xref: /freebsd/sys/kern/uipc_usrreq.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/eventhandler.h>
69 #include <sys/fcntl.h>
70 #include <sys/file.h>
71 #include <sys/filedesc.h>
72 #include <sys/kernel.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * See unpcb.h for the locking key.
110  */
111 
112 static uma_zone_t	unp_zone;
113 static unp_gen_t	unp_gencnt;	/* (l) */
114 static u_int		unp_count;	/* (l) Count of local sockets. */
115 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116 static int		unp_rights;	/* (g) File descriptors in flight. */
117 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120 
121 struct unp_defer {
122 	SLIST_ENTRY(unp_defer) ud_link;
123 	struct file *ud_fp;
124 };
125 static SLIST_HEAD(, unp_defer) unp_defers;
126 static int unp_defers_count;
127 
128 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129 
130 /*
131  * Garbage collection of cyclic file descriptor/socket references occurs
132  * asynchronously in a taskqueue context in order to avoid recursion and
133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
134  * code.  See unp_gc() for a full description.
135  */
136 static struct timeout_task unp_gc_task;
137 
138 /*
139  * The close of unix domain sockets attached as SCM_RIGHTS is
140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
141  * The attached sockets might have another sockets attached.
142  */
143 static struct task	unp_defer_task;
144 
145 /*
146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147  * stream sockets, although the total for sender and receiver is actually
148  * only PIPSIZ.
149  *
150  * Datagram sockets really use the sendspace as the maximum datagram size,
151  * and don't really want to reserve the sendspace.  Their recvspace should be
152  * large enough for at least one max-size datagram plus address.
153  */
154 #ifndef PIPSIZ
155 #define	PIPSIZ	8192
156 #endif
157 static u_long	unpst_sendspace = PIPSIZ;
158 static u_long	unpst_recvspace = PIPSIZ;
159 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160 static u_long	unpdg_recvspace = 4*1024;
161 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162 static u_long	unpsp_recvspace = PIPSIZ;
163 
164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
165     "Local domain");
166 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
167     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
168     "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
170     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
171     "SOCK_DGRAM");
172 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
173     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "SOCK_SEQPACKET");
175 
176 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
177 	   &unpst_sendspace, 0, "Default stream send space.");
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
179 	   &unpst_recvspace, 0, "Default stream receive space.");
180 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
181 	   &unpdg_sendspace, 0, "Default datagram send space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
183 	   &unpdg_recvspace, 0, "Default datagram receive space.");
184 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
185 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
187 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
188 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
189     "File descriptors in flight.");
190 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
191     &unp_defers_count, 0,
192     "File descriptors deferred to taskqueue for close.");
193 
194 /*
195  * Locking and synchronization:
196  *
197  * Several types of locks exist in the local domain socket implementation:
198  * - a global linkage lock
199  * - a global connection list lock
200  * - the mtxpool lock
201  * - per-unpcb mutexes
202  *
203  * The linkage lock protects the global socket lists, the generation number
204  * counter and garbage collector state.
205  *
206  * The connection list lock protects the list of referring sockets in a datagram
207  * socket PCB.  This lock is also overloaded to protect a global list of
208  * sockets whose buffers contain socket references in the form of SCM_RIGHTS
209  * messages.  To avoid recursion, such references are released by a dedicated
210  * thread.
211  *
212  * The mtxpool lock protects the vnode from being modified while referenced.
213  * Lock ordering rules require that it be acquired before any PCB locks.
214  *
215  * The unpcb lock (unp_mtx) protects the most commonly referenced fields in the
216  * unpcb.  This includes the unp_conn field, which either links two connected
217  * PCBs together (for connected socket types) or points at the destination
218  * socket (for connectionless socket types).  The operations of creating or
219  * destroying a connection therefore involve locking multiple PCBs.  To avoid
220  * lock order reversals, in some cases this involves dropping a PCB lock and
221  * using a reference counter to maintain liveness.
222  *
223  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
224  * allocated in pru_attach() and freed in pru_detach().  The validity of that
225  * pointer is an invariant, so no lock is required to dereference the so_pcb
226  * pointer if a valid socket reference is held by the caller.  In practice,
227  * this is always true during operations performed on a socket.  Each unpcb
228  * has a back-pointer to its socket, unp_socket, which will be stable under
229  * the same circumstances.
230  *
231  * This pointer may only be safely dereferenced as long as a valid reference
232  * to the unpcb is held.  Typically, this reference will be from the socket,
233  * or from another unpcb when the referring unpcb's lock is held (in order
234  * that the reference not be invalidated during use).  For example, to follow
235  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
236  * that detach is not run clearing unp_socket.
237  *
238  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
239  * protocols, bind() is a non-atomic operation, and connect() requires
240  * potential sleeping in the protocol, due to potentially waiting on local or
241  * distributed file systems.  We try to separate "lookup" operations, which
242  * may sleep, and the IPC operations themselves, which typically can occur
243  * with relative atomicity as locks can be held over the entire operation.
244  *
245  * Another tricky issue is simultaneous multi-threaded or multi-process
246  * access to a single UNIX domain socket.  These are handled by the flags
247  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
248  * binding, both of which involve dropping UNIX domain socket locks in order
249  * to perform namei() and other file system operations.
250  */
251 static struct rwlock	unp_link_rwlock;
252 static struct mtx	unp_defers_lock;
253 
254 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
255 					    "unp_link_rwlock")
256 
257 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
258 					    RA_LOCKED)
259 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
260 					    RA_UNLOCKED)
261 
262 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
263 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
264 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
265 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
266 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
267 					    RA_WLOCKED)
268 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
269 
270 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
271 					    "unp_defer", NULL, MTX_DEF)
272 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
273 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
274 
275 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
276 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
277 
278 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
279 					    "unp", "unp",	\
280 					    MTX_DUPOK|MTX_DEF)
281 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
282 #define	UNP_PCB_LOCKPTR(unp)		(&(unp)->unp_mtx)
283 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
284 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
285 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
286 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
287 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
288 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
289 
290 static int	uipc_connect2(struct socket *, struct socket *);
291 static int	uipc_ctloutput(struct socket *, struct sockopt *);
292 static int	unp_connect(struct socket *, struct sockaddr *,
293 		    struct thread *);
294 static int	unp_connectat(int, struct socket *, struct sockaddr *,
295 		    struct thread *);
296 static int	unp_connect2(struct socket *so, struct socket *so2, int);
297 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
298 static void	unp_dispose(struct socket *so);
299 static void	unp_dispose_mbuf(struct mbuf *);
300 static void	unp_shutdown(struct unpcb *);
301 static void	unp_drop(struct unpcb *);
302 static void	unp_gc(__unused void *, int);
303 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
304 static void	unp_discard(struct file *);
305 static void	unp_freerights(struct filedescent **, int);
306 static void	unp_init(void);
307 static int	unp_internalize(struct mbuf **, struct thread *);
308 static void	unp_internalize_fp(struct file *);
309 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
310 static int	unp_externalize_fp(struct file *);
311 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *, int);
312 static void	unp_process_defers(void * __unused, int);
313 
314 static void
315 unp_pcb_hold(struct unpcb *unp)
316 {
317 	u_int old __unused;
318 
319 	old = refcount_acquire(&unp->unp_refcount);
320 	KASSERT(old > 0, ("%s: unpcb %p has no references", __func__, unp));
321 }
322 
323 static __result_use_check bool
324 unp_pcb_rele(struct unpcb *unp)
325 {
326 	bool ret;
327 
328 	UNP_PCB_LOCK_ASSERT(unp);
329 
330 	if ((ret = refcount_release(&unp->unp_refcount))) {
331 		UNP_PCB_UNLOCK(unp);
332 		UNP_PCB_LOCK_DESTROY(unp);
333 		uma_zfree(unp_zone, unp);
334 	}
335 	return (ret);
336 }
337 
338 static void
339 unp_pcb_rele_notlast(struct unpcb *unp)
340 {
341 	bool ret __unused;
342 
343 	ret = refcount_release(&unp->unp_refcount);
344 	KASSERT(!ret, ("%s: unpcb %p has no references", __func__, unp));
345 }
346 
347 static void
348 unp_pcb_lock_pair(struct unpcb *unp, struct unpcb *unp2)
349 {
350 	UNP_PCB_UNLOCK_ASSERT(unp);
351 	UNP_PCB_UNLOCK_ASSERT(unp2);
352 
353 	if (unp == unp2) {
354 		UNP_PCB_LOCK(unp);
355 	} else if ((uintptr_t)unp2 > (uintptr_t)unp) {
356 		UNP_PCB_LOCK(unp);
357 		UNP_PCB_LOCK(unp2);
358 	} else {
359 		UNP_PCB_LOCK(unp2);
360 		UNP_PCB_LOCK(unp);
361 	}
362 }
363 
364 static void
365 unp_pcb_unlock_pair(struct unpcb *unp, struct unpcb *unp2)
366 {
367 	UNP_PCB_UNLOCK(unp);
368 	if (unp != unp2)
369 		UNP_PCB_UNLOCK(unp2);
370 }
371 
372 /*
373  * Try to lock the connected peer of an already locked socket.  In some cases
374  * this requires that we unlock the current socket.  The pairbusy counter is
375  * used to block concurrent connection attempts while the lock is dropped.  The
376  * caller must be careful to revalidate PCB state.
377  */
378 static struct unpcb *
379 unp_pcb_lock_peer(struct unpcb *unp)
380 {
381 	struct unpcb *unp2;
382 
383 	UNP_PCB_LOCK_ASSERT(unp);
384 	unp2 = unp->unp_conn;
385 	if (__predict_false(unp2 == NULL))
386 		return (NULL);
387 	if (__predict_false(unp == unp2))
388 		return (unp);
389 
390 	UNP_PCB_UNLOCK_ASSERT(unp2);
391 
392 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))
393 		return (unp2);
394 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
395 		UNP_PCB_LOCK(unp2);
396 		return (unp2);
397 	}
398 	unp->unp_pairbusy++;
399 	unp_pcb_hold(unp2);
400 	UNP_PCB_UNLOCK(unp);
401 
402 	UNP_PCB_LOCK(unp2);
403 	UNP_PCB_LOCK(unp);
404 	KASSERT(unp->unp_conn == unp2 || unp->unp_conn == NULL,
405 	    ("%s: socket %p was reconnected", __func__, unp));
406 	if (--unp->unp_pairbusy == 0 && (unp->unp_flags & UNP_WAITING) != 0) {
407 		unp->unp_flags &= ~UNP_WAITING;
408 		wakeup(unp);
409 	}
410 	if (unp_pcb_rele(unp2)) {
411 		/* unp2 is unlocked. */
412 		return (NULL);
413 	}
414 	if (unp->unp_conn == NULL) {
415 		UNP_PCB_UNLOCK(unp2);
416 		return (NULL);
417 	}
418 	return (unp2);
419 }
420 
421 /*
422  * Definitions of protocols supported in the LOCAL domain.
423  */
424 static struct domain localdomain;
425 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
426 static struct pr_usrreqs uipc_usrreqs_seqpacket;
427 static struct protosw localsw[] = {
428 {
429 	.pr_type =		SOCK_STREAM,
430 	.pr_domain =		&localdomain,
431 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
432 	.pr_ctloutput =		&uipc_ctloutput,
433 	.pr_usrreqs =		&uipc_usrreqs_stream
434 },
435 {
436 	.pr_type =		SOCK_DGRAM,
437 	.pr_domain =		&localdomain,
438 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
439 	.pr_ctloutput =		&uipc_ctloutput,
440 	.pr_usrreqs =		&uipc_usrreqs_dgram
441 },
442 {
443 	.pr_type =		SOCK_SEQPACKET,
444 	.pr_domain =		&localdomain,
445 
446 	/*
447 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
448 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
449 	 * that supports both atomic record writes and control data.
