xref: /freebsd/sys/kern/uipc_usrreq.c (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California. All Rights Reserved.
6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7  * Copyright (c) 2018 Matthew Macy
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
34  */
35 
36 /*
37  * UNIX Domain (Local) Sockets
38  *
39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
42  * connected to 0, 1, or many other sockets.  Sockets may be created and
43  * connected in pairs (socketpair(2)), or bound/connected to using the file
44  * system name space.  For most purposes, only the receive socket buffer is
45  * used, as sending on one socket delivers directly to the receive socket
46  * buffer of a second socket.
47  *
48  * The implementation is substantially complicated by the fact that
49  * "ancillary data", such as file descriptors or credentials, may be passed
50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
51  * over other UNIX domain sockets requires the implementation of a simple
52  * garbage collector to find and tear down cycles of disconnected sockets.
53  *
54  * TODO:
55  *	RDM
56  *	rethink name space problems
57  *	need a proper out-of-band
58  */
59 
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD$");
62 
63 #include "opt_ddb.h"
64 
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95 
96 #include <net/vnet.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 #include <security/mac/mac_framework.h>
103 
104 #include <vm/uma.h>
105 
106 MALLOC_DECLARE(M_FILECAPS);
107 
108 /*
109  * Locking key:
110  * (l)	Locked using list lock
111  * (g)	Locked using linkage lock
112  */
113 
114 static uma_zone_t	unp_zone;
115 static unp_gen_t	unp_gencnt;	/* (l) */
116 static u_int		unp_count;	/* (l) Count of local sockets. */
117 static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
118 static int		unp_rights;	/* (g) File descriptors in flight. */
119 static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
120 static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
121 static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
122 
123 struct unp_defer {
124 	SLIST_ENTRY(unp_defer) ud_link;
125 	struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129 
130 static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
131 
132 /*
133  * Garbage collection of cyclic file descriptor/socket references occurs
134  * asynchronously in a taskqueue context in order to avoid recursion and
135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
136  * code.  See unp_gc() for a full description.
137  */
138 static struct timeout_task unp_gc_task;
139 
140 /*
141  * The close of unix domain sockets attached as SCM_RIGHTS is
142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
143  * The attached sockets might have another sockets attached.
144  */
145 static struct task	unp_defer_task;
146 
147 /*
148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149  * stream sockets, although the total for sender and receiver is actually
150  * only PIPSIZ.
151  *
152  * Datagram sockets really use the sendspace as the maximum datagram size,
153  * and don't really want to reserve the sendspace.  Their recvspace should be
154  * large enough for at least one max-size datagram plus address.
155  */
156 #ifndef PIPSIZ
157 #define	PIPSIZ	8192
158 #endif
159 static u_long	unpst_sendspace = PIPSIZ;
160 static u_long	unpst_recvspace = PIPSIZ;
161 static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
162 static u_long	unpdg_recvspace = 4*1024;
163 static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
164 static u_long	unpsp_recvspace = PIPSIZ;
165 
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167     "Local domain");
168 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "SOCK_STREAM");
171 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram,
172     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
173     "SOCK_DGRAM");
174 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket,
175     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "SOCK_SEQPACKET");
177 
178 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
179 	   &unpst_sendspace, 0, "Default stream send space.");
180 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
181 	   &unpst_recvspace, 0, "Default stream receive space.");
182 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
183 	   &unpdg_sendspace, 0, "Default datagram send space.");
184 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
185 	   &unpdg_recvspace, 0, "Default datagram receive space.");
186 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
187 	   &unpsp_sendspace, 0, "Default seqpacket send space.");
188 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
189 	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
190 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
191     "File descriptors in flight.");
192 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
193     &unp_defers_count, 0,
194     "File descriptors deferred to taskqueue for close.");
195 
196 /*
197  * Locking and synchronization:
198  *
199  * Three types of locks exist in the local domain socket implementation: a
200  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
201  * The linkage lock protects the socket count, global generation number,
202  * and stream/datagram global lists.
203  *
204  * The mtxpool lock protects the vnode from being modified while referenced.
205  * Lock ordering requires that it be acquired before any unpcb locks.
206  *
207  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
208  * note is that this includes the unp_conn field. So long as the unpcb lock
209  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
210  * require that the unpcb pointed to by unp_conn remain live in cases where
211  * we need to drop the unp_mtx as when we need to acquire the lock for a
212  * second unpcb the caller must first acquire an additional reference on the
213  * second unpcb and then revalidate any state (typically check that unp_conn
214  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
215  * between unpcbs is the conventional ascending address order. Two helper
216  * routines exist for this:
217  *
218  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
219  *     safe ordering.
220  *
221  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
222  *     when called. If unp is unlocked and unp2 is subsequently freed
223  *     freed will be set to 1.
224  *
225  * The helper routines for references are:
226  *
227  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
228  *     reference to unp.
229  *
230  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
231  *      releasing the last reference, detach must have been called thus
232  *      unp->unp_socket be NULL.
233  *
234  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
235  * allocated in pru_attach() and freed in pru_detach().  The validity of that
236  * pointer is an invariant, so no lock is required to dereference the so_pcb
237  * pointer if a valid socket reference is held by the caller.  In practice,
238  * this is always true during operations performed on a socket.  Each unpcb
239  * has a back-pointer to its socket, unp_socket, which will be stable under
240  * the same circumstances.
241  *
242  * This pointer may only be safely dereferenced as long as a valid reference
243  * to the unpcb is held.  Typically, this reference will be from the socket,
244  * or from another unpcb when the referring unpcb's lock is held (in order
245  * that the reference not be invalidated during use).  For example, to follow
246  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
247  * that detach is not run clearing unp_socket.
248  *
249  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
250  * protocols, bind() is a non-atomic operation, and connect() requires
251  * potential sleeping in the protocol, due to potentially waiting on local or
252  * distributed file systems.  We try to separate "lookup" operations, which
253  * may sleep, and the IPC operations themselves, which typically can occur
254  * with relative atomicity as locks can be held over the entire operation.
255  *
256  * Another tricky issue is simultaneous multi-threaded or multi-process
257  * access to a single UNIX domain socket.  These are handled by the flags
258  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
259  * binding, both of which involve dropping UNIX domain socket locks in order
260  * to perform namei() and other file system operations.
261  */
262 static struct rwlock	unp_link_rwlock;
263 static struct mtx	unp_defers_lock;
264 
265 #define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
266 					    "unp_link_rwlock")
267 
268 #define	UNP_LINK_LOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
269 					    RA_LOCKED)
270 #define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
271 					    RA_UNLOCKED)
272 
273 #define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
274 #define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
275 #define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
276 #define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
277 #define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
278 					    RA_WLOCKED)
279 #define	UNP_LINK_WOWNED()		rw_wowned(&unp_link_rwlock)
280 
281 #define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
282 					    "unp_defer", NULL, MTX_DEF)
283 #define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
284 #define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
285 
286 #define UNP_REF_LIST_LOCK()		UNP_DEFERRED_LOCK();
287 #define UNP_REF_LIST_UNLOCK()		UNP_DEFERRED_UNLOCK();
288 
289 #define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
290 					    "unp", "unp",	\
291 					    MTX_DUPOK|MTX_DEF)
292 #define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
293 #define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
294 #define	UNP_PCB_TRYLOCK(unp)		mtx_trylock(&(unp)->unp_mtx)
295 #define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
296 #define	UNP_PCB_OWNED(unp)		mtx_owned(&(unp)->unp_mtx)
297 #define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
298 #define	UNP_PCB_UNLOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
299 
300 static int	uipc_connect2(struct socket *, struct socket *);
301 static int	uipc_ctloutput(struct socket *, struct sockopt *);
302 static int	unp_connect(struct socket *, struct sockaddr *,
303 		    struct thread *);
304 static int	unp_connectat(int, struct socket *, struct sockaddr *,
305 		    struct thread *);
306 static int	unp_connect2(struct socket *so, struct socket *so2, int);
307 static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
308 static void	unp_dispose(struct socket *so);
309 static void	unp_dispose_mbuf(struct mbuf *);
310 static void	unp_shutdown(struct unpcb *);
311 static void	unp_drop(struct unpcb *);
312 static void	unp_gc(__unused void *, int);
313 static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
314 static void	unp_discard(struct file *);
315 static void	unp_freerights(struct filedescent **, int);
316 static void	unp_init(void);
317 static int	unp_internalize(struct mbuf **, struct thread *);
318 static void	unp_internalize_fp(struct file *);
319 static int	unp_externalize(struct mbuf *, struct mbuf **, int);
320 static int	unp_externalize_fp(struct file *);
321 static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
322 static void	unp_process_defers(void * __unused, int);
323 
324 static void
325 unp_pcb_hold(struct unpcb *unp)
326 {
327 	MPASS(unp->unp_refcount);
328 	refcount_acquire(&unp->unp_refcount);
329 }
330 
331 static int
332 unp_pcb_rele(struct unpcb *unp)
333 {
334 	int freed;
335 
336 	UNP_PCB_LOCK_ASSERT(unp);
337 	MPASS(unp->unp_refcount);
338 	if ((freed = refcount_release(&unp->unp_refcount))) {
339 		/* we got here with having detached? */
340 		MPASS(unp->unp_socket == NULL);
341 		UNP_PCB_UNLOCK(unp);
342 		UNP_PCB_LOCK_DESTROY(unp);
343 		uma_zfree(unp_zone, unp);
344 	}
345 	return (freed);
346 }
347 
348 static void
349 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
350 {
351 	MPASS(unp != unp2);
352 	UNP_PCB_UNLOCK_ASSERT(unp);
353 	UNP_PCB_UNLOCK_ASSERT(unp2);
354 	if ((uintptr_t)unp2 > (uintptr_t)unp) {
355 		UNP_PCB_LOCK(unp);
356 		UNP_PCB_LOCK(unp2);
357 	} else {
358 		UNP_PCB_LOCK(unp2);
359 		UNP_PCB_LOCK(unp);
360 	}
361 }
362 
363 static __noinline void
364 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
365     int *freed)
366 {
367 	struct unpcb *unp2;
368 
369 	unp2 = *unp2p;
370 	unp_pcb_hold(unp2);
371 	UNP_PCB_UNLOCK(unp);
372 	UNP_PCB_LOCK(unp2);
373 	UNP_PCB_LOCK(unp);
374 	*freed = unp_pcb_rele(unp2);
375 	if (*freed)
376 		*unp2p = NULL;
377 }
378 
379 #define unp_pcb_owned_lock2(unp, unp2, freed) do {			\
380 	freed = 0;							\
381 	UNP_PCB_LOCK_ASSERT(unp);					\
382 	UNP_PCB_UNLOCK_ASSERT(unp2);					\
383 	MPASS((unp) != (unp2));						\
384 	if (__predict_true(UNP_PCB_TRYLOCK(unp2)))			\
385 		break;							\
386 	else if ((uintptr_t)(unp2) > (uintptr_t)(unp))			\
387 		UNP_PCB_LOCK(unp2);					\
388 	else								\
389 		unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);	\
390 } while (0)
391 
392 /*
393  * Definitions of protocols supported in the LOCAL domain.
394  */
395 static struct domain localdomain;
396 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
397 static struct pr_usrreqs uipc_usrreqs_seqpacket;
398 static struct protosw localsw[] = {
399 {
400 	.pr_type =		SOCK_STREAM,
401 	.pr_domain =		&localdomain,
402 	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
403 	.pr_ctloutput =		&uipc_ctloutput,
404 	.pr_usrreqs =		&uipc_usrreqs_stream
405 },
406 {
407 	.pr_type =		SOCK_DGRAM,
408 	.pr_domain =		&localdomain,
409 	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
410 	.pr_ctloutput =		&uipc_ctloutput,
411 	.pr_usrreqs =		&uipc_usrreqs_dgram
412 },
413 {
414 	.pr_type =		SOCK_SEQPACKET,
415 	.pr_domain =		&localdomain,
416 
417 	/*
418 	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
419 	 * due to our use of sbappendaddr.  A new sbappend variants is needed
420 	 * that supports both atomic record writes and control data.
