORT);
1858 	if (nam->sa_len > sizeof(struct sockaddr_un))
1859 		return (EINVAL);
1860 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1861 	if (len <= 0)
1862 		return (EINVAL);
1863 	soun = (struct sockaddr_un *)nam;
1864 	bcopy(soun->sun_path, buf, len);
1865 	buf[len] = 0;
1866 
1867 	error = 0;
1868 	unp = sotounpcb(so);
1869 	UNP_PCB_LOCK(unp);
1870 	for (;;) {
1871 		/*
1872 		 * Wait for connection state to stabilize.  If a connection
1873 		 * already exists, give up.  For datagram sockets, which permit
1874 		 * multiple consecutive connect(2) calls, upper layers are
1875 		 * responsible for disconnecting in advance of a subsequent
1876 		 * connect(2), but this is not synchronized with PCB connection
1877 		 * state.
1878 		 *
1879 		 * Also make sure that no threads are currently attempting to
1880 		 * lock the peer socket, to ensure that unp_conn cannot
1881 		 * transition between two valid sockets while locks are dropped.
1882 		 */
1883 		if (SOLISTENING(so))
1884 			error = EOPNOTSUPP;
1885 		else if (unp->unp_conn != NULL)
1886 			error = EISCONN;
1887 		else if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1888 			error = EALREADY;
1889 		}
1890 		if (error != 0) {
1891 			UNP_PCB_UNLOCK(unp);
1892 			return (error);
1893 		}
1894 		if (unp->unp_pairbusy > 0) {
1895 			unp->unp_flags |= UNP_WAITING;
1896 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1897 			continue;
1898 		}
1899 		break;
1900 	}
1901 	unp->unp_flags |= UNP_CONNECTING;
1902 	UNP_PCB_UNLOCK(unp);
1903 
1904 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1905 	if (connreq)
1906 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1907 	else
1908 		sa = NULL;
1909 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1910 	    UIO_SYSSPACE, buf, fd, cap_rights_init_one(&rights, CAP_CONNECTAT));
1911 	error = namei(&nd);
1912 	if (error)
1913 		vp = NULL;
1914 	else
1915 		vp = nd.ni_vp;
1916 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1917 	NDFREE_NOTHING(&nd);
1918 	if (error)
1919 		goto bad;
1920 
1921 	if (vp->v_type != VSOCK) {
1922 		error = ENOTSOCK;
1923 		goto bad;
1924 	}
1925 #ifdef MAC
1926 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1927 	if (error)
1928 		goto bad;
1929 #endif
1930 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1931 	if (error)
1932 		goto bad;
1933 
1934 	unp = sotounpcb(so);
1935 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1936 
1937 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1938 	mtx_lock(vplock);
1939 	VOP_UNP_CONNECT(vp, &unp2);
1940 	if (unp2 == NULL) {
1941 		error = ECONNREFUSED;
1942 		goto bad2;
1943 	}
1944 	so2 = unp2->unp_socket;
1945 	if (so->so_type != so2->so_type) {
1946 		error = EPROTOTYPE;
1947 		goto bad2;
1948 	}
1949 	if (connreq) {
1950 		if (SOLISTENING(so2)) {
1951 			CURVNET_SET(so2->so_vnet);
1952 			so2 = sonewconn(so2, 0);
1953 			CURVNET_RESTORE();
1954 		} else
1955 			so2 = NULL;
1956 		if (so2 == NULL) {
1957 			error = ECONNREFUSED;
1958 			goto bad2;
1959 		}
1960 		unp3 = sotounpcb(so2);
1961 		unp_pcb_lock_pair(unp2, unp3);
1962 		if (unp2->unp_addr != NULL) {
1963 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1964 			unp3->unp_addr = (struct sockaddr_un *) sa;
1965 			sa = NULL;
1966 		}
1967 
1968 		unp_copy_peercred(td, unp3, unp, unp2);
1969 
1970 		UNP_PCB_UNLOCK(unp2);
1971 		unp2 = unp3;
1972 
1973 		/*
1974 		 * It is safe to block on the PCB lock here since unp2 is
1975 		 * nascent and cannot be connected to any other sockets.
1976 		 */
1977 		UNP_PCB_LOCK(unp);
1978 #ifdef MAC
1979 		mac_socketpeer_set_from_socket(so, so2);
1980 		mac_socketpeer_set_from_socket(so2, so);
1981 #endif
1982 	} else {
1983 		unp_pcb_lock_pair(unp, unp2);
1984 	}
1985 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1986 	    sotounpcb(so2) == unp2,
1987 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1988 	unp_connect2(so, so2, PRU_CONNECT);
1989 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1990 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1991 	unp->unp_flags &= ~UNP_CONNECTING;
1992 	if (!return_locked)
1993 		unp_pcb_unlock_pair(unp, unp2);
1994 bad2:
1995 	mtx_unlock(vplock);
1996 bad:
1997 	if (vp != NULL) {
1998 		/*
1999 		 * If we are returning locked (called via uipc_sosend_dgram()),
2000 		 * we need to be sure that vput() won't sleep.  This is
2001 		 * guaranteed by VOP_UNP_CONNECT() call above and unp2 lock.
2002 		 * SOCK_STREAM/SEQPACKET can't request return_locked (yet).
2003 		 */
2004 		MPASS(!(return_locked && connreq));
2005 		vput(vp);
2006 	}
2007 	free(sa, M_SONAME);
2008 	if (__predict_false(error)) {
2009 		UNP_PCB_LOCK(unp);
2010 		KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
2011 		    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
2012 		unp->unp_flags &= ~UNP_CONNECTING;
2013 		UNP_PCB_UNLOCK(unp);
2014 	}
2015 	return (error);
2016 }
2017 
2018 /*
2019  * Set socket peer credentials at connection time.
2020  *
2021  * The client's PCB credentials are copied from its process structure.  The
2022  * server's PCB credentials are copied from the socket on which it called
2023  * listen(2).  uipc_listen cached that process's credentials at the time.
2024  */
2025 void
2026 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
2027     struct unpcb *server_unp, struct unpcb *listen_unp)
2028 {
2029 	cru2xt(td, &client_unp->unp_peercred);
2030 	client_unp->unp_flags |= UNP_HAVEPC;
2031 
2032 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
2033 	    sizeof(server_unp->unp_peercred));
2034 	server_unp->unp_flags |= UNP_HAVEPC;
2035 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
2036 }
2037 
2038 static void
2039 unp_connect2(struct socket *so, struct socket *so2, conn2_how req)
2040 {
2041 	struct unpcb *unp;
2042 	struct unpcb *unp2;
2043 
2044 	MPASS(so2->so_type == so->so_type);
2045 	unp = sotounpcb(so);
2046 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
2047 	unp2 = sotounpcb(so2);
2048 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
2049 
2050 	UNP_PCB_LOCK_ASSERT(unp);
2051 	UNP_PCB_LOCK_ASSERT(unp2);
2052 	KASSERT(unp->unp_conn == NULL,
2053 	    ("%s: socket %p is already connected", __func__, unp));
2054 
2055 	unp->unp_conn = unp2;
2056 	unp_pcb_hold(unp2);
2057 	unp_pcb_hold(unp);
2058 	switch (so->so_type) {
2059 	case SOCK_DGRAM:
2060 		UNP_REF_LIST_LOCK();
2061 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
2062 		UNP_REF_LIST_UNLOCK();
2063 		soisconnected(so);
2064 		break;
2065 
2066 	case SOCK_STREAM:
2067 	case SOCK_SEQPACKET:
2068 		KASSERT(unp2->unp_conn == NULL,
2069 		    ("%s: socket %p is already connected", __func__, unp2));
2070 		unp2->unp_conn = unp;
2071 		if (req == PRU_CONNECT &&
2072 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
2073 			soisconnecting(so);
2074 		else
2075 			soisconnected(so);
2076 		soisconnected(so2);
2077 		break;
2078 
2079 	default:
2080 		panic("unp_connect2");
2081 	}
2082 }
2083 
2084 static void
2085 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
2086 {
2087 	struct socket *so, *so2;
2088 	struct mbuf *m = NULL;
2089 #ifdef INVARIANTS
2090 	struct unpcb *unptmp;
2091 #endif
2092 
2093 	UNP_PCB_LOCK_ASSERT(unp);
2094 	UNP_PCB_LOCK_ASSERT(unp2);
2095 	KASSERT(unp->unp_conn == unp2,
2096 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
2097 
2098 	unp->unp_conn = NULL;
2099 	so = unp->unp_socket;
2100 	so2 = unp2->unp_socket;
2101 	switch (unp->unp_socket->so_type) {
2102 	case SOCK_DGRAM:
2103 		/*
2104 		 * Remove our send socket buffer from the peer's receive buffer.