450 	 */
451 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
452 				    PR_RIGHTS,
453 	.pr_ctloutput =		&uipc_ctloutput,
454 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
455 },
456 };
457 
458 static struct domain localdomain = {
459 	.dom_family =		AF_LOCAL,
460 	.dom_name =		"local",
461 	.dom_init =		unp_init,
462 	.dom_externalize =	unp_externalize,
463 	.dom_dispose =		unp_dispose,
464 	.dom_protosw =		localsw,
465 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
466 };
467 DOMAIN_SET(local);
468 
469 static void
470 uipc_abort(struct socket *so)
471 {
472 	struct unpcb *unp, *unp2;
473 
474 	unp = sotounpcb(so);
475 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
476 	UNP_PCB_UNLOCK_ASSERT(unp);
477 
478 	UNP_PCB_LOCK(unp);
479 	unp2 = unp->unp_conn;
480 	if (unp2 != NULL) {
481 		unp_pcb_hold(unp2);
482 		UNP_PCB_UNLOCK(unp);
483 		unp_drop(unp2);
484 	} else
485 		UNP_PCB_UNLOCK(unp);
486 }
487 
488 static int
489 uipc_accept(struct socket *so, struct sockaddr **nam)
490 {
491 	struct unpcb *unp, *unp2;
492 	const struct sockaddr *sa;
493 
494 	/*
495 	 * Pass back name of connected socket, if it was bound and we are
496 	 * still connected (our peer may have closed already!).
497 	 */
498 	unp = sotounpcb(so);
499 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
500 
501 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
502 	UNP_PCB_LOCK(unp);
503 	unp2 = unp_pcb_lock_peer(unp);
504 	if (unp2 != NULL && unp2->unp_addr != NULL)
505 		sa = (struct sockaddr *)unp2->unp_addr;
506 	else
507 		sa = &sun_noname;
508 	bcopy(sa, *nam, sa->sa_len);
509 	if (unp2 != NULL)
510 		unp_pcb_unlock_pair(unp, unp2);
511 	else
512 		UNP_PCB_UNLOCK(unp);
513 	return (0);
514 }
515 
516 static int
517 uipc_attach(struct socket *so, int proto, struct thread *td)
518 {
519 	u_long sendspace, recvspace;
520 	struct unpcb *unp;
521 	int error;
522 	bool locked;
523 
524 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
525 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
526 		switch (so->so_type) {
527 		case SOCK_STREAM:
528 			sendspace = unpst_sendspace;
529 			recvspace = unpst_recvspace;
530 			break;
531 
532 		case SOCK_DGRAM:
533 			sendspace = unpdg_sendspace;
534 			recvspace = unpdg_recvspace;
535 			break;
536 
537 		case SOCK_SEQPACKET:
538 			sendspace = unpsp_sendspace;
539 			recvspace = unpsp_recvspace;
540 			break;
541 
542 		default:
543 			panic("uipc_attach");
544 		}
545 		error = soreserve(so, sendspace, recvspace);
546 		if (error)
547 			return (error);
548 	}
549 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
550 	if (unp == NULL)
551 		return (ENOBUFS);
552 	LIST_INIT(&unp->unp_refs);
553 	UNP_PCB_LOCK_INIT(unp);
554 	unp->unp_socket = so;
555 	so->so_pcb = unp;
556 	refcount_init(&unp->unp_refcount, 1);
557 
558 	if ((locked = UNP_LINK_WOWNED()) == false)
559 		UNP_LINK_WLOCK();
560 
561 	unp->unp_gencnt = ++unp_gencnt;
562 	unp->unp_ino = ++unp_ino;
563 	unp_count++;
564 	switch (so->so_type) {
565 	case SOCK_STREAM:
566 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
567 		break;
568 
569 	case SOCK_DGRAM:
570 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
571 		break;
572 
573 	case SOCK_SEQPACKET:
574 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
575 		break;
576 
577 	default:
578 		panic("uipc_attach");
579 	}
580 
581 	if (locked == false)
582 		UNP_LINK_WUNLOCK();
583 
584 	return (0);
585 }
586 
587 static int
588 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
589 {
590 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
591 	struct vattr vattr;
592 	int error, namelen;
593 	struct nameidata nd;
594 	struct unpcb *unp;
595 	struct vnode *vp;
596 	struct mount *mp;
597 	cap_rights_t rights;
598 	char *buf;
599 
600 	if (nam->sa_family != AF_UNIX)
601 		return (EAFNOSUPPORT);
602 
603 	unp = sotounpcb(so);
604 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
605 
606 	if (soun->sun_len > sizeof(struct sockaddr_un))
607 		return (EINVAL);
608 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
609 	if (namelen <= 0)
610 		return (EINVAL);
611 
612 	/*
613 	 * We don't allow simultaneous bind() calls on a single UNIX domain
614 	 * socket, so flag in-progress operations, and return an error if an
615 	 * operation is already in progress.
616 	 *
617 	 * Historically, we have not allowed a socket to be rebound, so this
618 	 * also returns an error.  Not allowing re-binding simplifies the
619 	 * implementation and avoids a great many possible failure modes.
620 	 */
621 	UNP_PCB_LOCK(unp);
622 	if (unp->unp_vnode != NULL) {
623 		UNP_PCB_UNLOCK(unp);
624 		return (EINVAL);
625 	}
626 	if (unp->unp_flags & UNP_BINDING) {
627 		UNP_PCB_UNLOCK(unp);
628 		return (EALREADY);
629 	}
630 	unp->unp_flags |= UNP_BINDING;
631 	UNP_PCB_UNLOCK(unp);
632 
633 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
634 	bcopy(soun->sun_path, buf, namelen);
635 	buf[namelen] = 0;
636 
637 restart:
638 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
639 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
640 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
641 	error = namei(&nd);
642 	if (error)
643 		goto error;
644 	vp = nd.ni_vp;
645 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
646 		NDFREE(&nd, NDF_ONLY_PNBUF);
647 		if (nd.ni_dvp == vp)
648 			vrele(nd.ni_dvp);
649 		else
650 			vput(nd.ni_dvp);
651 		if (vp != NULL) {
652 			vrele(vp);
653 			error = EADDRINUSE;
654 			goto error;
655 		}
656 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
657 		if (error)
658 			goto error;
659 		goto restart;
660 	}
661 	VATTR_NULL(&vattr);
662 	vattr.va_type = VSOCK;
663 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_pd->pd_cmask);
664 #ifdef MAC
665 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
666 	    &vattr);
667 #endif
668 	if (error == 0)
669 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
670 	NDFREE(&nd, NDF_ONLY_PNBUF);
671 	vput(nd.ni_dvp);
672 	if (error) {
673 		vn_finished_write(mp);
674 		if (error == ERELOOKUP)
675 			goto restart;
676 		goto error;
677 	}
678 	vp = nd.ni_vp;
679 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
680 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
681 
682 	UNP_PCB_LOCK(unp);
683 	VOP_UNP_BIND(vp, unp);
684 	unp->unp_vnode = vp;
685 	unp->unp_addr = soun;
686 	unp->unp_flags &= ~UNP_BINDING;
687 	UNP_PCB_UNLOCK(unp);
688 	VOP_UNLOCK(vp);
689 	vn_finished_write(mp);
690 	free(buf, M_TEMP);
691 	return (0);
692 
693 error:
694 	UNP_PCB_LOCK(unp);
695 	unp->unp_flags &= ~UNP_BINDING;
696 	UNP_PCB_UNLOCK(unp);
697 	free(buf, M_TEMP);
698 	return (error);
699 }
700 
701 static int
702 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
703 {
704 
705 	return (uipc_bindat(AT_FDCWD, so, nam, td));
706 }
707 
708 static int
709 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
710 {
711 	int error;
712 
713 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
714 	error = unp_connect(so, nam, td);
715 	return (error);
716 }
717 
718 static int
719 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
720     struct thread *td)
721 {
722 	int error;
723 
724 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
725 	error = unp_connectat(fd, so, nam, td);
726 	return (error);
727 }
728 
729 static void
730 uipc_close(struct socket *so)
731 {
732 	struct unpcb *unp, *unp2;
733 	struct vnode *vp = NULL;
734 	struct mtx *vplock;
735 
736 	unp = sotounpcb(so);
737 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
738 
739 	vplock = NULL;
740 	if ((vp = unp->unp_vnode) != NULL) {
741 		vplock = mtx_pool_find(mtxpool_sleep, vp);
742 		mtx_lock(vplock);
743 	}
744 	UNP_PCB_LOCK(unp);
745 	if (vp && unp->unp_vnode == NULL) {
746 		mtx_unlock(vplock);
747 		vp = NULL;
748 	}
749 	if (vp != NULL) {
750 		VOP_UNP_DETACH(vp);
751 		unp->unp_vnode = NULL;
752 	}
753 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
754 		unp_disconnect(unp, unp2);
755 	else
756 		UNP_PCB_UNLOCK(unp);
757 	if (vp) {
758 		mtx_unlock(vplock);
759 		vrele(vp);
760 	}
761 }
762 
763 static int
764 uipc_connect2(struct socket *so1, struct socket *so2)
765 {
766 	struct unpcb *unp, *unp2;
767 	int error;
768 
769 	unp = so1->so_pcb;
770 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
771 	unp2 = so2->so_pcb;
772 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
773 	unp_pcb_lock_pair(unp, unp2);
774 	error = unp_connect2(so1, so2, PRU_CONNECT2);
775 	unp_pcb_unlock_pair(unp, unp2);
776 	return (error);
777 }
778 
779 static void
780 uipc_detach(struct socket *so)
781 {
782 	struct unpcb *unp, *unp2;
783 	struct mtx *vplock;
784 	struct vnode *vp;
785 	int local_unp_rights;
786 
787 	unp = sotounpcb(so);
788 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
789 
790 	vp = NULL;
791 	vplock = NULL;
792 
793 	SOCK_LOCK(so);
794 	if (!SOLISTENING(so)) {
795 		/*
796 		 * Once the socket is removed from the global lists,
797 		 * uipc_ready() will not be able to locate its socket buffer, so
798 		 * clear the buffer now.  At this point internalized rights have
799 		 * already been disposed of.
800 		 */
801 		sbrelease(&so->so_rcv, so);
802 	}
803 	SOCK_UNLOCK(so);
804 
805 	UNP_LINK_WLOCK();
806 	LIST_REMOVE(unp, unp_link);
807 	if (unp->unp_gcflag & UNPGC_DEAD)
808 		LIST_REMOVE(unp, unp_dead);
809 	unp->unp_gencnt = ++unp_gencnt;
810 	--unp_count;
811 	UNP_LINK_WUNLOCK();
812 
813 	UNP_PCB_UNLOCK_ASSERT(unp);
814  restart:
815 	if ((vp = unp->unp_vnode) != NULL) {
816 		vplock = mtx_pool_find(mtxpool_sleep, vp);
817 		mtx_lock(vplock);
818 	}
819 	UNP_PCB_LOCK(unp);
820 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
821 		if (vplock)
822 			mtx_unlock(vplock);
823 		UNP_PCB_UNLOCK(unp);
824 		goto restart;
825 	}
826 	if ((vp = unp->unp_vnode) != NULL) {
827 		VOP_UNP_DETACH(vp);
828 		unp->unp_vnode = NULL;
829 	}
830 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
831 		unp_disconnect(unp, unp2);
832 	else
833 		UNP_PCB_UNLOCK(unp);
834 
835 	UNP_REF_LIST_LOCK();
836 	while (!LIST_EMPTY(&unp->unp_refs)) {
837 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
838 
839 		unp_pcb_hold(ref);
840 		UNP_REF_LIST_UNLOCK();
841 
842 		MPASS(ref != unp);
843 		UNP_PCB_UNLOCK_ASSERT(ref);
844 		unp_drop(ref);
845 		UNP_REF_LIST_LOCK();
846 	}
847 	UNP_REF_LIST_UNLOCK();
848 
849 	UNP_PCB_LOCK(unp);
850 	local_unp_rights = unp_rights;
851 	unp->unp_socket->so_pcb = NULL;
852 	unp->unp_socket = NULL;
853 	free(unp->unp_addr, M_SONAME);
854 	unp->unp_addr = NULL;
855 	if (!unp_pcb_rele(unp))
856 		UNP_PCB_UNLOCK(unp);
857 	if (vp) {
858 		mtx_unlock(vplock);
859 		vrele(vp);
860 	}
861 	if (local_unp_rights)
862 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
863 }
864 
865 static int
866 uipc_disconnect(struct socket *so)
867 {
868 	struct unpcb *unp, *unp2;
869 
870 	unp = sotounpcb(so);
871 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
872 
873 	UNP_PCB_LOCK(unp);
874 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL)
875 		unp_disconnect(unp, unp2);
876 	else
877 		UNP_PCB_UNLOCK(unp);
878 	return (0);
879 }
880 
881 static int
882 uipc_listen(struct socket *so, int backlog, struct thread *td)
883 {
884 	struct unpcb *unp;
885 	int error;
886 
887 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
888 		return (EOPNOTSUPP);
889 
890 	unp = sotounpcb(so);
891 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
892 
893 	UNP_PCB_LOCK(unp);
894 	if (unp->unp_vnode == NULL) {
895 		/* Already connected or not bound to an address. */
896 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
897 		UNP_PCB_UNLOCK(unp);
898 		return (error);
899 	}
900 
901 	SOCK_LOCK(so);
902 	error = solisten_proto_check(so);
903 	if (error == 0) {
904 		cru2xt(td, &unp->unp_peercred);
905 		solisten_proto(so, backlog);
906 	}
907 	SOCK_UNLOCK(so);
908 	UNP_PCB_UNLOCK(unp);
909 	return (error);
910 }
911 
912 static int
913 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
914 {
915 	struct unpcb *unp, *unp2;
916 	const struct sockaddr *sa;
917 
918 	unp = sotounpcb(so);
919 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
920 
921 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
922 	UNP_LINK_RLOCK();
923 	/*
924 	 * XXX: It seems that this test always fails even when connection is
925 	 * established.  So, this else clause is added as workaround to
926 	 * return PF_LOCAL sockaddr.