421 	 */
422 	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
423 				    PR_RIGHTS,
424 	.pr_ctloutput =		&uipc_ctloutput,
425 	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
426 },
427 };
428 
429 static struct domain localdomain = {
430 	.dom_family =		AF_LOCAL,
431 	.dom_name =		"local",
432 	.dom_init =		unp_init,
433 	.dom_externalize =	unp_externalize,
434 	.dom_dispose =		unp_dispose,
435 	.dom_protosw =		localsw,
436 	.dom_protoswNPROTOSW =	&localsw[nitems(localsw)]
437 };
438 DOMAIN_SET(local);
439 
440 static void
441 uipc_abort(struct socket *so)
442 {
443 	struct unpcb *unp, *unp2;
444 
445 	unp = sotounpcb(so);
446 	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
447 	UNP_PCB_UNLOCK_ASSERT(unp);
448 
449 	UNP_PCB_LOCK(unp);
450 	unp2 = unp->unp_conn;
451 	if (unp2 != NULL) {
452 		unp_pcb_hold(unp2);
453 		UNP_PCB_UNLOCK(unp);
454 		unp_drop(unp2);
455 	} else
456 		UNP_PCB_UNLOCK(unp);
457 }
458 
459 static int
460 uipc_accept(struct socket *so, struct sockaddr **nam)
461 {
462 	struct unpcb *unp, *unp2;
463 	const struct sockaddr *sa;
464 
465 	/*
466 	 * Pass back name of connected socket, if it was bound and we are
467 	 * still connected (our peer may have closed already!).
468 	 */
469 	unp = sotounpcb(so);
470 	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
471 
472 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
473 	UNP_LINK_RLOCK();
474 	unp2 = unp->unp_conn;
475 	if (unp2 != NULL && unp2->unp_addr != NULL) {
476 		UNP_PCB_LOCK(unp2);
477 		sa = (struct sockaddr *) unp2->unp_addr;
478 		bcopy(sa, *nam, sa->sa_len);
479 		UNP_PCB_UNLOCK(unp2);
480 	} else {
481 		sa = &sun_noname;
482 		bcopy(sa, *nam, sa->sa_len);
483 	}
484 	UNP_LINK_RUNLOCK();
485 	return (0);
486 }
487 
488 static int
489 uipc_attach(struct socket *so, int proto, struct thread *td)
490 {
491 	u_long sendspace, recvspace;
492 	struct unpcb *unp;
493 	int error;
494 	bool locked;
495 
496 	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
497 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
498 		switch (so->so_type) {
499 		case SOCK_STREAM:
500 			sendspace = unpst_sendspace;
501 			recvspace = unpst_recvspace;
502 			break;
503 
504 		case SOCK_DGRAM:
505 			sendspace = unpdg_sendspace;
506 			recvspace = unpdg_recvspace;
507 			break;
508 
509 		case SOCK_SEQPACKET:
510 			sendspace = unpsp_sendspace;
511 			recvspace = unpsp_recvspace;
512 			break;
513 
514 		default:
515 			panic("uipc_attach");
516 		}
517 		error = soreserve(so, sendspace, recvspace);
518 		if (error)
519 			return (error);
520 	}
521 	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
522 	if (unp == NULL)
523 		return (ENOBUFS);
524 	LIST_INIT(&unp->unp_refs);
525 	UNP_PCB_LOCK_INIT(unp);
526 	unp->unp_socket = so;
527 	so->so_pcb = unp;
528 	unp->unp_refcount = 1;
529 
530 	if ((locked = UNP_LINK_WOWNED()) == false)
531 		UNP_LINK_WLOCK();
532 
533 	unp->unp_gencnt = ++unp_gencnt;
534 	unp->unp_ino = ++unp_ino;
535 	unp_count++;
536 	switch (so->so_type) {
537 	case SOCK_STREAM:
538 		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
539 		break;
540 
541 	case SOCK_DGRAM:
542 		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
543 		break;
544 
545 	case SOCK_SEQPACKET:
546 		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
547 		break;
548 
549 	default:
550 		panic("uipc_attach");
551 	}
552 
553 	if (locked == false)
554 		UNP_LINK_WUNLOCK();
555 
556 	return (0);
557 }
558 
559 static int
560 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
561 {
562 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
563 	struct vattr vattr;
564 	int error, namelen;
565 	struct nameidata nd;
566 	struct unpcb *unp;
567 	struct vnode *vp;
568 	struct mount *mp;
569 	cap_rights_t rights;
570 	char *buf;
571 
572 	if (nam->sa_family != AF_UNIX)
573 		return (EAFNOSUPPORT);
574 
575 	unp = sotounpcb(so);
576 	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
577 
578 	if (soun->sun_len > sizeof(struct sockaddr_un))
579 		return (EINVAL);
580 	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
581 	if (namelen <= 0)
582 		return (EINVAL);
583 
584 	/*
585 	 * We don't allow simultaneous bind() calls on a single UNIX domain
586 	 * socket, so flag in-progress operations, and return an error if an
587 	 * operation is already in progress.
588 	 *
589 	 * Historically, we have not allowed a socket to be rebound, so this
590 	 * also returns an error.  Not allowing re-binding simplifies the
591 	 * implementation and avoids a great many possible failure modes.
592 	 */
593 	UNP_PCB_LOCK(unp);
594 	if (unp->unp_vnode != NULL) {
595 		UNP_PCB_UNLOCK(unp);
596 		return (EINVAL);
597 	}
598 	if (unp->unp_flags & UNP_BINDING) {
599 		UNP_PCB_UNLOCK(unp);
600 		return (EALREADY);
601 	}
602 	unp->unp_flags |= UNP_BINDING;
603 	UNP_PCB_UNLOCK(unp);
604 
605 	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
606 	bcopy(soun->sun_path, buf, namelen);
607 	buf[namelen] = 0;
608 
609 restart:
610 	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
611 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
612 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
613 	error = namei(&nd);
614 	if (error)
615 		goto error;
616 	vp = nd.ni_vp;
617 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
618 		NDFREE(&nd, NDF_ONLY_PNBUF);
619 		if (nd.ni_dvp == vp)
620 			vrele(nd.ni_dvp);
621 		else
622 			vput(nd.ni_dvp);
623 		if (vp != NULL) {
624 			vrele(vp);
625 			error = EADDRINUSE;
626 			goto error;
627 		}
628 		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
629 		if (error)
630 			goto error;
631 		goto restart;
632 	}
633 	VATTR_NULL(&vattr);
634 	vattr.va_type = VSOCK;
635 	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
636 #ifdef MAC
637 	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
638 	    &vattr);
639 #endif
640 	if (error == 0)
641 		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
642 	NDFREE(&nd, NDF_ONLY_PNBUF);
643 	vput(nd.ni_dvp);
644 	if (error) {
645 		vn_finished_write(mp);
646 		goto error;
647 	}
648 	vp = nd.ni_vp;
649 	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
650 	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
651 
652 	UNP_PCB_LOCK(unp);
653 	VOP_UNP_BIND(vp, unp);
654 	unp->unp_vnode = vp;
655 	unp->unp_addr = soun;
656 	unp->unp_flags &= ~UNP_BINDING;
657 	UNP_PCB_UNLOCK(unp);
658 	VOP_UNLOCK(vp);
659 	vn_finished_write(mp);
660 	free(buf, M_TEMP);
661 	return (0);
662 
663 error:
664 	UNP_PCB_LOCK(unp);
665 	unp->unp_flags &= ~UNP_BINDING;
666 	UNP_PCB_UNLOCK(unp);
667 	free(buf, M_TEMP);
668 	return (error);
669 }
670 
671 static int
672 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
673 {
674 
675 	return (uipc_bindat(AT_FDCWD, so, nam, td));
676 }
677 
678 static int
679 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
680 {
681 	int error;
682 
683 	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
684 	error = unp_connect(so, nam, td);
685 	return (error);
686 }
687 
688 static int
689 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
690     struct thread *td)
691 {
692 	int error;
693 
694 	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
695 	error = unp_connectat(fd, so, nam, td);
696 	return (error);
697 }
698 
699 static void
700 uipc_close(struct socket *so)
701 {
702 	struct unpcb *unp, *unp2;
703 	struct vnode *vp = NULL;
704 	struct mtx *vplock;
705 	int freed;
706 	unp = sotounpcb(so);
707 	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
708 
709 	vplock = NULL;
710 	if ((vp = unp->unp_vnode) != NULL) {
711 		vplock = mtx_pool_find(mtxpool_sleep, vp);
712 		mtx_lock(vplock);
713 	}
714 	UNP_PCB_LOCK(unp);
715 	if (vp && unp->unp_vnode == NULL) {
716 		mtx_unlock(vplock);
717 		vp = NULL;
718 	}
719 	if (vp != NULL) {
720 		VOP_UNP_DETACH(vp);
721 		unp->unp_vnode = NULL;
722 	}
723 	unp2 = unp->unp_conn;
724 	unp_pcb_hold(unp);
725 	if (__predict_false(unp == unp2)) {
726 		unp_disconnect(unp, unp2);
727 	} else if (unp2 != NULL) {
728 		unp_pcb_hold(unp2);
729 		unp_pcb_owned_lock2(unp, unp2, freed);
730 		unp_disconnect(unp, unp2);
731 		if (unp_pcb_rele(unp2) == 0)
732 			UNP_PCB_UNLOCK(unp2);
733 	}
734 	if (unp_pcb_rele(unp) == 0)
735 		UNP_PCB_UNLOCK(unp);
736 	if (vp) {
737 		mtx_unlock(vplock);
738 		vrele(vp);
739 	}
740 }
741 
742 static int
743 uipc_connect2(struct socket *so1, struct socket *so2)
744 {
745 	struct unpcb *unp, *unp2;
746 	int error;
747 
748 	unp = so1->so_pcb;
749 	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
750 	unp2 = so2->so_pcb;
751 	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
752 	if (unp != unp2)
753 		unp_pcb_lock2(unp, unp2);
754 	else
755 		UNP_PCB_LOCK(unp);
756 	error = unp_connect2(so1, so2, PRU_CONNECT2);
757 	if (unp != unp2)
758 		UNP_PCB_UNLOCK(unp2);
759 	UNP_PCB_UNLOCK(unp);
760 	return (error);
761 }
762 
763 static void
764 uipc_detach(struct socket *so)
765 {
766 	struct unpcb *unp, *unp2;
767 	struct mtx *vplock;
768 	struct vnode *vp;
769 	int freeunp, local_unp_rights;
770 
771 	unp = sotounpcb(so);
772 	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
773 
774 	vp = NULL;
775 	vplock = NULL;
776 	local_unp_rights = 0;
777 
778 	SOCK_LOCK(so);
779 	if (!SOLISTENING(so)) {
780 		/*
781 		 * Once the socket is removed from the global lists,
782 		 * uipc_ready() will not be able to locate its socket buffer, so
783 		 * clear the buffer now.  At this point internalized rights have
784 		 * already been disposed of.