2105 		 * Move the data to the receive buffer only if it is empty.
2106 		 * This is a protection against a scenario where a peer
2107 		 * connects, floods and disconnects, effectively blocking
2108 		 * sendto() from unconnected sockets.
2109 		 */
2110 		SOCK_RECVBUF_LOCK(so2);
2111 		if (!STAILQ_EMPTY(&so->so_snd.uxdg_mb)) {
2112 			TAILQ_REMOVE(&so2->so_rcv.uxdg_conns, &so->so_snd,
2113 			    uxdg_clist);
2114 			if (__predict_true((so2->so_rcv.sb_state &
2115 			    SBS_CANTRCVMORE) == 0) &&
2116 			    STAILQ_EMPTY(&so2->so_rcv.uxdg_mb)) {
2117 				STAILQ_CONCAT(&so2->so_rcv.uxdg_mb,
2118 				    &so->so_snd.uxdg_mb);
2119 				so2->so_rcv.uxdg_cc += so->so_snd.uxdg_cc;
2120 				so2->so_rcv.uxdg_ctl += so->so_snd.uxdg_ctl;
2121 				so2->so_rcv.uxdg_mbcnt += so->so_snd.uxdg_mbcnt;
2122 			} else {
2123 				m = STAILQ_FIRST(&so->so_snd.uxdg_mb);
2124 				STAILQ_INIT(&so->so_snd.uxdg_mb);
2125 				so2->so_rcv.sb_acc -= so->so_snd.uxdg_cc;
2126 				so2->so_rcv.sb_ccc -= so->so_snd.uxdg_cc;
2127 				so2->so_rcv.sb_ctl -= so->so_snd.uxdg_ctl;
2128 				so2->so_rcv.sb_mbcnt -= so->so_snd.uxdg_mbcnt;
2129 			}
2130 			/* Note: so may reconnect. */
2131 			so->so_snd.uxdg_cc = 0;
2132 			so->so_snd.uxdg_ctl = 0;
2133 			so->so_snd.uxdg_mbcnt = 0;
2134 		}
2135 		SOCK_RECVBUF_UNLOCK(so2);
2136 		UNP_REF_LIST_LOCK();
2137 #ifdef INVARIANTS
2138 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
2139 			if (unptmp == unp)
2140 				break;
2141 		}
2142 		KASSERT(unptmp != NULL,
2143 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
2144 #endif
2145 		LIST_REMOVE(unp, unp_reflink);
2146 		UNP_REF_LIST_UNLOCK();
2147 		if (so) {
2148 			SOCK_LOCK(so);
2149 			so->so_state &= ~SS_ISCONNECTED;
2150 			SOCK_UNLOCK(so);
2151 		}
2152 		break;
2153 
2154 	case SOCK_STREAM:
2155 	case SOCK_SEQPACKET:
2156 		if (so)
2157 			soisdisconnected(so);
2158 		MPASS(unp2->unp_conn == unp);
2159 		unp2->unp_conn = NULL;
2160 		if (so2)
2161 			soisdisconnected(so2);
2162 		break;
2163 	}
2164 
2165 	if (unp == unp2) {
2166 		unp_pcb_rele_notlast(unp);
2167 		if (!unp_pcb_rele(unp))
2168 			UNP_PCB_UNLOCK(unp);
2169 	} else {
2170 		if (!unp_pcb_rele(unp))
2171 			UNP_PCB_UNLOCK(unp);
2172 		if (!unp_pcb_rele(unp2))
2173 			UNP_PCB_UNLOCK(unp2);
2174 	}
2175 
2176 	if (m != NULL) {
2177 		unp_scan(m, unp_freerights);
2178 		m_freem(m);
2179 	}
2180 }
2181 
2182 /*
2183  * unp_pcblist() walks the global list of struct unpcb's to generate a
2184  * pointer list, bumping the refcount on each unpcb.  It then copies them out
2185  * sequentially, validating the generation number on each to see if it has
2186  * been detached.  All of this is necessary because copyout() may sleep on
2187  * disk I/O.
2188  */
2189 static int
2190 unp_pcblist(SYSCTL_HANDLER_ARGS)
2191 {
2192 	struct unpcb *unp, **unp_list;
2193 	unp_gen_t gencnt;
2194 	struct xunpgen *xug;
2195 	struct unp_head *head;
2196 	struct xunpcb *xu;
2197 	u_int i;
2198 	int error, n;
2199 
2200 	switch ((intptr_t)arg1) {
2201 	case SOCK_STREAM:
2202 		head = &unp_shead;
2203 		break;
2204 
2205 	case SOCK_DGRAM:
2206 		head = &unp_dhead;
2207 		break;
2208 
2209 	case SOCK_SEQPACKET:
2210 		head = &unp_sphead;
2211 		break;
2212 
2213 	default:
2214 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
2215 	}
2216 
2217 	/*
2218 	 * The process of preparing the PCB list is too time-consuming and
2219 	 * resource-intensive to repeat twice on every request.
2220 	 */
2221 	if (req->oldptr == NULL) {
2222 		n = unp_count;
2223 		req->oldidx = 2 * (sizeof *xug)
2224 			+ (n + n/8) * sizeof(struct xunpcb);
2225 		return (0);
2226 	}
2227 
2228 	if (req->newptr != NULL)
2229 		return (EPERM);
2230 
2231 	/*
2232 	 * OK, now we're committed to doing something.
2233 	 */
2234 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
2235 	UNP_LINK_RLOCK();
2236 	gencnt = unp_gencnt;
2237 	n = unp_count;
2238 	UNP_LINK_RUNLOCK();
2239 
2240 	xug->xug_len = sizeof *xug;
2241 	xug->xug_count = n;
2242 	xug->xug_gen = gencnt;
2243 	xug->xug_sogen = so_gencnt;
2244 	error = SYSCTL_OUT(req, xug, sizeof *xug);
2245 	if (error) {
2246 		free(xug, M_TEMP);
2247 		return (error);
2248 	}
2249 
2250 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
2251 
2252 	UNP_LINK_RLOCK();
2253 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
2254 	     unp = LIST_NEXT(unp, unp_link)) {
2255 		UNP_PCB_LOCK(unp);
2256 		if (unp->unp_gencnt <= gencnt) {
2257 			if (cr_cansee(req->td->td_ucred,
2258 			    unp->unp_socket->so_cred)) {
2259 				UNP_PCB_UNLOCK(unp);
2260 				continue;
2261 			}
2262 			unp_list[i++] = unp;
2263 			unp_pcb_hold(unp);
2264 		}
2265 		UNP_PCB_UNLOCK(unp);
2266 	}
2267 	UNP_LINK_RUNLOCK();
2268 	n = i;			/* In case we lost some during malloc. */
2269 
2270 	error = 0;
2271 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
2272 	for (i = 0; i < n; i++) {
2273 		unp = unp_list[i];
2274 		UNP_PCB_LOCK(unp);
2275 		if (unp_pcb_rele(unp))
2276 			continue;
2277 
2278 		if (unp->unp_gencnt <= gencnt) {
2279 			xu->xu_len = sizeof *xu;
2280 			xu->xu_unpp = (uintptr_t)unp;
2281 			/*
2282 			 * XXX - need more locking here to protect against
2283 			 * connect/disconnect races for SMP.