927 	 */
928 	unp2 = unp->unp_conn;
929 	if (unp2 != NULL) {
930 		UNP_PCB_LOCK(unp2);
931 		if (unp2->unp_addr != NULL)
932 			sa = (struct sockaddr *) unp2->unp_addr;
933 		else
934 			sa = &sun_noname;
935 		bcopy(sa, *nam, sa->sa_len);
936 		UNP_PCB_UNLOCK(unp2);
937 	} else {
938 		sa = &sun_noname;
939 		bcopy(sa, *nam, sa->sa_len);
940 	}
941 	UNP_LINK_RUNLOCK();
942 	return (0);
943 }
944 
945 static int
946 uipc_rcvd(struct socket *so, int flags)
947 {
948 	struct unpcb *unp, *unp2;
949 	struct socket *so2;
950 	u_int mbcnt, sbcc;
951 
952 	unp = sotounpcb(so);
953 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
954 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
955 	    ("%s: socktype %d", __func__, so->so_type));
956 
957 	/*
958 	 * Adjust backpressure on sender and wakeup any waiting to write.
959 	 *
960 	 * The unp lock is acquired to maintain the validity of the unp_conn
961 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
962 	 * static as long as we don't permit unp2 to disconnect from unp,
963 	 * which is prevented by the lock on unp.  We cache values from
964 	 * so_rcv to avoid holding the so_rcv lock over the entire
965 	 * transaction on the remote so_snd.
966 	 */
967 	SOCKBUF_LOCK(&so->so_rcv);
968 	mbcnt = so->so_rcv.sb_mbcnt;
969 	sbcc = sbavail(&so->so_rcv);
970 	SOCKBUF_UNLOCK(&so->so_rcv);
971 	/*
972 	 * There is a benign race condition at this point.  If we're planning to
973 	 * clear SB_STOP, but uipc_send is called on the connected socket at
974 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
975 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
976 	 * full.  The race is benign because the only ill effect is to allow the
977 	 * sockbuf to exceed its size limit, and the size limits are not
978 	 * strictly guaranteed anyway.
979 	 */
980 	UNP_PCB_LOCK(unp);
981 	unp2 = unp->unp_conn;
982 	if (unp2 == NULL) {
983 		UNP_PCB_UNLOCK(unp);
984 		return (0);
985 	}
986 	so2 = unp2->unp_socket;
987 	SOCKBUF_LOCK(&so2->so_snd);
988 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
989 		so2->so_snd.sb_flags &= ~SB_STOP;
990 	sowwakeup_locked(so2);
991 	UNP_PCB_UNLOCK(unp);
992 	return (0);
993 }
994 
995 static int
996 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
997     struct mbuf *control, struct thread *td)
998 {
999 	struct unpcb *unp, *unp2;
1000 	struct socket *so2;
1001 	u_int mbcnt, sbcc;
1002 	int freed, error;
1003 
1004 	unp = sotounpcb(so);
1005 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1006 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1007 	    so->so_type == SOCK_SEQPACKET,
1008 	    ("%s: socktype %d", __func__, so->so_type));
1009 
1010 	freed = error = 0;
1011 	if (flags & PRUS_OOB) {
1012 		error = EOPNOTSUPP;
1013 		goto release;
1014 	}
1015 	if (control != NULL && (error = unp_internalize(&control, td)))
1016 		goto release;
1017 
1018 	unp2 = NULL;
1019 	switch (so->so_type) {
1020 	case SOCK_DGRAM:
1021 	{
1022 		const struct sockaddr *from;
1023 
1024 		if (nam != NULL) {
1025 			error = unp_connect(so, nam, td);
1026 			if (error != 0)
1027 				break;
1028 		}
1029 		UNP_PCB_LOCK(unp);
1030 
1031 		/*
1032 		 * Because connect() and send() are non-atomic in a sendto()
1033 		 * with a target address, it's possible that the socket will
1034 		 * have disconnected before the send() can run.  In that case
1035 		 * return the slightly counter-intuitive but otherwise
1036 		 * correct error that the socket is not connected.
1037 		 */
1038 		unp2 = unp_pcb_lock_peer(unp);
1039 		if (unp2 == NULL) {
1040 			UNP_PCB_UNLOCK(unp);
1041 			error = ENOTCONN;
1042 			break;
1043 		}
1044 
1045 		if (unp2->unp_flags & UNP_WANTCRED_MASK)
1046 			control = unp_addsockcred(td, control,
1047 			    unp2->unp_flags);
1048 		if (unp->unp_addr != NULL)
1049 			from = (struct sockaddr *)unp->unp_addr;
1050 		else
1051 			from = &sun_noname;
1052 		so2 = unp2->unp_socket;
1053 		SOCKBUF_LOCK(&so2->so_rcv);
1054 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1055 		    control)) {
1056 			sorwakeup_locked(so2);
1057 			m = NULL;
1058 			control = NULL;
1059 		} else {
1060 			SOCKBUF_UNLOCK(&so2->so_rcv);
1061 			error = ENOBUFS;
1062 		}
1063 		if (nam != NULL)
1064 			unp_disconnect(unp, unp2);
1065 		else
1066 			unp_pcb_unlock_pair(unp, unp2);
1067 		break;
1068 	}
1069 
1070 	case SOCK_SEQPACKET:
1071 	case SOCK_STREAM:
1072 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1073 			if (nam != NULL) {
1074 				error = unp_connect(so, nam, td);
1075 				if (error != 0)
1076 					break;
1077 			} else {
1078 				error = ENOTCONN;
1079 				break;
1080 			}
1081 		}
1082 
1083 		UNP_PCB_LOCK(unp);
1084 		if ((unp2 = unp_pcb_lock_peer(unp)) == NULL) {
1085 			UNP_PCB_UNLOCK(unp);
1086 			error = ENOTCONN;
1087 			break;
1088 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1089 			unp_pcb_unlock_pair(unp, unp2);
1090 			error = EPIPE;
1091 			break;
1092 		}
1093 		UNP_PCB_UNLOCK(unp);
1094 		if ((so2 = unp2->unp_socket) == NULL) {
1095 			UNP_PCB_UNLOCK(unp2);
1096 			error = ENOTCONN;
1097 			break;
1098 		}
1099 		SOCKBUF_LOCK(&so2->so_rcv);
1100 		if (unp2->unp_flags & UNP_WANTCRED_MASK) {
1101 			/*
1102 			 * Credentials are passed only once on SOCK_STREAM and
1103 			 * SOCK_SEQPACKET (LOCAL_CREDS => WANTCRED_ONESHOT), or
1104 			 * forever (LOCAL_CREDS_PERSISTENT => WANTCRED_ALWAYS).
1105 			 */
1106 			control = unp_addsockcred(td, control, unp2->unp_flags);
1107 			unp2->unp_flags &= ~UNP_WANTCRED_ONESHOT;
1108 		}
1109 
1110 		/*
1111 		 * Send to paired receive port and wake up readers.  Don't
1112 		 * check for space available in the receive buffer if we're
1113 		 * attaching ancillary data; Unix domain sockets only check
1114 		 * for space in the sending sockbuf, and that check is
1115 		 * performed one level up the stack.  At that level we cannot
1116 		 * precisely account for the amount of buffer space used
1117 		 * (e.g., because control messages are not yet internalized).
1118 		 */
1119 		switch (so->so_type) {
1120 		case SOCK_STREAM:
1121 			if (control != NULL) {
1122 				sbappendcontrol_locked(&so2->so_rcv, m,
1123 				    control, flags);
1124 				control = NULL;
1125 			} else
1126 				sbappend_locked(&so2->so_rcv, m, flags);
1127 			break;
1128 
1129 		case SOCK_SEQPACKET:
1130 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1131 			    &sun_noname, m, control))
1132 				control = NULL;
1133 			break;
1134 		}
1135 
1136 		mbcnt = so2->so_rcv.sb_mbcnt;
1137 		sbcc = sbavail(&so2->so_rcv);
1138 		if (sbcc)
1139 			sorwakeup_locked(so2);
1140 		else
1141 			SOCKBUF_UNLOCK(&so2->so_rcv);
1142 
1143 		/*
1144 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1145 		 * it would be possible for uipc_rcvd to be called at this
1146 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1147 		 * we would set SB_STOP below.  That could lead to an empty
1148 		 * sockbuf having SB_STOP set
1149 		 */
1150 		SOCKBUF_LOCK(&so->so_snd);
1151 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1152 			so->so_snd.sb_flags |= SB_STOP;
1153 		SOCKBUF_UNLOCK(&so->so_snd);
1154 		UNP_PCB_UNLOCK(unp2);
1155 		m = NULL;
1156 		break;
1157 	}
1158 
1159 	/*
1160 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1161 	 */
1162 	if (flags & PRUS_EOF) {
1163 		UNP_PCB_LOCK(unp);
1164 		socantsendmore(so);
1165 		unp_shutdown(unp);
1166 		UNP_PCB_UNLOCK(unp);
1167 	}
1168 	if (control != NULL && error != 0)
1169 		unp_dispose_mbuf(control);
1170 
1171 release:
1172 	if (control != NULL)
1173 		m_freem(control);
1174 	/*
1175 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1176 	 * for freeing memory.