785 		 */
786 		sbrelease(&so->so_rcv, so);
787 	}
788 	SOCK_UNLOCK(so);
789 
790 	UNP_LINK_WLOCK();
791 	LIST_REMOVE(unp, unp_link);
792 	if (unp->unp_gcflag & UNPGC_DEAD)
793 		LIST_REMOVE(unp, unp_dead);
794 	unp->unp_gencnt = ++unp_gencnt;
795 	--unp_count;
796 	UNP_LINK_WUNLOCK();
797 
798 	UNP_PCB_UNLOCK_ASSERT(unp);
799  restart:
800 	if ((vp = unp->unp_vnode) != NULL) {
801 		vplock = mtx_pool_find(mtxpool_sleep, vp);
802 		mtx_lock(vplock);
803 	}
804 	UNP_PCB_LOCK(unp);
805 	if (unp->unp_vnode != vp && unp->unp_vnode != NULL) {
806 		if (vplock)
807 			mtx_unlock(vplock);
808 		UNP_PCB_UNLOCK(unp);
809 		goto restart;
810 	}
811 	if ((vp = unp->unp_vnode) != NULL) {
812 		VOP_UNP_DETACH(vp);
813 		unp->unp_vnode = NULL;
814 	}
815 	if (__predict_false(unp == unp->unp_conn)) {
816 		unp_disconnect(unp, unp);
817 		unp2 = NULL;
818 	} else {
819 		if ((unp2 = unp->unp_conn) != NULL) {
820 			unp_pcb_owned_lock2(unp, unp2, freeunp);
821 			if (freeunp)
822 				unp2 = NULL;
823 		}
824 		unp_pcb_hold(unp);
825 		if (unp2 != NULL) {
826 			unp_pcb_hold(unp2);
827 			unp_disconnect(unp, unp2);
828 			if (unp_pcb_rele(unp2) == 0)
829 				UNP_PCB_UNLOCK(unp2);
830 		}
831 	}
832 	UNP_PCB_UNLOCK(unp);
833 	UNP_REF_LIST_LOCK();
834 	while (!LIST_EMPTY(&unp->unp_refs)) {
835 		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
836 
837 		unp_pcb_hold(ref);
838 		UNP_REF_LIST_UNLOCK();
839 
840 		MPASS(ref != unp);
841 		UNP_PCB_UNLOCK_ASSERT(ref);
842 		unp_drop(ref);
843 		UNP_REF_LIST_LOCK();
844 	}
845 
846 	UNP_REF_LIST_UNLOCK();
847 	UNP_PCB_LOCK(unp);
848 	freeunp = unp_pcb_rele(unp);
849 	MPASS(freeunp == 0);
850 	local_unp_rights = unp_rights;
851 	unp->unp_socket->so_pcb = NULL;
852 	unp->unp_socket = NULL;
853 	free(unp->unp_addr, M_SONAME);
854 	unp->unp_addr = NULL;
855 	if (!unp_pcb_rele(unp))
856 		UNP_PCB_UNLOCK(unp);
857 	if (vp) {
858 		mtx_unlock(vplock);
859 		vrele(vp);
860 	}
861 	if (local_unp_rights)
862 		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
863 }
864 
865 static int
866 uipc_disconnect(struct socket *so)
867 {
868 	struct unpcb *unp, *unp2;
869 	int freed;
870 
871 	unp = sotounpcb(so);
872 	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
873 
874 	UNP_PCB_LOCK(unp);
875 	if ((unp2 = unp->unp_conn) == NULL) {
876 		UNP_PCB_UNLOCK(unp);
877 		return (0);
878 	}
879 	if (__predict_true(unp != unp2)) {
880 		unp_pcb_owned_lock2(unp, unp2, freed);
881 		if (__predict_false(freed)) {
882 			UNP_PCB_UNLOCK(unp);
883 			return (0);
884 		}
885 		unp_pcb_hold(unp2);
886 	}
887 	unp_pcb_hold(unp);
888 	unp_disconnect(unp, unp2);
889 	if (unp_pcb_rele(unp) == 0)
890 		UNP_PCB_UNLOCK(unp);
891 	if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
892 		UNP_PCB_UNLOCK(unp2);
893 	return (0);
894 }
895 
896 static int
897 uipc_listen(struct socket *so, int backlog, struct thread *td)
898 {
899 	struct unpcb *unp;
900 	int error;
901 
902 	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
903 		return (EOPNOTSUPP);
904 
905 	unp = sotounpcb(so);
906 	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
907 
908 	UNP_PCB_LOCK(unp);
909 	if (unp->unp_vnode == NULL) {
910 		/* Already connected or not bound to an address. */
911 		error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
912 		UNP_PCB_UNLOCK(unp);
913 		return (error);
914 	}
915 
916 	SOCK_LOCK(so);
917 	error = solisten_proto_check(so);
918 	if (error == 0) {
919 		cru2xt(td, &unp->unp_peercred);
920 		solisten_proto(so, backlog);
921 	}
922 	SOCK_UNLOCK(so);
923 	UNP_PCB_UNLOCK(unp);
924 	return (error);
925 }
926 
927 static int
928 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
929 {
930 	struct unpcb *unp, *unp2;
931 	const struct sockaddr *sa;
932 
933 	unp = sotounpcb(so);
934 	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
935 
936 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
937 	UNP_LINK_RLOCK();
938 	/*
939 	 * XXX: It seems that this test always fails even when connection is
940 	 * established.  So, this else clause is added as workaround to
941 	 * return PF_LOCAL sockaddr.
942 	 */
943 	unp2 = unp->unp_conn;
944 	if (unp2 != NULL) {
945 		UNP_PCB_LOCK(unp2);
946 		if (unp2->unp_addr != NULL)
947 			sa = (struct sockaddr *) unp2->unp_addr;
948 		else
949 			sa = &sun_noname;
950 		bcopy(sa, *nam, sa->sa_len);
951 		UNP_PCB_UNLOCK(unp2);
952 	} else {
953 		sa = &sun_noname;
954 		bcopy(sa, *nam, sa->sa_len);
955 	}
956 	UNP_LINK_RUNLOCK();
957 	return (0);
958 }
959 
960 static int
961 uipc_rcvd(struct socket *so, int flags)
962 {
963 	struct unpcb *unp, *unp2;
964 	struct socket *so2;
965 	u_int mbcnt, sbcc;
966 
967 	unp = sotounpcb(so);
968 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
969 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
970 	    ("%s: socktype %d", __func__, so->so_type));
971 
972 	/*
973 	 * Adjust backpressure on sender and wakeup any waiting to write.
974 	 *
975 	 * The unp lock is acquired to maintain the validity of the unp_conn
976 	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
977 	 * static as long as we don't permit unp2 to disconnect from unp,
978 	 * which is prevented by the lock on unp.  We cache values from
979 	 * so_rcv to avoid holding the so_rcv lock over the entire
980 	 * transaction on the remote so_snd.
981 	 */
982 	SOCKBUF_LOCK(&so->so_rcv);
983 	mbcnt = so->so_rcv.sb_mbcnt;
984 	sbcc = sbavail(&so->so_rcv);
985 	SOCKBUF_UNLOCK(&so->so_rcv);
986 	/*
987 	 * There is a benign race condition at this point.  If we're planning to
988 	 * clear SB_STOP, but uipc_send is called on the connected socket at
989 	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
990 	 * we would erroneously clear SB_STOP below, even though the sockbuf is
991 	 * full.  The race is benign because the only ill effect is to allow the
992 	 * sockbuf to exceed its size limit, and the size limits are not
993 	 * strictly guaranteed anyway.
994 	 */
995 	UNP_PCB_LOCK(unp);
996 	unp2 = unp->unp_conn;
997 	if (unp2 == NULL) {
998 		UNP_PCB_UNLOCK(unp);
999 		return (0);
1000 	}
1001 	so2 = unp2->unp_socket;
1002 	SOCKBUF_LOCK(&so2->so_snd);
1003 	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
1004 		so2->so_snd.sb_flags &= ~SB_STOP;
1005 	sowwakeup_locked(so2);
1006 	UNP_PCB_UNLOCK(unp);
1007 	return (0);
1008 }
1009 
1010 static int
1011 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1012 {
1013 	int error;
1014 	struct unpcb *unp;
1015 
1016 	unp = so->so_pcb;
1017 	if (unp->unp_conn != NULL)
1018 		return (EISCONN);
1019 	error = unp_connect(so, nam, td);
1020 	if (error)
1021 		return (error);
1022 	UNP_PCB_LOCK(unp);
1023 	if (unp->unp_conn == NULL) {
1024 		UNP_PCB_UNLOCK(unp);
1025 		if (error == 0)
1026 			error = ENOTCONN;
1027 	}
1028 	return (error);
1029 }
1030 
1031 static int
1032 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1033     struct mbuf *control, struct thread *td)
1034 {
1035 	struct unpcb *unp, *unp2;
1036 	struct socket *so2;
1037 	u_int mbcnt, sbcc;
1038 	int freed, error;
1039 
1040 	unp = sotounpcb(so);
1041 	KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1042 	KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1043 	    so->so_type == SOCK_SEQPACKET,
1044 	    ("%s: socktype %d", __func__, so->so_type));
1045 
1046 	freed = error = 0;
1047 	if (flags & PRUS_OOB) {
1048 		error = EOPNOTSUPP;
1049 		goto release;
1050 	}
1051 	if (control != NULL && (error = unp_internalize(&control, td)))
1052 		goto release;
1053 
1054 	unp2 = NULL;
1055 	switch (so->so_type) {
1056 	case SOCK_DGRAM:
1057 	{
1058 		const struct sockaddr *from;
1059 
1060 		if (nam != NULL) {
1061 			/*
1062 			 * We return with UNP_PCB_LOCK_HELD so we know that
1063 			 * the reference is live if the pointer is valid.
1064 			 */
1065 			if ((error = connect_internal(so, nam, td)))
1066 				break;
1067 			MPASS(unp->unp_conn != NULL);
1068 			unp2 = unp->unp_conn;
1069 		} else  {
1070 			UNP_PCB_LOCK(unp);
1071 
1072 			/*
1073 			 * Because connect() and send() are non-atomic in a sendto()
1074 			 * with a target address, it's possible that the socket will
1075 			 * have disconnected before the send() can run.  In that case
1076 			 * return the slightly counter-intuitive but otherwise
1077 			 * correct error that the socket is not connected.
1078 			 */
1079 			if ((unp2 = unp->unp_conn)  == NULL) {
1080 				UNP_PCB_UNLOCK(unp);
1081 				error = ENOTCONN;
1082 				break;
1083 			}
1084 		}
1085 		if (__predict_false(unp == unp2)) {
1086 			if (unp->unp_socket == NULL) {
1087 				error = ENOTCONN;
1088 				break;
1089 			}
1090 			goto connect_self;
1091 		}
1092 		unp_pcb_owned_lock2(unp, unp2, freed);
1093 		if (__predict_false(freed)) {
1094 			UNP_PCB_UNLOCK(unp);
1095 			error = ENOTCONN;
1096 			break;
1097 		}
1098 		/*
1099 		 * The socket referencing unp2 may have been closed
1100 		 * or unp may have been disconnected if the unp lock
1101 		 * was dropped to acquire unp2.
1102 		 */
1103 		if (__predict_false(unp->unp_conn == NULL) ||
1104 			unp2->unp_socket == NULL) {
1105 			UNP_PCB_UNLOCK(unp);
1106 			if (unp_pcb_rele(unp2) == 0)
1107 				UNP_PCB_UNLOCK(unp2);
1108 			error = ENOTCONN;
1109 			break;
1110 		}
1111 	connect_self:
1112 		if (unp2->unp_flags & UNP_WANTCRED)
1113 			control = unp_addsockcred(td, control);
1114 		if (unp->unp_addr != NULL)
1115 			from = (struct sockaddr *)unp->unp_addr;
1116 		else
1117 			from = &sun_noname;
1118 		so2 = unp2->unp_socket;
1119 		SOCKBUF_LOCK(&so2->so_rcv);
1120 		if (sbappendaddr_locked(&so2->so_rcv, from, m,
1121 		    control)) {
1122 			sorwakeup_locked(so2);
1123 			m = NULL;
1124 			control = NULL;
1125 		} else {
1126 			SOCKBUF_UNLOCK(&so2->so_rcv);
1127 			error = ENOBUFS;
1128 		}
1129 		if (nam != NULL)
1130 			unp_disconnect(unp, unp2);
1131 		if (__predict_true(unp != unp2))
1132 			UNP_PCB_UNLOCK(unp2);
1133 		UNP_PCB_UNLOCK(unp);
1134 		break;
1135 	}
1136 
1137 	case SOCK_SEQPACKET:
1138 	case SOCK_STREAM:
1139 		if ((so->so_state & SS_ISCONNECTED) == 0) {
1140 			if (nam != NULL) {
1141 				error = connect_internal(so, nam, td);
1142 				if (error != 0)
1143 					break;
1144 			} else {
1145 				error = ENOTCONN;
1146 				break;
1147 			}
1148 		} else {
1149 			UNP_PCB_LOCK(unp);
1150 		}
1151 
1152 		if ((unp2 = unp->unp_conn) == NULL) {
1153 			UNP_PCB_UNLOCK(unp);
1154 			error = ENOTCONN;
1155 			break;
1156 		} else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1157 			UNP_PCB_UNLOCK(unp);
1158 			error = EPIPE;
1159 			break;
1160 		} else if ((unp2 = unp->unp_conn) == NULL) {
1161 			UNP_PCB_UNLOCK(unp);
1162 			error = ENOTCONN;
1163 			break;
1164 		}
1165 		unp_pcb_owned_lock2(unp, unp2, freed);
1166 		UNP_PCB_UNLOCK(unp);
1167 		if (__predict_false(freed)) {
1168 			error = ENOTCONN;
1169 			break;
1170 		}
1171 		if ((so2 = unp2->unp_socket) == NULL) {
1172 			UNP_PCB_UNLOCK(unp2);
1173 			error = ENOTCONN;
1174 			break;
1175 		}
1176 		SOCKBUF_LOCK(&so2->so_rcv);
1177 		if (unp2->unp_flags & UNP_WANTCRED) {
1178 			/*
1179 			 * Credentials are passed only once on SOCK_STREAM
1180 			 * and SOCK_SEQPACKET.