2284 			 */
2285 			if (unp->unp_addr != NULL)
2286 				bcopy(unp->unp_addr, &xu->xu_addr,
2287 				      unp->unp_addr->sun_len);
2288 			else
2289 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
2290 			if (unp->unp_conn != NULL &&
2291 			    unp->unp_conn->unp_addr != NULL)
2292 				bcopy(unp->unp_conn->unp_addr,
2293 				      &xu->xu_caddr,
2294 				      unp->unp_conn->unp_addr->sun_len);
2295 			else
2296 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
2297 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
2298 			xu->unp_conn = (uintptr_t)unp->unp_conn;
2299 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
2300 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
2301 			xu->unp_gencnt = unp->unp_gencnt;
2302 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
2303 			UNP_PCB_UNLOCK(unp);
2304 			error = SYSCTL_OUT(req, xu, sizeof *xu);
2305 		} else {
2306 			UNP_PCB_UNLOCK(unp);
2307 		}
2308 	}
2309 	free(xu, M_TEMP);
2310 	if (!error) {
2311 		/*
2312 		 * Give the user an updated idea of our state.  If the
2313 		 * generation differs from what we told her before, she knows
2314 		 * that something happened while we were processing this
2315 		 * request, and it might be necessary to retry.
2316 		 */
2317 		xug->xug_gen = unp_gencnt;
2318 		xug->xug_sogen = so_gencnt;
2319 		xug->xug_count = unp_count;
2320 		error = SYSCTL_OUT(req, xug, sizeof *xug);
2321 	}
2322 	free(unp_list, M_TEMP);
2323 	free(xug, M_TEMP);
2324 	return (error);
2325 }
2326 
2327 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
2328     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2329     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
2330     "List of active local datagram sockets");
2331 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
2332     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2333     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
2334     "List of active local stream sockets");
2335 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
2336     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2337     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
2338     "List of active local seqpacket sockets");
2339 
2340 static void
2341 unp_shutdown(struct unpcb *unp)
2342 {
2343 	struct unpcb *unp2;
2344 	struct socket *so;
2345 
2346 	UNP_PCB_LOCK_ASSERT(unp);
2347 
2348 	unp2 = unp->unp_conn;
2349 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
2350 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
2351 		so = unp2->unp_socket;
2352 		if (so != NULL)
2353 			socantrcvmore(so);
2354 	}
2355 }
2356 
2357 static void
2358 unp_drop(struct unpcb *unp)
2359 {
2360 	struct socket *so;
2361 	struct unpcb *unp2;
2362 
2363 	/*
2364 	 * Regardless of whether the socket's peer dropped the connection
2365 	 * with this socket by aborting or disconnecting, POSIX requires
2366 	 * that ECONNRESET is returned.
2367 	 */
2368 
2369 	UNP_PCB_LOCK(unp);
2370 	so = unp->unp_socket;
2371 	if (so)
2372 		so->so_error = ECONNRESET;
2373 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
2374 		/* Last reference dropped in unp_disconnect(). */
2375 		unp_pcb_rele_notlast(unp);
2376 		unp_disconnect(unp, unp2);
2377 	} else if (!unp_pcb_rele(unp)) {
2378 		UNP_PCB_UNLOCK(unp);
2379 	}
2380 }
2381 
2382 static void
2383 unp_freerights(struct filedescent **fdep, int fdcount)
2384 {
2385 	struct file *fp;
2386 	int i;
2387 
2388 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2389 
2390 	for (i = 0; i < fdcount; i++) {
2391 		fp = fdep[i]->fde_file;
2392 		filecaps_free(&fdep[i]->fde_caps);
2393 		unp_discard(fp);
2394 	}
2395 	free(fdep[0], M_FILECAPS);
2396 }
2397 
2398 static int
2399 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2400 {
2401 	struct thread *td = curthread;		/* XXX */
2402 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2403 	int i;
2404 	int *fdp;
2405 	struct filedesc *fdesc = td->td_proc->p_fd;
2406 	struct filedescent **fdep;
2407 	void *data;
2408 	socklen_t clen = control->m_len, datalen;
2409 	int error, newfds;
2410 	u_int newlen;
2411 
2412 	UNP_LINK_UNLOCK_ASSERT();
2413 
2414 	error = 0;
2415 	if (controlp != NULL) /* controlp == NULL => free control messages */
2416 		*controlp = NULL;
2417 	while (cm != NULL) {
2418 		MPASS(clen >= sizeof(*cm) && clen >= cm->cmsg_len);
2419 
2420 		data = CMSG_DATA(cm);
2421 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2422 		if (cm->cmsg_level == SOL_SOCKET
2423 		    && cm->cmsg_type == SCM_RIGHTS) {
2424 			newfds = datalen / sizeof(*fdep);
2425 			if (newfds == 0)
2426 				goto next;
2427 			fdep = data;
2428 
2429 			/* If we're not outputting the descriptors free them. */
2430 			if (error || controlp == NULL) {
2431 				unp_freerights(fdep, newfds);
2432 				goto next;
2433 			}
2434 			FILEDESC_XLOCK(fdesc);
2435 
2436 			/*
2437 			 * Now change each pointer to an fd in the global
2438 			 * table to an integer that is the index to the local
2439 			 * fd table entry that we set up to point to the
2440 			 * global one we are transferring.
2441 			 */
2442 			newlen = newfds * sizeof(int);
2443 			*controlp = sbcreatecontrol(NULL, newlen,
2444 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2445 
2446 			fdp = (int *)
2447 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2448 			if ((error = fdallocn(td, 0, fdp, newfds))) {
2449 				FILEDESC_XUNLOCK(fdesc);
2450 				unp_freerights(fdep, newfds);
2451 				m_freem(*controlp);
2452 				*controlp = NULL;
2453 				goto next;
2454 			}
2455 			for (i = 0; i < newfds; i++, fdp++) {
2456 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2457 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? O_CLOEXEC : 0,
2458 				    &fdep[i]->fde_caps);
2459 				unp_externalize_fp(fdep[i]->fde_file);
2460 			}
2461 
2462 			/*
2463 			 * The new type indicates that the mbuf data refers to
2464 			 * kernel resources that may need to be released before
2465 			 * the mbuf is freed.