1177 	 */
1178 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1179 		m_freem(m);
1180 	return (error);
1181 }
1182 
1183 static bool
1184 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1185 {
1186 	struct mbuf *mb, *n;
1187 	struct sockbuf *sb;
1188 
1189 	SOCK_LOCK(so);
1190 	if (SOLISTENING(so)) {
1191 		SOCK_UNLOCK(so);
1192 		return (false);
1193 	}
1194 	mb = NULL;
1195 	sb = &so->so_rcv;
1196 	SOCKBUF_LOCK(sb);
1197 	if (sb->sb_fnrdy != NULL) {
1198 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1199 			if (mb == m) {
1200 				*errorp = sbready(sb, m, count);
1201 				break;
1202 			}
1203 			mb = mb->m_next;
1204 			if (mb == NULL) {
1205 				mb = n;
1206 				if (mb != NULL)
1207 					n = mb->m_nextpkt;
1208 			}
1209 		}
1210 	}
1211 	SOCKBUF_UNLOCK(sb);
1212 	SOCK_UNLOCK(so);
1213 	return (mb != NULL);
1214 }
1215 
1216 static int
1217 uipc_ready(struct socket *so, struct mbuf *m, int count)
1218 {
1219 	struct unpcb *unp, *unp2;
1220 	struct socket *so2;
1221 	int error, i;
1222 
1223 	unp = sotounpcb(so);
1224 
1225 	KASSERT(so->so_type == SOCK_STREAM,
1226 	    ("%s: unexpected socket type for %p", __func__, so));
1227 
1228 	UNP_PCB_LOCK(unp);
1229 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1230 		UNP_PCB_UNLOCK(unp);
1231 		so2 = unp2->unp_socket;
1232 		SOCKBUF_LOCK(&so2->so_rcv);
1233 		if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1234 			sorwakeup_locked(so2);
1235 		else
1236 			SOCKBUF_UNLOCK(&so2->so_rcv);
1237 		UNP_PCB_UNLOCK(unp2);
1238 		return (error);
1239 	}
1240 	UNP_PCB_UNLOCK(unp);
1241 
1242 	/*
1243 	 * The receiving socket has been disconnected, but may still be valid.
1244 	 * In this case, the now-ready mbufs are still present in its socket
1245 	 * buffer, so perform an exhaustive search before giving up and freeing
1246 	 * the mbufs.
1247 	 */
1248 	UNP_LINK_RLOCK();
1249 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1250 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1251 			break;
1252 	}
1253 	UNP_LINK_RUNLOCK();
1254 
1255 	if (unp == NULL) {
1256 		for (i = 0; i < count; i++)
1257 			m = m_free(m);
1258 		error = ECONNRESET;
1259 	}
1260 	return (error);
1261 }
1262 
1263 static int
1264 uipc_sense(struct socket *so, struct stat *sb)
1265 {
1266 	struct unpcb *unp;
1267 
1268 	unp = sotounpcb(so);
1269 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1270 
1271 	sb->st_blksize = so->so_snd.sb_hiwat;
1272 	sb->st_dev = NODEV;
1273 	sb->st_ino = unp->unp_ino;
1274 	return (0);
1275 }
1276 
1277 static int
1278 uipc_shutdown(struct socket *so)
1279 {
1280 	struct unpcb *unp;
1281 
1282 	unp = sotounpcb(so);
1283 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1284 
1285 	UNP_PCB_LOCK(unp);
1286 	socantsendmore(so);
1287 	unp_shutdown(unp);
1288 	UNP_PCB_UNLOCK(unp);
1289 	return (0);
1290 }
1291 
1292 static int
1293 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1294 {
1295 	struct unpcb *unp;
1296 	const struct sockaddr *sa;
1297 
1298 	unp = sotounpcb(so);
1299 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1300 
1301 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1302 	UNP_PCB_LOCK(unp);
1303 	if (unp->unp_addr != NULL)
1304 		sa = (struct sockaddr *) unp->unp_addr;
1305 	else
1306 		sa = &sun_noname;
1307 	bcopy(sa, *nam, sa->sa_len);
1308 	UNP_PCB_UNLOCK(unp);
1309 	return (0);
1310 }
1311 
1312 static struct pr_usrreqs uipc_usrreqs_dgram = {
1313 	.pru_abort = 		uipc_abort,
1314 	.pru_accept =		uipc_accept,
1315 	.pru_attach =		uipc_attach,
1316 	.pru_bind =		uipc_bind,
1317 	.pru_bindat =		uipc_bindat,
1318 	.pru_connect =		uipc_connect,
1319 	.pru_connectat =	uipc_connectat,
1320 	.pru_connect2 =		uipc_connect2,
1321 	.pru_detach =		uipc_detach,
1322 	.pru_disconnect =	uipc_disconnect,
1323 	.pru_listen =		uipc_listen,
1324 	.pru_peeraddr =		uipc_peeraddr,
1325 	.pru_rcvd =		uipc_rcvd,
1326 	.pru_send =		uipc_send,
1327 	.pru_sense =		uipc_sense,
1328 	.pru_shutdown =		uipc_shutdown,
1329 	.pru_sockaddr =		uipc_sockaddr,
1330 	.pru_soreceive =	soreceive_dgram,
1331 	.pru_close =		uipc_close,
1332 };
1333 
1334 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1335 	.pru_abort =		uipc_abort,
1336 	.pru_accept =		uipc_accept,
1337 	.pru_attach =		uipc_attach,
1338 	.pru_bind =		uipc_bind,
1339 	.pru_bindat =		uipc_bindat,
1340 	.pru_connect =		uipc_connect,
1341 	.pru_connectat =	uipc_connectat,
1342 	.pru_connect2 =		uipc_connect2,
1343 	.pru_detach =		uipc_detach,
1344 	.pru_disconnect =	uipc_disconnect,
1345 	.pru_listen =		uipc_listen,
1346 	.pru_peeraddr =		uipc_peeraddr,
1347 	.pru_rcvd =		uipc_rcvd,
1348 	.pru_send =		uipc_send,
1349 	.pru_sense =		uipc_sense,
1350 	.pru_shutdown =		uipc_shutdown,
1351 	.pru_sockaddr =		uipc_sockaddr,
1352 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1353 	.pru_close =		uipc_close,
1354 };
1355 
1356 static struct pr_usrreqs uipc_usrreqs_stream = {
1357 	.pru_abort = 		uipc_abort,
1358 	.pru_accept =		uipc_accept,
1359 	.pru_attach =		uipc_attach,
1360 	.pru_bind =		uipc_bind,
1361 	.pru_bindat =		uipc_bindat,
1362 	.pru_connect =		uipc_connect,
1363 	.pru_connectat =	uipc_connectat,
1364 	.pru_connect2 =		uipc_connect2,
1365 	.pru_detach =		uipc_detach,
1366 	.pru_disconnect =	uipc_disconnect,
1367 	.pru_listen =		uipc_listen,
1368 	.pru_peeraddr =		uipc_peeraddr,
1369 	.pru_rcvd =		uipc_rcvd,
1370 	.pru_send =		uipc_send,
1371 	.pru_ready =		uipc_ready,
1372 	.pru_sense =		uipc_sense,
1373 	.pru_shutdown =		uipc_shutdown,
1374 	.pru_sockaddr =		uipc_sockaddr,
1375 	.pru_soreceive =	soreceive_generic,
1376 	.pru_close =		uipc_close,
1377 };
1378 
1379 static int
1380 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1381 {
1382 	struct unpcb *unp;
1383 	struct xucred xu;
1384 	int error, optval;
1385 
1386 	if (sopt->sopt_level != SOL_LOCAL)
1387 		return (EINVAL);
1388 
1389 	unp = sotounpcb(so);
1390 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1391 	error = 0;
1392 	switch (sopt->sopt_dir) {
1393 	case SOPT_GET:
1394 		switch (sopt->sopt_name) {
1395 		case LOCAL_PEERCRED:
1396 			UNP_PCB_LOCK(unp);
1397 			if (unp->unp_flags & UNP_HAVEPC)
1398 				xu = unp->unp_peercred;
1399 			else {
1400 				if (so->so_type == SOCK_STREAM)
1401 					error = ENOTCONN;
1402 				else
1403 					error = EINVAL;
1404 			}
1405 			UNP_PCB_UNLOCK(unp);
1406 			if (error == 0)
1407 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1408 			break;
1409 
1410 		case LOCAL_CREDS:
1411 			/* Unlocked read. */
1412 			optval = unp->unp_flags & UNP_WANTCRED_ONESHOT ? 1 : 0;
1413 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1414 			break;
1415 
1416 		case LOCAL_CREDS_PERSISTENT:
1417 			/* Unlocked read. */
1418 			optval = unp->unp_flags & UNP_WANTCRED_ALWAYS ? 1 : 0;
1419 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1420 			break;
1421 
1422 		case LOCAL_CONNWAIT:
1423 			/* Unlocked read. */
1424 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1425 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1426 			break;
1427 
1428 		default:
1429 			error = EOPNOTSUPP;
1430 			break;
1431 		}
1432 		break;
1433 
1434 	case SOPT_SET:
1435 		switch (sopt->sopt_name) {
1436 		case LOCAL_CREDS:
1437 		case LOCAL_CREDS_PERSISTENT:
1438 		case LOCAL_CONNWAIT:
1439 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1440 					    sizeof(optval));
1441 			if (error)
1442 				break;
1443 
1444 #define	OPTSET(bit, exclusive) do {					\
1445 	UNP_PCB_LOCK(unp);						\
1446 	if (optval) {							\
1447 		if ((unp->unp_flags & (exclusive)) != 0) {		\
1448 			UNP_PCB_UNLOCK(unp);				\
1449 			error = EINVAL;					\
1450 			break;						\
1451 		}							\
1452 		unp->unp_flags |= (bit);				\
1453 	} else								\
1454 		unp->unp_flags &= ~(bit);				\
1455 	UNP_PCB_UNLOCK(unp);						\
1456 } while (0)
1457 
1458 			switch (sopt->sopt_name) {
1459 			case LOCAL_CREDS:
1460 				OPTSET(UNP_WANTCRED_ONESHOT, UNP_WANTCRED_ALWAYS);
1461 				break;
1462 
1463 			case LOCAL_CREDS_PERSISTENT:
1464 				OPTSET(UNP_WANTCRED_ALWAYS, UNP_WANTCRED_ONESHOT);
1465 				break;
1466 
1467 			case LOCAL_CONNWAIT:
1468 				OPTSET(UNP_CONNWAIT, 0);
1469 				break;
1470 
1471 			default:
1472 				break;
1473 			}
1474 			break;
1475 #undef	OPTSET
1476 		default:
1477 			error = ENOPROTOOPT;
1478 			break;
1479 		}
1480 		break;
1481 
1482 	default:
1483 		error = EOPNOTSUPP;
1484 		break;
1485 	}
1486 	return (error);
1487 }
1488 
1489 static int
1490 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1491 {
1492 
1493 	return (unp_connectat(AT_FDCWD, so, nam, td));
1494 }
1495 
1496 static int
1497 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1498     struct thread *td)
1499 {
1500 	struct mtx *vplock;
1501 	struct sockaddr_un *soun;
1502 	struct vnode *vp;
1503 	struct socket *so2;
1504 	struct unpcb *unp, *unp2, *unp3;
1505 	struct nameidata nd;
1506 	char buf[SOCK_MAXADDRLEN];
1507 	struct sockaddr *sa;
1508 	cap_rights_t rights;
1509 	int error, len;
1510 	bool connreq;
1511 
1512 	if (nam->sa_family != AF_UNIX)
1513 		return (EAFNOSUPPORT);
1514 	if (nam->sa_len > sizeof(struct sockaddr_un))
1515 		return (EINVAL);
1516 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1517 	if (len <= 0)
1518 		return (EINVAL);
1519 	soun = (struct sockaddr_un *)nam;
1520 	bcopy(soun->sun_path, buf, len);
1521 	buf[len] = 0;
1522 
1523 	unp = sotounpcb(so);
1524 	UNP_PCB_LOCK(unp);
1525 	for (;;) {
1526 		/*
1527 		 * Wait for connection state to stabilize.  If a connection
1528 		 * already exists, give up.  For datagram sockets, which permit
1529 		 * multiple consecutive connect(2) calls, upper layers are
1530 		 * responsible for disconnecting in advance of a subsequent
1531 		 * connect(2), but this is not synchronized with PCB connection
1532 		 * state.
1533 		 *
1534 		 * Also make sure that no threads are currently attempting to
1535 		 * lock the peer socket, to ensure that unp_conn cannot
1536 		 * transition between two valid sockets while locks are dropped.