1181 			 */
1182 			unp2->unp_flags &= ~UNP_WANTCRED;
1183 			control = unp_addsockcred(td, control);
1184 		}
1185 
1186 		/*
1187 		 * Send to paired receive port and wake up readers.  Don't
1188 		 * check for space available in the receive buffer if we're
1189 		 * attaching ancillary data; Unix domain sockets only check
1190 		 * for space in the sending sockbuf, and that check is
1191 		 * performed one level up the stack.  At that level we cannot
1192 		 * precisely account for the amount of buffer space used
1193 		 * (e.g., because control messages are not yet internalized).
1194 		 */
1195 		switch (so->so_type) {
1196 		case SOCK_STREAM:
1197 			if (control != NULL) {
1198 				sbappendcontrol_locked(&so2->so_rcv, m,
1199 				    control, flags);
1200 				control = NULL;
1201 			} else
1202 				sbappend_locked(&so2->so_rcv, m, flags);
1203 			break;
1204 
1205 		case SOCK_SEQPACKET:
1206 			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1207 			    &sun_noname, m, control))
1208 				control = NULL;
1209 			break;
1210 		}
1211 
1212 		mbcnt = so2->so_rcv.sb_mbcnt;
1213 		sbcc = sbavail(&so2->so_rcv);
1214 		if (sbcc)
1215 			sorwakeup_locked(so2);
1216 		else
1217 			SOCKBUF_UNLOCK(&so2->so_rcv);
1218 
1219 		/*
1220 		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1221 		 * it would be possible for uipc_rcvd to be called at this
1222 		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1223 		 * we would set SB_STOP below.  That could lead to an empty
1224 		 * sockbuf having SB_STOP set
1225 		 */
1226 		SOCKBUF_LOCK(&so->so_snd);
1227 		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1228 			so->so_snd.sb_flags |= SB_STOP;
1229 		SOCKBUF_UNLOCK(&so->so_snd);
1230 		UNP_PCB_UNLOCK(unp2);
1231 		m = NULL;
1232 		break;
1233 	}
1234 
1235 	/*
1236 	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1237 	 */
1238 	if (flags & PRUS_EOF) {
1239 		UNP_PCB_LOCK(unp);
1240 		socantsendmore(so);
1241 		unp_shutdown(unp);
1242 		UNP_PCB_UNLOCK(unp);
1243 	}
1244 	if (control != NULL && error != 0)
1245 		unp_dispose_mbuf(control);
1246 
1247 release:
1248 	if (control != NULL)
1249 		m_freem(control);
1250 	/*
1251 	 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1252 	 * for freeing memory.
1253 	 */
1254 	if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1255 		m_freem(m);
1256 	return (error);
1257 }
1258 
1259 static bool
1260 uipc_ready_scan(struct socket *so, struct mbuf *m, int count, int *errorp)
1261 {
1262 	struct mbuf *mb, *n;
1263 	struct sockbuf *sb;
1264 
1265 	SOCK_LOCK(so);
1266 	if (SOLISTENING(so)) {
1267 		SOCK_UNLOCK(so);
1268 		return (false);
1269 	}
1270 	mb = NULL;
1271 	sb = &so->so_rcv;
1272 	SOCKBUF_LOCK(sb);
1273 	if (sb->sb_fnrdy != NULL) {
1274 		for (mb = sb->sb_mb, n = mb->m_nextpkt; mb != NULL;) {
1275 			if (mb == m) {
1276 				*errorp = sbready(sb, m, count);
1277 				break;
1278 			}
1279 			mb = mb->m_next;
1280 			if (mb == NULL) {
1281 				mb = n;
1282 				n = mb->m_nextpkt;
1283 			}
1284 		}
1285 	}
1286 	SOCKBUF_UNLOCK(sb);
1287 	SOCK_UNLOCK(so);
1288 	return (mb != NULL);
1289 }
1290 
1291 static int
1292 uipc_ready(struct socket *so, struct mbuf *m, int count)
1293 {
1294 	struct unpcb *unp, *unp2;
1295 	struct socket *so2;
1296 	int error, i;
1297 
1298 	unp = sotounpcb(so);
1299 
1300 	KASSERT(so->so_type == SOCK_STREAM,
1301 	    ("%s: unexpected socket type for %p", __func__, so));
1302 
1303 	UNP_PCB_LOCK(unp);
1304 	if ((unp2 = unp->unp_conn) == NULL) {
1305 		UNP_PCB_UNLOCK(unp);
1306 		goto search;
1307 	}
1308 	if (unp != unp2) {
1309 		if (UNP_PCB_TRYLOCK(unp2) == 0) {
1310 			unp_pcb_hold(unp2);
1311 			UNP_PCB_UNLOCK(unp);
1312 			UNP_PCB_LOCK(unp2);
1313 			if (unp_pcb_rele(unp2))
1314 				goto search;
1315 		} else
1316 			UNP_PCB_UNLOCK(unp);
1317 	}
1318 	so2 = unp2->unp_socket;
1319 	SOCKBUF_LOCK(&so2->so_rcv);
1320 	if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1321 		sorwakeup_locked(so2);
1322 	else
1323 		SOCKBUF_UNLOCK(&so2->so_rcv);
1324 	UNP_PCB_UNLOCK(unp2);
1325 	return (error);
1326 
1327 search:
1328 	/*
1329 	 * The receiving socket has been disconnected, but may still be valid.
1330 	 * In this case, the now-ready mbufs are still present in its socket
1331 	 * buffer, so perform an exhaustive search before giving up and freeing
1332 	 * the mbufs.
1333 	 */
1334 	UNP_LINK_RLOCK();
1335 	LIST_FOREACH(unp, &unp_shead, unp_link) {
1336 		if (uipc_ready_scan(unp->unp_socket, m, count, &error))
1337 			break;
1338 	}
1339 	UNP_LINK_RUNLOCK();
1340 
1341 	if (unp == NULL) {
1342 		for (i = 0; i < count; i++)
1343 			m = m_free(m);
1344 		error = ECONNRESET;
1345 	}
1346 	return (error);
1347 }
1348 
1349 static int
1350 uipc_sense(struct socket *so, struct stat *sb)
1351 {
1352 	struct unpcb *unp;
1353 
1354 	unp = sotounpcb(so);
1355 	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1356 
1357 	sb->st_blksize = so->so_snd.sb_hiwat;
1358 	sb->st_dev = NODEV;
1359 	sb->st_ino = unp->unp_ino;
1360 	return (0);
1361 }
1362 
1363 static int
1364 uipc_shutdown(struct socket *so)
1365 {
1366 	struct unpcb *unp;
1367 
1368 	unp = sotounpcb(so);
1369 	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1370 
1371 	UNP_PCB_LOCK(unp);
1372 	socantsendmore(so);
1373 	unp_shutdown(unp);
1374 	UNP_PCB_UNLOCK(unp);
1375 	return (0);
1376 }
1377 
1378 static int
1379 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1380 {
1381 	struct unpcb *unp;
1382 	const struct sockaddr *sa;
1383 
1384 	unp = sotounpcb(so);
1385 	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1386 
1387 	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1388 	UNP_PCB_LOCK(unp);
1389 	if (unp->unp_addr != NULL)
1390 		sa = (struct sockaddr *) unp->unp_addr;
1391 	else
1392 		sa = &sun_noname;
1393 	bcopy(sa, *nam, sa->sa_len);
1394 	UNP_PCB_UNLOCK(unp);
1395 	return (0);
1396 }
1397 
1398 static struct pr_usrreqs uipc_usrreqs_dgram = {
1399 	.pru_abort = 		uipc_abort,
1400 	.pru_accept =		uipc_accept,
1401 	.pru_attach =		uipc_attach,
1402 	.pru_bind =		uipc_bind,
1403 	.pru_bindat =		uipc_bindat,
1404 	.pru_connect =		uipc_connect,
1405 	.pru_connectat =	uipc_connectat,
1406 	.pru_connect2 =		uipc_connect2,
1407 	.pru_detach =		uipc_detach,
1408 	.pru_disconnect =	uipc_disconnect,
1409 	.pru_listen =		uipc_listen,
1410 	.pru_peeraddr =		uipc_peeraddr,
1411 	.pru_rcvd =		uipc_rcvd,
1412 	.pru_send =		uipc_send,
1413 	.pru_sense =		uipc_sense,
1414 	.pru_shutdown =		uipc_shutdown,
1415 	.pru_sockaddr =		uipc_sockaddr,
1416 	.pru_soreceive =	soreceive_dgram,
1417 	.pru_close =		uipc_close,
1418 };
1419 
1420 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1421 	.pru_abort =		uipc_abort,
1422 	.pru_accept =		uipc_accept,
1423 	.pru_attach =		uipc_attach,
1424 	.pru_bind =		uipc_bind,
1425 	.pru_bindat =		uipc_bindat,
1426 	.pru_connect =		uipc_connect,
1427 	.pru_connectat =	uipc_connectat,
1428 	.pru_connect2 =		uipc_connect2,
1429 	.pru_detach =		uipc_detach,
1430 	.pru_disconnect =	uipc_disconnect,
1431 	.pru_listen =		uipc_listen,
1432 	.pru_peeraddr =		uipc_peeraddr,
1433 	.pru_rcvd =		uipc_rcvd,
1434 	.pru_send =		uipc_send,
1435 	.pru_sense =		uipc_sense,
1436 	.pru_shutdown =		uipc_shutdown,
1437 	.pru_sockaddr =		uipc_sockaddr,
1438 	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1439 	.pru_close =		uipc_close,
1440 };
1441 
1442 static struct pr_usrreqs uipc_usrreqs_stream = {
1443 	.pru_abort = 		uipc_abort,
1444 	.pru_accept =		uipc_accept,
1445 	.pru_attach =		uipc_attach,
1446 	.pru_bind =		uipc_bind,
1447 	.pru_bindat =		uipc_bindat,
1448 	.pru_connect =		uipc_connect,
1449 	.pru_connectat =	uipc_connectat,
1450 	.pru_connect2 =		uipc_connect2,
1451 	.pru_detach =		uipc_detach,
1452 	.pru_disconnect =	uipc_disconnect,
1453 	.pru_listen =		uipc_listen,
1454 	.pru_peeraddr =		uipc_peeraddr,
1455 	.pru_rcvd =		uipc_rcvd,
1456 	.pru_send =		uipc_send,
1457 	.pru_ready =		uipc_ready,
1458 	.pru_sense =		uipc_sense,
1459 	.pru_shutdown =		uipc_shutdown,
1460 	.pru_sockaddr =		uipc_sockaddr,
1461 	.pru_soreceive =	soreceive_generic,
1462 	.pru_close =		uipc_close,
1463 };
1464 
1465 static int
1466 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1467 {
1468 	struct unpcb *unp;
1469 	struct xucred xu;
1470 	int error, optval;
1471 
1472 	if (sopt->sopt_level != 0)
1473 		return (EINVAL);
1474 
1475 	unp = sotounpcb(so);
1476 	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1477 	error = 0;
1478 	switch (sopt->sopt_dir) {
1479 	case SOPT_GET:
1480 		switch (sopt->sopt_name) {
1481 		case LOCAL_PEERCRED:
1482 			UNP_PCB_LOCK(unp);
1483 			if (unp->unp_flags & UNP_HAVEPC)
1484 				xu = unp->unp_peercred;
1485 			else {
1486 				if (so->so_type == SOCK_STREAM)
1487 					error = ENOTCONN;
1488 				else
1489 					error = EINVAL;
1490 			}
1491 			UNP_PCB_UNLOCK(unp);
1492 			if (error == 0)
1493 				error = sooptcopyout(sopt, &xu, sizeof(xu));
1494 			break;
1495 
1496 		case LOCAL_CREDS:
1497 			/* Unlocked read. */
1498 			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1499 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1500 			break;
1501 
1502 		case LOCAL_CONNWAIT:
1503 			/* Unlocked read. */
1504 			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1505 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1506 			break;
1507 
1508 		default:
1509 			error = EOPNOTSUPP;
1510 			break;
1511 		}
1512 		break;
1513 
1514 	case SOPT_SET:
1515 		switch (sopt->sopt_name) {
1516 		case LOCAL_CREDS:
1517 		case LOCAL_CONNWAIT:
1518 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1519 					    sizeof(optval));
1520 			if (error)
1521 				break;
1522 
1523 #define	OPTSET(bit) do {						\
1524 	UNP_PCB_LOCK(unp);						\
1525 	if (optval)							\
1526 		unp->unp_flags |= bit;					\
1527 	else								\
1528 		unp->unp_flags &= ~bit;					\
1529 	UNP_PCB_UNLOCK(unp);						\
1530 } while (0)
1531 
1532 			switch (sopt->sopt_name) {
1533 			case LOCAL_CREDS:
1534 				OPTSET(UNP_WANTCRED);
1535 				break;
1536 
1537 			case LOCAL_CONNWAIT:
1538 				OPTSET(UNP_CONNWAIT);