2466 			 */
2467 			m_chtype(*controlp, MT_EXTCONTROL);
2468 			FILEDESC_XUNLOCK(fdesc);
2469 			free(fdep[0], M_FILECAPS);
2470 		} else {
2471 			/* We can just copy anything else across. */
2472 			if (error || controlp == NULL)
2473 				goto next;
2474 			*controlp = sbcreatecontrol(NULL, datalen,
2475 			    cm->cmsg_type, cm->cmsg_level, M_WAITOK);
2476 			bcopy(data,
2477 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2478 			    datalen);
2479 		}
2480 		controlp = &(*controlp)->m_next;
2481 
2482 next:
2483 		if (CMSG_SPACE(datalen) < clen) {
2484 			clen -= CMSG_SPACE(datalen);
2485 			cm = (struct cmsghdr *)
2486 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2487 		} else {
2488 			clen = 0;
2489 			cm = NULL;
2490 		}
2491 	}
2492 
2493 	m_freem(control);
2494 	return (error);
2495 }
2496 
2497 static void
2498 unp_zone_change(void *tag)
2499 {
2500 
2501 	uma_zone_set_max(unp_zone, maxsockets);
2502 }
2503 
2504 #ifdef INVARIANTS
2505 static void
2506 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2507 {
2508 	struct unpcb *unp;
2509 
2510 	unp = mem;
2511 
2512 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2513 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2514 	KASSERT(unp->unp_socket == NULL,
2515 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2516 	KASSERT(unp->unp_vnode == NULL,
2517 	    ("%s: unpcb %p has vnode references", __func__, unp));
2518 	KASSERT(unp->unp_conn == NULL,
2519 	    ("%s: unpcb %p is still connected", __func__, unp));
2520 	KASSERT(unp->unp_addr == NULL,
2521 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2522 }
2523 #endif
2524 
2525 static void
2526 unp_init(void *arg __unused)
2527 {
2528 	uma_dtor dtor;
2529 
2530 #ifdef INVARIANTS
2531 	dtor = unp_zdtor;
2532 #else
2533 	dtor = NULL;
2534 #endif
2535 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2536 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2537 	uma_zone_set_max(unp_zone, maxsockets);
2538 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2539 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2540 	    NULL, EVENTHANDLER_PRI_ANY);
2541 	LIST_INIT(&unp_dhead);
2542 	LIST_INIT(&unp_shead);
2543 	LIST_INIT(&unp_sphead);
2544 	SLIST_INIT(&unp_defers);
2545 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2546 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2547 	UNP_LINK_LOCK_INIT();
2548 	UNP_DEFERRED_LOCK_INIT();
2549 }
2550 SYSINIT(unp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, unp_init, NULL);
2551 
2552 static void
2553 unp_internalize_cleanup_rights(struct mbuf *control)
2554 {
2555 	struct cmsghdr *cp;
2556 	struct mbuf *m;
2557 	void *data;
2558 	socklen_t datalen;
2559 
2560 	for (m = control; m != NULL; m = m->m_next) {
2561 		cp = mtod(m, struct cmsghdr *);
2562 		if (cp->cmsg_level != SOL_SOCKET ||
2563 		    cp->cmsg_type != SCM_RIGHTS)
2564 			continue;
2565 		data = CMSG_DATA(cp);
2566 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2567 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2568 	}
2569 }
2570 
2571 static int
2572 unp_internalize(struct mbuf **controlp, struct thread *td,
2573     struct mbuf **clast, u_int *space, u_int *mbcnt)
2574 {
2575 	struct mbuf *control, **initial_controlp;
2576 	struct proc *p;
2577 	struct filedesc *fdesc;
2578 	struct bintime *bt;
2579 	struct cmsghdr *cm;
2580 	struct cmsgcred *cmcred;
2581 	struct filedescent *fde, **fdep, *fdev;
2582 	struct file *fp;
2583 	struct timeval *tv;
2584 	struct timespec *ts;
2585 	void *data;
2586 	socklen_t clen, datalen;
2587 	int i, j, error, *fdp, oldfds;
2588 	u_int newlen;
2589 
2590 	MPASS((*controlp)->m_next == NULL); /* COMPAT_OLDSOCK may violate */
2591 	UNP_LINK_UNLOCK_ASSERT();
2592 
2593 	p = td->td_proc;
2594 	fdesc = p->p_fd;
2595 	error = 0;
2596 	control = *controlp;
2597 	*controlp = NULL;
2598 	initial_controlp = controlp;
2599 	for (clen = control->m_len, cm = mtod(control, struct cmsghdr *),
2600 	    data = CMSG_DATA(cm);
2601 
2602 	    clen >= sizeof(*cm) && cm->cmsg_level == SOL_SOCKET &&
2603 	    clen >= cm->cmsg_len && cm->cmsg_len >= sizeof(*cm) &&
2604 	    (char *)cm + cm->cmsg_len >= (char *)data;
2605 
2606 	    clen -= min(CMSG_SPACE(datalen), clen),
2607 	    cm = (struct cmsghdr *) ((char *)cm + CMSG_SPACE(datalen)),
2608 	    data = CMSG_DATA(cm)) {
2609 		datalen = (char *)cm + cm->cmsg_len - (char *)data;
2610 		switch (cm->cmsg_type) {
2611 		case SCM_CREDS:
2612 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2613 			    SCM_CREDS, SOL_SOCKET, M_WAITOK);
2614 			cmcred = (struct cmsgcred *)
2615 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2616 			cmcred->cmcred_pid = p->p_pid;
2617 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2618 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2619 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2620 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2621 			    CMGROUP_MAX);
2622 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2623 				cmcred->cmcred_groups[i] =
2624 				    td->td_ucred->cr_groups[i];
2625 			break;
2626 
2627 		case SCM_RIGHTS:
2628 			oldfds = datalen / sizeof (int);
2629 			if (oldfds == 0)
2630 				continue;
2631 			/* On some machines sizeof pointer is bigger than
2632 			 * sizeof int, so we need to check if data fits into
2633 			 * single mbuf.  We could allocate several mbufs, and
2634 			 * unp_externalize() should even properly handle that.
2635 			 * But it is not worth to complicate the code for an
2636 			 * insane scenario of passing over 200 file descriptors
2637 			 * at once.
2638 			 */
2639 			newlen = oldfds * sizeof(fdep[0]);
2640 			if (CMSG_SPACE(newlen) > MCLBYTES) {
2641 				error = EMSGSIZE;
2642 				goto out;
2643 			}
2644 			/*
2645 			 * Check that all the FDs passed in refer to legal
2646 			 * files.  If not, reject the entire operation.
2647 			 */
2648 			fdp = data;
2649 			FILEDESC_SLOCK(fdesc);
2650 			for (i = 0; i < oldfds; i++, fdp++) {
2651 				fp = fget_noref(fdesc, *fdp);
2652 				if (fp == NULL) {
2653 					FILEDESC_SUNLOCK(fdesc);
2654 					error = EBADF;
2655 					goto out;
2656 				}
2657 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2658 					FILEDESC_SUNLOCK(fdesc);
2659 					error = EOPNOTSUPP;
2660 					goto out;
2661 				}
2662 			}
2663 
2664 			/*
2665 			 * Now replace the integer FDs with pointers to the
2666 			 * file structure and capability rights.
2667 			 */
2668 			*controlp = sbcreatecontrol(NULL, newlen,
2669 			    SCM_RIGHTS, SOL_SOCKET, M_WAITOK);
2670 			fdp = data;
2671 			for (i = 0; i < oldfds; i++, fdp++) {
2672 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2673 					fdp = data;
2674 					for (j = 0; j < i; j++, fdp++) {
2675 						fdrop(fdesc->fd_ofiles[*fdp].