1537 		 */
1538 		if (unp->unp_conn != NULL) {
1539 			UNP_PCB_UNLOCK(unp);
1540 			return (EISCONN);
1541 		}
1542 		if ((unp->unp_flags & UNP_CONNECTING) != 0) {
1543 			UNP_PCB_UNLOCK(unp);
1544 			return (EALREADY);
1545 		}
1546 		if (unp->unp_pairbusy > 0) {
1547 			unp->unp_flags |= UNP_WAITING;
1548 			mtx_sleep(unp, UNP_PCB_LOCKPTR(unp), 0, "unpeer", 0);
1549 			continue;
1550 		}
1551 		break;
1552 	}
1553 	unp->unp_flags |= UNP_CONNECTING;
1554 	UNP_PCB_UNLOCK(unp);
1555 
1556 	connreq = (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0;
1557 	if (connreq)
1558 		sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1559 	else
1560 		sa = NULL;
1561 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1562 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1563 	error = namei(&nd);
1564 	if (error)
1565 		vp = NULL;
1566 	else
1567 		vp = nd.ni_vp;
1568 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1569 	NDFREE(&nd, NDF_ONLY_PNBUF);
1570 	if (error)
1571 		goto bad;
1572 
1573 	if (vp->v_type != VSOCK) {
1574 		error = ENOTSOCK;
1575 		goto bad;
1576 	}
1577 #ifdef MAC
1578 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1579 	if (error)
1580 		goto bad;
1581 #endif
1582 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1583 	if (error)
1584 		goto bad;
1585 
1586 	unp = sotounpcb(so);
1587 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1588 
1589 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1590 	mtx_lock(vplock);
1591 	VOP_UNP_CONNECT(vp, &unp2);
1592 	if (unp2 == NULL) {
1593 		error = ECONNREFUSED;
1594 		goto bad2;
1595 	}
1596 	so2 = unp2->unp_socket;
1597 	if (so->so_type != so2->so_type) {
1598 		error = EPROTOTYPE;
1599 		goto bad2;
1600 	}
1601 	if (connreq) {
1602 		if (so2->so_options & SO_ACCEPTCONN) {
1603 			CURVNET_SET(so2->so_vnet);
1604 			so2 = sonewconn(so2, 0);
1605 			CURVNET_RESTORE();
1606 		} else
1607 			so2 = NULL;
1608 		if (so2 == NULL) {
1609 			error = ECONNREFUSED;
1610 			goto bad2;
1611 		}
1612 		unp3 = sotounpcb(so2);
1613 		unp_pcb_lock_pair(unp2, unp3);
1614 		if (unp2->unp_addr != NULL) {
1615 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1616 			unp3->unp_addr = (struct sockaddr_un *) sa;
1617 			sa = NULL;
1618 		}
1619 
1620 		unp_copy_peercred(td, unp3, unp, unp2);
1621 
1622 		UNP_PCB_UNLOCK(unp2);
1623 		unp2 = unp3;
1624 
1625 		/*
1626 		 * It is safe to block on the PCB lock here since unp2 is
1627 		 * nascent and cannot be connected to any other sockets.
1628 		 */
1629 		UNP_PCB_LOCK(unp);
1630 #ifdef MAC
1631 		mac_socketpeer_set_from_socket(so, so2);
1632 		mac_socketpeer_set_from_socket(so2, so);
1633 #endif
1634 	} else {
1635 		unp_pcb_lock_pair(unp, unp2);
1636 	}
1637 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1638 	    sotounpcb(so2) == unp2,
1639 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1640 	error = unp_connect2(so, so2, PRU_CONNECT);
1641 	unp_pcb_unlock_pair(unp, unp2);
1642 bad2:
1643 	mtx_unlock(vplock);
1644 bad:
1645 	if (vp != NULL) {
1646 		vput(vp);
1647 	}
1648 	free(sa, M_SONAME);
1649 	UNP_PCB_LOCK(unp);
1650 	KASSERT((unp->unp_flags & UNP_CONNECTING) != 0,
1651 	    ("%s: unp %p has UNP_CONNECTING clear", __func__, unp));
1652 	unp->unp_flags &= ~UNP_CONNECTING;
1653 	UNP_PCB_UNLOCK(unp);
1654 	return (error);
1655 }
1656 
1657 /*
1658  * Set socket peer credentials at connection time.
1659  *
1660  * The client's PCB credentials are copied from its process structure.  The
1661  * server's PCB credentials are copied from the socket on which it called
1662  * listen(2).  uipc_listen cached that process's credentials at the time.
1663  */
1664 void
1665 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1666     struct unpcb *server_unp, struct unpcb *listen_unp)
1667 {
1668 	cru2xt(td, &client_unp->unp_peercred);
1669 	client_unp->unp_flags |= UNP_HAVEPC;
1670 
1671 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1672 	    sizeof(server_unp->unp_peercred));
1673 	server_unp->unp_flags |= UNP_HAVEPC;
1674 	client_unp->unp_flags |= (listen_unp->unp_flags & UNP_WANTCRED_MASK);
1675 }
1676 
1677 static int
1678 unp_connect2(struct socket *so, struct socket *so2, int req)
1679 {
1680 	struct unpcb *unp;
1681 	struct unpcb *unp2;
1682 
1683 	unp = sotounpcb(so);
1684 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1685 	unp2 = sotounpcb(so2);
1686 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1687 
1688 	UNP_PCB_LOCK_ASSERT(unp);
1689 	UNP_PCB_LOCK_ASSERT(unp2);
1690 	KASSERT(unp->unp_conn == NULL,
1691 	    ("%s: socket %p is already connected", __func__, unp));
1692 
1693 	if (so2->so_type != so->so_type)
1694 		return (EPROTOTYPE);
1695 	unp->unp_conn = unp2;
1696 	unp_pcb_hold(unp2);
1697 	unp_pcb_hold(unp);
1698 	switch (so->so_type) {
1699 	case SOCK_DGRAM:
1700 		UNP_REF_LIST_LOCK();
1701 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1702 		UNP_REF_LIST_UNLOCK();
1703 		soisconnected(so);
1704 		break;
1705 
1706 	case SOCK_STREAM:
1707 	case SOCK_SEQPACKET:
1708 		KASSERT(unp2->unp_conn == NULL,
1709 		    ("%s: socket %p is already connected", __func__, unp2));
1710 		unp2->unp_conn = unp;
1711 		if (req == PRU_CONNECT &&
1712 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1713 			soisconnecting(so);
1714 		else
1715 			soisconnected(so);
1716 		soisconnected(so2);
1717 		break;
1718 
1719 	default:
1720 		panic("unp_connect2");
1721 	}
1722 	return (0);
1723 }
1724 
1725 static void
1726 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1727 {
1728 	struct socket *so, *so2;
1729 #ifdef INVARIANTS
1730 	struct unpcb *unptmp;
1731 #endif
1732 
1733 	UNP_PCB_LOCK_ASSERT(unp);
1734 	UNP_PCB_LOCK_ASSERT(unp2);
1735 	KASSERT(unp->unp_conn == unp2,
1736 	    ("%s: unpcb %p is not connected to %p", __func__, unp, unp2));
1737 
1738 	unp->unp_conn = NULL;
1739 	so = unp->unp_socket;
1740 	so2 = unp2->unp_socket;
1741 	switch (unp->unp_socket->so_type) {
1742 	case SOCK_DGRAM:
1743 		UNP_REF_LIST_LOCK();
1744 #ifdef INVARIANTS
1745 		LIST_FOREACH(unptmp, &unp2->unp_refs, unp_reflink) {
1746 			if (unptmp == unp)
1747 				break;
1748 		}
1749 		KASSERT(unptmp != NULL,
1750 		    ("%s: %p not found in reflist of %p", __func__, unp, unp2));
1751 #endif
1752 		LIST_REMOVE(unp, unp_reflink);
1753 		UNP_REF_LIST_UNLOCK();
1754 		if (so) {
1755 			SOCK_LOCK(so);
1756 			so->so_state &= ~SS_ISCONNECTED;
1757 			SOCK_UNLOCK(so);
1758 		}
1759 		break;
1760 
1761 	case SOCK_STREAM:
1762 	case SOCK_SEQPACKET:
1763 		if (so)
1764 			soisdisconnected(so);
1765 		MPASS(unp2->unp_conn == unp);
1766 		unp2->unp_conn = NULL;
1767 		if (so2)
1768 			soisdisconnected(so2);
1769 		break;
1770 	}
1771 
1772 	if (unp == unp2) {
1773 		unp_pcb_rele_notlast(unp);
1774 		if (!unp_pcb_rele(unp))
1775 			UNP_PCB_UNLOCK(unp);
1776 	} else {
1777 		if (!unp_pcb_rele(unp))
1778 			UNP_PCB_UNLOCK(unp);
1779 		if (!unp_pcb_rele(unp2))
1780 			UNP_PCB_UNLOCK(unp2);
1781 	}
1782 }
1783 
1784 /*
1785  * unp_pcblist() walks the global list of struct unpcb's to generate a
1786  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1787  * sequentially, validating the generation number on each to see if it has
1788  * been detached.  All of this is necessary because copyout() may sleep on
1789  * disk I/O.
1790  */
1791 static int
1792 unp_pcblist(SYSCTL_HANDLER_ARGS)
1793 {
1794 	struct unpcb *unp, **unp_list;
1795 	unp_gen_t gencnt;
1796 	struct xunpgen *xug;
1797 	struct unp_head *head;
1798 	struct xunpcb *xu;
1799 	u_int i;
1800 	int error, n;
1801 
1802 	switch ((intptr_t)arg1) {
1803 	case SOCK_STREAM:
1804 		head = &unp_shead;
1805 		break;
1806 
1807 	case SOCK_DGRAM:
1808 		head = &unp_dhead;
1809 		break;
1810 
1811 	case SOCK_SEQPACKET:
1812 		head = &unp_sphead;
1813 		break;
1814 
1815 	default:
1816 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1817 	}
1818 
1819 	/*
1820 	 * The process of preparing the PCB list is too time-consuming and
1821 	 * resource-intensive to repeat twice on every request.
1822 	 */
1823 	if (req->oldptr == NULL) {
1824 		n = unp_count;
1825 		req->oldidx = 2 * (sizeof *xug)
1826 			+ (n + n/8) * sizeof(struct xunpcb);
1827 		return (0);
1828 	}
1829 
1830 	if (req->newptr != NULL)
1831 		return (EPERM);
1832 
1833 	/*
1834 	 * OK, now we're committed to doing something.
1835 	 */
1836 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1837 	UNP_LINK_RLOCK();
1838 	gencnt = unp_gencnt;
1839 	n = unp_count;
1840 	UNP_LINK_RUNLOCK();
1841 
1842 	xug->xug_len = sizeof *xug;
1843 	xug->xug_count = n;
1844 	xug->xug_gen = gencnt;
1845 	xug->xug_sogen = so_gencnt;
1846 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1847 	if (error) {
1848 		free(xug, M_TEMP);
1849 		return (error);
1850 	}
1851 
1852 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1853 
1854 	UNP_LINK_RLOCK();
1855 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1856 	     unp = LIST_NEXT(unp, unp_link)) {
1857 		UNP_PCB_LOCK(unp);
1858 		if (unp->unp_gencnt <= gencnt) {
1859 			if (cr_cansee(req->td->td_ucred,
1860 			    unp->unp_socket->so_cred)) {
1861 				UNP_PCB_UNLOCK(unp);
1862 				continue;
1863 			}
1864 			unp_list[i++] = unp;
1865 			unp_pcb_hold(unp);
1866 		}
1867 		UNP_PCB_UNLOCK(unp);
1868 	}
1869 	UNP_LINK_RUNLOCK();
1870 	n = i;			/* In case we lost some during malloc. */
1871 
1872 	error = 0;
1873 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1874 	for (i = 0; i < n; i++) {
1875 		unp = unp_list[i];
1876 		UNP_PCB_LOCK(unp);
1877 		if (unp_pcb_rele(unp))
1878 			continue;
1879 
1880 		if (unp->unp_gencnt <= gencnt) {
1881 			xu->xu_len = sizeof *xu;
1882 			xu->xu_unpp = (uintptr_t)unp;
1883 			/*
1884 			 * XXX - need more locking here to protect against
1885 			 * connect/disconnect races for SMP.