1539 				break;
1540 
1541 			default:
1542 				break;
1543 			}
1544 			break;
1545 #undef	OPTSET
1546 		default:
1547 			error = ENOPROTOOPT;
1548 			break;
1549 		}
1550 		break;
1551 
1552 	default:
1553 		error = EOPNOTSUPP;
1554 		break;
1555 	}
1556 	return (error);
1557 }
1558 
1559 static int
1560 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1561 {
1562 
1563 	return (unp_connectat(AT_FDCWD, so, nam, td));
1564 }
1565 
1566 static int
1567 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1568     struct thread *td)
1569 {
1570 	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1571 	struct vnode *vp;
1572 	struct socket *so2;
1573 	struct unpcb *unp, *unp2, *unp3;
1574 	struct nameidata nd;
1575 	char buf[SOCK_MAXADDRLEN];
1576 	struct sockaddr *sa;
1577 	cap_rights_t rights;
1578 	int error, len, freed;
1579 	struct mtx *vplock;
1580 
1581 	if (nam->sa_family != AF_UNIX)
1582 		return (EAFNOSUPPORT);
1583 	if (nam->sa_len > sizeof(struct sockaddr_un))
1584 		return (EINVAL);
1585 	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1586 	if (len <= 0)
1587 		return (EINVAL);
1588 	bcopy(soun->sun_path, buf, len);
1589 	buf[len] = 0;
1590 
1591 	unp = sotounpcb(so);
1592 	UNP_PCB_LOCK(unp);
1593 	if (unp->unp_flags & UNP_CONNECTING) {
1594 		UNP_PCB_UNLOCK(unp);
1595 		return (EALREADY);
1596 	}
1597 	unp->unp_flags |= UNP_CONNECTING;
1598 	UNP_PCB_UNLOCK(unp);
1599 
1600 	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1601 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1602 	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1603 	error = namei(&nd);
1604 	if (error)
1605 		vp = NULL;
1606 	else
1607 		vp = nd.ni_vp;
1608 	ASSERT_VOP_LOCKED(vp, "unp_connect");
1609 	NDFREE(&nd, NDF_ONLY_PNBUF);
1610 	if (error)
1611 		goto bad;
1612 
1613 	if (vp->v_type != VSOCK) {
1614 		error = ENOTSOCK;
1615 		goto bad;
1616 	}
1617 #ifdef MAC
1618 	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1619 	if (error)
1620 		goto bad;
1621 #endif
1622 	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1623 	if (error)
1624 		goto bad;
1625 
1626 	unp = sotounpcb(so);
1627 	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1628 
1629 	vplock = mtx_pool_find(mtxpool_sleep, vp);
1630 	mtx_lock(vplock);
1631 	VOP_UNP_CONNECT(vp, &unp2);
1632 	if (unp2 == NULL) {
1633 		error = ECONNREFUSED;
1634 		goto bad2;
1635 	}
1636 	so2 = unp2->unp_socket;
1637 	if (so->so_type != so2->so_type) {
1638 		error = EPROTOTYPE;
1639 		goto bad2;
1640 	}
1641 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1642 		if (so2->so_options & SO_ACCEPTCONN) {
1643 			CURVNET_SET(so2->so_vnet);
1644 			so2 = sonewconn(so2, 0);
1645 			CURVNET_RESTORE();
1646 		} else
1647 			so2 = NULL;
1648 		if (so2 == NULL) {
1649 			error = ECONNREFUSED;
1650 			goto bad2;
1651 		}
1652 		unp3 = sotounpcb(so2);
1653 		unp_pcb_lock2(unp2, unp3);
1654 		if (unp2->unp_addr != NULL) {
1655 			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1656 			unp3->unp_addr = (struct sockaddr_un *) sa;
1657 			sa = NULL;
1658 		}
1659 
1660 		unp_copy_peercred(td, unp3, unp, unp2);
1661 
1662 		UNP_PCB_UNLOCK(unp2);
1663 		unp2 = unp3;
1664 		unp_pcb_owned_lock2(unp2, unp, freed);
1665 		if (__predict_false(freed)) {
1666 			UNP_PCB_UNLOCK(unp2);
1667 			error = ECONNREFUSED;
1668 			goto bad2;
1669 		}
1670 #ifdef MAC
1671 		mac_socketpeer_set_from_socket(so, so2);
1672 		mac_socketpeer_set_from_socket(so2, so);
1673 #endif
1674 	} else {
1675 		if (unp == unp2)
1676 			UNP_PCB_LOCK(unp);
1677 		else
1678 			unp_pcb_lock2(unp, unp2);
1679 	}
1680 	KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1681 	    sotounpcb(so2) == unp2,
1682 	    ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1683 	error = unp_connect2(so, so2, PRU_CONNECT);
1684 	if (unp != unp2)
1685 		UNP_PCB_UNLOCK(unp2);
1686 	UNP_PCB_UNLOCK(unp);
1687 bad2:
1688 	mtx_unlock(vplock);
1689 bad:
1690 	if (vp != NULL) {
1691 		vput(vp);
1692 	}
1693 	free(sa, M_SONAME);
1694 	UNP_PCB_LOCK(unp);
1695 	unp->unp_flags &= ~UNP_CONNECTING;
1696 	UNP_PCB_UNLOCK(unp);
1697 	return (error);
1698 }
1699 
1700 /*
1701  * Set socket peer credentials at connection time.
1702  *
1703  * The client's PCB credentials are copied from its process structure.  The
1704  * server's PCB credentials are copied from the socket on which it called
1705  * listen(2).  uipc_listen cached that process's credentials at the time.
1706  */
1707 void
1708 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1709     struct unpcb *server_unp, struct unpcb *listen_unp)
1710 {
1711 	cru2xt(td, &client_unp->unp_peercred);
1712 	client_unp->unp_flags |= UNP_HAVEPC;
1713 
1714 	memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1715 	    sizeof(server_unp->unp_peercred));
1716 	server_unp->unp_flags |= UNP_HAVEPC;
1717 	if (listen_unp->unp_flags & UNP_WANTCRED)
1718 		client_unp->unp_flags |= UNP_WANTCRED;
1719 }
1720 
1721 static int
1722 unp_connect2(struct socket *so, struct socket *so2, int req)
1723 {
1724 	struct unpcb *unp;
1725 	struct unpcb *unp2;
1726 
1727 	unp = sotounpcb(so);
1728 	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1729 	unp2 = sotounpcb(so2);
1730 	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1731 
1732 	UNP_PCB_LOCK_ASSERT(unp);
1733 	UNP_PCB_LOCK_ASSERT(unp2);
1734 
1735 	if (so2->so_type != so->so_type)
1736 		return (EPROTOTYPE);
1737 	unp->unp_conn = unp2;
1738 	unp_pcb_hold(unp2);
1739 	unp_pcb_hold(unp);
1740 	switch (so->so_type) {
1741 	case SOCK_DGRAM:
1742 		UNP_REF_LIST_LOCK();
1743 		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1744 		UNP_REF_LIST_UNLOCK();
1745 		soisconnected(so);
1746 		break;
1747 
1748 	case SOCK_STREAM:
1749 	case SOCK_SEQPACKET:
1750 		unp2->unp_conn = unp;
1751 		if (req == PRU_CONNECT &&
1752 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1753 			soisconnecting(so);
1754 		else
1755 			soisconnected(so);
1756 		soisconnected(so2);
1757 		break;
1758 
1759 	default:
1760 		panic("unp_connect2");
1761 	}
1762 	return (0);
1763 }
1764 
1765 static void
1766 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1767 {
1768 	struct socket *so, *so2;
1769 	int freed __unused;
1770 
1771 	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1772 
1773 	UNP_PCB_LOCK_ASSERT(unp);
1774 	UNP_PCB_LOCK_ASSERT(unp2);
1775 
1776 	if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1777 		return;
1778 
1779 	MPASS(unp->unp_conn == unp2);
1780 	unp->unp_conn = NULL;
1781 	so = unp->unp_socket;
1782 	so2 = unp2->unp_socket;
1783 	switch (unp->unp_socket->so_type) {
1784 	case SOCK_DGRAM:
1785 		UNP_REF_LIST_LOCK();
1786 		LIST_REMOVE(unp, unp_reflink);
1787 		UNP_REF_LIST_UNLOCK();
1788 		if (so) {
1789 			SOCK_LOCK(so);
1790 			so->so_state &= ~SS_ISCONNECTED;
1791 			SOCK_UNLOCK(so);
1792 		}
1793 		break;
1794 
1795 	case SOCK_STREAM:
1796 	case SOCK_SEQPACKET:
1797 		if (so)
1798 			soisdisconnected(so);
1799 		MPASS(unp2->unp_conn == unp);
1800 		unp2->unp_conn = NULL;
1801 		if (so2)
1802 			soisdisconnected(so2);
1803 		break;
1804 	}
1805 	freed = unp_pcb_rele(unp);
1806 	MPASS(freed == 0);
1807 	freed = unp_pcb_rele(unp2);
1808 	MPASS(freed == 0);
1809 }
1810 
1811 /*
1812  * unp_pcblist() walks the global list of struct unpcb's to generate a
1813  * pointer list, bumping the refcount on each unpcb.  It then copies them out
1814  * sequentially, validating the generation number on each to see if it has
1815  * been detached.  All of this is necessary because copyout() may sleep on
1816  * disk I/O.
1817  */
1818 static int
1819 unp_pcblist(SYSCTL_HANDLER_ARGS)
1820 {
1821 	struct unpcb *unp, **unp_list;
1822 	unp_gen_t gencnt;
1823 	struct xunpgen *xug;
1824 	struct unp_head *head;
1825 	struct xunpcb *xu;
1826 	u_int i;
1827 	int error, freeunp, n;
1828 
1829 	switch ((intptr_t)arg1) {
1830 	case SOCK_STREAM:
1831 		head = &unp_shead;
1832 		break;
1833 
1834 	case SOCK_DGRAM:
1835 		head = &unp_dhead;
1836 		break;
1837 
1838 	case SOCK_SEQPACKET:
1839 		head = &unp_sphead;
1840 		break;
1841 
1842 	default:
1843 		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1844 	}
1845 
1846 	/*
1847 	 * The process of preparing the PCB list is too time-consuming and
1848 	 * resource-intensive to repeat twice on every request.
1849 	 */
1850 	if (req->oldptr == NULL) {
1851 		n = unp_count;
1852 		req->oldidx = 2 * (sizeof *xug)
1853 			+ (n + n/8) * sizeof(struct xunpcb);
1854 		return (0);
1855 	}
1856 
1857 	if (req->newptr != NULL)
1858 		return (EPERM);
1859 
1860 	/*
1861 	 * OK, now we're committed to doing something.
1862 	 */
1863 	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1864 	UNP_LINK_RLOCK();
1865 	gencnt = unp_gencnt;
1866 	n = unp_count;
1867 	UNP_LINK_RUNLOCK();
1868 
1869 	xug->xug_len = sizeof *xug;
1870 	xug->xug_count = n;
1871 	xug->xug_gen = gencnt;
1872 	xug->xug_sogen = so_gencnt;
1873 	error = SYSCTL_OUT(req, xug, sizeof *xug);
1874 	if (error) {
1875 		free(xug, M_TEMP);
1876 		return (error);
1877 	}
1878 
1879 	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1880 
1881 	UNP_LINK_RLOCK();
1882 	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1883 	     unp = LIST_NEXT(unp, unp_link)) {
1884 		UNP_PCB_LOCK(unp);
1885 		if (unp->unp_gencnt <= gencnt) {
1886 			if (cr_cansee(req->td->td_ucred,
1887 			    unp->unp_socket->so_cred)) {
1888 				UNP_PCB_UNLOCK(unp);
1889 				continue;
1890 			}
1891 			unp_list[i++] = unp;
1892 			unp_pcb_hold(unp);
1893 		}
1894 		UNP_PCB_UNLOCK(unp);
1895 	}
1896 	UNP_LINK_RUNLOCK();
1897 	n = i;			/* In case we lost some during malloc. */
1898 
1899 	error = 0;
1900 	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1901 	for (i = 0; i < n; i++) {
1902 		unp = unp_list[i];
1903 		UNP_PCB_LOCK(unp);
1904 		freeunp = unp_pcb_rele(unp);
1905 
1906 		if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1907 			xu->xu_len = sizeof *xu;
1908 			xu->xu_unpp = (uintptr_t)unp;
1909 			/*
1910 			 * XXX - need more locking here to protect against
1911 			 * connect/disconnect races for SMP.