2676 						    fde_file, td);
2677 					}
2678 					FILEDESC_SUNLOCK(fdesc);
2679 					error = EBADF;
2680 					goto out;
2681 				}
2682 			}
2683 			fdp = data;
2684 			fdep = (struct filedescent **)
2685 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2686 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2687 			    M_WAITOK);
2688 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2689 				fde = &fdesc->fd_ofiles[*fdp];
2690 				fdep[i] = fdev;
2691 				fdep[i]->fde_file = fde->fde_file;
2692 				filecaps_copy(&fde->fde_caps,
2693 				    &fdep[i]->fde_caps, true);
2694 				unp_internalize_fp(fdep[i]->fde_file);
2695 			}
2696 			FILEDESC_SUNLOCK(fdesc);
2697 			break;
2698 
2699 		case SCM_TIMESTAMP:
2700 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2701 			    SCM_TIMESTAMP, SOL_SOCKET, M_WAITOK);
2702 			tv = (struct timeval *)
2703 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2704 			microtime(tv);
2705 			break;
2706 
2707 		case SCM_BINTIME:
2708 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2709 			    SCM_BINTIME, SOL_SOCKET, M_WAITOK);
2710 			bt = (struct bintime *)
2711 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2712 			bintime(bt);
2713 			break;
2714 
2715 		case SCM_REALTIME:
2716 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2717 			    SCM_REALTIME, SOL_SOCKET, M_WAITOK);
2718 			ts = (struct timespec *)
2719 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2720 			nanotime(ts);
2721 			break;
2722 
2723 		case SCM_MONOTONIC:
2724 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2725 			    SCM_MONOTONIC, SOL_SOCKET, M_WAITOK);
2726 			ts = (struct timespec *)
2727 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2728 			nanouptime(ts);
2729 			break;
2730 
2731 		default:
2732 			error = EINVAL;
2733 			goto out;
2734 		}
2735 
2736 		if (space != NULL) {
2737 			*space += (*controlp)->m_len;
2738 			*mbcnt += MSIZE;
2739 			if ((*controlp)->m_flags & M_EXT)
2740 				*mbcnt += (*controlp)->m_ext.ext_size;
2741 			*clast = *controlp;
2742 		}
2743 		controlp = &(*controlp)->m_next;
2744 	}
2745 	if (clen > 0)
2746 		error = EINVAL;
2747 
2748 out:
2749 	if (error != 0 && initial_controlp != NULL)
2750 		unp_internalize_cleanup_rights(*initial_controlp);
2751 	m_freem(control);
2752 	return (error);
2753 }
2754 
2755 static struct mbuf *
2756 unp_addsockcred(struct thread *td, struct mbuf *control, int mode,
2757     struct mbuf **clast, u_int *space, u_int *mbcnt)
2758 {
2759 	struct mbuf *m, *n, *n_prev;
2760 	const struct cmsghdr *cm;
2761 	int ngroups, i, cmsgtype;
2762 	size_t ctrlsz;
2763 
2764 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2765 	if (mode & UNP_WANTCRED_ALWAYS) {
2766 		ctrlsz = SOCKCRED2SIZE(ngroups);
2767 		cmsgtype = SCM_CREDS2;
2768 	} else {
2769 		ctrlsz = SOCKCREDSIZE(ngroups);
2770 		cmsgtype = SCM_CREDS;
2771 	}
2772 
2773 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET, M_NOWAIT);
2774 	if (m == NULL)
2775 		return (control);
2776 	MPASS((m->m_flags & M_EXT) == 0 && m->m_next == NULL);
2777 
2778 	if (mode & UNP_WANTCRED_ALWAYS) {
2779 		struct sockcred2 *sc;
2780 
2781 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2782 		sc->sc_version = 0;
2783 		sc->sc_pid = td->td_proc->p_pid;
2784 		sc->sc_uid = td->td_ucred->cr_ruid;
2785 		sc->sc_euid = td->td_ucred->cr_uid;
2786 		sc->sc_gid = td->td_ucred->cr_rgid;
2787 		sc->sc_egid = td->td_ucred->cr_gid;
2788 		sc->sc_ngroups = ngroups;
2789 		for (i = 0; i < sc->sc_ngroups; i++)
2790 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2791 	} else {
2792 		struct sockcred *sc;
2793 
2794 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2795 		sc->sc_uid = td->td_ucred->cr_ruid;
2796 		sc->sc_euid = td->td_ucred->cr_uid;
2797 		sc->sc_gid = td->td_ucred->cr_rgid;
2798 		sc->sc_egid = td->td_ucred->cr_gid;
2799 		sc->sc_ngroups = ngroups;
2800 		for (i = 0; i < sc->sc_ngroups; i++)
2801 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2802 	}
2803 
2804 	/*
2805 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2806 	 * created SCM_CREDS control message (struct sockcred) has another
2807 	 * format.
2808 	 */
2809 	if (control != NULL && cmsgtype == SCM_CREDS)
2810 		for (n = control, n_prev = NULL; n != NULL;) {
2811 			cm = mtod(n, struct cmsghdr *);
2812     			if (cm->cmsg_level == SOL_SOCKET &&
2813 			    cm->cmsg_type == SCM_CREDS) {
2814     				if (n_prev == NULL)
2815 					control = n->m_next;
2816 				else
2817 					n_prev->m_next = n->m_next;
2818 				if (space != NULL) {
2819 					MPASS(*space >= n->m_len);
2820 					*space -= n->m_len;
2821 					MPASS(*mbcnt >= MSIZE);
2822 					*mbcnt -= MSIZE;
2823 					if (n->m_flags & M_EXT) {
2824 						MPASS(*mbcnt >=
2825 						    n->m_ext.ext_size);
2826 						*mbcnt -= n->m_ext.ext_size;
2827 					}
2828 					MPASS(clast);
2829 					if (*clast == n) {
2830 						MPASS(n->m_next == NULL);
2831 						if (n_prev == NULL)
2832 							*clast = m;
2833 						else
2834 							*clast = n_prev;
2835 					}
2836 				}
2837 				n = m_free(n);
2838 			} else {
2839 				n_prev = n;
2840 				n = n->m_next;
2841 			}
2842 		}
2843 
2844 	/* Prepend it to the head. */
2845 	m->m_next = control;
2846 	if (space != NULL) {
2847 		*space += m->m_len;
2848 		*mbcnt += MSIZE;
2849 		if (control == NULL)
2850 			*clast = m;
2851 	}
2852 	return (m);
2853 }
2854 
2855 static struct unpcb *
2856 fptounp(struct file *fp)
2857 {
2858 	struct socket *so;
2859 
2860 	if (fp->f_type != DTYPE_SOCKET)
2861 		return (NULL);
2862 	if ((so = fp->f_data) == NULL)
2863 		return (NULL);
2864 	if (so->so_proto->pr_domain != &localdomain)
2865 		return (NULL);
2866 	return sotounpcb(so);
2867 }
2868 
2869 static void
2870 unp_discard(struct file *fp)
2871 {
2872 	struct unp_defer *dr;
2873 
2874 	if (unp_externalize_fp(fp)) {
2875 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2876 		dr->ud_fp = fp;
2877 		UNP_DEFERRED_LOCK();
2878 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2879 		UNP_DEFERRED_UNLOCK();
2880 		atomic_add_int(&unp_defers_count, 1);
2881 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2882 	} else
2883 		closef_nothread(fp);
2884 }
2885 
2886 static void
2887 unp_process_defers(void *arg __unused, int pending)
2888 {
2889 	struct unp_defer *dr;
2890 	SLIST_HEAD(, unp_defer) drl;
2891 	int count;
2892 
2893 	SLIST_INIT(&drl);
2894 	for (;;) {
2895 		UNP_DEFERRED_LOCK();
2896 		if (SLIST_FIRST(&unp_defers) == NULL) {
2897 			UNP_DEFERRED_UNLOCK();
2898 			break;
2899 		}
2900 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2901 		UNP_DEFERRED_UNLOCK();
2902 		count = 0;
2903 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2904 			SLIST_REMOVE_HEAD(&drl, ud_link);
2905 			closef_nothread(dr->ud_fp);
2906 			free(dr, M_TEMP);
2907 			count++;
2908 		}
2909 		atomic_add_int(&unp_defers_count, -count);
2910 	}
2911 }
2912 
2913 static void
2914 unp_internalize_fp(struct file *fp)
2915 {
2916 	struct unpcb *unp;
2917 
2918 	UNP_LINK_WLOCK();
2919 	if ((unp = fptounp(fp)) != NULL) {
2920 		unp->unp_file = fp;
2921 		unp->unp_msgcount++;
2922 	}
2923 	unp_rights++;
2924 	UNP_LINK_WUNLOCK();
2925 }
2926 
2927 static int
2928 unp_externalize_fp(struct file *fp)
2929 {
2930 	struct unpcb *unp;
2931 	int ret;
2932 
2933 	UNP_LINK_WLOCK();
2934 	if ((unp = fptounp(fp)) != NULL) {
2935 		unp->unp_msgcount--;
2936 		ret = 1;
2937 	} else
2938 		ret = 0;
2939 	unp_rights--;
2940 	UNP_LINK_WUNLOCK();
2941 	return (ret);
2942 }
2943 
2944 /*
2945  * unp_defer indicates whether additional work has been defered for a future
2946  * pass through unp_gc().  It is thread local and does not require explicit
2947  * synchronization.