1886 			 */
1887 			if (unp->unp_addr != NULL)
1888 				bcopy(unp->unp_addr, &xu->xu_addr,
1889 				      unp->unp_addr->sun_len);
1890 			else
1891 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1892 			if (unp->unp_conn != NULL &&
1893 			    unp->unp_conn->unp_addr != NULL)
1894 				bcopy(unp->unp_conn->unp_addr,
1895 				      &xu->xu_caddr,
1896 				      unp->unp_conn->unp_addr->sun_len);
1897 			else
1898 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1899 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1900 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1901 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1902 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1903 			xu->unp_gencnt = unp->unp_gencnt;
1904 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1905 			UNP_PCB_UNLOCK(unp);
1906 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1907 		} else {
1908 			UNP_PCB_UNLOCK(unp);
1909 		}
1910 	}
1911 	free(xu, M_TEMP);
1912 	if (!error) {
1913 		/*
1914 		 * Give the user an updated idea of our state.  If the
1915 		 * generation differs from what we told her before, she knows
1916 		 * that something happened while we were processing this
1917 		 * request, and it might be necessary to retry.
1918 		 */
1919 		xug->xug_gen = unp_gencnt;
1920 		xug->xug_sogen = so_gencnt;
1921 		xug->xug_count = unp_count;
1922 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1923 	}
1924 	free(unp_list, M_TEMP);
1925 	free(xug, M_TEMP);
1926 	return (error);
1927 }
1928 
1929 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1930     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1931     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1932     "List of active local datagram sockets");
1933 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1934     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1935     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1936     "List of active local stream sockets");
1937 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1938     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1939     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1940     "List of active local seqpacket sockets");
1941 
1942 static void
1943 unp_shutdown(struct unpcb *unp)
1944 {
1945 	struct unpcb *unp2;
1946 	struct socket *so;
1947 
1948 	UNP_PCB_LOCK_ASSERT(unp);
1949 
1950 	unp2 = unp->unp_conn;
1951 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1952 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1953 		so = unp2->unp_socket;
1954 		if (so != NULL)
1955 			socantrcvmore(so);
1956 	}
1957 }
1958 
1959 static void
1960 unp_drop(struct unpcb *unp)
1961 {
1962 	struct socket *so = unp->unp_socket;
1963 	struct unpcb *unp2;
1964 
1965 	/*
1966 	 * Regardless of whether the socket's peer dropped the connection
1967 	 * with this socket by aborting or disconnecting, POSIX requires
1968 	 * that ECONNRESET is returned.
1969 	 */
1970 
1971 	UNP_PCB_LOCK(unp);
1972 	if (so)
1973 		so->so_error = ECONNRESET;
1974 	if ((unp2 = unp_pcb_lock_peer(unp)) != NULL) {
1975 		/* Last reference dropped in unp_disconnect(). */
1976 		unp_pcb_rele_notlast(unp);
1977 		unp_disconnect(unp, unp2);
1978 	} else if (!unp_pcb_rele(unp)) {
1979 		UNP_PCB_UNLOCK(unp);
1980 	}
1981 }
1982 
1983 static void
1984 unp_freerights(struct filedescent **fdep, int fdcount)
1985 {
1986 	struct file *fp;
1987 	int i;
1988 
1989 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1990 
1991 	for (i = 0; i < fdcount; i++) {
1992 		fp = fdep[i]->fde_file;
1993 		filecaps_free(&fdep[i]->fde_caps);
1994 		unp_discard(fp);
1995 	}
1996 	free(fdep[0], M_FILECAPS);
1997 }
1998 
1999 static int
2000 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2001 {
2002 	struct thread *td = curthread;		/* XXX */
2003 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2004 	int i;
2005 	int *fdp;
2006 	struct filedesc *fdesc = td->td_proc->p_fd;
2007 	struct filedescent **fdep;
2008 	void *data;
2009 	socklen_t clen = control->m_len, datalen;
2010 	int error, newfds;
2011 	u_int newlen;
2012 
2013 	UNP_LINK_UNLOCK_ASSERT();
2014 
2015 	error = 0;
2016 	if (controlp != NULL) /* controlp == NULL => free control messages */
2017 		*controlp = NULL;
2018 	while (cm != NULL) {
2019 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2020 			error = EINVAL;
2021 			break;
2022 		}
2023 		data = CMSG_DATA(cm);
2024 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2025 		if (cm->cmsg_level == SOL_SOCKET
2026 		    && cm->cmsg_type == SCM_RIGHTS) {
2027 			newfds = datalen / sizeof(*fdep);
2028 			if (newfds == 0)
2029 				goto next;
2030 			fdep = data;
2031 
2032 			/* If we're not outputting the descriptors free them. */
2033 			if (error || controlp == NULL) {
2034 				unp_freerights(fdep, newfds);
2035 				goto next;
2036 			}
2037 			FILEDESC_XLOCK(fdesc);
2038 
2039 			/*
2040 			 * Now change each pointer to an fd in the global
2041 			 * table to an integer that is the index to the local
2042 			 * fd table entry that we set up to point to the
2043 			 * global one we are transferring.
2044 			 */
2045 			newlen = newfds * sizeof(int);
2046 			*controlp = sbcreatecontrol(NULL, newlen,
2047 			    SCM_RIGHTS, SOL_SOCKET);
2048 			if (*controlp == NULL) {
2049 				FILEDESC_XUNLOCK(fdesc);
2050 				error = E2BIG;
2051 				unp_freerights(fdep, newfds);
2052 				goto next;
2053 			}
2054 
2055 			fdp = (int *)
2056 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2057 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2058 				FILEDESC_XUNLOCK(fdesc);
2059 				error = EMSGSIZE;
2060 				unp_freerights(fdep, newfds);
2061 				m_freem(*controlp);
2062 				*controlp = NULL;
2063 				goto next;
2064 			}
2065 			for (i = 0; i < newfds; i++, fdp++) {
2066 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2067 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2068 				    &fdep[i]->fde_caps);
2069 				unp_externalize_fp(fdep[i]->fde_file);
2070 			}
2071 
2072 			/*
2073 			 * The new type indicates that the mbuf data refers to
2074 			 * kernel resources that may need to be released before
2075 			 * the mbuf is freed.
2076 			 */
2077 			m_chtype(*controlp, MT_EXTCONTROL);
2078 			FILEDESC_XUNLOCK(fdesc);
2079 			free(fdep[0], M_FILECAPS);
2080 		} else {
2081 			/* We can just copy anything else across. */
2082 			if (error || controlp == NULL)
2083 				goto next;
2084 			*controlp = sbcreatecontrol(NULL, datalen,
2085 			    cm->cmsg_type, cm->cmsg_level);
2086 			if (*controlp == NULL) {
2087 				error = ENOBUFS;
2088 				goto next;
2089 			}
2090 			bcopy(data,
2091 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2092 			    datalen);
2093 		}
2094 		controlp = &(*controlp)->m_next;
2095 
2096 next:
2097 		if (CMSG_SPACE(datalen) < clen) {
2098 			clen -= CMSG_SPACE(datalen);
2099 			cm = (struct cmsghdr *)
2100 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2101 		} else {
2102 			clen = 0;
2103 			cm = NULL;
2104 		}
2105 	}
2106 
2107 	m_freem(control);
2108 	return (error);
2109 }
2110 
2111 static void
2112 unp_zone_change(void *tag)
2113 {
2114 
2115 	uma_zone_set_max(unp_zone, maxsockets);
2116 }
2117 
2118 #ifdef INVARIANTS
2119 static void
2120 unp_zdtor(void *mem, int size __unused, void *arg __unused)
2121 {
2122 	struct unpcb *unp;
2123 
2124 	unp = mem;
2125 
2126 	KASSERT(LIST_EMPTY(&unp->unp_refs),
2127 	    ("%s: unpcb %p has lingering refs", __func__, unp));
2128 	KASSERT(unp->unp_socket == NULL,
2129 	    ("%s: unpcb %p has socket backpointer", __func__, unp));
2130 	KASSERT(unp->unp_vnode == NULL,
2131 	    ("%s: unpcb %p has vnode references", __func__, unp));
2132 	KASSERT(unp->unp_conn == NULL,
2133 	    ("%s: unpcb %p is still connected", __func__, unp));
2134 	KASSERT(unp->unp_addr == NULL,
2135 	    ("%s: unpcb %p has leaked addr", __func__, unp));
2136 }
2137 #endif
2138 
2139 static void
2140 unp_init(void)
2141 {
2142 	uma_dtor dtor;
2143 
2144 #ifdef VIMAGE
2145 	if (!IS_DEFAULT_VNET(curvnet))
2146 		return;
2147 #endif
2148 
2149 #ifdef INVARIANTS
2150 	dtor = unp_zdtor;
2151 #else
2152 	dtor = NULL;
2153 #endif
2154 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, dtor,
2155 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2156 	uma_zone_set_max(unp_zone, maxsockets);
2157 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2158 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2159 	    NULL, EVENTHANDLER_PRI_ANY);
2160 	LIST_INIT(&unp_dhead);
2161 	LIST_INIT(&unp_shead);
2162 	LIST_INIT(&unp_sphead);
2163 	SLIST_INIT(&unp_defers);
2164 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2165 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2166 	UNP_LINK_LOCK_INIT();
2167 	UNP_DEFERRED_LOCK_INIT();
2168 }
2169 
2170 static void
2171 unp_internalize_cleanup_rights(struct mbuf *control)
2172 {
2173 	struct cmsghdr *cp;
2174 	struct mbuf *m;
2175 	void *data;
2176 	socklen_t datalen;
2177 
2178 	for (m = control; m != NULL; m = m->m_next) {
2179 		cp = mtod(m, struct cmsghdr *);
2180 		if (cp->cmsg_level != SOL_SOCKET ||
2181 		    cp->cmsg_type != SCM_RIGHTS)
2182 			continue;
2183 		data = CMSG_DATA(cp);
2184 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2185 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2186 	}
2187 }
2188 
2189 static int
2190 unp_internalize(struct mbuf **controlp, struct thread *td)
2191 {
2192 	struct mbuf *control, **initial_controlp;
2193 	struct proc *p;
2194 	struct filedesc *fdesc;
2195 	struct bintime *bt;
2196 	struct cmsghdr *cm;
2197 	struct cmsgcred *cmcred;
2198 	struct filedescent *fde, **fdep, *fdev;
2199 	struct file *fp;
2200 	struct timeval *tv;
2201 	struct timespec *ts;
2202 	void *data;
2203 	socklen_t clen, datalen;
2204 	int i, j, error, *fdp, oldfds;
2205 	u_int newlen;
2206 
2207 	UNP_LINK_UNLOCK_ASSERT();
2208 
2209 	p = td->td_proc;
2210 	fdesc = p->p_fd;
2211 	error = 0;
2212 	control = *controlp;
2213 	clen = control->m_len;
2214 	*controlp = NULL;
2215 	initial_controlp = controlp;
2216 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2217 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2218 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2219 			error = EINVAL;
2220 			goto out;
2221 		}
2222 		data = CMSG_DATA(cm);
2223 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2224 
2225 		switch (cm->cmsg_type) {
2226 		/*
2227 		 * Fill in credential information.
2228 		 */
2229 		case SCM_CREDS:
2230 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2231 			    SCM_CREDS, SOL_SOCKET);
2232 			if (*controlp == NULL) {
2233 				error = ENOBUFS;
2234 				goto out;
2235 			}
2236 			cmcred = (struct cmsgcred *)
2237 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2238 			cmcred->cmcred_pid = p->p_pid;
2239 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2240 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2241 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2242 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2243 			    CMGROUP_MAX);
2244 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2245 				cmcred->cmcred_groups[i] =
2246 				    td->td_ucred->cr_groups[i];
2247 			break;
2248 
2249 		case SCM_RIGHTS:
2250 			oldfds = datalen / sizeof (int);
2251 			if (oldfds == 0)
2252 				break;
2253 			/*
2254 			 * Check that all the FDs passed in refer to legal
2255 			 * files.  If not, reject the entire operation.