1912 			 */
1913 			if (unp->unp_addr != NULL)
1914 				bcopy(unp->unp_addr, &xu->xu_addr,
1915 				      unp->unp_addr->sun_len);
1916 			else
1917 				bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1918 			if (unp->unp_conn != NULL &&
1919 			    unp->unp_conn->unp_addr != NULL)
1920 				bcopy(unp->unp_conn->unp_addr,
1921 				      &xu->xu_caddr,
1922 				      unp->unp_conn->unp_addr->sun_len);
1923 			else
1924 				bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1925 			xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1926 			xu->unp_conn = (uintptr_t)unp->unp_conn;
1927 			xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1928 			xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1929 			xu->unp_gencnt = unp->unp_gencnt;
1930 			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1931 			UNP_PCB_UNLOCK(unp);
1932 			error = SYSCTL_OUT(req, xu, sizeof *xu);
1933 		} else  if (freeunp == 0)
1934 			UNP_PCB_UNLOCK(unp);
1935 	}
1936 	free(xu, M_TEMP);
1937 	if (!error) {
1938 		/*
1939 		 * Give the user an updated idea of our state.  If the
1940 		 * generation differs from what we told her before, she knows
1941 		 * that something happened while we were processing this
1942 		 * request, and it might be necessary to retry.
1943 		 */
1944 		xug->xug_gen = unp_gencnt;
1945 		xug->xug_sogen = so_gencnt;
1946 		xug->xug_count = unp_count;
1947 		error = SYSCTL_OUT(req, xug, sizeof *xug);
1948 	}
1949 	free(unp_list, M_TEMP);
1950 	free(xug, M_TEMP);
1951 	return (error);
1952 }
1953 
1954 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist,
1955     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1956     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1957     "List of active local datagram sockets");
1958 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist,
1959     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1960     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1961     "List of active local stream sockets");
1962 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1963     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
1964     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1965     "List of active local seqpacket sockets");
1966 
1967 static void
1968 unp_shutdown(struct unpcb *unp)
1969 {
1970 	struct unpcb *unp2;
1971 	struct socket *so;
1972 
1973 	UNP_PCB_LOCK_ASSERT(unp);
1974 
1975 	unp2 = unp->unp_conn;
1976 	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1977 	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1978 		so = unp2->unp_socket;
1979 		if (so != NULL)
1980 			socantrcvmore(so);
1981 	}
1982 }
1983 
1984 static void
1985 unp_drop(struct unpcb *unp)
1986 {
1987 	struct socket *so = unp->unp_socket;
1988 	struct unpcb *unp2;
1989 	int freed;
1990 
1991 	/*
1992 	 * Regardless of whether the socket's peer dropped the connection
1993 	 * with this socket by aborting or disconnecting, POSIX requires
1994 	 * that ECONNRESET is returned.
1995 	 */
1996 	/* acquire a reference so that unp isn't freed from underneath us */
1997 
1998 	UNP_PCB_LOCK(unp);
1999 	if (so)
2000 		so->so_error = ECONNRESET;
2001 	unp2 = unp->unp_conn;
2002 	if (unp2 == unp) {
2003 		unp_disconnect(unp, unp2);
2004 	} else if (unp2 != NULL) {
2005 		unp_pcb_hold(unp2);
2006 		unp_pcb_owned_lock2(unp, unp2, freed);
2007 		unp_disconnect(unp, unp2);
2008 		if (unp_pcb_rele(unp2) == 0)
2009 			UNP_PCB_UNLOCK(unp2);
2010 	}
2011 	if (unp_pcb_rele(unp) == 0)
2012 		UNP_PCB_UNLOCK(unp);
2013 }
2014 
2015 static void
2016 unp_freerights(struct filedescent **fdep, int fdcount)
2017 {
2018 	struct file *fp;
2019 	int i;
2020 
2021 	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
2022 
2023 	for (i = 0; i < fdcount; i++) {
2024 		fp = fdep[i]->fde_file;
2025 		filecaps_free(&fdep[i]->fde_caps);
2026 		unp_discard(fp);
2027 	}
2028 	free(fdep[0], M_FILECAPS);
2029 }
2030 
2031 static int
2032 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
2033 {
2034 	struct thread *td = curthread;		/* XXX */
2035 	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2036 	int i;
2037 	int *fdp;
2038 	struct filedesc *fdesc = td->td_proc->p_fd;
2039 	struct filedescent **fdep;
2040 	void *data;
2041 	socklen_t clen = control->m_len, datalen;
2042 	int error, newfds;
2043 	u_int newlen;
2044 
2045 	UNP_LINK_UNLOCK_ASSERT();
2046 
2047 	error = 0;
2048 	if (controlp != NULL) /* controlp == NULL => free control messages */
2049 		*controlp = NULL;
2050 	while (cm != NULL) {
2051 		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2052 			error = EINVAL;
2053 			break;
2054 		}
2055 		data = CMSG_DATA(cm);
2056 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2057 		if (cm->cmsg_level == SOL_SOCKET
2058 		    && cm->cmsg_type == SCM_RIGHTS) {
2059 			newfds = datalen / sizeof(*fdep);
2060 			if (newfds == 0)
2061 				goto next;
2062 			fdep = data;
2063 
2064 			/* If we're not outputting the descriptors free them. */
2065 			if (error || controlp == NULL) {
2066 				unp_freerights(fdep, newfds);
2067 				goto next;
2068 			}
2069 			FILEDESC_XLOCK(fdesc);
2070 
2071 			/*
2072 			 * Now change each pointer to an fd in the global
2073 			 * table to an integer that is the index to the local
2074 			 * fd table entry that we set up to point to the
2075 			 * global one we are transferring.
2076 			 */
2077 			newlen = newfds * sizeof(int);
2078 			*controlp = sbcreatecontrol(NULL, newlen,
2079 			    SCM_RIGHTS, SOL_SOCKET);
2080 			if (*controlp == NULL) {
2081 				FILEDESC_XUNLOCK(fdesc);
2082 				error = E2BIG;
2083 				unp_freerights(fdep, newfds);
2084 				goto next;
2085 			}
2086 
2087 			fdp = (int *)
2088 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2089 			if (fdallocn(td, 0, fdp, newfds) != 0) {
2090 				FILEDESC_XUNLOCK(fdesc);
2091 				error = EMSGSIZE;
2092 				unp_freerights(fdep, newfds);
2093 				m_freem(*controlp);
2094 				*controlp = NULL;
2095 				goto next;
2096 			}
2097 			for (i = 0; i < newfds; i++, fdp++) {
2098 				_finstall(fdesc, fdep[i]->fde_file, *fdp,
2099 				    (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2100 				    &fdep[i]->fde_caps);
2101 				unp_externalize_fp(fdep[i]->fde_file);
2102 			}
2103 
2104 			/*
2105 			 * The new type indicates that the mbuf data refers to
2106 			 * kernel resources that may need to be released before
2107 			 * the mbuf is freed.
2108 			 */
2109 			m_chtype(*controlp, MT_EXTCONTROL);
2110 			FILEDESC_XUNLOCK(fdesc);
2111 			free(fdep[0], M_FILECAPS);
2112 		} else {
2113 			/* We can just copy anything else across. */
2114 			if (error || controlp == NULL)
2115 				goto next;
2116 			*controlp = sbcreatecontrol(NULL, datalen,
2117 			    cm->cmsg_type, cm->cmsg_level);
2118 			if (*controlp == NULL) {
2119 				error = ENOBUFS;
2120 				goto next;
2121 			}
2122 			bcopy(data,
2123 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2124 			    datalen);
2125 		}
2126 		controlp = &(*controlp)->m_next;
2127 
2128 next:
2129 		if (CMSG_SPACE(datalen) < clen) {
2130 			clen -= CMSG_SPACE(datalen);
2131 			cm = (struct cmsghdr *)
2132 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2133 		} else {
2134 			clen = 0;
2135 			cm = NULL;
2136 		}
2137 	}
2138 
2139 	m_freem(control);
2140 	return (error);
2141 }
2142 
2143 static void
2144 unp_zone_change(void *tag)
2145 {
2146 
2147 	uma_zone_set_max(unp_zone, maxsockets);
2148 }
2149 
2150 static void
2151 unp_init(void)
2152 {
2153 
2154 #ifdef VIMAGE
2155 	if (!IS_DEFAULT_VNET(curvnet))
2156 		return;
2157 #endif
2158 	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2159 	    NULL, NULL, UMA_ALIGN_CACHE, 0);
2160 	if (unp_zone == NULL)
2161 		panic("unp_init");
2162 	uma_zone_set_max(unp_zone, maxsockets);
2163 	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2164 	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2165 	    NULL, EVENTHANDLER_PRI_ANY);
2166 	LIST_INIT(&unp_dhead);
2167 	LIST_INIT(&unp_shead);
2168 	LIST_INIT(&unp_sphead);
2169 	SLIST_INIT(&unp_defers);
2170 	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2171 	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2172 	UNP_LINK_LOCK_INIT();
2173 	UNP_DEFERRED_LOCK_INIT();
2174 }
2175 
2176 static void
2177 unp_internalize_cleanup_rights(struct mbuf *control)
2178 {
2179 	struct cmsghdr *cp;
2180 	struct mbuf *m;
2181 	void *data;
2182 	socklen_t datalen;
2183 
2184 	for (m = control; m != NULL; m = m->m_next) {
2185 		cp = mtod(m, struct cmsghdr *);
2186 		if (cp->cmsg_level != SOL_SOCKET ||
2187 		    cp->cmsg_type != SCM_RIGHTS)
2188 			continue;
2189 		data = CMSG_DATA(cp);
2190 		datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
2191 		unp_freerights(data, datalen / sizeof(struct filedesc *));
2192 	}
2193 }
2194 
2195 static int
2196 unp_internalize(struct mbuf **controlp, struct thread *td)
2197 {
2198 	struct mbuf *control, **initial_controlp;
2199 	struct proc *p;
2200 	struct filedesc *fdesc;
2201 	struct bintime *bt;
2202 	struct cmsghdr *cm;
2203 	struct cmsgcred *cmcred;
2204 	struct filedescent *fde, **fdep, *fdev;
2205 	struct file *fp;
2206 	struct timeval *tv;
2207 	struct timespec *ts;
2208 	void *data;
2209 	socklen_t clen, datalen;
2210 	int i, j, error, *fdp, oldfds;
2211 	u_int newlen;
2212 
2213 	UNP_LINK_UNLOCK_ASSERT();
2214 
2215 	p = td->td_proc;
2216 	fdesc = p->p_fd;
2217 	error = 0;
2218 	control = *controlp;
2219 	clen = control->m_len;
2220 	*controlp = NULL;
2221 	initial_controlp = controlp;
2222 	for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
2223 		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2224 		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2225 			error = EINVAL;
2226 			goto out;
2227 		}
2228 		data = CMSG_DATA(cm);
2229 		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2230 
2231 		switch (cm->cmsg_type) {
2232 		/*
2233 		 * Fill in credential information.
2234 		 */
2235 		case SCM_CREDS:
2236 			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2237 			    SCM_CREDS, SOL_SOCKET);
2238 			if (*controlp == NULL) {
2239 				error = ENOBUFS;
2240 				goto out;
2241 			}
2242 			cmcred = (struct cmsgcred *)
2243 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2244 			cmcred->cmcred_pid = p->p_pid;
2245 			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2246 			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2247 			cmcred->cmcred_euid = td->td_ucred->cr_uid;
2248 			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2249 			    CMGROUP_MAX);
2250 			for (i = 0; i < cmcred->cmcred_ngroups; i++)
2251 				cmcred->cmcred_groups[i] =
2252 				    td->td_ucred->cr_groups[i];
2253 			break;
2254 
2255 		case SCM_RIGHTS:
2256 			oldfds = datalen / sizeof (int);
2257 			if (oldfds == 0)
2258 				break;
2259 			/*
2260 			 * Check that all the FDs passed in refer to legal
2261 			 * files.  If not, reject the entire operation.