2948  */
2949 static int	unp_marked;
2950 
2951 static void
2952 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2953 {
2954 	struct unpcb *unp;
2955 	struct file *fp;
2956 	int i;
2957 
2958 	/*
2959 	 * This function can only be called from the gc task.
2960 	 */
2961 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2962 	    ("%s: not on gc callout", __func__));
2963 	UNP_LINK_LOCK_ASSERT();
2964 
2965 	for (i = 0; i < fdcount; i++) {
2966 		fp = fdep[i]->fde_file;
2967 		if ((unp = fptounp(fp)) == NULL)
2968 			continue;
2969 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2970 			continue;
2971 		unp->unp_gcrefs--;
2972 	}
2973 }
2974 
2975 static void
2976 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2977 {
2978 	struct unpcb *unp;
2979 	struct file *fp;
2980 	int i;
2981 
2982 	/*
2983 	 * This function can only be called from the gc task.
2984 	 */
2985 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2986 	    ("%s: not on gc callout", __func__));
2987 	UNP_LINK_LOCK_ASSERT();
2988 
2989 	for (i = 0; i < fdcount; i++) {
2990 		fp = fdep[i]->fde_file;
2991 		if ((unp = fptounp(fp)) == NULL)
2992 			continue;
2993 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2994 			continue;
2995 		unp->unp_gcrefs++;
2996 		unp_marked++;
2997 	}
2998 }
2999 
3000 static void
3001 unp_scan_socket(struct socket *so, void (*op)(struct filedescent **, int))
3002 {
3003 	struct sockbuf *sb;
3004 
3005 	SOCK_LOCK_ASSERT(so);
3006 
3007 	if (sotounpcb(so)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
3008 		return;
3009 
3010 	SOCK_RECVBUF_LOCK(so);
3011 	switch (so->so_type) {
3012 	case SOCK_DGRAM:
3013 		unp_scan(STAILQ_FIRST(&so->so_rcv.uxdg_mb), op);
3014 		unp_scan(so->so_rcv.uxdg_peeked, op);
3015 		TAILQ_FOREACH(sb, &so->so_rcv.uxdg_conns, uxdg_clist)
3016 			unp_scan(STAILQ_FIRST(&sb->uxdg_mb), op);
3017 		break;
3018 	case SOCK_STREAM:
3019 	case SOCK_SEQPACKET:
3020 		unp_scan(so->so_rcv.sb_mb, op);
3021 		break;
3022 	}
3023 	SOCK_RECVBUF_UNLOCK(so);
3024 }
3025 
3026 static void
3027 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
3028 {
3029 	struct socket *so, *soa;
3030 
3031 	so = unp->unp_socket;
3032 	SOCK_LOCK(so);
3033 	if (SOLISTENING(so)) {
3034 		/*
3035 		 * Mark all sockets in our accept queue.
3036 		 */
3037 		TAILQ_FOREACH(soa, &so->sol_comp, so_list)
3038 			unp_scan_socket(soa, op);
3039 	} else {
3040 		/*
3041 		 * Mark all sockets we reference with RIGHTS.
3042 		 */
3043 		unp_scan_socket(so, op);
3044 	}
3045 	SOCK_UNLOCK(so);
3046 }
3047 
3048 static int unp_recycled;
3049 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
3050     "Number of unreachable sockets claimed by the garbage collector.");
3051 
3052 static int unp_taskcount;
3053 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
3054     "Number of times the garbage collector has run.");
3055 
3056 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
3057     "Number of active local sockets.");
3058 
3059 static void
3060 unp_gc(__unused void *arg, int pending)
3061 {
3062 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
3063 				    NULL };
3064 	struct unp_head **head;
3065 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
3066 	struct file *f, **unref;
3067 	struct unpcb *unp, *unptmp;
3068 	int i, total, unp_unreachable;
3069 
3070 	LIST_INIT(&unp_deadhead);
3071 	unp_taskcount++;
3072 	UNP_LINK_RLOCK();
3073 	/*
3074 	 * First determine which sockets may be in cycles.
3075 	 */
3076 	unp_unreachable = 0;
3077 
3078 	for (head = heads; *head != NULL; head++)
3079 		LIST_FOREACH(unp, *head, unp_link) {
3080 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
3081 			    ("%s: unp %p has unexpected gc flags 0x%x",
3082 			    __func__, unp, (unsigned int)unp->unp_gcflag));
3083 
3084 			f = unp->unp_file;
3085 
3086 			/*
3087 			 * Check for an unreachable socket potentially in a
3088 			 * cycle.  It must be in a queue as indicated by
3089 			 * msgcount, and this must equal the file reference
3090 			 * count.  Note that when msgcount is 0 the file is
3091 			 * NULL.
3092 			 */
3093 			if (f != NULL && unp->unp_msgcount != 0 &&
3094 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
3095 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
3096 				unp->unp_gcflag |= UNPGC_DEAD;
3097 				unp->unp_gcrefs = unp->unp_msgcount;
3098 				unp_unreachable++;
3099 			}
3100 		}
3101 
3102 	/*
3103 	 * Scan all sockets previously marked as potentially being in a cycle
3104 	 * and remove the references each socket holds on any UNPGC_DEAD
3105 	 * sockets in its queue.  After this step, all remaining references on
3106 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
3107 	 */
3108 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
3109 		unp_gc_scan(unp, unp_remove_dead_ref);
3110 
3111 	/*
3112 	 * If a socket still has a non-negative refcount, it cannot be in a
3113 	 * cycle.  In this case increment refcount of all children iteratively.
3114 	 * Stop the scan once we do a complete loop without discovering
3115 	 * a new reachable socket.
3116 	 */
3117 	do {
3118 		unp_marked = 0;
3119 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
3120 			if (unp->unp_gcrefs > 0) {
3121 				unp->unp_gcflag &= ~UNPGC_DEAD;
3122 				LIST_REMOVE(unp, unp_dead);
3123 				KASSERT(unp_unreachable > 0,
3124 				    ("%s: unp_unreachable underflow.",
3125 				    __func__));
3126 				unp_unreachable--;
3127 				unp_gc_scan(unp, unp_restore_undead_ref);
3128 			}
3129 	} while (unp_marked);
3130 
3131 	UNP_LINK_RUNLOCK();
3132 
3133 	if (unp_unreachable == 0)
3134 		return;
3135 
3136 	/*
3137 	 * Allocate space for a local array of dead unpcbs.
3138 	 * TODO: can this path be simplified by instead using the local
3139 	 * dead list at unp_deadhead, after taking out references
3140 	 * on the file object and/or unpcb and dropping the link lock?
3141 	 */
3142 	unref = malloc(unp_unreachable * sizeof(struct file *),
3143 	    M_TEMP, M_WAITOK);
3144 
3145 	/*
3146 	 * Iterate looking for sockets which have been specifically marked
3147 	 * as unreachable and store them locally.