2256 			 */
2257 			fdp = data;
2258 			FILEDESC_SLOCK(fdesc);
2259 			for (i = 0; i < oldfds; i++, fdp++) {
2260 				fp = fget_locked(fdesc, *fdp);
2261 				if (fp == NULL) {
2262 					FILEDESC_SUNLOCK(fdesc);
2263 					error = EBADF;
2264 					goto out;
2265 				}
2266 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2267 					FILEDESC_SUNLOCK(fdesc);
2268 					error = EOPNOTSUPP;
2269 					goto out;
2270 				}
2271 			}
2272 
2273 			/*
2274 			 * Now replace the integer FDs with pointers to the
2275 			 * file structure and capability rights.
2276 			 */
2277 			newlen = oldfds * sizeof(fdep[0]);
2278 			*controlp = sbcreatecontrol(NULL, newlen,
2279 			    SCM_RIGHTS, SOL_SOCKET);
2280 			if (*controlp == NULL) {
2281 				FILEDESC_SUNLOCK(fdesc);
2282 				error = E2BIG;
2283 				goto out;
2284 			}
2285 			fdp = data;
2286 			for (i = 0; i < oldfds; i++, fdp++) {
2287 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2288 					fdp = data;
2289 					for (j = 0; j < i; j++, fdp++) {
2290 						fdrop(fdesc->fd_ofiles[*fdp].
2291 						    fde_file, td);
2292 					}
2293 					FILEDESC_SUNLOCK(fdesc);
2294 					error = EBADF;
2295 					goto out;
2296 				}
2297 			}
2298 			fdp = data;
2299 			fdep = (struct filedescent **)
2300 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2301 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2302 			    M_WAITOK);
2303 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2304 				fde = &fdesc->fd_ofiles[*fdp];
2305 				fdep[i] = fdev;
2306 				fdep[i]->fde_file = fde->fde_file;
2307 				filecaps_copy(&fde->fde_caps,
2308 				    &fdep[i]->fde_caps, true);
2309 				unp_internalize_fp(fdep[i]->fde_file);
2310 			}
2311 			FILEDESC_SUNLOCK(fdesc);
2312 			break;
2313 
2314 		case SCM_TIMESTAMP:
2315 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2316 			    SCM_TIMESTAMP, SOL_SOCKET);
2317 			if (*controlp == NULL) {
2318 				error = ENOBUFS;
2319 				goto out;
2320 			}
2321 			tv = (struct timeval *)
2322 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2323 			microtime(tv);
2324 			break;
2325 
2326 		case SCM_BINTIME:
2327 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2328 			    SCM_BINTIME, SOL_SOCKET);
2329 			if (*controlp == NULL) {
2330 				error = ENOBUFS;
2331 				goto out;
2332 			}
2333 			bt = (struct bintime *)
2334 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2335 			bintime(bt);
2336 			break;
2337 
2338 		case SCM_REALTIME:
2339 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2340 			    SCM_REALTIME, SOL_SOCKET);
2341 			if (*controlp == NULL) {
2342 				error = ENOBUFS;
2343 				goto out;
2344 			}
2345 			ts = (struct timespec *)
2346 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2347 			nanotime(ts);
2348 			break;
2349 
2350 		case SCM_MONOTONIC:
2351 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2352 			    SCM_MONOTONIC, SOL_SOCKET);
2353 			if (*controlp == NULL) {
2354 				error = ENOBUFS;
2355 				goto out;
2356 			}
2357 			ts = (struct timespec *)
2358 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2359 			nanouptime(ts);
2360 			break;
2361 
2362 		default:
2363 			error = EINVAL;
2364 			goto out;
2365 		}
2366 
2367 		if (*controlp != NULL)
2368 			controlp = &(*controlp)->m_next;
2369 		if (CMSG_SPACE(datalen) < clen) {
2370 			clen -= CMSG_SPACE(datalen);
2371 			cm = (struct cmsghdr *)
2372 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2373 		} else {
2374 			clen = 0;
2375 			cm = NULL;
2376 		}
2377 	}
2378 
2379 out:
2380 	if (error != 0 && initial_controlp != NULL)
2381 		unp_internalize_cleanup_rights(*initial_controlp);
2382 	m_freem(control);
2383 	return (error);
2384 }
2385 
2386 static struct mbuf *
2387 unp_addsockcred(struct thread *td, struct mbuf *control, int mode)
2388 {
2389 	struct mbuf *m, *n, *n_prev;
2390 	const struct cmsghdr *cm;
2391 	int ngroups, i, cmsgtype;
2392 	size_t ctrlsz;
2393 
2394 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2395 	if (mode & UNP_WANTCRED_ALWAYS) {
2396 		ctrlsz = SOCKCRED2SIZE(ngroups);
2397 		cmsgtype = SCM_CREDS2;
2398 	} else {
2399 		ctrlsz = SOCKCREDSIZE(ngroups);
2400 		cmsgtype = SCM_CREDS;
2401 	}
2402 
2403 	m = sbcreatecontrol(NULL, ctrlsz, cmsgtype, SOL_SOCKET);
2404 	if (m == NULL)
2405 		return (control);
2406 
2407 	if (mode & UNP_WANTCRED_ALWAYS) {
2408 		struct sockcred2 *sc;
2409 
2410 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2411 		sc->sc_version = 0;
2412 		sc->sc_pid = td->td_proc->p_pid;
2413 		sc->sc_uid = td->td_ucred->cr_ruid;
2414 		sc->sc_euid = td->td_ucred->cr_uid;
2415 		sc->sc_gid = td->td_ucred->cr_rgid;
2416 		sc->sc_egid = td->td_ucred->cr_gid;
2417 		sc->sc_ngroups = ngroups;
2418 		for (i = 0; i < sc->sc_ngroups; i++)
2419 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2420 	} else {
2421 		struct sockcred *sc;
2422 
2423 		sc = (void *)CMSG_DATA(mtod(m, struct cmsghdr *));
2424 		sc->sc_uid = td->td_ucred->cr_ruid;
2425 		sc->sc_euid = td->td_ucred->cr_uid;
2426 		sc->sc_gid = td->td_ucred->cr_rgid;
2427 		sc->sc_egid = td->td_ucred->cr_gid;
2428 		sc->sc_ngroups = ngroups;
2429 		for (i = 0; i < sc->sc_ngroups; i++)
2430 			sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2431 	}
2432 
2433 	/*
2434 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2435 	 * created SCM_CREDS control message (struct sockcred) has another
2436 	 * format.
2437 	 */
2438 	if (control != NULL && cmsgtype == SCM_CREDS)
2439 		for (n = control, n_prev = NULL; n != NULL;) {
2440 			cm = mtod(n, struct cmsghdr *);
2441     			if (cm->cmsg_level == SOL_SOCKET &&
2442 			    cm->cmsg_type == SCM_CREDS) {
2443     				if (n_prev == NULL)
2444 					control = n->m_next;
2445 				else
2446 					n_prev->m_next = n->m_next;
2447 				n = m_free(n);
2448 			} else {
2449 				n_prev = n;
2450 				n = n->m_next;
2451 			}
2452 		}
2453 
2454 	/* Prepend it to the head. */
2455 	m->m_next = control;
2456 	return (m);
2457 }
2458 
2459 static struct unpcb *
2460 fptounp(struct file *fp)
2461 {
2462 	struct socket *so;
2463 
2464 	if (fp->f_type != DTYPE_SOCKET)
2465 		return (NULL);
2466 	if ((so = fp->f_data) == NULL)
2467 		return (NULL);
2468 	if (so->so_proto->pr_domain != &localdomain)
2469 		return (NULL);
2470 	return sotounpcb(so);
2471 }
2472 
2473 static void
2474 unp_discard(struct file *fp)
2475 {
2476 	struct unp_defer *dr;
2477 
2478 	if (unp_externalize_fp(fp)) {
2479 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2480 		dr->ud_fp = fp;
2481 		UNP_DEFERRED_LOCK();
2482 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2483 		UNP_DEFERRED_UNLOCK();
2484 		atomic_add_int(&unp_defers_count, 1);
2485 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2486 	} else
2487 		(void) closef(fp, (struct thread *)NULL);
2488 }
2489 
2490 static void
2491 unp_process_defers(void *arg __unused, int pending)
2492 {
2493 	struct unp_defer *dr;
2494 	SLIST_HEAD(, unp_defer) drl;
2495 	int count;
2496 
2497 	SLIST_INIT(&drl);
2498 	for (;;) {
2499 		UNP_DEFERRED_LOCK();
2500 		if (SLIST_FIRST(&unp_defers) == NULL) {
2501 			UNP_DEFERRED_UNLOCK();
2502 			break;
2503 		}
2504 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2505 		UNP_DEFERRED_UNLOCK();
2506 		count = 0;
2507 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2508 			SLIST_REMOVE_HEAD(&drl, ud_link);
2509 			closef(dr->ud_fp, NULL);
2510 			free(dr, M_TEMP);
2511 			count++;
2512 		}
2513 		atomic_add_int(&unp_defers_count, -count);
2514 	}
2515 }
2516 
2517 static void
2518 unp_internalize_fp(struct file *fp)
2519 {
2520 	struct unpcb *unp;
2521 
2522 	UNP_LINK_WLOCK();
2523 	if ((unp = fptounp(fp)) != NULL) {
2524 		unp->unp_file = fp;
2525 		unp->unp_msgcount++;
2526 	}
2527 	unp_rights++;
2528 	UNP_LINK_WUNLOCK();
2529 }
2530 
2531 static int
2532 unp_externalize_fp(struct file *fp)
2533 {
2534 	struct unpcb *unp;
2535 	int ret;
2536 
2537 	UNP_LINK_WLOCK();
2538 	if ((unp = fptounp(fp)) != NULL) {
2539 		unp->unp_msgcount--;
2540 		ret = 1;
2541 	} else
2542 		ret = 0;
2543 	unp_rights--;
2544 	UNP_LINK_WUNLOCK();
2545 	return (ret);
2546 }
2547 
2548 /*
2549  * unp_defer indicates whether additional work has been defered for a future
2550  * pass through unp_gc().  It is thread local and does not require explicit
2551  * synchronization.
2552  */
2553 static int	unp_marked;
2554 
2555 static void
2556 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2557 {
2558 	struct unpcb *unp;
2559 	struct file *fp;
2560 	int i;
2561 
2562 	/*
2563 	 * This function can only be called from the gc task.
2564 	 */
2565 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2566 	    ("%s: not on gc callout", __func__));
2567 	UNP_LINK_LOCK_ASSERT();
2568 
2569 	for (i = 0; i < fdcount; i++) {
2570 		fp = fdep[i]->fde_file;
2571 		if ((unp = fptounp(fp)) == NULL)
2572 			continue;
2573 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2574 			continue;
2575 		unp->unp_gcrefs--;
2576 	}
2577 }
2578 
2579 static void
2580 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2581 {
2582 	struct unpcb *unp;
2583 	struct file *fp;
2584 	int i;
2585 
2586 	/*
2587 	 * This function can only be called from the gc task.
2588 	 */
2589 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2590 	    ("%s: not on gc callout", __func__));
2591 	UNP_LINK_LOCK_ASSERT();
2592 
2593 	for (i = 0; i < fdcount; i++) {
2594 		fp = fdep[i]->fde_file;
2595 		if ((unp = fptounp(fp)) == NULL)
2596 			continue;
2597 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2598 			continue;
2599 		unp->unp_gcrefs++;
2600 		unp_marked++;
2601 	}
2602 }
2603 
2604 static void
2605 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2606 {
2607 	struct socket *so, *soa;
2608 
2609 	so = unp->unp_socket;
2610 	SOCK_LOCK(so);
2611 	if (SOLISTENING(so)) {
2612 		/*
2613 		 * Mark all sockets in our accept queue.