2262 			 */
2263 			fdp = data;
2264 			FILEDESC_SLOCK(fdesc);
2265 			for (i = 0; i < oldfds; i++, fdp++) {
2266 				fp = fget_locked(fdesc, *fdp);
2267 				if (fp == NULL) {
2268 					FILEDESC_SUNLOCK(fdesc);
2269 					error = EBADF;
2270 					goto out;
2271 				}
2272 				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2273 					FILEDESC_SUNLOCK(fdesc);
2274 					error = EOPNOTSUPP;
2275 					goto out;
2276 				}
2277 
2278 			}
2279 
2280 			/*
2281 			 * Now replace the integer FDs with pointers to the
2282 			 * file structure and capability rights.
2283 			 */
2284 			newlen = oldfds * sizeof(fdep[0]);
2285 			*controlp = sbcreatecontrol(NULL, newlen,
2286 			    SCM_RIGHTS, SOL_SOCKET);
2287 			if (*controlp == NULL) {
2288 				FILEDESC_SUNLOCK(fdesc);
2289 				error = E2BIG;
2290 				goto out;
2291 			}
2292 			fdp = data;
2293 			for (i = 0; i < oldfds; i++, fdp++) {
2294 				if (!fhold(fdesc->fd_ofiles[*fdp].fde_file)) {
2295 					fdp = data;
2296 					for (j = 0; j < i; j++, fdp++) {
2297 						fdrop(fdesc->fd_ofiles[*fdp].
2298 						    fde_file, td);
2299 					}
2300 					FILEDESC_SUNLOCK(fdesc);
2301 					error = EBADF;
2302 					goto out;
2303 				}
2304 			}
2305 			fdp = data;
2306 			fdep = (struct filedescent **)
2307 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2308 			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2309 			    M_WAITOK);
2310 			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2311 				fde = &fdesc->fd_ofiles[*fdp];
2312 				fdep[i] = fdev;
2313 				fdep[i]->fde_file = fde->fde_file;
2314 				filecaps_copy(&fde->fde_caps,
2315 				    &fdep[i]->fde_caps, true);
2316 				unp_internalize_fp(fdep[i]->fde_file);
2317 			}
2318 			FILEDESC_SUNLOCK(fdesc);
2319 			break;
2320 
2321 		case SCM_TIMESTAMP:
2322 			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
2323 			    SCM_TIMESTAMP, SOL_SOCKET);
2324 			if (*controlp == NULL) {
2325 				error = ENOBUFS;
2326 				goto out;
2327 			}
2328 			tv = (struct timeval *)
2329 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2330 			microtime(tv);
2331 			break;
2332 
2333 		case SCM_BINTIME:
2334 			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
2335 			    SCM_BINTIME, SOL_SOCKET);
2336 			if (*controlp == NULL) {
2337 				error = ENOBUFS;
2338 				goto out;
2339 			}
2340 			bt = (struct bintime *)
2341 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2342 			bintime(bt);
2343 			break;
2344 
2345 		case SCM_REALTIME:
2346 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2347 			    SCM_REALTIME, SOL_SOCKET);
2348 			if (*controlp == NULL) {
2349 				error = ENOBUFS;
2350 				goto out;
2351 			}
2352 			ts = (struct timespec *)
2353 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2354 			nanotime(ts);
2355 			break;
2356 
2357 		case SCM_MONOTONIC:
2358 			*controlp = sbcreatecontrol(NULL, sizeof(*ts),
2359 			    SCM_MONOTONIC, SOL_SOCKET);
2360 			if (*controlp == NULL) {
2361 				error = ENOBUFS;
2362 				goto out;
2363 			}
2364 			ts = (struct timespec *)
2365 			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2366 			nanouptime(ts);
2367 			break;
2368 
2369 		default:
2370 			error = EINVAL;
2371 			goto out;
2372 		}
2373 
2374 		if (*controlp != NULL)
2375 			controlp = &(*controlp)->m_next;
2376 		if (CMSG_SPACE(datalen) < clen) {
2377 			clen -= CMSG_SPACE(datalen);
2378 			cm = (struct cmsghdr *)
2379 			    ((caddr_t)cm + CMSG_SPACE(datalen));
2380 		} else {
2381 			clen = 0;
2382 			cm = NULL;
2383 		}
2384 	}
2385 
2386 out:
2387 	if (error != 0 && initial_controlp != NULL)
2388 		unp_internalize_cleanup_rights(*initial_controlp);
2389 	m_freem(control);
2390 	return (error);
2391 }
2392 
2393 static struct mbuf *
2394 unp_addsockcred(struct thread *td, struct mbuf *control)
2395 {
2396 	struct mbuf *m, *n, *n_prev;
2397 	struct sockcred *sc;
2398 	const struct cmsghdr *cm;
2399 	int ngroups;
2400 	int i;
2401 
2402 	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2403 	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2404 	if (m == NULL)
2405 		return (control);
2406 
2407 	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2408 	sc->sc_uid = td->td_ucred->cr_ruid;
2409 	sc->sc_euid = td->td_ucred->cr_uid;
2410 	sc->sc_gid = td->td_ucred->cr_rgid;
2411 	sc->sc_egid = td->td_ucred->cr_gid;
2412 	sc->sc_ngroups = ngroups;
2413 	for (i = 0; i < sc->sc_ngroups; i++)
2414 		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2415 
2416 	/*
2417 	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2418 	 * created SCM_CREDS control message (struct sockcred) has another
2419 	 * format.
2420 	 */
2421 	if (control != NULL)
2422 		for (n = control, n_prev = NULL; n != NULL;) {
2423 			cm = mtod(n, struct cmsghdr *);
2424     			if (cm->cmsg_level == SOL_SOCKET &&
2425 			    cm->cmsg_type == SCM_CREDS) {
2426     				if (n_prev == NULL)
2427 					control = n->m_next;
2428 				else
2429 					n_prev->m_next = n->m_next;
2430 				n = m_free(n);
2431 			} else {
2432 				n_prev = n;
2433 				n = n->m_next;
2434 			}
2435 		}
2436 
2437 	/* Prepend it to the head. */
2438 	m->m_next = control;
2439 	return (m);
2440 }
2441 
2442 static struct unpcb *
2443 fptounp(struct file *fp)
2444 {
2445 	struct socket *so;
2446 
2447 	if (fp->f_type != DTYPE_SOCKET)
2448 		return (NULL);
2449 	if ((so = fp->f_data) == NULL)
2450 		return (NULL);
2451 	if (so->so_proto->pr_domain != &localdomain)
2452 		return (NULL);
2453 	return sotounpcb(so);
2454 }
2455 
2456 static void
2457 unp_discard(struct file *fp)
2458 {
2459 	struct unp_defer *dr;
2460 
2461 	if (unp_externalize_fp(fp)) {
2462 		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2463 		dr->ud_fp = fp;
2464 		UNP_DEFERRED_LOCK();
2465 		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2466 		UNP_DEFERRED_UNLOCK();
2467 		atomic_add_int(&unp_defers_count, 1);
2468 		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2469 	} else
2470 		(void) closef(fp, (struct thread *)NULL);
2471 }
2472 
2473 static void
2474 unp_process_defers(void *arg __unused, int pending)
2475 {
2476 	struct unp_defer *dr;
2477 	SLIST_HEAD(, unp_defer) drl;
2478 	int count;
2479 
2480 	SLIST_INIT(&drl);
2481 	for (;;) {
2482 		UNP_DEFERRED_LOCK();
2483 		if (SLIST_FIRST(&unp_defers) == NULL) {
2484 			UNP_DEFERRED_UNLOCK();
2485 			break;
2486 		}
2487 		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2488 		UNP_DEFERRED_UNLOCK();
2489 		count = 0;
2490 		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2491 			SLIST_REMOVE_HEAD(&drl, ud_link);
2492 			closef(dr->ud_fp, NULL);
2493 			free(dr, M_TEMP);
2494 			count++;
2495 		}
2496 		atomic_add_int(&unp_defers_count, -count);
2497 	}
2498 }
2499 
2500 static void
2501 unp_internalize_fp(struct file *fp)
2502 {
2503 	struct unpcb *unp;
2504 
2505 	UNP_LINK_WLOCK();
2506 	if ((unp = fptounp(fp)) != NULL) {
2507 		unp->unp_file = fp;
2508 		unp->unp_msgcount++;
2509 	}
2510 	unp_rights++;
2511 	UNP_LINK_WUNLOCK();
2512 }
2513 
2514 static int
2515 unp_externalize_fp(struct file *fp)
2516 {
2517 	struct unpcb *unp;
2518 	int ret;
2519 
2520 	UNP_LINK_WLOCK();
2521 	if ((unp = fptounp(fp)) != NULL) {
2522 		unp->unp_msgcount--;
2523 		ret = 1;
2524 	} else
2525 		ret = 0;
2526 	unp_rights--;
2527 	UNP_LINK_WUNLOCK();
2528 	return (ret);
2529 }
2530 
2531 /*
2532  * unp_defer indicates whether additional work has been defered for a future
2533  * pass through unp_gc().  It is thread local and does not require explicit
2534  * synchronization.
2535  */
2536 static int	unp_marked;
2537 
2538 static void
2539 unp_remove_dead_ref(struct filedescent **fdep, int fdcount)
2540 {
2541 	struct unpcb *unp;
2542 	struct file *fp;
2543 	int i;
2544 
2545 	/*
2546 	 * This function can only be called from the gc task.
2547 	 */
2548 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2549 	    ("%s: not on gc callout", __func__));
2550 	UNP_LINK_LOCK_ASSERT();
2551 
2552 	for (i = 0; i < fdcount; i++) {
2553 		fp = fdep[i]->fde_file;
2554 		if ((unp = fptounp(fp)) == NULL)
2555 			continue;
2556 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2557 			continue;
2558 		unp->unp_gcrefs--;
2559 	}
2560 }
2561 
2562 static void
2563 unp_restore_undead_ref(struct filedescent **fdep, int fdcount)
2564 {
2565 	struct unpcb *unp;
2566 	struct file *fp;
2567 	int i;
2568 
2569 	/*
2570 	 * This function can only be called from the gc task.
2571 	 */
2572 	KASSERT(taskqueue_member(taskqueue_thread, curthread) != 0,
2573 	    ("%s: not on gc callout", __func__));
2574 	UNP_LINK_LOCK_ASSERT();
2575 
2576 	for (i = 0; i < fdcount; i++) {
2577 		fp = fdep[i]->fde_file;
2578 		if ((unp = fptounp(fp)) == NULL)
2579 			continue;
2580 		if ((unp->unp_gcflag & UNPGC_DEAD) == 0)
2581 			continue;
2582 		unp->unp_gcrefs++;
2583 		unp_marked++;
2584 	}
2585 }
2586 
2587 static void
2588 unp_gc_scan(struct unpcb *unp, void (*op)(struct filedescent **, int))
2589 {
2590 	struct socket *so, *soa;
2591 
2592 	so = unp->unp_socket;
2593 	SOCK_LOCK(so);
2594 	if (SOLISTENING(so)) {
2595 		/*
2596 		 * Mark all sockets in our accept queue.
2597 		 */
2598 		TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2599 			if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2600 				continue;
2601 			SOCKBUF_LOCK(&soa->so_rcv);
2602 			unp_scan(soa->so_rcv.sb_mb, op);
2603 			SOCKBUF_UNLOCK(&soa->so_rcv);
2604 		}
2605 	} else {
2606 		/*
2607 		 * Mark all sockets we reference with RIGHTS.