3148 	 */
3149 	UNP_LINK_RLOCK();
3150 	total = 0;
3151 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
3152 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
3153 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
3154 		unp->unp_gcflag &= ~UNPGC_DEAD;
3155 		f = unp->unp_file;
3156 		if (unp->unp_msgcount == 0 || f == NULL ||
3157 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
3158 		    !fhold(f))
3159 			continue;
3160 		unref[total++] = f;
3161 		KASSERT(total <= unp_unreachable,
3162 		    ("%s: incorrect unreachable count.", __func__));
3163 	}
3164 	UNP_LINK_RUNLOCK();
3165 
3166 	/*
3167 	 * Now flush all sockets, free'ing rights.  This will free the
3168 	 * struct files associated with these sockets but leave each socket
3169 	 * with one remaining ref.
3170 	 */
3171 	for (i = 0; i < total; i++) {
3172 		struct socket *so;
3173 
3174 		so = unref[i]->f_data;
3175 		CURVNET_SET(so->so_vnet);
3176 		sorflush(so);
3177 		CURVNET_RESTORE();
3178 	}
3179 
3180 	/*
3181 	 * And finally release the sockets so they can be reclaimed.
3182 	 */
3183 	for (i = 0; i < total; i++)
3184 		fdrop(unref[i], NULL);
3185 	unp_recycled += total;
3186 	free(unref, M_TEMP);
3187 }
3188 
3189 /*
3190  * Synchronize against unp_gc, which can trip over data as we are freeing it.
3191  */
3192 static void
3193 unp_dispose(struct socket *so)
3194 {
3195 	struct sockbuf *sb;
3196 	struct unpcb *unp;
3197 	struct mbuf *m;
3198 
3199 	MPASS(!SOLISTENING(so));
3200 
3201 	unp = sotounpcb(so);
3202 	UNP_LINK_WLOCK();
3203 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
3204 	UNP_LINK_WUNLOCK();
3205 
3206 	/*
3207 	 * Grab our special mbufs before calling sbrelease().
3208 	 */
3209 	SOCK_RECVBUF_LOCK(so);
3210 	switch (so->so_type) {
3211 	case SOCK_DGRAM:
3212 		while ((sb = TAILQ_FIRST(&so->so_rcv.uxdg_conns)) != NULL) {
3213 			STAILQ_CONCAT(&so->so_rcv.uxdg_mb, &sb->uxdg_mb);
3214 			TAILQ_REMOVE(&so->so_rcv.uxdg_conns, sb, uxdg_clist);
3215 			/* Note: socket of sb may reconnect. */
3216 			sb->uxdg_cc = sb->uxdg_ctl = sb->uxdg_mbcnt = 0;
3217 		}
3218 		sb = &so->so_rcv;
3219 		if (sb->uxdg_peeked != NULL) {
3220 			STAILQ_INSERT_HEAD(&sb->uxdg_mb, sb->uxdg_peeked,
3221 			    m_stailqpkt);
3222 			sb->uxdg_peeked = NULL;
3223 		}
3224 		m = STAILQ_FIRST(&sb->uxdg_mb);
3225 		STAILQ_INIT(&sb->uxdg_mb);
3226 		/* XXX: our shortened sbrelease() */
3227 		(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
3228 		    RLIM_INFINITY);
3229 		/*
3230 		 * XXXGL Mark sb with SBS_CANTRCVMORE.  This is needed to
3231 		 * prevent uipc_sosend_dgram() or unp_disconnect() adding more
3232 		 * data to the socket.
3233 		 * We are now in dom_dispose and it could be a call from
3234 		 * soshutdown() or from the final sofree().  The sofree() case
3235 		 * is simple as it guarantees that no more sends will happen,
3236 		 * however we can race with unp_disconnect() from our peer.
3237 		 * The shutdown(2) case is more exotic.  It would call into
3238 		 * dom_dispose() only if socket is SS_ISCONNECTED.  This is
3239 		 * possible if we did connect(2) on this socket and we also
3240 		 * had it bound with bind(2) and receive connections from other
3241 		 * sockets.  Because soshutdown() violates POSIX (see comment
3242 		 * there) we will end up here shutting down our receive side.
3243 		 * Of course this will have affect not only on the peer we
3244 		 * connect(2)ed to, but also on all of the peers who had
3245 		 * connect(2)ed to us.  Their sends would end up with ENOBUFS.
3246 		 */
3247 		sb->sb_state |= SBS_CANTRCVMORE;
3248 		break;
3249 	case SOCK_STREAM:
3250 	case SOCK_SEQPACKET:
3251 		sb = &so->so_rcv;
3252 		m = sbcut_locked(sb, sb->sb_ccc);
3253 		KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
3254 		    ("%s: ccc %u mb %p mbcnt %u", __func__,
3255 		    sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
3256 		sbrelease_locked(so, SO_RCV);
3257 		break;
3258 	}
3259 	SOCK_RECVBUF_UNLOCK(so);
3260 	if (SOCK_IO_RECV_OWNED(so))
3261 		SOCK_IO_RECV_UNLOCK(so);
3262 
3263 	if (m != NULL) {
3264 		unp_scan(m, unp_freerights);
3265 		m_freem(m);
3266 	}
3267 }
3268 
3269 static void
3270 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
3271 {
3272 	struct mbuf *m;
3273 	struct cmsghdr *cm;
3274 	void *data;
3275 	socklen_t clen, datalen;
3276 
3277 	while (m0 != NULL) {
3278 		for (m = m0; m; m = m->m_next) {
3279 			if (m->m_type != MT_CONTROL)
3280 				continue;
3281 
3282 			cm = mtod(m, struct cmsghdr *);
3283 			clen = m->m_len;
3284 
3285 			while (cm != NULL) {
3286 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
3287 					break;
3288 
3289 				data = CMSG_DATA(cm);
3290 				datalen = (caddr_t)cm + cm->cmsg_len
3291 				    - (caddr_t)data;
3292 
3293 				if (cm->cmsg_level == SOL_SOCKET &&
3294 				    cm->cmsg_type == SCM_RIGHTS) {
3295 					(*op)(data, datalen /
3296 					    sizeof(struct filedescent *));
3297 				}
3298 
3299 				if (CMSG_SPACE(datalen) < clen) {
3300 					clen -= CMSG_SPACE(datalen);
3301 					cm = (struct cmsghdr *)
3302 					    ((caddr_t)cm + CMSG_SPACE(datalen));
3303 				} else {
3304 					clen = 0;
3305 					cm = NULL;
3306 				}
3307 			}
3308 		}
3309 		m0 = m0->m_nextpkt;
3310 	}
3311 }
3312 
3313 /*
3314  * Definitions of protocols supported in the LOCAL domain.