2614 		 */
2615 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2616 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2617 				continue;
2618 			SOCKBUF_LOCK(&soa->so_rcv);
2619 			unp_scan(soa->so_rcv.sb_mb, op);
2620 			SOCKBUF_UNLOCK(&soa->so_rcv);
2621 		}
2622 	} else {
2623 		/*
2624 		 * Mark all sockets we reference with RIGHTS.
2625 		 */
2626 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2627 			SOCKBUF_LOCK(&so->so_rcv);
2628 			unp_scan(so->so_rcv.sb_mb, op);
2629 			SOCKBUF_UNLOCK(&so->so_rcv);
2630 		}
2631 	}
2632 	SOCK_UNLOCK(so);
2633 }
2634 
2635 static int unp_recycled;
2636 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2637     "Number of unreachable sockets claimed by the garbage collector.");
2638 
2639 static int unp_taskcount;
2640 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2641     "Number of times the garbage collector has run.");
2642 
2643 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2644     "Number of active local sockets.");
2645 
2646 static void
2647 unp_gc(__unused void *arg, int pending)
2648 {
2649 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2650 				    NULL };
2651 	struct unp_head **head;
2652 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2653 	struct file *f, **unref;
2654 	struct unpcb *unp, *unptmp;
2655 	int i, total, unp_unreachable;
2656 
2657 	LIST_INIT(&unp_deadhead);
2658 	unp_taskcount++;
2659 	UNP_LINK_RLOCK();
2660 	/*
2661 	 * First determine which sockets may be in cycles.
2662 	 */
2663 	unp_unreachable = 0;
2664 
2665 	for (head = heads; *head != NULL; head++)
2666 		LIST_FOREACH(unp, *head, unp_link) {
2667 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2668 			    ("%s: unp %p has unexpected gc flags 0x%x",
2669 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2670 
2671 			f = unp->unp_file;
2672 
2673 			/*
2674 			 * Check for an unreachable socket potentially in a
2675 			 * cycle.  It must be in a queue as indicated by
2676 			 * msgcount, and this must equal the file reference
2677 			 * count.  Note that when msgcount is 0 the file is
2678 			 * NULL.
2679 			 */
2680 			if (f != NULL && unp->unp_msgcount != 0 &&
2681 			    refcount_load(&f->f_count) == unp->unp_msgcount) {
2682 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2683 				unp->unp_gcflag |= UNPGC_DEAD;
2684 				unp->unp_gcrefs = unp->unp_msgcount;
2685 				unp_unreachable++;
2686 			}
2687 		}
2688 
2689 	/*
2690 	 * Scan all sockets previously marked as potentially being in a cycle
2691 	 * and remove the references each socket holds on any UNPGC_DEAD
2692 	 * sockets in its queue.  After this step, all remaining references on
2693 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2694 	 */
2695 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2696 		unp_gc_scan(unp, unp_remove_dead_ref);
2697 
2698 	/*
2699 	 * If a socket still has a non-negative refcount, it cannot be in a
2700 	 * cycle.  In this case increment refcount of all children iteratively.
2701 	 * Stop the scan once we do a complete loop without discovering
2702 	 * a new reachable socket.
2703 	 */
2704 	do {
2705 		unp_marked = 0;
2706 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2707 			if (unp->unp_gcrefs > 0) {
2708 				unp->unp_gcflag &= ~UNPGC_DEAD;
2709 				LIST_REMOVE(unp, unp_dead);
2710 				KASSERT(unp_unreachable > 0,
2711 				    ("%s: unp_unreachable underflow.",
2712 				    __func__));
2713 				unp_unreachable--;
2714 				unp_gc_scan(unp, unp_restore_undead_ref);
2715 			}
2716 	} while (unp_marked);
2717 
2718 	UNP_LINK_RUNLOCK();
2719 
2720 	if (unp_unreachable == 0)
2721 		return;
2722 
2723 	/*
2724 	 * Allocate space for a local array of dead unpcbs.
2725 	 * TODO: can this path be simplified by instead using the local
2726 	 * dead list at unp_deadhead, after taking out references
2727 	 * on the file object and/or unpcb and dropping the link lock?
2728 	 */
2729 	unref = malloc(unp_unreachable * sizeof(struct file *),
2730 	    M_TEMP, M_WAITOK);
2731 
2732 	/*
2733 	 * Iterate looking for sockets which have been specifically marked
2734 	 * as unreachable and store them locally.
2735 	 */
2736 	UNP_LINK_RLOCK();
2737 	total = 0;
2738 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2739 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2740 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2741 		unp->unp_gcflag &= ~UNPGC_DEAD;
2742 		f = unp->unp_file;
2743 		if (unp->unp_msgcount == 0 || f == NULL ||
2744 		    refcount_load(&f->f_count) != unp->unp_msgcount ||
2745 		    !fhold(f))
2746 			continue;
2747 		unref[total++] = f;
2748 		KASSERT(total <= unp_unreachable,
2749 		    ("%s: incorrect unreachable count.", __func__));
2750 	}
2751 	UNP_LINK_RUNLOCK();
2752 
2753 	/*
2754 	 * Now flush all sockets, free'ing rights.  This will free the
2755 	 * struct files associated with these sockets but leave each socket
2756 	 * with one remaining ref.
2757 	 */
2758 	for (i = 0; i < total; i++) {
2759 		struct socket *so;
2760 
2761 		so = unref[i]->f_data;
2762 		CURVNET_SET(so->so_vnet);
2763 		sorflush(so);
2764 		CURVNET_RESTORE();
2765 	}
2766 
2767 	/*
2768 	 * And finally release the sockets so they can be reclaimed.
2769 	 */
2770 	for (i = 0; i < total; i++)
2771 		fdrop(unref[i], NULL);
2772 	unp_recycled += total;
2773 	free(unref, M_TEMP);
2774 }
2775 
2776 static void
2777 unp_dispose_mbuf(struct mbuf *m)
2778 {
2779 
2780 	if (m)
2781 		unp_scan(m, unp_freerights);
2782 }
2783 
2784 /*
2785  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2786  */
2787 static void
2788 unp_dispose(struct socket *so)
2789 {
2790 	struct unpcb *unp;
2791 
2792 	unp = sotounpcb(so);
2793 	UNP_LINK_WLOCK();
2794 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2795 	UNP_LINK_WUNLOCK();
2796 	if (!SOLISTENING(so))
2797 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2798 }
2799 
2800 static void
2801 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2802 {
2803 	struct mbuf *m;
2804 	struct cmsghdr *cm;
2805 	void *data;
2806 	socklen_t clen, datalen;
2807 
2808 	while (m0 != NULL) {
2809 		for (m = m0; m; m = m->m_next) {
2810 			if (m->m_type != MT_CONTROL)
2811 				continue;
2812 
2813 			cm = mtod(m, struct cmsghdr *);
2814 			clen = m->m_len;
2815 
2816 			while (cm != NULL) {
2817 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2818 					break;
2819 
2820 				data = CMSG_DATA(cm);
2821 				datalen = (caddr_t)cm + cm->cmsg_len
2822 				    - (caddr_t)data;
2823 
2824 				if (cm->cmsg_level == SOL_SOCKET &&
2825 				    cm->cmsg_type == SCM_RIGHTS) {
2826 					(*op)(data, datalen /
2827 					    sizeof(struct filedescent *));
2828 				}
2829 
2830 				if (CMSG_SPACE(datalen) < clen) {
2831 					clen -= CMSG_SPACE(datalen);
2832 					cm = (struct cmsghdr *)
2833 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2834 				} else {
2835 					clen = 0;
2836 					cm = NULL;
2837 				}
2838 			}
2839 		}
2840 		m0 = m0->m_nextpkt;
2841 	}
2842 }
2843 
2844 /*
2845  * A helper function called by VFS before socket-type vnode reclamation.
2846  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2847  * use count.
2848  */
2849 void
2850 vfs_unp_reclaim(struct vnode *vp)
2851 {
2852 	struct unpcb *unp;
2853 	int active;
2854 	struct mtx *vplock;
2855 
2856 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2857 	KASSERT(vp->v_type == VSOCK,
2858 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2859 
2860 	active = 0;
2861 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2862 	mtx_lock(vplock);
2863 	VOP_UNP_CONNECT(vp, &unp);
2864 	if (unp == NULL)
2865 		goto done;
2866 	UNP_PCB_LOCK(unp);
2867 	if (unp->unp_vnode == vp) {
2868 		VOP_UNP_DETACH(vp);
2869 		unp->unp_vnode = NULL;
2870 		active = 1;
2871 	}
2872 	UNP_PCB_UNLOCK(unp);
2873  done:
2874 	mtx_unlock(vplock);
2875 	if (active)
2876 		vunref(vp);
2877 }
2878 
2879 #ifdef DDB
2880 static void
2881 db_print_indent(int indent)
2882 {
2883 	int i;
2884 
2885 	for (i = 0; i < indent; i++)
2886 		db_printf(" ");
2887 }
2888 
2889 static void
2890 db_print_unpflags(int unp_flags)
2891 {
2892 	int comma;
2893 
2894 	comma = 0;
2895 	if (unp_flags & UNP_HAVEPC) {
2896 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2897 		comma = 1;
2898 	}
2899 	if (unp_flags & UNP_WANTCRED_ALWAYS) {
2900 		db_printf("%sUNP_WANTCRED_ALWAYS", comma ? ", " : "");
2901 		comma = 1;
2902 	}
2903 	if (unp_flags & UNP_WANTCRED_ONESHOT) {
2904 		db_printf("%sUNP_WANTCRED_ONESHOT", comma ? ", " : "");
2905 		comma = 1;
2906 	}
2907 	if (unp_flags & UNP_CONNWAIT) {
2908 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2909 		comma = 1;
2910 	}
2911 	if (unp_flags & UNP_CONNECTING) {
2912 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2913 		comma = 1;
2914 	}
2915 	if (unp_flags & UNP_BINDING) {
2916 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2917 		comma = 1;
2918 	}
2919 }
2920 
2921 static void
2922 db_print_xucred(int indent, struct xucred *xu)
2923 {
2924 	int comma, i;
2925 
2926 	db_print_indent(indent);
2927 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2928 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2929 	db_print_indent(indent);
2930 	db_printf("cr_groups: ");
2931 	comma = 0;
2932 	for (i = 0; i < xu->cr_ngroups; i++) {
2933 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2934 		comma = 1;
2935 	}
2936 	db_printf("\n");
2937 }
2938 
2939 static void
2940 db_print_unprefs(int indent, struct unp_head *uh)
2941 {
2942 	struct unpcb *unp;
2943 	int counter;
2944 
2945 	counter = 0;
2946 	LIST_FOREACH(unp, uh, unp_reflink) {
2947 		if (counter % 4 == 0)
2948 			db_print_indent(indent);
2949 		db_printf("%p  ", unp);
2950 		if (counter % 4 == 3)
2951 			db_printf("\n");
2952 		counter++;
2953 	}
2954 	if (counter != 0 && counter % 4 != 0)
2955 		db_printf("\n");
2956 }
2957 
2958 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2959 {
2960 	struct unpcb *unp;
2961 
2962         if (!have_addr) {
2963                 db_printf("usage: show unpcb <addr>\n");
2964                 return;
2965         }
2966         unp = (struct unpcb *)addr;
2967 
2968 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2969 	    unp->unp_vnode);
2970 
2971 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2972 	    unp->unp_conn);
2973 
2974 	db_printf("unp_refs:\n");
2975 	db_print_unprefs(2, &unp->unp_refs);
2976 
2977 	/* XXXRW: Would be nice to print the full address, if any. */
2978 	db_printf("unp_addr: %p\n", unp->unp_addr);
2979 
2980 	db_printf("unp_gencnt: %llu\n",
2981 	    (unsigned long long)unp->unp_gencnt);
2982 
2983 	db_printf("unp_flags: %x (", unp->unp_flags);
2984 	db_print_unpflags(unp->unp_flags);
2985 	db_printf(")\n");
2986 
2987 	db_printf("unp_peercred:\n");
2988 	db_print_xucred(2, &unp->unp_peercred);
2989 
2990 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2991 }
2992 #endif
2993