2608 		 */
2609 		if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2610 			SOCKBUF_LOCK(&so->so_rcv);
2611 			unp_scan(so->so_rcv.sb_mb, op);
2612 			SOCKBUF_UNLOCK(&so->so_rcv);
2613 		}
2614 	}
2615 	SOCK_UNLOCK(so);
2616 }
2617 
2618 static int unp_recycled;
2619 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2620     "Number of unreachable sockets claimed by the garbage collector.");
2621 
2622 static int unp_taskcount;
2623 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2624     "Number of times the garbage collector has run.");
2625 
2626 SYSCTL_UINT(_net_local, OID_AUTO, sockcount, CTLFLAG_RD, &unp_count, 0,
2627     "Number of active local sockets.");
2628 
2629 static void
2630 unp_gc(__unused void *arg, int pending)
2631 {
2632 	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2633 				    NULL };
2634 	struct unp_head **head;
2635 	struct unp_head unp_deadhead;	/* List of potentially-dead sockets. */
2636 	struct file *f, **unref;
2637 	struct unpcb *unp, *unptmp;
2638 	int i, total, unp_unreachable;
2639 
2640 	LIST_INIT(&unp_deadhead);
2641 	unp_taskcount++;
2642 	UNP_LINK_RLOCK();
2643 	/*
2644 	 * First determine which sockets may be in cycles.
2645 	 */
2646 	unp_unreachable = 0;
2647 
2648 	for (head = heads; *head != NULL; head++)
2649 		LIST_FOREACH(unp, *head, unp_link) {
2650 
2651 			KASSERT((unp->unp_gcflag & ~UNPGC_IGNORE_RIGHTS) == 0,
2652 			    ("%s: unp %p has unexpected gc flags 0x%x",
2653 			    __func__, unp, (unsigned int)unp->unp_gcflag));
2654 
2655 			f = unp->unp_file;
2656 
2657 			/*
2658 			 * Check for an unreachable socket potentially in a
2659 			 * cycle.  It must be in a queue as indicated by
2660 			 * msgcount, and this must equal the file reference
2661 			 * count.  Note that when msgcount is 0 the file is
2662 			 * NULL.
2663 			 */
2664 			if (f != NULL && unp->unp_msgcount != 0 &&
2665 			    f->f_count == unp->unp_msgcount) {
2666 				LIST_INSERT_HEAD(&unp_deadhead, unp, unp_dead);
2667 				unp->unp_gcflag |= UNPGC_DEAD;
2668 				unp->unp_gcrefs = unp->unp_msgcount;
2669 				unp_unreachable++;
2670 			}
2671 		}
2672 
2673 	/*
2674 	 * Scan all sockets previously marked as potentially being in a cycle
2675 	 * and remove the references each socket holds on any UNPGC_DEAD
2676 	 * sockets in its queue.  After this step, all remaining references on
2677 	 * sockets marked UNPGC_DEAD should not be part of any cycle.
2678 	 */
2679 	LIST_FOREACH(unp, &unp_deadhead, unp_dead)
2680 		unp_gc_scan(unp, unp_remove_dead_ref);
2681 
2682 	/*
2683 	 * If a socket still has a non-negative refcount, it cannot be in a
2684 	 * cycle.  In this case increment refcount of all children iteratively.
2685 	 * Stop the scan once we do a complete loop without discovering
2686 	 * a new reachable socket.
2687 	 */
2688 	do {
2689 		unp_marked = 0;
2690 		LIST_FOREACH_SAFE(unp, &unp_deadhead, unp_dead, unptmp)
2691 			if (unp->unp_gcrefs > 0) {
2692 				unp->unp_gcflag &= ~UNPGC_DEAD;
2693 				LIST_REMOVE(unp, unp_dead);
2694 				KASSERT(unp_unreachable > 0,
2695 				    ("%s: unp_unreachable underflow.",
2696 				    __func__));
2697 				unp_unreachable--;
2698 				unp_gc_scan(unp, unp_restore_undead_ref);
2699 			}
2700 	} while (unp_marked);
2701 
2702 	UNP_LINK_RUNLOCK();
2703 
2704 	if (unp_unreachable == 0)
2705 		return;
2706 
2707 	/*
2708 	 * Allocate space for a local array of dead unpcbs.
2709 	 * TODO: can this path be simplified by instead using the local
2710 	 * dead list at unp_deadhead, after taking out references
2711 	 * on the file object and/or unpcb and dropping the link lock?
2712 	 */
2713 	unref = malloc(unp_unreachable * sizeof(struct file *),
2714 	    M_TEMP, M_WAITOK);
2715 
2716 	/*
2717 	 * Iterate looking for sockets which have been specifically marked
2718 	 * as unreachable and store them locally.
2719 	 */
2720 	UNP_LINK_RLOCK();
2721 	total = 0;
2722 	LIST_FOREACH(unp, &unp_deadhead, unp_dead) {
2723 		KASSERT((unp->unp_gcflag & UNPGC_DEAD) != 0,
2724 		    ("%s: unp %p not marked UNPGC_DEAD", __func__, unp));
2725 		unp->unp_gcflag &= ~UNPGC_DEAD;
2726 		f = unp->unp_file;
2727 		if (unp->unp_msgcount == 0 || f == NULL ||
2728 		    f->f_count != unp->unp_msgcount ||
2729 		    !fhold(f))
2730 			continue;
2731 		unref[total++] = f;
2732 		KASSERT(total <= unp_unreachable,
2733 		    ("%s: incorrect unreachable count.", __func__));
2734 	}
2735 	UNP_LINK_RUNLOCK();
2736 
2737 	/*
2738 	 * Now flush all sockets, free'ing rights.  This will free the
2739 	 * struct files associated with these sockets but leave each socket
2740 	 * with one remaining ref.
2741 	 */
2742 	for (i = 0; i < total; i++) {
2743 		struct socket *so;
2744 
2745 		so = unref[i]->f_data;
2746 		CURVNET_SET(so->so_vnet);
2747 		sorflush(so);
2748 		CURVNET_RESTORE();
2749 	}
2750 
2751 	/*
2752 	 * And finally release the sockets so they can be reclaimed.
2753 	 */
2754 	for (i = 0; i < total; i++)
2755 		fdrop(unref[i], NULL);
2756 	unp_recycled += total;
2757 	free(unref, M_TEMP);
2758 }
2759 
2760 static void
2761 unp_dispose_mbuf(struct mbuf *m)
2762 {
2763 
2764 	if (m)
2765 		unp_scan(m, unp_freerights);
2766 }
2767 
2768 /*
2769  * Synchronize against unp_gc, which can trip over data as we are freeing it.
2770  */
2771 static void
2772 unp_dispose(struct socket *so)
2773 {
2774 	struct unpcb *unp;
2775 
2776 	unp = sotounpcb(so);
2777 	UNP_LINK_WLOCK();
2778 	unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2779 	UNP_LINK_WUNLOCK();
2780 	if (!SOLISTENING(so))
2781 		unp_dispose_mbuf(so->so_rcv.sb_mb);
2782 }
2783 
2784 static void
2785 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2786 {
2787 	struct mbuf *m;
2788 	struct cmsghdr *cm;
2789 	void *data;
2790 	socklen_t clen, datalen;
2791 
2792 	while (m0 != NULL) {
2793 		for (m = m0; m; m = m->m_next) {
2794 			if (m->m_type != MT_CONTROL)
2795 				continue;
2796 
2797 			cm = mtod(m, struct cmsghdr *);
2798 			clen = m->m_len;
2799 
2800 			while (cm != NULL) {
2801 				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2802 					break;
2803 
2804 				data = CMSG_DATA(cm);
2805 				datalen = (caddr_t)cm + cm->cmsg_len
2806 				    - (caddr_t)data;
2807 
2808 				if (cm->cmsg_level == SOL_SOCKET &&
2809 				    cm->cmsg_type == SCM_RIGHTS) {
2810 					(*op)(data, datalen /
2811 					    sizeof(struct filedescent *));
2812 				}
2813 
2814 				if (CMSG_SPACE(datalen) < clen) {
2815 					clen -= CMSG_SPACE(datalen);
2816 					cm = (struct cmsghdr *)
2817 					    ((caddr_t)cm + CMSG_SPACE(datalen));
2818 				} else {
2819 					clen = 0;
2820 					cm = NULL;
2821 				}
2822 			}
2823 		}
2824 		m0 = m0->m_nextpkt;
2825 	}
2826 }
2827 
2828 /*
2829  * A helper function called by VFS before socket-type vnode reclamation.
2830  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2831  * use count.
2832  */
2833 void
2834 vfs_unp_reclaim(struct vnode *vp)
2835 {
2836 	struct unpcb *unp;
2837 	int active;
2838 	struct mtx *vplock;
2839 
2840 	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2841 	KASSERT(vp->v_type == VSOCK,
2842 	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2843 
2844 	active = 0;
2845 	vplock = mtx_pool_find(mtxpool_sleep, vp);
2846 	mtx_lock(vplock);
2847 	VOP_UNP_CONNECT(vp, &unp);
2848 	if (unp == NULL)
2849 		goto done;
2850 	UNP_PCB_LOCK(unp);
2851 	if (unp->unp_vnode == vp) {
2852 		VOP_UNP_DETACH(vp);
2853 		unp->unp_vnode = NULL;
2854 		active = 1;
2855 	}
2856 	UNP_PCB_UNLOCK(unp);
2857  done:
2858 	mtx_unlock(vplock);
2859 	if (active)
2860 		vunref(vp);
2861 }
2862 
2863 #ifdef DDB
2864 static void
2865 db_print_indent(int indent)
2866 {
2867 	int i;
2868 
2869 	for (i = 0; i < indent; i++)
2870 		db_printf(" ");
2871 }
2872 
2873 static void
2874 db_print_unpflags(int unp_flags)
2875 {
2876 	int comma;
2877 
2878 	comma = 0;
2879 	if (unp_flags & UNP_HAVEPC) {
2880 		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2881 		comma = 1;
2882 	}
2883 	if (unp_flags & UNP_WANTCRED) {
2884 		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2885 		comma = 1;
2886 	}
2887 	if (unp_flags & UNP_CONNWAIT) {
2888 		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2889 		comma = 1;
2890 	}
2891 	if (unp_flags & UNP_CONNECTING) {
2892 		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2893 		comma = 1;
2894 	}
2895 	if (unp_flags & UNP_BINDING) {
2896 		db_printf("%sUNP_BINDING", comma ? ", " : "");
2897 		comma = 1;
2898 	}
2899 }
2900 
2901 static void
2902 db_print_xucred(int indent, struct xucred *xu)
2903 {
2904 	int comma, i;
2905 
2906 	db_print_indent(indent);
2907 	db_printf("cr_version: %u   cr_uid: %u   cr_pid: %d   cr_ngroups: %d\n",
2908 	    xu->cr_version, xu->cr_uid, xu->cr_pid, xu->cr_ngroups);
2909 	db_print_indent(indent);
2910 	db_printf("cr_groups: ");
2911 	comma = 0;
2912 	for (i = 0; i < xu->cr_ngroups; i++) {
2913 		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2914 		comma = 1;
2915 	}
2916 	db_printf("\n");
2917 }
2918 
2919 static void
2920 db_print_unprefs(int indent, struct unp_head *uh)
2921 {
2922 	struct unpcb *unp;
2923 	int counter;
2924 
2925 	counter = 0;
2926 	LIST_FOREACH(unp, uh, unp_reflink) {
2927 		if (counter % 4 == 0)
2928 			db_print_indent(indent);
2929 		db_printf("%p  ", unp);
2930 		if (counter % 4 == 3)
2931 			db_printf("\n");
2932 		counter++;
2933 	}
2934 	if (counter != 0 && counter % 4 != 0)
2935 		db_printf("\n");
2936 }
2937 
2938 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2939 {
2940 	struct unpcb *unp;
2941 
2942         if (!have_addr) {
2943                 db_printf("usage: show unpcb <addr>\n");
2944                 return;
2945         }
2946         unp = (struct unpcb *)addr;
2947 
2948 	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2949 	    unp->unp_vnode);
2950 
2951 	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2952 	    unp->unp_conn);
2953 
2954 	db_printf("unp_refs:\n");
2955 	db_print_unprefs(2, &unp->unp_refs);
2956 
2957 	/* XXXRW: Would be nice to print the full address, if any. */
2958 	db_printf("unp_addr: %p\n", unp->unp_addr);
2959 
2960 	db_printf("unp_gencnt: %llu\n",
2961 	    (unsigned long long)unp->unp_gencnt);
2962 
2963 	db_printf("unp_flags: %x (", unp->unp_flags);
2964 	db_print_unpflags(unp->unp_flags);
2965 	db_printf(")\n");
2966 
2967 	db_printf("unp_peercred:\n");
2968 	db_print_xucred(2, &unp->unp_peercred);
2969 
2970 	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2971 }
2972 #endif
2973