3315  */
3316 static struct protosw streamproto = {
3317 	.pr_type =		SOCK_STREAM,
3318 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS|
3319 				    PR_CAPATTACH,
3320 	.pr_ctloutput =		&uipc_ctloutput,
3321 	.pr_abort = 		uipc_abort,
3322 	.pr_accept =		uipc_accept,
3323 	.pr_attach =		uipc_attach,
3324 	.pr_bind =		uipc_bind,
3325 	.pr_bindat =		uipc_bindat,
3326 	.pr_connect =		uipc_connect,
3327 	.pr_connectat =		uipc_connectat,
3328 	.pr_connect2 =		uipc_connect2,
3329 	.pr_detach =		uipc_detach,
3330 	.pr_disconnect =	uipc_disconnect,
3331 	.pr_listen =		uipc_listen,
3332 	.pr_peeraddr =		uipc_peeraddr,
3333 	.pr_rcvd =		uipc_rcvd,
3334 	.pr_send =		uipc_send,
3335 	.pr_ready =		uipc_ready,
3336 	.pr_sense =		uipc_sense,
3337 	.pr_shutdown =		uipc_shutdown,
3338 	.pr_sockaddr =		uipc_sockaddr,
3339 	.pr_soreceive =		soreceive_generic,
3340 	.pr_close =		uipc_close,
3341 };
3342 
3343 static struct protosw dgramproto = {
3344 	.pr_type =		SOCK_DGRAM,
3345 	.pr_flags =		PR_ATOMIC | PR_ADDR |PR_RIGHTS | PR_CAPATTACH |
3346 				    PR_SOCKBUF,
3347 	.pr_ctloutput =		&uipc_ctloutput,
3348 	.pr_abort = 		uipc_abort,
3349 	.pr_accept =		uipc_accept,
3350 	.pr_attach =		uipc_attach,
3351 	.pr_bind =		uipc_bind,
3352 	.pr_bindat =		uipc_bindat,
3353 	.pr_connect =		uipc_connect,
3354 	.pr_connectat =		uipc_connectat,
3355 	.pr_connect2 =		uipc_connect2,
3356 	.pr_detach =		uipc_detach,
3357 	.pr_disconnect =	uipc_disconnect,
3358 	.pr_peeraddr =		uipc_peeraddr,
3359 	.pr_sosend =		uipc_sosend_dgram,
3360 	.pr_sense =		uipc_sense,
3361 	.pr_shutdown =		uipc_shutdown,
3362 	.pr_sockaddr =		uipc_sockaddr,
3363 	.pr_soreceive =		uipc_soreceive_dgram,
3364 	.pr_close =		uipc_close,
3365 };
3366 
3367 static struct protosw seqpacketproto = {
3368 	.pr_type =		SOCK_SEQPACKET,
3369 	/*
3370 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
3371 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
3372 	 * that supports both atomic record writes and control data.
3373 	 */
3374 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|
3375 				    PR_WANTRCVD|PR_RIGHTS|PR_CAPATTACH,
3376 	.pr_ctloutput =		&uipc_ctloutput,
3377 	.pr_abort =		uipc_abort,
3378 	.pr_accept =		uipc_accept,
3379 	.pr_attach =		uipc_attach,
3380 	.pr_bind =		uipc_bind,
3381 	.pr_bindat =		uipc_bindat,
3382 	.pr_connect =		uipc_connect,
3383 	.pr_connectat =		uipc_connectat,
3384 	.pr_connect2 =		uipc_connect2,
3385 	.pr_detach =		uipc_detach,
3386 	.pr_disconnect =	uipc_disconnect,
3387 	.pr_listen =		uipc_listen,
3388 	.pr_peeraddr =		uipc_peeraddr,
3389 	.pr_rcvd =		uipc_rcvd,
3390 	.pr_send =		uipc_send,
3391 	.pr_sense =		uipc_sense,
3392 	.pr_shutdown =		uipc_shutdown,
3393 	.pr_sockaddr =		uipc_sockaddr,
3394 	.pr_soreceive =		soreceive_generic,	/* XXX: or...? */
3395 	.pr_close =		uipc_close,
3396 };
3397 
3398 static struct domain localdomain = {
3399 	.dom_family =		AF_LOCAL,
3400 	.dom_name =		"local",
3401 	.dom_externalize =	unp_externalize,
3402 	.dom_dispose =		unp_dispose,
3403 	.dom_nprotosw =		3,
3404 	.dom_protosw =		{
3405 		&streamproto,
3406 		&dgramproto,
3407 		&seqpacketproto,
3408 	}
3409 };
3410 DOMAIN_SET(local);
3411 
3412 /*
3413  * A helper function called by VFS before socket-type vnode reclamation.
3414  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
3415  * use count.
3416  */
3417 void
3418 vfs_unp_reclaim(struct vnode *vp)
3419 {
3420 	struct unpcb *unp;
3421 	int active;
3422 	struct mtx *vplock;
3423 
3424 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
3425 	KASSERT(vp->v_type == VSOCK,
3426 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
3427 
3428 	active = 0;
3429 	vplock = mtx_pool_find(mtxpool_sleep, vp);
3430 	mtx_lock(vplock);
3431 	VOP_UNP_CONNECT(vp, &unp);
3432 	if (unp == NULL)
3433 		goto done;
3434 	UNP_PCB_LOCK(unp);
3435 	if (unp->unp_vnode == vp) {
3436 		VOP_UNP_DETACH(vp);
3437 		unp->unp_vnode = NULL;
3438 		active = 1;
3439 	}
3440 	UNP_PCB_UNLOCK(unp);
3441  done:
3442 	mtx_unlock(vplock);
3443 	if (active)
3444 		vunref(vp);
3445 }
3446 
3447 #ifdef DDB
3448 static void
3449 db_print_indent(int indent)
3450 {
3451 	int i;
3452 
3453 	for (i = 0; i < indent; i++)
3454 		db_printf(" ");
3455 }
3456 
3457 static void
3458 db_print_unpflags(int unp_flags)
3459 {
3460 	int comma;
3461 
3462 	comma = 0;
3463 	if (unp_flags & UNP_HAVEPC) {
3464 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
3465 		comma = 1;
3466 	}
3467 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
3468 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
3469 		comma = 1;
3470 	}
3471 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
3472 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
3473 		comma = 1;
3474 	}
3475 	if (unp_flags & UNP_CONNWAIT) {
3476 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
3477 		comma = 1;
3478 	}
3479 	if (unp_flags & UNP_CONNECTING) {
3480 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
3481 		comma = 1;
3482 	}
3483 	if (unp_flags & UNP_BINDING) {
3484 		db_printf("%sUNP_BINDING", comma ? ", " : "");
3485 		comma = 1;
3486 	}
3487 }
3488 
3489 static void
3490 db_print_xucred(int indent, struct xucred *xu)
3491 {
3492 	int comma, i;
3493 
3494 	db_print_indent(indent);
3495 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
3496 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
3497 	db_print_indent(indent);
3498 	db_printf("cr_groups: ");
3499 	comma = 0;
3500 	for (i = 0; i < xu->cr_ngroups; i++) {
3501 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
3502 		comma = 1;
3503 	}
3504 	db_printf("\n");
3505 }
3506 
3507 static void
3508 db_print_unprefs(int indent, struct unp_head *uh)
3509 {
3510 	struct unpcb *unp;
3511 	int counter;
3512 
3513 	counter = 0;
3514 	LIST_FOREACH(unp, uh, unp_reflink) {
3515 		if (counter % 4 == 0)
3516 			db_print_indent(indent);
3517 		db_printf("%p  ", unp);
3518 		if (counter % 4 == 3)
3519 			db_printf("\n");
3520 		counter++;
3521 	}
3522 	if (counter != 0 && counter % 4 != 0)
3523 		db_printf("\n");
3524 }
3525 
3526 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
3527 {
3528 	struct unpcb *unp;
3529 
3530         if (!have_addr) {
3531                 db_printf("usage: show unpcb <addr>\n");
3532                 return;
3533         }
3534         unp = (struct unpcb *)addr;
3535 
3536 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
3537 	    unp->unp_vnode);
3538 
3539 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
3540 	    unp->unp_conn);
3541 
3542 	db_printf("unp_refs:\n");
3543 	db_print_unprefs(2, &unp->unp_refs);
3544 
3545 	/* XXXRW: Would be nice to print the full address, if any. */
3546 	db_printf("unp_addr: %p\n", unp->unp_addr);
3547 
3548 	db_printf("unp_gencnt: %llu\n",
3549 	    (unsigned long long)unp->unp_gencnt);
3550 
3551 	db_printf("unp_flags: %x (", unp->unp_flags);
3552 	db_print_unpflags(unp->unp_flags);
3553 	db_printf(")\n");
3554 
3555 	db_printf("unp_peercred:\n");
3556 	db_print_xucred(2, &unp->unp_peercred);
3557 
3558 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
3559 }
3560 #endif
3561